Twisted geometric ∞ -bundles

Urs Schreiber handout¹ for a talk, June 2012 reporting on joint work [NSS] with *Thomas Nikolaus* and *Danny Stevenson* with precursors in [NiWa, RoSt, SSS, S] and with various applications, indicated in [Lect].

Contents

1	Motivation	1
2	Higher geometry	2
3	Principal ∞ -bundles	3
4	Associated and twisted ∞ -bundles	4
5	Selected examples	5
6	Higher geometric prequantization	7

1 Motivation

Classical fact. For X a manifold and G a topological/Lie group, regarded as a sheaf of groups C(-, G) on X, there is an equivalence:

Problem. In higher differential geometry [S], for instance in String-geometry [SSS], geometric groups G are generalized to geometric grouplike A_{∞} -spaces: to geometric ∞ -groups (examples below in 5). Need to generalize the above classical fact to this case.

 $^{^{1}}Available \ at \verb"ncatlab.org/schreiber/files/TwistedBundlesTalk.pdf".$

2 Higher geometry

We need

 $\boxed{\text{geometry}} + \boxed{\text{homotopy theory}} = \boxed{\text{higher geometry} \simeq \infty\text{-topos theory}}$

Here is a way to think of the above classical fact that will generalize: let

- C := SmthMfd be the category of all smooth manifolds of finite dimension (or some other site, here, for convenience, assumed to have enough points);
- gSh(C) be the category of groupoid-valued sheaves over C, for instance $X = \{X \implies X\}, BG = \{G \implies *\} \in gSh(C);$
- $\operatorname{Ho}_{\operatorname{gSh}(C)}$ the homotopy category obtained by universally turning stalkwise groupoid-equivalences \mapsto isomorphisms.

Fact. $H^1(X, G) \simeq \operatorname{Ho}_{\operatorname{gSh}(C)}(X, \operatorname{\mathbf{B}} G)$ (e.g. using Hollander (2001)). **Definition.** To generalize, let

- Categories N KanComplexes be the Kan complexes, aka ∞ -groupoids QuasiCategories inside all quasi-categories aka ∞ -categories SimplicialSets
- $\mathrm{sSh}(C)_{\mathrm{lfib}} \hookrightarrow \mathrm{Sh}(C, \mathrm{sSet})$ be the (stalkwise Kan) simplicial sheaves;
- $\mathbf{H} := L_W \mathrm{sSh}(C)_{\mathrm{lfib}}$ the simplicial localization obtained by universally turning stalkwise homotopy equivalences \mapsto homotopy equivalences.

Fact. (Toën-Vezzosi, Rezk, Lurie) This is the ∞ -category theory analog of the sheaf topos: the ∞ -stack ∞ -topos over C.

Example. Smooth ∞ Grpd := Sh $_{\infty}$ (SmthMfd) is the ∞ -topos of smooth ∞ -groupoids / smooth ∞ -stacks.

Example. For A a sheaf of abelian groups, $\mathbf{B}^{n+1}A := \text{DoldKan}(A[n+1]) \in \text{sSh}(C)$ is the moduli *n*-stack of $\mathbf{B}^n A$ -principal bundles (details in a moment).

Proposition. Every object in $\text{Smooth}\infty$ Grpd is presented by a simplicial manifold, but not necessarily by a *locally Kan* simplicial manifold (see below).

Definition A group in the ∞ -topos is a $G \in \mathbf{H}$ equipped with a groupal A_{∞} -algebra structure: coherently homotopy associative product with coherent homotopy inverses. **Example.** In Smooth ∞ Grpd this is a smooth ∞ -group: for instance a Lie group, or a Lie 2-group, or a differentiable group stack, or a sheaf of simplicial groups on SmthMfd.

Fact. (classical + Lurie) There is an equivalence

$$\left\{ \text{ groups in } \mathbf{H} \right\} \xrightarrow[\text{delooping } \mathbf{B}]{} \left\{ \begin{array}{c} \text{pointed connected} \\ \text{objects in } \mathbf{H} \end{array} \right\}$$

Proposition. Let C have a terminal object. For every ∞ -group $G \in \operatorname{Grp}(\operatorname{Sh}_{\infty}(C))$ there is a sheaf of simplicial groups presenting it under $\operatorname{Sh}_{\infty}(C) \simeq L_W \operatorname{sSh}(C)$; and every ∞ -action $\rho: P \times G \to P$ is presented by a corresponding simplicial action.

3 Principal ∞ -bundles

Definition. A *G*-principal bundle over $X \in \mathbf{H}$ is

- a morphism $P \to X$; with an ∞ -action $\rho : P \times G \to P$;
- such that $P \to X$ is ∞ -quotient $P \to P//G \Leftrightarrow^{(*)}$ principality: $P \times G^n \xrightarrow{(p_1, \rho)} P \times_X \cdots \times_X P$

Theorem. There is equivalence of ∞ -groupoids $GBund(X) \xrightarrow[\lim]{}{\simeq} \mathbf{H}(X, \mathbf{B}G)$, where

- 1. hofib sends a cocycle $X \to \mathbf{B}G$ to its homotopy fiber;
- 2. lim sends an ∞ -bundle to the map on ∞ -quotients $X \simeq P//G \to *//G \simeq \mathbf{B}G$.

In particular, G-principal ∞ -bundles are classified by the intrinsic cohomology of H

$$GBund(X)/_{\sim} \simeq H^1(X,G) := \pi_0 \mathbf{H}(X, \mathbf{B}G).$$

Proof. Repeatedly apply two of the (*) Giraud-Rezk-Lurie axioms $P \times G \times G -$ that characterize ∞ -toposes: 1. every ∞ -quotient is effective; 2. ∞ -colimits are preserved G- ∞ -actions by ∞ -pullbacks. total objects ∞ -pullback $\cdot \mathbf{B}G$ quotient objects G-principal universal ∞ -bundle ∞ -bundle cocycle

This gives a general abstract theory of principal ∞ -bundles in every ∞ -topos. We also have the following *presentations*.

Definition For $G \in \text{Grp}(\text{sSh}(C))$, and $X \in \text{sSh}(C)_{\text{lfb}}$, a weakly *G*-principal simplicial bundle is a *G*-action ρ over *X* such that the principality morphism $(\rho, p_1) : P \times G \to P \times_X P$ is a stalkwise weak equivalence.

Theorem. Nerve
$$\left\{ \begin{array}{c} \text{weakly } G \text{-principal simplicial bundles} \\ \text{over } X \end{array} \right\} \simeq G \text{Bund}(X).$$

Example. For X terminal over C and restricted to cohomology classes, this is [JL].

Remark. We need more than that, notably $X = \mathbf{B}G$ itself, see next page.

Example. For C = * we have $sSh(C)_{lfib} = KanComplexes$. Classical theory considers *strictly* principal simplicial bundles [Ma].

Proposition. Strictly principal simplicial bundles over C = * do present the cohomology $H^1(X, G)$, but not in general the full cocycle space $\mathbf{H}(X, \mathbf{B}G)$. For C nontrivial they do in general not even present $H^1(X, G)$.

Theorem. Let C =SmthMfd or other *cohesive* [S] site. If G is "C-acyclic", then

- $\mathbf{H}(-, \mathbf{B}G)$ is computed by simplicial hyper-Čech cohomology;
- G-principal ∞ -bundles over manifolds are presented by locally Kan fibrant simplicial manifolds.

4 Associated and twisted ∞ -bundles

Observation. By the above theorem, $V \longrightarrow V//G$ **Proposition.** This is the every G- ∞ -action $\rho: V \times G \rightarrow G$ $\downarrow_{\mathbf{c}}$ universal ρ -associated V-bundle.

Observation. Sections σ of the associated ∞ -bundle are *lifts* of the cocycle through \mathbf{c} ; and these locally factor through V:

$$\begin{cases} P \times_G V \longrightarrow V//G \\ \sigma \downarrow & \downarrow c \\ X \longrightarrow BG \end{cases} \simeq \begin{cases} V//G \\ \sigma \swarrow' \downarrow c \\ X \longrightarrow BG \end{cases} \xrightarrow{\sigma \swarrow' \downarrow c} c \\ X \xrightarrow{\sigma \lor g} BG \end{cases} \xrightarrow{\sigma \lor g} BG \end{cases} \xrightarrow{\sigma \lor g} C \xrightarrow{\sigma \lor g} BG$$

Hence sections σ are equivalently

- cocycles in [g]-twisted cohomology;
- **c**-valued cocycles in the *slice* ∞ -topos: $\Gamma_X(P \times_G V) \simeq \mathbf{H}_{/\mathbf{B}G}(g, \mathbf{c})$

(This is a geometric and unstable variant of the picture in [ABG].) **Theorem.** The ∞ -bundles classified by $\mathbf{H}_{/\mathbf{B}G}(-, \mathbf{c})$ are *P*-twisted ∞ -bundles: twisted *G*-equivariant ΩV - ∞ -bundles on *P*:

Example. Connecting homomorphism \mathbf{c} of Lie group U(1)-extension

induces the $H^3(X, \mathbb{Z})$ -twisted smooth \hat{G} -bundles known from twisted K-theory. **Example.** Associated *connected-fiber* ∞ -bundles are ∞ -gerbes.

- A (nonabelian/Giraud-)gerbe on X is a connected 1-truncated object in $\mathbf{H}_{/X}$ (a connected stack on X).
- A (nonabelian/Giraud-Breen) ∞ -gerbe over X is a connected object in $\mathbf{H}_{/X}$.
- A G- ∞ -gerbe is an Aut(**B**G)-associated ∞ -bundle. Its band is the underlying Out(G)-principal ∞ -bundle.

Observation. G- ∞ -gerbes bound by a band are classified by ($\mathbf{B}Aut(\mathbf{B}G) \rightarrow \mathbf{B}Out(G)$)-twisted cohomology.

5 Selected examples

local coefficient ∞ -bundle	$\begin{array}{c} \hline \text{twisting ∞-bundle /} \\ \text{twisting cohomology} \end{array}$	twisted ∞ -bundle / twisted cohomology	see [Lect]
$V \longrightarrow V//G$ $\downarrow^{\mathbf{c}}_{\mathbf{B}G}$	ρ -associated V - ∞ -bundle	section	[S]
$ \mathbf{B}^{2} \mathrm{ker}(G) \longrightarrow \mathbf{B} \mathrm{Aut}(\mathbf{B}G) \\ \downarrow \\ \mathbf{B} \mathrm{Out}(G) $	band (<i>lien</i>)	nonabelian (Giraud-Breen) G - ∞ -gerbe	[NSS] [S]
$\operatorname{GL}(d)/O(d) \longrightarrow \operatorname{\mathbf{B}O}(d)$ $\downarrow \operatorname{\mathbf{orth}} \operatorname{\mathbf{B}GL}(d)$	tangent bundle	orthogonal structure / Riemannian geometry	[S]
$O(d) \setminus O(d, d) / O(d) \twoheadrightarrow \mathbf{B}(O(d) \times O(d))$ $\downarrow^{\mathbf{TypeII}}$ $\mathbf{B}O(d, d)$	generalized tangent bundle	generalized (type II) Riemannian geometry	[S]
$ \begin{array}{cccc} \mathbf{B}U(n) & \longrightarrow & \mathbf{B}PU(n) \\ & & & \downarrow^{\mathbf{dd}_n} \\ & & & \mathbf{B}^2U(1) \end{array} $	circle 2-bundle / bundle gerbe	twisted vector bundle / twisted K-cocycle / bundle gerbe module	[S]
$\mathbf{B}^{n}U(1) \longrightarrow \mathbf{B}^{n}U(1) / / \mathbb{Z}_{2}$ $\downarrow^{\mathbf{J}_{n-1}}$ $\mathbf{B}\mathbb{Z}_{2}$	double cover	higher (bosonic) orientifold / n = 2: Jandl bundle gerbe	[FSSc] [SSW]
$V \longrightarrow \mathbf{B} \operatorname{Spin}^{\nu_{n+1}} \\ \downarrow^{\nu_{n+1}^{\operatorname{int}}} \\ \mathbf{B}^n U(1)$	circle <i>n</i> -bundle	smooth integral Wu structure	[FSSc]
$ \begin{array}{c} \mathbf{BString} \longrightarrow \mathbf{BSpin} \\ & \downarrow \frac{1}{2}\mathbf{p}_1 \\ \mathbf{B}^3 U(1) \end{array} $	circle 3-bundle / bundle 2-gerbe	twisted String 2-bundle	[SSS] [FSSa]
$V \longrightarrow \mathbf{B}(\mathbb{T} \times \mathbb{T}^*)$ $\downarrow^{\langle \mathbf{c}_1 \cup \mathbf{c}_1 \rangle}$ $\mathbf{B}^3 U(1)$	circle 3-bundle / bundle 2-gerbe	T-duality structure	[S]
$ \mathbf{B} Fivebrane \longrightarrow \mathbf{B} String \\ $	circle 7-bundle	twisted Fivebrane 6-bundle	[SSS] [FSSa]
$b \mathbf{B}^{n} U(1) \longrightarrow \mathbf{B}^{n} U(1)$ \downarrow^{curv} $b_{\text{dR}} \mathbf{B}^{n+1} U(1)$	curvature $(n+1)$ -form	circle <i>n</i> -bundle with connection: curvature-twisted flat connection	[S]

Observation. Ordinary cohomology is crucially contravariant: it "pulls back": $\mathbf{H}(-, A)$: $\mathbf{H}^{\mathrm{op}} \to \infty$ Grpd. Twisted cohomology is not contravariant in \mathbf{H} : the information for how to "carry the twists along" is missing. However, by the above it is contravariant in the slice $\mathbf{H}_{/\mathbf{B}G}$ over the moduli of twists.

Example. Cocycles in $\mathbf{H}_{/\mathbf{BGL}(n)}(TX, \mathbf{orth})$ are metrics on X: these pull back along

$$\mathbf{H}_{/\mathbf{B}\mathrm{GL}(n)}(TY,TX) = \left\{ \begin{array}{c} Y \underbrace{f} \\ X \underbrace{f} \\ Y \underbrace{f} \\ X \\ TY \underbrace{f} \\ TX \\ \mathbf{B}\mathrm{GL}(n) \end{array} \right\} = \left\{ \begin{array}{c} \mathrm{local \ diffeomorphism \ } f; \\ f^*TX \simeq TY \\ \mathbf{F} \\ \mathbf{$$

Example. Since $Sh_{\infty}(SmthMfd)$ is "cohesive" [S]: there is a canonical notion of *flat* coefficients $\flat \mathbf{B}^{n}U(1)$ and of flat de Rham coefficients $\flat_{dR}\mathbf{B}^{n}U(1)$, and a canonical *curvature* morphism forming a local coefficient bundle

$$\flat \mathbf{B}^{n}U(1) \xrightarrow{\qquad} \mathbf{B}^{n}U(1) \\ \downarrow^{\text{curv}} \\ \flat_{\text{dR}}\mathbf{B}^{n+1}U(1)_{\text{conn}}$$

The corresponding twisted cohomology is *differential cohomology* with universal coefficient object $\mathbf{B}^n U(1)_{\text{conn}}$, presented by the Deligne complex.

Example. Bosonic string orientifold configurations [SSW], see [Freed]:

worldsheet field target space field

$$(\phi, \nu) \in \mathbf{H}_{/\mathbf{B}\mathbb{Z}_{2}}(\mathbf{w}_{1}(T\Sigma), w_{X}) \quad (w, \hat{B}) \in \mathbf{H}(X, \mathbf{B}\mathrm{Aut}(U(1))_{\mathrm{conn}})$$

 $\Sigma \xrightarrow{\phi} X \xrightarrow{\hat{B}} \mathbf{B}\mathrm{Aut}(U(1))_{\mathrm{conn}}$
 $w_{1}(T\Sigma) \xrightarrow{\psi} W_{X} \xrightarrow{\mathbf{J}} \mathbf{B}\mathbb{Z}_{2}$

Example. There are differential refinements of the first and second fractional Pontryagin classes, of the form [FSSa]:

$$\begin{array}{cccc} \operatorname{BString_{conn}} & \longrightarrow \operatorname{BSpin}_{\operatorname{conn}} & & \operatorname{BFivebrane_{conn}} & \longrightarrow \operatorname{BString_{conn}} \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & &$$

The corresponding twisted bundles are *twisted String-princial 2-bundle with 2-connection* and *twisted Fivebrane-principal 6-bundles with 6-connection*: higher analogs of the twisted unitary bundles of twisted K-theory; play a role in the heterotic string [SSS], see [Lect]. Their transgression to codimension 0 is

But before transgression, the action was "localized/extended to the point". See next page...

6 Higher geometric prequantization

It turns out that the differential refineement of smooth twisted cohomology is tightly related to higher notions of *geometric quantization* under the following dictionary.

differential twisted cohomology	geometric quantization			
twist	extended action functional / prequantum circle n -bundle			
twist auto-equivalences	higher Heisenberg group / quantomorphism group			
local coefficient bundle	associated prequantum n -bundle			

Example. Let $\mathbb{C} \longrightarrow \mathbb{C} / / U(1)$ be the canonical complex-linear circle action. $\mathbf{B} U(1)$

Then

- $\nabla : X \to \mathbf{B}U(1)_{\text{conn}}$ classifies a circle bundle with connection, a *prequantum line bundle* of its curvature 2-form;
- $\Gamma_X(P \times_{U(1)} \mathbb{C})$ is the corresponding space of smooth sections;
- H_{/BU(1)conn}(∇,∇)_≃ is the exp(Poisson bracket)-group action of prequantum operators, containing the Heisenberg group action.

Example. Let $\begin{array}{c} \mathbf{B}U(n) \longrightarrow \mathbf{B}\mathrm{PU}(n) \\ \downarrow_{\mathbf{dd}_n} \\ \mathbf{B}^2U(1) \end{array}$ be the canonical 2-circle action.

Then

- $\nabla : X \to \mathbf{B}^2 U(1)_{\text{conn}}$ classifies a circle 2-bundle with connection, a prequantum line 2-bundle of its curvature 3-form;
- $\Gamma_X(P \times_{\mathbf{B}U(1)} \mathbf{B}U)$ is the corresponding groupoid of smooth sections = twisted bundles;
- $\mathbf{H}_{/\mathbf{B}^2 U(1)_{\text{conn}}}(\nabla, \nabla)_{\simeq}$ is the exp(2-plectic bracket)-2-group action of 2-plectic geometry [Rogers], containing the *Heisenberg 2-group* action [RoSc].

Example. ∞ -Chern-Simons theory [FS]:

- extended Lagrangian: differential cocycle on moduli ∞ -stack of fields $\hat{\mathbf{c}} : \mathbf{B}G_{\text{conn}} \to \mathbf{B}^n U(1)_{\text{conn}}$ (e.g. $\frac{1}{2}\hat{\mathbf{p}}_1$, $\frac{1}{6}\hat{\mathbf{p}}_2$, $\hat{\mathbf{D}}\hat{\mathbf{D}}_n \cup \hat{\mathbf{D}}\hat{\mathbf{D}}_n,\ldots$);
- representation: local coefficient bundle $V \longrightarrow V/\!/\mathbf{B}^{n-1}U(1) \ \downarrow^{\rho} \mathbf{B}^{n}U(1)$;
- extended action in codim k: $\exp(2\pi i \int_{\Sigma_k} \hat{\mathbf{c}}) : [\Sigma_k, \mathbf{B}G_{\text{conn}}] \xrightarrow{[\Sigma_k, \hat{\mathbf{c}}]} [\Sigma_k, \mathbf{B}^n U(1)_{\text{conn}}] \xrightarrow{\exp(2\pi i \int_{\Sigma_k} (-))} \mathbf{B}^{n-k} U(1)_{\text{conn}}$

$$[\Sigma_k, \mathbf{B}G_{\operatorname{conn}}] \xrightarrow{\operatorname{operator}} [\Sigma_k, \mathbf{B}G_{\operatorname{conn}}] \xrightarrow{\operatorname{state}} V / / \mathbf{B}^{n-k-1} U(1)_{\operatorname{conn}} \\ \xrightarrow{\operatorname{exp}(2\pi i \int_{\Sigma_k} \mathbf{c})} \xrightarrow{\varphi} \\ \mathbf{B}^{n-k} U(1)_{\operatorname{conn}}$$

References

- [ABG] M. Ando, A. Blumberg, D. Gepner, Twists of K-theory and TMF, in R. Doran, G. Friedman, J. Rosenberg, Superstrings, Geometry, Topology, and C*-algebras, Proceedings of Symposia in Pure Mathematics vol 81 arXiv:1002.3004
- [FSSa] D. Fiorenza, U. Schreiber, J. Stasheff. Cech-cocycles for differential characteristic classes, arXiv:1011.4735
- [FS] D. Fiorenza, U. Schreiber, ∞-Chern-Simons theory, ncatlab.org/schreiber/show/infinity-Chern-Simons+theory
- [FSSb] D. Fiorenza, H. Sati, U. Schreiber, String 2-connections and 7d nonabelian Chern-Simons theory, arXiv:1201.5277
- [FSSc] D. Fiorenza, H. Sati, U. Schreiber, The E₈-moduli 3-stack of the C-field, arXiv:1202.2455
- [JL] J.F. Jardine, Z. Luo, Higher order principal bundles, K-theory 0681 (2004)
- [Ma] P. May, Simplicial objects in algebraic topology University of Chicago Press (1967)
- [NSS] T. Nikolaus, U. Schreiber, D. Stevenson, Principal ∞-bundles I General theory, II Presentations, III Applications (2012)
- [NiWa] T. Nikolaus, K. Waldorf, Four equivalent versions of non-abelian gerbes, arXiv:1103.4815
- [RoSt] D. Roberts, D. Stevenson, Simplicial principal bundles in parametrized spaces (2012) arXiv:1203.2460
 D. Stevenson, Classifying theory for simplicial parametrized groups (2012) arXiv:1203.2461
- [Rogers] C. Rogers, Higher symplectic geometry, PhD (2011) arXiv:1106.4068
- [RoSc] C. Rogers, U. Schreiber, ∞-Geometric prequantization, ncatlab.org/schreiber/show/infinity-geometric+prequantization
- [SSS] H. Sati, U. Schreiber, J. Stasheff, Twisted differential string- and fivebrane structures, Communications in Mathematical Physics (2012) arXiv:0910.4001
- [S] U. Schreiber, Differential cohomology in a cohesive topos ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
- [SSW] U. Schreiber, C. Schweigert, K. Waldorf, Unoriented WZW models and Holonomy of Bundle Gerbes, Communications in Mathematical Physics, Volume 274, Issue 1 (2007)
- see also the lectures earlier at this workshop:
 - [Freed] D. Freed, Lectures on twisted K-theory and orientifolds
 - [Lect] U. Schreiber, *Twisted differential structures in string theory*, ncatlab.org/nlab/show/twisted+smooth+cohomology+in+string+theory