
Twisted geometric ∞-bundles
Urs Schreiber

handout1 for a talk, June 2012
reporting on joint work [NSS] with

Thomas Nikolaus and Danny Stevenson
with precursors in [NiWa, RoSt, SSS, S]

and with various applications, indicated in [Lect].
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1 Motivation
Classical fact. For X a manifold and G a topological/Lie group, regarded as a sheaf of
groups C(−, G) on X, there is an equivalence:

algebraic data on X geometric data on X{
degree-1 nonabelian
sheaf cohomology

}
'

{
isomorphism classes of

G-principal bundles over X

}
H1(X,G) GBund(X)

(x, j)

��

_

��

∗
gjk(x)

��
(x, i)

{

��

//

BB

(x, k)B

��

∗
gik(x)

//

gij(x)
GG

∗

x

� g //

X
g

cocycle
// BG


/∼

'



P ×G //

p1

��
ρ

��

EG×G
p1

��
ρ

��
G-actions

P //

��

EG

��

total spaces

pullback

X
|g|

// BG quotient spaces

G-principal
bundle classifying

map

universal
bundle


/∼

Problem. In higher differential geometry [S], for instance in String-geometry [SSS], geo-
metric groups G are generalized to geometric grouplike A∞-spaces : to geometric ∞-groups
(examples below in 5). Need to generalize the above classical fact to this case.

1Available at ncatlab.org/schreiber/files/TwistedBundlesTalk.pdf.
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2 Higher geometry

We need

geometry + homotopy theory = higher geometry ' ∞-topos theory .

Here is a way to think of the above classical fact that will generalize: let

• C := SmthMfd be the category of all smooth manifolds of finite dimension (or some
other site, here, for convenience, assumed to have enough points);

• gSh(C) be the category of groupoid-valued sheaves over C,
for instance X = { X //// X },BG = { G // // ∗ } ∈ gSh(C);

• HogSh(C) the homotopy category obtained by universally turning

stalkwise groupoid-equivalences 7→ isomorphisms .

Fact. H1(X,G) ' HogSh(C)(X,BG) (e.g. using Hollander (2001)).
Definition. To generalize, let

•

Groupoids
G g

tt
� y

N ++
Categories � w N

**
KanComplexes
eEss

be the Kan complexes, aka ∞-groupoids

QuasiCategories� _��
inside all quasi-categories aka ∞-categories

SimplicialSets

• sSh(C)lfib ↪→ Sh(C, sSet) be the (stalkwise Kan) simplicial sheaves;

• H := LW sSh(C)lfib the simplicial localization obtained by universally turning

stalkwise homotopy equivalences 7→ homotopy equivalences .

Fact. (Toën-Vezzosi, Rezk, Lurie) This is the ∞-category theory analog of the sheaf topos:
the ∞-stack ∞-topos over C.
Example. Smooth∞Grpd := Sh∞(SmthMfd) is the ∞-topos of smooth ∞-groupoids /
smooth ∞-stacks.
Example. For A a sheaf of abelian groups, Bn+1A := DoldKan(A[n + 1]) ∈ sSh(C) is the
moduli n-stack of BnA-principal bundles (details in a moment).
Proposition. Every object in Smooth∞Grpd is presented by a simplicial manifold, but not
necessarily by a locally Kan simplicial manifold (see below).

Definition A group in the ∞-topos is a G ∈ H equipped with a groupal A∞-algebra
structure: coherently homotopy associative product with coherent homotopy inverses.
Example. In Smooth∞Grpd this is a smooth ∞-group: for instance a Lie group, or a Lie
2-group, or a differentiable group stack, or a sheaf of simplicial groups on SmthMfd.
Fact. (classical + Lurie) There is an equivalence

{ groups in H } oo
looping Ω

delooping B

' //

{
pointed connected

objects in H

}
Proposition. Let C have a terminal object. For every ∞-group G ∈ Grp(Sh∞(C)) there is
a sheaf of simplicial groups presenting it under Sh∞(C) ' LW sSh(C); and every ∞-action
ρ : P ×G→ P is presented by a corresponding simplicial action.

2



3 Principal ∞-bundles

Definition. A G-principal bundle over X ∈ H is

• a morphism P → X; with an ∞-action ρ : P ×G→ P ;

• such that P → X is∞-quotient P → P//G
(∗)⇔ principality : P ×Gn (p1,ρ)

'
// P ×X · · · ×X P

Theorem. There is equivalence of ∞-groupoids GBund(X)
lim
→

' //
oo hofib

H(X,BG) , where

1. hofib sends a cocycle X → BG to its homotopy fiber;

2. lim
−→

sends an ∞-bundle to the map on ∞-quotients X ' P//G→ ∗//G ' BG.

In particular, G-principal ∞-bundles are classified by the intrinsic cohomology of H

GBund(X)/∼ ' H1(X,G) := π0H(X,BG) .

Proof. Repeatedly apply two of the
(∗)Giraud-Rezk-Lurie axioms
that characterize ∞-toposes:

1. every ∞-quotient is effective;
2. ∞-colimits are preserved

by ∞-pullbacks. �

...
...

P ×G×G //

�� �� ��

G×G

�� �� ��
P ×G //

p1

��
ρ

��

G

�� ��
G-∞-actions

P //

��

∗

��

total objects

∞-pullback

X g
// BG quotient objects

G-principal
∞-bundle cocycle

universal
∞-bundle

This gives a general abstract theory of principal ∞-bundles in every ∞-topos. We also
have the following presentations.
Definition For G ∈ Grp(sSh(C)), and X ∈ sSh(C)lfib, a weakly G-principal simplicial bundle
is a G-action ρ over X such that the principality morphism (ρ, p1) : P × G → P ×X P is a
stalkwise weak equivalence.

Theorem. Nerve

{
weakly G-principal simplicial bundles

over X

}
' GBund(X).

Example. For X terminal over C and restricted to cohomology classes, this is [JL].
Remark. We need more than that, notably X = BG itself, see next page.
Example. For C = ∗ we have sSh(C)lfib = KanComplexes. Classical theory considers
strictly principal simplicial bundles [Ma].
Proposition. Strictly principal simplicial bundles over C = ∗ do present the cohomology
H1(X,G), but not in general the full cocycle space H(X,BG). For C nontrivial they do in
general not even present H1(X,G).
Theorem. Let C = SmthMfd or other cohesive [S] site. If G is “C-acyclic”, then

• H(−,BG) is computed by simplicial hyper-Čech cohomology;

• G-principal ∞-bundles over manifolds are presented by locally Kan fibrant simplicial
manifolds.
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4 Associated and twisted ∞-bundles

Observation. By the above theorem,
every G-∞-action ρ : V ×G→ G

has a classifying map c:

V // V//G

c

��
BG

Proposition. This is the
universal ρ-associated V -bundle.

Observation. Sections σ of the associated∞-bundle are lifts of the cocycle through c; and
these locally factor through V :

P ×G V //

��

V//G

c

��
X

g //

σ

CC

BG

 '


V//G

c

��
X

g //

σ
<<

BG


V // V//G

c

��
U // //

σ|U
??

X
g // BG

.

Hence sections σ are equivalently

• cocycles in [g]-twisted cohomology ;

• c-valued cocycles in the slice ∞-topos : ΓX(P ×G V ) ' H/BG(g, c)

(This is a geometric and unstable variant of the picture in [ABG]. )
Theorem. The ∞-bundles classified by H/BG(−, c) are P -twisted ∞-bundles : twisted G-
equivariant ΩV -∞-bundles on P :

Q

��

// ∗

��

P -twisted ΩV -principal ∞-bundle

P

��

// V //

��

∗

��

G-principal ∞-bundle

X
σ //

g

77V//G
c // BG section of ρ-associated V -∞-bundle

{
sections of

ρ-associated V -∞-bundle

}
'
{

g-twisted ΩV -cohomology
relative c

}
'
{

ΩV -∞-bundles
twisted by P

}

Example. Connecting homomorphism c of Lie group U(1)-extension

BU(1) // BĜ // BG
c��

B2U(1)

induces the H3(X,Z)-twisted smooth Ĝ-bundles known from twisted K-theory.
Example. Associated connected-fiber ∞-bundles are ∞-gerbes.

• A (nonabelian/Giraud-)gerbe on X is a connected 1-truncated object in H/X (a con-
nected stack on X).
• A (nonabelian/Giraud-Breen) ∞-gerbe over X is a connected object in H/X .
• A G-∞-gerbe is an Aut(BG)-associated∞-bundle. Its band is the underlying Out(G)-

principal ∞-bundle.

Observation. G-∞-gerbes bound by a band are classified by (BAut(BG) → BOut(G))-
twisted cohomology.
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5 Selected examples

local coefficient ∞-bundle
twisting ∞-bundle /
twisting cohomology

twisted ∞-bundle /
twisted cohomology

see
[Lect]

V // V//G

c
��

BG

ρ-associated
V -∞-bundle

section [S]

B2ker(G) // BAut(BG)

��
BOut(G)

band (lien)
nonabelian (Giraud-Breen)

G-∞-gerbe
[NSS]

[S]

GL(d)/O(d) // BO(d)

orth
��

BGL(d)

tangent bundle
orthogonal structure /
Riemannian geometry

[S]

O(d)\O(d, d)/O(d) // B(O(d)×O(d))

TypeII
��

BO(d, d)

generalized
tangent bundle

generalized (type II)
Riemannian geometry

[S]

BU(n) // BPU(n)

ddn
��

B2U(1)

circle 2-bundle /
bundle gerbe

twisted vector bundle /
twisted K-cocycle /

bundle gerbe module
[S]

BnU(1) // BnU(1)//Z2

Jn−1

��
BZ2

double cover
higher (bosonic) orientifold /
n = 2: Jandl bundle gerbe

[FSSc]

[SSW]

V // BSpinνn+1

νint
n+1
��

BnU(1)

circle n-bundle
smooth integral
Wu structure

[FSSc]

BString // BSpin
1
2
p1
��

B3U(1)

circle 3-bundle /
bundle 2-gerbe

twisted
String 2-bundle

[SSS]

[FSSa]

V // B(T× T∗)
〈c1∪c1〉
��

B3U(1)

circle 3-bundle /
bundle 2-gerbe

T-duality structure [S]

BFivebrane // BString
1
6
p2
��

B7U(1)

circle 7-bundle
twisted

Fivebrane 6-bundle
[SSS]

[FSSa]

[BnU(1) // BnU(1)

curv
��

[dRBn+1U(1)

curvature
(n+ 1)-form

circle n-bundle with connection:
curvature-twisted flat connection

[S]
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Observation. Ordinary cohomology is crucially contravariant: it “pulls back”: H(−, A) :
Hop →∞Grpd. Twisted cohomology is not contravariant in H: the information for how to
“carry the twists along” is missing. However, by the above it is contravariant in the slice
H/BG over the moduli of twists.
Example. Cocycles in H/BGL(n)(TX,orth) are metrics on X: these pull back along

H/BGL(n)(TY, TX) =


Y

TY $$

f // X

TXzz
BGL(n)

'�	

 =

{
local diffeomorphism f ;

f ∗TX ' TY

}

Example. Since Sh∞(SmthMfd) is “cohesive” [S]: there is a canonical notion of flat co-
efficients [BnU(1) and of flat de Rham coefficients [dRBnU(1), and a canonical curvature
morphism forming a local coefficient bundle

[BnU(1) // BnU(1)
curv��

[dRBn+1U(1)conn

.

The corresponding twisted cohomology is differential cohomology with universal coefficient
object BnU(1)conn, presented by the Deligne complex.
Example. Bosonic string orientifold configurations [SSW], see [Freed]:

worldsheet field
(φ, ν) ∈ H/BZ2(w1(TΣ), wX)

target space field

(w, B̂) ∈ H(X,BAut(U(1))conn)

Σ

w1(TΣ) &&

φ // X

wX

��

B̂ // BAut(U(1))conn

J
uu

BZ2

'
ν
qy

Example. There are differential refinements of the first and second fractional Pontryagin
classes, of the form [FSSa]:

BStringconn
// BSpinconn

1
2
p̂1��

B3U(1)conn

BFivebraneconn
// BStringconn

1
6
p̂2��

B7U(1)conn

.

The corresponding twisted bundles are twisted String-princial 2-bundle with 2-connection
and twisted Fivebrane-principal 6-bundles with 6-connection: higher analogs of the twisted
unitary bundles of twisted K-theory; play a role in the heterotic string [SSS], see [Lect].

Their transgression to codimension 0 is

action functional of level-1 3d
Spin-Chern-Simons theory

[Σ3,BSpinconn]
[Σ3,

1
2
p̂1]

// [Σ3,B
3U(1)conn]

exp(2πi
∫
Σ3

(−))
// U(1) ;

action functional of a 7d
level-1 CS theory of

String 2-connections [FSSb]
[Σ7,BStringconn]

[Σ7,
1
6
p̂2]

// [Σ7,B
7U(1)conn]

exp(2πi
∫
Σ7

(−))
// U(1)

But before transgression, the action was “localized/extended to the point”. See next page...
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6 Higher geometric prequantization

It turns out that the differential refineement of smooth twisted cohomology is tightly related
to higher notions of geometric quantization under the following dictionary.

differential twisted cohomology geometric quantization

twist extended action functional / prequantum circle n-bundle
twist auto-equivalences higher Heisenberg group / quantomorphism group
local coefficient bundle associated prequantum n-bundle

Example. Let
C // C//U(1)

��
BU(1)

be the canonical complex-linear circle action.

Then

• ∇ : X → BU(1)conn classifies a circle bundle with connection, a prequantum line bundle
of its curvature 2-form;

• ΓX(P ×U(1) C) is the corresponding space of smooth sections;

• H/BU(1)conn(∇,∇)' is the exp(Poisson bracket)-group action of prequantum operators,
containing the Heisenberg group action.

Example. Let
BU(n) // BPU(n)

ddn��
B2U(1)

be the canonical 2-circle action.

Then

• ∇ : X → B2U(1)conn classifies a circle 2-bundle with connection, a prequantum line
2-bundle of its curvature 3-form;

• ΓX(P ×BU(1) BU) is the corresponding groupoid of smooth sections = twisted bundles;

• H/B2U(1)conn
(∇,∇)' is the exp(2-plectic bracket)-2-group action of 2-plectic geometry

[Rogers], containing the Heisenberg 2-group action [RoSc].

Example. ∞-Chern-Simons theory [FS]:

• extended Lagrangian: differential cocycle on moduli ∞-stack of fields
ĉ : BGconn → BnU(1)conn (e.g. 1

2
p̂1, 1

6
p̂2, ˆDDn ∪ ˆDDn,...);

• representation: local coefficient bundle
V // V//Bn−1U(1)

ρ��
BnU(1)

;

• extended action in codim k:

exp(2πi
∫

Σk
ĉ) : [Σk,BGconn]

[Σk,ĉ] // [Σk,B
nU(1)conn]

exp(2πi
∫
Σk

(−))
// Bn−kU(1)conn

[Σk,BGconn]

higher Heisenberg
operator //

exp(2πi
∫
Σk

ĉ) **

[Σk,BGconn]

higher quantum
state //

exp(2πi
∫
Σk

ĉ)

��

V//Bn−k−1U(1)conn

ρtt
Bn−kU(1)conn

t|
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