Spahn Lawvere-Tierney operator

The closure operator

Definition

A Lawvere–Tierney topology in EE is (internally) a closure operator given by a left exact idempotent monad on the internal meet-semilattice Ω\Omega.

This means that: a Lawvere–Tierney topology in EE is a morphism

j:ΩΩ j: \Omega \to \Omega

such that

  1. jtrue=truej true = true, equivalently id Ωj:ΩΩ\id_\Omega \leq j: \Omega \to \Omega (‘if pp is true, then pp is locally true’)

    * true Ω true j Ω \array{ * &\stackrel{true}{\to}& \Omega \\ & {}_{\mathllap{true}}\searrow & \downarrow^{\mathrlap{j}} \\ && \Omega }
  2. jj=jj j = j (‘pp is locally locally true iff pp is locally true’);

    Ω j Ω j j Ω \array{ \Omega &\stackrel{j}{\to}& \Omega \\ & {}_{\mathllap{j}}\searrow & \downarrow^{\mathrlap{j}} \\ && \Omega }
  3. j=(j×j)j \circ \wedge = \wedge \circ (j \times j) (‘pqp \wedge q is locally true iff pp and qq are each locally true’)

    Ω×Ω Ω j×j j Ω×Ω Ω. \array{ \Omega \times \Omega &\stackrel{\wedge}{\to}& \Omega \\ {}^{\mathllap{j \times j}}\downarrow && \downarrow^{\mathrlap{j}} \\ \Omega \times \Omega &\underset{\wedge}{\to}& \Omega } \,.

Here \leq is the internal partial order on Ω\Omega, and :Ω×ΩΩ\wedge: \Omega \times \Omega \to \Omega is the internal meet.

This appears for instance as (MacLaneMoerdijk, V 1.).

Created on December 6, 2012 at 05:21:06. See the history of this page for a list of all contributions to it.