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Let Σ be a (p + 1)-dimensional smooth manifold

Given a smooth bundle E over Σ,
think of its sections φ ∈ ΓΣ(E ) as physical fields.

Task: Describe field theory fully-local to fully-global.



1. Classical field theory

2. BV-BFV field theory

3. Prequantum field theory

4. Prequantum ∞-CS theories



1)
Classical field theory



A differential operator D : ΓΣ(E )→ ΓΣ(F ) comes from bundle
map out of the jet bundle

D̃ : J∞Σ E −→ F

Composition of diff ops D2 ◦ D1 comes from

J∞Σ E −→ J∞Σ J∞Σ E
J∞Σ D̃1−→ J∞Σ F

D̃2−→ G

here the first map witnesses comonad structure on jets,
this is composition in the coKleisli category Kl(J∞Σ ).



A differential equation is an equalizer of two differential operators.
Exists in the Eilenberg-Moore category EM(J∞Σ )

E // E
D̃1 //

D̃2

// F

Theorem [Marvan 86]:

EM(J∞Σ E ) ' PDEΣ

PDE solutions are sections:

E

��
Σ

φsol
??

φ
// E



Def. A horizontal differential form on jet bundle α ∈ Ωk
H(J∞Σ E ) is

diff op of the form
α̃ : E −→ ∧kT ∗Σ

This induces vertical/horizontal bigrading Ω•,•(J∞Σ E )

Def: A local Lagrangian is L ∈ Ωp+1
H (J∞Σ E )

Prop. Unique decomposition

ddRL = EL− dH(Θ + dH(· · · ))

with EL ∈ Ωp+1,1
S ↪→ Ωp+1,1

depending only on vector fields along 0-jets.

This is the local incarnation of the variational principle.



Prop. the bigrading is preserved by pullback along diff ops

This means that

Ω•,• ∈ Sh(DiffOpΣ)
Kan ext−→ Sh(PDEΣ)

is a bicomplex of sheaves on the category of PDEs.

In this sheaf topos, classical field theory looks like so:

Euler-Lagrange
equations of motion

E

ker(EL)

$$

Ωp+1
H

δV variation

��

Σ
φ

//

classical
solution

φsol

::

E

L

88

EL
// Ωp+1,1

S



By transgression of this local data we get

1) the global action functional

[Σ,E ]Σ
S=

∫
Σ L

// R

2) the covariant phase space [Zuckerman 87]:

Ω1

d
��

[N∞Σp, E ]Σ ω
//

θ:=
∫

Σp
Θ

66

Ω2



2)
BV-BFV field theory



E need not be representable by a submanifold of J∞Σ E
if EL-equation is singular.

idea of BV-theory/derived geometry:

1. replace base category of smooth manifolds
by smooth dg-manifolds in non-positive degree.

2. resolve singular E by realizing it
as 0-cohomology of smooth dg-manifold.



If {Φi} are local fiber coordinates on E (field coordinates),
then the derived shell E has dg-algebra of functions
the algebra C∞(E) with degree-(-1) generators Φ∗i added
(“antifields”) and with differential given by

dBV : Φ∗i 7→ ELi .

Usual to write Q for dBV regarded as vector field on the
dg-manifold. Then this is

LQΦ∗i = ELi .

This gives a third grading (BV antifield grading) on differential
forms on the jet bundle

Ω•,•;−•(Ed)



Observation: Ed carries 2-form locally given by

ΩBV = dΦ∗i ∧ dΦi ∈ Ωp+1,2;−1(Ed)

which satisfies

ιQΩBV = EL

= dL + dHΘ ∈ Ωp+1,1;0(Ed) .

under transgression to the space of fields this becomes

ιQωBV = dS + π∗θ

This is the central compatibility postulate for BV-BFV field theory
in [Cattaneo-Mnev-Reshetikhin 12, eq. (7)]



3)
Prequantum field theory



For many field theories of interest, L is not in fact globally defined.

Simple examples:

I electron in EM-field with non-trivial magentic charge;

I 3d U(1)-Chern-Simons theory;

Large classes of examples:

I higher WZW-type models
(super p-branes, topological phases of matter)

I higher Chern-Simons-type models
(AKSZ, 7dCS on String-2-connections, 11dCS,...)



,

Claim: There is a systematic solution to this problem by

1. passing to the derived category of Sh(PDEΣ);

2. generalizing Lagrangian forms to differential cocycles
(“gerbes with connection”)

If V := [· · · ∂V→ V2 ∂V→ V1 ∂V→ V0]
is a sheaf of chain complexes, then a map in the derived category

E −→ V

is equivalently a cocycle
in the sheaf hypercohomology of E with coefficients in V [Brow73].
Homotopy is coboundary:

E BB

��
V

��



hence generalize sheaf of horizontal forms Ωp+1
H to:

Def. The “variational Deligne complex”

Bp+1
H (R/Z)conn := [Z→ Ω0

H
dH→ Ω1

H
dH→ · · · dH→ Ωp+1

H ]

Def. A local prequantum Lagrangian is

L : E −→ Bp+1
H (R/Z)conn



Consequence: Via fiber integration in differential cohomology
L transgresses to globally well defined action functional

S :=

∫
Σ

[Σ,L] : [Σ,E ]Σ −→ R/Z

Theorem: the curving of such Euler-Lagrange p-gerbes is given by
the Euler variational operator

δV : Bp+1
H (R/Z)conn → Ωp+1,1

S

principle of extremal action ↔ flatness of EL-p-gerbes



Def./Prop. Prequantization of Θ is via Lepage p-gerbes Θ
whose curvature in degree (p, 2)
is the pre-symplectic current.

Ωp,2

��

shell E

presymplectic
current

Ω
,,

ker(El)

��

Bp+1
L (R/Z)conn

��

δV // Ωp+1,1
S ⊕Ωp,2

��

fields E

EL

66

Θ
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L // Bp+1
H (R/Z)conn δV // Ωp+1,1

S



Theorem: Transgressions of single Lepage p-gerbe
to all codimension-1 (Cauchy-)hypersurfaces Σp ↪→ Σ
gives natural Kostant-Souriau prequantizations of
all covariant phase spaces:

B(R/Z)conn

��
covariant

phase space
for Σp ↪→ Σ

[N∞Σp, E ]Σ

Kostant-Souriau
prequantum
line bundle

θ:=
∫

Σp
Θ 55

ω:=
∫

Σp
Ω

canonical presymplecic form

// Ω2



Theorem: Transgression of higher prequantum gerbes ∇
to fields on manifold Σ with boundary
looks like so:

[Σ,X ]
[Σ,∇] //

(−)|∂Σ

��

[Σ,Bp+1(R/~Z)conn]

∫
Σ curv

//

(−)|∂Σ

��

Ωp+2−d

��
[∂Σ,X ]

[∂Σ,∇]
// [∂Σ,Bp+1(R/~Z)conn] ∫

∂Σ

// Bp+2−d(R/~Z)conn

∫
Σ

s{



Corollary: Transgressing Lepage p-gerbe to spacetime Σ with
incoming and outgoing boundary yields the prequantized
Lagrangian correspondence that exhibits dynamical evolution:

[Σ, E ]Σ

(−)|∂inΣ

zz

(−)|∂outΣ

$$

field
trajectoriesinitial

values

yy

Hamiltonian
evolution

%%

[N∞Σ ∂inΣ, E ]Σ

θin

$$

ωin

##

[N∞Σ ∂outΣ, E ]Σ

θout

zz

ωout

zz

incoming
field

configurations

prequantum
bundle

%%

outgoing
field

configirations

prequantum
bundle

zz

B(R/~Z)conn

curv

��

2-group
of phases

Ω2
cl

action
functional

u}
exp(

i
~S)

v~

.



4)
Prequantum ∞-CS theories



Chern-Simons is nonabelian gauge theory

So now pass to the “nonabelian derived category” (aka ∞-topos)
where sheaves of chain complexes
are generalized to
sheaves of Kan complexes [Brow73].

This serves to describe nonabelian gauge fields.

For instance there is sheaf of Kan complexes BGconn such that a
G -principal connection on X is a map

X −→ BGconn

and a gauge transformation is a homotopy

X ??

  
BGconn

��



One way to construct prequantum field theories is:
construct a p-gerbe connection on some moduli stack

∇ : Aconn −→ Bp+1(R/Z)conn

and consider the stacky field bundle E := Σ× Aconn

then pullback and project to get Euler-Lagrange and Lepage
p-gerbe

Bp+1
L (R/Z)conn

��

Σ× Aconn

Θ ..

L

55
Σ×∇ // Σ× Bp+1(R/Z)conn

55

// Bp+1
H (R/Z)conn



For instance for G a simply-connected compact simple Lie group,
there is a unique differential refinement

∇ : BGconn −→ B3U(1)conn

of the canonical universal characteristic 4-class

c2 : BG −→ K (Z, 4)

This induces the standard 3d Chern-Simons Lagrangian and
universally prequantizes it:

codim 0 [Σ3,BGconn] −→ R/Z CS invariant

codim 1 [Σ2,BGconn] −→ B(R/Z)conn CS prequantum line

codim 2 [Σ1,BGconn] −→ B2(R/Z)conn WZW gerbe

codim 3 [Σ0,BGconn] −→ B3(R/Z)conn Chern-Weil map



construct this and other examples from Lie integration of L∞-data:

Def. L∞-algebroid a is dg-manifold

Chevalley-Eilenberg algebra CE(a) is the dg-algebra of functions

W(a) is dg-algebra of differential forms

cocycle is

a
µ−→ Bp+2R

CE(a)←− CE(Bp+2R)



Def. universal Lie integration to the derived category over
SmoothMfd is the sheaf of Kan complexes

exp(a) : (U, k) 7→ {Ω•vert(U ×∆k)←− CE(a)}

Examples:

I for g semisimple Lie algebra, then
τ1 exp(Bg) ' BG

I for P a Poisson Lie algebroid then
τ2 exp(P) is symplectic Lie groupoid.

I for string the String Lie 2-algebra, then
τ2 exp(Bstring) ' BString



an invariant polynomial 〈−〉 on a is closed differential form on the
dg-manifold.
If 〈−〉 is binary and non-degenerate,
this became also called “shifted symplectic form”

Def. differential Lie integration exp(g)conn is

exp(a)conn : (U, k) 7→



Ω•vert(U ×∆k) oo CE(a)

Ω•(U ×∆k)

OO

oo W(a)

OO

Ω•(U)

OO

oo inv(a)

OO





Def. A cocycle µ is in transgression with an invariant polynomial
〈−〉 if there is a diagram of the form

CE(a) oo
µ

CE(Bp+2R)

W(a) oo
cs

OO

W(Bp+2R)

OO

inv(a)

OO

oo 〈−〉 inv(Bp+2R)

OO

By pasting of diagrams, this data defines a map

exp(cs) : exp(a)conn −→ exp(Bp+2R)conn



Theorem:
under truncation this descends to

exp(a)conn

coskp+2

��

exp(cs) // exp(Bp+2R)conn

��
Aconn

∇ // Bp+2(R/Γ)conn

where Γ ↪→ R is the group of periods of µ.

This gives large supply of examples of
prequantum field theories induced from “shifted n-plectic forms”:

AKSZ including 3dCS, PSM (hence A-model/B-model), CSM, ...
7dCS on String 2-connections, 11dCS on 5brane 6-connections, ...



Outlook



,

Our formulation of prequantum field theory
works also with generalized differential cohomology.

For instance the “topological” Lagrangian term
for super Dp-brane sigma models
for all even or all odd p at once
needs to be a cocycle in differential K-theory.

And “U-duality” predicts
that the topological terms for the M2 and M5 brane
needs to be unified in single generalized differential cocycle
with Chern character in the rational 4-sphere
[Fiorenza-Sati-Schreiber 15].

http://scitation.aip.org/content/aip/journal/jmp/56/10/10.1063/1.4932618
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