
Nonabelian homotopical cohomology,

higher fiber bundles with connection,

and their σ-model QFTs

January 14, 2009

Abstract

Nonabelian cohomology can be regarded as a generalization of group cohomology to the case where
both the group itself as well as the coefficient object are allowed to be generalized to ∞-groupoids or
even to general∞-categories. Cocycles in nonabelian cohomology in particular represent higher principal
bundles (gerbes) – possibly equivariant, possibly with connection – as well as the corresponding associated
higher vector bundles.

We formulate nonabelian cohomology and its classification of fiber bundles in a general context
of enriched homotopy theory, and discuss general issues such as lifting and extension problems. We
list examples and applications with enrichment over higher categories which describe higher principal
bundles and higher vector bundles, possibly equivariant, possibly with connection.

Building on this we propose, expanding on considerations in [15, 42, 6], a systematic ∞-functorial
formalization of the σ-model quantum field theory associated with a given nonabelian cocycle regarded
as the background field for a brane coupled to it. We define propagation in these σ-model QFTs and
recover central aspects of groupoidification [1, 2].

In a series of examples we show how this formalization reproduces familiar structures in σ-models
with finite target spaces such as Dijkgraaf-Witten theory and the Yetter model. Applications to σ-models
with smooth target spaces is developed elsewhere [26].
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1 Introduction

A σ-model should, quite generally, be an n-dimensional quantum field theory which is canonically associated
with the geometric structure given by a connection on a bundle whose fibers are n-categories – for instance
a (higher) gerbe with connection.
For example for n = 1 a line bundle with connection over a Riemann manifold gives rise to the ordinary
quantum mechanics of a charged particle. For n = 2 a line bundle gerbe with connection over a Lie group G
gives rise to the 2-dimensional quantum field theory known as the WZW-model. For n = 3 a Chern-Simons
2-gerbe with connection over BG gives rise to Chern-Simons QFT.

The natural conceptual home of these higher connections appearing here is differential nonabelian coho-
mology [26], a joint generalization of sheaf cohomology, group cohomology and nonabelian group cohomology.
One arrives at this general notion of cohomology for instance by first generalizing the coefficients of sheaf
cohomology from complexes of abelian groups, via crossed complexes of groupoids and their equivalent
∞-groupoids [8], to general ∞-categories, and secondly by generalizing the domain spaces via orbifolds,
hypercovers and their equivalent ∞-groupoids also to general ∞-categories. Therefore nonabelian cocycles
are cocycles on ∞-categories with coefficients in ∞-categories. Moreover, when suitably interpreted such a
cocycle is nothing but an ∞-functor from its domain to its coefficient object, hence a rather fundamental
concept. In one way or other it is well known that such cocycles in particular classify fiber bundles – possibly
equivariant – whose fibers are higher categories.

In a series of articles [3, 35, 36, 37] (see also [23]) it was shown for low n that by internalizing this notion
of ∞-functorial nonabelian cocycles from the category of plain sets into a category of generalized smooth
spaces, it yields a good notion of generalized differential cohomology : if the domain ∞-category is taken
to be the smooth fundamental ∞-groupoid of a smooth space, then smooth ∞-functors out of it provide a
higher dimensional notion of parallel transport and characterize higher connections on higher fiber bundles.

Indeed, regarding an ∞-functorial cocycle as a parallel transport functor generally provides a useful
heuristic for the sense in which generalized cocycles are nothing but ∞-functors from their domain to their
coefficient object, even if there is no smooth structure and no connection around: the ∞-functorial cocycles
characterizing for instance a fiber bundle is the fiber-assigning functor which to each point in base space
assigns the fiber sitting over that point, to each morphism in base space (be it a jump along an orbifold
action, or a jump between points in the fiber of a Čech cover, or indeed a smooth path in base space) the
corresponding morphisms between the fibers over its endpoints, and similarly for higher morphisms.

From this perspective much can already be learned from and achieved in finite approximations to full
smooth differential cocycles. A central example is Dijkgraaf-Witten theory as a finite version of Chern-Simons
theory: while Chern-Simons theory is a σ-model governed by a differential 3-cocycle on BG – in the smooth
context– usually addressed as the Chern-Simons 2-gerbe –, Dijkgraaf-Witten theory is diagrammatically the
same setup, but now internal to ∞-categories internal to Sets: the space BG is replaced by the finite groupoid
BG with one object and Hom-set the finite group G. So among other things, ∞-functorial nonabelian
cohomology, which treats group cocycles and higher bundles/higher gerbes intrinsically on the same footing,
gives a precise formalization of the way in which finite group models such as Dijkgraaf-Witten theory are
related to their smooth cousins such as Chern-Simons theory.

For that reason it is worthwhile to study the ∞-functorial nonabelian cohomology perspective on finite
group σ-models before adding the further technical complication of working internal to smooth spaces. While
discussion of differential nonabelian cohomology in the context of smooth spaces is in preparation in [26],
here we develop some concepts and their applications in the simpler context of plain sets.

In sections 3 and 5 we set up the central concepts which we use to formalize the notion of a σ-model
associated with a (differential) nonabelian cocycle. In particular we formalize in this context the notion of
higher sections and higher spaces of states as indicated in [15, 42], and generalize to corresponding notions
of branes and bibranes [17]. In section 5 we then go through a list of examples and applications illustrating
these concepts.
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2 Enriched homotopy theory

There are two major well-developed 1-categorical tools for handling models for (directed) spaces and higher
(directed) homotopies, i.e. for ∞- or ω-categories: these are enriched category theory and model category
theory. A comprehensive treatment is obtained from the combination of the two, known as enriched homotopy
theory or homotopy coherent category theory.

For enriched category theory we rely on the canonical textbook [20]. For homotopy theory we mainly
make use of the seminal article [7] and hence mostly require less structure than in full model category theory.
The systematic study of enriched homotopy theory is much younger: we adopt the point of view of [33],
which follows the textbooks [12, 18].

In section 3 we consider higher fiber bundles – possibly equivariant, possibly with connection – in a generic
homotopical context without comitting ourserves to a concrete model for∞-categories or ω-categories, aiming
to come close to requiring a necessary minimum of structural prerequisites. The idea is to stipulate that an
object A in a category of higher structures should be

1. a generalized space locally modeled on objects in a locally small category S;

2. and equipped with a consistent notion of homotopy between maps into it.

The first point we read as implying that A is characterized by maps of test-objects in S into it, making it a
presheaf on S. The second point then suggests that this presheaf takes values in a homotopical category V
and that S is V-enriched such that there are V-internal spaces of morphisms. The solution to this requirement
suggested by [33] is to take V to be a closed monoidal homotopical category so that C := [Sop,V] is V-enriched
and becomes V-enriched homotopical after choosing suitable local extensions of the weak equivalences in V
to C. The nice consequence of these natural assumptions is that the homotopy category HoC of C is naturally
HoV -enriched while itself homotopical in a V-enriched sense and thus retains information about higher
homotopies and their weak inverses. This should make it an accurate enriched 1-categorical model for an
∞-category of ∞-categories modeled on S.

Two complementary useful perspectives on objects in such homotopically enriched presheaf categories
C are familiar: as generalized homotopical spaces and as ∞-stacks. For instance if S = Diff is the site of
smooth manifolds, then a higher structure probeable by mapping objects in S into it may be a Lie groupoid
A, a higher structure whose smoothness is modeled by how test-objects in Diff are mapped into it. By

instead regarding the assignment to an object X ∈ Diff of collections [X,A]
Yoneda' A(X) of maps from

X into A as primary, it appears instead equivalently as the differentiable stack on S presented by the Lie
groupoid.

More generally, for the choice V := SimplicialSets it is well known [41, 40] that the HoV -enriched homotopy
category HoC for C := [Sop,V] the V-enriched category of simplicial presheaves (with weak equivalences the
local weak equivalences of SimplicialSets) is an enriched 1-categorical model of∞-stacks on S. In our examples
and applications in section 4 we find it useful to choose for V categories of globular (instead of simplicial)
n-categories equipped with the folk model structure [14, 9]; such as to make contact to results in [37]. The
general considerations in section 3 are independent of all such choices of conrete realizations of V and C.

3 Nonabelian homotopical cohomology

We place ourselves in the context of derived V-enriched category theory for V a closed monoidal homotopical
category and consider a V-enriched homotopical category C as described in [33].

Recall (sections 15 and 16 in [33]) that this means that V is a category equipped with a choice of weak
equivalences compatible with its closed monoidal structure, and in particular that on the Sets-enriched
category C0 := V−Cat(I, C) underlying the V-enriched category C there is a V-valued hom-functor hom :
C0 × C0 → V compatible with the action of V on C by powers [−,−] and by copowers ⊗ which determines
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the V-enrichment of C by C(X,A) ' hom(X,A) for all objects Y, A in C0. Its right-derived functor Rhom

Cop
0 × C0

hom //

��

V

��
Hoop

C0
×HoC0

Rhom // HoV

similarly induces the HoV -enriched category HoC whose underlying Sets-enriched category is the homotopy
category HoC0 of C0 (proposition 16.2 in [33]).

In such a setup cohomology identifies with the hom-objects in the homotopy categories, and algorithms
for computation of cohomology are algorithms for computation of the right derived (internal) hom-functors:

Definition 3.1 (cohomology) For C a V-enriched homotopical category of the form [Sop,V] or Sh(S,V),
we say for A any object of C and X a representable object that H(X,A) := HoC0(X,A) is the cohomology of
X with coefficients in A. The generalized elements c : I → Z(X,A) of the V-object Z(X,A) := HoC(X,A)
are the cocycles on X with coefficients in A. Homotopies between these are the coboundaries.

More generally HoC(−,A) can be interpreted as computing equivariant cohomology and generalizations
thereof:

Definition 3.2 (equivariant and relative cohomology) For i : X ↪→ X a monomorphism in C0 it it
is often useful to address HX(X,A) := HoC0(X,A) as equivariant cohomology on X, where the kind of
equivariance is controlled by i. Conversely the kernel of i∗ for any i : X → X is relative cohomology
HX(X,B) on X relative to X.

In terms of HoC the familiar grading on cohomology is entirely implicit in the grading that the coefficient
object A carries for cases that V may be interpreted as a category of graded or higher structures. To
guarantee a consistent interpretation for which this is the case, we impose the additional condition that V
be a category with interval object.

Definition 3.3 (category with interval object) A category with interval object is a closed monoidal cat-
egory with tensor unit I the terminal object – which we write I ' pt – and equipped with an internal

co-category of the form pt
σ //
τ
// I . We say I is the interval object.

In particular for V a category with interval object this means that

• there is a diagram of the form
I tpt I

I

??����
I

__????

pt

σ
FF���

σ

��=
==

==
==

==
pt

τ
__???? σ

??����
pt

τ
XX222

τ

����
��

��
��

�

I

c

YY

with c co-associative and co-unital in the obvious sense;
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• for every object B in a category C enriched and powered over V such that [I,B] ' B, there are canonical

morphisms B
i // [I, B]

d0×d1 // B ×B and a composition morphism

[I, B]×B [I, B]

[I, B]
ww

pppppp
[I, B]
''

NNNNNN

B
��
s ����
ff

s
LLLLLLLLLLLLL B
''

tOOOOOOO ww
s ooooooo

B
��

t;;;;

88

t
rrrrrrrrrrrrr

[I, B]
��

c

which makes [I, B] a category internal to C0.

Definition 3.4 (directed and undirected objects) An object B in a category with interval object is

undirected if B
i // [I, B] is a weak equivalence.

On undirected or groupoidal objects the computation of cohomology is usually easier, in particular if these
arrange themselves into a category of fibrant objects in the sense of [7].

Definition 3.5 (compatible fibrant objects) A homotopical category with interval I has a
compatible structure of a category of fibrant objects if it is equipped with the structure of a category of fibrant
objects in the sense of [7] such that the weak equivalences of both structures coincide and such that for every
object B the object [I, B] with its canonical structure morphisms is a path object for B.

Since in a category of fibrant objects the morphisms B
i // [I, B] are weak equivalences, the objects of

such a category are undirected.
An important structure present in a category of fibrant objects is the factorization lemma.

Lemma 3.6 (factorization lemma [7]) In a category of fibrant objects for every morphism X // A

there is a diagram
Y

'}}
}

p

~~~~}}
}     A

AA
AA

AA

X // A

such that the acyclic fibration p has a section σ : X → Y.

It follows that for fixed A the functor hom(−,A) : Cop
0 → V is homotopical (respects weak equivalences)

and hence already coincides on objects with its right-derived functor if it sends acyclic fibrations to weak
equivalences. The objects A for which this is true at least for acyclic fibrations π : Y

' // // X over
representables X are called ∞-stacks. For each such π the condition that hom(−,A) be homotopical is that

hom(π,A) : A(X) ' hom(X,A) ' // hom(Y,A)

is a weak equivalence. This is the descent condition on A and hom(Y,A) is the V-object of descent data of
A along π. Conversely, this means that the passage from C0 to HoC0 is to be addressed as ∞-stackification.

Finally, sometimes we need to consider sub-categories of C0 which are pointed :

Definition 3.7 (pointed category) A category is pointed if it has has a 0-object: an initial object iso-
morphic to a terminal object.
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A V-enriched homotipical category C with interval object is our general situation. A compatible structure
of fibrant objects puts us in an undirected groupoidal context. Pointedness further puts us in the context of an
abelian category. In the following let P0 ⊂ F0 ⊂ C0 be inclusions of full subcategories, with F0 a category of
fibrant objects compatible with the homotopical structure induced C0 and P0 a pointed compatible category
of fibrant objects.

Only for some applications, such as for discussion of the extension problem do we need to assume the full
structure of a model category.

3.1 Pointed objects

In abelian homotopy theory one considers (for instance section 4 of [7]) the case that in the homotopical
category exists an initial object isomorphic to the terminal one. This makes all objects uniquely pointed in
the sense of the following definition and allows to define loop group objects of all objects.

To retain a nonabelian (directed) setup we generalize this to the case where there need not be an initial
object isomorphic to the terminal object by instead considering objects equipped with a specified point. This
leads to loop monoids and will allow us in particular to discuss not only higher principal bundles but also
higher vector bundles.

Definition 3.8 (pointed object) The category of pointed objects in C0 is the under-category C0\pt: a

pointed object is a morphism pt
ptF // F and a morphism of pointed objects is a morphism f : E → F

making the diagram
pt

ptE

~~~~
~~

~~
~ ptF

��@
@@

@@
@@

E
f // F

commute.

Lemma 3.9 The identity Id : pt → pt is both the terminal as well as the initial object of C0\pt.

This says that C0\pt is pointed. In the following we consider operations on pointed objects but in all of C0,
which itself need not be pointed.

Definition 3.10 (kernel and cokernel) The kernel ker(f) of a morphism f : A → B into a pointed object
B is the pullback

ker(f)

��

c
// pt

ptB

��
A

f // B

.

The cokernel coker(f) of a morphism f : B → A is the pushout

B

��

f // A

d ��
pt

ptcoker(f)// coker(f)

.

The cokernel is naturally a pointed object pt
ptcoker(f)// coker(f) as indicated, the kernel is naturally pointed

if A is a pointed object and f a morphism of pointed objects, with the point pt
ptker(f)// ker(f) given by the
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universal dashed morphism in
pt

  

ptB

$$

ptker(f)

E
E

""E
E

ker(f)

��

c
// pt

ptF

��
A

f // B

.

The kernel of a fibration of pointed objects is called its fiber.
If we have an ambient structure of a model category then by replacing limits and colimits in the above

with their homotopy coherent versions, we obtain the homotopy kernel hoker(f) and the homotopy cokernel
hocoker(f).

Definition 3.11 (monoid of loops) The monoid of loops ΩptB of a pointed object pt
ptB // B is the fiber

of [I, B]
d0×d1// // B ×B with B ×B equipped with its canonical point pt

ptB×ptB// B ×B , i.e. the pullback

ΩptB c
//

��

pt

ptB×ptB

��
[I, B]

d0×d1 // B ×B

equipped with the structure of a monoid induced from the structure of a co-category on I.

Lemma 3.12 In the case that V is a category of fibrant objects with initial object isomorphic to the terminal
one, the image of ΩptB in the homotopy category is the loop group object considered in section 4 of [7].

3.2 Universal fiber bundles

Definition 3.13 (universal fiber bundles) For pt
ptB // B a pointed object, the corresponding universal B-bundle

is the morphism p : EptB // B with EptB the kernel of [I, F ]
d0 // F and p the composite

EptB c
// //

��
p

��

pt

ptB

��
BI

d1
����

d0 // // B

B

.

Lemma 3.14 The fiber of the universal B-bundle p : EptB → B is the monoid of loops ΩptB.

Proof. Evidently
ΩptB c

//

��

BI

d0×d1

��
pt

ptB×ptB // B ×B

⇔

ΩptB c
//

����

EptB

p

��
pt

ptB // B

.

�

Notice that
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Definition 3.15 There is a natural action ρ : Ept × ΩptB → EptB induced from the co-category structure
on I.

Lemma 3.16 This action is a morphism of bundles

EptB × ΩptB
ρ //

p◦p1

%%LLLLLLLLLLL
EptB

p
||zz

zz
zz

zz

B

Proposition 3.17 If V is compatibly a category of fibrant objects, then for every object B the universal
B-bundle

1. is an acyclic fibration over the point, EptB
' // // pt ;

2. sits in a sequence ΩptB
i // EptB

p // // B with p a fibration and i the fiber p.

Proof. Recall from [7] that in a category of fibrant objects the maps d0, d1 : [I, B] ' // // B out of a path
object are acyclic fibrations and that acyclic fibrations are preserved under pullback. Hence from

Ept c
' // //

��
p

��

pt

ptB

��
BI

d1'
����

d0' // // B

B

we find the acyclic fibration from EptB to pt.
That p is a fibration is a special case of the proof of the “factorization lemma” in [7]:
Using that pullbacks of fibrations are again fibrations, we obtain for all fibrant objects C and D that

projections out of their product are fibrations

C ×D
pr2 // //

pr1
����

D

����
C // // pt

and for all morphisms f : C → D that the top left vertical morphisms in the double pullback square

C ×D DI

id×d1
����

// DI

d0×d1
����

d0

����

C ×D
f×Id //

pr1
����

D ×D

pr1
����

C
f // D

.

is a fibration. Since composites of two fibrations are fibrations, it follows that p in

C ×D DI

id×d1
����

//

TTTTTTTT

p

** **TTTTTTTT

DI

d0×d1

����
C ×D

f×Id // D ×D pr2
// // D
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is a fibration. Taking f to be pt
ptB // B this yields the desired statement for p.

Finally, that i is the kernel of p is lemma ??. �

3.3 Cocycles and bundles

Now consider a subcategory F0 ⊂ C0 of fibrant objects. By the central theorem in [7] morphisms in the
homotopy category HoF0 are represented already by single spans whose left leg is an acyclic fibration.

Definition 3.18 (anamorphisms) An anamorphism or cocycle on X with values in A is a span

X̂

'
����

// A

X

.

Lemma 3.19 Anamorphisms have a consistent composition induced by pullback

g∗1B̂ //

'
����

B̂

'
����

g2 // C

Â
g1 //

'
����

B

A

.

which is associative and unital up to isomorphism of spans.

Definition 3.20 (bundles obtained from cocycles) Given a cocycle X oooo '
X̂

g // B into a pointed

object pt
ptB // B the corresponding B-bundle p : g∗EptB // X is the pullback

g∗EptB //

��
p

��

EB

��
X̂

'
����

g // B

X

This bundle inherits an action ρ : (g∗EptB)×ΩptB → g∗EptB of the monoid of loops from the commutativity
of

g∗EB × ΩptB //

p1

��

EB × ΩptB
ρ //

p1

��

EB

����
��

��
��

��
��

��
��

�

g∗EB //

��

EB

��
X̂

g // B

11



Lemma 3.21 This induced action is still a morphism of bundles

(g∗EptB)× ΩptB
ρ //

p◦p1

''NNNNNNNNNNNN
g∗EptB

p
{{ww

ww
ww

ww
w

X

Definition 3.22 (fiber bundle) We say the morphism P // X equipped with an action of ΩptB is a

B-fiber bundle if there is a cocycle X oooo '
X̂

g // B and a weak equivalence g∗EptB
' // P respecting

the ΩptB-action on both sides.

Proposition 3.23 (fiber bundle trivializes over itself) In the category F0 of fibrant objects, every fiber
bundle P → X becomes trivializable when pulled back along itself.

Proof. For X oooo '
X̂ // B a cocycle characterizing the bundle P → X we obtain the pullback diagram

P oooo '

����

g∗EptB

��

c
// EptB

��

// // pt

��
g∗BI

'
����

c
// BI

'
d1
����

'
d0 // // B

X oooo '
X̂

g // B

.

The cocycle g pulled back to P is represented by the morphism from g∗EptB to the B at the bottom. The
right part of the diagram says that this is homotopic to a map factoring through the point. �

Definition 3.24 (associated bundle) Let g∗EptB → X be a B-bundle as above and let ρ : B → F be a

morphism in C0 to a pointed object pt
ptF // F not necessarily fibrant. Then we call ρ a representation of

B on F and call the pullback
g∗ρ∗EptF //

��

��

ρ∗EptF //

��

EptF

��
X̂

g //

��

B
ρ // F

X

the associated bundle, associated by ρ to P .

So in particular ρ∗EptF is the F bundle ρ-associated to the univeral B-bundle.

3.4 Sections and homotopies

One way to think of a section of an ω-bundle is as a morphism from a certain trivial ω-bundle into it. The
following formalizes this and then provides reformulations of this notion which are useful later on in section
5.

12



Definition 3.25 (section) A section σ of an F -cocycle X̂
∇ // F is a directed homotopy from the trivial

F -cocycle with fiber ptF into ∇.

Γ(∇) :=



X̂

����
��

��
�� Id

��?
??

??
??

pt

ptF ��@
@@

@@
@@

@ X̂

∇��~~
~~

~~
~

F

σ
)1ZZZZZ

ZZZZZ


Proposition 3.26 If the F -cocycle ∇ is ρ-associated to a B-cocycle X̂

g // B then sections of ∇ are

equivalently lifts of g through ρ∗EptF // // BG

Γ(∇) '


ρ∗EptF

����
X̂

g //

σ

;;x
x

x
x

x
BG

 .

Proof. First rewrite 

X̂

g

��~~||
||

||
||

pt

ptF !!C
CC

CC
CC

C BG

ρ

��
F

σ %-
RR
RR


'



pt
ptF // F

X̂
σ //________

>>||||||||

g
!!B

BB
BB

BB
B [I, F ]

d0

OO

d1

��
BG

ρ // F


using the characterization of right (directed) homotopies by the (directed) path object [I, F ]. Using the
universal property of EptF as a pullback this yields

· · · '


EptF

����
X̂ g

//

σ

66mmmmmmmm
BG ρ

// F

 '


ρ∗EptF

����
X̂

g //

σ

;;x
x

x
x

x
BG

 .

�

A third way to think about sections comes from observing that since a directed homotopy between

two cocycles X̂

g1

��

g2

BBF
η

��

is given by a morphism

X̂
η //

'
����

[I, F ]

X

it can itself be regarded as an

[I, F ]-cocycle.

13



Definition 3.27 (universal F I-bundle) The object [I, F ] is naturally equipped with the point pt[I,F ] de-
fined by

pt
ptF //

pt[I,F ]

>>F // [I, F ] ⇒ pt
pt[I,F ]//

ptF×ptF

<<[I, F ]
d0×d1 // F × F .

We write Ept([I, F ]) // // [I, F ] for the corresponding universal [I, F ]-bundle according to definition 3.13.

Notice the commutativity of the diagram

Ept([I, F ]) //

��

[I, [I, F ]]
[I,di] //

d0

��

[I, F ]

d0

��
pt

pt[I,F ] //

ptF

99[I, F ]
di // F

for i = 0 and i = 1. The right square commutes by the functoriality of [I,−], the left square and the bottom
triangle by definition 3.27 of the universal [I, F ]-bundle.

Definition 3.28 Let EptF Ept([I, F ])
Eptd0oo_ _ _ Eptd1 //___ EptF be the universal morphisms induced from the

commutativity of the outermost rectangle of the above diagram in view of the universal property of EF
as a pullback.

Proposition 3.29 The morphism Ed0 ×Ed1 covers the morphism [I, F ]
d0×d1 // F × F of base spaces:

EptF

����

E([I, F ])
Ed0oo Ed1 //

����

EptF

����
F [I, F ]

d0oo d1 // F

.

Proof. By inspection of the above commuting diagram. �
This is sometimes called a concordance of bundles.

In total this yields for every homotopy of F -cocycles a span of the corresponding bundles.

Definition 3.30 (associated span of bundles) For
X̂ ∇1
��<

<<

Q̂

ι @@��

ι′
��<

< F

Ŷ
∇2

@@���
��
%%
%%
%%
%% a directed homotopy of F -cocycles, we

14



say that the rear of the joint pullback diagram

η∗Ept[I, F ]

"" ""F
FFFFFFFF

wwoooooooooooo

((RRRRRRRRRRRRR

��

∇∗
1EptF

�� ��=
==

==
==

��

Q̂

ιllllllllllllll

vvllll

ι′
OOOO

''OOOOOOOOOOO

η

��

∇∗
2EptF

�� ��<
<<

<<
<<

��

X̂

∇1

��

Ŷ

∇2

��

Ept[I, F ]
iii

ttiiii
WWWW

++WWWWWW'' ''OOOOO

EptF

�� ��>
>>

>>
>>

[I, F ]

d0
lllllll

uulllllllll d1
PPPPP

((PPPPPPP

EptF

�� ��>
>>

>>
>>

F F

is the associated span of ω-bundles.

From definition 3.11 notice the following observation:

Lemma 3.31 In the case that the homotopy in question is a section

X̂

����
� Id

��>
>>

pt

ptF
  @

@@
X̂

∇~~~
~~

F

σ
&.TT TT (definition 3.25) the

associated span of bundles is of the form
σ∗Ept

xxqqq ''OO
OO

ΩptF g∗EptF

with ΩptF the monoid of loops from

definition 3.11.

Remark on groupoidification. In the cased that F0 is a category of ∞-groupoids, this realizes a section
of an associated bundle as an ∞-groupoid over the total space ∞-groupoid of the associated ∞-bundle, and
equipped with a map to to the ground ∞-monoid. Since this is the description of vectors in the context of
groupoidification [1, 2] it motivates the following definition.

Definition 3.32 (generalized sections of associated ω-bundles) Given an F -bundle V := ∇∗EptF ,

its generalized sections are spans |Ψ〉 :=

Ψ
{{www ��>

>>

ΩptF V and its generalized co-sections are spans 〈Ψ| :=

Ψ
����� ##G

GG

V ΩptF . We write H(V ) for the collection of all generalized sections of V .

3.5 Extension and lifting problem

3.5.1 Extension

Assume for the following that on C0 we have a full structure of a model category.

15



Consider extensions g of morphisms g along morphisms i

X

i

��

g // A

X

g

??�
�

�
�

Definition 3.33 (equivariant structure and flat connection) An extension through a morphism i :
A

� � // X which is an isomorphism from the points of A to the points of X

[pt, A]
i∗' // [pt, X]

is called an i-equivariant structure or an i-flat connection.

Theorem 3.34 (long exact sequence for extensions) For every object B for which there is a diagram

B

i

��
WB

' // //

p

��

pt

hocoker(i)

and for every extension ι : X → X there is a morphism δ : H(X, B) → HX(X,hocoker(i)) whose kernel
is the image of ι∗. If furthermore i is the homotopy kernel of p then then image of δ is the kernel of
HX(X,hocoker(i)) → H(X, hocoker(i)) so that we get a semi-long exact sequence in cohomology

HX(X,B) // H(X,B) i∗ // H(X, B) δ // HX(X,hocoker(i)) // H(X,hocoker(i)) // · · ·

Proof. (the idea)
The connecting homomorphism δ is obtained by first constructing a diagram

X

i

��

X̂� _

∃ι̂

��

g //'oooo B

i

��
X X̂

∃F //

δg $$H
HHHHHHHHH

'oooo

::v
v

v
v

v
v

WB

p

��
hocoker(i)

and then setting δg := p ◦ F . Here the existence of the cofibration ι̂ follows from the general factorization
property in a model category, while F is constructed as the dashed morphism in

X̂� _

ι̂

��

// B

i

��
WB

'
����

X̂ //

F

=={
{

{
{

pt

16



which exists by the lifting property of cofibrations. By the property of a homotopy colimit δg is precisely
the obstruction for the dashed lift to exists. That every cocycle in H(X, coker(i)) which trivializes under i∗

arises this way follows by using that i = hoker(p)... �

Definition 3.35 (curvature and characteristic classes) Here F is the curvature, δg the characteristic classes
of g for the extension along i.

3.5.2 Lifting

...

3.5.3 Local semi-trivializations

Proposition 3.23 states that every B-bundle trivializes over its own total space. If B̂ is part of an exact

sequence A
i // B̂

p // B , with i the homotopy kernel of p, then there is a relative version of this

statement, which states that a B̂ bundle becomes equivalent to an A-bundle with a certain B̂-equivariance
on the total space of the underlying B-bundle.

Definition 3.36 (relative equivariance) For π : P → X a B-bundle we say a cocycle P | // A on its
total space is relatively equivariant with respect to the above sequence if

• there exists B̂-cocycle g on X

• and a homotppy π∗g ⇒ p∗g

• and such that P is classified by p∗g

Proposition 3.37 (local semi-trivialization) B̂-cohomology on X is in bijection with relatively equivari-
ant A-cohomology on the underlying B-bundles.

Proof. Consider
A
��>

>>

B̂
))

))
))
))

��)
))

))

P oooo '

��

g∗EptB

CC�
�

�
�

��

// EptB

��

// // pt

��
P//G oooo '

'
����

g∗[I, B]

'����

// [I, B]
'

d1
����

'
d0 // // B

X oooo '
X̂

g //

������

������
ĝ

FF���

B

�

4 Examples and Applications

4.1 Homotopical contexts

• V = SimplicialSets: the theory of Ho[Sop,V] developed in great detail in series of articles by Toën [?].
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4.2 Closed monoidal homotopical categories

• Cat with standard tensor and folk model structure

• 2Cat with Gray tensor and Lack model structure

• ωCat with Crans-Gray tensor and folk model structure (need to confirm some axioms of closed monoidal
homotopical).

• ωGroupoids with Brown-Golasiski tensor and model structure (need to confirm some axioms of closed
monoidal homotopical).

4.3 Pointed objects

• one-object ω-groupoids pt! ∃ // BG

• category of vector spaces, point maps to ground field pt
pt 7→k // Vectk

• similarly for higher vector spaces,

4.4 Monoid of loops

1. for pt ∃! // BG we have ΩBG = G.

2. for pt
pt 7→k// Vectk we have ΩptVect = k,

3. for pt // 2Vectk we have Ωpt2Vect = Vectk, etc.

4.5 Universal bundles

1. for B = BG and G a 1-group the universal B-bundle is EG := G//G is the action groupoid of G acting
on itself and the sequence G // EG // BG maps under nerve and topological realization to the
universal G-bundle in its incarnation in topological spaces. This is discussed in [25] as a preparation
for the following example.

2. for B = BG and G a 2-group or bi-group [4] shows that EG is the action bigroupoid of G acting on
itself. we show that EG is the universal 2-bundle (sketched in [25]).

4.6 Bundles

• ρ : BG → Vect a representation, then ρ∗EptVect is the action groupoid (ρ-associated vector bundle of
EG)

• pullback along G1-cocycle g weakly equivalent to G-principal bundle;

• pullback along G2-cocycle g weakly equivalent to G2-principal 2-bundle (Bartels, Baković, Wockel);

• combined pullback g∗ ◦ ρ∗ weakly equivalent to associated bundle

etc. pp.
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4.7 Lifting problems

4.8 Extension problem

• ; X ↪→ X//G: ordinary equivariance under G-action; connection homomorphism computes obstruction
to having equivariant structure;

• X ↪→ Π(X): flat connection, connection homomorphism computes curvature (characteristic forms);

4.9 Equivariance on semi-total spaces

• for BU(1) → AUT(U(1)) → Z2 this yields Jandl gerbes [34]

• for BU(1) → String(G) → G this yields String bundle gerbes on the total space of a G-bundle

• etc.

5 Quantization of nonabelian cocycles to σ-models

We want to think of a ρ-associated F -cocycle X̂
∇ // F and the corresponding F -bundle ∇∗EptF // // X

as a background field (a generalization of an electromagnetic field) on X to which a higher dimensional fun-
damental brane – such as a particle, a string or a membrane – propagating on X may couple.

We now propose a formalization in the context of homotopical cohomology of what it means to quantize
such a background field to obtain the corresponding σ-model quantum field theory as a functorial QFT (as
described in [31] and references given there). Our constructions are motivated by and supposed to implement
and generalize the considerations of [15, 42] and make contact with [24].

We define a notion of parameter space or worldvolume category and a notion of background field over a
target space coming from an ω-bundle. This pair of data we call a σ-model, We show how this data induces
a functor from the parameter space category to spans in ω-groupoids. Using methods from groupoidification
[1, 2] we show that these spans represent linear maps which deserve to be addressed as propagation in the
quantum field theory induced by the σ-model.

5.1 σ-Models

In the following B := BG denotes an object of F0 which we think of as modelling a one object ∞-groupoid
the automorphisms of whose single object form the ∞-group G. At the moment this is just notation meant
to be suggestive.

Definition 5.1 (background structure) A background structure for a σ-model is

• an ω-groupoid X called target space;

• an ω-group G, called the gauge group;

• a representation

ρ∗EG //

��

EptF

����
BG

ρ // F pt
ptFoo

called the matter content;

• an F -cocycle X̂

'
����

∇ // F

X

ρ-associated to a G-principal cocycle on X, ∇ : X̂
g // BG

ρ // F ,

called the background field.
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For brevity we shall indicate a background structure just as ( X̂
∇ // F ), leaving the choice of representa-

tion and the target space X weakly equivalent to the hypercover X̂ implicit.

Definition 5.2 (parameter space category) A parameter space ω-category Cob is a sub ω-category of
Cospans(ωGroupoids).

Definition 5.3 (σ-model) A σ-model is a pair consisting of a parameter space category and a background
structure for a σ-model.

Definition 5.4 Given a σ-model with background structure ∇ : X̂
∇ // F and with parameter space Cob

for every object Σ ∈ Cob we say that

• C(Σ) := [Σ, X̂] is the space of fields over Σ;

• The [Σ, F ]-cocycle [Σ,∇] : [Σ, X̂] → [Σ, F ] on the space of fields over Σ is the action functional over
Σ.

Remark. One can identify [Σ,∇] with the transgression of the cocycle g to the mapping space [Σ, X].
Examples showing that this canonical operation indeed reproduces the ordinary notion of transgression of
cocycles are in [35, 36] and in our section 6.

In section 5.3 we construct for every σ-model its corresponding quantum field theory. This involves the
notion of bibranes discussed in section 5.2.

5.2 Branes and bibranes

From the second part of definition 3.25 one sees that spaces spaces of sections of ω-bundles are given by
certain morphisms between background fields pulled back to spans/correspondences of target spaces. From
the diagrammtics this has an immediate generalization, which leads to the notion of branes and bibranes.

Definition 5.5 (branes and bibranes) A brane for a background structure ( X̂
∇ // F ) is a morphism

ι : Q̂ → X̂ equipped with a section of the background field pulled back to Q̂, i.e. a transformation

Q̂

����
� ι

��9
99

pt

ptF
��<

<<
X̂

g����
�

F

V #+OOOO .

More generally, given two background structures ( X̂
∇ // F ) and ( X̂ ′ ∇′

// F ), a bibrane between them

is a span
Q̂

ι
�����

ι′

��;
;;

X̂ X̂ ′
equipped with a transformation

Q̂
ι
�����

ι′

��;
;;

X̂

∇ ��;
;;

X̂ ′

∇′�����

F

V
#+NNNN .
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Bibranes may be composed –“fused” – along common background structures ( X̂
∇ // F ): the com-

posite or fusion of a bibrane V1 on Q̂ with a bibrane V2 on Q̂′ is the bibrane V1 · V2 given by the diagram

Q̂×X̂′ Q̂

����
��

��
�

��?
??

??
??

X̂1

∇1   A
AA

AA
AA

A X̂3

∇3~~}}
}}

}}
}}

F

V1·V2
(0YYYYYYYYYY

YYYYYYYYYY

:=

Q̂×X′ Q̂′

s

}}{{{
{{

{ t

""E
EEEE

Q̂

����
��

!!D
DD

DD
D Q̂′

||yyy
yy

y
��7

77
7

X̂1

∇1 ''OOOOOOOOOO X̂2

∇2��

X̂3

∇3wwnnnnnnnnnnn

F

V

&.TTTTTTT
TTTTTTT V ′

(0ZZZZZZ
ZZZZZZ

Proposition 5.6 (composition of associated spans from fusion of bibranes) The associated span of
ω-groupoids corresponding, according to definition 3.30, to the fusion of two bibranes is the composition of
the spans associated with each bibrane:

(η1 ·′ η2)∗Ept(F ItptI)

wwoooooooooooooo

))RRRRRRRRRRRRRRRRRR

##F
FFFFFFFF

η∗1Ept(F I)

    A
AA

AA
AA

A

wwpppppppppppp

QQQQQQQQQQQ

((

��

Q̂×Ŷ Q̂′

yy ((RRRRRRRRRRRRRRRR

η1·′η2

��

+

)

(

&

$

"

!

�

�

�

�

�

�

�

�

η∗2Ept(F I)

    A
AA

AA
AA

A

uujjjjjjjjjjjjj

''OOOOOOOOOOOO

��

∇∗
1EptF

�� ��=
==

==
==

��

Q̂

ι1nnnnnnnnnnnn

vvnnnn

ι2
SSSS

))SSSSSSSSSSSSSSSS

η1

��

∇∗
2EptF

$$ $$II
III

III
III

��

$$ $$II
III

III
III

��

Q̂′

ι3llllllllllllll

uullll

ι4
NNN

N

''NNNNNNNNNN

η2

��

∇∗
3EptF

�� ��<
<<

<<
<<

��

X̂

∇1

��

Ŷ

∇2

��

Ẑ

∇3

��

Ept(F I)
iii

ttiiii
VVVV

++VVVVV&& &&MMMMM
Ept(F I)

ffffff

rrffffffff
UUU

**UUUU
U&& &&MMMMM

EptF

�� ��?
??

??
??

F I

d0
mmmmmmm

vvmmmmmmmm d1
TTTTTTTTT

))TTTTTTTTTT

EptF

%% %%KKKKKKKKKK F I

d0
kkkkkkkk

uukkkkkkkkk d1
OOOOOO

''OOOOOOO

EptF

�� ��>
>>

>>
>>

F F F

Ept(F ItptI)
(( ((RRRRR

AAAAAAAAAAAA

``AAAAA

wwwwww

;;www

F ItptI

bbEEEEEEEEEEEEEEEEEEEEEEEE

==zzzzzzzzzzzzzzzzzzzzzzz

��
F I

.

Proof. By commutativity of pullbacks. �

Remark on groupoidification. Comparing with the remark above definition 3.32 we find that fusion of
bibranes corresponds to composition of groupoidified linear maps.

If Q̂ carries further structure, the fused bibrane on Q̂×Ŷ Q̂ may be pushed down again to Q̂.
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Definition 5.7 Let B be a category enriched in the bicategory V := Spans(ωCategories) of spans in ωCategories
and let F be an ω-category. Then the category of bibranes relative to B and F is given by:

• objects are background structures X̂
∇ // F for X̂ an object of B;

• morphisms are bibranes on morphisms of B;

• composition of morphisms is given by bibrane fusion followed by push-forward along the composition
map in B.

A simple special case is a category Q̂
s //
t
// X̂ internal to ω-groupoids, equivalently a monad in the

bicategory of spans internal to ωGroupoids, with composition operation the morphism of spans

Q̂×t,s Q̂

{{xxx
xx

##FF
FFF

comp

��

Q̂
s
����� t

HHH

##HH
H

Q̂
svvv
{{vv

t
��9

99

X̂ X̂ X̂

Q̂
s

hhPPPPPPPPPP t

66nnnnnnnnnn

.

Definition 5.8 (monoidal structure on bibranes) Given an internal category as above, and given a

background structure ∇ : X̂ → F , the composite of two bibranes

Q̂

����� ��;
;;

X̂

∇ ��<
<<

X̂

∇����
�

F̂

#+PPPPPPV,W
#+PPPPPP

on Q̂ is the result of first

forming their composite bibrane on on Q̂×t,s Q̂ and then pushing that forward along comp:

V ? W :=
∫

comp

(s∗V ) · (t∗W ) .

Here for finite cases, which we concentrate on, push-forward is taken to be the right adjoint to the pullback
in a proper context.

Remarks. Notice that branes are special cases of bibranes and that bibrane composition restricts to an
action of bibranes on branes. Also recall that the sections of a cocycle on X are the same as the branes of
this cocycle for ι = IdX .

The idea of bibranes was first formulated in [17] in the language of modules for bundle gerbes. We show
in section 6.1.4 how this is reproduced within the present formulation. In its smooth L∞-algebraic version
the idea also appears in [28].

5.3 Quantum propagation

Every σ-model with parameter space Cob and background structure X̂
∇ // F induces a functor

exp(
∫
∇) : Cob → Spans(ωGroupoids)
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which sends

exp(
∫
∇) :

Σ

Σin

ι
AA����

Σout

τ
^^==== 7→

[Σ,∇]∗Ept[Σ, F ]

ttjjjjjjjj
**UUUUUUUU

[Σin,∇]∗Ept[Σin,∇] [Σout,∇]∗EptΣout, F ]

a morphism Σ : Σin → Σout in Cob to the span of ω-bundles associated to, definition 3.30, the bibrane on
the span

[Σ, X̂]
ι∗

{{www
ww

ww
ww τ∗

##G
GG

GG
GG

GG

[Σ, X̂] [Σ, X̂]

which is induced by transgression of the background field:

[Σ,∇]∗Ept[Σ, F ]

%% %%JJJJJJJJJ

tthhhhhhhhhhhhhhhhhh

**VVVVVVVVVVVVVVVVVV

��

[Σin,∇]∗Ept[Σin, F ]

&& &&MMMMMMMMMMM

��

[Σ, X̂]

ιiiiiiiiiiiiiiiii

ttiiii

ι′
VVVV

++VVVVVVVVVVVVVVVVVVVV

[Σ,∇]

��

[Σout,∇]∗Ept[Σout, F ]

'' ''OOOOOOOOOOO

��

[Σin, X̂]

[Σin,∇]

��

[Σout, X̂]

[Σout,∇]

��

Ept[Σ, F ]
eeeeeeee

rreeeeeeee YYYYYYYY

,,YYYYYYY
)) ))RRRRRRRR

Ept[Σin, F ]

&& &&NNNNNNNNNNN FΣ

d0
iiiiiiiiiii

ttiiiiiiiii d1
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Ept[Σout, F ]

'' ''OOOOOOOOOOO

[Σin, F ] [Σout, F ]

A state of the σ-model over Σ is a generalized section, definition 3.32 of [Σa,∇] in Ha := H([Σa,∇]) and
the propagation of along a morphism Σ is the map∫

hom(Σ,X)

exp(
∫
∇) : HΣin

// HΣout

induced by pull-push through the span exp(
∫
∇)(Σ).

An example is spelled out in section 6.1.6.

6 Examples and applications

We start with some simple applications to illustrate the formalism and then exhibit some useful constructions
in the context of finite group quantum field theory.

6.1 General examples

6.1.1 Ordinary vector bundles

Let G be an orinary group, hence a 1-group, and denote by F := Vect the 1-category of vector spaces over
some chosen ground field k. A linear representation ρ of G on a vector space V is indeed the same thing as
a functor ρ : BG → Vect which sends the single object of BG to V .
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The canonical choice of point ptF : pt → Vect is the ground field k, regarded as the canonical 1-
dimensional vector space over itself. Using this we find

• from definition ?? that the ground ω-monoid in this case is just the ground field itself, K = k,

• from definition ?? that the universal Vect-bundle is EptVect = Vect∗, the category of pointed vector
spaces with Vect∗ // // Vect the canonical forgetful functor;

• from definition ?? that the ρ-associated vector bundle to the universal G-bundle is V//G // // BG ,

where V//G := ( V ×G
p1 //
ρ
// V ) is the action groupoid of G acting on V , the weak quotient of V by

G;

• From definition 3.25 that for g : X |
g // BG a cocycle describing a G-principal bundle and for V

the corresponding ρ-associated vector bundle according to definition ??, that sections σ ∈ Γ(V ) are
precisely sections of V in the ordinary sense.

6.1.2 Group algebras and category algebras from bibrane monoids

In its simplest version the notion of monoidal bibranes from section 5.2 reproduces the notion of category
algebra k[C] of a category C, hence also that of a group algebra k[G] of a group G. Recall that the category
algebra k[C] of C is defined to have as underlying vector space the span of C1, k[C] = spank(C1), where the
product is given on generating elements f, g ∈ C1 by

f · g =
{

g ◦ f if the composite exists
0 otherwise

To reproduce this as a monoid of bibranes in the sense of section 5.2, take the category of fibers in
the sense of section ?? to be F = Vect as in section 6.1.1. Consider on the space (set) of objects, C0,

the trivial line bundle given as an F -cocycle by i : C0
// pt

ptk // Vect . An element in the monoid

of bibranes for this trivial line bundle on the span given by the source and target map C1s
~~}}

t
  A

A

C0 C0

is a

transformation of the form

C1s
||xxx

t
""FF

F

C0

i
##FF

F C0

i
{{xxx

Vect

V
&.VVV VVV

. In terms of its components this is canonically identified with

a function V : C1 → k from the space (set) of morphisms to the ground field and every such function gives
such a transformation. This identifies the C-bibranes with functions on C1.

Given two such bibranes V,W , their product as bibranes is, according to definition 5.8, the push-forward
along the composition map on C of the function on the space (set) of composable morphisms

C1 ×t,s C1 → k

(
f→ g→) 7→ V (f) ·W (g) .

This push-forward is indeed the product operation on the category algebra.

6.1.3 Monoidal categories of graded vector spaces from bibrane monoids

The straightforward categorification of the discussion of group algebras in section 6.1.2 leads to bibrane
monoids equivalent to monoidal categories of graded vector spaces.
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Let now F := 2Vect be a model for the 2-category of 2-vector spaces. For our purposes and for simplicity,
it is sufficient to take F := BVect ↪→ 2Vect, the 2-category with a single object, vector spaces as morphims
with composition being the tensor product, and linear maps as 2-morphisms. This can be regarded as the
full sub-2-category of 2Vect on 1-dimensional 2-vector spaces. And we can assume BVect to be strictified.

Notice from definition ?? that the ground ω-monoid in this case is the monoidal category K = Vect.
Then bibranes over G for the trivial 2-vector bundle on the point, i.e. transformations of the form

G
{{www ##G

GG

pt
##GG

G pt
{{www

BVect

(0YYYY YYYY
canonically form the category VectG of G-graded vector spaces. The fusion of such bibranes

reproduces the standard monoidal structure on VectG.

6.1.4 Twisted vector bundles

The ordinary notion of a brane in string theory is: for an abelian gerbe G on target space X a map ι : Q → X
and a PU(n)-principal bundle on Q whose lifting gerbe for a lift to a U(n)-bundle is the pulled back gerbe
ι∗G. Equivalently: a twisted U(n)-bundle on Q whose twist is ι∗G. Equivalently: a gerbe module for ι∗G.

We show how this is reproduced as a special case of the general notion of branes from definition 5.5, see
also [37].

The bundle gerbe on X is given by a cocycle g : X | // BBU(1) . The coefficient group has a canonical
representation ρ : B2U(1) → F := BVect ↪→ 2Vect on 2-vector spaces (as in section 6.1.3) given by

ρ : •

Id

��

Id

?? •c∈U(1)�� 7→ •

C
��

C

?? •·c�� .

See also [37, 31].

By inspection one indeed finds that branes in the sense of diagrams

Q

{{xxx
xx ι

##FF
FFF

pt

ptF
##GG

GG X

ρ◦g{{www
w

BVect

V )1ZZZZZZ ZZZZZZ are canonically

identified with twisted vector bundles on Q with twist given by the ι∗g: the naturality condition satisfied by
the components of V is

C

C
??

?

��?
??

C

(π∗1E)y

��

C //

C���

??���

C

π∗3Ey

��
C C // C

Id
��

π∗13gtw(y)

x� zz
zz

zz
zz

zz
zz

zz
z

zz
zz

zz
zz

zz
zz

zz
z

=

C

C
??

?

��?
??

(π∗2E)y

��

C

C���

??���

π∗1Ey

��

C

(π∗3Ey)

��

C

C
??

?

��?
??

C C //

C���

??���

C
·g(y)��

π∗23gtw(y)
{{{{

y� {{{{
π∗12gtw(y)

��
��
��
�

��
��
��
�

� �
��
��
�

��
��
��

,

for all y ∈ Y ×X Y ×X Y ×X Y in the triple fiber product of a local-sections admitting map π : Y → X whose

simplicial nerve Y •, regarded as an ω-category, provides the cover for the ω-anafunctor X Y •'oooo g // B2U(1)
representing the gerbe. See [37] for details. E → Y is the vector bundle on the cover encoded by the trans-
formation V . The above naturality diagram says that its transition function gtw satisfies the usual cocycle
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condition for a bundle only up to the twist given by the gerbe g: if Y → X is a cover by open subsets
Y = tiUi, then the above diagram is equivalent to the familiar equation

(gtw)ij(gtw)jk = (gtw)ik · gijk .

In this functorial cocyclic form twisted bundles on branes were described in [30, 37].

6.1.5 2-Hilbert spaces

Let B be the category internal to spans in ω-categories given by all product spans in Sets with composition
morphisms the canonical morphisms. Let F = BVect as before. Then the 2-category of (B,F )-bibranes is
the 2-category of 2-Hilbert spaces as in [6].

6.1.6 The path integral

We unwrap the notion of propagation in a σ-model form section 5.3 for the case that the background field
is an ordinary vector bundle (with connection), i.e. for the case F = Vect. This can be regarded in terms of
the quantization of the charged 1-particle as well as, after transgression, as the top-dimensional propagation
in higher dimensional theories. We shall re-encounter this example in the discussion of Dijkgraaf-Witten
theory in section 6.2.

Let for the present example the parameter space Cob consist just of a single edge

Cob =


Σ := {a → b}

Σin := {a}
44jjjj

Σin := {b}
jjTTTT

 .

Recall from section 6.1.1 that for F = Vect and ρ : BG → Vect a linear representation, we have
ρ∗EptF = V//G is the action groupoid of G acting on the representation space V .

Write ∇ := ρ ◦ g for the background field. It follows that the ω-bundle over X is given by the groupoid
∇∗EptF with morphisms

(∇∗EptF )1 =
{

(x1, v1)
γ // (x2, v2) |( x

γ // y ) ∈ X, v1, v2 ∈ V, v2 = ρ(g(γ))
}

with the obvious composition operation.
So a state in HΣa

, a groupoid v : Ψ → ∇∗V//G over ∇∗V//G, is over each point x ∈ X a groupoid over
V . By the yoga of groupoid cardinality [1, 2] we can hence identify a state v : Ψ → ∇∗V//G with a V -valued
function on Obj(X).

The objects of the transgressed background bundle (∇Σ)∗Ept(FΣ) are the morphisms of ∇∗EptF .
The pull-push propagation map ∫

hom(Σ,X)

exp(
∫
∇) : Ha → Hb

reproduces the path integral in this setup as described in [32].

6.2 Dijkgraaf-Witten model: target space BG1

Dijkgraaf-Witten theory [16] is the σ-model which in our terms is specified by the data

• target space X = BG, the one-object groupoid corresponding to an ordinary 1-group G;

• background field α : BG → B3U(1), a group 3-cocycle on G.
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6.2.1 The 3-cocycle

Indeed, we can understand group cocycles precisely as ω-anafunctors BG Y
'oooo α // BnU(1) . This is

described in [8]. Here it is convenient to take Y to be essentially the free ω-category on the nerve of BG,
i.e. Y := F (N(BG)), but with a few formal inverses thrown in to ensure that we have an acyclic fibration
to BG:

the 1-morphisms of Y are given by finite sequences of elements of G, its 2-morphisms are freely gener-

ated as pasting diagrams from 2-morphisms of the form


•

h

��@
@@

@@
@@

•
hg

//

g
??�������

•
��

 together with their formal

inverses. Its 3-morphisms are freely generated as pasting diagrams from 3-morphisms of the form

• h // •

k

��
•

g

OO

hg�����

??�����

khg
// •

� 
88

8
88

8

�� ��
����

(g,h,k)//

• h //

kh
??

??
?

��?
??

??

•

k

��
•

g

OO

khg
// •

~� ��
���
�

��
''''''


together with their formal inverses. Its 4-morphisms are freely generated from pasting diagrams of 4-
morphisms of the form

•
k

!!C
CC

CC
CC

C

lk

((
((

((

��(
((

((
(•

h

=={{{{{{{{
3

l
��



•
g

XX111111

lkhg
//

hg
������

JJ������

•

��
00

0
00

0

��
� �
� �
� �
� �
�

� �
� �
� �
� �
�

�� ��
�

��
�

•
k

!!C
CC

CC
CC

C

•

h

=={{{{{{{{
•

l
����
��
��

•
g

XX222222

lkhg
//

hg
������

JJ������

khgqqqqq

88qqqqq

•

��
11

1
11

1
��
$$
$$
$$

$$
$$
$$

� ����

•
k

!!C
CC

CC
CC

C
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((
((

((

��(
((

((
(•

h

=={{{{{{{{

hkl
MMMMM

&&MMMMM

•

l
����
��
��

•
g

XX222222

lkhg
// •

��
2222
	� �
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��
��

��
��
��
�
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�

��
�

•
k

!!C
CC
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CC

C

•

h

=={{{{{{{{
kh // •

l
����
��
��

•
g

XX222222

lkhg
//

khgqqqqq

88qqqqq

•
y� {{{{
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22
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��
!!
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•
k

!!C
CC
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CC

C

•

h

=={{{{{{{{
kh //

lkh
MMMMM
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��
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•
g

XX222222

lkhg
// •

�%
CCCC �� �

����
�

��
!!
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!!

(hg,k,l)
%%LLLLLLLLLLLL

(g,h,lk)

99rrrrrrrrrrrr

(g,h,k)

HH�����������

(g,kh,l) //

(h,k,l)

��-
--

--
--

--
--

(g,h,k,l)

��


together with their formal inverses.
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The ω-functor α : Y → B3U(1) has to send the generating 3-morphisms (g, h, k) to a 3-morphism in
B3U(1), which is an element α(g, h, k) ∈ U(1). In addition, it has to map the generating 4-morphisms
between pasting diagrams of these 3-morphisms to 4-morphisms in B3U(1). Since there are only identity
4-morphisms in B3U(1) and since composition of 3-morphisms in B3U(1) is just the product in U(1), this
says that α has to satisfy the equations

∀g, h, k, l ∈ G : α(g, h, k)α(g, kh, l)α(h, k, l) = α(hg, k, l)α(g, h, lk)

in U(1). This identifies the ω-functor α with a group 3-cocycle on G. Conversely, every group 3-cocycle
gives rise to such an ω-functor and one can check that coboundaries of group cocycles correspond precisely to
transformations between these ω-functors. Notice that α uniquely extends to the additional formal inverses
of cells in Y which ensure that Y

' // // BG is indeed an acyclic fibration. For instance the 3-cell

• h // •

k

��
•

g

OO

hg�����

??�����

khg
// •

X`
88

8
88

8

GO
�����
�

(g,h,k)′//

• h //

kh
??

??
?

��?
??

??

•

k

��
•

g

OO

khg
// •

>F
��
���
�

OW
''''''


has to go to α(g, h, k)−1.

6.2.2 Chern-Simons theory

In this article we do not want to get into details of the discussion of ω-categories internal to smooth spaces,
but in light of the previous section 6.2 it should be noted that in terms of nonabelian cocycles the appearance
of Chern-Simons theory is formally essentially the same as that of Dijkgraaf-Witten theory:

if we take BG to be a smooth model of the classifying space of G-principal bundles, then a smooth cocycle
BG | // B3U(1) , i.e. an ω-anafunctor internal to (suitably generalized) smooth spaces is precisely the
cocycle for a 2-gerbe, i.e. a line 3-bundle. In nonabelian cohomology, the difference between group cocycles
and higher bundles is no longer a conceptual difference, but just a matter of choice of target “space” ω-
groupoid.

6.2.3 Transgression of DW theory to loop space

Proposition 6.1 The background field α of Dijkgraaf-Witten theory transgressed according to definition 5.4
to the mapping space of parameter space Σ := BZ – a combinatorial model of the circle –

τBZα := hom(BZ, α)1 : ΛG → B2U(1)

is the groupoid 2-cocycle known as the twist of the Drinfeld double, as recalled for instance on the first page
of [42]:

(τBZα) : ( x
g // gxg−1 h // (hg)x(hg)−1 ) 7→ α(x, g, h) α(g, h, (hg)x(hg)−1)

α(h, gxg−1, g)
.

Proof. According to definition A.13 the transgressed functor is obtained on 2-cells as the composition of

ω-anafunctors BZ |
(x,g,) // BG |α // B3U(1) , given by

(x, g, h)∗Y //

'
����

Y

'
����

α // B3U(1)

BZ⊗O([2])
(x,g,h)// BG

,
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where (x, g, h) denotes a 2-cell in ΛG

gxg−1

h

""F
FFFFFFF

x
hg
//

g

DD							
(hg)x(hg)−1

which comes from a prism

•
h

��@
@@

@@
@@OO

•OO

x

hg //

g
??�������

•OO

(hg)x(hg)−1•

h
@@

@

��@
@@

•
hg

//

g���

??���

•

in BG. The 2-cocycle τBZα evidently sends this to the evaluation of α on a 3-morphism in the cover Y filling
this prism. One representation of such a 3-morphism, going from the back and rear to the top and front of
this prism, is

•
h

��@
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@@OO

gxg−1•

g
??�������

OO

x

•OO
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??�������
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•
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??�������
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•
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??���
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•
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x

•OO
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h
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•
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•
h

��@
@@

@@
@@

•

g
??�������

OO
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•
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44

•

��
//// ��

(x,g,h) //
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x
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.
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Here the first step follows by 2-dimensional whiskering of the standard 3-morphism:

• gxg−1 // •

h

��
•

g

OO

gx||||||

==||||||

hgx //

gx

&&

g ��@
@@

@@
•

• hgxg−1

??~~~~~
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==

=
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=
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(g,gxg−1,h)//

• gxg−1 //

hgxg−1
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B

!!B
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•

h

��
•

g

OO

hgx //

g ��@
@@

@@

gx

&&

•

• hgxg−1

??~~~~~

|� ��
�

��
�

��
&&&&&&

�#
????

��

.

This manifestly yields the cocycle as claimed. �

6.2.4 The Drinfeld double modular tensor category from DW bibranes

Let again ρ : B2U(1) → 2Vect be the representation of BU(1) from section 6.1.3 and let τBZα : ΛG → B2U(1)
be the 2-cocycle obtained in section 6.2.3 from transgression of a Dijkgraaf-Witten line 3-bundle on BG and
consider the the ρ-associated 2-vector bundle ρ ◦ τBZα corresponding to that. Its sections according to
definition 3.25 form a category Γ(τBZα).

Corollary 6.2 The category Γ(τBZα) is canonically isomorphic to the representation category of the α-
twisted Drinfeld double of G.

Proof. Follows by inspection of our definition of sections applied to this case and using the relation es-
tablished in 6.2.3 between nonabelian cocycles and the ordinary appearance of the Drinfeld double in the
literature. �

In the case that α is trivial, the representation category of the twisted Drinfeld double is well known to
be a modular tensor category. We now show how the fusion tensor product on this category is reproduced
from a monoid of bibranes on ΛG.

Consider any 2-group BG2 := ( G n H
p1 //

(Id·δ)
// G // pt ).

Pullback to the single object of BEZ yields a canonical morphism from the disk-space DG2 := hom(BEZ,BG2)
to BG, p : DG2 → BG which inherits from the 2-group the structure of a category internal to groupoids in
that on the span DG2p

||xx
x p

""F
FF

BG BG

there is induced the structure of a monad from the horizontal compo-

sition in G2. Notice that DG2 is very similar to but in general slightly different from the action groupoid
H//G obtained from the canonical action of G on H in a 2-group. Both coinide in the special case that
G2 = EG, so that H = G. In this case the morphism p exhibts DG2 as the action groupoid (as in section
6.1.1) of G acting on itself by the adjoint action.

For BG → 2Vect the trivial gerbe, the transformations DG2

{{xxx
##F

FF

BG
##GG

GG BG
{{www

w

2Vect

(0YYYYY
YYYYY

are representations of DG2 on

vector spaces. In the case that H = G and the boundary map is the identity we have DG2 = ΛG, so that,
by the above, bibranes on DG2 become representations of ΛG.

One checks in this case that the fusion product of bibranes using the internal category structure on DG2

according to 5.8 does reproduce the familiar fusion tensor product on representations of ΛG, hence of the
Drinfeld double.
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6.2.5 The DW path integral

Let Sin and Sout be two oriented surfaces and let V be an oriented 3-manifold with boundary ∂V = SintS̄out.
Forming fundamental groupoids yields a co-span

Σ := Π1(V )

Σin := Π1(Sin)

66nnnnnnnnnnnn
Σout := Π1(Sout)

hhQQQQQQQQQQQQQ

.

Notice that the space of fields on V in DW theory hom(Σ,BG) is equivalent to the groupoid of G-principal
bundles on V . This implies that pull-push quantum propagation in the sense of section 5.3 reproduces the
right DW path integral.

6.3 Yetter-Martins-Porter model: target space BG2

The Yetter-Martins-Porter model is a σ-model with target space X = BG for G a 2-group.
Here, too, our quantization reproduces the right combinatorial path integral factor [?].

A ω-Categories and their Homotopy Theory

An ∞-category is a combinatorial model for higher directed homotopies, a combinatorial model for a directed
space. The fact that it is directed means that not all cells in this space are necessarily reversible. If they are,
the ∞-category is an ∞-groupoid, a combinatorial model for an ordinary space.

There are various definitions of ∞-categories and ∞-groupoids [21]. Most of them model ∞-categories
as conglomerates of n-dimensional cells of certain shape, for all n ∈ N, equipped with certain structure and
certain properties.

Conglomerates of cells. A “conglomerate of n-dimensional cells of certain shape” technically means a
presheaf on a category of basic cells.

Simplicial sets and (∞, 1)-categories. The most familiar example is the simplicial category ∆ whose
objects are the standard cellular simplices and presheaves on which are simplicial sets. A popular model for
∞-groupoids are simplicial sets with the Kan property : Kan complexes. The Kan property can be interpreted
as ensuring that for all adjacent simplices in the Kan simplicial set there exists a composite simplex and that
for all simplices there exists a reverse simplex. Replacing the Kan property on simplicial sets by a slightly
weaker property called the weak Kan property generalizes Kan complexes to a model of ∞-categories called
weak Kan complexes or quasicategories or (∞, 1)-categories: the weak Kan condition ensures just that for
all n-simplices for n ≥ 2 there exists a reverse simplex. A further weakening of the Kan condition such as to
ensure only the existence of composites without any restriction on reversibility leads to a definition of weak
∞-categories based on simplicial sets with extra properties proposed by Ross Street []. This is very general
but also somewhat unwieldy.

Two other basic shapes of relevance besides simplices are globes and cubes.

Globular sets and ω-categories.

Cubical sets and n-fold categories.

∞-Categories in terms of 1-categories. A general strategy to handle ∞-categories in practice is to
regard them as categories (i.e. 1-categories) with extra bells and whistles. This notably involves the tools
of enriched category theory and of model category theory.
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Enriched categories. The definition of a category enriched over a monoidal category V [20] is like that
of an ordinary category, but with the requirement that there is a set of morphisms between any two objects
replaced by the requirement that there is an object of C for any two objects. If the enriching category V is a
category of higher structures, such as simplicial sets, V-enriched categories are models for ∞-categories. In
practice the advantage of conceiving ∞-categories as suitably enriched categories is that enriched category
theory is a well-developed subject with a supply of powerful general tools.

Model categories. From the modern perspective, a model category (Quillen model category), is the 1-
categorical truncation of an (∞, 1)-category, remembering which of the 1-morphisms retained used to be like
isomorphisms, monomorphisms and epimorphisms up to higher coherent cells, in the original (∞, 1)-category:
in a model category these special 1-morphisms are, respectively, called weak equivalences, cofibrations and
fibrations and satisfy a couple of properties.

One says that model categories are presentations of (∞, 1)-categories in that they provide a convenient
re-packaging of the information contained in an (∞, 1)-category in purely 1-categorical terms. In practical
computation the model category structure on a 1-category is in particular used to generalize morphisms
between given objects to morphisms between suitable weakly equivalent replacements of these objects.

Our approach. The ∞-vector bundles which we want to describe are given by cocycles with values in
∞-categories (of models for ∞-vector spaces) which are not ∞-groupoids and are not (∞, 1)-categories in
that in general they have non-reversible cells in all degrees.

Among the simplicial models for ∞-categories this would force one to use models such as Street’s weak
∞-categories. This model, however, we find unwieldy for our applications.

Among the remaining choices of models for ∞-categories for our developments in sections 3 and 5 we
choose one which combines the “folk” model category structure [14] on ωCategories with the enrichment of
ωCategories over itself [11]. For most considerations in section 5 and 6 this means effectively that we work
in the 1-category ωCategories while making use of the internal hom-functor and using the freedom to replace
ω-categories by weakly equivalent replacements.

For handling ωCategories the different shapes – globes, simplices, cubes – are useful for different purposes.
Globular sets have the simplest boundary structure, simplicial sets provide powerful computational tools,
cubical sets provide the important monoidal structure. In the following all three models of shapes are
combined: following [8, 11] we conceive ω-categories as globular sets for general purposes and make use of
their incarnation as cubical sets for describing their biclosed monoidal structure. Moreover, following [38, 8]
we use cosimplicial ω-categories such as the orientals to pass between ωCategories and SimplicialSets, mostly
for the purpose of constructing weakly equivalent replacements of ω-categories.

A.1 Shapes for ∞-cells

Three types of basic shapes are used frequently: globes, simplices and cubes. These are modeled, respectively,
by the globular category G, the simplicial category ∆ and the cubical category C. These three categories
have as objects the integers, n ∈ N, thought of as the standard cellular n-globe Gn, the standard cellular
n-simplex ∆n and the standard cellular n-cube Cn, respectively. Morphisms are all maps between these
standard cellular shapes which respect the cellular structure.

Definition A.1 (globular category) The globular category G is the category whose objects are the inte-
gers N and whose morphisms are generated from morphisms

σn, τn : [n] → [n + 1]
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subject to the relations

[n]
σn //

σn

��

[n + 1]

σn

��
[n + 1]

τn

// [n + 2]

,

[n]
τn //

τn

��

[n + 1]

σn

��
[n + 1]

τn

// [n + 2]

for all n ∈ N.

Definition A.2 (simplicial category) The simplicial category ∆ is the full subcategory of Categories on
categories which are freely generated from connected linear graphs. Equivalently, ∆ is the category with
totally ordered finite sets as objects and order-preserving maps as morphisms.

Definition A.3 (cubical category) The cubical category C is defined ... section 2 of [11]

Definition A.4 (monoidal structure on the cubical category) section 2 of [11]

A.2 ω-Categories

Recall the following standard facts:

• The category Sets is symmetric monoidal with respect to the standard cartesian product.

• For V a symmetric monoidal category, the category V−Cat of V-enriched categories is naturally itself
symmetric monoidal.

Definition A.5 (strict globular n-category, [13]) The category of 0-categories is 0Categories := Sets.
For n ∈ N, n ≥ 1 the category of (“strict, globular”) n-categories is defined inductively as the category

nCategories := (n−1)Categories−Cat

of categories enriched over (n−1)Categories.

One notices that for all n ∈ N there is a canonical inclusion nCategories ↪→ (n + 1)Categories.

Definition A.6 (ω-category, [39]) The category of ω-categories is the direct limit over this chain of in-
clusions

ωCategories := lim
→n∈N

nCategories .

Unwrapping this definition shows that ω-categories are globular sets equipped with compatible structures
of a strict 2-category on all sub-globular sets of length two:

Definition A.7 (globular set) A globular set S is a presheaf on the globular category G, i.e. a functor
S : Gop → Sets.

We write S( [n]
σn,τn// [n + 1] ) := Sn+1

sn,tn // Sn and call Sn the set of n-globes, sn the n-source map
and tn the n-target map of S. The identities sn ◦ sn+1 = sn ◦ tn+1 and tn ◦ sn+1 = tn ◦ tn+1, called the

globular identities, ensure that for all n, k ∈ N there are unique maps Sn+k
s,t // Sn themselves satisfying

analogous globular identities.

Proposition A.8 (ω-category, [38]) An ω-category C is a globular set C : Gop → Sets equipped for all

n, k ∈ N the structure of a category extending Cn+k

s //
t
// Cn such that this makes for all n, k, l ∈ N

Cn+k+l

s //
t
// Cn+k

s //
t
// Cn into a strict 2-category.
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The elements in Ck are called k-morphisms. The composition in Cn+k

s //
t
// Cn is called

composition of n + k-morphisms along n-morphisms. A morphism between ω-categories, called an ω-functor,
is a morphism of the underlying globular sets respecting all the additional structure.

Definition A.9 (standard globular globes) The globular set Gn represented by n ∈ N, Gn := HomG(−, [n])
is the standard globular globe. There is a unique structure of an ω-category on Gn. This yields co-globular
ω-category G•, i.e. a functor G• : G → ωCategories.

We also write

• ∅ :=: G−1 :=: I−1 for the ω-category on the empty globular set (the initial object in ωCategories);

• pt :=: I :=: I0 := G0 = {•} for the ω-category with a single object and no nontrivial morphisms (the
terminal object in ωCategories and the tensor unit with respect to the Crans-Gray tensor product ⊗
described below);

• I :=: I1 := G1 = { a // b } for the ω-category with two objects and a single nontrivial morphism
connecting them.

The first few n-globes can be depicted as follows:

G0 = {d0}
σ0:d0 7→d−0 //

τ0:d0 7→d+
0

// G1 = {d−0
d1→ d+

0 }
σ1:d1 7→d−1 //

τ1:d1 7→d+
1

// G2 = {d−0 d+
0

d−1

""

d+
1

<<d2
��

}
σ2:d2 7→d−2 //

τ2:d2 7→d+
2

// G
3 = {d−1 d+

1

d
−
0

d+
0

d−2

��

d
+
2

D
M

>>
q

z

'' ss

d3
��
�
�
�
�

} .

A.3 ω-Groupoids

...ω-groupoids and crossed complexes...

A.4 Cosimplicial ω-categories

We can translate back and forth between simplicial sets and ω-categories by means of a fixed cosimplicial
ω-categeory, i.e. a functor O : ∆ → ωCategories from the simplicial category ∆: from any such we obtain an
ω-nerve functor N : ωCategories → SimplicialSets by

N(C) : ∆op Oop
// ωCategoriesop

Hom(−,C) // Sets

and its left adjoint F : SimplicialSets → ωCategories given by the coend formula

F (S•) :=

[n]∈∆∫
Sn ·O([n]) .

Ross Street defined such a cosimplicial ω-category called the orientals [38], for which O([n]) is the ω-
category free on a single n-morphism of the shape of an n-simplex. To obtain more inverses, we can
alternatively use the unorientals, for which O([n]) is the ω-category with n-objects, with 1-morphisms finite
sequences of these objects, 2-morphisms finite sequences of such finite sequences, and so on.
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A.5 Monoidal biclosed structure on ωCategories

The category ωCategories is is equipped with the Crans-Gray tensor product [11], which is the extension to
ω-categories of the tensor product on cubical sets which in turn is induced via Day convolution from the
addition of natural numbers. This means that the Crans-Gray tensor product is dimension raising in a way
analogous to the cartesian product on topological spaces:

for instance the tensor product of the interval ω-category I = { a // b } with itself is the ω-category
free on a single directed square

I ⊗ I =


(a, a) //

��

(a, b)

��
(b, a) // (b, b)

t| qqqqqqqq

qqqqqqqq

 .

Moreover, ωCategories is biclosed with respect to this monoidal structure.

Definition A.10 (internal hom) For ω-categories C and D the ω-category [C,D] is given by the globular
set Hom(G[−]⊗C,D) : Gop → Sets on which the composition of k-morphisms along an l-morphism is defined
as the image of the diagram which glues two standard k-globes along a common l-globe

Gk tGl
Gk

Gk

ι
<<yyyyy

Gk

τ
bbEEEEE

Gl

σ
EE





σ

  B
BB

BB
BB

BB
BB

Gl

τ
bbEEEEE

σ
<<yyyyy

Gl

τ
YY4444

τ

~~||
||

||
||

||
|

Gk

ck,l

[[

under Hom(G[−] ⊗ C,D):

Hom((Gk tGl
Gk)⊗ C,D)

ι∗

ttiiiiiiiiiii τ∗

**UUUUUUUUUUU

comp:=c∗k,l

��

Hom(Gk ⊗ C,D)
t

**UUUUUUUUUUU
s

uukkkkkkkkk
Hom(Gk ⊗ C,D)

s

ttiiiiiiiiiii t

))SSSSSSSSS

Hom(Gl ⊗ C,D) Hom(Gl ⊗ C,D) Hom(Gl ⊗ C,D)

Hom(Gk ⊗ C,D)

t

44hhhhhhhhhhhhhhhhhhhhhhhhhhh
s

jjVVVVVVVVVVVVVVVVVVVVVVVVVVV

Remarks. Notice that everything in this definition works by abstract nonsense – for instance that the con-
travariant Hom takes colimits to limits – except the existence of the maps ck,l, which encodes genuine infor-

mation about pasting of standard globes [10]. For instance G2tG0 G2 =

 a
��
BB b

��
CC c

�� ��


while G2tG1 G2 =

 a
��
//
BB b

��

��

, where the right sides denote the free ω-categories on the indicated
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pasting diagram [10].

Proposition A.11 For every C ∈ ωCategories this extends to a functor [C,−] : ωCategories → ωCategories
which is right adjoint to −⊗ C : ωCategories → ωCategories.

Of particular interest to us are the internal hom-ω-categories of the form AI := [I, A] which satisfy

Hom(I⊗X, A) ' Hom(X, AI), where the set in question here is the set of lax transformations X

f

��

g

BBA
η

��

⇔

X
η //

f×g

!!
AI d0×d1// A×A or directed right homotopies between ω-functors from X to A.

A.6 Model structure on ωCategories

That the 1-category ωCategories is really an ∞-structure itself is remembered by a model category structure
carried by it, due to [14], with respect to which the acyclic fibrations or hypercovers f : C

' // // D are
those ω-functors which are k-surjective for all k ∈ N, meaning that the universal dashed morphism in

Ck+1
fk+1

%%

s×t

&&

&&M
MMM

(fk × fk)∗Ck+1

��

// Dk+1

s×t
��

Ck × Ck
fk×fk

// Dk ×Dk

is epi, for all k. The weak equivalences f : C
' // D are those ω-functors where these dashed morphisms

become epi after projecting onto ω-equivalence classes of (k + 1)-morphisms.
Using this we define an ω-anafunctor from an ω-category X to an ω-category A to be a span

(g : X | // A ) :=

X̂

'
����

g // A

X

whose left leg is a hypercover. (This terminology follows [22, 5].) One finds [7] that in the context of
ωGroupoids such ω-anafunctors represent morphisms in the homotopy category [g] ∈ Ho(X, A) which allows
us to regard g as a cocycle in nonabelian cohomology on the ω-groupoid X with coefficients in the ω-groupoid
A. Cocycles are regarded as distinct only up to refinements of their covers. This makes their composition
by pullbacks

( X |
g // A |r // A′ ) :=

g∗Â //

'
����

Â
r //

'
����

A′

X̂

'
����

g // A

X

well defined (noticing that acyclic fibrations are closed under pullback) and associative.
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Definition A.12 We write Ho for the corresponding category of ω-anafunctors,

Ho(C,D) := colimĈ∈Hypercovers(C)Hom(Ĉ, D) .

(This is to be contrasted with the true homotopy category Ho, which is obtained by further dividing out
homotopies.)

While cocycles in nonabelin cohomology are morphisms in Ho, coboundaries should be morphisms be-
tween these morphisms. Hence Ho is to be thought of as enriched over ωCategories.

Definition A.13 Define a functor hom : Hoop×Ho → ωCategories by hom(C,D) := F (Hom(C⊗O([•]), D))) .
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