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Aspects of topoi

Peter Freyd

After a review of the work of Lawvere and Tierney, i t is shown

that every topos may be exactly embedded in a product of topoi

each with 1 as a generator, and near-exactly embedded in a

power of the category of sets. Several metatheorems are then

derived. Natural numbers objects are shown to be characterized

by exactness properties, which yield the fact that some topoi can

not be exactly embedded in powers of the category of sets,

indeed that the "arithmetic" arising from a topos dominates the

exactness theory. Finally, several, necessarily non-elementary,

conditions are shown to imply exact embedding in powers of the

category of sets.

The development of elementary topoi by Lawvere and Tierney strikes

this writer as the most important event in the history of categorical

algebra since i ts creation. The theory of abelian categories served as the

"right" generalization for the category of abelian groups. So topoi serve

for - no less - the category of sets. For each the motivating examples

were categories of sheaves, abelian-valued sheaves for the f i rs t ,

set-valued sheaves for the second. But topoi are far richer than abelian

categories (surely foreshadowed by the fact that abelian-valued sheaves are

just the abelian-group objects in the category of set-valued sheaves).

Whereas abelian categories, nice as they are, appear in various contexts

only with the best of luck, topoi appear at the very foundation of

mathematics. The theory of topoi provides a method to "algebraicize" much
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of mathematics.

In this work, we explore the exact embedding theory of topoi. Again

the subject is richer than that for abelian categories. It is not the case

that every small topos can be exactly embedded in a power of the category

of sets or even a product of ultra-powers (Theorem 5-23). It is the case

that every topos can be exactly embedded in a product of well-pointed topoi

(Theorem 3.23) ("well-pointed" means "l is a generator"), and

near-exactly embedded in a power of the category of sets (Theorem 3.2U)

("near-exact" means "preserves finite limits, epimorphisms, and

coproducts" ). We thus gain several metatheorems concerning the exactness

theory of topoi (Metatheorem 3-3l).

The obstructions to the existence of exact functors lie in the

"arithmetic" of topoi (Proposition 5-33, Theorem 5.52). No set of

elementary conditions can imply exact embeddability into a power of the

category of sets (Corollary 5.15), hut rather simple, albeit

non-elementary, conditions do allow such (§5.6). The easiest to state: a

countably complete topos may be exactly embedded in a power of the category

of sets.

The most impressive use of the metatheorems is that certain exactness

conditions imply that something is a natural numbers object (Theorem 5.i+3)-

A consequence is that a topos has a natural numbers object iff it has an

object A such that 1 + A - A (Theorem 5.UU).

We begin with a review of the work of Lawvere and Tierney (through

Corollary 2.63). All the definitions and theorems are theirs, though some

of the proofs are new. Sections 4.1 and 5.1 and Propositions 5-21, 5-22

are surely also theirs. It is easy to underestimate their work: it is not

Just that they proved these things, it's that they dared believe them

provable.

1. Cartesian closed categories

A cartesian closed category is a finitely bicomplete category such

that for every pair of objects A, B the set-valued functor (-M, B) is

representable. This is the non-elementary (in the technical sense of

"elementary") definition. We shall throughout this work tend to give first
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a definition in terms of the representability of some functor and then show
how such can be replaced with an elementary definition - usually, indeed,
with an essentially algebraic definition.

The translation from representability to elementary is the
Mac Lane-notion of "universal element". For cartesian-closedness (forgive,
oh Muse, but "closure" is just not right) we obtain the following:

A A

For every A, B there is an object Er and a map a x A -»• B
(the "evaluation map") such that for any X x A -*• B there
exists a unique f : X -*• a such that

• B .

A

Holding A fixed, U becomes a functor on B : given / : B •*• C ,

f : a -»• U i s the unique map such that

B4 x A ^ X 1 > (^ x A »• C = S4 x A >• B -$-+ C .

A

Holding B fixed, B^ becomes a contravariant functor on A : given

g : A' -*• A , £r : a •* a is the unique map such that

/ XA,

One can easily verify that

that is, e is a bifunctor.

Recall that a group may be defined either as a semigroup satisfying a

couple of elementary conditions or as a model of a purely algebraic theory

(usually with three operators: multiplication, unit, and inversion). It

is important that groups may be defined either way: .there are times when

groups are best viewed as special kinds of semigroups, and there are times

when they thrive as models of an algebraic theory. So it is with lattices,
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and every elaboration of the notion of lattice; and so it is with

cartesian-closed categories.

To begin with, a category may be viewed as a model of a two-sorted

partial algebraic theory. The two sorts are "maps" and "objects". We are

given two unary operators from maps to objects, "domain" and "codomain",

and one coming back, "identity map"; and we are given a partial binary

operator from maps to maps, the domain of which is given by an equation in

the previous operators. Partial algebraic theories for which such is the

case, namely those such that the partial operators may be ordered and the

domain of each is given by equations on the previous, are better than just

partial algebraic theories. We shall call them essentially algebraic. A

critical feature of essentially algebraic theories is that their models are

closed, in the nicest way, under direct limits.

Finite bicompleteness becomes algebraic. The terminal object (better

called the "terminator") is a constant, 1 , together with a uninary

operation, t , from objects to maps, such that

domain (t) = A ,

codomain(t.) = 1 ,

h - h •
B -±+ 1 = tA .

The equations that stipulate domain and codomain are conventionally

absorbed in the notation, thus: t{A) = A -*• 1 .

For binary products we have four binary operations, one from objects

to objects denoted /I x A^ , two from objects to maps denoted

one from maps to maps denoted

and one unary operation from objects to maps: A • A x A . The
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equations:

A x A —^ A = 1A , i = 1 , 2 ,

A 1 2
] x B 2 = ̂  - 2 * yl xyl ± S _ B x B^ .

For equalizers we have partial binary operators from maps, one to objects,

one to maps. The domain of each operator is given by the equations

domain(/) = domain(g) , codomain(/) = codomain(g) .

We may denote the pairs f,g in the domain by A ? '9+ B . The

object-valued operator is denoted E{f, g) , the map-valued operator is

denoted E(f, g) -* A .

We have a third partial operator from triples (h, f, g) of maps to

maps. The equations that define the domain are:

codomain(?i) = domain(/) = domain(g) ,

codomain(/) = codomain(g') ,

hf = hg .

Given X • A I'$ > B the value of this operator is denoted

X -^+ E{f, g) . The equations:

£•(/, g) + A -£+ B = £ ( / , g) •* A - 2 - B ,

X-^ E(f, g) * A = h ,

X JU E{f, g) . X ( X - W . g ) * ) . E(f, g) .
We can make cartesian-closedness essentially algebraic by taking two

binary operators: one 'from objects to objects denoted a , one from
A

objects to maps denoted Zr x A -*• B ; and a quaternary partial operator

from quadruples (X, A, B, f) such that domain(/) = X x A ,
codomain(/) = S , valued as a map X -*->• a . The equations:
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B = / ,

S4 = (X, A, B, X

Such is the nearest approximation to the previous elementary

definitions. It is usually more convenient to ask that a is a bifunctor

covariant in the lower variable, contravariant in the upper, equipped with

natural transformations

e A , B •• ** * A + B > e A , B :

such that

x A

The existence of elementary definitions should not, in itself, oblige

us to give elementary proofs. The great technical tour de force in Godel's

incompleteness proof, namely that primitive recursive functions (a

second-order notion if there ever was one) are all first-order definable

(indeed Gode I-recursive) does not oblige us, but allows us to stop worrying

about primitive recursive functions. Certainly it is worth knowing when

things are elementary - we shall use the elementary nature of topoi (for

example, Corollary 5.15, Theorem 5-23) and their essentially algebraic

nature (Theorem 3.21). Pirst-order logic is surely an artifice, albeit

one of the most important inventions in human thought. But none of us

thinks in a first-order language. The predicates of natural dialectics

are order-insensitive (one moment's individuals are another's equivalence-

class) and our appreciation of mathematics depends on our ability to

interpret the words of mathematics. The interpretation itself is not

first-order.

The reduction of a subject to an elementary one - in other than the

formal method of set theory - usually marks a great event in mathematics.

The elementary axioms of topoi are a testament to the ingenuity and insight

of human genius. I will refuse to belittle this triumph of mind over

matter by taking it as evidence that mind is matter.
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PROPOSITION 1.11 for cartesian-closed categories. The following
natural maps are isomorphisms:

0 = 0 x A ,

(A*C) + (B*C) - (A+B) x C ,

1 = 1 ,

(A*B)C - AC x BC ,

AB+C ~-AB*AC ,

A - A ,

ABXC « (^S)C .

Proof. Each is a result of the existence of an adjoint. For -*A to

i A\have a right-adjoint [- j , it must be cocontinuous, hence it preserves

coproducts. Dually (- ) , having a left-adjoint, preserves limits. A~

is adjoint to itself on the right, hence carries colimits to limits.

Elementary proofs would go like this: for each X there exists

unique 0 x A •* X because there exists unique 0 •+ X , hence 0 x A is a

coterminator. D

Caution: 0 need not be 0 . (indeed 0 = 1 .)

PROPOSITION 1.12 for cartesian-closed categories. If A •* o exists
then A = 0 .

Proof. The existence of A -*• 0 yields a map A •*• A x 0 , and we

obtain

A+A*O->-A = l. .
I? A

0

As always, 0 -»• i4 ->• 0 = 1_ . O

A degenerate category is one with just one object and map. (Note that

finite bicompleteness implies non-empty.)
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PROPOSITION 1.13. A aartesian-closed category is degenerate iff
there exists 1 -*• 0 . D

PROPOSITION 1.14. For any small A the category of set-valued

Ao p

contravariant functors S is cartesian-closed.

Ao p
Proof. S has a generating set, the representable functors (herein

Ao p Ao p
denoted H J . For any T , -xT : S -*• S is easily seen to preserve

colimits because such are constructabie "object-wise" and -*TA : S •* S

preserves colimits. Hence for any T, S , {-XT, S) carries colimits into

limits and the special adjoint functor theorem says that it is

representable.

We can, of course, construct fir more directly. We know that

s{A) - \H., S\ - (H.XT, S) and we could use the latter as the definition
K A ) A

of S (A) . The evaluation map s x T -*• 5 is easily constructed

object-wise: given < !"|, x > i (ST x T) (A ) , that is, a transformation

n : H x T •* S and an element x £ T{A) , define e{r\, x) = ^ ( l . , ̂ ) •

For the co-evaluation map S ->• (S * T) , let x € S{A) and define

e*{x) € (5 x T)T(.A) as the transformation r\*l: HA*T-»-SxT where

n is such that r\. (l.) = x . All the equations are directly verifiable. D

HA
Note that if A has finite products, then 5 = S(Ax-) , and hence

5 U ) is the set of transformations from T to S(A*-) .

A° P
If A is a monoid M , S may be viewed as the discrete

representations of M and £T is the set of homomorphisms from M x T to

S , where hi is used to denote the "regular" representation.

If M is a group, then a homomorphism f : M x y •+ 5 is determined

by f{l, x) , x € T , and given any function g : T •* S we may define

/"(a, x) = ag(a~ x) . Thus 5 is the set of all functions from T to
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S . ag is the function (ag)(x) = a\g(oT x)\ • The forgetful functor

S •* S preserves exponentiation.

1.2 Heyting algebras.

A Heyting algebra is a cartesian-closed category in which for every

A, B , (A, B) \j {B, A) has at most one element. The latter condition

says, of course, that we are dealing with a partially ordered set. The

finite bicompleteness says that it is a lattice with 0 and 1 . The

cartesian-closedness says that there is an operation on the objects such

that

(-4, BC) + 0 iff (AxC, B) * 0 .

We switch notation: the objects are lower-case x, y, z, ... , the

existence of a map from x to y is stated with x 5 y , the product of

x and y is denoted x A y , the coproduct as x v y , the "Heyting

operation" as x -*• y . We recall that the following equations give us a

lattice with x - y defined as x = x A y :

l A x = x , O v x = x ,

x A x = x , x v x = x ,

x A j / = j / A x , x v y = y v x ,

x A (j/As) = (a;Ay) A z , x v (yvz) = (x</y) v z ,

x A {yvx) = x = (xAy) v x .

Hon-equationally, x •+ y is characterized by z 2 (x •* y) iff

z A x 5 # . That is, x -* y is the largest element whose intersection

with x is dominated by y .

PROPOSITION 1.21 for Heyting algebras.

0 = 0 A X ,

(xAt/) v (xAz) = x A {yvz) ,

x -" 1 = 1 ,

x -»• (t/Az) = (x •*• y) A (x •*• z) ,

0 -»• x = 1 ,

(xvy) •*• z = (x •* z) A {y •* z) ,

x = 1 ->• x ,

•* z = x •* (y •*• z) .
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Proof. Translate Proposition 1.11. •

PROPOSITION 1.22 for Heyting algebras. We can characterize x •*• y

with the following equations:

x •* x = 1 ,

y A (x -»• y) = y ,

x •* (y A z) = (x •* y) A (x •+ z) .

Proof. Given z £ (x •* y) , that is, z = z A (X •*• y) , then

z A x = s A (x ->• y) Ax = zAxAy<y . Conversely, given z A X £ y ,

we note first that the fact that f(u) = x •* u preserves intersections

implies that it preserves order, and x-+(aAx)±x-*-y. On the other

hand x •*• (z Ax) = (x -*• x) A (x •* s) = x -»• z and z A (x •+ z) = z , that

is, z £ x ->• z . Hence 3 £ x - * - 3 = x-*-(xAs)£x->-j/ . n

We define the negation of an element, denoted ~\ x , as x -»• 0 . Note

that s £ ~l x iff z A X = 0 , that is , ~1 x is the largest element

disjoint from x .

A complement of x is an element y such that x A y = 0 and

x v y = 1 . In a Heyting algebra, if x has a complement it must be

"1 x : because xAy = 0=>ys~\x and

PROPOSITION 1.23 for Heyting algebras, x £ ~l ~l x ; if x s y then

Proof. The f i r s t two statements are immediate. (~l x) £ ~1 ~l (~l x) by
the f i r s t statement, ~~\ ("1 ~\ x) £ ~~\ x by the second applied to the f i r s t .D

A boolean algebra i s a Heyting algebra which sa t i s f ies the further
equation x = ~l ~1 x .

In a boolean algebra, negation is thus an order-reversing involution
and De Morgan's laws are easy consequences: ~\(xAy)=~\xv~\y . (Note
tha t in any Heyting algebra

Hence x v ~ l x = ~ l ~ l ( x v ~ l x ) = ~ l ( ~ l x A x ) = ~ I O = l and every element
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has a complement. Conversely if for all x , x v "I x = 1 then

l l l = l l l A ( l V 1 l ) = O ~1 X A x ) V (~l ~1 x A ~1 x ) = ~ l ~ l x A x = X .

It is easy to verify that in a boolean algebra I + J ="li v J .

A complete lattice has a Heyting algebra structure, by the adjoint

functor theorem, iff f(n) = x A n preserves all conjunctions, that is,

if for any set {y .} . , x A Vy. = V [x A y .) . Such is usually called

a complete distributive lattice. The lattice of open sets in a topological

space is therefore a Heyting algebra. Consider the unit interval, and let:

x V ~l X = I- >' ' ,

~1 ~1 x = x ,

1 (x v 1 x) = 0 ,

•"i ~i (x v n x) = i ,

(x v "1 x) t 1 ~1 (x v 1 x) .

In any space, negation yields the interior of the set-theoretic complement.

Double negation yields the interior of the closure.

Another ready example of a complete Heyting algebra is the lattice of

left-ideals in any monoid. For a non-complete example, take any linearly

ordered set with 0 and 1 but otherwise not complete and define

(l if x S y ,

(x *y) =

[y if y < x .

In any Heyting algebra, define x •*-*• y = (x •*• y) A (y •+ x) . Then

z 2 (x «-»• y) iff z A x = 2 A y , that is, x •<->• y is the largest element

which meets x and j/ in the same way. We can reverse things to obtain

the symmetric definition of Heyting algebras, namely the operations and

equations of a lattice together with a binary operator satisfying:

l-t->-x = x = x-i->-l ( l i s a unit),
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x •*-*• x = 1 (a; is an inverse of x ) ,

(a; «-»• y) A z = (x A z -<->• y A z) A z (almost distributive).

Then (x •*->• y) A x = (x *-*• x A y) A x = (l «-+• y) A x = y Ax . Similarly

(x-<->-y)Ay=xAy. Hence if 3 < (a: -*-»• i/) then

z A x = s A (a; •*-•• i/) Ax = zAyAx

and

z A y = s A (x •*-*• y) Ay = z A x A y ,

t h a t i s z A x = z A y ,

Conversely, i f z A x = z A y , then

( a : « - » - ! / ) A S = ( x A 3 - < - » - y A 3 ) A S = 1 A 3 = 3 ,

t h a t i s , z £ (a; •<-*• j/) .

We may then define x •*• y as a; •*-*• x A y and verify z S (x -»• jy)

i f f 3 A x S y .

+-»- i s a symmetric binary operation with a un i t and inverses . I t i s

not a s soc ia t ive in gene ra l , for "1 x = x •*-*• 0 and ~1 ~~\ x = (x •*-+ 0) *-*• 0 .

Assoc ia t iv i ty implies t h a t "l~la: = a;-t-+ (0-^-»-0) = x •*-*• 1 = x .

Conversely, in boolean algebras, •*-»• i s assoc ia t ive . An orthogonal

comment: ++ i s a loop operation only in a boolean algebra , for given x

i f we can find y such t h a t y •*->• 0 = x then a; = ~ l j / = ~ i n ~ l j / = " l ~ l x •

Given a congruence = on a Heyting algebra i t i s easy to see tha t the

s e t F = {x\x = 1} has the proper t i es :

1 €-F ,

i f f ' l v i / f F ,

We call such a set a filter. We can recover the congruence from F : x = y

iff (x -»-»• y) € F because if x = y then {x •>-*• x) = (x •*-*• y) and

(x *-+ y) £ F ; if (x •*->• y) = 1 then

Moreover:
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PROPOSITION 1.24 for Heyting algebras. If F is a filter then the

relation = defined by x = y iff (x •*-*• y) 6 f is a congruence.

Proof. = is clearly reflexive and symmetric. For transitivity

suppose (x *-*- y), (y <->• 3) € F . It suffices to show that

(x «-• y) A (y *->• z) 5 (x •<-*• 3) . (This is the only use of the fact that F

is closed under intersection.) And for that inequality we need only show

{x *-* y) A (y *-+ z) A x = (x •*->• y) A {y *-* z) A s , an easy matter.

For xSy=>xAz=yAz i t su f f i ce s t o show
(x •«-*• y) 5 (x A 2) +-* (y A 3) , t h a t i s ,

(x «-»• y ) A (x A z) = (x •<-»• !/) A (1/ A a) ,

an easy matter. For x = y = * x V 2 = y v z w e must show

(x •*-+ y) A (x V z) = (x *-*• y) A (y v z) , which because of distributivity

is again an easy matter.

Finally for x = y =* (x -<->• 3) = (y -*-»• 3) it suffices to show

x *->• y < (y *-+ z) *-* (x *-*• z) , that is,

(a; *->• 1/) A (a: «-»• 2 ) = (a; <-^ j/) A (1/ •<-»• 2 ) .

Using the third defining equation of «-»• , the left-hand side is

(x -<-»• y) A [ (x +•+ y) A x +->• (x *->• y) A 2 ] and the right-hand side is

(x •«->• !/) A [(x -<-»• j/) A y f-*- (x *-+ y) A 3] , clearly equal since

(x-M-t/)Ax=(x-(-*-j/)Aj/. D

1.3 Adjoint functors arising from cartesian-closed categories.

PROPOSITION 1.31. Let A be a cartesian-closed category and A' c A
a full reflective subcategory, /? : A -»• A' the reflector. Then R

preserves products iff for all B (. A' , S 4 is in A' .

Proof. Suppose R(A x- C) - RA *• RC , all A, C . We wish to show for

B € A1 , that for any C U , (RC', s") = (C, fl4) . (We are invoking the

"Kelly view" of full reflective subcategories, namely that A' consists of

all those objects X such that (RY, X) ~ (Y, X) . This can be seen by

letting Y = X . We obtain from (RX, X) •++ {X, X) a map RX •* X such

that X •* RX ->• X = 1 . From {RX, X) «• {X, X) we obtain

RX •*• X •*• RX = 1 . The Ke I I y view is that every full reflective subcategory
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is definable by stipulating a class of maps C and then looking at all X

such that (/, X) is an isomorphism for all / € C .)

To return:

{RC, BA) = (RC*A, B) = (R(RC*A), B) =
(RCxRA, B) = (fl(C*4), s) = (C*A, B) = (c, B4) .

Conversely, if for all B € A' , a € A1 , then we wish to show that

) is, as defined in A' , a product of RA, RC .

It suffices, then, to show that A1 (RA*RC, -) = A'(R{A*C), -) , that

is, for all B (. A' , (RA*RC, B) - [R(A*C) , B) . But

[R(A*C), B) - (.A*C, B) and

, B) == (iJ4, / ^ = (4, / ^ = (4x/?C, B) = (i?C, S4)

For any category A and B £ A , A/B denotes the category whose
objects are A-maps of the form A •*• B , and whose maps are triangles
A •* A'
\ / •

B

£ D : A/B •*• A denotes the forgetful functor. Note that A/1 -»• A is
o

an isomorphism. The naive construction of colimits in A/B works, that

is, given colimits in A . The naive construction of equalizers in A/B

works; and it is the purest of tautologies that the A/B-product of A •*• B

and A' •* B is their A-pullback. Note that the terminator of A/B is

PROPOSITION 1.32. ZD : A/B + A preserves and reflects colimits,
D

equalisers, pullbacks and monomorphisms. D

If A has finite products, we can define XB : A -+ A/B by

A t-+ [A*B -£•+ B) .

PROPOSITION 1.33. ZD is the left-adjoint of XB . D
D

The next proposition says for A cartesian-closed, that XB has a
right-adjoint. Firs t , note the necessity of cartesian-closedness: if XB
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has a right-adjoint IIg , then

(-xfl, A) = lzB(xBl-)), /) = (XB(-), xB(it)) - [-, nfl(xfl(i4))] ,

that is, given IIg we can construct A as II (xB(4)) .

PROPOSITION 1.34. For a artesian-closed A , xB : A -* A/B has a

right-adjoint.

Proof. Given [A —£+ fi) f A/S define IIB(4 -^* fl) by the pullback

where 1 •* B corresponds to B >• B . For any C £ A we obtain a

pullback in the category of sets

(c, n U - B) ) ->- (c, 4B)

(c, i) [c, sT) .
Three of these sets are naturally equivalent to other things and we obtain

a pullback

(C, IIR(/1 •+ B)) •* {C*B, A)

\(C*B, f)I |(
1 • (C*B, B) ,

where the bottom map sends 1 to C x B —2-> B . Viewing (C, U (A •* B)}

as a subset of (C*B, A) , we note that i t can be described as

{j : C x B + < | C i j -2-»- 4 - £ * B = C * B -&-*• B} , which is precisely the
description of

A/B(C x B-^- B, A-£+ B) = A/B{*B{C), A -£+ B) . D
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We note here, in anticipation of the next chapter's development, that

for any B1—^-* B2 we can define f : K/B^ •* A/B by pulling back along

/ , E _ : A/B •* A/B by composing with / . On the other hand B —•*-»• B

can be viewed as an object in A/B , and we could consider

: (A/B2)/(B1-B2) - A/B2 ,

\."]_ 2^ ' '2 '"2^ ' • I 2^ '

But (A/Bp) / (B^ ->• B_) is isomorphic to A/B , and the isomorphism reveals

Z C_ D i as £,, , xfBn •+ BA as f̂  . Therefore j has a r ight
(VB2') ^ X 2

adjoint, each / , iff A/B is cartesian-closed, each B .

1.4 Modal operators in Heyting algebras.

In any partially-ordered set, viewed as a category, the full
reflective subcategories are in one-to-one correspondence with the
order-preserving inflationary idempotents, that i s , the functions / such
that

i s r fix) < fiy) ,

x s fix) ,

fifix)) = fix) .

Clearly, the reflector of a full reflective subcategory is such.

Conversely, given such / then Image(/) is reflective as follows:

Given y (. Im(/) then x 5 y •» fix) 2 fiy) = y and

fix) 5 y => x 5 fix) 5 y .

As a corollary of Proposition 1.31 we obtain

PROPOSITION 1.41. Let H be a Heyting algebra with a unary operator

denoted x such that

x = x ,

x s x ior x A x = x )j
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x 5 y =» x 5 y [or i = i A (x v j/) ) .

V (x A y = x A y) i / / V (x = x •=» (j/ + x) = (y -*• x ) j .
x,j/ •*•>&

We shall say that x is a closure operator if

x = x ,

x 2 x (or x A x = x ),

x A i/ = x A y .

Note that the last equation implies x 5 y =» x 5 z/ .

By the above remarks, the image of a closure operator is a reflective

sub-Heyting-algebra with the property that x = x =* (t/ ->- x) = (y •*• x) .

PROPOSITION 1.42 for Hey ting algebras. 1 ~l x is a closure
operator. In particular 1 "1 ( x A j / ) = n i A l l i / .

Proof. We have a l ready noted i n P ropos i t i on 1.23 t h a t x 2 ~I "I x and

~l~ l~ l~ lx = ~l~la; . From x<ys'~\y'S~\x we e a s i l y obta in t h a t

x S i / ^ n n x s n i y . By Propos i t i on l . U l i t su f f i ces t o show t h a t i f

x = ~1 ~l x then y-*-x = ~\~\(y+x). For purposes of c l a r i t y , l e t

3 = ~1 x . Then x = ~1 ~1 x y i e l d s x = ~l z . We use only t h i s l a s t

equat ion from now on.

x = ~l 3 = (2 -»• 0) ,

y -* x = y -* (z -»• 0) = (y A Z) -* 0 = ~l (2/ A 3) ,

1 1 ( j + X) = "1 1 1 ( j A «) = n ( j A 8 ) = i/ + * D

(we have proved that the defining equation of a Heyting algebra implies the

equation ~l ~1 (x Aj/) = 1 1 x A ~\ ~\ y , There is, therefore, an entirely

equational proof. My attempts to find one (essentially by translating the

proof herein) have yielded only the most unbelievably long expressions I've

ever seen.) The image of double negation is easily seen to be a boolean

algebra.

1.5 Scattered comments.

Besides topoi and Heyting algebras important examples of cartesian-

closed categories are the categories of small categories and various

modifications of categories of topological spaces, which modifications
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exist precisely to gain cartesian-closedness. The chief such modifications

are fe-spaces and Spanier's quasi-topological spaces.

For any category A define the pre-ordered set A' with A-objects

as elements and A < B iff A U , B) i- 0 . Define P(A) to be the

skeleton of A' . P is a reflection from the category of categories to

the category of posets. P clearly preserves products and hence the

category of posets is cartesian-closed.

Moreover, if A is cartesian-closed then P(A) is, and A •+ P(A)

preserves x, + and exponentiation.

Let M be a monoid, S its category of representations. The

Heyting algebra P\S ) changes wildly depending on M . For M a single

point, P[^) = P(S) = {0, 1} . For M a group, p[sP) is a set (and can

be described in terms of sets of subgroups of M ). For M the natural

numbers p ( x ) is huge but does satisfy a transfinite descending chain

condition, a fact which requires a long proof and can be found - together

with a description of P[S ) - in a paper by (of all people) me ([2],

225-229), in a section entitled "When does petty imply lucid?".

For M almost anything else, P(i ) fails the transfinite chain

condition.

2. The fundamentals of topoi

Let A be any category with pullbacks. Given A f A define SubU)

to be the set of subobjects of A (so assume that A is well-powered).

We can make Sub into a contravariant functor by pulling back.

A topo8 is a cartesian-closed category for which Sub is

representable; that is, there is an object ft and a natural equivalence

(-, ft) •*• Sub . Recall that any n : (-, A) •*• T is determined by knowing

D. (l-) € TA , hence there exists fl1 >* ft such that if we define

n : (A, ft) ->• SubU) by r\(f) = (sub(/))(ft* >* ft) then n is an

isomorphism; that is, for every A' >* A there exists a unique A -»• ft

A' •* A

such that there exists A' ->• Q' such that 4- + is a pullback. The
ft' •*• ft
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representability of Sub is thus revealed as an elementary condition. But
we can do better. Note that in particular for any A there exists a

unique A -*• ft such that there exists A -*• ft' such that + + is a
ft' • ft

pullback. Given any A •* ft' then for 4-»-ft=i4-»-ftl->-ft it is the case

A -±>A
that . + t is a pullback. The uniqueness condition then says that

ft' • ft

(A, ft') has precisely one element. In other words ft' is a terminator.

Thus we could define a topos as a cartesian-closed category together with

an object ft and a map 1 • ft such that for any A' >* A there exists

A' • A
unique A -»• ft such that + + is a pullback. (We needn't quantify1-r°
A' •*• 1 because 1 is a terminator.) Of course, this elementary condition

impli.es well-poweredness.

fl° PPROPOSITION 2.11. For any small A , S is a topos.

Ao p
Proof. We showed in Proposition l.lU that S is cartesian-closed.

For the ft-condition we again assume the result to discover the proof. If

ft exists, then U{A) = fa^, ft) = Sub fa.) . A sub functor of H^ is called

an A-crible, alternatively described as a collection of maps C into A

such that B->-i4«C=>B'->-B->-/l€C. Defining SI (A) as the set of

4-cribles, we make ft into a contravariant functor, again by "pulling

back": given A' -*• A and an 4-crible C define C as the set of maps

B •* A' such that B •* A' •* A i C .

Any 1 •* ft is a choice for each A of an element in SiA . Define

t : 1 •+ ft to correspond to the maximal crible, each A . (The maximal

4-crible is the set of all maps into A ).

Given T' c T define T •* Si by sending x i TA to the 4-crible of

2" • T
a l l maps B -*-* A such that (T/)(x) € T' (B) and verify that + +

1 - ^ f t

i s a pullback. The uniqueness of T -*• ft can be directly verified. •
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PROPOSITION 2.12 for topoi. Every monomorphism is an equalizer.

A' + A
Proof. Given A' »• A let + 4- be a pullback. Then 4' is the

1 •* Q

e q u a l i z e r of A * 1 — ^ A •+ fl a n d 4 * 1 - ^ 1 -»- 0 . B u t 4 X 1 = 4 . D

COROLLARY 2.13 for topoi. If A •* B is both mono and epi, it is
iso.

Proof. It can be the equalizer only of f, f : B •* C . O

In any finitely bicomplete category we define the "regular image" of

4 —'-*• B as the equalizer of the cokernel-pair, that is, the equalizer of

B

x, y : B -*• C where f\ Ix is a pushout. It is a routine exercise to

B •• C

y
verify that the regular image is the smallest regular subobject through

which f factors ("regular" is equal to "appears as an equalizer").

Because all subobjects are regular in a topos, the regular image is the

smallest subobject allowing a factorization of 4 —£+ B . We shall call it

the image of / , denoted Im(/)

PROPOSITION 2.14 for topoi. A ->• lm(f) is epi.

If A -*->• C *- B = / then there exists unique Im(/) = C sueh that

B
Given + + there exists unique Im(/) -»• Jm(g) such that

C • D
9

A •* Im(/) •* B
4- 4- +
C

Proof. By construction, Im(/) = B iff / is epic. Hence, for the

first statement it suffices to show Im(4 •*• Im(/)) = Im(/) ; but the

minimality of Im(/) does Just that.
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The other two statements are immediate from the characterization of

Im(/) as the smallest subobject through which / factorizes, together

with Corollary 2.13. •

Sub(l) is a Heyting algebra. It is clearly a lattice (because images

allow us to construct unions of subobjects) and for any U c 1 ,

[A, if) - (.A*B, U) has at most one element, hence the map if •*• 1 - is a

monomorphism. The subobjects of 1 , in fact, form a full reflective

subcategory (the reflector constructed by taking images: X i—> Jm(X -*• l) ) .

Aop

The subobjects of 1 in S may be seen to correspond to

collections of A-objects with the property that if A is in the

collection and there exists 5 •+ A then B is in the collection. Hence

if A is strongly connected (for example, a monoid) then 1 has only the

two subobjects it always must. If A is •-»••-*••••->•• then the
Ao p

subobjects of 1 in S form the linearly ordered set one bit longer

than A .

Ao p
Returning to ft in 5 , suppose A is a monoid M . We may view

Ao p

S as the left-representations of M , that is, sets X together with.

M x X •*• X such that I** = x , a(6*x) = (aS)\r . Then fi is the set of

left-ideals in M . The action of M on ft is not multiplication but

division: ct'A = {&|Ba £ A} . 1 — • ft is the unit ideal. If M is a

group then £2 = 1 + 1 ; and, for monoids, conversely.

2.2 The representability of partial maps.

A partial map from A to B is a map from a subobject of A to B .

Formally, we consider pairs < A' ** A, A' •* B > , define

<4' >*• A, A' •*• B > B (A" «• A, A" * B) if there exists an isomorphism

A' •*• A" such that
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and define Par(i4, B) as the set of equivalence classes. Fixing B ,

Par(-, B) is a contravariant functor, by pulling back.

A relation from A to B is a subobject of A x B . Calling the set

of such Rel(A, B) and fixing B , Rel(-, S) becomes a contravariant

functor, again by pulling back. Rel(-, B) is representable, namely by

siB .

Every map from A to B can be viewed as a partial-map and we obtain

a transformation (-, B) -»• Par(-, B) . Every partial-map < A' »• A, A' •* B)

yields a relation, A' >* A x B (its "graph") and we obtain a

transformation Par(-, B) •*• Rel(-, B) . Both transformations are monic.

The transformation (-, B) •* Rel(-, B) must come from a monomorphism

B -*• SI , the singleton map. B -*• SI may be computed to correspond to

B —^
B x B -»• £J where 4- * is a pullback.

1 > n

We shall show that Par(-, B) is representable. First:

PROPOSITION 2.21 for topoi (unique existentiation). Given C •* A

Q-±+ Q
there exists Q>* A such that + + is a pullbaok and for any X •*• A

C—• A

such that 4- + is a pullback, there exists X -*• Q •*• A = X •*• A .
C »• A

Proof. Define (-, A) * Rel(-, C) by sending X -*• A to the pullback

R •* X
4- 4- (H to be viewed as a subobject of X x C ). This transformation is
C •* A

C ( r*A QP C \
i n d u c e d by a map A •*• Si (which can b e computed a s A •+• Si •• SI J .

Q>+ A (X,Q) * (X,A)
Define Q by the pul lback 4- 4- . For any X , 4- 4- i s a

C - SlC (X,C) - (x,SiC)

pullback. Viewing {X, Q) as a subset of {X, A) we see that / € (X, Q)
X' •* X

i f f in pullback 4- 4- , X' c X * C as a relation from X •+ C ,
C - A
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describes a map from X to C , that is, X' -*• X is an isomorphism. D

C •+• A

Given a relation from A to B described by + let Q >*• A be

B

as described above. We obtain a partial-map, (Q>+A>Q-+C-*-B) in

ParU, B) . This operation, Rel(-, B) •+ Par(-, B) is natural by the

above lemma. Moreover Par(-, B) •* Rel(-, B) •* Par(-, B) is the identity.

The idempotent transformation Rel(-, B) -*• Par(-, B) •+ Rel(-, B) must come

from an idempotent ft " > ft , and we define ft •* B , B-^ft as a

splitting of g . [B -*• ft can be defined as the equalizer of 1 and

g .) Clearly (-, ftB) •* (-, B) , (-, B) "• (-, ftB) splits (-, g) and:

PROPOSITION 2.22 for topoi. Par(-, B) is representable. D

ft —**-• ft corresponds to a map B * ft ->• ft (not the evaluation map)

which corresponds to a subobject of B * ft which can be computed to be

B ' — * B x ft where s is the singleton map. In a telling sense

B -*• B is a generalization of 1 •+ ft , to wit:

PROPOSITION 2.23. For any partial map (A'>+A,A' -*B> there

A' * A
exists unique A -*• B such that + + is a pullback.

B ->• B

Proof. The transformation r| : (-, B) •*• Par(-, B) is determined by

ng(lB) (. Par(B, B) . Let < B' * B, B' •*• B) represent 1B(lg) • Then the

fact that n is an equivalence says that for any (A' >* A, A' -*• B > there

A ' ->• A

is unique A •*• B such that there is A' •* B' such that + + is a
B' •* B

pullback and A'-*-B'+B = A->-B. In particular, for any A -*• B there

exists unique A •* B such that there exists A •*• B' such that + +
B' >- B

is a pullback and A-*B'-*-B=A-*-B. If B' -*• B were other than an

isomorphism, then we would obtain a contradiction. •

Note that Sub (4) = Par (A, l) and 1 = ft .

Given a map B •*• B' we can define Par(-, B) •* Par(-, B' ) by
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composition and obtain a map B •*• B' . Alternatively, from the above
B ->• B

proposition, there exists a unique map B •* B' such that + 4- is a

B' •* B'

pullback, and B is revealed as a covariant functor, B •* B as a natural
transformation.

2.3. The fundamental theorem of topoi

A logical-morphism of topoi is a functor that preserves finite limits,
colimits, £1 , and exponentiation.

THEOREM 2.31 for topoi. For any topos T and B e T , 1 IB is a
topos.

For f : B1 •*• B2 the functor f : T/Bx •* T./B2 defined by pulling

back along f , has a left-adjoint I - and a right-adjoint II- j / is

bi-continuous and a logical morphism.

Proof. We noted at the end of 1.3 that the second sentence follows
from the f irs t .

The fi condition is easy:

S u b T / B U ->• B) = SubT(4) = T[ZB(A •* B), 0.) = T/B(A •* B, U*B ->• B) .

-F n (A-*-B)

Given A —*-»• B , C -a-»- B we wish t o construct (C -»• B) in

T/B . Let B -*• IT in T correspond t o k : A*B ->• S , the unique map such

A —=-"•—>• J 4 X B . P •*• CT .

that + i is a pullback and let , ,g be a pullback. Then
B " B ~A

B -* ET
P -*• B i s (C •*• B) as follows:

Given X —»• B ,

T/B(X •* B, P •* B) -* T{X, P)

• T(X, B)

is a pullback, by definition of T/B . By definition of P ->• B ,
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U , P) •+ (x, C4) - Par^x/l, C)
4- + +

(X, B) •* (X, S4) = Par(Zx4, B)

is a pullback. Then

T/B(X •+ B, P -+ B) -* ParT(X>^4, C)

1 • ParT(X*A, B)

is a pullback where 1 •+ Par(J><4, B) corresponds to

X x A -hxl> B x A -^+ S . The element in Par(,X*A, B) is therefore the

result of pulling back:

• ->• X*A

+ Vk
B -* B

Q •* X

and that is the same as the pullback + -I- , that is, the product, in T/B
A + B

of X •*• B and 4 + J ; that is, T/B{X •* B, P •* B) is the set of

T-partial maps from X x A to C such that when composed with C •*• B

yield just what they should.

That J preserves exponentiation is reducible, as discussed at the

end of 1.3, to seeing that XS : T •* T/B preserves exponentiation. We

wish to compare [-, xB(c^) and (-,

* B, XBfC4)) = \tB(D * B), C4) = {D, C4) = (D*A, C) ,

[D - B, XB(C)*B{-A)) = ((£» + B) x XBU), XB(O) = fsg((£» •* B) * XB(4)), c | .

I t suffices to show D * A - £g((0 * B) x xB{A)) .

P
(D -*• B) x xB(i4) is the pullback + -\p which can be directly

D •*• B

AW •
verified as p+ +p . Hence £„ ( (£ •* B) x xB(4)) = y5 x z) .

D -»• B
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preserves limits and colimits because it has both a left and right

adjoint. D

COROLLARY 2.32 for topoi. Fullbacks of epimorphisms are
epimorphisms.

Proof. Given A -£•*• B , C ->-»• B , we view C •** B as an object in

T/B . j (C •*-*• B) is the pullback. Because j preserves epimorphisms

and terminal objects, / (C •* B) •* f (B ->• B) is an epimorphism. D

COROLLARY 2.33 for topoi. Given A -£•+B + C there exists

A, + A = A
~< I

B+C

Proof. View B -»• S + C and C •+ B + C as objects in T/B+C and

apply f to obtain A ->• A , A ->• A in T/A . D

Given a filter F (as defined in 1.2) on the Heyting algebra Sub(l)

we obtain a Serre-class of maps in the topos, namely those maps f : A -*• B

such that there exists U £ F , (U c l) so that T -»• T/£/ sends f to an

isomorphism. The result of inverting all such maps is a topos T/F which

may be also constructed by T/F(A, B) = lim(/5xU, B) . The most insightful

way to construct T/F is to take the direct limit of the topoi T/U ,

U € F . Using the fact that all the induced maps T/U + T/V for V c V

are logical morphlsms and that topoi are essentially algebraic, T/F is

easily believed to be a topos. Finally, one must note that

Sub-j-.p(l) = (Sub-j-(l))/F . Strangely enough, we shall not use this

construction.

R ->- A i?2 * B R •* R1

Given relations + , + let + -I- be a pullback and
B C R2+ B

define the composition R ° i?2 as Im(if •+ A*C) .

PROPOSITION 2.34 for topoi. Composition of relations is
associative.
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P r o o f . Given X •* A*B , Y •*• A*B and B' •* B l e t

X' ->• B' Y' * B'
4- + , + 4- be pullbacks. Corollary 2.32 says that if

X ->- B Y -*• B

Im(X •* A*B) = Im(y •+A*B) then ImU' ->4><B') = Im(Y' •* A*B' ) . That
fact , together with the associat ivi ty of pullbacks provides the proof. Let

R6 * nh " ffl - A

+ 4- +
i?5 •* i?2 - B

+ +
i? 3 -• C

be such that a l l squares are pullbacks. I m ^ -*• A*C) = Ft. ° R~ and hence

= (if ° R ) ° i?3 . Equally Im(flg •+ AXD) = R o [R ° R ) . D

Given a topos T we obtain a category of relations Rel(T) and an
embedding T •*• Rel(T) . In par t icular Rel i s a bifunctor from T to
s e t s , contravariant on the f i r s t variable, covariant on the second. Given
/ : A •* B the transformation Rel(- , / ) : Rel(- , A) ->• Rel ( - , 5) yields a

transformation (-, if) •* (-, il ) which must be induced by a map from if

to il to be called 3 - . The transformation (- , - ) -»• Rel(- , - ) i s

natural and we obtain

A •+ ifn iv
B •+ i?

Rel(4, B) is of course, a Heyting algebra. Rel(-, B) is a
Heyting-algebra-valued functor, but Rel(4, -) is not. 3,. preserves

unions but not intersections. We will use the fact that i t preserves
order.

2.4 The propositional calculus of a topos

PROPOSITION 2.41 for topoi. For every B , the subobjeats of B

form a Heyting algebra and the operations of same are preserved by pulling
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back.

Proof. The subobjects of B are the subobjects of the terminator in
T./B . D

We can t h e r e f o r e view Sub as a Heyt ing-a lgebra-va lued func to r .
N e c e s s a r i l y , t h e ob jec t which r ep re sen t s Sub must be a Heyting a lgebra i n

T . That i s , t h e r e e x i s t maps 1 • £2 , 1 —£+• £2 , £2x£2 -^+ £2 ,

£2x£2 • £2 , £2x£2 • £2 which s a t i s f y the equat ions of a Heyting a lgebra
(t = X, f = 0) , which maps y i e l d the Heyting a lgebra s t r u c t u r e on each

f 0 — 1
Sub(S) . 1 —-1-*- £2 can be computed as the unique map such that + +/

i s a pullback; £2x£2 >• £2 as the map such that + +n i s a

pullback. Let

IX t]
v £2 = Im £2+£2

Then + +u i s a pullback. Final ly , define ftxfi >• £2 to be the

unique map such that + ++-»• is a pullback. One may directly verify

the equations of the symmetric definition of Heyting algebras for these
maps so defined.

Note that for each B , f2 becomes a Heyting algebra in T . There
are two Heyting algebras for B : Sub(S) which lives in the category of

se ts , n which lives in T .

A boolean topos is one in which Q is boolean. £2 • £2 is the
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fl
unique map such that + +~1 is a pullback. Hence T is boolean if

fl • n — • fl = 1 . Note that every Sub(S) is thus forced to be

boolean, and given B' >* B there exists a complement B" >*• B such that

0 -• B'
+ t is a pullback, B'+B" -*• B is epi. In any topos, such implies

B" •+ B

that B'+B" •* B is an iso, just by showing that B'+B" -*• B is mono, an

easy matter using Corollary 2.33. Products of boolean topoi are easily

seen to be boolean.

( 1
iff 1 + 1 -iiX* fl -Lt

PROPOSITION 2.42 for topoi. T ia boolean iff 1 + 1 -±LU fl ie an
isomorphism.

Proof. Clearly i f 1 + 1 works as fl then fl •+ fl can be none
other than the twist map on 1 + 1 , and ~1 ~I = 1 .

Conversely for T boolean, the complement of 1 —• SI is 1 —*-• fl
and the remarks above yield 1 + 1 = fl . Q

Aop
PROPOSITION 2.43. S is boolean iff A is a groupoid.

Aop
Proof. If A is a groupoid then S is a product of categories of

c c
the form S , G a group. We observed earlier that fl in S is
1 + 1 .

Conversely, suppose A •*• B in A does not have a left inverse, that

is, there is no B •*• A such that B •* A •*• B = 1_ . A •*• B generates a
D

5-crible, neither empty nor everything; that is fl(fi) has more than 2
elements. But i f 1 + 1 = fl then fl(S) = (l+l)(B) = 1 + 1 . D

By a closure operation on B we mean a closure operation as defined
in 1.1* on Sub(S) , that is an intersection-preserving inflationary
idempotent Sub(S) •*• Sub(B) . A global closure operation is a choice for
each B of a closure operation that makes Sub •+ Sub natural.
Necessarily such must be induced by a map j : fl •* fl , and j i tself is a
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closure operation in the internal sense, that is, j2 = j ,

<1,.7> _ n £2x£2-^£2
£2 luJ—*• £2*£2 • £2 = 1 and JXJ+ +j . Rather mysteriously:

ftx

PROPOSITION 2.44 for topoi.

ftxft 1- ft
n

Proof. First a less algebraic proof:

Given 0 : fi •* ft consider (B, ft) v >;/'•» (B, ft) . If

ft = 1 -^+ ft then for + + a pullback, the result of1 - r n

applying (B, j) yields

B1 ->- B

ft' * ft

B' -+~B'
and t h e r e e x i s t s 1 ->• ft' such t h a t 1 •* ft1 ->• ft = 1 —*• ft , hence + +

1 •*• ft1

is a pullback and (B, j) is inflationary.

More directly, let + + (1, j > be a pullback. Because

< 1 , j > i s monic, U •*• 1 i s . I f 1 —>- ft -^* ft = 1 —• fi then t h e r e

e x i s t s 1 •* y such t h a t 1 •*• U •* £2 = 1 »• £2 and tf * 1 i s an

1 — 1 _ ft
isomorphism; that is + +<1, j> i s a pullback. Hence
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is a pullback and the uniqueness condition on SI implies the result. D

As shown in Proposition 1.1+2, SI • SI is a closure operation.

Another example arises as follows: let V c 1 and define for each B ,

Sub(B) -* Sub(B) by (B1 •* B) >-+ (B'u(B*U)} . (Notice that B*U •* B*l •* B

is a monomorphism.) Clearly this operation is inflationary and idempotent.

To see that it is intersection-preserving consider B', B" c B . Then

(B'u(B*£/)) n (B"u(Bx£/)) = (B'nB11) u [fl' n{B*V)) u (CBxt/)ng") u (Bxtf) ,

by distributivity. The middle two terms are contained in B x t/ , hence we

obtain

(B'u(Bxy)) n (B"U(BX£/)) = (s'nB") u (flxy) .

Bx[/ -* B
The operation is natural because + + i s a pullback.

U + 1

2.5. Injective objects

PROPOSITION 2.51 for topoi. a is injective.

A' • A
Proof. Given A >* B and A + 8 let • 4- be a pullback. Then

A' <• B

l e t + 4- b e a p u l l b a c k . T h e n v e r i f y t h a t A->-B + n = A + Q . O

COROLLARY 2.52 for topoi. ftC ie injeotive.

Proof. Given A »• B we wish to show that [B, SI ) + (At SI ) is

epic. But

(B, QC) - [A, Sf)
I? I?

, n)
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and A*C -*• B*C is monic. D

Using the singleton map B -*• ft we obtain:

PROPOSITION 2.52 for topoi. Every object may be embedded in an

injective. D

COROLLARY 2.53 for topoi. Pushouts of monomorphisms are

monomorphisms.

A >* B
Proof. Given a pushout + + choose C *+ E , E injective. There

C •* D

A y B
e x i s t s + + , h e n c e t h e r e e x i s t s C-<-D->-E = C > * E a n d C •*• D i s

C •*• E

monic. •

A H- B
PROPOSITION 2.54 for topoi. If $ ¥ is a pullback, then

C>+ D

Snb(D) •* Sub(S)
4- + is a pushout.

Snb(C) •* Sub(A)

Proof. Just use the distributivity, X A («/ v z) = (x A y) v (x A z)

for Heyting algebras. D

COROLLARY 2.55 for topoi. If E is injeative then (-, E) carries

intersections (that is, monomorphic pullbaaks) into pushouts.

-p
Proof. If E is injective, then E **• il splits and it suffices to

show that (-, Cl ) carries monomorphic pullbacks into pushouts. But

(-. fi ) - (-*£, ft) and -*£ preserves (as in any category, any E )

monomorphic pullbacks, and Proposition 2.51* says that (-, ft) is as

desired. •

A H- 8
PROPOSITION 2.56 for topoi. Given \ 1 , it is a pullback iff for

C >* D

{D, E) •* (C, E)
injective objects E 3 + t is a pushout.

(S, E) -* (A, E)

Proof. The family {(-, E)} , E injective, is collectively faithful
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by Proposition 2.52 and hence reflects isomorphisms. Any family that

reflects isomorphisms reflects the limits it preserves (any category). •

2.6. Sheaves

Let j : ft •* ft be a closure operation as defined in the las t section,

that is j = j and j is a homomorphism with regard to ftxft -°->- ft and

1 —• ft . Given B' » B , we will write B' for the resul t of applying
(B, j) to Sub(B) .

We wil l say that B' H- B is j-closed i f B' = B' and j-dense i f
B' = B .

We say that A i s j-separated if for a l l j-dense B' >+• B ,
(B, A) •* (B' , A) is monic.

We say that A is a j-eheaf if for a l l ./-dense B' H- B ,
(B, i4) •+ (B' , -4) is an isomorphism.

A functor i s exact i f i t preserves a l l f in i te l imits and colimits.

THEOREM 2.61. The fundamental theorem of sheaves. The full
Bubaategoviea of j-eeparated objeote and j-sheaves are reflective and
eaah ie cartesian-closed.

The full subcategory of j-sheaves is a topos and its reflector is
exact.

Proof. We fix j and drop the prefix "j-" . If B' >* B i s dense
B' • B

then so is B'*C -*• B*C because if + +3 is a pullback, then density

is equivalent to B -&+ ft -2-+ ft = B •* 1 -^* ft , and

B' *C •* BXC
+p
B

1 - ft

is a pullback. Hence if A is separated (sheaf) and B' >* B dense then
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(S, A°) - (B1 , AC)
\i I?

(5XC, / I ) •+ ( S ' x C , 4 ) ,

and the horizontal maps are mono ( i so ) , and A i s separated (sheaf).

Let Sep. be the fu l l subcategory of separated objects and Sh. be
3 - 3

the full subcategory of sheaves.

We have just seen that Sep. and Sh . are cartesian-closed (except
3 3

possibly for finite completeness) and hence by Proposition 1.31, when we

know that Sep. and Sh . are reflective, we will know that the reflector
3 3

preserves products.

Define Q . •* ft as the equalizer of 1 and j . Because j is
3

idempotent, there exists ft •* ft . such that ft •* ft . •* ft = j ,
3 3

ft . -<• ft ->• ft . = 1 . ft. i s i n j e c t i v e .
3 3 3

LEMMA 2 .611 . ft. is a sheaf.
3

Proof. Let B' >* B be dense, and B' •+ Q. given. The in jec t iv i ty
3

B'—• B
of ft . yields \ J . We need only the uniqueness condition. Suppose

0 ft.
3

B> -»- B -£-+ ft . = B' •* B -2-+ ft.. Let 4- 4-/ and 4- 4-0 be

p u l l b a c k s . Then B and B are both c losed . But B n B' = B^ n B'

and we have 5 1 n B' = B n B1 = B1 , B^ n B' = B2 and f = g • Q

COROLLARY 2.612. For any A , tfi is a sheaf. D
3

The definition of Sep. and Sh. easily says that both are closed
3 3

under limits, Sep . under subobjects.
3

The idempotence of j says that for B' C B , B' is dense in B' .

Note that the closed subobjects of B are in natural correspondence
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with (B, fi .) .
3

LEMMA 2.613. A is separated iff A — • A*A is a closed subobject.

Proof. If A is separated, let A c A*A be the closure of A .

A -A _ p. _ po
There

hence

Thus

is

I
A •-

at most one

•* Ax-A — i * A

- J .
= J

A •* A

•• AA , and hence A c Eq(p , P2J = A .

Conversely, suppose /I • .4*4 is closed. Let B' >* B be dense and

B' •+• fl -i-»- A = B' •* B -2-+ A . The equalizer of / , ^ can be constructed
S • B

as the pullback + ^f>9^ . hence E1 is closed. But B' c E and

S"1 C E C B ; thus B = B and / = g . D

LEMMA 2.614. A is separated iff A •+ $/ = A -* fi4 -J2—•• fi!4 .

Proof, j yields a transformation j : Rel(- , A) -*• Rel(- , A)
alternatively described as taking closures of subobjects of -X/l . The
equation of the lemma is equivalent to :

(-, A) ->- Rel(-, A) = (-, A) - Rel(-, A) -i+ Rel(-, A)

which may be tested on 1. € (A, A) . The left side yields A • A*A ;

the right side yields the closure of A and the last lemma yields the

proof. O

A A A
LEMMA 2.615. For any A the image of A •* fir -*—+ fir is the

reflection of A into Sep • .
3

Proof. Let A •* A be the image of A -*• U •* U . j factors as

if •*+ fi4. + j / and A i s a subobject of ft4. . Lemma 2 .6 l l said thatJ 3

u. € Sep. and Sep. i s clearly closed under subobjects, hence A t Sep.3 3 3 3
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If B i. Sep • then by the last lemma B •+ B is an isomorphism. Given
0

f : A -*• B , S € Sep • we need only show that the outer rectangle of

A •* fT4 -2—*- if

A -*• A
commutes to obtain \ ^ 4- . Equivalently we consider

B

(- , A) •* Rel(-, A) «U Rel(-, A)

(- , B) -+ Rel(-, B) T* Rel(-, B)

The right-hand square does not commute. Given R c: X*A and chasing
clockwise we obtain Im(i? -*• X*B) and in the other direction Im(R •
Inverse, not direct , images preserve closures. But the fact for inverse
images yields that Im(i? -»• X*B) c Im(i? -»• X*B) and because direct images
preserve order we also have Im(R •* X*B) c Im(/f -»• X*B) . I t suffices to
show that when R i s the graph of a map then Im(i? -»• X*B) = Im(R •*• X*B) .
But i f R c X*A is the graph of g : X •* A then Im(i? •* X*B) is the

graph of X " > A —'-> S and the last lemma says precisely that graphs of
maps into separated objects are closed. •

For the ref lect ivi ty of Sh . i t suffices to show i t reflective in
J

SeV. .

LEMMA 2.616. If A' » A is closed, A € Sh. then A' € Sh. .
0 0

B' •*• B

Proof. Given B >* B dense and B' •+ A , l e t + + commute and
A' •+ A

B" * B
+ +. a pullback. Then B" is closed, B' c B" and hence B" = B . D
A' •* A '

We'll say that a separated object is absolutely closed if whenever i t
appears as a subobject i t appears as a closed subobject.
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LEMMA 2.617. Sheaves are absolutely closed and separated.

Absolutely closed objects are sheaves.

Proof. Given A >* B , A € Sh. , let A >* B be the closure. There
J

- A _
exists A •*• A such that + yB , that is, A c A c A .

Conversely, if A is separated then it appears as a subobject of

fl4.
3
a sheaf.

€ Sh . and if A is absolutely closed, then by the last lemma, A is
3 3

LEMMA 2.618. fi . satisfies the 0.-condition for Sh. . D

LEMMA 2.619. G-iuew A >* B , B a sheaf, then the closure of A in

B is the reflection of A in Sh. .
3

Proof. Let A •*• B be the closure. Lemma 2.6l6 says that A € Sh. .
3

For any C € Sh. , (A, C) = {A, C) because A -*• A is dense. •
3

Because every separated A can be embedded in a sheaf (for example,

u. ) we obtain that every separated A has a reflection in Sh. .
3 3

Composing the two reflections, the reflection of an arbitrary A is the

closure of the image of A •+• U. .
3

We saw at the beginning of the proof that Sh . is closed under
3

exponentiation. Lemma 2.618 says that Sh . has an fi , and we have just
3

seen that it is reflective, hence finitely cocomplete. Thus Sh . is a
3

w
topos. Note that for E injective in Sh . , that E >* il. retracts and

3 3

is injective in the ambient category T .

Since the reflection H : T -* Sh . preserves products it suffices for
3

exactness to show that it preserves equalizers. Given /, g : A •+ B in

any category, the equalizer of /, g may be constructed as the pullback of
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hence i t suffices to show tha t R : 7" •* Sh . preserves monomorphic
3

pullbacks.

A y- B
Given a pullback ? I in I , it suffices according to Proposition

C w- D

2.56 to show that for any injective E £ Sh . , it is the case that
3

{RV, E) ->• (RC, E)
+ + is a pushout. But that diagram is isomorphic to

(RB, E) •* {RA, E)

{D, E) + (C, E)
+ + and since E is injective in T , Corollary 2.55 provides

(S, E) •* (A, E)

the finish. D

Consider S* . Si = (3 •*• 2) . Let i / c i be (0 -»• l ) c ( l -»• 1) and

3 t h e c lo su r e opera to r t h a t sends (A' + B' ) c {A ->• B) t o

(A' •* B) c (A -*• B) . Then t h e j - s h e a v e s a re of the form

(A •* 1) . fl . = (2 •*• 1) . The r e f l e c t i o n of (A •* B) i s U -»• l ) . The
3

reflection of ft is (3 -»• l) not Q . .
3

Recall that ft • Q is a closure operator.

PROPOSITION 2.62 fortopoi. Sh-,-, is boolean.

Proof. 1 + 1 —*—>• fl is easily seen to be dense, hence becomes an

isomorphism in Sh-, -. . •

COROLLARY 2.63. Every non-degenerate topos has an exact

co-continuous functor to a non-degenerate boolean topos.

Proof. 0 is a 1 1 -sheaf. D

Following the remarks at the end of Section 2.k, let U c 1 and

consider Q - ^+ ft the closure operator so that for B' c B ,

B' = B' u (B*U) . The ref lec tor T •+ Sh. sends 0 •+ V tc an isomorphism,
3

that is, U is sent to the zero-object. Sh. is degenerate iff U = 1 .
3

COROLLARY 2.64 for t o p o i . Given x, y : 1 + B , x f y , there

exists a boolean topos 6 , exact co-continuous F •* 8 that separates
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Proof. Let U c 1 be the equalizer of x, y . Then for j as

described above, T •*• Sh . sends x, J/ : 1 -»• B .to a pair of maps with • 0
3

as equalizer. Now apply Corollary 2.63. O

THEOREM 2.65 (the plentitude of boolean topoi). For every

f,g:A-*B3 f ? g , there exists a boolean topos 8 3 exact

ao-continuous T -*• 8 that separates f, g .

Every small topos can be exactly embedded in a boolean topos.

BM A*A - 2 ^ 1 * BxA A
Proof. T - T/A sends f, g to \ / , \ , ^ / . +

A A A
is the terminator for T/A and

Hence we can apply Corollary 2.6k to obtain T/A •* 8 as desired.

^ P
Let 5 t e a partially ordered set. We define j : ft + ft in 5

as follows: for x (. B , Q(x) = {A c H \ u < v £ A "* u £ A ** u < xi ;

define J O O to be the set of all u € H such that there exists A' c A

with the property that V' eH\y eA> (v 2 s) •» (v 2 u)J . (If U4' exists,

then this simply says u 5 IM1 .) j is easily seen to be idempotent and

inflationary.

It is natural and it preserves intersections iff B is very

distributive, for example, a Heyting algebra. For B a Heyting algebra

(l, ft.) is its completion. Hence for H a complete Heyting algebra
3

(l, ft.) = H and ft .(a:) = {u i. B \ u < *} . That is, 3 (A) = UA .
3 3 x

For B the lattice of non-empty open sets in a space X , (l, ft .)
3

is the lattice of all open sets, Sh . is the classically defined category
3

of sheaves.

The definition of a Grothendieck topology on A is almost the

Ao p
definition of a closure operator in S . Closure operators are a bit

more general.
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2.7. Insoluble topoi, or how topoi aren't as complete as you'd l ike

In a powerful way, topoi are "internally complete". One may, for

example, define a map fl •+ ti which acts as a union operator. Hence

given any B c ! T we obtain a subobject UB c A [via the functions

Sub(fT) = f l , fl ->- ( l , ?iA) = Sub (4) I which has a l l of the properly

stated properties of a union.

There is a catch. UB is not necessarily the least upper bound of the

subobjects of A described by (l , B) c ( l , QA) = SubU) . The type of

completeness we often need is just that; that i s , given B c tf4 , a least

upper bound for ( l , B) c Sub(4) . UB fails miserably. For the

singleton map A •+ u , UA = A . But the least upper bound of

( 1 , A) c Sub (A) would be the least subobject A of A such that

( l , A) = ( l , A) . To say that A = A , a l l A , is equivalent to saying

that 1 is a generator (that i s , a well-pointed topos as defined in the

next section).

If for every A there were such A c A , then UB is the least

upper bound of (l, B) c Sub(j4) . (We shall not use this construction and

hence will not prove it. ) The existence of A c A is elementary but

independent of the axioms for topoi. Indeed, as we shall show, it is not

equivalent to any essentially algebraic axioms.

We will call T solvable if for every A there exists A c A such

that (1, 2) - (1, A) and for all Be A such that (l, B) - (l, A) it

is the case that A c B .

PROPOSITION 2.71. Not all topoi are solvable.

Proof. We saw at the end of the last section that every complete

Heyting algebra appears as (l, fi) . Let T-. be such that (l, fl) is the

order-type of the unit interval and let TV, c J be a countable elementary

submodel. In Tp , (l, fl) is a dense ordering and countable, hence there

exists iu c l} , u c \j such that Uu does not exist. Let V C 1
n n n n+1 n f

be such that u
n
 c v a l l n •
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/ n
Consider the direct system T^j ] \ (l+^-) induced by the obvious

n+l n
projection maps 1 T{l+U-) •* 1 [(l+U.) and let T be the direct limit.

The essentially algebraic nature of topoi insures that T is a topos. We

can give a more elementary description of j as follows:

objects: {n, A -+ TT(l-*J / ,

(n, A ̂  "TTM^)) to (m,maps: from <n, A —>• (l+^-j) to (m, B

are equivalence classes of pairs < k, f) where

k k
f : A x J~f (!-«/ ) ̂  S x ] -

i

such that

T M ) X X | 7 (1+y) _^U T T M J - TT d^J
i=m+l i=l i=m+l

T ^^f - rr
The equivalence relation is generated by <k, f> = (k+1, fxl> .

The notation is eased by replacing Tg/ ] T(l+^-) with its image T/n

in T . Hence T/0 = T2 , UT/n = T , T(A, B) = lim T/n (/I, S) .

For A i T/n , B i T/0 ,

/" k 1
TU , S) = lim T/0U x 7 7 (l+y ) , B

— • "• i=«+l J

(an easy verification). Thus T(l, 1+7) = lim T/O(T~T(l+i/-) » 1+^ • Note
— • W=l l >

k k

that ] [(l+U.) is a coproduct of 2 subobjects of 1 , one of which is
If
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one, one of which is U. , the other smaller than U, . Hence the union of

( k )
the images of T/0M [{l+U.), 1+V\ is 1 + U. .

Suppose W >+ 1+1/ € T were such that (l, U) - (l+V) . We shall show

that there exists W' -»• l+V with the same property, and such that

k
V <£ W . W •* l+V in T appears as A x YJ(l+U.) -3- l+V some k . For

all n , 1+Un c Im{g) c 1+7 . Let B c V be such that £/ c B all « ,

but 1+5 £ Im(ff) . Then 1+5 -»• l+V as a subobject in T is contained in

W -*• l+V . D

3. Well-pointed topoi

A topos is well-pointed if it is non-degenerate and if 1 is a
generator.

PROPOSITION 3.11 for well-pointed topoi.

( 1 , fl) = 2 ;

1 + 1 = ft ;

( l , - ) preserves ooproduot8, epimorphiemSj epimorphia families, and
pushouts of monomorphisms;

A f 0 =* A is injeotive;

4 ^ 0 , l = > . 4 is a aogeneratOT.

Proof. For 4 ^ 0 there are at least two maps from A to Q , hence
there exis ts 1 -»• 4 .

Let U c l . If U $ 0 then there exists l + U and 1 •+ U + 1 = 1^

forces U •+ 1 to be epic. Hence ( l , fi) = 2 .

1 + 1 -* n i s always monic. Because ( l , 1+1) a ( l , ^) and 1
re f l ec t s isomorphisms, 1 + 1 - fl .

For ( 1 , 4) + ( 1 , 5) = ( 1 , 4+5) use Corollary 2.33-

C •* 1
Given A •*-* B and 1 -+ S let + 4- be a pullback. By Corollary

A -* B
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2.32, C •* 1 is epic; thus C f 0 and there exists 1 •+ C yielding

1

4*+ B

Given any family {A. -*• B] collectively epimorphic, and 1—£-*• B , we

can view {A • •* B] as a collection of objects in T/B which collectively
if

cover the terminal object. Applying f^ we obtain a collection of objects

that do the same. Hence for some i , / (A . •* s) ̂  0 and

{fl, 4 .) -*- (l, B)} is collectively epimorphic.

A x- B
Given a pushout + 4- we use the booleanness to write B = A + A'

C •*• D

A •* A+A'
and we see that + + is a pushout, clearly preserved by (l, -) .

C * C+A

Given A >+ B , A \ 0 , again write B = A + A' and choose 1 •+ A .

Then B = A+A' •+ A+l •*• A is a right-inverse for A -*• B . 0

PROPOSITION 3.12. If 8 is a boolean topos then it is well-pointed
iff for all A (. 8 , A f 0 there exists 1 + A .

Proof. Let f,g: B + C, f t g . Let E e B be the equalizer of

f>g> A c B the complement of E in B . Hence if there exists 1 -»• A

then there exists 1 •+ B that distinguishes f,g. •

3.2. The plentitude of well-pointed topoi

A logical morphiem of topoi is a functor that preserves all the

structure.

THEOREM 3.21. For every snail boolean topos 8 and A € 8 , A \ Q

there exists a well-pointed & and logical r : B + 8 , TA % 0 . T

preserves epimorphic families.

Proof. We f i r s t show:

LEMMA 3.211. For every boolean topos 8 and A i 8 , A J= 0 there

exists a topos 8' , logical T : 8 •*• 8' , T(A) f 0 . T preserves

epimorphic families; and for all B $. 8 either TB - 0 or there exists
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1 •*• TB .

Proof of lemma. Well-order the objects of 8 , taking A as first

object. We construct an ordinal sequence of topoi and logical morphisms as

follows :

If T : 8 •*• 8 a has the described property, terminate the

sequence at a .

If, on the other hand, there exist 5 * 8 such that TB \ 0

and ( 1 , TB) = 0 then take B to be the first such and define
8cc+l = V ™ •

If 3 is a limit ordinal, and 8a is defined for all a < 6 ,

then Bg is the colimit of the 8 's .

The essentially algebraic nature of topoi insures that Bg is a topos.

The functor 8 •*• 8 carries TB to an object with a map from 1 .

Moreover for every C i 8 such that 8 (l, TC) * 0 , 8(1, T'C) * 0 and

eventually the sequence must terminate. •

Now, for the theorem, define a sequence on the finite ordinals by

8n+l = K '

(as defined in the lemma) and 8 = lim B

8 is boolean because 8 •*• a is logical and 1 + 1 - fl in 8
implies the same in 8 . Proposition 3.12 says that 8 is well-pointed.

That T preserves epimorphic families follows from the fact that
colimits of such functors are such functors. D

COROLLARY 3.22. Every small boolean topos can be logically embedded
in a product of well-pointed topoi, and the embedding preserves epimorphic
families.
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Proof. For exact T : 8 •* B' between boolean topoi, T is faithful

iff TA - 0 =» A - 0 . D

Composing with Theorem 2.65 we obtain:

THEOREM 3.23. Every small topos can be exactly embedded in a product

of well-pointed topoi and the embedding preserves epimorphic families.

Composing with (l, -) and using Proposition 3.11 we obtain:

THEOREM 3.24. For every small topos T there exists faithful

T : T ->• IIS .

T preserves all finite limits, coproducts, epimorphisms, epimorphic

families, and pushouts of monomorphisms.

3.3. Me ta theorems

By the universal theory of exactness of a category we mean all true

universally quantified sentences using the predicates of composition,

finite limits and colimits. By the universal Horn theory of exactness we

mean all the universally quantified Horn sentences in the predicates of

exactness, that is, sentences of the form A A A^ A ... A A =» A where

each A . says either that something commutes, or is a limit, or is a

colimit. By theories of near exactness we mean those using the predicates

of composition, finite limits, coproducts, epimorphisms, and pushouts of

monomorphi sms.

As easy corollaries of Theorem 3.21 through Theorem 3.2U we obtain:

METATHEOREM 3.31. The universal Horn theory of near exactness true

for the category of sets is true for any topos.

The universal Horn theory of exactness true for all well-pointed topoi

is true for all topoi.

The universal Horn theory of topoi true for all well-pointed topoi is

true for all boolean topoi.

The universal theory of topoi true for all well-pointed topoi is true

for all boolean topoi in which (l, fi) = 2 .

We will show later that there do exist universal Horn sentences in
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exactness predicates true for S but not true for all well-pointed topoi.

An equivalence relation on A is a relation E c AM satisfying the

usual axioms.

COROLLARY 3.32 for topoi. Every equivalence relation is effective;

E •* A

that is, given E a A*A there exists A •* B such that + 4- is a
A •+ B

pullbaok.

Proof. We get rid of the existential quantifier by defining A •* B

to be the coequalizer of the two maps from E to A . We note that the

statement is in the universal Horn theory of exactness and it suffices to

prove it in well-pointed topoi.

E' ->• A
Accordingly, let + + be a pullback. If E % E' there exists

A ->• B

1 -*• E' that can not be factored through E •*• E' . Hence there exists

x, y : 1 •* A such that 1 — ^ A •* B = 1 - ^ A + B but 1 X^ ' A*A no4

in E . Let A' be the complement of Im(x)' u Im(t/) and define

1+1+1 by

A' •* A -£+ 1+1+1 = A' •+ 1 • 1+1+1 ,

x a U2
1 -^* A -iL* 1+1+1 = 1 • 1+1+1 ,

A -2->- 1+1+1 = 1 — ^ * 1+1+1 .

^ A • B
Then E •* A -&-+ 1+1+1 equalizes and there must be \^ / , a

1+1+1

contradiction. •

COROLLARY 3.33 for topoi. Every epimorphism is a coequalizer.

Proof. We again get rid of the existential quantifier by stating it
as: every epimorphism is the coequalizer of its kernel-pair. (The

E •* A
kernel-pair of A •* B is the pullback + + .) It suffices to prove i t

A •* B

in well-pointed topoi. Given A •*-*• B let A •*• B' be the coequalizer of
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E -*• A . I t su f f i ces t o show t h a t B' •* B i s monic. Let
x' u'

1 »• B' •+ B = 1 -a—> B' ->• B and find x , z/ : 1 •* 4 so t h a t
1 —^+ 4 •+• B1 = x1 , 1 -&+ i4 -• B' = j / 1 . Then 1 a > y » /5M l i e s i n
E c 4x4 and x ' = z/1 . D

A «• B
COROLLARY 3.34 for topoi. If * 1 is a pullback and C+B •* D

C y- D

is epi, then it is a pushout.

Proof. The statement lies in the universal Horn theory of near

exactness and it suffices to prove it in S , an easy matter. •

3.4. Solvable topoi

Given a topos T and A i T we'll say that A is a well-pointed

object if the maps from 1 to A are jointly epimorphic. Define T c T

to be the full subcategory of well-pointed objects. In Section 2.7 we

defined a solvable topos , which definition is equivalent to the

coreflectivity of 7"

PROPOSITION 3.41 for topoi. T is closed under finite products.

Proof. Suppose A, B € J . We may assume that neither A nor B

is 0 . Let /, g : A*B •+• C , f * g . We wish to find 1 •+ A*B such

that 1 •+ XXB—•-• C + 1 •+ i4*B -̂ *" C . Let f,g : A •* CT correspond to

/, g , and let 1 -2+ A be such that 1 — • 4 - ^ if * 1 • 4 - ^ C^ .

Because B f 0 there exists 1 -• B , and hence B •* 1 is epi, which

yields:

By following with the evaluation Cpx-B •* C we obtain

B •* A*B -£-*• C * B •* A*B -2-- C .

Finally, l e t 1 -*• B be such as to separate these two maps from B to
C . D

By a two-valued topos we mean ( l , fi) = 2 .
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PROPOSITION 3.42 for solvable two-valued topoi. T is a

well-pointed topos. Subobjects of T objects are in T . hence T ->• T
P P V

is exact.

Proof. Because T is closed under products and coreflective,

exponentiation is effected by exponentiating in T and then coreflecting.

Given f : A •* B , B (. T , consider f : T/B •* T/A . The

collection of T/B-objects , {l •* B} are such that their maps to the

terminator form a jointly epimorphic family. Hence j applied to that

family yields a similar family in T/A . (Thus in any topos, the maps from

s ubt ermi nat or s to A form a jointly epimorphic family. ) Because 1 has

only two subobjects, A € T

Given A «• B in T let A' •* B be the negation of A as defined

in T . We wish to show that A u A' = B , for such implies that 1 + 1

satisfies the ft condition in T . It suffices to show that for any

1 -* B there exists either l*^->-5 = l + S or 1 + A'-+B=1-+B. If

neither, then (i4'ulm(l -»• B)) n A = 0 and the maximality of A' yields a

contradiction. •

3.5. Topoi exactly embeddable in well-pointed topoi

We have shown that every topos i s exactly embeddable in a product of
well-pointed topoi , and a residual question presents i t s e l f : which are
exactly embeddable in a single well-pointed topos? Because of the
elementary nature of the l a t t e r (they are closed under ul t ra-products) , we
are asking which topoi have the universal exactness theory of well-pointed
topoi . For example: (U H- l ) =» (0 •** U) v {U ->->• l ) . That i s , such topoi
must be such that ( l , ft) = 2 .

I t suffices to show for each n and

fX'Bl. B „ f 2 ' g 2 . B A
 fn*

i = 1, 2, . . . , n

tha t there i s a well-pointed topos T' and exact T : T •* T' such that
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(/"„•) * T(3J) » i = 1, 2, . . . , n . (Ultra-products again). Let

and E. c A the equalizer of A * A.

E. = 4. x ... x A . . x E\ x A. ... * A where E. is the equalizer of

f.,g. • Let E = E u ... u E . If E + A we know that there exists
I J 71

T : 1 •* T , T1 well-pointed, such that T{E) * T(A) and hence
T[fi) * T{9i) .

It is a statement in the universal exactness theory of well-pointed
topoi that if each E'. t A . then E # A . Hence such is a necessary

Lr If

condition for exact embeddability into a well-pointed topos. We can make

it elementary by noticing that the case for arbitrary n follows from the

case n = 2 :

If (A'*B) u (AXB') = A x B then either A' = A or B' = B .

Further reductions can occur by replacing A with A/A' , the pushout

A' •* A
of +

1

If (l*B) u (Axi) = A x B then either A = 1 or B = 1 .

Together with (l, fi) = 2 this can be seen to be sufficient.

Finally, if one considers l/T , that is, the category whose objects

^A
are of the form 1 •* A and whose maps are of the form 1 + , define

^ B

(1 •+ A) v (l •* B) as the coproduct in l/T , (l •+ A) A (l •+ B) as the

cokernel of (l •* A) v (l •* B) •* (l •*• A*B) , (-A- has a right-adjoint,

namely exponentiation), then the condition for exact embeddability into a

well-pointed topos is that the half-ring of isomorphism types with v as

addition and A as multiplication is without zero-divisors.

4. The first order calculus of a topos

Let L be a vocabulary of predicates and operators; that is, the

objects of L are either pairs <P, n) or <f, n) where we call P an

n-ary predicate, / an w-ary operator.



50 Peter Freyd

An interpretation of L in a topos T is an object B € j , a

subobject P a Bn for each (P, n> i I , a map J : B™ ->• B for each

</, n> 6 L .

Given any derived n-ary predicate or operator using the vocabulary of

L and the classical logical connections and quantifiers, we wish to

stipulate a subobject of Bn . The definition is recursive. The rules for

defining maps from expressions in the L-operators are well known. Given

two n-ary predicates P, Q already assigned values in Sub(sn) , we can

easily define PTQ , P v Q , P -* Q as a subobject in Bn .

Given an n-ary predicate P[x-., •••, x ) and operators f , ..., f

• + if
each m-ary, we define P(f , . . . , f ) as the pullback + •)- where

P+ Bn

tT -»• B is the obvious.

Given an n-ary P[x., ... , x ) modeled as P c B , we define

3 P[x , . . . , x ) as the image of P ->• B™ •+ Bn~ . For V we need:
n

PROPOSITION 4.11 for topoi. Given g : A •* B and A' c A , there

exists a maximal B' c B such that g (B' ) c A' . Such B' is called

Proof. S ' + B is l(i)'-»j(). •
9

We define V P{x , ... , x j as the maximal subobject in B1 whose
n

inverse image is contained in P .

In this manner we obtain for each sentence S (that is, no

unquantified variables) a subobject of B , that is, an element of

(1, fl) . We shall call such the truth value of the sentence, t(5) .

Given any set T of sentences, we say that an interpretation of L

is a model of T if every sentence in T has truth value 1 • £2 .
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(Yes, that's why it's called "t" .) Given sentences S,, Sp and a topos

T we say that S^ implies S~ in T if every model of S. is a model

of 5 2 , and denote same by S 1= Sp . We say that S-. strongly implies

S- in T if for every interpretation of L , t(s,) - £ (<S2) » and denote

same by ^ . Note that S -̂r S is equivalent to 1 Hj- (s •* S ) .

Given any language L and sentences S., S^ we say that S semantiaally

implies S^ if for all topoi T , S H=y S . We denote same by

S3. K 52 •

PROPOSITION 4.12. If S1 !=„ S2 then for all T, SX^TS2.

Proof. Let B (. J be an interpretation of L in T and suppose

t[s ) ^ t(s2) . Then in T/i(S ) we obtain a model of S that is not a

model of S . G

The definition of semantic implication reduces a host of assertions in

intuitionistic logic to exercises in classical logic:

PROPOSITION 4.13. For fixed L 3 h* is recursively enumerable.

1=% obeys Craig's interpolation theorem. If every finite subset of a given

T has a model in some topos, then so does T . D

For each monoid M , we obtain an intuitionistic logic H „ . We

suspect that the connection between such logics and classes of monoids will

be a fruitful pursuit.

Problem: For every topos T is \=j the same partial ordering as

H" ,. for some monoid M 1

4.2. The boolean case

If we restrict our interpretation of a language to boolean topoi, we

can replace P •*• Q with ~1 P v Q and V with 1 3 1 . The advantage is

that v, A, 1 and 3 are all definable using only the predicates of
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near-exactness. (p = "I Q i ff P + Q •* EF i s an isomorphism.)

More prec ise ly , l e t

L = {<P1, n>, . . . , <Pa, na>, < / 1 , jn1> </&, m̂  >} .

Let Jg be the set of interpretations of L in a boolean topos 8 . The

elements of Jc are of the formo

{B, P1 <= B X, . . . , Pa c B a, f± : B X - S ^ : B b + B) .

PROPOSITION 4.21. Given any elementary sentence S there exists a
universally quantified Horn formula F in the predicates of near-exactness
auah that for each boolean B and (B, P , .... f, ) i J_ it is the case

1 D D

that F{B,P~X, ...,Jb) iff <B,P±, .. . , Jb > is a model of S , Also,

there is an exietentially quantified conjunction of near-exactness
predicates G{B, P , ..., f^) with the same property.

Proof. There is a tree. Its root is 5 , each branch a wff (well
formed formula), each leaf a single variable, each branch point (we'll
allow degenerate branch points) marked with either
P , . . . , P , / - , . . . , / " , , A, "1 ,= or < 3, n > ; and, if a branch point is

marked P. then n. branches lead into i t , they are all operator

expressions g,, ... , g and the branch leading out is.
i

P.\g , . .., g I ; if the branch point is marked /. then m. branches

lead in, they are all operator expressions g.s ..., g and the branch
i

leading out is f.\g,, ..., g I ; if the branch point is marked A then

two branches lead in, both are predicates P, Q and the branch leading

out is P A Q ; if the branch point is marked ~l then one branch leads

in, it^ is a predicate P and the branch out is " I P ; if it is marked

= , two branches lead in, both operator expressions g, h , and the branch

leading out is g = h ; finally if the branch point is marked <3, n>

then one branch leads in, it is a predicate P{x , ..., x^) and the branch
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leading out is 3 P[x. , . . . , x ) .
n

Let K be the number of variables in S . The quantified variables

of F and G are defined as follows: for each variable in 5 , a map

JC Pi
a • S ; for each branch other than a leaf, we introduce a variable

g x B •* B if the branch is an operator expression, a variable P •+ B if

the branch is a predicate. To each leaf marked x. we make correspond the

new variable p. .

For each branch point we define a near-exactness predicate as follows:

If a branch point is marked P. then let g , ..., g be the

variables corresponding to the incoming branches; P •*• b to the outgoing,

and let A say that

_ n •
P. •* B v

is a pullback.

If a branch point is marked /. , then let g^ , ..., g be the
1

variables corresponding to the incoming branches; g : B •*• B to the

outgoing and let A say that

g = ET ^ - B Z ^* B .

If a branch point is marked A , then let P •* a , Q •* B^ be the

variables corresponding to the incoming branches : R •* a to the outgoing

- JC ^
and let A say that R + a is a pullback of _ + .
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If a branch point is marked ~1 then let P •* IT correspond to the

incoming branch; R •* B is the outgoing, and let A say that _ 4- is

a coproduct.

If a branch point i s marked = , then l e t g : a -*• B , ~h : ET •*• B

correspond to the incoming branches, P •* a to the outgoing, and le t A

say that P •*• B i s an equalizer of g, H .

If a branch point i s marked < 3 , n ) , then le t P •*• B correspond to

the incoming branch, Q •*• a to the outgoing, and l e t A say that

is a pullback.

Finally, let S •*• a be the variable assigned to the root.

F = V [ A / •• (S = /)] . G = 2{/\A A (S = /)] . D

COROLLARY 4.22. If a theory has a model in any non-degenerate

boolean topos, it has a model in sets.

Proof. ?y Theorem 3.23 there always exists a near-exact functor into

sets, which functor must preserve G . D

COROLLARY 4.23. For any boolean B if S^ l=s S2 then S^ £ g 5 2 .

Proof. Suppose that S ho S^ but not S1 ̂ g S 2 . Then there exists

an interpretation of L in B/t (s ) that is a model for S^ but not

5 . Let t(S2) be the truth value for Sp , and reflect the

interpretation into Sh . for j the closure operator such that 0 -»• t{S^\
3

becomes an iso. We then have a model in Sh . of S A ~1 S . Then apply

Corollary U.22. •
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Of course H^ is classical logic. In a later section we find

necessary and sufficient conditions on 8 so that N=g coincides with

5. Arithmetic in topoi

A pair 1 —^* N , N -^-»- K i s a natural numbers object, or NNO for

x tshort, if for every 1 • A • A there ex i s t s unique N -*• A such tha t

NNO's are c l ea r ly unique up to unique isomorphisms.

PROPOSITION 5 .11 . If 1 -2+ N - ^ N is an NNO then 1° : 1+N ̂  N

is an isomorphism.

Proof. Let w. : 1 •+ 1+N and w_ : N -*• 1+N b e t h e c o p r o j e c t i o n s .

Define e ' : 1+N •> 1+N by us' = CM , u s ' = ew . Since

1 • N *• N i s an NNO , t h e r e i s a unique g : N •* 1+N such t h a t

og = u and sg = gs' . We c la im t h a t g i s t h e i n v e r s e of

: 1+N - N .

That g\A = 1 follows from the uniqueness clause in the definition
V j

of NNO applied to the commutative diagram

8
N

3

1+N

o
8

1+N
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That \ \9 = 1 i s equivalent to og = u and eg = u . The first we
have, and the second comes by applying the uniqueness clause to the
commutative diagrams

N N N

1+N -T+ 1+N
8

PROPOSITION 5.12 . if l
aoequalizer of s and !„ .

1+N -jr- 1+N . O

N is an UNO then N •* 1 is a

Proof. N •*• 1 is epic (because there exists 1 •*• N ) and it suffices

to show that if N -^-* N -*-+• A = N -^-* A then there exists 1 -*• A such

that N -£+ A = N •* 1 -»• A . Define 1 ~^* A = 1 - ^ N -£+ A . Then both

N N

and

N -2- N

A -r* A

and the uniqueness condition on KNO's yields N -"*-»• <4 = TV ->- 1 -^ A . C

We shall show that the exactness conditions of the last two

propositions characterize NHO's in topoi. In the last section we

observed that near-exactness conditions are equivalent to stating that

something is a model for a finite theory. Here we will see that the

addition of a single coequalizer condition can yield a categorical (in the

old sense) definition.
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We consider first the category of sets:

PROPOSITION 5.13 for sets. If A - s * A is monio and A •*• 1 is a

coequalizer of s and 1. , then either A - Z , s{a) = a + 1 or
rl Yt

A - N , s = s . D

Hence, if we add the requirement that s is not epic, we can

characterize the natural numbers.

Let T be a well-pointed topos, T * S exact. If 1 • N • N

Ts
is an NNO in T , then 1 * 2W • TN is the standard NNO in S .

(Any exact functor from a well-pointed topos to a non-degenerate topos is

faithful.) Suppose then that in T there exists 1 —^* N such that for

no natural n does 1 —°->- N -^* N —^+ . . . -^* N = 1 -^+ A? . Then 3? just

can't exist. We obtain such T simply by taking a non-principal

ultra-power of S .

In fact, we are using very little of the exactness of T . For

well-pointed T , non-degenerate T' and T : T -+T' suppose T(l) = 1 ,

17(1+1) = 1 + 1 . Then T is faithful. (l + 1 is a cogenerator for well-

pointed topoi.) Because non-zero objects in well-pointed topoi are

injective, T preserves monomorphisms if it is faithful. Hence if

1 - ^ N-^ N is an NNO in T and 7(1) = 1 , r(l) + T(l) = T(l+l) ,

C o e q m i J , 2"(s) = TlCoeqfl^, s) , then 1 •+ TN + TN is as described in

Proposition 5.13. Thus for T a non-principal ultra-power of 5 , there

is no such T : T •*• S . We can go one further step:

PROPOSITION 5.14 (the scarcity of right-exact functors). If T is

a non-principal ultra-power of S , then for every T : T -*• S such that

T(l) + T(l) - 2"(1+1) and Coeqmi f f ), T(s)\ - r(Coeq(l, s)) , (for

example, right exact T ), it is the case that T = 0 .

Proof. Suppose for some 4 € T , TA \ 0 . Then because there exists

1 * 4 , r(l) k 0 . View T as a functor with values in S/T(l) , choose

1 * T(l) and define T' = T •* S/T(l) * S/l . T' may be alternatively
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T' (B) •*• T{B)
described by the pullbacks + + . T' preserves at least the same

1 •* r(l)

colimits as T , and T' (l) = 1 . Hence by our remarks above, T' can not
exist. Nor can T . •

In particular, Theorem 3- 2U can not be improved to make T exact.
Moreover, we have laid to rest the idea that the exact embedding theorem
for abelian categories has a nice generalization to "base" categories other
than abelian. For:

COROLLARY 5.15. No set of elementary conditions true for the
category of sets implies exact (even right-exact) embeddability into the
category of sets. (Even if you add countability.)

Proof. We can take the complete elementary theory of S , and let T
be an elementary submodel of a non-principal ultra-power of S and apply
Proposition 5.11*- O

The embedding theorem for abelian categories was motivated by the
consequent metatheorem for the universal theory of exactness. The latter
can be true without the former. But, alas, not for topoi. We need, f i r s t ,
a bit more about NNO's .

5.2. Primitive recursive functions in topoi

PROPOSITION 5.21 for topoi . If 1 - ^ N -2->- N is an NNO , then

for every A —̂->- B and B —• B there exists unique A*N •+• B such that

A

Proof. Transfer the problem to solving for
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N — — • N

D

For the standard natural numbers in S we know that given

g : A •*• B , h : Axflx-B -*• B there exists unique / : A*N •* B such that

f(a, 0) = g(a) ,

f(a, i/+l) = h{a, y, f(a, y)) .

(Usually A is a power of N , B = N .)

PROPOSITION 5.22 for topoi. Let 1 -^* N -2+ N be a NNO ,

g : A •* B , h : A*-N*B -*• B given. There exists unique f : A*N •* B such

that

A •+ A * l

A*N

A*N -J-* B = g ,

B =
P±,P2,f

B .

Proof. (Notation: for any X , X ~^+ N means X •*• 1 -2-»- N .) Let

k be such that

(5-231) k .

as insured by Proposition 5.22. We will show that kp~ works. First:

lt p28, h>px = (lxe)kp1 and < 1, o ) ^ = 1 , hence
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AxN

p works as well as kp. and Proposition 5-22 says, therefore, that

Second: kp2s = k(p±, p2s; h>p2 = {l*s)kp2 and <1, o)kp2 = o hence

lxs .

N •- N
s

and p2 vrorks as well as fcp and again Proposition 5.22 says that

kp2 = p2 .

Final ly, for the existence of / , define / - kp. . Then

k = < px, p2, /> and

< 1, o >/ = < 1, o >kp3 = < 1, o, g >p3 = g ,

(1*8 )f = (l><s)fcp3 = k<pv p2s, h)p3 = < P l , p2, f)h .

For the uniqueness, suppose f is as described in the proposition.

Define k = <p , p , /> , verify that (5.231) commutes and use Proposition

5.22. D

Note that h need not "depend" on A or N , or B . That is,

given h : A*B •* B we could define fc1 : <4XWXB •+ B = AxN*B •* A*B >• B

and apply the proposition.

Thus we can define on any NNO in a topos a, m, e : N'X-N -*• N by
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N = N*N - ^ N - ^ N ,

= o

= os , tf xtf - ^ + ffxtf -^+ N = N*N — •- N*N -^* N .

In the category of sets a, m, e are addition, multiplication and

exponentiation; that is,

x + 0 = x , x + (t/+l) = (*+i/) + 1 ,

x • 0 = 0 , x • (j/+l) = (x'jy) + x ,

x ° = 1 , x ( i / + l ) = ( * » ) • * .

Take any elementary sentence 5 in the operators o, s, a, tfi, e .

Add to it the six equations above which define a, m, e on N . We saw in

Proposition It.21 that there is a universal Horn exactness predicate that

says that a given <N, o, 3, a, m, e ) is a model of 5 . Enlarge that

formula to include O[ : 1 + N - N and Coeq(l, s) = 1 . The universal

quantification of that formula then says that the arithmetic of the NKO

satisfies S . Hence,

THEOREM 5.23. FOP any recursively enumerable set of elementary

conditions T , true for the category of sets, there exists a model T of

T and a universal Horn sentence in the predicates of exactness, true for

sets but false for T .

Proof. Add to T the axioms of a well pointed topos with an NKO .

By Godel's Incompleteness Theorem we know that there is an elementary

sentence 5 true for standard arithmetic, whose translation, S' , into a

universal Horn sentence in the predicates of exactness is not a consequence

of T (else number theory would be decidable).

Godel's Completeness Theorem implies that there is a model of

T u D S1 } . D

5.3. The exact characterization of the natural numbers

PROPOSITION 5.31 for topoi. If a topos has NNO then
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1 -2+ N -£+ N is an NNO iff P : 1 + N •* N is iso and

Coeq(l, s) = 1 . D

Proof. Let 1 -^-* A -£•*• 4 be such that I* is iso i
V.*J

C o e q ( l , t ) = 1 . Let 1 - ^ ff - 1 * if be NNO and l e t

N - ^ * N

Q,

A • A
t

commute. We wish to show f an isomorphism.

First, f is epi. We have a universal Horn sentence in exactness

theory, namely that [°  , I* isomorphs and Coeq.(l, a) = Coeq(l, t) = 1

imply / is epi. It suffices to prove it in well pointed topoi.

Accordingly let A' = Im(/) and A" the complement of A' . It suffices

to show that t{A") c A" , for such allows us to "split" t as t\A' + t\A"

and obtain a splitting Coeq(l, t) = Coeq(l.,, t\A') + Coeq(l „, t\A") .

If A' * A , then A" # 0 and Coeq.(l, t) is bigger than 1 . Hence it

suffices to show t(A") c A" .

Let t' = t\A' , 1 -±—+ A' = 1 - ^ N •* A' . Then r, is iso. The
I5 ;

u n i v e r s a l H o r n s e n t e n c e : " I f A' + A" - A a n d I , i I, I.I i s o t h e n
V- ) \t)

t(A") c A" " is in the predicates of near-exactness and it suffices to

prove it in S , an easy matter.

Second, / is mono. Using just that and I are isomorphs we

1 • 1 N -£+ A
can show that o+ + and S+ +t are pullbacks since such are

N~TA Ny*A
sentences in the universal Horn theory of near-exactness and it suffices to

prove them in S .
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Let Q >* A be as described in Proposition 2.21, that is + +
N -A

A A.

is a pullback, and for a l l X -*• A such that + + is a pullback,
/ / • A

t h e r e e x i s t s X + Q+A=X + A . Then b e c a u s e o+ +x i s a p u l l b a c k ,
N -* A

there exists 1 •+• Q •* A = 1 —^+ A . Because

Q -^ Q
4- +
N >• A

It *• A

is a pullback, there exists Q -&•*• Q such that

a t Q^+ Q
Q -**-•• Q + A = Q •* A • A . Because + + i s a pu l lback we obta in

N • A

Q
1 + + . Because 1 • It >• If i s a NNO we ob ta in It •*• Q such

"~~~~> N •• N

t h a t N -*• Q •*• N = 1 . T h a t i s Q •*• N i s e p i and Q •*• A i s an i s o m o r p h .

Hence so is / . D

Thus, exact functors between topoi with NNO's preserve NNO's .
Hence,

THEOREM 5.32. If 1*1' ie exact for 1,1' well-pointed topoi
with NNO'e , then the elementary arithmetics of 1, 1' coincide.

Proof. Combine Propositions it.21 and 5.31. D

We can push a bit further. By the existential second-order arithmetic
of a topos , we mean the second-order sentences in arithmetic in which all
second-order quantifiers are existential. Propositions 1+.21 and 5-31 say
that the truth of such a sentence in T is equivalent to an existential
sentence in the exactness theory of T . Hence,

PROPOSITION 5.33. The existential second-order arithmetic of a
well-pointed topos is determined by its universal Horn theory of
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exactness. O

5.4. Inferring the axiom of infinity

PROPOSITION 5.41 for topoi. Given 1 -*-A -^+A there exists

A' V- A and

A' -£-+ A1

xy
i

A t. A

A -J-"A

,[ : 1 + A' -*• A' is epi.

Before proving Proposition 5.1*1 we show its consequences:

PROPOSITION 5.42 (the Peano property). If [x. : l + A •* A is iso
Xt)

and Coeq(a;, t) = 1 then for every A' c A such, that Im(a;) c A' ,

t(A' ) c A' i t is the case that A' = A .

Proof. The sentence is in the universal theory of exactness and i t

suffices to prove i t in well-pointed topoi. By applying Proposition 5-^1
x' t' (x1)

to 1 • A' • A' we can assume that I , , I is epi.

i s o
(x)

Let A" a A be the complement of A' . Using just that is i
\v)

and K , I is epi we can show that t{A") c A" in S , hence everywhere.I* )
Thus t splits as t' + t" (t" = t\A") and

Coeq(l, t) = Coeq(l^(, t'} + Coeq(l^,,s t") . If A" f 0 then Coeq(l, t)

is bigger than 1 . •

THEOREM 5.43 for topoi. 1 -s- N-$->• N is an NNO iff

: 1 + N + N and Coeq(l, s) = 1 .

Proof. The necessity of the exactness condition was Propositions

5.11, 5.12. For the sufficiency, note first that the Peano property above

yields the uniqueness conditions, that is, if both /, g : N •* A were such
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that

A • A
t

then the equalizer of f, g would satisfy the hypotheses of Proposition

5.k2 and hence would be all of N .

For the existential condition, let 1 —**-»• B • B be given, and apply

epi , maps A •* N , A •* B . It suffices to show that A -*• N is iso.

Again, the Peano property says A -*• N is epi. We need:

LEMMA 5.431. If [XJ : 1 + A — • A is epi, [° | : 1 + N ->• N iso,
\t.) Xs)

Coeq(l, s) = 1 j and

then A ^s mono.

f f,

N — • Ns

Proof. The sentence is in the universal Horn theory of exactness and

it suffices to prove it in well pointed topoi. Let E c A*A be the

kernel-pair of / , E' = E - A , N' = Im(E' * A •+ N) . We need E = A ,

that is, E' - 0 , equivalently N' = 0 . Let N" be the complement of

N' . We need N" = N .

Note that 1 -^+ N factors through N" iff g has a unique lifting

to A . We may verify that 1 !i factors through //' and that if

N does, then so does 1 ~^->- N . That is, N" satisfies the

hypotheses of Proposition 5.U2 and N" = N . •
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THEOREM 5.44 for topoi. The following are equivalent:

(a) there exists an NNO ;

(b) there exists- a monomorphism A >*• A and a map 1 -• 4 such that
0 -• 1

+ + is a pullback;
A •* A

(a) there exists an isomorphism 1 + A -A .

Proof. Clearly (a) =» (c) =» (b).' For (b) =» (a) apply Proposition 5.1*1
to obtain

A'^-A'

1

( ,) 0 • 1
f , : 1 + A' -* A' epic. It is clear that + +i' is a pullback,

;••}hence , is monic, and an isomorphism.
l c )

Let A' -*• C be a coequalizer of 1. , , t' and define
i

1 -»• C = 1 • 4 ' -»• C . View i4' ->- C1 as an object in T/C . Note tha t

N , , / and tha t I .i : 1 + 4 ' = A' remains t rue in T/C . Pullback
C l t J

along 1 •+ C to obtain iV »• N in T/l . We maintain the coproduct
condit ions and gain the coequalizer condition. •

THEOREM 5.45 for topoi. If ( l , n) = 2 then either there exists an
NNO or every mono-endo is auto and every epi-endo is auto.

A A AProof. Suppose t h a t f : A >+ A i s not e p i . Then j : A •* A i s

U " X A
mono and if + + is a pullback where 1 -»• A corresponds toA A

A •*• A
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A — • A , then 11 •* 1 can not be iso. Hence 11=0 and we can apply the

last theorem.

If g : A •**• A is not mono, we can repeat the argument for

A* : / - / . D

The proof of Theorem 5.1*1 is fairly easy in solvable topoi (see 2.7).

We can there take A' as the smallest subobject such that t(A' ) c A' and

such that lm{x) c A' .

Remarkable enough, even without solvability we can construct A' , not

as an intersection but as a union.

Proof of Proposition 5.41. We define B e !T to correspond to the

family of subobjects of A such that A' c Jm(x) u t(A' ) and show that

US works. Define B c ST as the equalizer of the identity map and

where Px"l : #4->-tf4 = tf4->-l-*-£?4 and 1 -»• fl4 corresponds to A •* fi the

characteris t ic map of 1 • 4 .

For any A' c A , the corresponding map 1 •*• u factors through

B c fi^ iff 4 ' c Im(ar) u t ( 4 ' ) . Moreover:

such remains the ease after application by any logical morphism.

Let
C — • B*A

be a pullback.

C" •* C
For any 1 •+• B l e t + + be a pu l lback . Then C •*• C •*• A i s mono and

1 •+ B

C c Im(x) u t(C')

and euch remains the case after application by any logical morphism.
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C' •* 1*4
The proof of this is obtained by noticing that + + is a pullback,

C •* B*A

hence

C' • 1M

is a pullback, where 1 —£»• Sr = 1 •+ B •* £r . But (/"xl)e = A -&-* Q the

C ->• 4
map which corresponds to / . + Ij is a pullback. Thus the

1 - 0

characteristic map of C' corresponds to a map 1 •+ u which factors

through B and C' c Im(x) u t(C) .

We wish to show that Im(C -*• A) works as A' as demanded by the

proposition. The reversal of the above paragraph shows that given any

C' >+ A such that C' c Im(cc) u t{C' ) we can find 1 •*• B such that

C •+ C
+ I i s a pullback and C" •*• C -*• A = C' «• A . We wish to show, f i r s t ,

1 -»• B

that Im(C ->- /I) c Im (c •+ A >• A) , equivalently that in the pullback

P •*• 1+C

1+A

P -*• C is epic. (This last "equivalently" is a pair of sentences in

the universal Horn theory of near-exactness and may be verified in sets.)

Suppose P •*• C is not epic. We may transport the entire situation to T/C
P •* TP

and obtain a map 1 -*• TC such that in the pullback + + , P -* 1 is
1 •* TC

not epic. Because all our constructions are preserved by logical

morphisms , we may drop the "T" and show that for any 1 -»• C and pullback
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I+C

1+A

1 + C + A ,

+ 1 is epi.

Let + 4- be a pullback. Then
1 •* C + B

P~ • 1+C

1+A

1 -+ C' + A

is a pullback. Let 4- 4- be a pullback.. It suffices to show that
P2 + 1+C

P + P + 1 is epi.

Let 4- 4- be a pullback. P, •+ C' is epic. Let 4- 4- be a
C + A 1+C'

P + 1+C P + 1+C'

pullback. P- + 1 is epic. But 4- 4- and 4- 4- are both

pullbacks and we have shown that Im(C + A) c Im(x) u Im(C + i4 -*• A) .

Call A' = Im(C + A) . We remarked above, that for any C' c A such

that C' c lm(x) u t(C') it is the case that C + A = C' + C + A hence

C' c A' . Thus A' is the maximal such subobject. But note that for

C = A' u t(A' ) it is the case that Cc Im(x) u t(C ) . Hence

A' -£-* A'
A u t(A' ) c A' and t(A' ) c A' , yielding 4- 4- . For

A t. AA > A

C' = Im(x) u A' we have C' c Im(x) u t(C ) and ImU) <= A' , yielding
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s

1
X

Peter

A' -

I —

Freyd

•£-+ A'

Final ly , A' c Im(z) u t{A' ) directly yields K : 1 + A' ->•+ A' . Q

5 . 5 . One c o e q u a l i z e r f o r a l l

Given /, g : A •*• B let Rf = Im(A ^?f? > B*B) C flxg and

£•„ c SXB the kernel-pair of the coequalizer of f, g . $y Corollary

3.32 s fi'r. is the smallest equivalence relation containing B^

Suppose B —*• C is epi. Let E-, c B*B be the equivalence relation

induced by h , that is, + + a pullback. Then by Corollary 3-33,

B + C

B - ^ - C is a coequalizer of f, g i ff E. = E. . Hote that Rf and

ff, are defined using only near-exactness.

B • C ie a coequalizer of f , g : A + B iff h is epic and EV

is the smallest equivalence relation containing /?„
j is

In general, given i? c B'x-B define Hi? to be the smallest equivalence
relation containing R . Then a near-exact functor is exact iff i t
preserves the = operator on binary relations.

Given any R c A*C we can define a transformation
P •* Q

Rel(- , A) • R e l ( - , C) a s f o l l o w s : f o r 8 c W l e t + I b e a
R •* A

pullback and send Q to Im(P •+ X*-C) . °i? is natural and there exists

oR : rf4 •+ if . (if R i s the graph of a map / , then °R = 3 .) Given

R c B*B define H c fixfl as A u R u Im (i? •+• B*B —1-+ B*B) where T i s the
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B*B ° R B*B
twist map, and define U • si as above. In a topos with NKO let

k : N -*• H be the map such that 1 • N — • ft corresponds to

B - ^ + Bx-B and

N

k
IV r IfI I

°R

We ob ta in a r e l a t i o n from N t o B*B , Q c tfxgxs , Im(Q •+ B*B) = 3? .

We may look a t Q backwards as a map from =/? t o Q .

In we l l -po in t ed t o p o i , a t l e a s t , we can def ine [U ) t o correspond

t o the non-empty subobjects of N and def ine (fl ) •*• N t o correspond t o

l e a s t e lements , and ob ta in =R -*-•• N . f has t h e following p r o p e r t i e s :

A —>• =R S —»• 3? S' >• =ff
+ + i s a pullback and for + + , + + pullbaaks,
1 1- N 1 — > • N 1 • A?

o a; xs
S' = (5o?) - S .

These two properties, entirely in the language of near-exactness

except for N itself, characterize =R . Hence:

PROPOSITION 5.51. If j1 : T + T1 i8 a near-exact functor of

well-pointed topoi that preserves epimorphic families, then T is exact

iff it preserves the coequalizer of 1^ and s . •

Moreover given any diagram in a well-pointed topos, we can enlarge it

and add 1 -^+ N • N and translate any coequalizer condition into

near-exactness conditions on the enlarged diagram. We can know the

universal Horn theory of exactness of T if we know which two-sorted

elementary theories have models in T in which one of the stipulated sorts

is the natural numbers.

If T is a well-pointed topos with the axiom of choice, that is every

object is projective, then by a Lowenheim-Skolem argument we can reduce the

two-sorts to one and obtain the converse of Proposition 5-33:
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THEOREM 5.52. The universal Horn theory of exactness of a

well-pointed topos with NNO and axiom of choice is determined by its

existential second order arithmetic. D

5.6. A standard recovery

PROPOSITION 5.61 for topoi. If T is such that for every R c B*B ,

=/? is the union of the sequence A, R, R , ..., through the standard

natural numbers, then T may be exactly embedded in a power of S .

Proof. By Theorem 3.2U we know that there is a collectively faithful

family of non-exact functors into S , each of which preserves epimorphic

families, hence unions. Hence the operation R i—• 3? is preserved and by

our remarks in the last section, such functors are exact. •

COROLLARY 5.62. Countably complete topoi may be exactly embedded in

a power of S .

Proof. Whenever A, R, R , ..., W1, ... has a union it is =R . D

From Corollary 5-15 we thus obtain:

PROPOSITION 5.63. No set of elementary properties true for the

category of sets implies exact (even right-exact) embeddability into a

product of countably complete topoi. D

By the standard maps from 1 to N we mean those of the form

1 -*+ N -*+ N -*+ 11 -*+... -*+ N .

We say that N is of standard generation if the standard maps form a

collectively epimorphic family. In a well-pointed topos, such is

equivalent to (l, N) having only standard maps.

THEOREM 5.64. If T is a topos with NNO then it may be exactly

embedded in a power of S if N is of standard generation.

Proof. Theorem 5.23 says that there is a collectively faithful family

of exact functors into well-pointed topoi each of which preserves

epimorphic families, hence in each of which (l, N) is standard. (Each

has NNO by Proposition 5.U2.)

By our remarks in the last section, Hfl is the union of the values of
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x

a map N •*• U , thus a union of a sequence over the standard natural

numbers, and Proposition 5-6l applies. D

If T is solvable then N is well-pointed and standard generation is

necessary.

COROLLARY 5.65. If T is a solvable (for example, well-pointed)

topos with WNO and every 1 -»• N is standard then the existential second

order arithmetic of T is standard. D

It seems to me that Corollary 5-65 provides something of a semantics

for existential second-order arithmetic.

6. Problems

Which categories can be exactly embedded in topoi?

Which well-pointed topoi can be exactly embedded in well-pointed topoi

with NNO ?

Which of the latter can be exactly embedded in well-pointed topoi with

the axiom of choice?

Which of the latter can be exactly embedded in well-pointed topoi with

AC and an axiom of replacement?

M i tcheI I and Co Ie have independently shown that the latter are

isomorphic to categories arising from models of Zermelo-Fraenkel. Hence

we are asking for a metatheorem in which not the category of sets (what's

that?) but a category of sets is the model.

The answers to the last two questions would tell us which existential

second order theories of arithmetic are compatible with Z-F . Indeed a

good question is whether each first-order arithmetic compatible with the

axioms of well-pointed topoi is compatible with Z-F .

Using standard techniques transferred to well-pointed topoi we can see

that each existential second order sentence in arithmetic is equivalent to

one which asserts the existence of a single unary operator g that

satisfies an equation involving g, + , x, - . If we know that each such

sentence implies (using the axioms of topoi) that g is bounded by a

first-order definable operator (for example, recursive) then the

existential second order theory is determined by the first order theory.
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We should remark, in regard to the second question, that Theorem 5.23

remains true even if we replace the category of sets with the category of

finite sets. The idea of the proof is to find a finite elementary theory

such that the sentences true for all finite models are not recursively

enumerable.

An example of such is the theory of ordered partial rings, with enough

axioms to insure that the finite models of such are finite intervals of the

integers. The theory of diophantine equations is thus a subset of the

theory of its finite models.

Editor's note (l May 1972). The Editor is very grateful to Mr T.G.

Brook and especially also to Professor G.M. Kelly for reading the proofs

with care and amending several mathematical errors. Some last-minute (and

later) changes are due to the author.
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