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Introduction

The work for this book grew out of an attempt in the early 1980s to apply
the then newly emerging theory of crossed modules, crossed complexes, and
their relationship with combinatorial group theory, cohomology and homology
of groups and, more generally, ‘combinatorial homotopy theory’ in the sense
of Whitehead’s [164], to problems in the algebraic homotopy of pro-finite
spaces and related profinite groups. Profinite groups arise naturally as Galois
groups and Serre had written extensively on their theory and applications.
Grothendieck, [78], had followed him in stressing the analogy between the
Galois group and algebraic geometric versions of the fundamental group of
a scheme. These latter objects were also naturally profinite groups. Artin
and Mazur, [6], had identified that the étale homotopy type of a scheme was
closely linked to processes of profinite completion and these had been taken
up and exploited, initially by Sullivan, and then by a whole host of homotopy
theorists, culminating in the lecture notes of Bousfield and Kan, [19], in 1972.

Again in the early 1980s, I had the privilege to be a participant in a fas-
cinating exchange of ideas between Grothendieck at Montpellier and Ronnie
Brown and myself at Bangor. The subject of the correspondence was the ‘Pur-
suit of Stacks’ and the use of higher homotopy groupoids to provide algebraic
models for homotopy types. The formal structure revealed in the categorical
treatment of the fundamental group of a scheme, [78], defining it in terms of
the classification of finite coverings, had, several years earlier, seemed to me
possibly to lead to a generalisation replacing the ordinary category theory,
used as a tool in the theory, by ‘lax’ versions and eventually by ‘homotopy co-
herent’ constructions. In the initial stage this would require profinite groupoids
as used in Magid’s Galois theory of commutative rings, [116], and eventually,
if one was to get higher order coverings, working profinite models for profinite
homotopy types both of spaces and perhaps of schemes. This was far more
than I could dream of doing, but it suggested some good problems to try out
the ideas at a low level. Then I found that my ideas were not as daft as they
might seem. Grothendieck showed us letters that he had written some years
earlier in which he outlined an attack on just this. His conjectural theory con-
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sidered the action of the fundamental group of a space or scheme on the fibre
of a covering space as being just the first of an infinite ladder of ‘homotopy
coherent actions’ of homotopy n-types of spaces on ‘fibres’ which were models
for homotopy (n − 1)-types. The draft plan of attack had to be (i) under-
stand homotopy coherence as a generalisation of the bicategorical methods
as developed, for instance, by Benabou, (ii) understand algebraic models for
n-types, and possibly (iii) understand the extent to which the available theory
of algebraic models of n-types (at that time mainly the MacLane-Whitehead
result on 2-types, [114], and the theory of crossed complexes / homotopy sys-
tems in [164]) could be extended in a meaningful way to the profinite case so
as to be applicable in algebraic geometry. The evidence that some such the-
ory might be possible was strong, at least in the topological (non-profinite)
case. There were results on representation of cohomology classes in terms
of crossed n-fold extensions, with indications of possible extensions to non-
Abelian cohomology, and interpretations of combinatorial data in the theory
of presentations of groups that suggested possible links there, both with clas-
sification of extensions and directly with cohomology. Above all, Whitehead’s
two ‘Combinatorial Homotopy’ papers and in particular the second one, [164],
had been an attempt to extend the insights of the combinatorial group theory
developed by Reidemeister in the 1930s, to exactly a combinatorial treatment
of homotopy types and thus of their possible algebraic models, in other words
to develop an ‘algebraic homotopy ’ theory. Whitehead’s vision of such a the-
ory is discussed more fully in the introduction to Chapter 2, and in particular,
at the start of section 2.1. It basically aimed to reduce the classification of
‘nice’ space to that of algebraic models for their homotopy types, up to some
algebraic notion of homotopy.

In 1982, a student, Fahmi Korkes, had started working with me on the
generalisation of the basic constructions of profinite group theory to the the-
ory of crossed modules and crossed complexes. This was, in part, designed
to test if results would generalise as mentioned above, but was largely par-
allel to the ‘Grothendieck programme’ which was both much too large for
a PhD project and also only becoming apparent at that time. Brown and
Huebschmann, [29], had shed new light on old ideas in combinatorial group
theory and, in particular, on ‘identities among relations’. The methods used
both in combinatorial group theory and in cohomology of groups, made fre-
quent use of Eilenberg-MacLane spaces, K(G, 1), and of construction based
on ‘the’ classifying space, BG, of a group G. The construction, and proper-
ties of these not only gave information on the presentations of the group but
also, within algebraic topology, on the universal G-bundles. If G was a profi-
nite group, however, the constructions did not take into account the extra
topological aspect of G, so Fahmi’s project was to try to get around this by
using ‘profinite’ crossed modules and ‘profinite’ crossed complexes to provide
profinite algebraic analogues of all the main topological constructions of ba-
sic combinatorial group theory and cohomology and then, to some extent, to
evaluate them to see if they did what had been hoped for. He did an excellent
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job. His thesis, [100], showed that most of the crossed gadgetry went through
without problem, in fact a surprising amount went through with little extra
work, only occasionally needing hard new arguments. He also realised that
the treatments, available at that time, of cohomology were unduly restrictive,
and unnatural, when it came to choice of coefficients, and that they were not
adapted to the task he had been set.

A referee of one of the joint papers we wrote after his thesis suggested
that the material would fit better in a monograph as some of the results were
reasonably easy extensions of published material, but that the original mate-
rial was not well known amongst the users of profinite groups. We therefore
started thinking of a monograph of this form. The main problems however
were non-mathematical ones. They were caused by ‘events’ in the ‘outside
world’ and, in particular wars in the Middle East. There were other prob-
lems to writing a short monograph. There was no adequate coverage of the
background material in any small set of sources. It was available in journal
papers dotted about the literature, so we could not merely quote the existing
non-profinite theory. It would have to be developed in the monograph itself.

This monograph finally attempts to do that. It has been delayed by ‘events’
as I mentioned before. It aims to provide some of the necessary machinery for
developing an adequate, well structured theory of cohomology of profinite
groups, a combinatorial group theory for profinite groups and some of the
relations with the n-stacks programme of Grothendieck. On the way it pro-
vides the first treatment, in monograph form, of much of the crossed algebraic
homotopy or crossed homotopical algebra developed in the last 20 years.

Of course, in the time since this monograph was started, other sources
relevant to the area have appeared. On the general area of Galois theory, there
is the excellent book by Borceux and Janelidze, [18]; much has been written
on profinite groups as such, see for instance, Dixon et al, [46], and some of
the inadequacies that we had to work with, e.g. the unnatural restriction on
coefficients for cohomology of pro-finite groups, no longer apply, cf. Ribes
and Zalesskii, [148]. The ordinary theory of algebraic homotopy including
some discussion of crossed structures has been extensively developed by Baues
in a serious of books and articles, for instance, [9–11], but the full crossed
‘menagery’ is still not adequately represented. The theory of stacks has also
progressed considerable, - but the full ‘Grothendieck programme’ has still not
been completed, although much work has gone into it. The original needs
for this monograph have thus changed in detail but are still there. Some of
the ideas, problems and results that it reveals or reviews are still not well
understood as far as that programme is concerned.

The theme of profinite n-types is represented in some form in most of
the chapters. Another theme is cohomology of profinite groups, and there are
strong links between these two themes. We give quite a detailed description
of profinite group cohomology as not only are some of the results needed for
a thorough treatment of profinite n-types, but also the ‘crossed’ approach to
the representation of such n-types has applications in both the cohomology
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and the homology of groups. The treatment we have given is thus not limited
just to those parts of the theory needed directly for the profinite algebraic
homotopy as such.

The original work on the first few chapters is based on [100]. More exam-
ples and some more results have been added by me. Later sections have been
added that are relevant to the wider and deeper understanding of profinite ho-
motopy types, the structure of profinite simplicial groups and thus, indirectly,
to problems relating to Grothendieck’s Pursuit of Stacks in its profinite form.

Originally I had hoped to write this jointly with Korkes, but this had
proved impossible due to world events and I have finally decided to complete
the monograph myself. It, of course, has benefitted enormously from the initial
firm foundation given by his work for his PhD and I must add the usual
disclaimer about all the errors being my own!



1

Algebraic Preliminaries

In these first two chapters we will need to recall various more or less well known
facts on profinite groups, simplicial groups, homotopy theory and completions.
To avoid that this becomes as large as the rest of the book put together and
as most of the proofs are relatively easily available in ‘the literature’, we will
present merely an outline of much of the more routine theory giving references
that are more than adequate for the details. Much of this material can be
‘skimmed’ on first reading, then studied more deeply when called on later on
in the book.

1.1 Pro-objects

We will need to be able to talk of profinite groups, profinite spaces, and related
topics in at least two different ways. In one the view of, say, a profinite group
is as a topological group with particular properties on the quotients by its
closed normal subgroups. This is often a natural way in which the object
emerges from other considerations, say as the Galois group of an extension or
the fundamental group of a scheme in the étale topology. It is not the only
view possible and sometimes the profinite group is exactly that a pro-finite
group, that is, a projective system of finite groups. Both views are useful
and are equivalent to each other. For applications in topology and algebraic
geometry, it is often the second one that gives the clearer insight so we will
start with that, introducing the general notion of a pro-object in an arbitrary
category, C.

Definition: A small category I is said to be filtering if:
(i) for each pair of objects i, j of I, there is an object k and morphisms k → i,
k → j,
and
(ii) for each parallel pair of morphisms i

// // j between two objects i and j
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of I, there is an object k and a morphism k → i such that the two composites
k // i

// // j are equal.

Let C be a category. A pro-object in C is specified by a small filtering
category I and a functor X : I → C. A pro-object in C may also be called a
projective system in C or a filtering diagram of objects of C.

If X : I → C and Y : J → C are two pro-objects in C, then a morphism
from X to Y is an element of the set limjcolimiC(X(i), Y (j)). Pro-objects in
C and their morphisms form a category denoted here by Pro−C.

Remarks: (i) Luckily in the context in which we will be working, it is
usually possible to avoid this somewhat complicated and somewhat ‘stark’
description of morphisms of pro-objects. It can be ‘deconstructed’ to give a
description of such a morphism in terms of interrelating morphisms, fij :
X(i)→ Y (j), but for the most part we will have finiteness conditions on the
objects X(i) and Y (j) which will allow us to use other means as well.

(ii) This description of Pro−C is explored in detail in several texts notably
[5, 75], Artin and Mazur’s Étale homotopy theory lecture notes, [6] and var-
ious other books on that area and the related area of Shape Theory, see, for
instance, Cordier and Porter, [39]. It is not necessary to understand, from the
start, the lim-colim definition of the morphism sets, so the reader should not
be ‘phased’ by it, in fact, we introduce lim below, however some categorical
knowledge will be needed and assumed from time to time.

(iii) The definition of pro-object given here can be simplified somewhat by
replacing the condition that the domain ‘indexing categories’ for pro-objects
be small filtering categories by demanding rather that they be ‘directed sets’,
or more exactly small categories associated to directed sets. In such categories
there is at most one morphism between any two objects so the second condition
on filtering is redundant and thinking of the existence of i → j as being
an indicator of a relationship i ≥ j condition (i) is the usual ‘directed set’
condition, see below. Given any pro-object X : I → C in the general sense,
one can construct a directed set I and a functor X : I → C such that X and
X are isomorphic in Pro−C. Thus for all intents and purposes we can replace
X by X.

It is useful to have a criterion that will imply that two pro-objects are
isomorphic. In ordinary calculus, one is useful to the idea that a convergent
sequence remains convergent if one deletes elements so that for any deleted
element the remains one with higher index. A similar idea works with categor-
ical limits and also with pro-objects. Suppose that X : I → C is a pro-object
in C and we have a subcategory J , we can restrict X to J to get a new pro-
object that we will call XJ for the moment. We need conditions that will
imply that XJ is isomorphic to X, itself.

Definition: The category J is cofinal or initial in I if given any i ∈ I,
there is a j ∈ J with a morphism j → i.

The following is well known:
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Proposition 1. If J is a cofinal subcategory of I, then for any pro-object X
indexed by I, X ∼= XJ . �

There is a notion of final functor between filtering categories which extends
the above. We will not be needing it, but discussion of this can be found in
many sources on category theory.

1.2 Profinite topological spaces and profinite spaces

For much of the time we can replace pro-objects in a category C by objects
of C, which are ‘topologised’, at least in the presence of some finiteness as-
sumptions. The first instance of this is when C is the category of finite sets,
and the resulting objects are profinite spaces. Although, as mentioned above,
we will need sometimes to assume a certain level of categorical knowledge,
it is convenient to recall here the usual and elementary definition of inverse
systems and inverse limits. The former of these is just a special case of the
definition of pro-object that we have just seen:

Definition: Let C be a category and let I be a directed set with respect
to a relation ≤, (i.e., ≤ is reflexive and transitive and to every pair i1, i2 ∈ I,
there is an i ∈ I such that i ≥ i1 and i ≥ i2). For each i ∈ I, suppose that
we have an object Si ∈ C such that for each i ≤ j, we have a morphism
αji : Sj → Si in C satisfying the following:
(i) each αii : Si → Si is the identity,
and
(ii) if there is a k with i ≤ j ≤ k then αki = αjiα

k
j .

Such a system will be called an inverse system or projective system in C.
It is, of course, just a special case of the definition of pro-object in C given
earlier, but it has the advantage of giving precisely what needs to be checked
when specifying such a system.

Definition: Let S be an object in C and let {Si, αji} be an inverse system
in C. If for each i ∈ I, we have a morphism αi : S → Si in C such that,
whenever i ≤ j, we have αjiαj = αi, then we shall call {S, αi} a cone over
{Si, αji}. If {S, αi} is universal amongst cones over {Si, αji}, so if for every
cone {X,λi} over {Si, αji}, there is a unique morphism φ : {X,λi} → {S, αi}
of such cones (i.e., a unique morphism Φ : X → S in S such that λi = αiφ,
for each i in I), then we say {S, αi} is the inverse limit (or projective limit
or sometimes simply limit) of {Si, αji} in C and denote it

S = LimSi.

Example: The usual construction of inverse limits in the category of Sets
is as follows:

Given {Si, αji}, form the product
∏
k Sk and then let
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S = {(sk) | sk ∈ Sk and if i ≤ j, si = αji sj}.

Taking αi to be the projection onto the ith factor, it is easily checked that
{S, αi} satisfies the universal property above and so ‘is’ the inverse limit of
{Si, αji}. Of course, as usual with categorical definitions involving universal
properties, an inverse limit is determined only up to isomorphism. In the
categories of sets, groups, rings and topological spaces, inverse limits always
exist.

Definition: A profinite space is an inverse (projective) limit of finite dis-
crete spaces in the category of topological spaces. The category of profinite
spaces and continuous maps will be denoted Prof.

Remark: Later we will have occasion to consider simplicial profinite
spaces. These can be considered as inverse limits of finite simplicial sets. Due
to the use of the term ‘spaces’ as synonymous with ‘simplicial set’ by quite
a large number of workers in that field, some researchers refer to simplicial
profinite spaces as ‘profinite spaces’, and this can cause some confusion. Here
we will try to make the distinction between these two different meanings of
the term, although it is usually clear when referring to a source which meaning
is being attached to it.

The following is well known and a proof can be found in, for instance, [18]
or [116]:

Proposition 2. Let X be a topological space. Then X is a profinite space if
and only if X is compact Hausdorff and totally disconnected. �

Definition: Let X be a space. A profinite completion of X is a profinite
space X̂ together with a continuous map ηX : X → X̂ such that if given
any profinite space Y and a continuous map g : X → Y , there is a unique
continuous map ψ : X̂ → Y with ψηX = g.

In what follows we will give two constructions of a profinite completion X̂
of a space X.

Let Ω(X) be the family of all equivalence relations R defined on X with
the property that X/R is finite and discrete in the quotient topology. Then
we take

X̂ = LimR∈Ω(X)(X/R).

This is easily shown to be a profinite completion of X.
Another interesting way of constructing a profinite completion is to take

Bool(X) to be the Boolean algebra of all continuous Z2-valued functions on
X, where Z2 = {0, 1} is given the discrete topology or equivalently as being
the algebra of closed-open subsets of X. Then we set X̂ = Max(Bool(X)),
the maximal ideal space of Bool(X) and there is a Gelfand map,

ηX : X → X̂.
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This exploits Stone duality between Boolean algebras and profinite spaces.
Because of this dualtiy, profinite spaces are called Boolean spaces by some
authors. Taking this further leads to locale theory and prodiscrete locales.
We will not be exploring that theory here, but note that it may be a useful
generalisation of the situations, we will be discussing.

Proposition 3. Let X be a profinite space, and let X1 be a dense subspace of
X. If X̂1 is the profinite completion of X1, then there is a map

q̂ : X̂1 → X

that is surjective.

Proof: Take Max(Bool(X)), as above and similarly for X1. The inclusion of
X1 into X induces a map between these spaces, but of course, Max(Bool(X))
and X are naturally homeomorphic. It is then relatively simple to use the
density of X1 in X to prove that the induced map Bool(X) → Bool(X1) is
one-one and hence that it induces a surjective map on applying Max. �

1.3 Profinite and pro-C groups.

The category of profinite groups forms a natural extension of the category
of finite groups, but it carries a much richer structure as it allows for the
formation of free objects, and coproducts as well as the projective limits that
one might expect, given that the objects of this extension are projective limits
of finite groups. Here we will have room only to sketch some of the basic theory
and to prove some important but fairly elementary results. For more on this
elementary and by now fairly classical theory, we refer the reader to the basic
sources such as Serre, [152], Ribes, [147], Schatz, [150] and also more recent
texts such as that by Dixon, de Sautoy, Mann and Segal, [46] and Ribes and
Zalesskii, [148].

Definition: A profinite group is an inverse limit of a system of finite
groups.

The category of profinite groups and continuous homomorphisms between
them will be denoted by Prof.Grps.

Theorem 1. The following conditions are equivalent:

(i) G is a profinite group;
(ii) G is a compact Hausdorff group in which the family of open normal

subgroups forms a fundamental system of neighbourhoods at the identity;
(iii) G is a compact, Hausdorff and totally disconnected topological group. �

Examples (i) If G is an abstract group, we can define a topology on G by
taking, as a system of neighbourhoods of the identity, the normal subgroups,
U , of finite index in G. Associated with this system of normal subgroups of



10 1 Algebraic Preliminaries

G, we have an inverse system of finite groups whose limit will be denoted Ĝ
which will be called the profinite completion of G. Thus

Ĝ = LimU∈Ω(G)G/U,

where Ω(G) is the directed set of normal subgroups of finite index in G.
(ii) Let N be the natural numbers, partially ordered by division, so that

for m,n ∈ N, n ≤ m means n | m, and let φmn : Z/mZ→ Z/nZ be the natural
projection. Then one has a profinite group

Ẑ = LimmZ/mZ.

This is the profinite completion of the additive group, Z, of integers.
(iii) Let N be the natural numbers and suppose p is a prime number. If

m,n ∈ N, and m ≤ n in the ordinary sense, define Z/pnZ → Z/pmZ, to be
the natural projection. The limit

Zp = LimnZ/pnZ

is a profinite group and coincides with the additive group of p-adic integers.

We will often want to restrict attention to subcategories of the category
of profinite groups. For instance the last example above is an example of a
‘pro-p group’. More generally, let C be any class of finite groups that is closed
under the formation of subgroups, homomorphic images and extensions.

Definition: A pro-C group is an inverse limit of an inverse system of
groups in the class C.

The subcategory of Prof.Grps consisting of the pro-C groups and the
continuous homomorphisms between them will be denoted Pro− C.

This notation now has two deinitions but as the corresponding categories
are equivalent this causes no problem.

If G is a pro-C group, then an open normal subgroup U of G might be
called C-cofinite as G/U is a group in C. The term will be extended to any
group G, so that a normal subgroup N of G will be called C-cofinite if G/N
is in C.

In particular, when C is the class of all groups of order a power of p, then
we simply say ‘pro-p’ rather than specifying C and saying pro-C. These pro-p
groups are important in many areas of mathematics and we refer the reader
to, for instance, [46], for an in-depth treatment of their theory. We note that
a profinite group is a pro-p group if and only if every open normal subgroup
has index some power of p. More generally, if ` is a family of prime numbers,
we can form the class of all finite groups whose orders are products of primes
from `. The corresponding limit groups are then called pro-` groups, for short.

The categories of form Pro − C form varieties in Prof.Grps. Recall that
a variety in any algebraic context meands a subcategory of ‘algebras’ closed
under products, subobjects and quotients. We note the condition on C implies
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the closure of C under finite products, so C is what is called a pseudovariety,
see later. The category Prof.Grps is monadic over the category of Spaces.
This means that free objects exist in all the Pro−C. A good reference for this
is Gildenhuys and Kennison, [69]. We will need a good knowledge of these free
constructions so will discuss them more fully shortly.

We will often give definitions in detail only for profinite groups themselves,
but there are nearly always variants for when the class of finite groups is
replaced, either by a general C, or, sometimes, for the class of ‘p-groups’, as
certain ideas are especially well structured in that case.

Returning to general profinite groups, we say that a subset S of a profinite
group G generates G if the (abstract) subgroup generated by S is dense in G.
We call G finitely generated if G has a finite subset which generates it.

Next we list some elementary facts about profinite groups:

(A) A closed subgroup H of a profinite group G is profinite.
(B) Any quotient group G/H of a profinite group, G, by a closed normal

subgroup H, is profinite.
(C) The product of a family of profinite groups is profinite.
(D) The inverse limit of a system of profinite groups is profinite.

We can elaborate on this last fact.

Proposition 4. Let LimI denote the inverse limit functor from the category
of inverse systems of profinite groups, over a fixed directed set I, then LimI

is an exact functor (i.e., it preserves exact sequences). �

There is a result that will be used time and again in this book. Its central
importance is manifested by its position in Serre’s book, [152]. It is his Propo-
sition 1 on page 2. Given its importance we will give a sketch of its proof even
though it is very well known and can be found in other sources as well, see
Schatz, [150], for instance.

We will need a number of lemmas.

Lemma 1. (i) If H is a closed subgroup of a profinite group G, then the space
of cosets G/H is a profinite space.
(ii) Let G be a compact group and {Si} a decreasing filtered family of closed
subgroups of G. Writing S =

⋂
Si, the natural mapping

G/S → Lim G/Si

is a homeomorphism.

Proof: Part (i) is fairly routine. For part (ii) note that the mapping is injective
with dense image and as G/S is compact, the result follows. �

The ‘important result’ is the existence of continuous sections for epimor-
phisms and of continuous transversals for subgroups. In the case of abstract
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groups where continuity does not play a part, there is no problem. You use
the Axiom of Choice. For profinite groups, more work is needed although of
course the Axiom of Choice will still be needed. Serre in fact proves a more
general result:

Proposition 5. (Serre, [152], p.2) Let H and K be two closed subgroups of
a profinite group G with K ⊂ H. There is a continuous section

s : G/H → G/K

to the natural projection from G/K to G/H.

The proof will need a further lemma.

Lemma 2. (i) There is a section in the above setting if H/K is finite.
(ii) If H and K are normal in G, the extension

1→ H/K → G/K → G/H → 1

is trivial on an open subgroup of G/H.

Proof: Let U be an open normal subgroup of G such that U ∩H ⊂ K. The
restriction of the projection from G/K to G/H to the image of U in G/K
is then injective (and is a homomorphism when H and K are normal, which
proves (ii)). It then has a section on the image of U in G/H, but that is an
open set and translates of it cover G/H. Using those translates we construct
a section on the whole of G/H. �

Proof of Proposition 5: Let X be the set of pairs (S, s) with S a closed
subgroup of G with K ⊆ S ⊆ H and where s is a continuous section s :
G/H → G/S. The idea is to show X has a maximal element with S = K by
using Zorn’s lemma. We order X in the obvious way. Lemma 1 (ii) shows that
X is an inductive set, (every totally order subset has a maximal element) and
then, using Lemma 2, we obtain that if X has a maximal element then it must
have S = K. As planned, invoking Zorn’s lemma completes the proof. �

Corollary 1. (Continuous sections exist.) Any epimorphism of profinite groups
has a continuous section.

Proof: Let θ : G1 → G2 be an epimorphism of profinite groups, then, of
course, we may assume G2 = G1/H for H = Ker θ and the result follows
from the case K = 1 of the above proposition. �

Any section of a more general G → G/H, where H is a closed subgroup,
but is not necessarily normal, will give a continuous transversal for H in G,
i.e., a continuous choice of coset labels. Of course, one can normalise any such
continuous transversal, t, so that t(1H) = 1G. It will be useful to have this as
a formal result here so:
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Corollary 2. (Continuous transversals exist.) Given any closed subgroup H
of a profinite group G, there is a continuous transversal t : G/H → G such
that t(1H) = 1G. �

Of course, ‘sections’ need not be ‘splittings’. When a section is a homo-
morphism, then it is usually called a splitting and the epimorphism is called
a split epimorphism. In the abstract case, split epimorphisms of groups cor-
respond to the projections of semidirect products. The profinite analogue of
this goes through without problem, but as we will need profinite semidirect
products rather a lot, we will need to set up notation and terminology with
some care.

Suppose π : H → G is a split epimorphism of profinite groups with K =
Ker π, and s : G→ H, a chosen continuous splitting, then G acts continuously
on K (on the left for convenience) by noting that if ι : K → H is the inclusion,
g ∈ G and k ∈ K, then s(g).ι(k).s(g)−1 is again in K and so gives an element
gk ∈ K such that

ι(gk) = s(g).ι(k).s(g)−1.

This gives a continuous action:

G×K → K

(g, k) 7−→ gk.

As automorphism groups of profinite groups need not be themselves profi-
nite, it is usually easier to define continuous actions in this direct way as a
continuous map from a product satisfying the evident properties rather than
as a continuous map to some topological group of continuous automorphisms.

Given any G, and K and such a continuous action, we can form a group
K oG with K ×G as underlying space and the usual multiplication

(k1, g1)(k2, g2) = (k1
g1k2, g1g2).

This is continuous and makes K o G into a profinite group. The projection
π : K o G → G is given by (k, g) goes to g. It is continuous, and a split
epimorphism with splitiing given by s(g) = (1K , g). Of course, K ∼= Ker π
and if we started with a profinite group H as above, and a split epimorphism,
π, we retrieve them, up to isomorphism, since H ∼= K o G, etc. compatibly
with the split projections.

As was said above, all this is well known, but we will need the notation
thus set up.

1.4 Free profinite groups

For the basic definitions and results in this section we refer the reader to Serre,
[152], Ribes, [147], or Shatz, [150].
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Definitions: (i) Let S be a set and G a profinite group. We say that a
map u : S → G is convergent to 1 ∈ G if every open normal subgroup of G
contains all but a finite number of the u(s) for s ∈ S.

(ii) Again let S be a set. A free profinite group on S is a profinite group
F (S) together with a map u : S → F (S) convergent to 1 ∈ F (S) such that
given any profinite group G and a map v : S → G convergent to 1 ∈ G, there
exists a unique homomorphism φ : F (S)→ G such that φu = v.

Now given a set S, let Fd(S) be the (discrete) free group on the set S with
the natural mapping u : S → Fd(S) being ‘inclusion of generators’. Let Ω(Fd)
be the set of all normal subgroups U of Fd(S) such that

(i) Fd(S)/U is finite,
and

(ii) U contains all but a finite number of the u(s), s ∈ S.

Let
F (S) = LimU∈Ω(Fd)Fd(S)/U.

We claim that F (S) is a free profinite group on S in the above sense. This
is well known, a version was already given in Serre’s notes, [152], so we will
sketch the argument only.

Suppose that G is a profinite group and v : S → G is convergent to 1 in
G. As Fd(S) is the free group on S, v extends to a unique homomorphism
v : Fd(S)→ G satisfying vu = v.

Suppose that U is an open normal subgroup of G, then we claim v−1(U)
is in Ω(Fd). Certainly it is the kernel of the composite

Fd(S)→ G→ G/U

and G/U is finite, so (i) is satisfied and we only need to check (ii), which
however follows since v itself converges to 1.

It is now routine to check that v induces a unique continuous φ : F (S)→ G
such that φu = v.

If S is finite, condition (ii) is trivially satisfied and F (S) is just Fd(S). To
remind ourselves of the profiniteness of F (S), we sometimes may write it also
as F̂ (S).

For an infinite S, the construction given above gives u : S → F̂ (S) and so
û : Ŝ → F̂ (S), with S being considered as a discrete topological space, and Ŝ,
of course, being its profinite completion. This map û is then continuous. This
leads to a definition that will often be needed later.

Definition: Let X be a profinite space. A free profinite group on X
is a profinite group F (X) together with a continuous map f : X → F (X)
satisfying the universal property:

if h : X → G is any continuous map from X to a profinite group, G, then
there exists a unique continuous homomorphism φ : F (X) → G such that
φf = h.
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A proof of the existence of free profinite groups on all profinite spaces can
be manufactured by writing the profinite space as limit of its finite quotients
and then using the above constructions to construct an inverse system of free
profinite groups whose limit is the desired construct. Alternatively an elegant
proof can be found in Magid’s paper, [115], Proposition 7.

Many results on free groups generalise directly to free profinite groups,
due to the above universal property in part, but not all do so. For instance
the Nielsen-Schreier theorem states that any subgroup of a free group is free,
but any profinite group is compact and Hausdorff as a topological group, so
open subgroups of a free profinite group should not even be expected to be
profinite for fairly trivial reasons. Worse than this however is true. It is not
the case even that closed subgroups of free profinite groups are necessarily
free, see, for instance, Lubotsky and Van den Dries, [109]. Because of this it is
necessary to take some care with generalisation of the theory of presentations
to give profinite presentations of profinite groups. Working with a class C and
hence with free pro-C groups, again one gets variations depending on what C
is. Some of these will be used later on and we will then give a more detailed
description of their behaviour.

Definition: Let F (X) be a free profinite group on a profinite space, X and
let N(R) be the closed normal closure of a closed subspace, R, of F (X). If G is
a profinite group continuously isomorphic to the quotient group, F (X)/N(R)
then (X : R) is called a profinite presentation of G.

If N(R) is itself free as a profinite group, then we will say that (X : R) is
a free profinite presentation of G.

Remarks: (i) Any profinite presentation of a finite group can be replaced
by a free one.

(ii) There are pro-p presentations of pro-p groups and more general pro-
C ones of the groups from these varieties. We will use these without further
mention when necessary.

One final result on free profinite groups is the following that is sometimes
useful :

Proposition 6. Let, as before, Fd(S) be the free group on a finite set, S, and
let F̂ (S) be a free profinite group on S. If φ : Fd(S) → F̂ (S) is the natural
continuous morphism, then φ(Fd(S)) is dense in F̂ (S). �

The proof is easy and is omitted.

1.5 Group and groupoid objects in a category.

If D is an arbitrary category having finite products, then one can formulate
what it means for an object M to have a group structure. Letting T be the
terminal object of D, we have to specify
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1. a multiplication map
µ : M ×M →M ;

2. a map
e : T →M,

thought of as ‘picking out the multiplicative identity’ and
3. an inversion map

( )−1 : M →M.

(In Sets, T is a singleton set, so e is determined by an element of M .)

This structure has to satisfy certain conditions. These can be specified
in terms of commutativity conditions on various diagrams, e.g., for instance
saying that

M ∼= T ×M
e×M //

=
''OOOOOOOOOOOO M ×M

µ

��
M

commute, just says “µ(e,m) = m”, or, more conventionally, e.m = m, i.e.,
that e is a left identity for multiplication. (These diagrams can be found in
many books on category theory and so will be omitted here.) Group objects
in D form a category, Gr(D). An alternative view is that the functor D( ,M)
from Dop to Sets will be naturally group valued with multiplication given by
the natural transformation

D( , µ) : D( ,M)×D( ,M) ∼= D( ,M ×M)→ D( ,M)

and the identity and inverse similarly induced from e and ( )−1 using, for the
first, the fact that D( , T ) is a singleton set. It is also clear what an Abelian
group object in D should be. The category of Abelian group objects in D will
be denoted by Ab(D).

For example, a group object in the category of profinite spaces is exactly
a profinite group. Later we will need to consider other case of this idea, and
so give another type of example. A group object in the category of groups
itself is just an Abelian group. We leave as an exercise a proof of this using
the well known Eckmann-Hilton argument. An interesting observation is that
the structure of internal group objects in the category of groupoids is not so
simple. These ‘group-groupoids’ can equivalently be definied using the cat1-
group formulation that we will considering in section 5.1.1.

Such group-groupoids can also be considered as groupoid objects in the
category of groups. We will be needing other examples of such ‘internal
groupoids’ such as profinite groupoids, which are groupoids in the category
of profinite spaces, so we will introduce them in general. We first need some
subsidiary definitions, that will be useful in their own right.
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Definition: Let D, again, be a category. A directed graph object in D
consists of an object, A, of D called the object of arrows (or directed edges) and
an object, V , of D called the object of vertices together with two morphisms

s, t : A→ V

of D, which are called the source and target morphisms.
The directed graph object is reflexive if, in addtion, there is a morphism

i : V → A

such that si = ti = idV : V → V .
This morphism is thought of as assigning an ‘identity’ arrow to each vertex

and as such arrows are loops their source and targets are equal. Of course there
is no composition in our setting as yet so ‘identity’ is just a convenient label.
We thus have a diagram

A

s //
t
//
V

i
oo

with si = ti = idV .
Example: If D has a terminal object, T and V is that object, then as the

‘hom-set’ D(A, V ) is a singleton set, we must have s = t and i makes A into
a pointed object. For instance, any group object in D gives a pointed object
by forgetting the multiplication map, µ.

For the next definition, leading up to that of an internal category, we need
D to have finite limits so we can form a pullback.

Definition: Let D be a category with finite limits. Given a reflexive di-
rected graph in D, the object C2 given by the pullback

C2
p2 //

p1

��

A

s

��
A

t
// V

is called the object of composable pairs of arrows.
We may write C2 = A t×sA, or more inexactly A×V A for this pullback over

V . In the case D = Sets, C2 is constructed as a subset of A × A consisting
of those pairs of arrows, (a1, a2), where t(a1) = s(a2), which explains the
terminology. This object is the key to defining an internal category in D, as,
in a category, composition is ‘partial’, i.e., not necessarily defined for all pairs
of arrows, just for those that match up their target and source, i.e., which are
composable.

We now change notation slightly and will replace V by C0, and A by C1.
This is to emphasise the various levels in an internal category C, so C0 is the
object of objects, C1 is the object of arrows and C2 is the object of composable
arrows.
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Definition: An internal category C in D consists of data (displayed in
the diagram

C2

p1 //
m //
p2 //

C1

s //

t
// C0

i
oo

with C2 the object of composable pairs of arrows of the reflexive directed
graph given by (C1, C0, s, t, i):
C0 is the object of objects of C;
C1 is the object of arrows of C;
s is the domain or source morphism;
t is the codomain or target morphism;
i is the ‘identity’ morphism;
and
m is the composition or multiplication morphism.
These are to satisfy various well known axioms such as

sm = sp1, tm = tp1

i.e., the domain of the composite of two arrows is the domain of the first, etc.,
and other axioms usually displayed diagrammatically, such as that giving
associativity of composition:

First form the limit, C3, of the diagram

C3
p3 //

p2   BBBBBBBB

p1

��

C1

s

��
C1

t //

s

��

C0

C1 t
// C0

As we have sm = sp1, etc., the projections define two induced maps from C3

to C2 t×s C1 and to C1 t×s C2 and, composing these with m × id and with
id×m gives two maps to C2. The associativity axiom says. of course, that

m(m× id) = m(id×m).

A full set of diagrammatic axioms can be found in Borceux’s ‘Handbook’,
[15–17], or Borceux and Janelidze, [18], section 7.1. There is an obvious notion
of morphism or internal functor between internal categories in D and the
resulting category will be denoted by Cat(D).

An internal category C in D will be an internal groupoid if, in addition,
there is an inversion morphism, r : C1 → C1 satisfying sr = t, r2 = id and
the composites
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C1
∆→ C1× C1

r×id→ C1t×s C1
m→ C1

and
C1

t→ C0
i→ C1,

are equal.
As we would in a Set based situation, we will write a−1 for r(a), then this

last condition expresses that the composite of a−1 with a is the identity on
the target of a. Again we refer to Borceux and Janelidze, [18], for a detailed
discussion.

The category of internal groupoids in D will be denoted Grpd(D).

Examples: 1. In D = Sets, here an internal category is just a small
category and an internal groupoid the type of structure we have called a
groupoid (as most of the examples are small by nature).

2. For D = Prof , an internal groupoid is what Magid, [115], for example,
has called a profinite groupoid. ‘A profinite groupoid is a groupoid whose sets of
objects and morphisms are profinite (spaces) and the functions assigning range
and domain to morphisms and identity morphisms to objects are continuous,’
([115], p.502). If the space of objects is a singleton, it is just a profinite group.

3. For D = Grps, the category of groups, then an internal category is auto-
matically an internal groupoid and is an example of the structure sometimes
called a ‘group-groupoid ’ or also a ‘(strict) 2-group’. The category Cat(Grps)
is thus the same as Grpd(Grps), and, in fact, is equivalent to the categories
of cat1-groups and crossed modules that we will meet shortly. A discussion of
these equivalences and especially the first of them, is given in Brown-Spencer,
[32]).

An important identity known as the ‘interchange law’ helps, perhaps, to
explain the structure of an internal category in this context. If we have an
internal category, C, within Grps, then the object of composable pairs C2 is a
group and the multiplication m : C2 → C1 is a group homomorphism. Writing
m(c, c′) in infix notation as c#1c

′ and writing #0 for the multiplication in the
group C1, the statement that m is a homomorphism is equivalent to stating
that, for all a, b, c, d ∈ C1,

(a#0b)#1(c#0d) = (a#1c)#0(b#1d),

whenever either side is defined. This is known as the interchange law. It is an
interesting exercise to show that this implies that the subgroup [Ker s,Ker t]
of C1 is trivial and conversely if this subgroup is trivial for some internal reflex-
ive directed graph in Grps, then there is an internal composition naturally de-
fined on that graph making it into an internal category. This [Ker s,Ker t] = 1
condition is the key to the cat1-group definition of Loday, [106], that we will
be examining in some detail starting in section 5.1.1.

Remark: For certain purposes ‘finiteness’ is not so natural a condition to
impose and unfortunately, topological inverse limits outside the setting of com-
pact spaces are less well behaved. A suitable replacement is to replace ‘spaces’
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by ‘locales’. Intuitively locales are open set lattices associated to spaces, but
there is no necessity for a locale to be ‘spatial’ in that way. Taking ‘prodiscrete
localic groupoids’ and thus, essentially, limits within tge category of internal
groupoids in the category of locales, gets around many of the difficulties when
finiteness in not ‘natural” or is not ‘available’. This is discussed in Borceux
and Janelidze, [18]. The context there is non-Galoisian Galois theory and the
Joyal-Tierney Galois theory of Grothendieck toposes, see their references, but
localic groupoids have been applied in other settings even nearer to our inter-
ests than that, and they may warrant further research along parallel lines to
the profinite, and hence spatial, case that we will be considering.

We end this discussion with an important example of particular type of
profinite groupoid, namely the action groupoid of a group action, when the
group and the space on which it acts are both profinite. (Again this notion
can be internalised to suitable classes of categories, but we will not formally
do this.) We start by looking at the classical discrete case, then the profinite
version is simple to give.

Definition: Given a group G and a set X, a left action of G on X is a
function

G×X → X

(g, x) 7→ g · x,

(or sometimes gx, if this is more appropriate), such that (i) if g1, g2 ∈ G and
x ∈ X,

g1 · (g2 · x) = (g1g2) · x,

and (ii) 1G · x = x for x ∈ X. (Of course, 1G, as usual, denotes the identity
element of G.)

The action groupoid of such a group action is the groupoid having X as
its object set and in which the set of morphisms is G ×X with source given
by the projection onto X and the target by the action, so the arrow (g, x)
goes from x to g · x. The identity function sends x to (1G, x).

The profinite case is obtained by requiring G to be a profinite group, X
to be a profinite space and the action to be continuous. The resulting action
groupoid is naturally a profinite groupoid, which will naturally be called the
profinite action groupoid of the profinite action.

1.6 Enriched categories - just a taster

There is a variant notion of profinite groupoid in which the collection of objects
need not be a profinite space, this being merely demanded of each ‘hom-set’
G(X,Y ). One of the best examples of this is the profinite groupoid B̂raid
introduced by Drinfel’d, [47], (cf. Jarvis, [93], for an introduction). This com-
bines various ideas that will be useful later, but will not be needed in great
detail
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The example centres on the idea of a braided monoidal category. Categories
such as categories of Abelian groups, modules, etc., have a tensor product that
allows one to multiply objects or morphisms together in such a way that the
result behaves a bit like an internal monoid in the ‘category of categories’. A
similar structure occurs if a category has finite products. The product of two
objects defines the multiplication. Of course, products are only determined ‘up
to isomorphism’ so associativity and identities are not satisfied ‘on the nose’.
Abstracting this gives the notion of a monoidal category, i.e., a category C,
with a multiplication ⊗ defined on it, so one can form A ⊗ B or f ⊗ g for
objects A,B or morphisms f, g. There is a unit object I, an associativity
isomorphism, and so on, and the whole structure has to satisfy some axioms
that are fairly obvious as they are lax versions of the monoid axioms. For
instance the associativity isomorphism is a natural isomorphism,

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C),

and has to satisfy a pentagon axiom related to the different ways of going
from ((A ⊗ B) ⊗ C) ⊗D to A ⊗ (B ⊗ (C ⊗D)). These axioms can be found
in many books on category theory so will not be given here. The result is
called a monoidal category. So a monoidal category is a bit like a monoid in
the category of categories, except that no requirement is made for it to be a
small category.

A monoidal category is symmetric if there are natural isomorphisms
τA,B : A⊗B ∼= B ⊗A (that is, a sort of commutativity isomorphism), which
are to be compatible with the other structural isomorphisms and are such
that τB,AτA,B = IdA⊗B . (We will be needing symmetric monoidal categories
briefly in a short while.) Again the axioms can be found in MacLane, [113],
or Borceux’s second volume, [16], so we will not give them here.

We can form a symmetric monoidal category on a single generating object
by building a category Symm having the non-negative integers as objects and
with

Symm(m,n) =
{
∅ if m 6= n
Sn if m = n

so it is the disjoint union of the various symmetric groups, Sn, indexed by
the non-negative integers. The ‘tensor product’ is given by addition on the
objects.

It often occurs that, although there are natural isomorphisms τA,B : A ⊗
B ∼= B ⊗ A, the second condition, that is, τB,AτA,B = IdA⊗B , need not be
satisfied, although the first is. The result is then called a braided monoidal
category . Again there is a beautifully simple description of the free singly
generatoed braided monoidal category. It is Braid with object set, again, the
non-negative integers and

Braid(m,n) =
{
∅ if m 6= n
Brn if m = n
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where Brn is the braid group on n strands. We will look at presentations of
the braid groups in some detail later on. Drinfel’d’s use was of a profinite
version of this, B̂raid, in which each braid group is profinitely completed, but
the set of objects is not changed.

This is typical of a slightly different form of adding structure such as
profiniteness to a (small) category and we will meet this in various contexts
in later chapters.

The idea of an internal category was based on the ‘category as graph plus
composition’ paradigm, but this is not the only one possible. We can, and
often do, view a category, C, having X as its collection of objects, as a doubly
indexed collection of sets {C(A,B)|A,B ∈ X}, together with composition
maps

CBA,C : C(A,B)× C(B,C)→ C(A,C),

and identity element that we will think of as being maps 1A : {∗} → C(A,A),
satisfying the usual well known axioms. In an enriched category, we have
some background category B, and a collection X of ‘objects’. For each pair
A,B ∈ X, we have an object C(A,B) of B, a sort of B-enriched hom-set’.
In addition to make things work we will need B to be a symmetric monoidal
category, so we can form

C(A,B)⊗ C(B,C)

for objects A,B,C ∈ X. We also want identities, 1A : I → C(A,A), where
I is the unit of the monoidal structure. This enriched category structure is
to satisfy some axioms and again we will omit these. They are the careful
result of adapting the axioms for a category (associativity and identities) to
a setting in which, for instance, (C(A,B) ⊗ C(B,C)) ⊗ C(C,D) is not equal
to C(A,B)⊗ (C(B,C)⊗C(C,D)), merely isomorphic to it in a controlled and
coherent way.

Examples: (i) Simplicially enriched categories and groupoids. We will
meet these in earnest in the next chapter. Many categories involved in alge-
braic homotopy have extra structure that means that each C(X,Y ) has the
structure of a simplicial set. These are mainly large examples of simplicially
enriched categories, but any homotopy type can be represented by a (small)
simplicially enriched groupoid.

(ii) The profinite completion, B̂raid, of Drinfel’d’s approach to Grothendieck-
Teichmuller theory, is a profinitely enriched category. This corresponds to
B = Prof .

(iii) Taking B to be one of the many categories of modules over a commu-
tative ring, k gives another collection of very useful enriched categories, the
k-additive categories. For algebraic homotopy theory, categories enriched over
various categories of chain complexes, or groupoids, (cf., Gabriel and Zisman,
[66]), or more generally crossed complexes (see later) are also useful.
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1.7 Profinite completions for groupoids

There are two ways of viewing groupoids, as we have seen. The ‘finite’ objects
in the two cases are different, so there are two related, but distinct, forms of
profinite completion for groupoids. Both are useful.

a) Internal groupoids in the category of finite sets form a subcategory of
the category of groupoids. this is a proreflexive subcategory, so the inclusion
has a left proadjoint, which will be a profinite completion functor. Put more
simply, if Grpd(FinSets) is the category of such finite groupoids, with objects
for which both the object set and arrow set are finite, then although the
inclusion of this into Grpd = Grpd(Sets) does not have an adjoint, extending
this to

Pro.Grpd(FinSets)→ Pro.Grpd,

this extended functor does have a left adjoint (and so a proadjoint, cf., for ex-
ample, [39], p. 48-53) for the original inclusion. This gives an internal profinite
completion. A pro-p version of this was introduced by Morel in [124].

b) Groupoids enriched over finite sets have each G(x, y) a finite set.
These again form a proreflexive subcategory of the category of groupoids and
there is a corresponding enriched profinite completion. On the subcategory of
groupoids with finitely many objects, the two constructions coincide.

In this enriched setting the profinite completion will not ‘complete’ the ob-
ject set. For an extreme example, any set X yields a finitely enriched groupoid
with each G(x, x) = {1x} and G(x, y) with x 6= y being empty. It is a ‘discrete’
groupoid in the terminology of groupoid theory. As it is finitely enriched, its
enriched profinite completion is itself. Its internal profinite completion is the
profinite completion of X, i.e., a profinite space considered as the profinite
groupoid (X̂, X̂, s = t = idX̂). The Drinfel’d construction is an enriched com-
pletion and the enriched completion construction has also been used by Baker,
[8], in unpublished work.

We will not be needing to use these completions that much in detail as we
will usually be concentrating on the group, rather than the groupoid, based
theory for simplicity, however there are some techniques for manipulating
groupoids that are not that well known, but are very useful, and are well
illustrated in the study of these two forms of profinite completion. We therefore
will devote some time to their development.

An extremely useful construction for groupoids is a ‘change of objects’
functor. This is described in full detail in Higgin’s, [82], and can also be found
in Brown, [23]. Suppose G and H are groupoids with object sets X = Ob(G)
and Y = Ob(H), respectively. If f : X → Y is a function, then we can form a
groupoid f∗(H) with objects the elements of X by

f∗(H)(x, x′) = H(f(x), f(x′)).

Let Grpdf (G,H) denote the set of groupoid morphisms from G to Hhaving f
as their object assignment functions and Grpd/X the category of groupoids
with objects set, X and in which morphisms are the identity on objects, then
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Grpdf (G,H) ∼= Grpd/X(G, f∗(H)),

as is easily checked.
More interestingly, Grpdf (G,H) ∼= Grpd/Y (f∗(G), H), for an ‘induced

groupoid’ f∗(G) on the object set, Y . We will not give the formal construc-
tion in terms of words (for which see Brown, [23]), but an idea of what is
involved can be obtained by considering the example in which G is the ‘inter-
val’ groupoid I with object set X = {0, 1} and with each I(x, x′), a singleton
set, and consider Y = {∗}, a single object. The unique mapping, f , from X to
Y induces a groupoid on Y , which is the infinite cyclic group, C∞ (or if you
prefer, Z), generated by the image of the element i : 0→ 1 in I. This example
shows that although G may be a finite groupoid, the induced groupoid, f∗(G)
can be infinite, since as F is not injective, new composites of the old arrows
can be formed when objects are ‘glued together’ in Y .

The ‘induction’ process induces a functor

f∗ : Grpd/X → Grpd/Y,

but this functor does not preserve the subcategories of finitely enriched ob-
jects. There is a profinite analogue

fProf∗ : Prof.Grpd/X → Prof.Grpd/Y,

where one either needs X and Y finite, or to be talking about profinitely
enriched groupoids. (We leave the detailed exploration of this for the reader.)
In our example above, fProf∗ (I) will be the profinite completion of the infinite
cyclic group. This is significant geometrically since it models, classically, the
covering spaces of the circle and, for the profinite case, the inverse system of
finite covering spaces of the circle. The theory of covering groupoids, as given
in Brown, [23], clearly has a profinite analogue.

It has been claimed, above, that Grpd(Fin) → Grpd has a proadjoint.
This is clearly given by taking the limit of all finite quotients of a groupoid,
G, but there is one problem. If we denote this by G̃, what do the object and
arrow spaces of G̃ look like? The source and target maps tie them together,
so we seem not to be free to profinitely complete each part separately without
potentially destroying other structure such as the composition. However we
can obtain some information on this process:

Proposition 7. For any groupoid, G, we have a natural isomorphism

Ob(G̃) ∼= Ôb(G),

the profinite completion of the object set of G.

Proof: We will write (G,X, s, t, i), or similar for a groupoid, if the composition
is ‘understood’.
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There are ‘object set’ functors O and OP from Grpd to Sets and from
Prof.Grpd to Prof , respectively, giving the object of objects in each case,
O(G,X, s, t, i) = X, etc. These functors have both left and right adjoints, of
which we will use the right adjoints here. The right adjoint of O is given by
R(X) = (X×X,X, p1, p2, diag), in what is hoped is an evident notation. The
right adjoint for OP is, of course, ‘the same’.

We also have the forgetful functors from Prof to Sets, and from Prof.Grpd
to Grpd. These will be denoted U and UGrpd respectively. These have left ad-
joint, the respective profinite completions, and we will use the same notation
as before, with hats and tildes. We note that UOP and OUGrpd are equal as
are UGrpdRP and RU , since a product profinite space has underlying set the
product of the underlying sets.

Next we consider a profinitely completed groupoid Ĝ and a profinite space
Y . We have the following natural isomorphisms:

Prof(OP (G̃), Y ) ∼= Prof.Grpd(Ĝ, RP (Y ))
∼= Grpd(G,UGrpd(RP (Y )))
∼= Grpd(G,RU(Y ))
∼= Sets(O(G), U(Y ))
∼= Prof(Ô(G), Y ),

which gives the result, as the two objects in question represent the same
functor. �

The defining property of a profinite completion in any context is its uni-
versal property. In our situation, this is : if G is a groupoid and H is a finite
groupoid, then

Grpd(G,H) ∼= Prof.Grpd(G̃,H).

Here, of course, we have tacitly omitted any notation to distinguish between H
as a finite groupoid in Grpd and H as a discrete profinite groupoid. Now sup-
pose f : G→ H is a morphism of groupoids, and we denote the corresponding
functions on objects and arrows by f0 and f1 respectively:

G1
f1 //

s

��
t

��

H1

s

��
t

��
G0

f0

// H0

We have that f factors via f0∗(G):

G
η→ f0∗(G)

f ′→ H,

where η is over f0, so η0 = f0, whilst f ′ is a morphism in Grpd/H0. We can
restrict attention to the cases in which f ′ is an epimorphism or quotient. We
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thus need a description of quotient morphisms of groupoids, but this is readily
available in Higgin’s monograph, [82] or in [23] and can be given in terms of
normal subgroupoids, in general, but as our quotient morphism is the identity
on objects the particular type of normal subgroupoid that we need will be
very simple.

Definition: Let G be a groupoid. A subgroupoid N of G is called a normal
subgroupoid if it satisfies:
(i) Ob(N) = Ob(G),
and
(ii) for any g : x1 → x2 in G, gN{x2}g−1 ⊆ N{x1}.
(Here we have adopted the convention that N{x} denotes the vertex group of
N at x, also called the automorphism group, thus N(x) = N(x, x).)

Given any normal subgroupoid N of G, we can form a quotient groupoid
G/N with arrows equivalence classes under g1 ∼N g2 if there are m,n ∈ N
such that g2 = m.g1.n. The proof that this does give a groupoid is fairly
routine. There is a quotient map from G to G/N and, of course, its kernel
is N . We have N = Kerf ′ is a normal subgroupoid of f0∗(G). The following
should now be clear.

Proposition 8. a) If G is a groupoid with G0 finite, then G̃ the limit of the
inverse system of quotients by all cofinite normal subgroupoids of G.
b) In general, for G a groupoid, there is for each finite quotient of G0, say
f0 : G0 → X, a profinite groupoid f̂0∗(G) constructed as in a) and G̃ =
Limf f̂0∗(G). �

We thus have a reasonably good description of the ‘internal’ profinite com-
pletion of a groupoid. The discussion also suggests a way of describing the
‘enriched’ profinite completion.

Suppose f : G → H and H is a finitely enriched groupoid, i.e., each
H(a, b) is a finite set, then the same is true of f∗0 (H) and, dividing out by
Ker(f ′ : G → f∗0 (H)) yields an image of f in f∗0 (H). Taking the inverse
limit of all these quotients will give the enriched completion functor. (In fact,
the normal subgroupoids can again be chosen to be (cofinally) of the form
of a disjoint union of N(x), the only requirement being that G/N be finitely
enriched.)

1.8 Free profinite groupoids

We will occasionally need not just free profinite or pro-C groups, but their
many object analogues, i.e., free profinite groupoids. The existence of free
profinite categories and groupoids on a profinite directed graph has been in-
vestigated by Almeida and Weil, [2].

First some terminology: by a profinite graph, we will mean an inverse
limit of finite graphs. The graphs will be directed, but need not be reflexive.



1.8 Free profinite groupoids 27

Of course, a profinite category is likewise an inverse limit of finite categories
(i.e., internal categories in FinSets). In more generality, to replace the class
C of ‘pro-C’ theory, Almeida and Weil use a pseudovariety V.

Definition: A pseudovariety, V, of categories is a class of finite categories
(in the above ‘internal’ sense), which is closed under taking ‘divisors’ and finite
products. Here a category C is a divisor of D if there is another category E
and functors

E

subquotient
��

faithful // D

C

generalising the situation for ‘subquotients’ of groups. (By ‘subquotients’ here
we mean that the morphism is surjective on ‘homs’, but injective on objects,
i,e, φe,e′ : E(e, e′) → C(φe, φe′) is always onto, but φ : Ob(E) → Ob(C) is
injective.) A category or groupoid which is an inverse limit of categories, resp.,
groupoids, in such a V is called a pro-V category, resp. pro-V groupoid.

The fact that V is a pseudovariety means that it is closed under pullbacks
and so the category of morphisms from a given groupoid G to objects in V is
filtering and the resulting limit is the pro-V completion of G.

The existence of free pro-V groupoids on a given profinite graph can be
proved along the following standard line. We will however also give a separate
proof, as although the intuitive idea for the standard one is a good one, there
is a hidden subtle technicality that is better to avoid.

First a profinite graph, A, is an inverse limit of finite graphs within the
category of all (directed) graphs, given the inverse limit topology in the ob-
vious way. A profinite groupoid G is A-generated by a continuous morphism
φG : A → G of profinite graphs, if the smallest closed subcategory of G
containing φG(A) is G itself.

For a given pseudovariety, V, the A-generated members of V form an in-
verse system and we can take its limit to get the free pro-V groupoid , FV(A),
on A. The problem is to check in detail that the system is not too large.
(Readers with a good knowledge of categorical arguments will realise what
has to be done, namely to verify a solution set condition.) Because of this we
will adopt a slightly different approach, which implicitly checks the solution
set condition along the way and also provides a more explicit description of
FV(A).

A general profinite graph A can be written as A = LimAi for some system
{Ai : i ∈ I} of finite graphs. For each Ai, we can form FV (Ai) as the pro-V
completion of the free category on the graph Ai. The two universal properties,
of free category and completions, combine to give that this is the free pro-V
category on the finite graph Ai. Using the functoriality of this construction,
we form an inverse system {FV(Ai) : i ∈ I} with the induced ‘bonding’
morphisms. We now take the limit of this which we will denote FV(A). This
will be a pro-V groupoid, but we have to check the universal property.
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Suppose G is a groupoid in V and φ : A → G a continuous morphism
of profinite graphs. As G is finite, φ factors through one of the Ais, say by
φi : Ai → G, and this extends uniquely to a morphism from FV(Ai) to G. As
this will be the case, compatibly, for cofinally many Ai, we get a well defined
and unique morphism φ : FV(A)→ G extending φ. We have:

Proposition 9. There is a free pro-V groupoid generated by any profinite
graph. �

Remark: It is worth noting that just as (group) varieties correspond to
defining words, pseudovarieties correspond to certain ‘pseudoidentities’ and
one needs the theory of free pro-V categories to obtain a full description; see
Almeida and Weil, [2]. A similar idea will play a role later when we give sets
of defining equations for variety-like classes of (profinite) homotopy types.

1.9 Pseudocompact Algebras and Modules.

The natural setting for replacing the role of the group algebra of a group, G, or
for that of G-modules, when extending structure to a profinite or pro-C setting
would seem to be that of pseudocompact rings and modules. Other choices are
used, for instance, Boggi, [14], develops a theory of continuous cohomology
for profinite groups using complete totally disconnected R-modules for R a
topologically compact unitary ring, but pseudocompact rings and modules, as
we will see, do a good job and neatly combine the topological and proobject
aspects that we tend to use in a combined and complementary way throughout
this book. Pseudocompact modules also seem to arise naturally in the profinite
‘crossed’ algebraic contexts that we will be introducing, so they are the natural
setting for us.

Our main source for the material in this section is Brumer’s paper, [34],
with some knowledge of Gabriel, [65], being helpful for some generalities on
linearly compact rings. For one or two of the results we also use Gildenhuys
and MacKay, [71]. As usual as the material is essentially ‘well known’ here,
proofs will sometimes be omitted or sketched.

Definition: A complete Hausdorff topological ring, A, is said to be a pseu-
docompact ring if it admits a system of open neighbourhoods of 0 consisting
of two sided ideals, I, for which A/I is an Artin ring, i.e., has the descending
chain condition on its two sided ideals.

Of course, here we have a ‘ring’ not an ‘algebra’. If instead of working
over Z and thus essentially over its profinite completion, Ẑ, we had used a
fixed commutative (pseudocompact) ring k, then we would get the notion of
a pseudocompact algebra, A.

The example of a pseudocompact ring that we will use continually is the
completed group algebra of a profinite group, which we will introduce shortly.
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Definition: Let A be a pseudocompact ring. A complete Hausdorff topo-
logical A-module M is said to be a pseudocompact A-module if it has a system
of open neighbourhoods of 0 consisting of submodules N of M for which M/N
has finite length.

The category of pseudocompact A-modules and continuous homomor-
phisms between them will be denoted Pc.A−Mod.

If φ : A → B is a continuous homomorphism of pseudocompact algebras
and θ : M → N is a continuous homomorphism of topological Abelian groups
such that M is a pseudocompact A-module, and N is similarly one for B, then
θ is said to be compatible with φ, or is a morphism over φ, if, for all a ∈ A,
m ∈M , θ(a.m) = φ(a).θ(m).

We form a category, Pc.Mod, with such pairs (A,M), with A a pseu-
docompact algebra and M a pseudocompact A-module, as objects and with
compatible pairs (φ, θ) as the morphisms. This category of pseudocompact
modules over varying algebras has the usual type of properties, corresponding
to change of rings, such as being fibred and op-fibred over the category of
pseudocompact algebras, but we will not be using that structure at that level
of abstraction. We will however need the essential induced and restricition
constructions on modules which is behind that abstract structure.

1.10 The completed group algebra of a profinite group,
G.

Let Ẑ be the profinite completion of the ring of integers, Z, then Ẑ is itself a
pseudocompact ring as it is the inverse limit of its finite quotients. Now let G
be a profinite group.

Definition: The complete group algebra, Ẑ[[G]], of G over Ẑ is the inverse
limit of the ordinary group algebras, Ẑ[G/U ] of the finite quotients, G/U for
U ∈ Ω(G) over Ẑ;

Ẑ[[G]] = LimU∈Ω(G)Ẑ[G/U ].

This is a pseudocompact ring. It can also be written as an inverse limit
of finite group algebras over the finite quotient rings of Z. There are pro-C
variants, which will be denoted, ẐC [[G]] in general, and Ẑp[[G]], in the pro-p
case. In general given an arbitrary pseudocompact ring A, we can form A[[G]]
in a similar way, based on the A[G/U ]. In particular, we may want to use this
with A = ẐC , the pro-C completion of Z and for G, a pro-C group, so that all
the G/U will be in C.

There is an obvious notion of pseudocompact Ẑ[[G]]-modules and we get a
category that we will denote by Pc.G−Mod.

Example: The Magnus algebra. Let p be a prime and Ẑp, as before, be the
pseudocompact ring of p-adic integers. For any positive integer, n, let F (n)
denote the free pro-p group on n generators, x1, . . . , xn.
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Consider the algebra, A(n), of formal power series in non-commuting in-
determinates, t1, . . . , tn with coefficients in Ẑp. This algebra, A(n), with a
topology given by convergence of coefficients, is compact. The multiplicative
group U of elements of A(n), which have constant term equal to 1 forms a
pro-p group, and contains all the elements 1+ ti. Associating xi to 1+ ti gives
an isomorphism between F (n) and U , which extends to one between Ẑp[[F (n)]]
and A(n), see Serre, [152], or Lazard, [102]. The algebra, A(n), is sometimes
called the Magnus algebra on n indeterminates, and it, and its associated Lie
algebras have been used extensively in the study of pro-p groups.

1.11 Some generalities on Pseudocompact modules

Throughout let A be a fixed pseudocompact ring.

Proposition 10. The category Pc.A−Mod is an Abelian category with exact
projective limits. �

Most of this is well known or even ‘routine’. The exactness of projective limits
follows the same lines as well known and classical results on the exactness of
projective limits on systems of linearly compact modules.

The section lemma (Proposition 5) has an analogue for pseudocompact
modules:

Proposition 11. Let f : M → N be an epimorphism of pseudocompact A-
modules, then there is a continuous section s : N → M such that fs(n) = n
for all n ∈ N . �

The proof is easy to adapt from that earlier ‘section lemma’.
One use of this is in the proof of the important:

Theorem 2. The category Pc.A−Mod has enough projectives. �

The proof, given in Brumer, [34], proceeds by proving that the free pseu-
docompact A-module of a set, S, exists. We will need that, but it is better to
go for a more general result. First let us give an obvious definition.

Definition: Let X be a profinite space. A free pseudocompact A-module
on X is a pair (A(X), h), where A(X) is a pseudocompact A-module, and
h : X → A(X) is a continuous function such that if M is any pseudocompact
A-module and g : X → M is continuous, then there is a unique continuous
homomorphism f : A(X) →M such that fh = g.

Proposition 12. The free pseudocompact A-module, (A(X), h), exists for any
profinite space X.
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The proof given above for the existence of free profinite groups on profinite
spaces can be imitated here, (cf., Haran, [81]), however we will give an alter-
native more direct form, adapted from Magid’s proof, [115], of the profinite
group existence theorem.

Proof: Let A(X) denote the free A-module on the underlying set of X.
Let N be the set of all submodules N of A(X) such that (i) A(X)/N has finite
length and (ii) for any a ∈ A(X), (a+N)∩X is an open-closed subset of X.
Partial order N by inverse inclusion. Let A(X) = Lim{A(X)/N |N ∈ N}. The
compatible maps, for N ∈ N , X → A(X) → A(X)/N induce a continuous
map h : X → A(X). Next suppose M is any pseudocompact A-module and
g : X → M is continuous, and that M = LimMi with Mi of finite length.
By the universal property of free modules, the composite X → M → Mi

factors through A(X) as X → A(X)→Mi. Set K = Ker(A(X)→Mi), then
A(X)/K has finite length and for any a ∈ A(X), (a+K)∩X is an open-closed
subset of X. The rest is now fairly routine. �

Of course, since we have enough projective pseudocompact modules, we
can form projective resolutions of any pseudocompact module and this releases
a large part of homological algebra for our use. Generally we will assume an
elementary knowledge of standard homological algebra.

Later we will be needing the torsion groups, TorGn , and also will be gener-
alising tensor products of modules to tensor products of groups, both in the
discrete and profinite settings. We will thus need a ‘completed tensor product’
of pseudocompact modules, not only for comparison but as a means to extract
information from the new constructions.

Let A, as usual, be a pseudocompact algebra over a commutative pseudo-
compact ring k, M a right and N a left pseudocompact A-module.

Definition: The completed tensor product ofM andN is a pseudocompact
k-module, M⊗̂AN , and a continuous A-bilinear morphism α : M × N →
M⊗̂AN with the following universal property:

given any continuous A-bilinear morphism, β : M ×N → C, where C is a
pseudocompact k-module, (so β(ma, n) = β(m, an) for all a ∈ A,m ∈M,n ∈
N), there is a unique continuous k-module morphism

g : M⊗̂AN → C

such that gα = β.

Proposition 13. (Brumer, [34], p.446) For any pair M , N , as above, a com-
pleted tensor product M⊗̂AN exists.

Proof: We set M⊗̂AN = Lim (M/U⊗AN/V ), where the U (resp. the V ), are
open submodules of M (resp. N). Since M/U and N/V are k-modules of finite
length, so is their tensor and so M⊗̂AN is pseudocompact as a k-module.
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The natural k-bilinear morphisms from M × N to M/U ⊗A N/V induce
the desired bilinear α : M ×N →M⊗̂AN , upon passing to the limit. �

The usual results on ⊗ generalise without difficulty to the completed ten-
sor. The category of two sided pseudocompact A-modules with ⊗̂A forms a
symmetric monoidal category, and using projective resolutions of either M
or N , we can define the left derived functors, TorAn (M,N), of the functor
T (M,N) = M⊗̂AN .

We will need this Tor several times, but of even more importance will be
the use of the change of rings functors, that is, the construction of restricted
and induced modules and their variants.

Change of rings: Suppose f : A → B is a continuous morphism of
pseudocompact k-algebras.

Definition: a) Suppose N is a pseudocompact B-module. We denote by
f∗(N), the pseudocompactA-module with underlying compact Abelian group,
N , and with continuous A-action given by a.n = f(a).n. We say f∗(N) is
obtained by restricting along f .

b) Suppose M is a pseudocompact A-module, then f∗(M) denotes the
pseudocompact B-module given by f∗(M) = B⊗̂AM , analogously to the clas-
sical discrete case.

These constructions are examples of a type we will see many times, and
have, in fact, already met with the change of object set / induction construc-
tion for groupoids in section 1.7, so we will make one or two observations.

Let Homf (M,N) denote the set of continuous k-module morphisms, φ,
from a pseudocompact A-module, M to a pseudocompact B-module N , sat-
isfying : for all a ∈ A, φ(a.m) = f(a).φ(m).

Proposition 14. There are natural isomorphisms

Pc.A−Mod(M,f∗(N)) ∼= Homf (M,N) ∼= Pc.B −Mod(f∗(M), N).

�

The proof is well known and routine.
One can consider a category Pc.Mod of pseudocompact modules over all

pseudocompact algebras, and thus consisting of pairs (A,M) with A a pseu-
docompact k-algebra and M a pseudocompact A-module. Morphisms from
(A,M) to (B,M) consist of pairs (f, φ), as above, so φ(a.m) = f(a).φ(m).
The above results show, after a little more work, that the obvious functor
from Pc.Mod to Pc.k−Alg is a (bi)fibration of categories. The features that
we will use of this are mirrored in the other ‘restriction - induction’ contexts
that we will encounter.

Finally we should note that if A is a pro-C Abelian group, and G is a pro-
C group which acts continuously on A, then A is naturally a pseudocompact
Ẑp[[G]]-module, and conversely, see Gildenheys and Mackay, [71], for instance.
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Algebraic homotopy theory: preliminaries.

The title of this monograph involves the words ‘algebraic homotopy’, but what
is this? In this chapter we will try to give some of the tools of this subject,
but also to sketch some sort of overview of how it relates to other terms
such as ‘homotopical algebra’ and ‘abstract homotopy theory’. An overview
of the area has been published, [141], showing how its relation to abstract
homotopy theory and to the ‘Grothendieck programme’. It is also involved
centrally with the modelling of homotopy types and this aspect is well intro-
duced by Baues’ contribution to the Handbook of Algebraic Topology, [11].
Of course, Baues has written extensively on the area, see, for instance, [9],
and [10]. We will, later on, use various ‘crossed’ objects, ‘crossed modules’,
‘crossed squares’, ‘crossed complexes’ etc. and will, in general, introduce these
thoroughly, however as some of that material is in the forthcoming book by
Brown, Higgins and Sivera, [28], sometimes the easier verifications will be ‘left
to the reader’. As usual in these preliminary chapters, we will sketch results
rather than always providing proofs, and may occasionally refer forward to a
detailed treatment in later chapters.

2.1 Algebraic Homotopy and Algebraic Models for
Homotopy Types

We start by quoting J.H.C.Whitehead, who can be thought of as the founding
father of Algebraic Homotopy, cf. [166].

The ultimate aim of algebraic homotopy is to construct a purely alge-
braic theory, which is equivalent to homotopy theory in the same sort
of way that ‘analytic’ is equivalent to ‘pure’ projective geometry.

J.H.C.Whitehead, [166], (quoted in Baues, [9]).

A statement of the aims of ‘algebraic homotopy’ might thus include the follow-
ing homotopy classification problem (from the same source, J.H.C.Whitehead,
[166]):
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Classify the homotopy types of polyhedra, X, Y , . . . , by algebraic
data.
Compute the set of homotopy classes of maps, [X,Y ], in terms of the
classifying data for X, Y .

These aims, but with the enlargement of the class of objects of study to include
many other types of ‘spaces’, are still valid for the standard form of algebraic
homotopy. One looks for a category of algebraic objects whose structure ac-
curately mirrors aspects of the homotopy category of, in this classical case,
polyhedra or CW-complexes. Slightly more exactly, one searches for a nice
“algebraic” category A together with a functor or functors

F : Spaces→ A

and an algebraically defined notion of homotopy, ', in A such that
a) if X ' Y in Spaces, then F (X) ' F (Y ) in A;
b) if f ' g in Spaces, then F (f) ' F (g) in A,
and F induces an equivalence of homotopy categories

Ho(Spaces) ' Ho(A).

Here, classically, Spaces is a category of topological spaces such as polyhedra
or CW-complexes, but the aims are equally valid for objects in other related
categories such as those of simplicial sets, their profinite completions, or sim-
plicial groups, which are already partially ‘combinatorised’ or ‘algebraised’.

The title of Whitehead’s paper, [164], was ‘Combinatorial homotopy II’
and he was inspired in part by the example of combinatorial group theory as
developed by Reidemeister and others in the 1930s. The algebra he introduced,
and which in part we will be using, was often applicable both in homotopy and
in group theoretic contexts. From there to group cohomology, and homological
algebra is only a short distance and we will explore some of these links in the
profinite case.

The ‘combinatorial’ aspect lead to an idea for building both the ‘algebras’
and the ‘modelising functor’.

Ideal Scenarios: i) If we know how a space X is constructed from simpler
objects (e.g. from ‘cells’ or ‘simplices’) and if we know F on these simple ob-
jects, then we can ‘calculate’ F (X) completely, (e.g. not just up to extensions
of groups or its analogue in A). For this to be the case, we could do with a
result of the form of the van Kampen Theorem which allows one to build the
homotopy information by decomposing the space:

Recall (cf., for instance, Brown, [23]), the van Kampen theorem says that
if X = A ∪B, A, B are open, then

Π1(A ∩B) //

��

Π1(A)

��
Π1(B) // Π1(X)
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is a pushout of groups (or groupoids).
(For the group version, one needs A∩B arcwise connected; for the groupoid

version A ∩B is a union of arcwise connected components and one bases the
groupoids on at least one point in each component, cf. Brown, [23]).)

Here we will work simplicially, often deriving our algebraic models from
simplicial groups. In that setting the role of the van Kampen Theorem is
replaced by combinatorial and algebraic arguments.

ii) It is to be hoped that the ‘algebra’ in A reflects the ‘geometry’ in
the spaces. This is evident in the fundamental groupoid where the algebraic
composition of path classes is defined via a geometric construction.

iii) Ideally the detailed ‘homotopy structure’ of Top, Poly, or our current
favourite category of ‘spaces’ will be reflected in A, . . . , but this leads us to a
basic question: what does ‘detailed homotopy structure’ mean? In fact: What
should be meant by ‘homotopy’?

These ‘ideal scenarios’ are highly unrealistic. There are however various
ideas that may reduce the problem to more manageable proportions.

We could:

(a) restrict at least some of the spaces being considered using geometric prop-
erties, e.g. having dimension ≤ n (cf. Whitehead, [165] or more recently
Baues, [9–11]);

or
(b) find a model which models fully only certain homotopy types (typically

those having some condition such as πi(X) = 0 if i > n);
or

(c) find a model that classifies all spaces and maps, but up to a weaker
relation than homotopy, (e.g. up to n-equivalence, cf. Whitehead [164],
but beware the definition of n-equivalence will be slightly different in
more recent work).

The specific examples of these strategies are, of course, not the only ones
possible, but they have the merit of being linked in the idea of n-type, (Fox,
[59], Whitehead, [164], Loday, [106], etc.). The idea is that n-equivalence mea-
sures information detectable with maps coming from polyhedra of dimension
≤ n, so the πi(X) for i > n do not have as much significance for this notion
of equivalence. Each n-equivalence class of spaces (= n-type) has a repre-
sentative X with πi(X) = 0 for i > n, so here the three ideas are strongly
linked.

Examples: (For simplicity, assume that X is a connected CW-complex
or polyhedron.)

n = 1 : the fundamental group π1(X) or groupoid Π1(X), completely
models the 1-type of X, classifies maps from 1-dimensional complexes into X
and also classifies covering spaces of X.

Before we try to go to higher values of n, we need some more notation and
terminology.



36 2 Algebraic homotopy theory: preliminaries.

We write Xn for the union of the i-cells for i ≤ n. ‘Recall’ that if (X,A)
is a pair of spaces, with A ⊂ X, x0 ∈ A, then πn(X,A, x0) is the nth relative
homotopy group of (X,A). It consists of homotopy classes of maps from an
n-cube In into X that map all but one face of In to x0 and the remaining face
into A. The detailed description will not be needed here, but can be found in
most books on homotopy theory. Restricting the maps to the last face gives
a homomorphism

∂ : πn(X,A, x0)→ πn−1(A, x0).

We can now handle the case n = 2:

MacLane and Whitehead, [114], showed that the algebraic structure of

∂ : π2(X,X1, x0)→ π1(X1, x0)

models the 2-type of X (Their 3-type is our 2-type - the terminology has
changed in the years since their work was published.)

The structure referred to is that of a crossed module (see below, section
3.1.1). We note that
(i) Ker ∂ ∼= π2(X);
(ii) Im∂ C π1(X1)
and
(iii) Coker ∂ ∼= π1(X),
so the usual invariants π1 and π2 can be found from this data.

2.2 What is a Homotopy Theory?

To set up an algebraic homotopy theory, we first need briefly to ask what is a
homotopy theory and to give some examples that will be useful later on. We
will not give details. In general the viewpoint adopted will be a mix of that
from the overview article, [141], the monograph by Kamps and Porter, [95],
and the ideas of Baues, [9–11].

A brief list of contexts for a homotopy theory might include Spaces,
Groupoids, Simplicial Sets, Simplicial Objects in other categories, Chain Com-
plexes and Small Categories.

In more detail:
Spaces: There is perhaps no real need for explanation here, but there are

various points worth making that can serve as an introduction to some of the
ideas that come later. We consider a ‘suitable’ category, Top, of topological
spaces and continuous maps. Homotopy between maps, denoted ', is defined
by maps from cylinders, X × I, or alternatively to cocylinders, Y I , in the
usual way. (The cocylinder Y I is the space of paths in Y and may not exist
in some categories of spaces that we might want to use.)

Following the usual convention, we put [X,Y ] = Top(X,Y )/ '. The cat-
egory Top/ ' has spaces as objects but these [X,Y ] as sets of morphisms.
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Homotopy types correspond to isomorphism classes in Top/ '. The maps in
Top which give isomorphisms in Top/ ' are called homotopy equivalences.

There are special classes of maps called cofibrations and fibrations. These
are defined by the homotopy extension and homotopy lifting properties, re-
spectively. For example if f : X → Y is a cofibration then given any homotopy
H : X× I → Z and any map g : Y → Z such that H|X×{0} = gf , there is a
homotopy K : Y ×I → Z extending H and starting with g, i.e., K(f×I) = H
and K|Y ×{0} = g. We may also say that f satisfies the homotopy extension
property.

Our final points on Top relate to pointed spaces and homotopy groups.
The structures here are well known but will serve to introduce the terminology
‘weak equivalence’. A pointed space is a pair (X,x0), where x0 ∈ X. ‘Pointed
maps’ of pointed spaces, f : (X,x0) → (Y, y0), send x0 to y0 and give a
category Top0. Homotopies between such ‘pointed’ maps are assumed to be
constant on these base points. For n = 0, S0 is the 0-sphere, that is, a two
point space {−1, 1} and we write π0(X,x0) = [(S0, 1), (X,x0)]. It is the set of
arcwise connected components of X, pointed at the component corresponding
to x0. This notation π0 is also used in the unpointed case. In general we
write πn(X,x0) = [(Sn, 1), (X,x0)]. For n ≥ 1, πn(X,x0) has a natural group
structure and for n ≥ 2, this structure is Abelian. A map f : X → Y of
spaces is called a weak equivalence if π0(f) : π0(X) → π0(Y ) is a bijection
and for all n ≥ 1 and all possible basepoints x0 ∈ X, πn(f) : πn(X)→ πn(Y )
is an isomorphism. Any homotopy equivalence is a weak equivalence but the
converse does not hold in general. For ‘locally nice’ spaces such as polyhedra
and more generally for CW-complexes, the two concepts coincide and any
weak equivalence between such spaces has a homotopy inverse.

Groupoids: We have already looked at these. They are small categories
in which all morphisms are invertible and groups correspond to the special
case in which there is only one object. As examples, there are the fundamental
groupoids of spaces, see, for instance, [23].

The groupoid I consists of two objects 0 and 1, their identities, and two
morphisms ι : 0 → 1, ι−1 : 1 → 0. We met it previously in the section
on profinite groupoids. Homotopy of groupoids can be defined by a cylinder
G × I or by a ‘cocylinder’ HI , since, if G and H are groupoids, there is a
natural isomorphism

Grpd(G× I,H) ∼= Grpd(G,HI).

This ‘cocylinder’ is just the category of functors from I to H. It is easily seen
to be a groupoid.

Simplicial Sets: These form an extremely useful category in which to do
homotopy theory and we will use them and related structures a lot later on.
The basic theory can be found in the first half of the survey article by Curtis,
[42], for fuller treatments, see May, [117], or Gabriel-Zisman, [66], and for a
modern viewpoint, the book by Goerss and Jardine, [73].
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Let [n] = {0 < 1 < . . . < n}, considered as an ordered set or as a small
category. Looked at for small values of n, it is clear why it is considered as a
categorical simplex.

e.g. [2] =

1

��>>>>>>>

0 //

@@�������
2

Writing Cat for the category of small categories and ∆ for the full subcategory
of Cat determined by the objects, [n] for n ≥ 0, a simplicial set is a functor
K : ∆op → Sets and S = Simp.Sets is just the notation for Sets∆

op

, the
category of contravariant functors from ∆ to Sets and all natural transfor-
mations between them. A simplicial set K is often written diagrammatically
as

. . . . . .
//////// K2

//////
oooooo

K1
// //oooo K0.oo

The maps di : Kn → Kn−1, 0 ≤ i ≤ n are called the face maps, the maps
si : Kn → Kn+1, 0 ≤ i ≤ n are called the degeneracies. The di and si satisfy
the “simplicial identities”.

didj = dj−1di if i < j,

disj =

 sj−1di if i < j,
id if i = j or j + 1,
sjdi−1 if i > j + 1,

sisj = sjsi−1 if i > j.

As a simple example of a simplicial set, we can take ∆[n] = ∆(−, [n]),
the ‘simplicial’ n-simplex. This is generated by the identity map on [n], which
we denote by ιn. Given any simplicial set, K and x ∈ Kq, there is a unique
simplicial map, x : ∆[q] → K, defined by x(ιq) = x. Because of this, many
arguments in simplicial set theory depend on the structure of examples such
as ∆[n], ∆[p]×∆[q], and so on.

The link with spaces comes via the topological originals of these ‘simplicial’
n-simplices. Let ∆n be the topological n-simplex, represented by

{(t0, . . . , tn) ∈ Rn+1 |
n∑
i=0

ti = 1}.

There are maps δi : ∆n → ∆n+1 given by

δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn),

for 0 ≤ i ≤ n, which insert ∆n as the ith face of ∆n+1. Similarly let σi : ∆n →
∆n−1 be the map
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σi(t0, . . . , tn) = (t0, . . . , ti−1 + ti, . . . , tn).

Let X be a space and set Sing(X)n = Top(∆n, X). The compositions with
the δi and σi yield face and degeneracy maps that make Sing(X) a simplicial
set, the singular complex of X.

The singular complex construction gives a functor

Sing : Top→ S.

This has a left adjoint | | : S → Top called geometric realisation:

Top(|K|, X) ' S(K,Sing(X))

and the natural map
|Sing(X)| → X

is a weak equivalence.
It is sometimes the case that within a category of spaces, Top, one can

form mapping spaces Y X , but in any case provided that for each n, ∆n is
in our chosen category, Top, and for all X in Top, X × ∆n is there as well,
we can form something that plays the rôle of Sing(Y X) namely Top(X,Y ),
where Top(X,Y )n = Top(X ×∆n, Y ). Similarly within S itself, we can form
‘simplicial mapping spaces’, S(K,L)n = S(K ×∆[n], L)). These extra struc-
tures are examples of simplicial enrichment of the basic categories Top and
S. We will briefly consider the relevance of this type of structure later.

We can apply the same sort of construction to small categories. We saw
that [n] = {0 < 1 < . . . < n} can be considered either as an ordered set
or a small category. If C is a small category or a groupoid, we can form a
simplicial set, Ner(C), defined by Ner(C)n = Cat([n], C), with the obvious
face and degeneracy maps induced by composition with the analogues of the
δi and σi. The simplicial set, Ner(C), is called the nerve of the category C.
An n-simplex in Ner(C) is a sequence of n composable arrows in C. We will
explore the structure of such nerves later on.

If we are to use simplicial sets adequately in ‘algebraic homotopy’, then
we clearly need an ‘adequate’ notion of homotopy. Given two simplicial sets
K and L, we can form their product K × L by setting (K × L)q = Kq × Lq,
and, with face and degeneracy maps applied ‘componentwise’, i.e. di(x, y) =
(dix, diy), sj(x, y) = (sjx, sjy). This does give a (categorical) product within
the category S.

Because of this, the obvious way to define a homotopy between two sim-
plicial maps f0, f1 : K → L is to use the ‘cylinder’ K × I = K × ∆[1]
First let e0(K) : K → K × I send x to (x, 0, and e1 similarly send x to
(x, 1). The picture should be clear, but a bit more precision will make life
easier later on. The simplicial ‘unit interval’ I = ∆[1] is generated by a 1-
simplex ι1 ∈ I1 = ∆[1]1 = ∆(1, 1). There are two 0-simplices, which we
denote 0 = d1ι1 and 1 = d0ι1. These generate degenerate q-simplices s(q)

0 0
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and s
(q)
0 1, which we will usually denote by 0 and 1 for simplicity. The maps

e0 and e1 are thus more properly written ei(x) = (x, s(q)
0 i) if x ∈ Kq and for

i = 0, 1.
Definition: Given two maps f0, f1 : K → L, a homotopy between them

is a simplicial map
h : K × I → L

such that fi = hei, for i − 0, 1. The two maps f0 and f1 are then said to be
homotopic, written f0 ' f1.

Unfortunately in this fairly elementary and unstructured setting homotopy
is not an equivalence relation on the set, S(K,L). We refer the reader to
standard texts and articles on simplicial sets for a fuller discussion of this.

The non-degenerate simplices of K × I include some which are com-
ponentwise degenerate: if x ∈ Kq, and t ∈ Iq, then six, sjt) will in gen-
eral be non-degenrate. Since x is the image of ιq ∈ ∆[q]q, we can de-
termine a homotopy h by its values when composed with each x × IdI :
∆[q]×∆[1]→ K ×∆[1]. Any (q + 1)-simplex of ∆[q]×∆[1] has the form of
a path from (0, 0) to q, 1) through a q × 1 lattice, which follows the bot-
tom until it goes vertically one step, then continues to the end at (q, 1):
τ qi = (0, 1, 2, . . . , i, i, i+ 1, . . . , q)× (0, 0, 0, . . . , 0, 1, 1, . . . , 1). The picture

(0, 1) (1, 1) . . . (q − 1, 1) (q, 1)

(0, 0) (1, 0) . . . (q − 1, 0) (q, 0)

may help. For example, (0, 0)− (1, 0)− (1, 1)− (2, 1)− (3, 1) gives a 4-simplex
in ∆[3]×∆[1].

Thus to specify h we need to specify the mappings hqi + Kq → Lq+1,
where hqi (x) = h(x × id)(τ qi ), for each x and i = 0, 1, . . . , n. Of course, these
maps have to satisfy various relations. This gives an alternative definition of
homotopy:

A homotopy h from f0 to f1 is a system of mappings

((hi)0≤i≤q : Kq → Lq+1)q≥0 ,

which satisfy the following set of homotopy identities

1. d0h0 = f1, dq+1hq = f0;

2. dihj =
{
hj−1di i < j,
hjdi−1 i > j + 1,

and dj+1hj+1 = dj+1hj ;

3. sihj =
{
hj+1si i ≤ j,
hjsi−1 i > j.

We can see that this form of the definition allows us an immediate generali-
sation of the notion of homotopy to categories of simplicial objects in other
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settings, as, for instance, to get a workable definition of homotopy between
morphisms of ‘simplicial groups’, (see below), we merely have to add the con-
dition that the various his are group homomorphisms.

Before we make an attempt to answer the question posed at the outset of
this section, we need to look at a class of other example categories in more
detail.

2.3 Simplicial Groups

2.3.1 Simplicial Objects in Categories other than Sets.

If A is any category, we can form Simp.A = A∆op . (Sometimes we will use a
variant notation: Simp(A), as occasionally the first notation may be ambigu-
ous.)

These categories often have a good notion of homotopy as briedfly dis-
cussed above; see also the discussion of simplicially enriched categories in
[95]. Of particular use are:

(i) Simp.Ab, the category of simplicial Abelian groups. This is equivalent
to the category of chain complexes by the Dold-Kan theorem, see later, section
??, for a version of this.

(ii) Simp.Grps, the category of simplicial groups. (This ‘models’ all con-
nected homotopy types, by Kan, [97] (cf., Curtis, [42]).) There are adjoint
functors G : Sconn → Simp.Grps, W : Simp.Grps → Sconn, with the two
natural maps GW → Id and Id → WG being weak equivalences. Later we
will examine results on simplicial groups by Carrasco, [35], that generalise the
Dold-Kan theorem to the non-Abelian case, (cf., Carrasco and Cegarra, [36]).

(iii) ‘Simp.Grpd’: in 1984 Dwyer and Kan, [49], (and also Joyal and Tier-
ney, and Duskin and van Osdol, cf., Nan Tie, [130, 131]) noted how to gen-
eralise the (G,W ) adjoint pair to handle all simplicial sets, not just the con-
nected ones. (Beware there are several important printing errors in the paper
[49].) For this they used a special type of simplicial groupoid. Although the
term used in [49] was exactly that, ‘simplicial groupoid’, this is really a mis-
nomer and may give the wrong impression as not all simplicial objects in the
category of groupoids are used. A probably better term would be ‘simplicially
enriched groupoid’, as we will explain slightly later, see section 2.6.1. We will
denote this category by S−Grpds. This category ‘models’ all homotopy types
using a mix of algebra and combinatorial structure. We will shortly describe
both G and W in some detail.

(iv) BiSimp: We can take A = S and get simplicial objects in the
category of simplicial sets, i.e. bisimplicial sets, or, with A = Simp.Grps,
we get BiSimp(Grps), the category of bisimplicial groups. These are less
scarry than one might think. The usual sort of manipulation for functions (or
here functors) of two variables identifies their objects as being of the form
X : ∆op ×∆op → A, and so their study depends on the combinatorics of the
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objects of ∆×∆. We will only be using them once or twice right at the end
of the book. There are, of course, n-simplicial sets, etc., being the n-variable
version of these.

(v) Nerves of internal categories: Suppose that D is a category with finite
limits and C is an internal category in D. In our earlier discussion in section
1.5, we had the diagram

C2

p1 //
m //
p2 //

C1

s //

t
// C0

i
oo

.

We also encountered an object C3 in discussing the associativity of composi-
tion. If one interprets this for D = Sets, it becomes clear that this diagram is
part of the diagram specifying the nerve of the small category, C, with C0 the
set of objects, C1 that of morphisms, C2 that of composable pairs and so on.
We have not specified the two degeneracies from C1 to C2 in the diagram, but
this is merely because we left the details of the rules governing identities out
of our discussion. Of course, this does not depend on working in Sets and we
could work in an arbitrary D, with an arbitrary internal category C therein,
having C0 as object of objects, and C1 as object of arrows. We could then
build a simplicial object in D as follows: take

Cn = C1 ×C0 C1 ×C0 C1 ×C0 . . .×C0 C1︸ ︷︷ ︸
n

,

define face and degeneracies by the same sort of rules as in the set based nerve,
that is, in dimension n, d0 and dn each leave out an end, whilst the di use
the multiplication in the category to get a composite of two adjacent ‘arrows’,
and the degeneracies are ‘insertion of identities’. (Working out how to do these
morphisms in terms of diagrams is quite fun!) We thus get a simplicial object
in D called the nerve of the internal category, C, We will use this in several
situations later in a key way. In particular we will use the case D = Grps.

2.3.2 Homotopies for simplicial groups

If we have two simplicial morphisms f0, f1 : G→ H between simplicial groups,
it is easy to adapt the second, alternative, definition of homotopy to this richer
setting merely by requiring that the hi : Gq → Hq+1 all be homomorphisms,
in addition to satisfying the simplicial identities of that definition. This gives a
good working definition which will adapt, without difficulty, to profinite sim-
plicial groups or the ‘simplicial groupoids’ that we mentioned slightly earlier.

There is another way of approaching such homotopies that can also be
useful. Suppose G is a simplicial group and K ne a simplicial set. For conve-
nience we will assume each Kq is finite. We form a new simplicial group G⊗K
by setting
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(G⊗K)q =
∐
Kq

Gq,

the Kq-fold copower of Gq. The elements of (G⊗K)q are words in symbols
g ⊗ x, for g ∈ Gq and x ∈ Kq and the only relations are of the form

(g1 ⊗ x)(g2 ⊗ x) = (g1g2 ⊗ x),

for g1, g2 ∈ Gq. The face maps are given by di(g ⊗ x) = di(g)⊗ di(x) and the
degeneracies by sj(g ⊗ x) = sj(g) ⊗ sj(x). We leave the reader to show that
a homotopy h as above, yields a simplicial group morphism h : G⊗∆[1] →
H satisfying the obvious conditions, and conversely, from such a simplicial
morphism, we would get a family of maps (hi), as before. In other words this
construction acts as a cylinder on G.

2.3.3 The Moore complex and the homotopy groups of a simplicial
group

Given a simplicial group G, the Moore complex, (NG, ∂), of G is the chain
complex defined by

NGn =
n⋂
i=1

Ker dni

with ∂n : NGn → NGn−1 induced from dn0 by restriction.
The nth homotopy group, πn(G), of G is the nth homology of the Moore

complex of G, i.e.,

πn(G) ∼= Hn(NG, ∂),

=
( n⋂
i=0

Ker dni
)
/dn+1
n+1

( n⋂
i=0

Ker dn+1
i

)
.

The interpretation of NG and πn(G) is as follows:
for n = 1, g ∈ NG1,

∂g•
g // •1

and g ∈ NG2 looks like

•

1

��1
111111

g

•
1
//

∂g

FF
•

and so on.
We note that g ∈ NG2 is in Ker ∂ if it looks like
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•

1

��1
111111

g

•
1
//

1

FF
•

whilst it will give the trivial element of π2(G) if there is a 3-simplex x with g
on its third face and all other faces identity.

This simple interpretation of the elements of NG and πn(G) will ‘pay off’
later by aiding interpretation of some of the elements in other situations.

Definition: A simplicial group, G, is augmented by specifying a constant
simplicial group K(G−1, 0) and a surjective group homomorphism, f = d0

0 :
G0 → G−1 with fd1

0 = fd1
1 : G1 → G−1. An augmentation of the simplicial

group G is then a map
G −→ K(G−1, 0),

or more simply f : G0 −→ G−1. An augmented simplicial group, (G, f), is
acyclic if the corresponding complex is acyclic, i.e., Hn(NG) ∼= 1 for n > 0
and H0(NG) ∼= G−1.

2.4 Kan complexes and Kan fibrations.

Within the category of simplicial sets, there is an important subcategory de-
termined by those objects that satisfy the Kan condition, that is the Kan
complexes.

As before we set ∆[n] = ∆(−, [n]) ∈ S, then, for each i, 0 ≤ i ≤ n, we can
form, within ∆[n], a subsimplicial set, Λi[n], called the (n, i)-horn or (n, i)-
box by discarding the top dimensional n-simplex (given by the identity map
on [n]) and its ith face. We must also discard all the degeneracies of those
simplices.

By an (n, i)-horn or box in a simplicial set K, we mean a simplicial map
f : Λi[n] → K. Such a simplicial map corresponds intuitively to a family of
n simplices of dimension (n− 1), fitting together to form a ‘funnel’ or ‘empty
horn’ shaped subcomplex within K. Of course, the simplicial map may send
different simplices in Λi[n] to the same image, but that is no bother. The idea
is that a Kan fibration of simplicial sets is a map in which the horns in the
domain can be ‘filled’ if their images in the codomain can be. More formally:

Definition: A map p : E → B is a Kan fibration if, for any n, i as above,
given any (n, i)-horn in E, specified by a map f1 : Λi[n] → E, together with
an n-simplex, f0 : ∆[n]→ B, such that
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Λi[n]
f1 //

inc

��

E

p

��
∆[n]

f0

// B

commutes, then there is an f : ∆[n] → E such that pf = f0 and f.inc = f1,
i.e., f lifts f0 and extends f1.

Definition: A simplicial set, K, is a Kan complex if the unique map
K → ∆[0] is a Kan fibration. This is equivalent to saying that every horn in
K has a filler, i.e., any f1 : Λi[n]→ Y extends to an f : ∆[n]→ Y .

Singular complexes, Sing(X), and the simplicial mapping spaces, Top(X,Y ),
are always Kan complexes. The nerve of a category, C, is a Kan complex if
and only if the category is a groupoid. If G is a simplicial group, then its un-
derlying simplicial set is a Kan complex. Moreover, and this is of importance
later on, given a box in G, there is an algorithm for filling it using products
of degeneracy elements.

A form of this algorithm is given below and it is discussed in Kamps and
Porter, [95], where the reason why it works is explored. More generally if
f : G → H is an epimorphism of simplicial groups, then the underlying map
of simplicial sets is a Kan fibration. This will have significant implications
later on as it is natural to choose the identity element in a simplicial group
as the base point of its underlying simplicial set, so the fibre of a fibration
corresponds precisely to the kernel of the epimorphism.

The following description of the algorithm is adapted from May’s mono-
graph, [117], page 67.

Proposition 15. Let G be a simplicial group, then every box has a filler.

Proof: Let (y0, . . . , yk−1,−, yk+1, . . . , yn give a box in Gn−1, so the yis are
(n− 1) simplices that fit together as if they were all but one, the kth one, of
the faces of an n-simplex. There are three cases:

(i) k = 0: Let wn = sn−1yn and then wi = wi+1(si−1diwi+1)−1si−1yi for
i = n, . . . , 1. The w1 satisfies diw1 = yi, i 6= 0;

(ii) 0 < k < n: Let w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for i =
0, . . . , k − 1, then take wn = wk−1(sn−1dnwk−1)−1sn−1yn, and finally
a downwards induction given by wi = wi+1(si−1diwi+1)−1si−1yi, for
i = n, . . . , k + 1, then wk+1 gives diwk+1 = yi for i 6= k;

(iii) the third case, k = n uses w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for
i = 0, . . . , n− 1, then wn−1 satisfies diwn−1 = yi, i 6= n. �
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2.5 Again: ‘ What is a homotopy theory?’

In each of these settings, and in many more, one has a notion of equivalence
(weak equivalence, quasi-isomorphism or homotopy equivalence depending on
the context). Suppose C is a category with a collection, Σ, of maps called weak
equivalences (no properties are thought of as being attached to the name, for
the moment it is just a name). We can form a new category Ho(C) = C(Σ−1)
by ‘formally inverting’ the morphisms in Σ. We do this by taking for each
f ∈ Σ, say f ∈ C(X,Y ), a new symbol f−1 and we add it into C(Y,X).
We then form composite words in the old arrows together with all these new
‘inverses’ and if we ever see a pair, ff−1 or f−1f , we cancel it out, (see
Gabriel and Zisman, [66], for a proper description of this process). The general
construction of this category C(Σ−1), is sometimes called the category of
fractions of C with respect to Σ. we also say it is obtained by formally inverting
the arrows in Σ, hence the notation.) The resulting category comes with a
functor γ : C → Ho(C) with the nice universal property that if α : C → D
is any functor such that for all f ∈ Σ, α(f) is an isomorphism in D, then α
factors uniquely through γ, i.e., there is a unique α : Ho(C)→ D such that

C
α //

γ ""FFFFFFFFF D

Ho(C)
α

<<xxxxxxxxx

commutes. Here this category will be called the homotopy category of C (and
often we will miss out mention of Σ), adopting special notation for special
cases.

We note that using this construction, one can prove, for instance, that
Ho(Top) ' Ho(S −Grpd) for a suitable definition of weak equivalence in
S−Grpd (cf. Dwyer and Kan [49]), and that is a very significant step towards
a possible algebraic homotopy theory as Whitehead proposed.

Common structure in the examples? There are various interacting
structures and therein lies the problem in deciding exactly what is an ‘abstract
homotopy theory’. We note various attempts to encode at least part of that
structure.

a) Quillen: [142–144] This is one of the most widespread of the structures,
so has often been considered as the basic abstract homotopy theory to use.
It considers a category C with infinite limits and colimits and three classes
of morphisms called weak equivalences, fibrations and cofibrations, whose be-
haviour, and, in particular, whose interaction, is governed by various axioms.
(We do not give them here as they can be found in many sources in the lit-
erature.) The origins of the work may be found in deformation theory and
the need for a cohomology of commutative algebras (cf. Quillen, [144]). Once
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developed, Quillen used it highly successfully in [143] to produce new results
on rational homotopy theory.

One may criticise this approach from various viewpoints, whilst still ac-
knowledging its great importance. For instance, the weak equivalences, etc.
are given right from the start and no guidance is given how these classes might
arise, or once ‘given’ might be interpreted. Thus weak equivalences are often
given by ‘external’ information (e.g., f : K → L in S is defined to be a weak
equivalence if |f | is a weak equivalence in Top). This may not help one when
interpreting the notions geometrically. Linked to this is the fact that several
important ideas such as that of fundamental groupoid, homotopy limits and
even homotopy equivalence are ‘out of place’ in the original theory and later
variants have amended the basic definition to ‘correct’ these deficiencies.

b) Kan: [96], and Kamps: see [95] and the references therein to both Kan
and Kamps. Here the ‘primitive’ idea is that of abstracting the structure of
the functor ‘X goes to X × [0, 1]’ used as the basis for topological homotopy
theory. Dually one can use ‘X goes to XI ’ when that exists.

Let C be a category. A cylinder functor on C is a functor I : C → C to-
gether with natural transformations e0, e1 : IdC → I and p : I → IdC with
pe0 = pe1 = Id. This defines a notion of homotopy in an obvious way, and
hence a relation on the sets, C(X,Y ), etc. This relation need not be an equiv-
alence relation, but one can still form C(Σ−1) for Σ the class of homotopy
equivalences.

This theory has been more than adequately described in Kamps and Porter
[95] and so will not be given again here. Under various condition on the
cylinder, it allows for the definition of classes of homotopy equivalences and
cofibrations that satisfy a weakened form of Quillen’s axioms that are due to
K. Brown, [20]. Baues has a similar theory, as follows:

c) Baues, [9]: Baues uses interacting structures, one of Quillen type (or
rather of K. Brown’s version of half of Quillen’s theory) and the other of
cylinder functor type. The two structures are called cofibration categories and
I-categories.

Cofibration category; (C, cof, w.e.): i.e., a category C with two classes
of morphisms, cof of cofibrations and w.e. of weak equivalences, satisfying four
axioms, see Baues, [9].

I-category (C, cof , I, ∅): Here C is a category, ‘cof ’ is a class of ‘cofibra-
tions’, ∅ is the initial object of C and I is a ‘cylinder functor’.

These are required to satisfy some axioms, again given in [9]. The axioms
are generally intuitive and are easy to use, giving, after a reasonable amount
of work:

Theorem 3. (Baues, [9])If (C, cof, I, ∅) is an I-category and we let w.e. be
the class of homotopy equivalences with repect to I, then (C, cof , w.e.) is a
cofibration category.
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Baues develops a large segment of homotopy theory in this setting and gives
a large number of examples. He then goes on to get deep new results on the
homotopy theory of spaces via this abstract homotopy approach, (see also
Baues, [10, 11]).

2.6 Simplicial background

In addition to the introductory material above, we will need some more back-
ground on simplicial thoery. This also gives a good opportunity to set up
notation and terminology. Additional material on simplicial theory, i.e., be-
yond the ‘classical’ sources of Curtis, [42], May, [117], and Gabriel and Zisman,
[66], can be found in books such as that by Goerss and Jardine, [73].

2.6.1 Simplicially enriched categories and groupoids.

First a word about ‘enrichment’. We have met internal categories and groupoid
above, and also group objects in a category. Simplicial groups are group ob-
jects in S, for instance. They have another aspect namely ‘simplicially enriched
groupoids with one object’.

As was mentioned in the previous chapter, in many situations we have a
category whose ‘hom-sets’ have additional structure. For instance, in a cate-
gory of modules, the set of morphisms between modules all have the structure
of an Abelian group. We say the category of modules is ‘enriched’ over the
category of Abelian groups. Similarly we saw earlier, section 2.2, that both
Top and S itself were ‘simplicially enriched’. We will briefly revisit this next.

Categories with simplicial ‘hom-sets’: We assume that we have a
category A, whose objects will be denoted by lower case letter, x, y, z, . . . , at
least in the generic case, and for each pair of such objects, (x, y), a simplicial
set A(x, y) is given; for each triple x, y, z of objects of A, we have a simplicial
map, called composition

A(x, y)×A(y, z) −→ A(x, z);

and for each object x a map

∆[0]→ A(x, x)

that ‘names’ or ‘picks out’ the ‘identity arrow’ in the set of 0-simplices of
A(x, x). This data is to satisfy the obvious axioms, associativity and identity,
suitably adapted to this situation. Such a set up will be called a simplicially
enriched category or more simply an S-category . Enriched category theory is
a well established branch of category theory. It has many useful tools and not
all of them have yet been exploited for the particular case of S-categories and
its applications in homotopy theory. Here are the two main standard examples
again plus some more:



2.6 Simplicial background 49

Examples (i) S, the category of simplicial sets:
here

S(K,L)n := S(∆[n]×K,L);

Composition : for f ∈ S(K,L)n, g ∈ S(L,M)n, so f : ∆[n] × K → L,
g : ∆[n]× L→M ,

g ◦ f := (∆[n]×K diag×K−→ ∆[n]×∆[n]×K ∆[n]×f−→ ∆[n]× L g→M);

Identity : idK : ∆[0]×K
∼=→ K,

(ii) Top, ‘the’ category of spaces (of course, there are numerous variants
but you can almost pick whichever one you like as long as the constructions
work there):

Top(X,Y )n := Top(∆n ×X,Y )

Composition and identities are defined analogously to in (i).
(iii) For each X, Y ∈ Cat, the category of small categories, then we simi-

larly get Cat(X,Y ),

Cat(X,Y )n = Cat([n]×X,Y ).

We leave the other structure up to the reader.
(iv) Crs, the category of crossed complexes: see [28] and below, for back-

ground, and Tonks, [160], for a more detailed treatment of the simplicially
enriched category structure;

Crs(A,B) := Crs(π(n)⊗ C,D)

Composition has to be defined using an approximation to the identity, again
see [160].

(v) Ch+
K , the category of positive chain complexes of modules over a com-

mutative ring K. (Details are left to the reader, or follow from the Dold-Kan
theorem and example (vi) below.)

(vi) Simp.ModK , the category of simplicial K-modules. The structure uses
tensor product with the free simplicial K-module on ∆[n] to define the ‘hom’
and the composition, so is very much like (i).

Notational remark: It is sometimes convenient to put the ‘product with
I’ on the other side, giving homotopies and their higher order analogues in
the form h : K ×∆[n]→ L, etc. As this is merely notational we will do this,
when needed, without further comment. Of course the two formulations are
completely equivalent.

In general any category of simplicial objects in a ‘nice enough’ category
has a simplicial enrichment, although the general argument that gives the
construction does not always make the structure as transparent as it might
be.

There is an evident notion of S-enriched functor, so we get a category of
‘small’ S-categories, denoted S−Cat. Of course, none of the above examples
are ‘small’.
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We also have a notion of simplicially enriched groupoid, bearing the same
relationship to S-categories as ordinary groupoids do to categories.

We have denoted the category of simplicial sets, as before, by S and that
of simplicially enriched groupoids by S−Grpd. This latter category thus in-
cludes that of simplical groups, but it must be remembered that a simplicial
object in the category of groupoids will, in general, have a non-trivial sim-
plicial set as its ‘object of objects’, whilst in S −Grpd, the corresponding
simplicial object of objects will be constant. This corresponds to a groupoid
in which each collection of ‘arrows’ between objects is a simplicial set, not just
a set, and composition is a simplicial morphism, hence the term ‘simplicially
enriched’. We will often abbreviate the term ‘simplicially enriched groupoid’
to S-groupoid, but the reader should again note that in some of the sources
on this material the looser term ‘simplicial groupoid’ is used to describe these
objects usually with a note to the effect that this is not a completely accu-
rate term to use. Sometimes one gets a simplicial object in Cat or Grpd and
we need to see if it is ‘really’ a S-category, resp., S-groupoid. The following
lemma helps. First some notation:

Let Ob : Cat→ Sets be the functor that picks out the set of objects of a
small category.

Lemma 3. Let B : ∆op → Cat be a simplicial object in Cat such that Ob(B)
is a constant simplicial set with value B0, say. For each pair (x, y) ∈ B0, let

B(x, y)n = {σ ∈ Bn| s(σ) = x, t(σ) = y},

where, of course, s refers to the source or domain function in Bn, since other-
wise s(σ) would have no meaning, similarly for t, being the target or codomain
function.

(i) The collection {B(x, y)n| n ∈ N} has the structure of a simplicial set
B(x, y) with face and degeneracies induced from those of B.

(ii) The composition in each level of B induces

B(x, y)× B(y, z)→ B(x, z).

Similarly the identity map in B(x, x) is defined as idx, the identity at x in the
category B0.

(iii) The resulting structure is an S-enriched category. �

The proof is routine, but is worth writing out if you have not seen the result
before.

2.6.2 The Dwyer-Kan S-groupoid functor.

The loop groupoid functor of Dwyer and Kan, [49], is a functor

G : S → S−Grpd,
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which takes the simplicial set K to the simplicially enriched groupoid GK,
where (GK)n is the free groupoid on the directed graph

Kn+1
//// K0 ,

where the two functions, s, source, and t, target, are s = (d1)n+1 and t =
d0(d2)n with relations s0x = id for x ∈ Kn. The face and degeneracy maps
are given on generators by

sGKi (x) = sKi+1(x),

dGKi (x) = dKi+1(x),

for x ∈ Kn+1, 1 < i ≤ n and dGK0 (x) = (dK1 (x))(dK0 (x))−1.
These definitions yield a simplicial groupoid as is easily checked and, as is

clear, its simplicial set of objects is constant, so it also can be considered as
a simplicially enriched groupoid, G(K). (We note that we use both GK and
G(K) for this, inserting brackets when it helps reduce ambiguity.)

(NB. Beware there are serious ‘typos’ in the original paper, [49], relating
to these formulae for the construction and in some of the related material.)

It is instructive to compute some examples and we will look at G(∆[2])
and G(∆[3]). These simplicially enriched groupoid are free groupoids in each
simplicial dimension. Their structure can be clearly seen from the generating
graphs. For instance, G(∆[2])0 is the free groupoid on the graph

1
12

��<<<<<<<<

0
02

//

01

@@��������
2

whilst G(∆[2])1 is the free groupoid on the graph

1
122

��<<<<<<<<

0
022

//

011

@@�������� 012

@@��������
2

Here it is worth noting that δ0(012) = (02).(12)−1. Higher dimensions do not
have any non-degenerate generators.

Again with G(∆[3]), in dimension 0, we have the free groupoid on the
directed graph given by the 1-skeleton of ∆[3]. In dimension 1, the generating
directed graph is
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1

133

��=============

����

0

@@�������������

@@�������������

@@������������� //

023

��=============

022

��============= 3

2

233

@@�������������

Here only a few of the arrow labels have been given. Others are easy to provide
(but moderately horrible to typeset in a sensible way!). Those from 0 to 1 are
012, 011 and 013; those from 1 to 2 are 122 and 123, and finally from 0 to 3,
we have 033.

The next dimension is only a little more complicated. It has extra degen-
erate arrows such as 0112 and 0122 from 0 to 1, but also between these two
vertices has 0123, coming from the non-degenerate 3-simplex of ∆[3]. The full
diagram is easy to draw (and again a bit tricky to typeset in a neat way), and
is therefore left ‘as an exercise’.

This loop groupoid functor has a right adjoint, W , called the classifying
space functor, but before we describe it in detail, we turn to the construction
of a Moore complex of a simplically enriched groupoid, extending the one
given earlier for simplical groups.

Given any S-groupoid, G, its Moore complex NG is given by

NGn =
n⋂
i=1

Ker(di : Gn → Gn−1)

with differential ∂ : NGn → NGn−1 being the restriction of d0. If n ≥ 1, this
is just a disjoint union of groups, one for each object in the object set, O, of
G. If we write G{x} for the simplicial group of elements that start and end
at x ∈ O, then at object x, one has

NG{x}n = (NGn){x}.

In dimension 0, one has NG0 = G0, so the NGn{x}, for different objects x,
are linked by the actions of the 0-simplices, acting by conjugation via repeated
degeneracies.

Definition: If G is a S-groupoid, its fundamental groupoid is π0G =
NG0/∂NG1.

This works because ∂NG1 is a normal subgroupoid of G0.
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Definition: Again if G is a S-groupoid, its nth homotopy groupoid is
πn(G) := Ker ∂n/Im∂n+1.

This is a groupoid with πn(G)(x, y) empty if x 6= y in Ob(G). Of course,
πn(G){x} = πn(G{x}), the nth homotopy group of the vertex simplicial group,
G{x} of G at the object x.

For simplicity in the discussion that follows, we will often assume that the
S-groupoid is reduced, that is, its set, O, of objects is just a singleton set {∗},
so, in fact, G is just a simplicial group.

Notational caution: The Dwyer-Kan construction behaves like a ‘loop’
construction. It lowers the index of each simplex, so a 2-simplex in K, for in-
stance, gives a 1-simplex in the loop groupoid, GK. Thus πn(K) ∼= πn−1(GK),
just as πn(X) ∼= πn−1(ΩX). Sometimes this may cause a slight mismatch with
the apparent dimensions of elements and thus some confusion.

2.6.3 The W construction.

We next need to make explicit the W construction.
Let H be an S-groupoid, then WH is the simplicial set described by

• (WH)0 = Ob(H0), the set of objects of the groupoid of 0-simplices (and
hence of the groupoid at each level);

• (WH)1 = arr(H0), i.e., the set of arrows of the groupoid H0;
and for n ≥ 2,

• (WH)n = {(hn−1, . . . , h0) | hi ∈ arr(Hi) and s(hi−1) = t(hi), 0 < i < n}.

Here s and t, as usual, are generic symbols for the domain and codomain
mappings of all the groupoids involved. The face and degeneracy mappings
between (WH)1 and (WH)0 are the source and target maps and the identity
maps of H0, respectively; whilst the face and degeneracy maps at higher levels
are as follows:

• d0(hn−1, . . . , h0) = (hn−2. . . . , h0);
• for 0 < i < n,

di(hn−1, . . . , h0) = (di−1hn−1, di−2hn−2, . . . , d0hn−i.hn−i−1, hn−i−2, . . . , h0);
and

• dn(hn−1, . . . , h0) = (dn−1hn−1, dn−2hn−2, . . . , d1h1),
whilst

• s0(hn−1, . . . , h0) = ids(hn−1), hn−1, . . . , h0);
and,

• for 0 < i ≤ n,
si(hn−1, . . . , h0) = (si−1hn−1, . . . , s0hn−i, idt(hn−i), hn−i−1, . . . , h0).
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2.6.4 Simplicial Automorphisms and Regular Representations.

One original motivation for the study that led to the writing of this book
was the Grothendieck programme, Pursuing Stacks, [76]. That involves non-
Abelian cohomology, stacks and related structures. We will see some simple
simplicial echoes of some of that in the following pages. It will not, however,
be developed in detail in this book, but does suggest further directions for
research. Here we will limit ourselves to some standard material adapted from
Curtis, [42], Gabriel and Zisman, [66] and May, [117]. One of its potential
applications is via the profinite completion functors that we will meet shortly.

As we saw, the usual enrichment of the category of simplicial sets is given
by :
for each n ≥ 0, the set of n-simplices is

S(K,L)n = S(K ×∆[n], L),

together with obvious face and degeneracy maps. Recall that composition is
given by: for f ∈ S(K,L)n, g ∈ S(L,M)n, so f : ∆[n]×K → L, g : ∆[n]×L→
M ,

g ◦ f := (K ×∆[n]
K×diag−→ K ×∆[n]×∆[n]

f×∆[n]−→ L×∆[n]
g→M);

Identity : idK : K ×∆[0]
∼=→ K,

For fixed K, S(K,K) is a simplicial monoid and aut(K) will be the corre-
sponding simplicial group of invertible elements.

If f : K × ∆[n] −→ L is an n-simplex in S(K,K), then we can form a
diagram

K ×∆[n]
(f,p) //

$$JJJJJJJJJ
L×∆[n]

zzuuuuuuuuu

∆[n]

in which the two slanting arrow are the obvious projections, (so (f, p)(k, σ) =
(f(k, σ), σ)). Taking K = L, f ∈ aut(K) if and only if (f, p) is an isomorphism
of simplicial sets.

Given a simplicial set K, and an n-simplex k in K, there is a representing
map, also denoted,

k : ∆[n] −→ K,

that sends the top dimensional generating simplex of ∆[n] to k. The enrich-
ment above is part of an adjunction

S(K × L,M) ∼= S(L,S(K,M))

in which, given θ : K × L −→ M and ` ∈ Ln, the corresponding simplicial
map
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θ : L −→ S(K,M)

sends ` to the composite

K ×∆[n] K×`−→ K × L θ−→M.

In a simplicial group G, the multiplication is a simplicial map #0 : G ×
G −→ G, and so, by the adjunction, we get a simplicial map

G −→ S(G,G)

and this is a simplicial monoid morphism. This gives the right regular repre-
sentation of G,

ρ = ρG : G −→ aut(G).

This representation needs careful interpretation. In dimension n, an element
g ∈ Gn acts by multiplication on the right on G, but even in dimension 0, this
action is not as simple as one might think. (NB. Here aut(G) is the simplicial
group of ‘simplicial automorphisms of the underlying simplicial set of G, as,
of course, multiplication by an element does not give a mapping that respects
the group structure.) Here some simple examples are called for:

Suppose g ∈ G1, then ρ(g) ∈ aut(G)1 ⊂ S(G,G)1 = S(G × ∆[1], G). In
other words, ρ(g) is a homotopy between ρ(d1g) and ρ(d0g). Of course, it is an
invertible element of S(G,G)1 and this will have implications for its properties
as a homotopy, and to use a geometric term, we might loosely refer to it as
an isotopy.

In general, 0-simplices give simplicial maps corresponding to multiplication
by that element, so that for g ∈ G0, and x ∈ Gn,

ρ(g)(x) = x#0s
(n)
0 (g).

In dimension 1, we have that elements give isotopies, and in higher dimensions,
we have ‘isotopies of isotopies’, and so on.

2.6.5 W , W and twisted cartesian products.

Suppose we have simplicial sets Y , a potential ‘fibre’ and B, a potential ‘base’
which will be assumed to be pointed by a vertex, ∗. Inspired by the sort of
construction that works for the construction of group extensions, we are going
to try to construct a fibration sequence

Y −→ E −→ B.

Clearly the product E = B × Y will give such a sequence, but can we twist
this cartesian product to get a more general construction? We will try setting
En = Bn×Yn and will change as little as possible in the data specifying faces
and degeneracies. In fact we will take all the degeneracy maps to be exactly
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those of the cartesian product, and all but d0 of the face maps likewise. This
leaves just the zeroth face map.

In, say, a covering space considered as a fibration with discrete fibre, the
fundamental group(oid) of the base acts by automorphisms / permutations on
the fibre, and the fundamental group(oid) is generated by the edges, hence by
elements of dimension one greater than that of the fibre, so we try a formula
for d0 of form

d0(b, y) = (d0b, t(b)(d0y)),

where t(b) is an automorphism of Y , determined by b in some way, hence giving
a function t : Bn −→ aut(Y )n−1. Note here Y is an arbitrary simplicial set,
not the underlying simplicial set of a simplicial group as was previously the
case when we considered aut, but this makes little difference to the discussion.

Of course, with these tentative definitions, we must still have that the
simplicial identities hold, but it is easy to check that these will hold exactly
if t satisfies the following equations:

dit(b) = t(di−1b) for i > 0,
d0t(b) = t(d1b)#0t(d0b)−1,

sit(b) = t(si+1b) for i ≥ 0,
t(s0b) = ∗.

A function t satisfying these equations will be called a twisting function and
the simplicial set E, thus constructed, will be called a regular twisted cartesian
product. We write E = B ×t Y .

Of course a twisting function is not a simplicial map, but the formulae
it satisfies look closely linked to those of the Dwyer-Kan loop group(oid)
construction, page 50. In fact:

Proposition 16. A twisting function t : B −→ aut(Y ) determines a unique
homomorphism of simplicial groupoids t : GB −→ aut(Y ), and conversely. �

Of course, since G is left adjoint to W , we could equally well note

Corollary 3. A twisting function t determines a unique simplicial morphism
t : B −→W (aut(Y )), and conversely. �

Example : Simplicial covering spaces. Given any simplicial group, G,
we can form its fundamental group, which is π0(G) = G0/Im{∂ : NG1 →
G0}. Given any group, π, we can form a constant simplicial group, K(π, 0),
having π in all dimensions and with all face and degeneracy maps being the
identity homomorphism from π to itself. These two constructions are functo-
rial and provide a pair of adjoint functors between the category of simplicial
groups and that of groups. There is an obvious simplicial group homomor-
phism

G→ K(π0, 0),
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for π0 = π0(G), which ‘kills off’ all higher terms in the Moore complex, NG.
(We note that any NK(π, 0)n is trivial if n ≥ 1 and is π in dimension 0.)

If K is a reduced simplicial set, (so K0 is a singleton set), then GK is a
simplicial group and π0GK ∼= π1(K), see May, [117], for this in detail. In this
case, the natural epimorphism,

GK → K(π0, 0)

is adjoint to
t : K →WK(π0, 0),

which gives a natural twisting map t : K → K(π0, 0), and hence a fibration
(twisted cartesian product)

K ×t K(π0, 0)→ K,

with fibre the constant simplicial set K(π0, 0), i.e., the underlying simplicial
set of the corresponding constant simplicial group. As a constant simplicial
set is really ‘just’ a set, this gives us a fibration with ‘discrete’ fibre, and hence
with unique lifting properties, i.e., a covering ‘space’.

If E → K is any simplicial covering, (i.e., fibration with ‘discrete’ fibre),
then E ∼= K×tF for some fibre F and twisting function t. We have t : GK →
aut(F ), but F is constant, so this factors through π0GK → aut(F ), i.e., an
action of π1 = π1K, or equivalently π0(GK), on the set F0. It is not difficult
to extend this to identifying K̃ = K×tK(π1, 0) as the universal covering and
this correspondence with actions as being part of the Galois-Poincaré theory
for simplicial coverings, for which the canonical source is probably Gabriel
and Zisman, [66], or for links with groupoid coverings, Brown, [23], see also,
Borceux and Janeldize, [18], p. 324 - 326. Of course, what we might want to
do is to replace π1 by its profinite completion and also to explore replacing
this ‘1-type’ by a general n-type.

2.6.6 n-types of spaces, simplicial sets and S-group(oid)s

We earlier briefly mentioned ‘n-equivalences’ and ‘n-types’. As homotopy
types are enormously complex in structure, we may try to study them by
‘filtering’ that information in various ways, thus attempting to see how the
information at the nth-level depends on that at lower levels. The informational
filtration by n-type is very algebraic and, as we will see later, very natural.
It has two very satisfying interacting aspects. It gives complete models for
a subclass of homotopy types, namely those whose homotopy groups vanish
for all high enough n, but, at the same time, gives a set of approximating
notions of equivalence that, on all ‘spaces’, give useful information on weak
equivalences. We start with the topological notion:

Definition: Given a continuous function f : (X,x0) → (Y, y0) between
connected pointed spaces, f is said to be a n-equivalence if the induced ho-
momorphisms πk(f) : πk(X,x0) → πk(Y, y0), for 1 ≤ k ≤ n, are all iso-
morphisms. More generally, on relaxing the requirements on the spaces, a
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continuous function f : X → Y is a n-equivalence if it induces a bijection on
π0, that is, π0(f) : π0(X) → π0(Y ) is a bijection, and for each x0 ∈ X and
1 ≤ k ≤ n, πk(f) : πk(X,x0)→ πk(Y, f(x0)) is an isomorphism.

There are alternative descriptions: f is an n-equivalence if and only if, for
any polyhedron P of dimension ≤ n, f induces a bijection

[P, f ] : [P,X]→ [P, Y ]

on homotopy classes. (We restrict to spaces having the homotopy type of a
CW-complex here to avoid problems of weak equivalences that are not homo-
topy equivalences.)

We can form a category Hon(Top) by formally inverting the n-equivalences
within our favorite category of spaces, Top. As any weak equivalence is a n-
equivalence (for all n) and any n-equivalence is an (n− 1)-equivalence, there
are functors

Ho(Top)→ Hon(Top)

and
Hon(Top)→ Hok(Top)

if k ≤ n.
Definition: Two spaces are said to have the same n-type if they are

isomorphic within Hon(Top).
It should be clear that the definition does not imply that the two such

spaces have to have an n-equivalence directly joining them as the isomorphism
in Hon(Top) may not be realisable in that way. It may be the result of a ‘zig-
zag’ of actual maps with every other of them an n-equivalence. If the spaces
are CW-complexes, and hence are specified with filterations by skeleta, which
are built inductively by adding cells to previous levels, then we can do a lot
better than arbitrary ziz-zags. Given n, the n-type of a CW-complex, X, will
depend only on its (n+ 1)-skeleton, since the inclusion of X(n+1) into X will
be an n-equivalence as follows from the definition of the homotopy groups.

It seems that, in his original thoughts on algebraic homotopy theory,
Whitehead hoped to find algebraic models for n-types, that is to find algebraic
descriptions of isomorphism classes of spaces within Hon(Top). Classifying 1-
types is ‘easy ’ as they have models that are just groups, so classification
reduces to classifying groups up to isomorphism. This is still not an easy task,
but there are a wide range of tools available for it. MacLane and Whitehead,
[114], gave a complete algebraic model for 2-types. (As previously noted their
3-types are modern terminology’s 2-types.) The model they proposed was the
crossed module and we will be exploring the modern theory of crossed mod-
ules and their applications later on. We will also be looking at various related
models for n-types.

It should be pointed out that although n-equivalence is defined in terms
of the πk, 0 ≤ k ≤ n, the interactions between the various πks mean that not
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every sequence {φk : πk(X) → πk(Y )}0≤k≤n can be realised as the induced
morphisms coming from some f : X → Y even if the φk are all isomorphisms.

For simplicial sets and simplicially enriched group(oid)s, the definitions of
n-equivalence are analoguous:

Definition: For f : G → H a morphism of S-groupoids, f is an n-
equivalence if π0f : π0G → π0H is an equivalence of the fundamental
groupoids of G and H and for each object x ∈ Ob(G) and each k, 1 ≤ k ≤ n,

πkf : πk(G{x})→ πk(H{f(x)})

is an isomorphism.
We write Hon(S−Grpd) for the corresponding category of n-types, i.e.,

S−Grpd(Σ−1
n ), where Σn is the class of all n-equivalences of S-groupoids. An

n-type of S-groupoids is an isomorphism class within Hon(S−Grpd).

We will also be needing the subcategory of Hon(S−Grpd) determined by
the simplicial groups. This will be denoted Hon(Simp.Grps). We will look
in detail at various aspects of n-types of simplicial groups, and will adapt
notation in obvious ways to handle the profinite and pro-C analogues when
needed.

Repeated cautionary note: If K is a simplicial set, then as πk(K) ∼=
πk−1(GK), the n-type of K corresponds to the (n− 1)-type of GK.

2.7 Profinite homotopy

2.7.1 Homotopy procategories

In their work on étale homotopy, [6], Artin and Mazur proposed a working
definition of prohomotopy. Starting with the categories of CW-complexes and
Simplicial Sets, and sometimes, Kan complexes, they first formed the ho-
motopy category and then the corresponding pro-category, Pro−Ho(S) or
whatever.

As pro-objects are diagrams, the objects on these categories could be con-
sidered as homotopy commutative diagrams of the corresponding objects, for
instance, an object of Pro−Ho(S) is repesentable as a homotopy commu-
tative diagram of simplicial sets. The lack of information encoded in such a
diagram as to the homotopies involved (they are required to exist, but are
not specified in any way) and the consequent failure of Pro−Ho(S) to cor-
respond to a homotopy category of Pro−S meant that the development of
homotopical algebra, or for us more importantly, some reasonable algebraic
homotopy in this setting was impossible. The use of prosimplicial sets in a
geometric topological context in Shape Theory led to the development of var-
ious homotopy structures on Pro−S and some of the related categories such
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as Pro−Simp.Grps and Pro−Ch+
k , the category of prochain complexes over a

commutative ring. (A list of references for these will be given shortly.) These
linked in to the good geometric homotopic intuitions of Shape Theory, and
related Proper Homotopy Theory, but those intuitions also suggested tools
for encoding the homotopies in the diagrams. (Some of these tools were de-
veloped as long ago as the 1940s, so had ‘laid fallow’ for years.) In this second
generation of homotopy structures on procategories, the key ideas were (i)
to base things firmly on a good class of ‘weak equivalences’ and (ii) to use
explicit encoding of the homotopies, whether geometrically or categorically,
and to require coherence conditions between them. The ‘weak equivalences’
usually included those morphisms in Pro−S that were ‘levelwise weak equiv-
alences’. By a result, known as the Reindexing Lemma, to be found in Artin
and Mazur’s lecture notes, [6], any morphism of pro-objects is isomorphic, in
the category of such morphisms, to one that is ‘levelwise’ so is a pro-object
in the category of morphisms of the original category. Such levelwise weak
equivalences were pro-morphisms in which all the maps involved were weak
equivalences in the sense of a homotopy theory on the original category. In
1973, Vogt, [162], showed that, in a category of diagrams of spaces, inverting
‘levelwise’ homotopy equivalences corresponded to homotopy coherent dia-
grams, that is, homotopy commutative diagrams in which the homotopies
were specified and were compatible with each other up to higher homotopies,
ad infinitum. This combined the two ideas mentioned before.

After a period of relative inactivity, the homotopy theory of pro-spaces
has gone through a revival due to results by Morel, [123, 124] and Dehon,
[43] and with Gaudens, [44], showing applications of profinite spaces to the
study of the T -functor of Lannes. One consequence of this has been Isaksen’s
re-examination, [90, 91], of well behaved Quillen model category structures
on the category of prosimplicial sets. The theory now looks as if it is heading
for a fairly definitive form.

Other references for homotopy structures in this context are:

• J. Grossman, (1975), [74]: This concentrates on towers of spaces, but con-
tains some very useful results;

• D. Edwards and H.Hastings, (1976): This was one of a series of very
important advances at that time. It provided a rich theory with a lot
of geometric-topological motivation and links with proper homotopy and
strong shape theory;

• T. Porter, mid-1970s, [134–137] and for links with proper homotopy the-
ory, [140]. This theory was based on K. Brown’s cutdown version, [20], of
Quillen’s homotopical algebra, which is closely linked to Baues’ algebraic
homotopy theories mentioned earlier. It was motivated by attempts to
bring the homotopy coherent machinery of Vogt, [162], to bear on prosim-
plicial homotopy theory. The link with the Edwards-Hasting’s theory is
explored in [138];
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• E. Friedlander, (in particular, 1972-82), [61–63]: The emphasis in these
papers and book is towards algebraic geometric applications. It is based
on geometric tools for improving the Artin-Mazur étale homotopy theory.

Finally Isaksen’s work, already cited, provides an excellent treatment of the
technical problems of defining good homotopy theories for pro-simplicial sets.
His further work with Fausk, [58], examines the overall question of finding
model category structures in procategories, including that of G-spaces fro G
a profinite group.

2.7.2 Profinite homotopy types

What should be a profinite homotopy type? For that matter, what should be
a finite homotopy type? There are several ‘obvious’ answers. In the first, a
‘space’ or simplicial set, K, would be of finite homotopy type if π0K is a finite
set, and for each basepoint ∗ in K and each k ≥ 1, πk(K) is a finite group.
A second, slightly stronger, version would add that, for each basepoint ∗,
only finitely many of the πk(K, ∗) should be non-trivial, and finally seemingly
extra specially strong, the simplicial groupoid G(K) should be such that it
has finitely many components and for each component Ki, its homotopy type
can be faithfully represented by a simplicial group whose Moore complex is of
bounded finite length, and whose group of n-simplices is finite for each n ≥ 0.

In, for instance, [123], the second version is used, but the coskeleton func-
tors, cf. Artin and Mazur, [6], or Duskin, [48], can be used within Pro−S, to
replace a simplicial set K by its tower of coskeleta, K\, within Pro−S, and
if K has finite homotopy type in the weaker first sense, then K\ is a tower
of simplicial sets, each of which has finite homotopy type in the second sense,
hence for the purposes of pro-finite completions the first two are equivalent
although not equal.

What about the third, where the homotopy type can be represented by
a ‘finite simplicial groupoid’? By restricting to components, we may assume
without loss of generality that K is connected, and then may further assume
it is reduced as we want to discuss its homotopy type. If there is a finite
simplicial group, G, i.e., its Moore complex is of finite length and each Gn is
finite, so that G and G(K) are isomorphic in Ho(Simp.Grps) then clearly as
the homotopy groups of K are the homology groups of NG(K) shifted one
dimension, and these latter are isomorphic to the homology groups of NG,
which are finite, since each Gn is finite, then the third condition clearly implies
the second. In fact they are equivalent, as the following result of Ellis shows:

Theorem 4. (Ellis, [56]) Suppose that πk(K) is trivial for all k ≥ c+ 1, and
that each of the homotopy groups πk(K) is finite for k ≤ c, then the homotopy
type of K is faithfully represented by a simplicial group whose Moore complex
is of length at most c − 1 and whose group of n-simplices is finite for each
n ≥ 0. �
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It should be noted that an alternative notion of finite homotopy type has
been used elsewhere. There it has been taken to mean that the homotopy type
has a representative, which is a finite CW-complex. Of course, that in no way
is strong enough for our purposes as the circle is a finite CW-complex yet has
infinite fundamental group. We make the following formal definition:

Definition: A connected simplicial set K is said to be of strongly finite
homotopy type if it has finitely many non-trivial homotopy groups all of which
are finite. For a non-connected simplicial set K, we say it is of strongly finite
homotopy type, if each component is.

Ellis notes, [56], the following variant of his result:

Proposition 17. Suppose that each of the c non-trivial homotopy groups of
K is a finite p-group, where p is a prime, then the homotopy type of K is
faithfully represented by a simplicial group whose group of n-simplices is a
finite p-group for each n ≥ 0. �

We introduce a terminology to handle the corresponding simplicial groups
and S-groupoids:

Definition: Given a simplicial group G, we say G is strongly finite if each
Gn is finite, and the Moore complex, (NG, ∂), is of finite length. We say it is
weakly finite if each Gn is a finite group.

If G is a S-groupoid, then we will say G is strongly finite if G has finitely
many components and each of its vertex simplicial groups is strongly finite
and similarly for ‘weakly’.

We will follow our usual practice and extend the above to C settings by
replacing ‘finite’ to ‘C’ wherever this makes sense.

Definition: A S-groupoid G is strongly homotopy finite if it is homotopy
equivalent to a strongly finite S-groupoid; similarly for ‘weakly’.

We can now say what we will mean by a pro-C homotopy type.
Definition: A S-groupoid G is said to be a pro-C S-groupoid if for each n

the groupoid Gn is a pro-C groupoid, i.e. it is a profinite groupoid such that
the set of objects is a profinite space and each vertex group is a pro-C group.
Of course, a special case of this is the notion of a pro-C simplicial group, this
being just that case when G has a single object.

The category of pro-C S-groupoids is defined in the obvious way using
continuous homomorphisms/functors. The definition of ‘weak equivalence’ in
this setting is fairly straightforward.

Definition: A continuous simplicial map f : G→ H of pro-C S-groupoids
is a weak equivalence if it induces a bijection on π0 and for each object x ∈
Ob(G) and each k ≥ 0, the induced homomorphism πk(f) : πk(G{x}) →
πk(H{f(x)}) is an isomorphism. The corresponding homotopy category is
obtained by formally inverting the weak equivalences and will be denoted
Ho(Pro−C.S−Grpd).

A pro-C homotopy type is an isomorphism class within Ho(Pro−C.S−
Grpd).
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It is only a bit more tricky to speak of a profinite simplicial set, K, i.e.
a simplicial object in Prof., as being pro-C. If G is a profinite S-groupoid,
then W (G) is a profinite simplicial set in this sense, so K should be of pro-
C homotopy type if it is continuously homotopically equivalent to a profinite
simplicial set of the form W (G) for G a pro-C S-groupoid. (This is discussed in
some detail in Morel’s paper, [124] for the case of pro-p ‘simplicial groupoids’.)
We note that if K is a pro-C simplicial in this sense then its set of components
will be a profinite space and all its homotopy groups are pro-C.

As we will be interested in the algebraic homotopy of these profinite homo-
topy types we will tend to concentrate on the profinite and pro-C simplicial
groups and, to a lesser extent, groupoids. The profinite simplicial sets will
rarely play any key role in the following development.

2.7.3 Profinite completion of homotopy types

Profinite completions of homotopy types were introduced initially by Artin
and Mazur, [6], and their theory was extended and applied by Sullivan, [158]. A
variant was introduced by Bousfield and Kan, [19], but was applicable mainly
to nilpotent spaces (see later for the idea of a nilpotent action) and for ‘pro-p
completions’, which is one of the most important cases. More recently, Morel,
[123, 124], has reworked both of these sources to get a pro-p completion that
works in general and which is more ‘rigid’ than the Artin-Mazur one. Morel’s
version has been examined by Isaksen, [92]. We will adapt Morel’s theory to
the general pro-C setting. That approach is ideally suited for this context as it
is firmly based on the algebraic models of simplicial groups and S-groupoids.

What should be a profinite completion? We have already seen various
cases of them in an algebraic context, and will take the model from there.
We have a category of ‘finite’ objects, within a category of all objects and
look for a pro-adjoint to the inclusion of the category of finite ones into the
bigger category. In the case of our algebraic models for homotopy types, we
can take the finite objects to be the strongly (homotopy) finite S-groupoids or
their weak cousins. It does not, in fact, matter as the ‘weak’ ones are inverse
limits of ‘strong’ ones as follows from Ellis’s finiteness results together with
truncation.

We extend the profinite completion functor on groups or groupoids dimen-
sionwise to the simplical case, and so, if G is a simplicial group, for instance,
then Ĝ will denote the profinite simplicial group obtained by (Ĝ)n = (̂Gn).
The following is a simple consequence of the definition of simplicial morphisms
as natural transformations.

Proposition 18. For any finite simplicial group H, there is a natural bijec-
tion

Simp.Grps(G,H) ∼= Simp.Prof.Grps(Ĝ,H).

�
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Of course, the pro-C version, and the groupoid versions are similar.
Because of this proposition, there is an obvious way to profinitely complete

a simplicial set, K. You just send it to W (Ĝ(K)). The resulting map is adjoint
to the natural unit of the adjunction, G(K)→ Ĝ(K). Again the pro-C version,
and the groupoid versions are similar. Thus the viewpoint we will be exploring
is that one natural interpretation of the title of this book is the study of
the homotopy properties of simplicial profinite groups and the application of
their invariants. This will not be the only aspect we will examine as there
are numeroous interesting and useful other points of view that should not be
neglected, especially those coming form the crossed module, crossed complex
thread.



3

Pro-C Crossed Modules.

3.1 Crossed modules and Pro-C crossed modules.

We first recall for convenience the definitions of crossed module (cf. Brown-
Huebschmann [29]) and of a morphism of crossed modules.

3.1.1 Crossed Modules

Definition: A crossed module (C,G, δ) consists of groups C and G with a
left action of G on C, written (g, c) → gc for g ∈ G, c ∈ C, and a group
homomorphism δ : C → G satisfying the following conditions:
CM1) for all c ∈ C and g ∈ G,

δ(gc) = gδ(c)g−1,

CM2) for all c1, c2 ∈ C,
δ(c2)c1 = c2c1c

−1
2 .

(CM2 is called the Peiffer identity.)

If (C,G, δ) and (C ′, G′, δ′) are crossed modules, a morphism, (µ, η) :
(C,G, δ)→ (C ′, G′, δ′), of crossed modules consists of group homomorphisms
µ : C → C ′ and η : G→ G′ such that

(i) δ′µ = ηδ and (ii) µ(gc) = η(g)µ(c) for all c ∈ C, g ∈ G.
Crossed modules and their morphisms form a category, of course. It will

usually be denoted CMod.
Examples of crossed modules: When we have defined their profinite/

pro-C analogue, we will give some algebraic examples which exist in both the
classical discrete setting and in the profinite cases, but for the moment we
limit ourselves to the standard topological examples:
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1. Let X be a pointed space, with x0 ∈ X as its base point, and A a
subspace with x0 ∈ A. Recall that the second relative homotopy group,
π2(X,A, x0), consists of relative homotopy classes of continuous maps

f : (I2, ∂I2, J)→ (X,A, x0)

where ∂I2 is the boundary of I2, the square, [0, 1]× [0, 1], and J = {0, 1}×
[0, 1] ∪ [0, 1]× {0}. Schematically f maps the square as:

x0x0 X

x0

A

so the top of the boundary goes to A, the rest to x0 and the whole thing to
X. The relative homotopies considered then have to preserve such struc-
ture, so intermediate mappings also send J to x0, etc. Restriction of such
an f to the top of the boundary clearly gives a homomorphism

∂ : π2(X,A, x0)→ π1(A, x0)

to the fundamental group of A, based at x0. There is also an action of
π1(A, x0) on π2(X,A, x0) given by rescaling the ‘square’ given by

a

�
�

��

@
@
@@

f

a−1

where f is partially ‘enveloped’ in a region on which the mapping is be-
having like a.
Of course, this gives a crossed module

π2(X,A, x0)→ π1(A, x0).

A direct proof is quite easy to give. One can be found in Hilton’s book, [83]
or in Brown-Higgins-Sivera, [28]. Alternatively one can use the argument
in the next example.

2. Suppose F i→ E
p→ B is a fibration sequence of pointed spaces. Thus p is

a fibration, F = p−1(b0), where b0 is the basepoint of B. The fibre F is
pointed at f0, say, and f0 is taken as the basepoint of E as well.
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There is an induced map on fundamental groups

π1(F )
π1(i)−→ π1(E)

and if a is a loop in E based at f0, and b a loop in F based at f0, then the
composite path corresponding to aba−1 is homotopic to one wholly within
F . To see this, note that p(aba−1) is null homotopic. Pick a homotopy in
B between it and the constant map, then lift that homotopy back up to
E to one starting at aba−1. This homotopy is the required one and its
other end gives an element ab ∈ π1(F ) (abusing notation by confusing
paths and their homotopy classes). With this action (π1(F ), π(E), π1(i))
is a crossed module. This will not be proved here, but is not that difficult.
Links with previous examples are strong.
If we are in the context of the above example, consider the inclusion map,
f of a subspace A into a space X (both pointed at x0 ∈ A ⊂ X). Form
the corresponding fibration

if : Mf → X

by forming the pulback

Mf
πf //

jf

��

XI

e0

��
A

f
// X

so Mf consists of pairs (a, λ), where a ∈ A and λ is a path from f(a) to
some point λ(1). Set if = e1π

f , so if (a, λ) = λ(1). It is standard that if

is a fibration and its fibre is the subspace Fh(f) = {(a, λ) | λ(1) = x0},
often called the homotopy fibre of f . The base point of Fh(f) is taken to
be the constant path at x0, (x0, cx0).
If we note that

π1(Fh(f)) ∼= π2(X,A, x0)

π1(Mf ) ∼= π1(A, x0)

(even down to the descriptions of the actions, etc.), the link with the
previous example becomes clear, and thus furnishes another proof of the
statement there.

3. The link between fibrations and crossed modules can also be seen in the
category of simplicial groups. A morphism f : G→ H of simplicial groups
is a fibration if and only if each fn is an epimorphism. This means that a
fibration is determined by the fibre over the identity which is, of course,
the kernel of f . The links between simplicial groups and simplicial sets
mean that the analogue of π1 is π0. Thus the fibration f corresponds to

Ker f
C→ G
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and each level of this is a crossed module by our earlier observations.
Taking π0, it is easy to check that

π0(Ker f)→ π0(G)

is a crossed module. In fact any crossed module is isomorphic to one of
this form.

The profinite analogue of this is now easy to give.

3.1.2 Pro−C crossed modules

Definition: A pro−C crossed module (C,G, δ) is a crossed module in which
C and G are pro−C groups, G acts continuously on C and δ is a continuous
group homomorphism.

If (C,G, δ) and (C ′, G′, δ′) are pro−C crossed modules and

(µ, η) : (C,G, δ)→ (C ′, G′, δ′)

is a morphism between them in which both µ and η are continuous then we
say (µ, η) is a morphism of pro−C crossed modules.

Pro−C crossed modules and the (continuous) morphisms between them
form a category which we will denote Pro−C.CMod.

There is, for a fixed profinite group G, a subcategory Pro−C.CMod/G of
Pro−C.CMod which has as objects those pro−C crossed modules with G as
the “base”, i.e., all (C,G, δ) for this fixed G, and having as morphisms from
(C,G, δ) to (C ′, G, δ′) just those (µ, η) in Pro−C.CMod in which η : G→ G
is the identity homomorphism on G.

Remark: There is a functor

UCMod : Pro−C.CMod→ CMod,

which forgets the topological structure. The question of the existence of a left
adjoint to UCMod, i.e., of a pro−C completion functor for crossed modules,
will be the subject of the next chapter.

We next turn to examples. In each of these examples removal of the topo-
logical conditions gives a corresponding example of a crossed module.

Examples: (i) Let H be a closed normal subgroup of a pro−C group G
with i : H → G the inclusion, then we will say (H,G, i) is a closed normal
subgroup pair . In this case, of course, G acts continuously on the left of H by
conjugation and the inclusion homomorphism i makes (H,G, i) into a pro−C
crossed module.

(ii) Suppose G is a pro−C group and M is a pseudocompact left ẐC [[G]]-
module; let 0 : M → G be the trivial map sending everything in M to the
identity element of G, then (M,G, 0) is a pro−C crossed module.
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As these two examples suggest, pro−C crossed modules lie between the
two extremes of closed normal subgroups and pseudocompact modules. Their
structure bears a certain resemblance to both - they are “external” closed
normal subgroups but also are “twisted” pseudocompact modules.

Our third example gives yet another naturally occurring class of pro−C
crossed modules for C = FGrps, the category of finite groups.

(iii) Let G be a finitely generated profinite group, then Aut(G), the group
of continuous automorphisms of G, is also profinite in the topology of uni-
form convergence, (cf. [3] and [153]). It should be remarked that for arbitrary
profinite G, Aut(G), although totally disconnected in this topology, can fail
to be compact.

Conjugation gives a continuous homomorphism

∂ : G→ Aut(G).

Of course, Aut(G) acts continuously on G and ∂ is a profinite crossed module.
(iv) We suppose given a continuous morphism

θ : M → N

of pseudocompact left ẐC [[G]]-modules and form the semi-direct productNoG.
This is a pro−C group which we make act continuously onM via the projection
from N oG to G.

We define a continuous morphism

∂ : M → N oG

by ∂(m) = (θ(m), 1), where 1 denotes the identity element of G, then (M,No
G, ∂) is a pro−C crossed module.

(v) As a last example, let

1→ K
a→ E

b→ B → 1

be an extension of profinite groups with K a central subgroup of E. For each
g ∈ G, use the existence of continuous sections, Corollary 1, to give an element
s(g) ∈ b−1(g) ⊆ E. Define an action of G on E by: if x ∈ E, g ∈ G, then

gx = s(g)xs(g)−1.

This is well defined and continuous, since if s(g), s′(g) are two choices, s(g) =
ks′(g) for some k ∈ K, and K is central. (This also shows that this is an
action.) The structure (E,G, b) is a profinite crossed module.

A particular important case, but we are here not in the profinite context as
yet, is: for R a ring, let E(R) be, as before, the group of elementary matrices
of R, E(R) ⊆ Gl(R) and St(R), the corresponding Steinberg group with b :
St(R)→ E(R), the natural morphism, (see later or [119], for the definition).
Then this gives a central extension
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1→ K2(R)→ St(R)→ E(R)→ 1

and thus a crossed module. In fact

b : St(R)→ Gl(R)

is a crossed module. The group Gl(R)/Im(b) is K1(R), the first algebraic
K-group of the ring.

The following proposition also gives another range of examples of pro−C
crossed modules; in the discrete case, it is an observation of R. Brown.

Proposition 19. Let ∂ : A → G and δ : B → G be two pro−C crossed mod-
ules and let (φ,Id) : (A,G, ∂)→ (B,G, δ) be a morphism in Pro−C.CMod/G.
Then defining a continuous B-action on A by ba = δ(b)a, we have (A,B, φ)
is a pro−C crossed module. �

The proof is an easy exercise in using the two crossed module axioms.

Remark: As mentioned earlier, one standard example of a crossed module
occurs in topology with a pointed pair of spaces (X,A, x0), then

π2(X,A, x0)→ π1(A, x0)

is a crossed module. When the pointed pair comes from an algebraic or combi-
natorial situation, then pro−C analogues of this can sometimes be constructed
as we will see later.

Another standard example comes from a pointed fibration

F → E → B.

The π1(F, f0) → π1(E, e0) is a crossed module. The pro−C analogue can be
approached via simplicial pro−C groups. In that context, the fibration is just
an epimorphism, φ, and the fibre, F is replaced by the kernel of φ; see later
4.3.

Two useful constructions are those of the kernel and cokernel of a crossed
module. We will see below that, for a pro-C crossed module, X = (∂ : C →
G), the image of ∂ is a closed normal subgroup of G so we can form the
quotient group, G/Im∂ = Coker∂, which is sometimes denoted π0(X). The
kernel Ker ∂ = π1(X) is a module over π0(X). A morphism of crossed modules
f : X→ X′ induces morphisms πi(f) : πi(X)→ πi(X′) for i = 0, 1 and is called
a weak equivalence if these are isomorphisms.

3.2 Elementary Properties.

The first few of these will be, more or less, the converse of the examples we
gave in the last section.

We suppose given a pro−C crossed module ∂ : C → G.
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3.2.1 Images are normal.

Lemma 4. Let N = Im ∂, then N is a closed normal subgroup of G.

Proof: This is more or less immediate from axiom CM1. �

3.2.2 Kernels are central

Lemma 5. Let A = Ker ∂, then A lies in the centre of C, hence is an Abelian
pro−C group.

Proof: Since A is a kernel of a continuous homomorphism of pro−C groups,
it is itself pro−C. The proof that A is central is just that if a ∈ A and c ∈ C,
we have cac−1a−1 = c(∂ac−1) = 1C , since ∂a = 1C .

The G-action then makes A into a pseudocompact ẐC [[G]]-module. �
In fact more is true:

3.2.3 Kernels are modules

Lemma 6. The closed normal subgroup N = Im∂ of G acts trivially on A,
hence A is naturally a pseudocompact left ẐC [[G/N ]]-module.

Proof: We note that N acts trivially on A. Suppose n = ∂c and a ∈ A,

na = ∂ca = cac−1 = a,

since a is central, so A is thus a topological ẐC [[G/N ]]-module. This together
with our observations earlier imply that A is a pseudocompact ẐC [[G/N ]]-
module. �

These results explain, in part, the sense in which ‘pro-C crossed module
lies between the two extremes of closed normal subgroups and pseudocompact
modules’. Given any pro-C crossed module, ∂ : C → G, there is a diagram

Ker ∂ //

""FFFFFFFFF C

∂

��

// Im ∂

i||yyyyyyyy

G

of crossed modules over G with the row exact. In the next few paragraphs, we
will explore this sequence more closely, and will continue to use the notation
N = Im ∂ and A = Ker ∂ as standard.
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3.2.4 Categorical gloss on ‘extreme cases’

We have a category PcC .G−Mod of pseudocompact G-modules and a func-
torial construction (−, G, 0) from it to Pro−C.CMod/G, namely: M goes to
(M,G, 0).

Proposition 20. The category PcC .G−Mod is equivalent to a coreflective
subcategory of Pro−C.CMod/G.

Proof: In other words (−, G, 0) has a right adjoint and is equivalent to an in-
clusion of a subcategory. This becomes clear if you take (C,G, ∂) and (M,G, 0)
and look at some φ : (M,G, 0)→ (C,G, ∂). Of course, φ maps M into Ker ∂
and so determines φ : M → Ker ∂ uniquely as a morphism of modules. The
adjoint is thus : (C,G, ∂) goes to (Ker ∂,G, 0). �

This, of course, raises the question of the other ‘extreme’. Let Pro−
C.NSGrps(G) denote the category of closed normal subgroups of G with
inclusions as morphisms.

Proposition 21. The functor given by N goes to (N,G, iN ) has a left adjoint,
namely (C,G, ∂) goes to Im ∂. This identifies Pro−C.NSGrps(G) with a
reflective subcategory of Pro−C.CMod/G.

Proof: That Im gives a functor is easy to see. (If

C
φ //

∂ ��@@@@@@@ D

∂′~~~~~~~~~

G

is a morphism, then Im ∂ ⊆ Im ∂′, etc.) Then use that if (N,G, iN ) is a
normal inclusion crossed module, and

C
φ //

∂ ��@@@@@@@ N

iN~~~~~~~~~

G

commutes, then Im ∂ ⊆ N . The statement of the proposition is just a neat
re-packaging of this. �

We will use this later in examining the relationships between different
categories of crossed modules induced by a morphism of pro-C groups.

Of course, Pro−C.NSGrps(G) has a final object, namely the group G itself
and this corresponds to (G,G, Id) being the final object of Pro−C.CMod/G.
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3.2.5 Abelianisation.

Lemma 7. The Abelianisation of C has a natural pseudocompact ẐC [[G/N ]]-
module structure on it.

Proof: First we should point out that by “Abelianisation” we mean CAb =
C/[C,C], where [C,C] is the closed normal subgroup of C generated by all
commutators, thus CAb is Abelian pro−C and again it suffices to prove that
N acts trivially on CAb. However, if n ∈ N , and ∂c = n, then for any c′ ∈ C,
we have that nc′ = ∂cc′ = cc′c−1, hence nc′(c′)−1 ∈ [C,C] or equivalently

n(c′[C,C]) = c′[C,C],

so N does indeed act trivially on CAb. �
Of courseNAb also has the structure of a pseudocompact ẐC [[G/N ]]-module

and thus a pro−C crossed module gives one three pseudocompact modules.
These three are linked as shown by the following proposition.

Proposition 22. Let (C,G, ∂) be a pro−C crossed module. Then the induced
morphisms

A→ CAb → NAb → 0

form an exact sequence of pseudocompact ẐC [[G/N ]]-modules.

Proof: It is clear that the sequence

1→ A→ C → N → 1

is exact and that the induced homomorphism from CAb to NAb is a continuous
epimorphism. Since the composite homomorphism from A to N is trivial, A
is mapped into Ker(CAb → NAb) by the composite A → C → CAb. It is
easily checked that this is onto and hence the sequence is exact as claimed.
The pseudocompact module structures have already been outlined in earlier
results. �

3.2.6 The intersection A ∩ [C,C].

The kernel of the homomorphism from A to CAb is, of course, A ∩ [C,C]
and this need not be trivial. Brown and Huebschmann ([29], p.160) give the
following finite (and hence profinite) example: in examples of type (iii) (see
last section) we have the profinite crossed module, (G,Aut(G), ∂), for finitely
generated, G. The kernel of ∂ is, of course, the centre ZG of G and ZG∩[G,G]
can be non-trivial, for instance, if G is dicyclic or dihedral.

More information on this intersection was given in the discrete case in the
paper, [57], by Ellis and Porter for those crossed modules, (C,G, ∂), which are
“free” in a sense soon to be made precise. There it is shown that for (C,G, ∂)
a free crossed module, Ker ∂∩ [C,C] is H2(N), the second homology group of
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N = Im ∂. This is in some ways a crossed module version of the Hopf formula
for H2 and we shall look at this more closely later. This result has also been
proved by Huebschmann, [85].

Proposition 23. If in the above exact sequence of pro−C groups

1→ A→ C → N → 1,

the epimorphism from C to N is continuously split (the splitting need not
respect G action) then A ∩ [C,C] is trivial.

Proof: Given a continuous splitting s : N → C, the group C can be written as
Aos(N). The commutators in C, therefore, all lie in s(N) since A is Abelian,
but then, of course, A ∩ [C,C] cannot contain any non-trivial elements. �

Remark: The discrete case of the above proposition is to be found in
Brown-Huebschmann [29]. It should perhaps be pointed out that C → N will
always have a continuous section, (cf. Corollary 1, page 12, Schatz [150], or
Serre, [152]), but that this, of course, is not usually a group homomorphism.

3.2.7 Free pro-C groups: some difficulties.

The above proposition applies in particular when N is a free pro−C group. To
ensure this, it is not always sufficient to require that G be a free pro−C group
itself as the pro−C analogue of the Nielsen-Schreier theorem is in general false.
For certain important classes C, however, it holds, but sometimes in a limited
form only. We refer the reader to Gildenhuys and Lim [70] and Lubotzky
and van den Dries [109] for detailed discussions of the problem. We also note
that Tate has proved a pro−p version of the Nielsen-Schreier theorem: closed
subgroups of free pro−p groups are free pro−p groups.

In applications the above situation arises mostly from presentations where
G is a free pro−C group on a profinite space X and N = N(R), the closed
normal closure of a space of relations R and we recall the terminology intro-
duced in 1.4, namely that if N is free pro−C, we will say that (X : R) is a free
pro−C presentation of FC(X)/N(R). If C is closed under extensions of groups,
then Lubotzky and van den Dries ([109] p.29) prove that open subgroups of
finitely generated free pro−C groups are free pro−C, thus if (X : R) is a finite
presentation of a C-group considered as a pro−C presentation, we have that it
will be a free pro−C presentation since FC(X)/N(R) is discrete, hence N(R)
is open.

3.3 Induced and restricted pro-C crossed modules.

We have already introduced the category Pro−C.CMod/G for fixed pro−C
group G. In the case of modules over a group G, as we have recalled in
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Chapter 1, there are important functors from G-Mod to H-Mod and back,
corresponding to a group homomorphism φ : G → H and giving an adjoint
pair; one of these is restriction along φ and gives a G-module structure to an
H-module; the other is the induced H-module construction. Similar functors
exist for pseudocompact modules over pro−C groups, G and H, corresponding
to a continuous φ. We have seen (3.2.4) that PcCG-Mod is equivalent to a
full subcategory of Pro−C.CMod/G. In this section we examine the question
of extending the restriction/induction adjoint pair to one defined between
Pro−C.CMod/G and Pro−C.CMod/H corresponding to a continuous φ : G→
H. (The case for abstract groups may be found in Brown-Higgins, [24]. An
interpretation in terms of fibred categories is in [28].)

3.3.1 Restriction along a homomorphism φ.

Given a pro−C crossed module (C,H, ∂) over H and a continuous homomor-
phism φ : G→ H of pro-C groups, we can form the pullback:

D

∂′

��

ψ // C

∂

��
G

φ
// H

in Pro−C. Clearly the universal property of pullbacks gives a good universal
property for this morphism of pro−C crossed modules, namely that any mor-
phism (φ′, φ) : (C ′, G, δ) → (C,H, ∂) factors uniquely through (ψ, φ) and a
morphism in Pro−C.CMod/G from (C ′, G, δ) to (D,G, ∂′). Of course this
statement depends on verification that (D,G, ∂′) is a pro−C crossed module
and that the resulting maps are morphisms of pro−C crossed modules, but
this is routine, and can be safely left as an exercise.

This construction also behaves nicely on morphisms of pro−C crossed mod-
ules over H and yields a functor

φ∗ : Pro− C.CMod/H → Pro− C.CMod/G

which will be called restriction along φ.

3.3.2 The extreme cases: normal subgroups and modules.

Before turning to the adjoint situation of extension along φ, it is perhaps
instructive to examine the above construction for the two extreme cases of
closed normal subgroups and pseudocompact modules.

First let us note that if (C,H, ∂) is a pro−C crossed module with ∂ a
monomorphism, then (C,H, ∂) is isomorphic to (∂(C), H, inclusion), i.e., to
a closed normal subgroup example. We should point out that as φ∗ is only
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defined up to isomorphism (as is any construction given by a universal prop-
erty), one cannot hope that φ∗(N,H, i) will be exactly a “closed normal sub-
group pair”, but can ask when it is isomorphic to such a pair. Now writing
φ∗(N,H, i) = (φ∗(N), G, φ∗(i)) for convenience, we find φ∗(N) = {(g, n) :
φ(g) = n}, so φ∗(N) is isomorphic to φ−1(N) ⊂ G, and φ∗ is in this case a
well known construction.

At the other extreme, ifM is a pseudocompact ẐC [[H]]-module, φ∗(M,H, 0)
need not have a trivial structure map. In fact if φ∗(M,H, 0) = (D,G, ∂), D
consists of pairs (g,m) with φ(g) = 0 and so is isomorphic to Ker φ ×M as
a group, with G acting continuously on Ker φ by conjugation and on M via
φ. Thus we have

φ∗(M,H, 0) ∼= (Ker φ× φ](M), G, ipr1),

where here we have written φ](M) for the restriction of M along φ in the
sense of module theory. Thus the two constructions do coincide when φ is a
monomorphism.

The interpretation of the above situations may be helped by the following
observations. Let PcC .G−Mod, as before, be the category of pseudocompact
ẐC [[G]]-modules and consider the “inclusion” of it as a full subcategory of
Pro−C.CMod/G given by M goes to (M,G, 0). This functor has a right ad-
joint (cf. 3.2.4) which sends (C,G, ∂) to Ker ∂. Similarly, Pro−C.NSGps(G),
denote the category of closed normal subgroups of the pro−C group G, with
monomorphisms as the morphisms, then the functor from this category to
Pro−C.CMod/G has a left adjoint, (again cf. 3.2.4) by which (C,G, ∂) goes to
(Im∂,G). As we shall show that φ∗ is a right adjoint to a functor φ∗, standard
categorical arguments would have led us to expect that φ∗ would “preserve”
the construction in this second case, but that it might not do so in the earlier
one.

3.3.3 Extension along φ.

We next consider the problem of induction, i.e., we suppose that we have a
pro−C crossed module over G, say (C,G, ∂) and our continuous morphism
φ : G → H of pro−C groups and shall try to construct a “universal arrow”
from (C,G, ∂) to some pro−C crossed module over H with φ in its base level.

Proposition 24. Let (C,G, ∂) be a pro−C crossed module over G and let
φ : G → H be a continuous homomorphism of pro−C groups. Consider the
pro−C group φ∗(C) topologically generated by the profinite space C ×H with
relations

(i) (c1, h).(c2, h) = (c1c2, h)
(ii) (gc, h) = (c, hφ(g))
(iii) (c1, h1)(c1, h1)(c1, h1)−1 = (c2, h1(φ∂c1)h−1

1 h2)
for all h, h1, h2 ∈ H, c, c1, c2 ∈ C and g ∈ G.
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Define a continuous homomorphism δ : φ∗(C)→ H by extending δ(c, h) =
h(φ∂c)h−1 to the whole of φ∗(C) and define a continuous ẐC [[H]]-action on
the left of φ∗(C) by h(c, h1) = (c, hh1) for h, h1 ∈ H, c ∈ C, and a continuous
homomorphism Ψ : C → φ∗(C) by Ψ(c) = (c, 1), then

(a) (φ∗(C), H, δ) is a pro−C crossed module over H,
(b) (Ψ, φ) : (C,G, ∂)→ (φ∗(C), H, ∂) is a (continuous) morphism of pro−C

crossed modules which has the following universal property:
Given any pro−C crossed module, (D,H, ∂′), over H, and continuous mor-

phism (θ, φ) : (C,G, ∂) → (D,H, ∂′), (θ, φ) factorises in a unique way via
(Ψ, φ) and a morphism (θ, IdH), of pro−C crossed modules over H, i.e.,

C
θ //

∂

��

D

∂′ =

��

C
Ψ //

∂

����

φ∗(C) θ //

δ

""EEEEEEEE D

∂′

����������

G
φ
// H G

φ
// H

for a unique (θ,IdH) in Pro−C.CMod/H.

Proof: The statements about continuity are fairly trivial, leaving us to check
the algebraic conditions. It is simple to verify (a), in fact we have

δ(h(c, h1)) = δ(c, hh1)
= hh1(φ∂c)(hh1)−1

= h(δ(c, h1))h−1

and

δ(c,h)(c, h1) = h(φ∂c)h−1
(c1, h1)

= (c1, h(φ∂c)h−1h1)
= (c, h)(c1, h1)(c, h)−1 by (iii).

It is equally easy to check (b), so this will be omitted.
Finally, given (θ, φ) : (C,G, ∂)→ (D,H, ∂′), we define θ̄ : φ∗(C)→ D by

θ̄(c, h) = hθ(c).

It is clear that, as θ has to be H-equivariant, this must be the formula for θ̄ if
θ̄Ψ is to equal θ. That θ̄ is well defined, continuous and respects the defining
relations for φ∗(C) can easily be checked. �

It is clear from the construction given above that φ∗ gives a functor “ex-
tension along φ”

Pro− C.CMod/G→ Pro− C.CMod/H.

It is also fairly routine to check that φ∗ is left adjoint to φ∗. This can be neatly
formulated by introducing the notation Pro−C.CMod/φ((C,G, ∂), (D,H, ∂′))
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for the set of morphisms, (η, φ) : (C,G, ∂) → (D,H, ∂′), in which the
“base morphism” is the fixed φ. This gives a functor defined on (Pro−
C.CMod/G)op × (Pro−C.CMod/H) with values in Sets. For fixed (C,G, ∂)
this functor is representable by φ∗(C,G, ∂) and for fixed (D,H, ∂′), it is rep-
resentable by φ∗(D,H, ∂′), these being just restatements in terms of repre-
sentability of the universal properties of φ∗ and φ∗. Of course this implies
there is a natural isomorphism

Pro−C.CMod/G((C,G, ∂), φ∗(D,H, ∂′))

∼= Pro−C.CMod/H(φ∗(C,G, ∂), (D,H, ∂′))

as stated.

3.3.4 The extreme cases revisited.

Although as suggested earlier, this adjointness allows one to compare this
construction of φ∗ with the well known ones on closed normal subgroup pairs
and on pseudocompact modules, it is in fact quite instructive to look at these
using a “bare hands” approach.

Suppose (M,G, 0) is a pseudocompact module (considered as a pro−C
crossed module). The construction of φ∗(M,G, 0) here interprets as follows:
φ∗(M) is topologically generated by M ×H with relations of the form

(i) ) (m1, h)(m2, h)) = (m1m2, h)
(ii) (gm,h) = (m,hφ(g))

and
(iii) (m1, h1)(m2, h2)(m1, h1)−1 = (m2, h2).

Of course (iii) implies that φ∗(M) is Abelian, (i) and (ii) show it to be
isomorphic to the usual induced module φ](M), i.e., ẐC [[H]] ⊗bZC [[G]] M , (of
course, one has to convert to additive notation to obtain the usual for-
mat) and δ : φ∗(M) → H is the trivial morphism, i.e., one has an iso-
morphism, φ∗(M,G, 0) ∼= (φ](M), H, 0). When considering the correspond-
ing question for a closed normal subgroup N of G, one is really only asking
if Ker(δ : φ∗(N) → H) is trivial, but Ker δ will contain all (n, h) with
i(n) ∈ Ker φ and so, in particular, in the case when φ is the canonical sur-
jection from G to G/N , the φ∗ construction will give a G/N -module and the
trivial morphism from that to G/N . One, of course, immediately suspects that
φ∗(N) ∼= NAb and a direct verification of this using the universal property is
easily made. Thus φ∗ certainly does not preserve the subcategory of closed
normal subgroups without additional conditions on φ itself.

3.3.5 Extension along an epimorphism.

The discussion of the case φ : G → G/N above generalises to give a useful
description of φ∗ in all such cases.
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Proposition 25. Let (C,G, ∂) be a pro−C crossed module and φ : G→ H be
an epimorphism with kernel K. Let D = C/[C,K], where [C,K] is the closed
subgroup of C generated by all symbols c(kc)−1 for c ∈ C, k ∈ K. Define
δ(c[C,K]) = φ(∂c) ; then φ∗(C,G, ∂) ∼= (D,H, δ).

Proof: We first check that [C,K] is a G-invariant subgroup of C. We note
that for g ∈ G, k ∈ K, and c ∈ C, we have

g(c(kc)−1) = (gc) g(kc)−1

= (gc) gkg
−1

(gc)−1 ∈ [C,K],

since K C G. Hence G acts continuously on C/[C,K], but K acts trivially,
thus giving a continuous action of H ∼= G/K on C/[C,K]. It is clear that δ
is a continuous H-equivariant homomorphism from D = C/[C,K] to H. It is
easily verified that (D,H, δ) is a pro−C crossed module.

Now finally suppose

C
µ //

∂

��

C ′

∂′

��
G

φ // H

is a morphism of pro-C crossed modules over φ as base morphism. Since
µ(gc) = φ(g)µ(c), we have that µ(kc) = µ(c) for all k ∈ K, so µ([C,K])
is trivial, hence µ factors via D as required. The diagram

C //

∂

��

C/[C,K]
µ //

δ

$$HHHHHHHHH D

∂′

����������

G
φ

// H

commutes since δ(c[C,K]) = φ∂c = ∂′µ(c) = ∂′µ̄(c[C,K]) for all c ∈ C. �

Corollary 4. If φ : G → H is an epimorphism with kernel K and N C G
is a closed normal subgroup of G, φ∗(N,G, i) has top group isomorphic to
N/[N,K] (in the usual sense of the symbol) and so has kernel isomorphic to
(N ∩K)/[N,K]. �

3.3.6 Induction from final crossed modules.

We now turn to one of the most useful applications of induced pro-C crossed
modules.

Consider the final object in the category Pro-C.CMod/G. This is (G,G, Id).
Although it seems somewhat trivial, it turns out to be extremely useful when
its image by any φ∗ is considered.

Suppose we have φ : G→ H as before and consider φ∗(G,G, Id). We can
give a presentation for the “top group” of this; it has G × H as generators,
and relations:
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(i) (g1, h)(g2, h) = (g1g2, h)
(ii) (g1, h1)(g2, h2)(g1, h1)−1 = (g2, h1(φ(g1))h−1

1 h2),

the other relation listed (ii) in Proposition 25 being a consequence of these
two in this special case.

We noted earlier, (in 3.3.3), that

φ∗ : Pro−C.CMod/G→ Pro−C.CMod/H

was left adjoint to φ∗, hence one has an isomorphism, natural in (D,H, ∂′),

Pro−C.CMod/H(φ∗(G,G, Id), (D,H, ∂′))

∼= Pro−C.CMod/G((G,G, Id), φ∗(D,H, ∂′))

and that both are naturally isomorphic to

Pro−C.CMod/φ((G,G, Id), (D,H, ∂′)).

Now this last set, of course, consists of morphisms µ : G → D such that
∂′µ = φ (and µ(g1g2g

−1
1 ) = φ(g1)µ(g2), but the second of these is a consequence

of the first, together with the Peiffer identity), and so the above set consists
precisely of the continuous homomorphisms µ : G→ D that make the diagram

G
µ //

φ   @@@@@@@ D

∂′~~}}}}}}}

H

commute. Introducing the category, Pro−C/H, of pro−C groups over H, there
is a forgetful functor

U1 : Pro−C.CMod/H → Pro−C/H

given by U1(C,H, ∂) = (∂ : C → H). With this notation we have identified

Pro−C.CMod/φ((G,G, Id), (D,H, ∂′))

with Pro−C/H(φ,U1(D,H, ∂′)) and have a natural isomorphism,

Pro−C/H(φ,U1(D,H, ∂′)) ∼= Pro−C.CMod/H(φ∗(G,G, Id), (D,H, ∂′)).

Corollary 5. The functor U1 has a left adjoint, F1, given by sending φ : G→
H to φ∗(G,G,Id). �

This follows easily from our discussion.
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3.3.7 Various forgetful functors and their right adjoints.

Clearly there are functors that forget more than does U1. For instance one
can, in addition, forget the group structure on the “top group”, C, leaving
one with just a continuous function with codomain the underlying profinite
space, U(H), of H. This gives one a forgetful functor

U2 : Pro−C.CMod/H → Pro−C.Spaces/U(H).

Corollary 6. The functor U2 has a left adjoint, F2, given by sending X
f→

U(H) to
(f̃)∗(FC(X), FC(X), Id)

where FC denotes the free pro−C group functor and f̃ is the homomorphism
uniquely related to f by the adjunction isomorphism:

Pro−C.Spaces(X,U(H)) ∼= Pro−C(FC(X), H).

Proof: We noted that U2 was the composite of U1 with the functor sending
(φ : G → H) to (U(φ) : U(G) → U(H)) in Pro−C.Spaces/U(H). This latter
has a left adjoint, namely the functor which sends f : X → U(H) to f̃ :
FC(X)→ H. (This comes from the naturality in H of the isomorphism given
in the statement of the corollary). Now U2 has a left adjoint F2 given as the
composite of the left adjoint of “φ goes to Ũ(φ)” with F1, hence F2 sends f
to (f̃)∗(FC(X), FC(X), Id) as stated. �

Definition: (a) Let G
φ→ H be a continuous morphism of pro−C groups,

then φ∗(G,G,Id) is called the free pro−C crossed module on φ.
(b) Let H be a pro−C group, X a pro−C space and f : X → U(H) a

continuous function from X to the underlying space of H. Let f̃ : FC(X)→ H
be the homomorphism from the free pro−C group on X to H induced by f ,
then (f̃)∗(FC(X), FC(X),Id) is called the free pro−C crossed module on f .

In the next section we will study free pro−C crossed modules in more detail.

Remark: As was stated earlier, the discrete analogues of most of the
results of this section are due to Brown and Higgins, [24] and a treatment in
terms of fibred categories can be found in [28].

3.4 Free pro-C crossed modules.

Although these were introduced and shown to exist in the last section, their
importance for later theory is such that they warrant a section on their own.
In fact it will pay to prove their existence in a slightly different way as this
provides a useful set of notation and terminology for later use.
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Proposition 26. A pro−C crossed module over G, (C,G, ∂), is isomorphic
to the free pro−C crossed G-module on a continuous function f : X → G
from a profinite space X to a pro−C group G if and only if the following
universal property is satisfied: the given function f can be written ∂v for some
continuous function v : X → C such that given any pro−C crossed module,
(A,G, δ), over G and continuous function w : X → A such that δw = f , there
is a unique morphism φ : C → A of pro−C crossed modules over G such that
φv = w.

Proof: This is really nothing more nor less than the obvious reformulation of
the universal property summarised by the isomorphisms given in the previous
section.

In fact we consider the case

(C,G, ∂) = (f̃)∗(FC(X), FC(X), Id).

The diagram

FC(X) Ψ //

Id

��

f̃∗(FC(X)) = C

∂

��
FC(X)

f̃

// G

,

defining the induced pro−C crossed module shows that ∂Ψ = f̃ , but on letting
ε : X → FC(X) (strictly speaking, ε : X → UFC(X)) be the insertion of
generators, one obtains ∂Ψε = f̃ ε = f , so we get a function v : X → C lifting
f as required. Now given w : X → A, we get w̃ : FC(X) → A and δw = f
implies δw̃ = f̃ , so we have a morphism in Pro−C.CMod

FC(X) w̃ //

Id

��

A

δ

��
FC(X)

f̃

// G

and hence a factorisation via (f̃)∗(FC(X), FC(X),Id) as required.
Thus if (C,G, ∂) is isomorphic to our previously constructed free pro−C

crossed module, it has the required universal property. The converse follows
by the usual “uniqueness up to isomorphism” of objects defined by universal
properties. �

3.4.1 A simplified construction.

We next give a slightly simplified description of the construction of the free
pro−C crossed module on f : X → G. The details of this construction were
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somewhat obscured by the added generality of the induction process and as
they are important later, it is worth giving a simpler version here.

We suppose given a continuous function, f : X → G. Let E = FC(G×X)
be the free pro−C group on G×X and make G act on E by

g(h, x) = (gh, x).

This is a continuous action. The function f induces a morphism θ : E → G
defined on generators by

θ(g, x) = gf(x)g−1.

The Peiffer subgroup, P , is the closed subgroup of E generated by the elements

uvu−1(θuv)−1

where u, v ∈ E.

Lemma 8. The Peiffer subgroup P of E is a closed normal G-invariant sub-
group of E. �

The proof is routine and will be omitted.
We note that θ(P ) = {1}, thus putting C = E/P , we obtain an induced

continuous G-equivariant homomorphism

θ] : C → G.

Of course since we have killed off P , the Peiffer identity holds for (C,G, θ]). It
is now fairly easy to check that (C,G, θ]) has the required universal property.

We note, for use in later chapters, the following two short exact sequences
of pro−C groups

1→ P → E → C → 1,

and
1→ I → E → N → 1,

where N = θ](C) = θ(E).

3.4.2 A special case: when f(X) topologically generates G

We next turn to a trivial, but very useful, consequence of our generalisation
to pro−C groups of the description of θ∗(C,G, ∂) for θ an epimorphism. This
provides a particularly neat description of the free pro−C crossed module on
a continuous f : X → G where f(X) topologically generates G.

Proposition 27. Let f : X → G be a continuous function from a profinite
space X to a pro−C group G such that f(X) topologically generates G. Let
FC(X) denote the free pro−C group on X and denote by R(X) the kernel of the
induced map from FC(X) to G. Then f induces a continuous homomorphism,
f̄ : FC(X)/[FC(X), R(X)] → G, and this is the free pro−C crossed module on
f .
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Proof: As f̃ : FC(X)→ G is onto, we have from Proposition 25, that

(f̃)∗(FC(X), FC(X), Id) ∼= (FC(X)/[FC(X), R(X)], G, f̄).

�

3.4.3 A generalisation.

As a final result describing free pro−C crossed modules, we note the following
which allows one to use consequences of Proposition 27 in more than the
limited number of cases that the surjectivity restriction might suggest.

Proposition 28. If ∂ : C → G is a free pro−C crossed module on some func-
tion f : X → G and ∂C = N then the codomain restriction of ∂, ∂′ : C → N
is a free pro−C crossed module on a function f ′ : T ×X → N where T is the
image of a continuous transversal of N in G and 1 ∈ T .

Proof: The transversal T is the image of G/N under a continuous map τ
from G/N to G. Such a transversal exists by Corollary 2. The condition that
τ(1) = 1 can be obtained by translation.

Now define f ′ : T ×X → N by

f ′(t, x) = tf(x)t−1;

f ′ is clearly continuous and its image topologically generates N .
Suppose δ : A→ N is an arbitrary pro−C crossed module over N and let

w : T ×X → A be a function such that δw = f ′. Define w′ : E → A by

w′(g, x) = n(g)w(τ(ḡ), x),

where ḡ = gN = the image of g in G/N , and n(g) = gτ(ḡ)−1, and where E,
as before, is the free pro−C group on G×X. This description of n(g) and τ(ḡ)
implies that w′(g, x) is continuous on E.

The Peiffer subgroup P is normally generated by the Peiffer elements
uvu−1(θuv)−1 with u, v ∈ G ×X. If u = (h, y), v = (g, x) and g = n(g)τ(ḡ)
as before, then since θu ∈ N , we have

w′(θuv) = θu.n(g)w(τ(ḡ), x) = θuw′(v, )

whilst θ(u) = δw′(u) implies

w′(θuv) = (w′u)(w′v)(w′u)−1,

i.e., w′(P ) is trivial and w′ induces a continuous homomorphism φ : C → A
satisfying δφ = ∂′. A routine calculation shows that φ is the required unique
morphism of pro−C crossed modules. �

(We note that this proof, although essentially the same as that for the
discrete case, does require careful handling of the transversal to ensure the
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continuity of w′. The process of generalisation from discrete groups to pro−C
groups is often like this, many results generalise fairly directly but care is
always needed over continuity).

Remark: The question arises as to whether or not the restriction that
X be profinite is necessary. Putting it more precisely, suppose X is a general
space and f : X → G is a continuous function to the underlying profinite space
of some pro−C group G. Suppose further that (C,G, ∂) is a pro−C crossed
module with exactly the universal property with respect to f : X → G that
was given in 4.1 (but remember that here X need not be profinite). Is then
(C,G, ∂) the free pro−C crossed module on some function f ′ : X ′ → G with
X ′ profinite?

The answer is that it is and the obvious candidate works, namely X ′ can
be taken to be the “profinite completion”, X̂, of X. This has the universal
property that maps from X to profinite spaces, Y , factor uniquely through

a canonical map ηX : X → X̂. In particular f factors as X
ηX→ X̂

f ′→ Y and
(C,G, ∂) is the free pro−C crossed module on f ′ : X̂ → G.

The uniqueness of this factorisation now can be used fairly easily to check
the claim made earlier in this remark.

3.4.4 Projective profinite crossed modules.

We will also need to use later on the notion of a projective profinite G-crossed
module. A profinite G-crossed module (C, ∂) is said to be projective if it is a
projective object in Prof.CMod/G. This amounts therefore to the following
condition:

Given any epimorphism α : (A, ∂′) → (B, ∂′′) in Prof.CMod/G and a
morphism γ : (C, ∂)→ (B, ∂′′), there is a lift of γ to a morphism γ′ : (C, ∂)→
(A, ηX∂′) :

A
γ′ //

α

onto ��@@@@@@@

∂′

��/
///////////// C

∂

����������������γ

��~~~~~~~

B

∂′′

��
G

The easiest projective profinite crossed modules to construct are, of course,
the free ones.





4

Identities amongst relations, simplicial groups
and other connections

So far we have given constructions and results, but very little in the way of po-
tential applications of these ideas. In later chapters we will use these concepts
in both combinatorial and cohomological contexts, but, in both, the use will
often depend on constructing pro−C crossed modules from pro−C presenta-
tions of a pro−C group and also from pro-C simplicial groups such as simplicial
resolutions of a pro-C group. Let us first briefly explain the background for
this from the abstract case.

4.1 Identities among relations and crossed modules

4.1.1 The complex of a presentation

Many of the constructions of combinatorial and cohomological group theory
come directly or indirectly from low dimensional topology (cf. Brown, [21], or
Stillwell, [157]). Often the basic construction used is that of the 2-dimensional
CW-complex, K(P), constructed from a presentation, P = (X : R), of a
(discrete or abstract) group, G. This complex, K(P), has a single vertex, a
one-cell e1

x for each x ∈ X and 2-cell e2
r for each relation r ∈ R. The attaching

map for e2
r represents r ∈ F (X) = π1(K(P)1), the free group on X considered

as the fundamental group of the 1-skeleton of K(P).
The uses of this complex are many. For instance the chain complex on

its universal cover, K̃(P), provides a link between combinatorial information
and cohomology as it provides a free ZG-resolution of the trivial module Z.
The homotopy 2-type of K(P), by the results of Whitehead, [164], can be
completely captured by a crossed module associated with it. In general if K
is a reduced pointed 2-complex and L its 1-skeleton, the crossed module

∂ : π2(K,L)→ π1(L),

completely determines the homotopy 2-type of K. In this group theoretic
context
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π2(K(P),K(P)(1))→ π1(K(P)(1))

is (up to isomorphism) simply the free crossed module on the inclusion func-
tion from R into F (X).

This last fact shows how we might, in the pro-C context, still construct a
crossed module encoding this type of information, even though the device of
constructing a 2-complex, K(P), is not directly available to us.

4.1.2 Group presentations, identities and 2-syzyzgies: the discrete
case

To make sense of the profinite and pro-C crossed module constructions and
their potential use, it will be necessary to have some examples of the construc-
tions in the discrete case. In this section we will start by introducing identities
for presentations of discrete groups in some more detail, but will also look at
results on higher order ‘syzygies’, i.e. higher order analogues of the identities.

Presentations and Identities (cf. Brown-Huebschmann, [29])
We consider a presentation P = (X : R) of a group G. We thus have a

short exact sequence,
1→ N → F → G→ 1,

where F = F (X), the free group on the set X, R is a subset of F and
N = N(R) is the normal closure in F of the set R. The group F acts on N
by conjugation: uc = ucu−1, c ∈ N, u ∈ F and the elements of N are words
in the conjugates of the elements of R:

c = u1(rε11 )u2(rε22 ) . . . un(rεnn )

where each εi is +1 or 1. One also says such elements are consequences of R.
Heuristically an identity among the relations of P is such an element c which
equals 1. The problem of what this means is analogous to that of working with
a relation, since, for example, in the presentation (a : a3) of C3, the cyclic
group of order 3, if a is thought of as being an element of C3, then a3 = 1, so
why is this different from the situation with the ‘presentation’, (a : a = 1)?
To get around that difficulty the free group on the generators F (X) was
introduced and, of course, in F ({a}), a3 is not 1. A similar device, namely
free crossed modules on the presentation will be introduced in a moment to
handle the identities. Before that consider some examples which indicate that
identities exist even in some quite common-or-garden cases.

Example 1: Suppose r ∈ R, but it is a power of some element s ∈ F ,
i.e. r = sm. Of course, rs = sr and

srr−1 = 1

so sr.r−1 is an identity. In fact, there will be a unique z ∈ F with r = zq, q
maximal with this property. This z is called the root of r and if q > 1, r is
called a proper power.
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Example 2: Consider one of the standard presentations of S3, (a, b :
a3, b2, (ab)2). Write r = a3, s = b2, t = (ab)2. Here the presentation leads to
F , free of rank 2, but N(R) ⊂ F , so it must be free as well, by the Nielsen-
Schreier theorem. Its rank will be 7, given by the Schreier index formula or,
geometrically, it will be the fundamental group of the Cayley graph of the
presentation. This group is free on generators corresponding to edges outside
a maximal tree as in the following diagram:

1 - a
J
J
J
J
J
J
JJ]

a2















�

b





�

�

ba
J
J
Ĵ
ab-

�

�
�

M ^ 1 - a

a2















�

b





�

�

ba

ab-
θ1 θ2 θ3

θ6 θ7

θ4 θ5

The Cayley graph of S3 and a maximal tree in it.

The set of normal generators of N(R) has 3 elements; N(R) is free on 7
elements (corresponding to the edges not in the tree), but is specified as
consisting of products of conjugates of r, s and t, and there are infinitely
many of these. Clearly there must be some slight redundancy, i.e., there must
be some identities among the relations!

A path around the outer triangle corresponds to the relation r; each other
region corresponds to a conjugate of one of r, s or t. Consider a loop around
a region. Pick a path to a start vertex of the loop, starting at 1. For instance
the path that leaves 1 and goes along a, b and then goes around aaa before
returning by b−1a−1 gives abrb−1a−1. Now the path around the outside can
be written as a product of paths around the inner parts of the graph e.g.
(abab)b−1a−1b−1(bb)(b−1a−1b−1a−1) . . . and so on. Thus r can be written in a
non-trivial way as a product of conjugates of r, s and t. (An explicit identity
constructed like this is given in [29].)

Example 3: In a presentation of the free Abelian group on 3 generators,
one would expect the commutators, [x, y], [x, z] and [y, z]. The well-known
identity, usually called the Jacobi identity, expands out to give an identity
among these relations (again see [29], p.154 or Loday, [107].)

The idea that an identity is an equation in conjugates of relations leads one
to consider formal conjugates of symbols that label relations. Abstracting this
a bit, suppose G is a group and f : Y → G, a function ‘labelling’ the elements
of some subset of G. To form a conjugate, you need a thing being conjugated
and an element ‘doing’ the conjugating, so form pairs (p, y), p ∈ G, y ∈ Y , to
be thought of as py, the formal conjugate of y by p. Consequences are words in
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conjugates of relations, formal consequences are elements of F (G×Y ). There
is a function extending f from G× Y to G given by

f̄(p, y) = pf(y)p−1,

converting a formal conjugate to an actual one and this extends further to a
group homomorphism

φ : F (G× Y )→ G

defined to be f̄ on the generators. The group G acts on the left on G × Y
by multiplication: p.(p′, y) = (pp′, y). This extends to a group action of G on
F (G× Y ). For this action, φ is G-equivariant if G is given its usual G-group
structure by conjugations / inner automorphisms.

This is, however, exactly the discrete case of the situation for the construc-
tion of free crossed modules, dealt with above, (see section 3.3.7).

We can now formally define the module of identities of a presentation
P = (X : R). We form the free crossed module on R → F (X), which we
will denote by ∂ : C(P)→ F (X). The module of identities of P is Ker ∂. By
construction, the group presented by P is G ∼= F (X)/Im∂, where Im∂ is
just the normal closure of the set, R, of relations and we know that Ker ∂ is a
G-module, (see section 3.2.3). We will usually denote the module of identities
by πP .

The main problem is how to calculate πP or equivalently π2(K(P)). One
approach is via an associated chain complex. This can be viewed as the chains
on the universal cover of K(P), but can also be defined purely algebraically,
however we will postpone this until we have developed a bit more theory.

Homotopical syzygies: There are both homotopical and homological
syzygies. To start with we will concentrate on the homotopical versions, but
will look at the homological ones later on.

We have built a complex, K(P), from a presentation P of a group G. Any
element in π2(K(P)) can, of course, be represented by a map from S2 to K(P)
and by cellular approximation can be replaced, up to homotopy, by a cellular
decomposition of S2 and a cellular map φ : S2 → K(P). We will adopt the
terminology of Kapranov and Saito, [98], and Loday, [107], in referring to a
pair consisting of a cellular subdivision of S2 together with a cellular map, as
above, as a homotopical 2-syzygy . Of course, such an object corresponds to
an identity among the relations of P, but is a specific representative of such
an identity. A family {φλ}λ∈Λ of such homotopical 2-syzygies is then called
complete when the homotopy classes {[φλ]}λ∈Λ generate π2(K(P)).

In this case, we can use the φλ to form the next stage of the construction
of an Eilenberg-MacLane space, K(G, 1), by killing this π2. More exactly,
rename K(P) as X(2) and form

X(3) := X(2) ∪
⋃
λ∈Λ

e3
λ,
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by, for each λ ∈ Λ, attaching a 3-cell, e3
λ to X(2) using φλ. Of course, we then

have
π1(X(3)) ∼= G, π2(X(3)) = 0.

Again π3(X(3)) may be non-trivial, so we consider homotopical 3-syzygies.
Such an object, s, will consist of an oriented polytope decomposition of S3

together with a continuous map, fs from S3 to X(3), which sends the i-
skeleton of that decomposition to X(i), i = 0, 1, 2. At this stage we have
X(0) = K(P)0, a point, X(1) = K(P)1, and X(2) = K(P)2. One wants
enough such 3-syzygies, s, identified algebraically and combinatorially, so that
the corresponding homotopy classes, {[fs]} generate π3(X(3)).

It is clear, by induction, we get a notion of homotopical n-syzygy. We
assume X(n) has been built inductively by attaching cells of dimension ≤ n
along homotopical k-syzygies for k < n, so that

π1(X(n)) ∼= G, πk(X(n)) = 0, k = 2, . . . , n− 1,

then a homotopical n-syzygy, s, is an oriented polytope decomposition of Sn

and a continuous cellular map fs : Sn → X(n). After a choice of a set Rn
of n-syzygies, so that {[ss] | s ∈ Rn} generates πn(X(n)) as a G-module, we
can form X(n + 1) by attaching n + 1-dimensional cells en+1

s along these fs
for s ∈ Rn.

If we can do this in a sensible way, for all n, we say the resulting system
of syzygies is complete and the limit space X(∞) =

⋃
X(n) is then a cellular

model for BG, the classifying space of the group G.

This construction is, of course, just a homotopical version of the construc-
tion of a free resolution of the trivial G-module, Z. Later we will consider how
to form simplicial pro-C resolutions ‘step-by-step’ as another combinatorial
way to replace K(P) and more generally K(G, 1).

Remark: Some additional aspects of this can be found in Loday’s paper
[107], in particular the link with the ‘pictures’ of Igusa, [88, 89].

Example and construction: Given any group G, we can find a pre-
sentation with {〈g〉 | g 6= 1, g ∈ G} as set of generators and a relation
rg,g′ := 〈g〉〈g′〉〈g′g〉−1 for each pair (g, g′) of elements of G. (We write 〈1〉 = 1
for convenience.)

The relation rg,g′ gives a triangle

.
g′

  AAAAAAA

.

g
>>}}}}}}}
g′g

// .

and, for each triple (g, g′, g′′) , we get a homotopical 2-syzygy in the form of
a tetrahedron.
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Higher homotopical syzygies occur for any tuple, (g1, . . . , gn), of non-
identity elements of G, by labelling a n-simplex. The limiting cellular space,
X(∞), constructed from this context is just the usual model of the classifying
space BG as geometric realisation of the nerve of G. The corresponding free
resolution, (C∗(G), d), is the classical normalised bar resolution. Using the bar
resolution above dimension 2 together with the crossed module of the presen-
tation at the base, one gets the standard free crossed resolution of the group,
G. We will return to this later.

Syzygies for the Steinberg group (cf. Kapranov and Saito, [98]) Let
R be an associative ring with 1. Recall that the Steinberg group Stn(R) has
generators xij(a), labelling the elementary matrices εij(a), having

εij(a)k,l =

1 if k = l
a if (k, l) = (i, j), a ∈ R
0 otherwise,

and relations
St1 xi,j(a)xi,j(b) = xi,j(a+ b);

St2 [xi,j(a), xk,`(b)] =
{

1 if i 6= `, j 6= k,
xi,`(ab) i 6= `, j = ik.

The identities / homotopical 2-syzygies are built from three types of poly-
gon: a) a triangle, Tij(a, b) for each i, j, i 6= j, coming from St1;

b) a square,

xij(a)
.....................
...................
...

......................
xij(a)

..................
...

xkl(b) xkl(b)

corresponding to the first case of St2 and
c) a pentagon, for the second:

xij(a)

...............................................................................................................
...

......................

......................................................................................................................................
.
..........................................................................................

......................

...................................................................................................................
......................

xij(a)xik(ab)

xjk(b)

xjk(b)

Then for any pairs (i, j), (k, l), (m, p) with xij(a), xkl(b), xmp(c), commuting
by virtue of St2’s first clause, we will have a homotopical syzygy in the form
of a labelled cube.

There is also a homotopy 2-syzygy given by the associahedron labelled by
generators as shown:
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xjk(b)
xij(a)

xjl(bc)
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xij(a)

xjk(b)

Remark: Kapranov and Saito, [98], have conjectured that the spaceX(∞)
obtained by gluing labelled higher Stasheff polytopes together, is homotopi-
cally equivalent to the homotopy fibre of

f : BSt(R)→ BSt(A)+,

where (−)+ denotes Quillen’s plus construction. The associahedron is a Stash-
eff polytope and, by encoding the data that goes to build the identities / syzy-
gies schematically in a ‘hieroglyph’, Kapranov and Saito make a link between
such hieroglyphs and polytopes.

Syzygies for the Braid groups: The understanding of the profinite
Galois group, Gal(Q/Q), of the algebraic closure of the field of rationals is
linked to the Grothendieck-Teichmüller group, ĜT as defined by Drinfel’d,
[47]. This corresponds to Grothendieck’s ‘Teichmüller tower’, (cf. [77]), which
is the system of moduli spaces,Mg,n, of Riemann surfaces of genus g and with
n marked points, on which Gal(Q/Q) acts. Drinfel’d, [47], showed that ĜT
can be viewed as a subgroup ot the automorphism group of B̂rn, the profinite
completion of Brn, the braid group on n-strands, or, more exactly, on a tower
of such braid groups. A full discussion of these links, and much more, can be
found in the article by Lochak and Schneps, [103], that appears in [151], see
also [104] for a cohomological interpretation of ĜT linked to braids.

The braid groups provide a good set of important examples of groups pre-
sentations having good geometric content and the above mentioned link with
Grothendieck-Teichmüller theory gives additional motivation for discussing
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both them and their profinite and pro-C completions. Their usual presenta-
tion have been analysed for their higher syzygies (given in Loday, [107]), and
we will use this to help illustrate the notion of higher syzygies. There are
numerous sources which explore these braid groups geometrically and alge-
braically so we will refrain from doing so further here.

The Artin braid group, Brn+1, defined using n+ 1 strands is given by

• generators: yi, i = 1, . . . , n;
• relations: rij ≡ yiyjy−1

i y−1
j for i+ 1 < j;

rii+1 ≡ yiyi+1yiy
−1
i+1y

−1
i y−1

i+1 for 1 ≤ i < n.

We will look at such groups only for small values of n.
By default, Br2 has one generator and no relations, so is infinite cyclic.

The group Br3: (We will simplify notation writing u = y1, v = y2.)
This then has presentation P = (u, v : r ≡ uvuv−1u−1v−1). It is also the

‘trefoil group’, i.e. the fundamental group of the complement of a trefoil knot.
If we construct X(2) = K(P), this is already a K(Br3, 1) space, having a
trivial π2. There are no higher syzygies. The model for the classifying space
is given by the 2-cell with identifications:
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The group Br4: simplifying notation as before, we have generators u, v, w
and relations

ru ≡ vwvw−1v−1w−1,

rv ≡ uwu−1w−1,

rw ≡ uvuv−1u−1v−1.

The 1-syzygies are made up of hexagons for ru and rw and a square for rv.
There is a fairly obvious way of fitting together squares and hexagons, namely
as a permutohedron, and there is a labelling of such that gives a homotopical
2-syzygy as shown below.

A representing identity can be found using Igusa’s method of pictures,
[88, 89], which is explained in Loday’s paper, [107] in which one can also find
an explicit identity based on this 2-syzygy. Using this 2-syzygy, s, one can
form X(3) = X(2) ∪s e3

s and it is known that X(3) is a K(Br4, 1) by using
calculations of Deligne and Salvetti. An explicit construction of X(3) can be
obtained by quotienting the permutohedron by the indicated labelling.
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As this example suggests, the presentation of Brn+1, in general, gives
a labelled permutohedron of higher dimensions and the K(Brn+1, 1) is the
quotient of this by the labelling.

Remark: (i) The proofs of Deligne and Salvetti, mentioned by Loday, are
based on the fact that, in the space Cn+1, the complement of the union of the
hyperplanes {xi = xj}, has fundamental group the braid group, Brn+1.

(ii) Loday, [107], has introduced a parametrised version of the braid groups,
Brn(R), where R is a ring, and gives higher syzygies for the resulting presen-
tation. In [108], he and Stein prove that this Brn(R) is a semidirect product
of Stn(R) and Brn, for a natural action of Brn on the Steinberg group.

If one has a complete set of syzygies, {Rn}, then one can build a space
X(∞) with X(n), as constructed above, as its n-skeleton or alternatively, a
resolution of Z as G-module, a partial algebraic model of X(∞). The theory
of crossed complexes and free crossed resolutions that will be intoduced in
Chapter 6, provides an alternative algebraic model for X(∞) that is closely
related to the resolution, yet provides a complete model of the homotopy
type of X(∞), not just the chains on its universal cover. As it is algebraic,
we can mimic that theory in the profinite case. Another perspective is given
by R. A. Brown in [33], in terms of what is termed there ‘generalised group
presentations’.
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4.2 Profinite analogues of identities

The above provides some motivation for our considerations here. Clearly we
might approach identities for profinite presentations in an entirely analogous
fashion, but we must be a bit careful as the Nielsen-Schreier theorem is not
always available and we cannot use spatial models such as K(P), X(3), etc.
of these extended presentations.

Given a profinite space of generators, X, for a pro−C group, G, one con-
structs FC(X) and a continuous epimorphism from FC(X) to G. It is com-
monplace that one regards elements of FC(X) as being limits of “formal com-
posites” of generators of G and that the kernel, N(R), of the epimorphism is
a good measure of the relations between the generators. One then views the
choice of the space, R, of relations as being an effort to gain more knowledge
of this kernel, N(R), which, of course, consists of products of conjugates of
elements in R and limits of such. Often, but not always, N(R) is a free pro−C
group (see the earlier discussion), but it will rarely be free on R itself nor on
R together with its conjugates. To handle this the obvious thing to do is to
take limits of “formal composites of formal conjugates of elements of R” and
to examine the resulting object. Let us describe this idea more exactly.

We suppose P = (X : R) is a pro−C presentation of G, that is, G is a
pro−C group isomorphic to FC(X)/N(R), where N(R) is the closed normal
closure of the subspace R ⊂ FC(X). The inclusion R ↪→ FC(X) gives us
a corresponding free pro-C crossed module, (CC(P), FC(X), ∂). (It is in fact
better to consider a presentation P as being a triple (X : R, ρ) where ρ : R→
FC(X) is a continuous map, not necessarily injective. This allows comparison
of the properties of a given pair (X : R) within different contexts, e.g. abstract,
profinite and pro−p presentations for a given set X with R ⊂ F (X).)

The kernel, κC(P), of ∂ is thus reasonably interpreted as being the module
of identities amongst the relations of (X : R). Our previous results show that
κC(P) is a pseudo-compact ẐC [[G]]-module. Our results on exact sequences can
be applied to give further information on κC(P).

4.2.1 The module of identities.

Since κC(P) = Ker(CC(P)→ FC(X)), we have from Proposition 22, an exact
sequence

κC(P)→ CC(P)Ab
∂Ab∗→ N(R)Ab → 0,

of pseudocompact ẐC [[G]]-modules. To learn more about κC(P), we need to
examine the morphism from κC(P) to CC(P)Ab as well as the latter module.

If C = p-groups (so pro−C = pro−p), if G is finite discrete, or in general
if (X;R) is what we have earlier, page 15 called a free pro-C presentation,
then N(R) is free pro−C and so the morphism κC(P)→ CC(P)Ab is monic by
Proposition 23. We will only discuss this case, as the other type of situation
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would seem very hard to attack. We would however draw the attention of the
reader to the following problem:

Calculate the second homology group of all non-free closed normal sub-
groups of free pro−C groups.

In particular, we note that the kernel of the epimorphism from a free
profinite group F onto its maximal prosolvable quotient is not a free profinite
group if F has rank greater than 1. What is H2 of this kernel? The results
of Ellis and Porter, [57], mentioned earlier, have identified H2 with, in the
notation of proposition 22, A ∩ [C,C], in the abstract case. The profinite
analogue will be discussed later, in chapter 6.

4.2.2 The Abelianisation of the ‘top’ group in the free case.

Our information on CC(P)Ab is more complete. The following proposition is
the pro−C analogue of Proposition 7 on p.162 of [29] for the abstract case. It
has a useful corollary.

Proposition 29. If (C,G, ∂) is a free profinite crossed module on a continu-
ous function, f : X → G, with X profinite, then CAb is a free pseudocompact
ẐC [[G/Im∂]]-module on the image in CAb of the composite function

X
v→ C

p→ CAb,

where v is a lifting of f .

Proof: The fact that CAb is a pseudocompact ẐC [[G/Im∂]]-module has al-
ready been proved. Freeness is proved exactly as in Brown and Huebschmann,
[29], for the discrete, purely algebraic case. One assumes given a pseudocom-
pact ẐC [[G/Im∂]]-module, M say, and a continuous map from X to it. Con-
sidering the module as the corresponding crossed module with the trivial map
to G, gives a unique map from C to M and then it is easy to check this factors
through CAb. Uniqueness at each stage guarantees uniqueness overall. �

Corollary 7. If (C,G, ∂) is a free pro−C crossed G-module on f : X → G
and v is a lifting of f to C, then v is injective. �

The proof in Brown-Huebschmann, [29], generalises without problem.

4.2.3 Identifying problems and problems of identification.

Collecting up facts, we find that if P is a free pro−C presentation, κC(P) is
isomorphic to the kernel of a continuous map from CC(P)Ab ∼= ẐC [[G]](R) to
the relation module N(R)Ab. This latter can be shown to be a submodule of
ẐC [[G]](X) and in this identification, the morphism concerned, ∂Ab∗ , is given
by the pseudocompact analogue of the Jacobian matrix of the presentation,
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which will be examined later in section 6.2.3. As the identification of N(R)Ab

and the properties of the transformation ∂Ab∗ require other techniques than
those developed up to this point, they will be left until a later chapter, where
the connections between “pro−C crossed complexes” and chain complexes of
pseudocompact ẐC [[G]]-modules are discussed.

4.2.4 Comparisons.

The question naturally arises of the connection between the pseudocompact
identity module and the discrete one in the case of a finite C-group G and finite
presentation (X : R). This presentation can be considered as a discrete one,
Pdisc, or a pro−C one, P. One thus obtains exact sequences corresponding to
the two views taken:

(i) 0 // κdisc(Pdisc) //

α

��

Cdisc(Pdisc)Ab

β

��

// Ndisc(Rdisc)Ab //

γ

��

0

(ii) 0 // κC(P) // CC(P)Ab // N(R)Ab // 0

and a map from (i) to (ii) as shown. Results on pro−C completions of free
crossed modules contained in the next chapter imply that β and γ are canon-
ical pro−C completion morphisms, but we will see later that α need not be;
in fact κdisc(P) may be trivial, whilst κC(P) is non-trivial. However, the
question of the relationship between κdisc(P) and κC(P), in general, remains
unclear.

4.3 Profinite simplicial groups and crossed modules.

4.3.1 Replacing topological by simplicial constructions.

We saw in the last section how a presentation P = (X : R) of a group G, could
be used to construct a complex, K(P), giving combinatorial information on
P. The information contained in K(P) can, as we have seen, be encoded in
a free crossed module and we constructed a pro−C analogue of this when P
was a pro−C presentation of a pro−C group, G.

The complex, K(P), can be replaced by a simplicial group. This can be
done “step-by-step” in the fashion of André, [4], and we will look at possible
profinite analogues of this in a later chapter. For the moment we want to de-
scribe how one can pass from a given pro−C simplicial group, G, to a pro−C
crossed module, M(G, 1) and to examine what information M(G, 1) retains
about G. Later we will take this construction in several different directions,
generalising it to give a pro−C crossed complex and pro−C catn-group, exam-
ining its compatability with pro−C completion, etc. For the moment we limit
ourselves to the construction itself.
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4.3.2 A crossed module from a simplicial group.

Given a pro−C simplicial group G, we form up M(G, 1) as the morphism

∂ :
Ker d1

1

d2
0(Ker d2

1 ∩Ker d2
2)
→ G1

d2
0(Ker d2

1)
.

We claim this is a pro−C crossed module. We first need to check that it makes
sense, i.e., that d0(Ker d2

1 ∩Ker d2
2) and d2

0(Ker d2
1) are closed normal sub-

groups of the respective denominators. Closedness is clear. To check normality
we merely note that if x = d2

0y for y ∈ Ker d2
1 or d0(Ker d2

1 ∩Ker d2
2) then

for any g ∈ G1, gxg−1 = d2
0(s0(g)ys0(g)−1) and so is again in the relevant

kernel. The continuous action of G1 on Ker d1
1 induces one of the quotient

G1/d
2
0(Ker d2

1) on Kerd1
1/d

2
0(Ker d2

1 ∩Ker d2
2). The morphism ∂ is induced

by the inclusion of Ker d1
1 into G1, and hence is continuous.

Proposition 30. Given a pro−C simplicial group G., the above structure
makes M(G., 1) into a pro−C crossed module.

Proof: The only things to check are the crossed module axioms. Writing [g]
for the coset corresponding to g ∈ G1 or in Ker d1

1 etc., we get for x ∈ Ker d1
1,

(i) [g][x] = [gx] = [gxg−1] = [g][x][g]−1, i.e., ∂ is equivariant,
and for x, y ∈ Ker d1

1,
(ii) ∂[x][y] = [xyx−1] = [x][y][x]−1.

The proof thus resides in checking that the (deliberate) ambiguity of the
notation causes no problems. This is quite routine and can be safely left to
the reader. �

4.3.3 The kernel and cokernel.

Now that we have the crossed module M(G, 1), it is natural to work out the
cokernel and kernel of ∂. The cokernel of ∂ can most easily be calculated by
noting that d0 : G1 → G0 induces an isomorphism between G1/d0(Ker d1)
and G0. This means that we can replace M(G, 1) by an isomorphic pro−C
crossed module

∂ :
Ker d1

1

d2
0(Ker d2

1 ∩Ker d2
2)
→ G0,

where now ∂ is induced by d1
0 and G0 acts on the left-hand term via the con-

tinuous degeneracy homomorphism, s0 : G0 → G1, followed by conjugation.
It follows that Coker ∂ is isomorphic to G0/d

1
0(Ker d1

1) and analysis of the
Moore complex of G in low dimensions shows that this quotient is the pro−C
group, π0(G), of connected components of G. In particular if F is a free pro−C
simplicial resolution of a pro−C group G, as used by Gildenhuys and Mackay
[71], then, for example, M(F, 1) has G as its cokernel.
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4.3.4 Ker ∂.

To calculate Ker ∂, it is again useful to use the second version of M(G, 1).
The kernel of ∂ is then easily seen to be

Ker d1
0 ∩Ker d1

1

d2
0(Ker d2

1 ∩Ker d2
2)

and the Moore complex supplies us with an interpretation of this as being
π1(G).

Earlier we used the fact that if (K,L) is a connected CW-pair with L
the 1-skeleton of K, then the boundary ∂ : π2(K,L) → π1(L) of the long
exact homotopy sequence of (K,L) is a crossed module with kernel π2(K)
and cokernel π1(K). Here we have

π1(G) = KerM(G, 1),

π0(G) = CokerM(G, 1),

since as we recalled earlier, simplicial groups model “loop groups” of homotopy
types - but with a slippage of dimension.

4.3.5 “ . . . and back again”.

Given a pro−C crossed module (C,P, ∂), can we find a simplicial group, G,
whose associated M(G, 1) is continuously isomorphic to (C,P, ∂)? Supposing
we can - and we can - what is the connection between a given G and that
reconstructed from M(G, 1)?

Suppose C = (C,P, ∂) is a pro−C crossed module, we construct a pro−C
simplicial group (in an apparently ad hoc fashion) E(C) by

E(C)0 = P, E(C)1 = C o P,

s0(p) = (1, p), d1
0(c, p) = ∂c.p, d1

1(c, p) = p.

Assuming E(C)n is defined and that it acts on C via the unique composed
face map to E(C)0 = P followed by the given action of P on C, we set

E(C)n+1 = C o E(C)n;
dn+1

0 (cn+1, . . . , c1, p) = (cn+1, ..., c2, ∂c1.p);
dn+1
i (cn+1, . . . , ci+1, ci, . . . , c1, p) = (cn+1, . . . , ci+1ci, . . . c1, p)

for 0 < i < n+ 1;
dn+1
n+1(cn+1, . . . , c1, p) = (cn, . . . , c1, p);

sni (cn, . . . , c1, p) = (cn, . . . , 1, . . . , c1, p),

where the 1 is placed in the ith position.
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Clearly Ker d1
1 = {(c, p) : p = 1} ∼= C, whilst Ker d2

1 ∩ Ker d2
2 =

{(c2, c1, p) : (c1, p) = (1, 1) and (c2c1, p) = (1, 1)} ∼= {1}, hence the “top
term” of M(E(C), 1) is isomorphic to C itself, whilst E(C)0 is P itself. The
boundary map ∂ in this interpretation is the original ∂, since it maps (c, 1) to
d0(c), i.e., we have

Lemma 9. There is a natural isomorphism

C ∼= M(E(C), 1).

�

4.3.6 Back yet again!

Suppose now that we pass from a pro−C simplicial group, G, to M(G, 1) and
then apply E. To compare G with EM(G, 1), we first calculate the Moore
complex of E(C) for arbitrary C. This, by the calculations in 4.3.5, gives

1→ 1→ C
∂→ P.

Comparing the Moore complex of G with that of EM(G, 1) this gives us

N(G) = (. . .→ N(G)2 → Ker d1 → G1),

N(E(M(G, 1)) = . . .→ 1→ Ker d1

d0N(G)2
→ G0)

There is thus a type of truncation process going on that kills off N(G)2 and all
higher groups and their images. This will be thoroughly investigated in a later
chapter, but for the moment we merely point out that there is a continuous
simplicial morphism from G to EM(G, 1) given at levels 0 and 1 by

G0 → G0 by the identity,
G1 → EM(G, 1)1 by g goes to (gs0d1g

−1, d1g)
and at all higher levels is generated by these two.

It is clear that EM(G, 1) captures information on the 1-type of G. In
fact, M(G, 1) is an algebraic model for the 1-type, since the constructions are
functorial. We will investigate this thoroughly later on, but will see in the
intervening pages many consequences of this idea.

4.3.7 Simplicial normal subgroups.

The above ideas interact neatly with a pretty little result which is the group
theoretic version of Loday’s observation that if p : E → B is a fibration with
connected fibre, then the induced map from π1(F ) to π1(E) has a crossed
module structure. For simplicial groups, fibrations and epimorphisms are “the
same” as we have already remarked, hence a normal simplicial subgroup cor-
responds to a fibre of a fibration, connectedness being built in automatically.
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Of course normal subgroups are special crossed modules, and when dealing
with simplicial groups the décalage in dimension will replace π1 by π0. Given
these observations, one direction of the following result is not surprising.

Proposition 31. Given a pro−C simplicial group G and a closed simplicial
normal subgroup N C G, the induced map

i∗ : π0(N)→ π0(G)

together with the induced action of π0(G) on π0(N) by conjugation of repre-
senting elements, is a pro−C crossed module. Conversely, given any pro−C
crossed module (C,P, ∂), there is a simplicial pro−C group, G, and a closed
normal simplicial subgroup, N C G, such that (C,P, ∂) is isomorphic to
(π0(N), π0(G), i∗).

Proof: The continuous action of G on N gives a continuous map

G×N → N.

Applying π0 and using that π0(G×N) ∼= π0(G)×π0(N), we get a continuous
action of π0(G) on π0(N). The two crossed module axioms can similarly be
represented by commutative diagrams involving products, so again applying
π0 gives that the crossed module axioms are satisfied by (π0(N), π0(G), i∗).

Conversely, given the pro−C crossed module (C,P, ∂), we build, using an
idea of Loday, two new pro−C crossed modules (1, C, inc) and (C,C oP, inc)
and a morphism between them

1

��

// C

inc

��
C

ε // C o P

where ε(c) = (c, ∂c−1). This is clearly continuous and we leave it as an exercise
to check ε is a homomorphism.

This morphism is a monomorphism making ε(C) a normal subgroup of
CoP . If we now apply the functor E to this and we set E(C,CoP, inc) = G
and E(1, C, inc) = N , then N C G and (π0(N), π0(G), i∗) is isomorphic to
(C,G, ∂). �

Remark: In fact, in the above proof, G is a K(P, 0), i.e., its only non-
trivial homotopy group is P in dimension 0. Similarly N is a K(C, 0).

4.3.8 The Brown-Loday lemma

We have seen how crossed modules give simplicial groups and vice versa. The
relationship is very neatly illustrated by a result of Brown and Loday, [31].
This can be seen as a precursor of a whole lot of results that we will meet
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later and many more that we will not have space for. The proof uses low
dimensional versions of several ideas that will play a role later on, in partic-
ular, semidirect decompositions and the simple observation that, in a general
simplicial group, elements such as s1x.s0y or [s1x, s0y], are not, in general,
themselves degenerate, although they are products of degenerate elements.
We will state the result in a slightly more general forn than it was originally
stated.

Let G be a simplicial group and n ≥ 1. We will denote by Dn, the subgroup
of Gn generated by the degenerate elements. (The original form of the result
assumed G2 = D2, we will work rather with NG2 ∩D2.)

Proposition 32. (The Brown-Loday lemma) Let N2 be the (closed) normal
subgroup of G2 generated by elements of the form

F(1),(0)(x, y) = [s1x, s0y][s0y, s0x]

for x, y ∈ NG1 = Ker d1. Then NG2 ∩D2 = N2 and consequently

∂(NG2 ∩D2) = [Ker d0,Ker d1].

Before we prove this, we will explore several points.
• Suppose z ∈ Ker d0, then x = z.s0d1z

−1 is in Ker d1. Conversely given
an x ∈ Ker d1, x.s0d0x

−1 ∈ Ker d0. (This sets up a bijection between Ker d0

and Ker d1, but, of course, it is not usually an isomorphism.) Any z ∈ Ker d0

thus has this form.
• The group G2 has a semidirect product decomposition

G2
∼= (NG2 o s0NG1) o (s1NG1 o s1s0NG0).

This is the case, n = 2 of a more general result (Conduché’s lemma) that
we will prove later on. This low dimensional case is easy to see. There is an
obvious split epimorphism:

G1
d1

// G0

s0oo ,

so G1
∼= NG1 o s0G0.

Similarly

G2
d2

// G1

s1oo

yields G2
∼= NG2 o s1G1, but we also have

Ker d2
d1

// Ker d1

s0oo ,

since if d2x = 1, d1d0x = d0d2x = 1, so d0x ∈ Ker d1. Putting this together
gives the decomposition we gave above.
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• The previous two observations are linked by the mappings, defined for
x ∈ G2, by:

p1(x) = x.s1d2x
−1;

p0(x) = x.s0d1x
−1.

These are mappings into the kernel of the projections of the decomposition,
so given an arbitrary x ∈ G2, p0p1(x) ∈ Ker d1∩Ker d2 = NG2, as can easily
be checked. (This is the component of x in the Moore complex.) Now consider
x, y ∈ NG1 and the commutator, [s1x, s0y]. This latter is in G2, so we look at
its component in NG2. This will be p1p0[s1x, s0y] = [s1x, s0y][s0y, s0x], i.e.,
the element F(1),(0)(x, y) of the statement of the proposition.

It is easily checked that F(1),(0)(x, y) is in (NG2 ∩D2), and that

∂F(1),(0)(x, y) = s0d0x[y, s0d0x
−1.x]s0d0x

−1 ∈ [Ker d1,Ker d0],

so ∂N2 ⊆ [Ker d1,Ker d0]. Moreover, from our first observation, it is easy
to see that any commutator [y, z] with y ∈ Ker d1 and z ∈ Ker d0, can be
written as ∂F(1),(0)(x′, y′) for suitable x′, y′ ∈ NG1.

Proof of the proposition: Any element of G2 has a decomposition (rel-
ative to the above semidirect product decomposition) in the form

g2 = g.s0(x).s1(y).s1s0(u),

with g ∈ NG2, x, y ∈ NG1 and u ∈ NG0 = G0, and moreover, these elements
are determined by g2 by applying various projections to it, e.g. u = d1d2(g2),
y = p0(d2g2), etc.

Clearly we have N2 ⊆ NG2∩D2. The semidirect decomposition shows that
if g2 ∈ D2, it can be written as a product of a certain number of degenerate
elements of form s0(x), s1(y) or s1s0(u) with x, y ∈ NG1, u ∈ NG0. We will
use induction on the length of the expression thus representing an element in
NG2∩D2. Suppose g2 ∈ NG2∩D2 is of one of these three forms, then it must
be trivial. For instance, d1g2 = d2g2 = 1 as it is in NG2, so, if g2 = s0(x),
say, with x ∈ NG1, then x = d1s0(x) = 1. The other case is equally easy.

Now assume that if we have that g ∈ NG2∩D2 can be written as a product
of fewer than n such elements, then

gN2 = s0(y1)s1(y′1)s1s0(u0)N2,

i.e., g is congruent, mod N2, to an element having trivial component in NG2.
Suppose now that an elemnt g2 can be written as a product of n degenerate
elements, say, g2 = sβ(x)g with β = (0), (1), or (1, 0) with g covered by our
inductive hypothesis.

If β = (0), so g2 = s0(x)g then, of course,

g2N2 = s0(x)s0(y1)s1(y′1)s1s0(y0)N2

= s0(xy1)s′1)s1s0(y0)N2,
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and so has the right form.
If g2 = s1(x)g, then note F(1)(0)(x, y1) = [s1x, s0y1][s0y1, s0x] ∈ N2,

so s1(x)s0(y1)N2 = s0(xyx−1)s1(x)N2. We can thus use this to pass s1(x)
through the s0 term and absorb it, mod N2 in the rest.

Finally if g2 = s1s0(x)g, then as s1s0 = s0s0, we can pass the first term
through the others conjugating as we go, to get

g2N2 = s0(s0(x)y1)s1(s0(x)y′1)s1s0(xy0)N2.

Thus, by induction, any element in D2/N2 has trivial component in (NG2 ∩
D2)/N2. We can conclude that N2 = NG2 ∩D2. We finally note:

∂(NG2 ∩D2) = ∂N2 = [Ker d0,Ker d1].

�

In the next chapter, we will meet cat1-groups, where the key condi-
tion is that [Ker s,Ker t] = 1. In the simplicial context s = d1, t = d0

and the F(1)(0)(x, y) elements correspond to liftings of ‘Peiffer commuta-
tors’, i.e., elements that map to the difference between the two expres-
sions on the two sides of the Peiffer identity. To see this just note that
∂F(1)(0)(x, y) = ∂xy.(xyx−1)−1. We will show that cat1-groups are equivalent
to crossed modules and then the above proposition gives that, for instance, if
NG2 ∩D2 is trivial, ∂ : NG1 → NG0 is a crossed module.

This sort of condition will come in later when we discuss the relationship
between crossed complexes and simplicial groups. Crossed complexes extend
crossed modules by a chain complex and model more of the underlying homo-
topy type. We will also see higher dimensional analogues of the F(1)(0)(x, y)
elements.

It is sometimes worth viewing F(1),(0) as a pairing operation

F(1),(0) : NG1 ×NG1 → NG2,

which in the profinite context is clearly continuous. This is the first of many
such pairings (Peiffer pairings) that have been considered in much more detail
in the papers of Mutlu and Porter, [125–129] and are handled here in Chapter
??.
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Pro-C completions of crossed modules.

5.1 Cat1-groups, and their pro-C analogues

The equivalence between crossed modules and internal categories in the cat-
egory of groups has been known for some time (see the comments on this in
Brown-Spencer, [32]). A neat reformulation of the latter type of object was
given by Loday in [106] (see also Brown-Loday [31]). There one also finds the
introduction of the convenient term “cat1-group”.

The first results on completions of crossed modules were given in Korkes’
thesis, [100]. The treatment given here is based on [101].

5.1.1 Cat1-groups.

A cat1-group is a triple, (G, s, t), consisting of a group G and endomorphisms
s, the source map, and t, the target map of G, satisfying the following axioms:

(i) st = t and ts = s,
(ii) [Ker s,Ker t] = 1.
Here, of course, [Ker s,Ker t] indicates the subgroup of G generated by

the commutators [g, h] = ghg−1h−1 with g ∈ Ker s, h ∈ Ker t.
There is an obvious notion of a morphism between cat1-groups: if (G, s, t),

and (G′, s′, t′) are cat1-groups, a morphism

φ : (G, s, t)→ (G′, s′, t′)

is a group homomorphism, φ : G→ G′, such that

s′φ = φs

and
t′φ = φt.

This gives a category, which we will denote Cat1(Grps), of cat1-groups and
morphisms between them.
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5.1.2 Cat1-groups and crossed modules

In [106], Loday shows that there is an equivalence between the categories
CMod and Cat1(Grps). This equivalence is constructed as follows:

Given ∂ : C → B, crossed module, we form the semi-direct product,
G = CoB, using the action of B on C. The structural maps s, t are given by

s(c, b) = (1, b) and t(c, b) = (1, ∂(c)b)

for c ∈ C, b ∈ B. This satisfies the axioms for a cat1-group as is easy, and
quite instructive, to show. On the other hand, given a cat1-group (G, s, t), we
set C = Ker s, B = Ims, and ∂ = t|C , the restriction of t to C. The action
of B on C is by conjugation within G. Again the axioms are easily checked.

These cat1-groups have another interpretation that was mentioned earlier.
Given any category with finite limits such as the category of groups or of
profinite spaces, we have seen, (in section 1.5), the well known notion of an
internal category within the given category. For instance an internal category
in the category of all topological spaces has a space, Ob, of ‘objects’ and a
space, Ar, of ‘arrows’. The domain and codomain assignments give continuous
mappings from Ar to Ob, whilst the assignment to each object of its identity
arrow gives a continuous map in the other direction. There are the usual
requirements that the domain of an identity arrow is the object itself and so
on. Finally composition is defined on the space of composable arrows and is
continuous. It is this notion that forms the basis for the notion of profinite
groupoid that we saw briefly earlier. Here we note that the structure of a
cat1-group can be interpreted as being exactly that of an internal category in
the category, Grps, of groups and homomorphisms.

Given a cat1 group (G, s, t), the corresponding internal category has G as
its group of arrows and N = s(G) as its group of objects, s stands for ‘source’,
i.e., ‘domain’ and t for ‘target’ (‘codomain’). The rules st = t, etc., are then
just ‘the source of the identity on the target of an arrow is the target of the
arrow’, etc. Of course, here we are hiding the inclusion of N into G, which
is the identity assignment. Finally the kernel-kernel commutator condition is
exactly the condition that says that composition in the category is a group
homomorphism. Explorations of these ideas can be found in several sources
in the literature and so here it will be left as an exercise to search them out.
(It is amusing to check, for instance, that any internal category in Grps is an
internal groupoid in an obvious sense.) We will not be using this interpretaton
very much and so have not included a detailed exposition here.

5.1.3 The pro−C versions

We next introduce the pro−C analogue of the above.
A cat1-pro−C-group is a cat1-group, (G, s, t), in which G is a pro−C group

and s and t are continuous endomorphisms of G. A morphism of cat1-pro−C-
groups is a morphism, φ : (G, s, t)→ (G′, s′, t′), of the underlying cat1-groups
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such that φ is a continuous morphism of pro−C groups. This gives a category
of cat1-pro−C-groups that we will denote Cat1(Pro−C). There is a forgetful
functor from Cat1(Pro−C) to Cat1(Grps) which will be denoted by UC .

Lemma 10. There is an equivalence of categories

Pro− C.CMod
'−→ Cat1(Pro− C)

compatible, via the forgetful functors, with the equivalence between CMod and
Cat1(Grps), i.e., the diagram

Pro− C.CMod
' //

UCMod
��

Cat1(Pro− C)

UC
��

CMod
∼= // Cat1(Grps)

commutes.

Proof: In fact, if (C,B, ∂) is a pro−C crossed module, then G = C o B is a
pro−C group and the endomorphisms s and t, given earlier, are continuous,
so the resulting (G, s, t) is a cat1-pro−C-group. Similarly if (G, s, t) is a cat1-
pro−C-group then (Ker s, Ims, t|Ker s) is a pro−C crossed module. �

This lemma will enable us to prove the existence of a left adjoint for

UCMod : Pro− C.CMod→ CMod

by constructing one for

UC : Cat1(Pro− C)→ Cat1(Grps).

This latter construction will need projective limits within Cat1(Pro−C) and so
we will briefly look at their construction as it sheds some light on the pro−C
completion functor that will result from their use.

Given a projective system F : I → Cat1(Pro − C), one notes that F is
a projective system of groups together with two endomorphisms of projec-
tive systems, s, t : F → F satisfying st = t and ts = s, plus a commutator
condition. We form Lim F by taking the limit of this underlying system of
pro−C groups together with the induced endomorphisms, Lims and Lim t.
Writing the result as (F̄ , s̄, t̄), we have merely to check the commutator con-
dition [Ker s̄,Ker t̄] = 1. However F̄ can be realised as a subgroup of the
product

∏
i∈I F (i), and t̄((xi)) = (t(i)xi), similarly for s̄, so as the commuta-

tor subgroup [Ker s(i),Ker t(i)] is trivial for each i in I, it is so for the limit
as it can be calculated “pointwise”.
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5.2 Pro−C completions of cat1-groups and crossed
modules

5.2.1 Pro−C completions of cat1-groups

Proposition 33. A pro−C completion functor from Cat1(Grps) to Cat1(Pro−
C) exists, (i.e., the forgetful functor UC has a left adjoint).

Proof: An exact sequence

1→ (K, s′, t′) u→ (G, s, t) v→ (H, s′′, t′′)→ 1

of cat1-groups is an exact sequence

1→ K → G→ H → 1

of the underlying groups and continuous maps compatible with the source and
target maps. In this situation, we say that the cat1 -group, (H, s′′, t′′), is the
quotient of (G, s, t) by the normal sub-cat1-group, (K, s′, t′). The latter is of
finite index in (G, s, t) if H is finite.

Given any (G, s, t), the set of its normal sub-cat1-groups, (N, s′, t′), of
finite index with G/N ∈ C is directed by inclusion, so we can form an inverse
system of finite quotients of (G, s, t) and can take its limit within the category
of cat1-pro−C groups. (As usual one considers each finite C-cat1-group as a
pro−C one having the discrete topology).

Thus we can define a functor : Cat1(Grps)→ Cat1(Pro− C) by

˜(G, s, t) = Lim{ finite quotients of (G, s, t)}.

General considerations of category theory then imply that this functor is left
adjoint to the forgetful functor from Cat1(Pro−C) to Cat1(Grps). �

5.2.2 Pro−C completions for crossed modules.

Corollary 8. A pro−C completion functor from CMod to Pro−C.CMod exists,
(i.e., the forgetful functor UCMod has a left adjoint).

Proof: In the diagram

Pro− C.CMod
' //

UCMod
��

Cat1(Pro− C)

UC
��

CMod
' // Cat1(Grps)

we have found a left adjoint to the (vertical) functor on the right. This induces,
via the equivalence of categories, a left adjoint for the left hand (vertical)
functor. �
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One can attempt to use the functors defining the two equivalences to give
an “explicit” description of this pro−C completion functor, but initially in
what follows we shall merely use its existence and the universal property that
it satisfies to compare it with the pro−C completion of the individual groups
involved. This will, in fact, provide a description of the completion in most
useful cases.

Notation: We will denote by ˜(C,G, ∂) or, less accurately, (C̃, G̃, ∂̃), the
pro−C completion of the crossed module (C,G, ∂).

5.3 Pro−C completions of groups and crossed modules.

It is natural to want to compare this pro−C completion, (C̃, G̃, ∂̃), with the
pro−C completions, Ĉ, Ĝ and ∂̂, of the individual pieces of data involved. One
may even wonder why (Ĉ, Ĝ, ∂̂) is not itself always the same as (C̃, G̃, ∂̃). To
start the study of this problem we first look at G̃.

5.3.1 The two completions agree on the base.

Proposition 34. For any crossed module (C,G, ∂), G̃ ∼= Ĝ.

Proof: This follows from an adjoint functor argument:
There is a forgetful functor

R : CMod→ Grps

given by R(C,G, ∂) = G and also an analogous one

RpC : Pro− C.CMod→ Pro− C.

These have left adjoints L and LpC defined by L(G) = (G,G, idG) and simi-
larly for LpC .

We have a diagram of left and right adjoints

Pro− C.CMod
RpC //

UCMod
��

Pro− C

UC
��

LpC

oo

CMod
R //

(˜)

OO

Grps

(ˆ)

OO

L
oo

The right adjoint diagram commutes, so the left adjoint diagram commutes
up to isomorphism, i.e.,

˜(G,G, idG) ' (Ĝ, Ĝ, idĜ),

but better we have a sequence of isomorphisms: for a pro−C group H,
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Pro−C(RpC ˜(C,G, ∂), H) ∼= Pro−C.CMod( ˜(C,G, ∂), LpC(H))
∼= CMod((C,G, ∂), UCModLpC(H))
∼= CMod((C,G, ∂), LUGrps(H)) by observation
∼= Grps(R(C,G, ∂), UGrps(H))
∼= Grps(G,UGrps(H))

∼= Pro−C(Ĝ,H),

hence Ĝ ∼= G̃, independently of what C is. �

5.3.2 The cofinality condition

In order to study conditions which imply that C̃ and Ĉ are isomorphic, it is
convenient to introduce a condition that we will call the “cofinality condition”.

Let (C,G, ∂) be a crossed module and write ΩG(C) for the directed subset
of Ω(C), the set of finite index normal subgroups of C, consisting of those
W ∈ Ω(C), C/W ∈ C, which are G-invariant. We will say that (C,G, ∂)
satisfies the cofinality condition if ΩG(C) is cofinal in Ω(C).

Proposition 35. If G ∈ C, then any crossed G-module, (C,G, ∂), satisfies
the cofinality condition.

Proof: Given any W ∈ Ω(C), let

W ′ =
⋂
g∈G

gW,

be the intersection of all translates of W under the G-action. Then W ′ is
G-invariant and as G is in C, W ′ is of finite index and C/W ′ ∈ C. As W ′ is
contained in W , this completes the proof. �

5.3.3 Completions and the cofinality condition.

Theorem 5. If (C,G, ∂) satisfies the cofinality condition, then C̃ ∼= Ĉ.

Proof: Recall that one has an isomorphism

Ĉ ∼= LimW∈Ω(C)C/W.

AsΩG(C) is cofinal inΩ(C), we have that this is isomorphic to LimW∈ΩG(C)C/W ,
so when considering an element of Ĉ, we can represent it as a compatible fam-
ily (cWW )W∈ΩG of elements with cW ∈ C. Of course there is a natural map
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C
φ2 //

∂

��

C̃

∂̃
��

G
φ1 // G̃

coming from the adjointness. As Ĝ is pro-C, we have a factorisation via

Ĉ //

∂̂ ��>>>>>>> C̃

∂̃���������

Ĝ

and the various universality properties imply that it suffices to prove that
(Ĉ, Ĝ, ∂̂) is a pro−C crossed module in order to prove that C̃ ∼= Ĉ. Thus we
need to show that the G-action on C extends to a Ĝ-action on Ĉ such that ∂̂
is Ĝ-equivariant and the Peiffer relation holds.

We need to define therefore a map

Ĝ× Ĉ → Ĉ.

This we can attempt to do either topologically or using the identification
of the category, Pro−C, with the category, pro(C), of projective systems in
the category C. For this we need, for each W ∈ ΩG(C), to pick a (V,W ) ∈
Ω(G)×ΩG(C) such that there is a map

ψW : G/V × C/W ′ → C/W,

and that these maps are compatible with the bonding maps of the systems
{G/V } and {C/W}.

We pick W ′ = W and V = StG(C/W ). To see the reason for the latter
choice, we note that since W is G-equivariant, there is a G-action on C/W , a
finite group in C. This gives a homomorphism

G→ AutC(C/W )

giving V = StG(C/W ) as its kernel and we note that V Cfin G , since
AutC(C/W ) is finite.

We define ψW by the obvious rule

ψW (gV, cW ) = gcW.

Now assumeW ′ ⊂W ,W ′ ∈ ΩG(C), then we get aG-equivariant epimorphism

pW
′

W : C/W ′ → C/W,

and since if v ∈ StG(C/W ), vc.c−1 ∈W ′, we have V ′ = StG(C/W ′) ⊂ V and
an epimorphism in qv

′

v : G/V ′ → G/V . Thus we have a commutative diagram
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G/V × C/W // C/W

G/V ′ × C/W ′ //

qv
′
v ×p

W ′
W

OO

C/W ′

pW
′

W

OO

i.e., {ψW : W ∈ ΩG(C)} is a map of projective systems. That it is an action
is then clear.

To check the axioms we need an explicit description of ∂̂ : Ĉ → Ĝ. Given
U C G, so that G/U ∈ C, there is a composed homomorphism C → G→ G/U .
Take N to be its kernel, then since ∂ is G-equivariant and G/U is in C, it
follows that N is in ΩG(C) and that U ⊂ StG(C/N). These observations
readily imply that ∂̂, defined by

∂̂U (cNU ) = ∂cUU,

is not only well defined, but is Ĝ-equivariant.
The proof that the Peiffer relation holds now follows from the Peiffer iden-

tity in (C,G, ∂) and the descriptions of ∂̂ and the Ĝ-action. �

Corollary 9. If G is in C and (C,G, ∂) a crossed module, then (Ĉ, Ĝ, ∂̂) is a
crossed module, which is the pro−C completion of (C,G, ∂). �

5.3.4 Completions of crossed modules with nilpotent actions.

Preservation of certain crossed module structures by termwise pro−C comple-
tion is reminiscent of the preservation of nilpotent fibrations by completions,
as exemplified by the nilpotent fibration lemma of Bousfield-Kan, [19]. Recall-
ing that if p : E → B is a fibration with connected fibre F , then the induced
map from π1(F ) to π1(E) makes (π1(E), π1(F ), p∗) into a crossed module (cf.,
Loday, [105]), it is not surprising that there is a link between nilpotent actions
and preservation of crossed module structures.

The usual definition of a nilpotent action of G on C is as follows (cf.,
Bousfield-Kan, [19]):

An action of a group G on a group C is said to be nilpotent if there is a
finite sequence

C = C1 ⊃ . . . ⊃ Cj ⊃ . . . ⊃ Cn = {e}
of subgroups of C such that for each j

(i) Cj is closed under the action of G,
(ii) Cj+1 is normal in Cj and Cj/Cj+1 is Abelian,

and (iii) the induced G-action on Cj/Cj+1 is trivial.
We will say that the G-nilpotent length of C, in this case, is less than or

equal to n, (`G(C) ≤ n).

Proposition 36. If (C,G, ∂) is a crossed module so that the action of G on C
is nilpotent, then (Ĉ, Ĝ, ∂̂) is a crossed module which is the pro−C completion
of (C,G, ∂).
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Proof: We check the cofinality condition using induction on the G-nilpotent
length of C.

We first note that if W C C is such that C/W is in C, it is sufficient to
prove that

⋂
gW = V , say, is such that C/V is in C. If `G(C) = 1, the group

C is trivial. If `G(C) = 2, then the group C is Abelian with trivial G-action.
In neither case is there any difficulty. Next suppose we have that the result
holds provided `G(C) < n, more precisely we assume that if `G(C) < n, then
if W is normal in C and C/W ∈ C, then V =

⋂g
W is also such that C/V is

in C.
Now look at C with `G(C) = n, so that there is a sequence,

C = C1 ⊃ C2 ⊃ . . . ⊃ Cn = {e},

as in the definition above. Taking the normal subgroup C2, we get a short
exact sequence

1→ C2 → C1
p→ C1/C2 → 1,

in which `G(C2) < n and C1/C2 is Abelian with trivial G-action.
Next suppose W C C is such that W/C ∈ C. For any g ∈ G, p(gW ) =

p(W ), since the G-action on C1/C2 is trivial. Moreover gW ∩C2 = g(W ∩C2),
since C2 is closed under the G-action. Thus setting V =

⋂g
W , we get p(V ) =

p(W ) and V ∩C2 =
⋂g(W ∩C2). As C1/C2 ∩W ∈ C, we apply the induction

hypothesis to conclude C2/(C2 ∩ V ) ∈ C. Similarly the quotient of C1/C2 by
p(V ) is in C as it is the same as that by p(W ).

The group C/V is thus part of an exact sequence, the other groups of
which are in C, hence it also is in C as required. �

5.4 Pro-C completions of free crossed modules.

If F is a free group on a finite set X, then the pro−C completion of F is a free
pro−C group on X. (If X is not finite, one has to handle X as a topological
space and the statement of the result gets slightly more technical as we saw
in XChapter 1.) Given this, it is natural to enquire if a similar thing holds for
free crossed modules. The following result gives the answer.

Proposition 37. If ∂ : C → G is a free crossed module on a function f : S →
G, then (C,G, ∂) is the free pro−C crossed module on the profinite completion
f̂ : Ŝ → Ĝ of f .

We should remark that f̂ is obtained from the composite continuous map,

S → G→ Ĝ,

where S is given the discrete topology, via the factorisation

S → Ŝ → Ĝ.
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As we noted earlier, the profinite completion of a space can, for instance, be
obtained by taking the Boolean algebra of clopen, i.e., closed-open, subsets of
the space and then forming the maximal ideal space of that Boolean algebra.

Proof of Proposition 37 We start by introducing some useful notation.
We have already introduced CMod/G and Pro−C.CMod/Ĝ for the categories
of crossed modules over G and pro−C crossed modules over Ĝ respectively.
We also introduce categories: Sets/G and Spaces/Ĝ to denote the category of
functions with codomain G (resp. continuous functions with codomain Ĝ and
domain a profinite space). There are forgetful functors from CMod/G (resp.
Pro−C.CMod/Ĝ) to Sets/G (resp. Spaces/Ĝ) and the existence of free crossed
modules in the two instances correspond to the existence of left adjoints for
these functors: thus

CMod/G((C(S), G, ∂f ), (D,G, ∂′)) ∼= Sets/G(S,G, f), U(D,G, ∂′)),

where (C(S), G, ∂f ) is the free crossed module on (S,G, f), and

Pro− C.CMod/Ĝ(CC(X), Ĝ, ∂̄f ), (E, Ĝ, ∂′))
∼= Spaces/Ĝ((X, Ĝ, f), UC(E, Ĝ, ∂′)),

where (CC(X), Ĝ, ∂̄f ) denotes the free pro−C crossed module on (X, Ĝ, f).
Then we have

Pro−C.CMod/Ĝ((C(S), G, ∂f ), (D̃, Ĝ, ∂))
∼= CMod/G((C(S), G, ∂f ), Uφ(D̃, Ĝ, ∂))
∼= Sets/G((S,G, f), UUφ(D̃, Ĝ, ∂))
∼= Spaces/Ĝ((Ŝ, Ĝ, f̂), UC(D̃, Ĝ, ∂))
∼= Pro−C.CMod/Ĝ((CC(Ŝ), Ĝ, ∂̄f̂ ), (D̃, Ĝ, ∂)).

(Here we have used the base restriction functor Uφ along the homomorphism
φ : G→ Ĝ. This functor is given by pullback along φ as in section 3.3 ). Thus

(CC(Ŝ), Ĝ, ∂f̂ ) ∼= (C(S), G, ∂f ),

as required. �

5.5 Remarks on the non exactness of pro-C completions

If G is a group and N C G, it does not follow that N̂C C ĜC , i.e., pro−C
completion is not exact. This causes difficulties in algebraic geometry. Fried-
lander, [61], gave an example in which the pro−L completion of a covering
morphism does not yield an exact sequence under π1 as expected. The base
of the covering is a surface and the characteristic is 0, so, in other respects,
the situation is extremely well behaved.

Anderson, [3], points out that things can go wrong even for finite groups.
Let S`(2, 5) be, as usual, the group of 2 × 2 matrices of determinant 1 over
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the field Z5. The centre of S`(2, 5) is of order 2. Completing at the prime 2
kills S`(2, 5) but leaves the centre alone. Thus from

Z(S`(2, 5)) C S`(2, 5),

one obtains
Z(S`(2, 5))→ {1}.

Considering this second example from the viewpoint of this monograph, we
note that as S`(2, 5) is finite, the 2-completion of any normal pair N C S`(2, 5)
should be a pro-2 crossed module (by Proposition 35) and, of course, since
Z(S`(2, 5)) is cyclic of order 2, this is indeed so.

Friedlander’s example is somewhat deeper. One expects fibrations to yield
crossed modules under π1, at least in topological cases, cf. [106]. Thus the
fact that on completing away from the prime 2, a fibration sequence associated
with a covering should yield a crossed module in π1 and not a normal inclusion,
should not be cause for surprise. Friedlander’s results from [62] might perhaps
be considered from this viewpoint.

A similar phenomenon occurs in the theory of group presentations. For
abstract groups, one knows that for any one relator group, G, in which the
relator is not a proper power, one has that the cohomological dimension of G,
cdG, is 2. However for pro−p groups, Gildenhuys, [68], has given an example
of a pro−p presentation with two generators and one relation which is not
a proper power and yet is such that the group thus presented has infinite
cohomological dimension. This, in crossed module terms, can be explained as
follows: The free crossed module

C(P) ∂→ F (x, y)

of Gildenhuy’s presentation has ∂ an inclusion. If we pro−p complete this
crossed module, we get the corresponding construction in pro−p and the map
in this free pro−p crossed module is no longer an inclusion, it has kernel a
cyclic Ẑp(G)-module with a periodic resolution. A full and detailed treatment
of this example must wait until we have developed more on identities in this
context. This will require a detailed knowledge of the structure of continuous
derivations to which we turn in the next chapter.

5.6 Completions of simplicial groups and crossed
modules.

We know that the crossed module, M(G, 1), represents the 1-type of the sim-
plicial group G. The interaction of pro−p completion and n-types was studied
by Bousfield and Kan, [19] p.113, in the case where the homotopy groups of G
are finitely generated. They summarise the key result in this area as follows:
“the homotopy type of R∞X in dimensions ≤ k” depends only on “the homo-
topy type of X in dimensions ≤ k”. The precise relation between this and the
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area we have been studying is given slightly earlier (p.109), where it is stated
that if T is the R-completion functor for groups, then first applying T di-
mensionwise to GX, the loop group of X, and then using the W -construction
gives a space weakly homotopically equivalent to R∞X. We also recall that if
G is finitely generated, the R-completion of G for R = Zp is simply the pro−p
completion.

Given this, it is natural to ask the following question:
given a (discrete) simplicial group G, what is the relationship between M(Ĝ, 1)

and M̃(G, 1)?
(Here we use Ĝ to denote the levelwise pro−C completion of G.)

The key to this is the fact that M(−, 1) and E define an equivalence be-
tween CMod and a reflexive subcategory, T1], of Simp.Grps. This subcategory
is defined by the condition that G is in it if, and only if, the Moore complex,
NG, of G has trivial terms in dimensions 2 and above, N(G)i = {1} if i ≥ 2.
The reflector, t1] : Simp.Grps.→ T1], is defined by the condition that Nt1](G)
is the same as the truncation of NG given by :NG0 in dimension 0.

NG1/d0NG2 in dimension 1.
1 in higher dimensions.

One can check directly that t1]G is isomorphic to EM(G, 1).
Suppose now thatG is a (discrete) simplicial group andM a pro−C crossed

module, then

Simp.Grps(G,U(EM)) ∼= Simp.Pro− C(G,EM),

since EM is a simplicial pro−C group. This set is, in its turn, naturally
isomorphic to T C1](t

C
1](Ĝ), EM), where tC1] : Simp.Pro− C → T C1] is the pro−C

analogue of the reflector that was mentioned earlier. Since M(tC1](Ĝ), 1) ∼=
M(Ĝ, 1), this gives a natural isomorphism

Simp.Grps(G,U(EM)) ∼= Pro− C.CMod(M(Ĝ, 1),M).

The forgetful functor U : Pro− C → Grps, or more exactly its simplicial and
crossed module extensions, satisfies

UE ∼= EU,

so one also has

Simp.Grps(G,UE(M)) ∼= Simp.Grps(G,EU(M))
∼= CMod(M(G, 1), U(M))

∼= Pro− C.CMod(M̃(G, 1),M).

We thus have:
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Theorem 6. There is a natural isomorphism

M(Ĝ, 1) ∼= M̃(G, 1).

�

This clarifies and extends Bousfield and Kan’s result in the case n = 2, since
for a reduced homotopy type X, the pro−C completion, W̄ ĜX, of X, has a
2-type represented by M(ĜX, 1) which is isomorphic to the pro−C completion
of the crossed module M(GX, 1), which represents the 2-type of X, by the
results of MacLane and Whitehead [114], (cf. Loday [106] or Porter [139], or
here Chapter 9).
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Pro-C crossed complexes and chain complexes

6.1 Continuous Derivations and derived pseudocompact
modules.

6.1.1 Definitions

Let φ : G→ H be a continuous homomorphism of pro−C groups. A continuous
φ-derivation

∂ : G→M

from G to a left pseudocompact ẐC [[H]] -module M is a continuous mapping
from G to M , which satisfies the equation

∂(g1g2) = ∂(g1) + φ(g1)∂(g2)

for all g1, g2 ∈ G.
A derived pseudocompact module for φ consists of a left pseudocompact

ẐC [[H]]-module, Dφ, and a continuous φ-derivation, ∂φ : G → Dφ with the
following universal property:

Given any left pseudocompact Ẑ[[H]]-module, M , and a continuous φ-
derivation ∂ : G→M , there is a unique continuous morphism

β : Dφ →M

of pseudocompact ẐC [[H]]-modules such that β∂φ = ∂.

The set of all continuous φ-derivations from G to M has a natural Abelian
group structure. We denote this set by Derφ(G,M). This gives a functor from
PcC .H-Mod to Ab, the category of Abelian groups. If (Dφ, ∂φ) exists, then it
sets up a natural isomorphism

Derφ(G,M) ∼= PcC .H−Mod(Dφ,M),

i.e., (Dφ, ∂φ) represents the φ-derivation functor.
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6.1.2 Existence

The treatment of derived modules in the abstract group context that is found
in Crowell’s paper, [40], provides a basis for some of what follows. In particular
it indicates how to prove the existence of (Dφ, ∂φ) for any φ.

Form a pseudocompact ẐC [[H]]-module, D, by taking the free pseudocom-
pact left ẐC [[H]]-module, ẐC [[H]](X), on a space of generators, X = {∂g : g ∈
G}, homeomorphic to the underlying profinite space of G. Within ẐC [[H]](X)

form the closed submodule, Y , generated by the elements

∂(g1g2)− ∂(g1)− φ(g1)∂(g2).

Let D = ẐC [[H]](X)/Y and define d : G→ D to be the composite:

G
η→ ẐC [[H]](X) quotient→ D,

where η is “inclusion of the generators”, η(g) = ∂g. Thus d is continuous and,
by construction, will be a continuous φ-derivation. The universal property is
easily checked and hence (Dφ, ∂φ) exists.

We will later on construct (Dφ, ∂φ) in a different way which provides a
more amenable description of Dφ, namely as a tensor product. As a first
step towards this description, we shall give a simple description of DG, that
is, the pseudocompact derived module of the identity morphism of G. More
precisely we shall identify (DG, ∂G) as being (ÎC(G), ∂), where ÎC(G) is the
augmentation ideal of ẐC [[G]] and ∂ : G → ÎC(G) is the usual map, ∂(g) =
g − 1. Algebraically this is fairly simple to handle, however the problem of
proving continuity of the induced homomorphisms will mean that we have to
be careful, and approach the problem by a circuitous route.

6.1.3 Derivation modules and augmentation ideals: the case of
finite groups

We first handle the classical case of G a finite C-group. In this case, the
identification of the universal property of

ÎC(G) = Ker(ẐC(G)→ ẐC)

is well known. The universal derivation is

dG : G→ ÎC(G)

given by dG(g) = g − 1.

We introduce the notation fδ : ÎC(G) → M for the continuous ẐC [G]-
module morphism corresponding to a (continuous) derivation

δ : G→M.



6.1 Continuous Derivations and derived pseudocompact modules. 123

The factorisation fδdG = δ implies that fδ must be defined by fδ(g−1) = δ(g).
That this works follows from the fact that ÎC(G), as a ẐC-module, is free on
the set {g− 1 : g ∈ G} and that the relations in ÎC(G) are generated by those
of the form

g1(g2 − 1) = (g1g2 − 1)− (g1 − 1).

We will need two results on the augmentation ideal construction that are not
commonly found in the literature.

The proofs are easy and so will be omitted.

Lemma 11. Given finite groups G and H in C and a commutative diagram

G
δ //

ψ

��

M

φ

��
H

δ′
// N

(∗)

where δ, δ′ are derivations, M is a left pseudocompact ẐC [G]-module, N is
a left pseudocompact ẐC [H]-module and φ is a module map over ψ, i.e.,
φ(g.m) = ψ(g)φ(m) for g ∈ G, m ∈M . Then the corresponding diagram

ÎC(G)
fδ //

ψ

��

M

φ

��
ÎC(H)

fδ′
// N

(∗∗)

is commutative. �

Lemma 12. Given a commutative diagram

G
δ // M

φ

��

K

α

>>}}}}}}}

β   AAAAAAA

H
δ′
// N

in which δ, δ′ are derivations, M is a left pseudocompact ẐC [G]-module, N is
a left pseudocompact ẐC [H]-module and φ is a module homomorphism for the
restricted K-module structures on M and N , then the diagram
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ÎC(G)
fδ // M

φ

��

ÎC(K)

α∗

;;wwwwwwwww

β∗ ##GGGGGGGGG

ÎC(H)
fδ′

// N

is a commutative diagram of left pseudocompact ẐC [G]-modules. �

6.1.4 Derivation modules and augmentation ideals: the general
case.

SupposeG is a pro−C group and define ÎC(G) to be the kernel of the augmenta-
tion map from ẐC [[G]] to ẐC . There is an obvious G-derivation dG : G→ ÎC(G)
given by the usual rule, dG(g) = g− 1. We have first to prove that this is con-
tinuous.

Lemma 13. The map dG is continuous as it is isomorphic to the inverse
limit of the maps dG/U : G/U → ÎC(G/U) for U in Ω(G), the ordered set of
C-cofinite normal subgroups of G.

Proof: In fact, for each such U, there is an exact sequence

O → ÎC(G/U)→ ẐC [G/U ] εU→ ẐC → O

varying functorially with U . Taking the projective limit gives

O → lim
←
ÎC(G/U)→ ẐC [[G]] c→ ẐC → O

(since lim is exact on PcC .G-Mod), so

ÎC(G) ∼= lim
←
ÎC(G/U).

The maps dG/U defined by dG/U (gU) = gU − 1 clearly give dG “in the limit”
and as these maps are themselves continuous, so is dG. �

Theorem 7. If G is a pro-C group, (DG, dG) ∼= (ÎC(G), dG).

Proof: Suppose given a continuous G-derivation δ : G → M, we have to
construct a map f : ÎC(G)→M of pseudocompact G-modules so that fdG =
δ. (The classical rule f(g − 1) = δ(g) must therefore be satisfied, but we do
not as yet know that the g− 1 topologically generate ÎC(G), so we cannot use
this as a definition. We also cannot be certain, at this stage, of the relations
between the (g−1)s. To avoid these difficulties we use the equivalence between
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the topological and the pro categorical approach and couch our proof in the
latter terminology.)

We have δ : G → M is continuous so for any open submodule V ⊂ M ,
there is an open normal subgroup, U ∈ Ω(G), and a map

δU,V : G/U →M/V

representing δ. Thus if V ′ ⊂ V , and we pick U ′ with G/U ′ ∈ C such that δU ′,V ′
also represents δ, there is some U ′′ ⊂ U ∩ U ′ and a commutative diagram

G/U
δU,V // M/V

G/U ′′

;;vvvvvvvvv

##HHHHHHHHH

G/U ′
δU′,V ′ // M/V ′

OO

So as to be able to apply Lemma 12, it is necessary to have that δU,V and
δU ′,V ′ are derivations. We claim that by, if necessary, passing to smaller open
subgroups U , U ′, this can be assumed to be the case (i.e., the δU,V are cofinally
derivations). We proceed as follows:

Given the open submodule V ⊂M , let

StG(M/V ) = {g ∈ G : gm+ V = m+ V for all m ∈M},

then as M/V is discrete of finite length, StG(M/V ) is an open subgroup of
G.

If δU,V : G/U →M/V represents δ, then so does the composite

δU∩W,V : G/(U ∩W )→ G/U →M/V

for any open normal subgroup W of G, and so we may assume that δU,V is
defined with U ⊂ StG(M/V ), but this means M/V is a G/U -module. It is
now easy to check that since δ is a derivation and the diagram

G
δ //

��

M

��
G/U

δU,V

// M/V

commutes, this map δU,V is a G/U -derivation. (Continuity is somewhat su-
perfluous here, since M/V and G/U are both discrete.)

This implies that δU,V factors
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G/U
dG/U//

δU,V $$IIIIIIIII
IC(G/U)

fU,V

��
M/V ′

with fU,V a continuous map of pseudocompact ẐC [G/U ]-modules.
By Lemma 12, the maps

fU,V : IC(Ĝ/U)→M/V

form a map of pro-modules, hence we can take the limit of the above “pro-
diagram” to get a diagram

G
dG //

δ
!!DDDDDDDDD ÎC(G)

f

��
M

The uniqueness of f follows from the uniqueness of the various fU,V . This
completes the verification that (DG, dG) and (ÎC(G), dG) are isomorphic. �

Corollary 10. The subspace ImdG = {g − 1 : g ∈ G} ⊂ ÎC(G) topologically
generates ÎC(G) as a pseudocompact ẐC [[G]]-module. Moreover the relations
between these generators are generated by those of the form

(g1g2 − 1)− (g1 − 1)− g1(g2 − 1).

�

It is useful to have also the following reformulation of the above Theorem
stated explicitly.

Corollary 11. There is a natural isomorphism

DerG(G,M) ∼= PcC .G−Mod(ÎC(G),M).

�

6.1.5 Topological generation of ÎC(G).

The first of these two corollaries raises the question as to whether, if X ⊂ G
topologically generates G, does the set GX = {x − 1 : x ∈ X} topologically
generate ÎC(G) as a pseudocompact ẐC [[G]]-module.

Proposition 38. If X topologically generates G, then GX topologically gen-
erates ÎC(G).
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Proof: We first note the following elementary result:

Lemma 14. If G is in Pro−C and M is a pseudocompact ẐC [[G]]-module, then
the semidirect product M oG is in Pro−C and there is an isomorphism

DerG(G,M)→ Hom/G(G,M oG)

where Hom/G(G,M oG) is the set of continuous homomorphisms from G to
MoG over G, i.e., θ : G→MoG such that for each g ∈ G, θ(g) = (θ′(g), g)
for some θ′(g) ∈M .

Proof: Given such a θ and the corresponding θ′, check that θ is a homomor-
phism if and only if θ′ is a G-derivation. �

Returning to the proof of the proposition, suppose M is a pseudocom-
pact ẐC [[G]]-module. It suffices to prove that the natural map from the
group, PcC .G-Mod(ÎC(G),M), of continuous ẐC [[G]]-module morphisms into
the group, Cts(GX ,M), of continuous maps from GX to M is one-to-one.

Suppose X topologically generates G, so there is a free pro−C group FC(X)
on X such that

FC(X)
η // G

X

bbFFFFFFFF i

??��������

is a commutative diagram, with η an epimorphism. This implies that, for any
pro−C group, H,

Cts(X,H) ∼= Pro−C(FC(X), H)
(1−1)← Pro−C(G,H).

Now as before Hom/G(FC(X),M o G) denotes the set of continuous mor-
phisms, θ, from FC(X) to M oG over G, i.e., so that

FC(X) θ //

η
""EEEEEEEEE M oG

pr1
{{xxxxxxxxx

G

commutes. The epimorphism η induces a one-to-one function

Hom/G(G,M oG)→ Hom/G(FC(X),M oG).

Restricting this construction, we get a one-to-one map,

Cts(GX ,M)→ Cts/G(X,M oG),

(with the obvious extension of notation). Thus we obtain the following com-
mutative diagram:
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PcC .G−Mod(ÎC(G),M)
(1 − 1)//

rest.

��

Hom/G(FC(X),M oG)

∼=
��

Cts(GX ,M)
(1 − 1) // Cts/G(X,M oG)

where rest. stands for restriction.
The commutativity of this diagram implies that this restriction map is

one-to-one as required.
To complete the proof we indicate why this is sufficient. There is a natural

isomorphism,

Cts(GX ,M) ∼= PcC .G−Mod(ẐC [[G]](GX),M),

where ẐC [[G]](GX) denotes the free pseudocompact ẐC [[G]]-module on the profi-
nite space, GX . For the pseudocompact module, ÎC(G), we obtain a restriction
map

PcC .G−Mod(ÎC(G), ÎC(G)) rest.→ PcC .G−Mod(ẐC [[G]](GX), ÎC(G)),

and thus there is a map

ρ : ẐC [[G]](GX) → ÎC(G)

such that ρ∗ = rest. Since rest. is a monomorphism, ρ must thus be an
epimorphism as required. �

6.1.6 When G is free pro-C.

One of the main uses of the above is in the case when G ∼= FC(X), i.e., is free
pro−C on the space X.

Corollary 12. If G ∼= FC(X) is the free pro−C group on the space X, then
the set {x−1 : x ∈ X} freely topologically generates ÎC(G) as a pseudocompact
Ẑ[[G]]-module.

Proof: Examination of the proof in this case shows

Cts(X,M) ∼= PcC .G−Mod(ÎC(G),M).

�

6.1.7 (Dφ, dφ), the general case.

We can now return to the identification of (Dφ, dφ) in the general case.

Proposition 39. If φ : G → H is a continuous homomorphism of pro−C
groups, then Dφ

∼= ẐC [[H]]⊗̂GÎC(G), the completed tensor product of ẐC [[H]]
and ÎC(G) over G.
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Proof: If M is a pseudocompact ẐC [[H]]-module, we will write φ](M) for the
restricted pseudocompact ẐC [[G]]-module.

With this notation we have a chain of natural isomorphisms,

Derφ(G,M) ∼= DerG(G,φ](M))
∼= PcC .G−Mod(ÎC(G), φ](M))
∼= PcC .H−Mod(ẐC [[H]]⊗̂GÎC(G),M),

so by universality,
Dφ
∼= ẐC [[H]]⊗̂GÎC(G),

as required. �

6.1.8 Dφ for φ, the counit FC(X)→ G.

The above will be particularly useful when φ is the “co-unit” map, FC(X)→
G, for X a space that topologically generates G. In fact we have the following:

Corollary 13. Let φ : FC(X) → G be a continuous epimorphism of pro−C
groups, then there is a continuous isomorphism

Dφ
∼= ẐC [[G]](X)

of pseudocompact ẐC [[G]]-modules. In this isomorphism, the generator ex, of
Dφ corresponding to x ∈ X, satisfies

dφ(x) = ex

for all x ∈ X. �

6.2 Associated module sequences

6.2.1 Homological background

Given an exact sequence

1→ K → L→ Q→ 1

of abstract groups, then it is a standard result from homological algebra that
there is an associated exact sequence of modules,

0→ KAb → Z[Q]⊗L I(L)→ I(Q)→ 0.

There are several different proofs of this. Homological proofs give this as a
simple consequence of the TorL-sequence corresponding to the exact sequence
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0→ I(L)→ Z[L]→ Z→ 0

together with a calculation of TorL1 (Z[Q],Z). Such a proof has been generalised
to the case when

1→ K → L→ Q→ 1

is an exact sequence of profinite or pro-p groups by Wambsganß-Türk, [163].
This, of course, yields an associated sequence of pseudocompact Ẑ[[Q]]-modules
or of Ẑp[[Q]]-modules,

1→ KAb → ẐC [[Q]]⊗̂LÎC(L)→ ÎC(Q)→ 1

(for C = FGrps or p-Groups). His proof would seem to go through for more
general C. The second type of proof is more directly algebraic and has the
advantage that it accentuates various universal properties of the sequence.
The most thorough treatment of this would seem to be by Crowell, [40], for
the discrete case. His proof generalises with a little care to handle pro−C
groups; this we outline below.

6.2.2 The exact sequence in the pro-C case.

Proposition 40. Let
1→ K

φ→ L
ψ→ Q→ 1

be an exact sequence of pro−C groups and continuous homomorphisms. Then
there is an exact sequence

0→ KAb φ̃→ ẐC [[Q]]⊗̂LÎC(L)
ψ̃→ ÎC(Q)→ 0

of pseudocompact ẐC [[Q]]−modules.

Proof: By the universal property of Dψ, there is a unique morphism

ψ̃ : Dψ → ÎC(Q)

such that ψ̃∂ψ = ÎC(ψ)∂L.
Let [K,K] denote the closed commutator subgroup of K and let δ : K →

KAb = K/[K,K] be the canonical pro−C abelianising morphism. We note
that ∂ψφ : K → Dψ is a homomorphism (since

∂ψφ(k1k2) = ∂ψφ(k1) + ψφ(k1)∂ψφ(k2)
= ∂ψφ(k1) + ∂ψφ(k2), )

so let φ̃ : KAb → Dψ be the unique continuous morphism satisfying φ̃δ = ∂ψφ.
(Recall that KAb has a natural pseudocompact ẐC [[Q]]-module structure.)
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That the composite ψ̃φ̃ = 0 follows easily from ψφ = 0. Since Dψ is
generated by symbols d` and ψ̃(d`) = ψ(`)− 1, it follows that ψ̃ is onto. We
next turn to “Ker ψ̃ ⊆ Im φ̃′′.

If we can prove α : Dψ → ÎC(Q) is the cokernel of φ̃ then we will have
checked this inclusion and incidentally will have reproved that ψ̃ is onto.

Now let Dψ → C be any continuous morphism such that αφ̃ = 0. Consider
the diagram

K
φ //

δ

��

L

∂ψ

��

ψ // Q

∂Q

��
KAb

φ̃ // Dψ
ψ̃ //

α
""FFFFFFFFF ÎC(Q)

C

The composite α∂ψ vanishes on the image of φ since α∂ψφ = αφ̃δ and αφ̃
is assumed zero. Define d : Q → C by d(q) = α∂ψ(`) for ` ∈ L such that
ψ(`) = q. As α∂ψ vanishes on Im φ, this is well defined and

d(q1q2) = α∂ψ(`1`2)
= α∂ψ(`1) + α(ψ(`1)∂ψ(`2))
= d(q1) + q1d(q2)

so d factors as ᾱ∂Q in a unique way with ᾱ : ÎC(Q)→ C. It remains to prove
that α = ψ̃, but

ψ̃∂ψ = IC(ψ)∂L
= ∂Qψ

by the naturality of ∂. Now finally note that ᾱ∂Q = d and dψ = α∂ψ to
conclude that ψ̃∂ψ and α∂ψ are equal. Equality of α and ᾱψ̃ then follows by
the uniqueness clause of the universal property of (Dψ, ∂ψ).

Next we need to check that KAb → Dψ is a monomorphism. To do this we
exploit the fact that there is a continuous transversal, s : Q → L, (Corollary
2, p. 13) satisfying s(1) = 1. This means that, as in Crowell, [40] p. 224, we
can for each ` ∈ L, q ∈ Q, find an element q × ` uniquely determined by the
equation

φ(q × `)) = s(q)`s(qψ(`))−1,

which, of course, defines a continuous function from Q × L to K. Crowell’s
lemma 4.5 then shows

q × `1`2 = (q × `1)(qψ(`1)× `2) for `1, `2 ∈ L.

Now let M = ẐC [[Q]](X), with X = {∂` : ` ∈ L}, so that there is an exact
sequence
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M → Dψ → 0.

As mentioned by Gildenhuys and Mackay, [71] p.462, the underlying topo-
logical group of ẐC [[Q]] is the free Abelian pro−C group on the underlying
topological space of Q. Similarly M , above, has, as underlying topological
group, the free Abelian pro−C group on Q×X.

Define a continuous map τ : M → KAb of Abelian pro−C groups by

τ(a, ∂`) = δ(q × `).

We check that if p(m) = 0, then τ(m) = 0. Since Ker p is topologically
generated as a ẐC [[Q]]-module by elements of the form

∂(`1`2)− ∂`1 − ψ(`1)∂`2,

it follows that as an Abelian pro−C group, Ker p is topologically generated
by the elements

(q, ∂(`1`2))− (q, ∂`1)− (qψ(`1), ∂`2).

We claim that τ is zero on these elements; in fact

τ(q, ∂(`1`2)) = δ(q × (`1`2))
= δ(q × `1) + δ(qψ(`1)× `2)
= τ(q, `1) + τ(qψ(`1), `2).

Thus τ induces a continuous map η : Dψ → KAb of Abelian pro−C groups.
Finally we check ηφ̃ = identity, so that φ̃ is a monomorphism: let b ∈ KAb,

k ∈ K be such that δ(k) = b, then

ηφ̃(b) = ηφ̃δ(k)
= η∂ψ(k)
= δ(1× φ(k)),

but 1× φ(k) is uniquely determined by

φ(1× φ(k)) = s(1)φ(k)s(1ψφ(k))−1 = φ(k),

since s(1) = 1, hence 1× φ(k) = k and ηφ̃(b) = δ(k) = b as required. �

A discussion of the way in which the original abstract version of this result
interacts with the theory of covering spaces can be found in Crowell’s paper
already cited. We will very shortly see the connection of this module sequence
with the Jacobian matrix of a group presentation and the Fox free differential
calculus. It is this latter connection which requires that we have more or less
explicit formulae for the maps φ̃ and ψ̃ and hence requires that Crowell’s
detailed proof be generalised, not the easier homological proof.



6.2 Associated module sequences 133

6.2.3 Reidemeister-Fox derivatives and Jacobian matrices

At various points we will need to refer to Reidemeister-Fox derivatives as
developed by Fox in a series of articles, see [60], and also summarised in
Crowell and Fox, [41]. We will call these derivatives Fox derivatives. One of
our aims here is to develop a theory for profinite algebraic homotopy in which
actual calculations can be attempted. For instance, suppose we have a finitely
presented (discrete) group, G and want to analyse its pro-p completion. We
have a presentation of G and, perhaps, some geometric models for a K(G, 1).
We also can call on various analogues of classical techniques for analysing
group presentations such as those of Fox derivatives and the related Jacobian
matrices. In this section we will examine such techniques in the discrete case.
This will be useful when discussing homological syzygies, as well as being
needed to understand the way in which our results in the profinite case can
be considered extensions of these techniques.

(For this section, we will be restricting attention to the theory in the
discrete case only.)

Suppose G is a group and M a G-module and let δ : G→M be a deriva-
tion, (so δ(g1g2) = δ(g1) + g1δ(g2) for all g1, g2 ∈ G), then, for calculations,
the following lemma is very valuable, although very simple to prove.

Lemma 15. If δ : G→M is a derivation, then
(i) δ(1G) = 0;
(ii) δ(g−1) = −g−1δ(g) for all g ∈ G;
(iii) for any g ∈ G and n ≥ 1,

δ(gn) = (
n−1∑
k=0

gk)δ(g).

Proof: As was said, these are easy to prove.
δ(g) = δ(1g) + 1δ((g), so δ(1) = 0, and hence (i); then

δ(1) = δ(g−1g) = δ(g−1) + g−1δ(g)

to get (ii), and finally induction to get (iii). �

The Fox derivatives are derivations taking values in the group ring as a
left module over itself. They are defined for G = F (X), the free group on a
set X. (We usually write F for F (X) in what follows.)

Definition: For each x ∈ X, let

∂

∂x
: F → ZF

be defined by
(i) for y ∈ X,
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∂y

∂x
=
{

1 if x = y
0 if y 6= x;

(ii) for any words, w1, w2 ∈ F ,

∂

∂x
(w1w2) =

∂

∂x
w1 + w1

∂

∂x
w2.

This derivation will be called the Fox derivative with respect to the generator
x.

Of course, a routine proof shows that the derivation property in (ii) defines
∂w
∂x for any w ∈ F .

Example: Let X = {u, v}, with r ≡ uvuv−1u−1v−1 ∈ F = F (u, v), then

∂r

∂u
= 1 + uv − uvuv−1u−1,

∂r

∂v
= u− uvuv−1 − uvuv−1u−1v−1.

This relation is the typical braid group relation, here in Br3, and we will come
back to these simple calculations later.

It is often useful to extend a derivation δ : G → M to a linear map from
ZG to M by the simple rule that δ(g + h) = δ(g) + δ(h).

By the classical discrete versions of our results above, we have

Der(F,ZF ) ∼= F−Mod(IF,ZF ),

and that
IF ∼= ZF (X),

with the isomorphism matching each generating x− 1 with ex, the basis ele-
ment labelled by x ∈ X. (The universal derivation then sends x to ex.)

For each given x, we thus obtain a morphism of F -modules:

dx : ZF (X) → ZF

with

dx(ey) = 1 if y = x

dx(ey) = 0 if y 6= x,

i.e., the ‘projection onto the xth-factor’ or ‘evaluation at x ∈ X’ depending
on the viewpoint taken of the elements of the free module, ZF (X).

Suppose now that we have a group presentation, P = (X : R), of a group,
G. Then we have a short exact sequence of groups

1→ N
φ→ F

γ→ G→ 1,
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where N = N(R), F = F (X), i.e., N is the normal closure of R in the free
group F . We also have a free crossed module,

C
∂→ F,

constructed from the presentation and hence, two short exact sequences of
G-modules with κ(P) = Ker ∂, the module of identities of P,

0→ κ(P)→ CAb → NAb → 0,

by the discrete analogue of Proposition 23 on page 74, and also

0→ NAb φ̃→ IF ⊗F ZG→ IG→ 0.

We note that the first of these is exact because N is a free group, further

CAb ∼= ZG(R),

and the map from this to NAb in the first sequence sends the generator er to
r[N,N ].

We next revisit the derivation of the associated exact sequence (Propo-
sition 40, page 130) in some detail to see what φ̃ does to r[N,N ]. We have
φ̃(r[N,N ]) = ∂γφ(r) = ∂γ(r), considering r now as an element of F , and by
Corollary 13, on identifying Dγ with ZG(X) using the isomorphism between
IF and ZF (X), we can identify ∂γ(x) = ex. We are thus left to determine
∂γ(r) in terms of the ∂γ(x), i.e., the ex. The following lemma does the job for
us.

Lemma 16. Let δ : F →M be a derivation and w ∈ F , then

δw =
∑
x∈X

∂w

∂x
δx.

Proof: By induction on the length of w. �

In particular we thus can calculate

∂γ(r) =
∑ ∂r

∂x
ex.

Tensoring with ZG, we get

φ̃(r[N,N ]) =
∑ ∂r

∂x
ex ⊗ 1.

There is one final step to get this into a usable form:
From the quotient map γ : F → G, we, of course, get an induced ring

homomorphism, γ : ZF → ZG, and hence we have elements γ( ∂r∂x ) ∈ ZG. Of
course,

∂r

∂x
ex ⊗ 1 = ex ⊗ γ(

∂r

∂x
),

so we have, on tidying up notation just a little:
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Proposition 41. The composite map

ZG(R) → NAb → ZG(X)

sends er to
∑
γ( ∂r∂x )ex and so has a matrix representation given by JP =(

γ( ∂ri∂xj
)
)
. �

Definition: The Jacobian matrix of a group presentation, P = (X : R) of a
group G is

JP =
(
γ(
∂ri
∂xj

)
)
,

in the above notation.

The application of γ to the matrix of Fox derivatives simplifies expressions
considerable in the matrix. The usual case of this is if a relator has the form
rs−1, then we get

∂rs−1

∂x
=
∂r

∂x
− rs−1 ∂s

∂x

and if r or s is quite long this looks moderately horrible! However applying γ
to the answer, the term rs−1 in the second of the two terms becomes 1. We
can actually think of this as replacing rs−1 by r − s when working out the
Jacobian matrix.

Example: Br3 revisited. We have r ≡ uvuv−1u−1v−1, which has the
form (uvu)(vuv)−1. This then gives

γ(
∂r

∂u
) = 1 + uv − v and γ(

∂r

∂v
) = u− 1− vu,

abusing notation to ignore the difference between u, v in F (u, v) and the gen-
erating u, v in Br3.

Homological 2-syzygies: In general we obtain a truncated chain com-
plex:

ZG(R) d2→ ZG(X) d1→ ZG d0→ Z→ 0,

with d2 given by the Jacobian matrix of the presentation, and d1 sending
generator e1

x to 1− x, so Imd1 is the augmentation ideal of ZG.

Definition: A homological 2-syzygy is an element in Ker d2..
A homological 2-syzygy is thus an element to be killed when building the

third level of a resolution of G. We will shortly examine the generalisation of
the above theory to the profinite case. We have all the ingredients from our
previous work.

What are the links between homotopical and homological syzygies? In the
discrete case, Brown and Huebschmann, [29], show they are isomorphic, as
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Ker d2 is isomorphic to the module of identities, but this result does not
completely generalise to the profinite/pro-C setting.

Homological Syzygies for the braid group presentations:
Br3: We have all the calculation for Br3. The key part of the complex is

the Jacobian matrix as that determines d2:

d2 =
(

1 + uv − v u− 1− vu
)
.

This has trivial kernel, but that comes most easily from the identification with
homotopical syzygies.

Br4: The presentation given earlier, page 94, yields a truncated chain
complex with d2

ZG(ru,rv,rw) d2→ ZG(u,v,w)

with

d2 =

 0 1 + vw − w v − 1− wv
1− w 0 u− 1

1 + uv − v u− 1− vu 0


and Loday, [107], has calculated that for the permutohedral 2-syzygy, s, one
gets another term of the resolution, ZG(s), and a d3 : ZG(s) → ZG(ru,rv,rw)

given by

d3 =
(

1 + vu− u− wuv v − vwu− 1− uv − vuwv 1 + vw − w − uvw
)
.

6.3 Profinite crossed complexes.

Accurate encoding of homotopy types is tricky. Chain complexes, even of G-
modules, can only record certain Abelian information. Simplicial groups, at
the opposite extreme, can encode all connected homotopy types, but at the
expense of such a large repetition of the essential information that makes
calculation, at best, tedious and, at worst, virtually impossible. Complete
information on truncated homotopy types can be stored in the catn-groups of
Loday, [106]. We will look at these in chapter ??. An intermediate model due
to Blakers and Whitehead, [164], is that of a crossed complex. The algebraic
and homotopy theoretic aspects of the theory of crossed complexes have been
developed by Brown and Higgins, (cf. [26, 27], etc., in the bibliography and the
forthcoming monograph by Brown, Higgins and Sivera, [28]) and by Baues,
[9–11], see also chapter ?? of this monograph.

As we mentioned in the introduction, the use of universal covers of a
K(G, 1) in the study of the group G cannot immediately be adapted to the
case of a pro−C group G, because the topological structure of G contains
essential information on G. However the action of G on K(G, 1) is very useful,
so that a pro−C analogue would be a valuable tool to have. Although we have
no K(G, 1) available, we can build a pro−C homotopy type which will be an
adequate replacement for it, at least in low dimensions, namely we can build
a pro−C crossed complex.
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6.3.1 Profinite crossed complexes: the Definition.

A pro−C crossed complex, which will be denoted C, consists of a sequence of
pro−C groups and continuous morphisms

C : . . .→ Cn
δn→ Cn−1

δn−1→ . . .→ C2
δ2→ C1

δ1→ C0

satisfying the following:
CC1) δ1 : C1 → C0 is a pro−C crossed module;
CC2) each Cn, (n > 1), is a pseudocompact left ẐC [[C0/δ1C1]]-module and each
δn, (n > 1) is a continuous morphism of pseudocompact left ẐC [[C0/δ1C1]]-
modules, (for n = 2, this means that δ2 commutes with the action of C0 and
that δ2(C2) ⊂ C1 must be a pseudocompact ẐC [[C0/δ1C1]]-module);
CC3) δδ = 0.

The notion of a (continuous) morphism of pro−C crossed complexes is
clear. It is a graded collection of morphisms preserving the various structure.
We thus get a category, Pro−C.Crs.

As we have that a crossed complex is a particular type of chain complex
(of non-Abelian groups near the bottom), it is natural to define its homology
groups in the obvious way.

Definition: If C is a (pro-C) crossed complex, its nth homology group is

Hn(C) =
Ker δn
Im δn+1

.

These homology groups are, of course, functors from Pro−C.Crs to the
category of Abelian (pro-C) groups.

Definition: A morphism f : C → C′ is called a weak equivalence if it
induces isomorphisms on all homology groups.

There are good reasons for considering the homology groups of a crossed
complex as being its homotopy groups as well as if the crossed complex comes
from a simplicial group then the homotopy groups of the simplicial group
are the same as the homology groups of the given crossed complex. We will
examine this in detail later.

6.3.2 Example: pro-C crossed resolutions

Definition: A pro−C crossed resolution of a pro−C group G is a pro-C crossed
complex, C, such that for each n > 1, Im δn = Ker δn−1 and there is a
continuous isomorphism, C0/δ1C1

∼= G.
A pro−C crossed resolution can be constructed from a pro−C presentation

P = (X : R) as follows:
Let CC(P ) → FC(X) be the free pro−C crossed module associated with

P. We set C1 = CC(P), C0 = FC(X), δ1 = ∂. Let κ(P) = Ker(∂ : CC(P) →
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FC(X)). This is the identity module of the presentation and is a pseudocom-
pact left ẐC [[G]]-module. As the category PcC .G-Mod has enough projectives,
we can form a free pseudocompact resolution P of κ(P). To obtain a pro−C
crossed resolution of G, we join P to the crossed module by setting Cn = Pn−2

for n > 2, δn = dn−2 for n > 2 and the composite from P0 to CC(P ) for n = 2.
We will return to this crossed resolution later.

6.3.3 The standard crossed pro-C resolution

We next look at a particular case of the above, namely the standard pro−C
crossed resolution of G. In this, which we will denote by CG, we have

(i) C0G = the free pro−C group on the underlying space of G. The element
corresponding to u ∈ G will be denoted by [u].

(ii) C1G is the free pro−C crossed module over C0G on generators, written
[u, v], considered as elements of the space G×G, in which the map δ1 is defined
on generators by

δ[u, v] = [uv]−1[u][v].

(iii) For n > 2, CnG is the free pseudocompact left ẐC [[G]]-module on the space
Gn+1, but in which one has equated to zero any generator [u1, . . . , un+1] in
which some ui is the identity element of G.

If n > 3, δ : CnG→ Cn−1G is given by the usual formula

δ[u1, . . . , un+1] = [u1][u2, . . . , un+1]

+
n∑
i=1

(−1)i[u1, . . . , uiui+1, . . . , un+1] + (−1)n+1[u1, . . . , un].

For n = 2, δ : C2G→ C1G is given by

δ[u, v, w] = [u][v, w].[u, v]−1.[uv,w]−1[u, vw].

We will see later that this is the crossed analogue of the inhomogeneous bar
resolution. A groupoid version can be found, for the abstract setting, in Brown-
Higgins, [25], and the abstract group version in Huebschmann, [86]. In the
first of these two references, it is pointed out that CG, as constructed (but
for abstract groups), is isomorphic to the crossed complex, π(BG), of the
classifying space of G considered with its skeletal filtration. For any filtered
space X = (Xn)n∈N, the fundamental crossed complex π(X) is defined to have

π(X)n = (πn(Xn, Xn−1, a))a∈X0

with π(X)1, the fundamental groupoid Π1X1X0, and π(X)2, the family,
(π2(X2, X1, a))a∈X0 , cf. 4.1.1. Thus this pro−C analogue will be of some po-
tential importance in our overall plan of building algebraic pro−C analogues
of the topological spaces that are so useful in combinatorial and cohomological
group theory.
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6.3.4 G-augmented pro−C crossed complexes.

Pro−C crossed resolutions of G are examples of G-augmented pro−C crossed
complexes. A G-augmented pro−C crossed complex consists of a pair (C, φ)
where C is a pro−C crossed complex and where φ : C0 → G is a continuous
group homomorphism satisfying

(i) φδ1 is the trivial homomorphism;
(ii) Ker φ acts trivially on Ci for i ≥ 2 and also on CAb1 .
A morphism

(α, IdG) : (C, φ)→ (C′, φ′)

of G-augmented pro−C crossed complexes consists of a morphism

α : C→ C′

of pro−C crossed complexes such that φ′α0 = φ.
G-augmented pro−C crossed complexes form a category which we will

denote by Pro−C.CrsG.
In the next section we will show how to construct G-augmented pro−C

crossed complexes from chain complexes of pseudocompact ẐC [[G]]-modules.

6.4 From crossed complexes to chain complexes.

Notwithstanding the title of this section, we start by fulfilling our promise
to construct a G-augmented pro−C crossed complex from a positive chain
complex of pseudocompact left ẐC [[G]] -modules. We will denote the category
consisting of these latter objects by Ch(PcC .G−Mod).

6.4.1 From chain complexes to crossed complexes, ...

Proposition 42. There is a functor

∆G : Ch(PcC .G−Mod)→ Pro−C.CrsG

given by: if M is a chain complex of pseudocompact left ẐC [[G]]-modules,

M = . . .→Mn → . . .→M2 →M1 →M0

then ∆G(M) is the pro−C crossed complex with

∆G(M)n = Mn if n ≥ 1
∆G(M)0 = M0 oG

with differentials δn : ∆G(M)n → ∆G(M)n−1 given by δn = dn if n ≥ 1, and

δ1(m) = (1, d1(m)) ∈M oG for m ∈M1.

The G-augmentation M0 oG→ G is given by the projection. �

The details of the verification are simple and so will be left out. The functor
∆G is principally of interest because of the next result.
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6.4.2 ... and back again.

Proposition 43. The functor ∆G has a left adjoint.

Proof: We construct the left adjoint explicitly as follows:
Let f. : (C, φ) → ∆G(M.) be a morphism in Pro−C.CrsG, then we have

the following commutative diagram

. . . // C2
δ2 //

f2

��

C1
δ1 //

f1

��

C0
φ //

f0

��

G

IdG

��
. . . // M2

δ2 // M1
δ1 // M0 oG

prG // G

Since the right hand square commutes, f0 is given by some formula

f0(c) = (φ(c), ∂(c)),

where ∂ : C0 →M0 is a φ-derivation. Thus ∂ = f̃0∂φ for a unique continuous
G-module morphism, f̃0 : Dφ →M0, and f0 factors as

C0
φ̄→ Dφ oG

f̃0oG→ M0 oG,

where φ̄(c) = (φ(c), ∂φ(c)).
The map ∂φδ1 : C1 → Dφ is a continuous homomorphism since

∂φδ1(c1c2) = ∂φ∂1(c1) + φ∂1(c1)∂φ∂1(c2)
= ∂φ∂1(c1) + ∂φ∂1(c2),

φ∂1 being trivial (because (C, φ) is G-augmented).
Thus we obtain a map d : CAb1 → Dφ given by d(c[C,C]) = ∂φ∂1(c) for

c ∈ C1. The pro−C Abelian group CAb1 has a natural pseudocompact ẐC [[G]]-
module structure making d a continuous G-module morphism.

Similarly there is a unique continuous G-module morphism,

f̃1 : CAb1 →M1,

satisfying
f̃1(c[C,C]) = f1(c).

Since for c ∈ C1,

(1, d1f̃1(c)) = f0(δ1c) = (1, f̃0∂φ(δ1c1)),

we have that the diagram

CAb1

f̃1 //

d

��

M1

d1

��
Dφ

f̃0 // M0
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commutes.
We also note that since δ2 : C2 → C1 maps into Ker δ1, the composite

C2
δ2→ C1

can→ CAb1
d→ Dφ,

being given by d(δ2(c)[C,C] = ∂φδ1δ2(c), is trivial and that f̃1δ2(c[C,C]) =
f1δ2(c) = d2f2(c), thus we can define ξ = ξG(C, φ) by

ξn = Cn if n ≥ 2
ξ1 = CAb1 ,

ξ0 = Dφ,

the differentials being as constructed. We note that as Ker φ acts trivially on
all Cn for n ≥ 2, all the Cn have pseudocompact ẐC [[G]]-module structures.

That ξG gives a functor

Pro−C.Crs→ Ch(PcC .G−Mod)

is now easy to check using the uniqueness clauses in the universal properties
of Dφ and Abelianisation. Again uniqueness guarantees that the process “f
goes to f̃” gives a natural isomorphism

Ch(PcC .G−Mod)(ξG(C, φ),M) ∼= Pro−C.CrsG((C, φ), ∆G(M))

as required. �

It is relatively easy using the theory of restricted and induced pro−C
crossed modules to extend the above natural isomorphism to handle mor-
phisms of pro−C crossed complexes over different groups. This is left as an
exercise for the diligent reader.

6.4.3 Pro−C crossed resolutions and chain resolutions

One of our motivations for introducing pro−C crossed complexes was that
they enable us to model more of the sort of information encoded in a K(G, 1)
than does the usual standard algebraic model, e.g. a chain complex such as
the bar resolution. It is therefore of importance to see how this information
changes under the functor ξ.

We start with a pro−C crossed resolution determined in low dimensions by
a profinite presentation P = (X : R) of a pro−C group, G. Thus in this case
C0 = FC(X) with φ : FC(X) → G, the ‘usual’ epimorphism, and C1 → C0 is
CC(P) → FC(X), the free pro−C crossed module on R → FC(X). Using the
results in subsection 4.2.2, we obtain CAb1

∼= ẐC [[G]](R), the free pseudocompact
ẐC [[G]]-module on R. This maps down onto N(R)Ab, the pro−C Abelianisation
of the closed normal closure of R in FC(X) via a map

∂∗ : ẐC [[G]](R) → N(R)Ab,
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given by ∂∗(er) = r[N(R), N(R)], where er is the generator of ẐC [[G]] corre-
sponding to r ∈ R.

There is also a short exact sequence

1→ N(R) i→ FC(X)
φ→ G→ 1

and hence by Proposition 40, a short exact sequence

0→ N(R)Ab ĩ→ ẐC [[G]]⊗̂F ÎC(F )
φ̃→ ÎC(G)→ 0

(where we have written F = FC(X)).
By the Corollary to Proposition 39, we have

ẐC [[G]]⊗̂F ÎC(F ) ∼= ẐC [[G]](X).

The required map CAb1 → Dφ is the composite

ẐC [[G]](R) ∂∗→ N(R)Ab ĩ→ ẐC [[G]](X).

We have given an explicit description of ∂∗ above, so to complete the de-
scription of d, it remains to describe ĩ, but ĩ satisfies ĩδ = ∂φi, where
δ : N(R) → N(R)Ab, so ĩ(r[N(R), N(R)]) = dφ(r). Thus if r is an alge-
braic relator, i.e., if it is in the image of the dense subgroup generated by the
elements of R, then ∂(er) can be written as a finite sum of the form

∑
x axex

and the elements ax ∈ ẐC [[G]] are the analogues of the images of the Fox
derivatives in the abstract case. If r is non-algebraic and has been specified as
a limit of algebraic elements, the description of dφ(r) is correspondingly more
complicated.

This operator can best be viewed as the pro−C analogue of the Alexander
matrix of a presentation of an abstract group. Clearly further study of this op-
erator will depend on studying transformations between free pseudocompact
modules over completed group rings, a subject we as yet know little about.

The above difficulty does not occur if X is finite (and hence discrete).
Gildenhus and Mackay [71] in the proof of their proposition 2.2 (p. 466) con-
structed Fox derivatives in the context of pro−p groups. They pointed out
that their proof of the existence of these could be extended to the general
case if it could be proved that if X = {x1, . . . , xn} and F = FC(X), then
ÎC(F ) is freely generated by the set (xi − 1). This, of course, is corollary 12,
hence continuous Fox derivatives exist in general and their results 2.2 and 3.3
are thus valid in more generality. We will return to this in more detail later
on.

The rest of the pro−C crossed resolution does not change and so, on replac-
ing ÎC(G) by ẐC [[G]] → ẐC , we obtain a free pseudocompact Ẑ[[G]]-resolution
of the trivial module ẐC ,

. . .→ ẐC [[G]](R) d→ ẐC [[G]](X) → ẐC [[G]]→ ẐC
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built up from the presentation. This is the pro−C analogue of the complex of
chains on the universal cover, K̃(G, 1), where K(G, 1) is constructed starting
from a presentation P.

6.4.4 Standard pro−C crossed resolutions and bar resolutions

We next turn to the special case of the standard pro−C crossed resolution of
G discussed briefly in 6.3.3. Of course this is a special case of the previous
one, but it pays to examine it in detail.

Clearly in ξ = ξ(CG,φ), we have:
ξ0 = the free pseudocompact ẐC [[G]] -module on the underlying space of G,
individual generators being written [u], for u ∈ G;
ξ1 = the free pseudocompact ẐC [[G]] -module on G × G, generators being
written [u, v];
ξn = CnG, the free pseudocompact ẐC [[G]] -module on Gn+1, etc.

The map d2 : ξ2 → ξ1 induced from δ2 is given by

d2[u, v, w] = u[v, w]− [u, v]− [uv,w] + [u, vw],

and the map d1 : ξ1 → ξ0 by

d1([u, v]) = dφ([uv]−1[u][v])
= v−1u−1(−[uv] + [u] + u[v]),

a unit times the usual bar resolution formula. Thus, as claimed earlier, the
standard pro−C crossed resolution is the crossed analogue of the bar resolution
in the pro−C context.

6.4.5 The pseudocompact module of identities.

Brown and Huebschmann, [29], p. 168, prove that for an abstract group G
with presentation P, the module of identities for P is naturally isomorphic to
the second homology group, H2(K̃(P)), of the universal cover of K(P), the
2-complex of the presentation.

Given a profinite presentation P = (X : R) of a pro−C group G, the
analogue of K(P), we have argued above, is the pro−C crossed module
CC(P) d→ FC(X) and the chains on the universal cover of K(P) will be given
by ξG of this, i.e., by the chain complex

ẐC [[G]](R) d→ ẐC [[G]](X),

however H2 of this complex does not seem necessarily to be the same as the
module of identities,

κC(P) = Ker(∂ : CC(P)→ FC(X)).
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In general there will be a short exact sequence

0→ κC(P) ∩ [CC(P), CC(P)]→ κC(P)→ H2(ξ(CC(P))→ 0

and it seems likely that the term κ(P) ∩ [CC(P), CC(P)] is the second pro−C
homology group of N(R). As mentioned before N(R) may not be a free pro−C
group, and we know little or nothing about its pro−C homology.

This short exact sequence does however yield the analogue of the Brown-
Huebschmann result for those presentations with N(R), a free pre-C group as
then Proposition 23, page 74 applies. We thus get

Proposition 44. If P = (X : R) is a free pro-C presentation of G, then there
is an isomorphism

κC
∼=−→ H2(ξ(CC(P)) = Ker(d : Ẑp[[G]]R → Ẑp[[G]]X).

�

In particular, this is true if C = p-groups or if G is finite discrete.

6.4.6 Example:

By way of illustration, we use the above Proposition to calculate the identity
module κC(P) when P is the presentation (x1, x2 : xp1[x2, x1]p) of a pro−p
group, G. We will calculate d(er), er being the generator of Ẑp[[G]]1 corre-
sponding to r = xp1[x2, x

1]p, using Fox derivatives.
Gildenhuys, [68], has proved that G has infinite cohomological dimension,

so that Lyndon’s result on one relator groups has no pro−p analogue. In the
same paper, [68], Gildenhuys uses essentially the methods outlined below to
analyse various other related one-relator pro−p groups.

We know

d(er) = dφ(r) = φ

(
∂r

∂x1

)
e1 + φ

(
∂r

∂x2

)
e2,

thus αer will be in κ(P) if and only if α annihilates both φ
(
∂r
∂x1

)
and φ

(
∂r
∂x2

)
.

Now

φ

(
∂r

∂x1

)
=

p−1∑
0

φ(x1)k + (φ(x1)pφ(x−1
2 )φ(x1)−p(1− φ(x2))

p−1∑
0

φ(x1)k

and

φ

(
∂r

∂x2

)
= φ(x1)pφ(x−1

2 )(φ(x1)p−1).

We next repeat part of Gildenhuy’s argument.
Clearly if we write gi = φ(xi), i = 1, 2, then gp1 = [gp1 , g2]. If we denote the

kth term of the lower central series of G by Gk, one sees that gp1 is in Gk+1
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if it is in Gk, hence gp1 ∈ Gk, but this intersection is {1} since pro−p groups
are residually nilpotent, hence gp1 = 1 and g1 is of order p or 1. However,
x1 /∈ N(r), since N(r) ⊂ F p[F, F ], where F = Fp(X), so g1 has order p.

Thus we have

φ

(
∂r

∂x1

)
= (2− g−1

2 )(1 + g1 + . . .+ gp−1
1 ),

φ

(
∂r

∂x2

)
= 0.

Since (1−g1) annihilates φ
(
∂r
∂x1

)
, we have that κC(P) contains the submodule

generated by (1− g1)er.
To prove that κC(P) is in fact this submodule, we need to check that 2−g−1

2

is not a zero divisor. First we noted earlier, in section 1.10, that Lazard [102]
proves that if Fp(n) is the free pro−p group on n-symbols, {x1, . . . , xn}, then
there is an isomorphism between Ẑp[[Fp(n)]] and A(n), the algebra of non-
commutative formal series on n indeterminates, t1, . . . , tn, with coefficients in
Ẑp, this isomorphism being given by xi goes to 1 + ti for each i.

There is an epimorphism

ρ : Ẑp[[F (2)]]→ Ẑp[[G]].

Suppose a(2 − g−1) = 0 in Ẑp[[G]], then we have there is a corresponding
ā(2 − x−1) ∈ Ker ρ. However in the isomorphism with Ẑp[[t1, t2]] = A(2),
2 − x−1

2 goes to (1 + 2t2)(1 + t2)−1, but (1 + 2t2)−1 exists, so 2 − x−1
2 is

invertible, hence ā ∈ Ker ρ and a = 0.
Thus κC(P) ∼= {s(1− g1)er : s ∈ Ẑp[[G]]}.
Of course this accords well with Gildenhuys proof in [68] that G has infinite

cohomological dimension, since this module has a periodic resolution exactly
as does the corresponding resolution for Cp,

. . .→ Ẑp[[G]]
1−g1→ Ẑp[[G]] N→ Ẑp[[G]]

1−g1→ . . . ,

where N is the map multiplying by 1 + g1 + . . .+ gp−1
1 .
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Pseudocompact coefficients

7.1 Introduction.

Often the coefficients for the cohomology of a profinite group, G, have been
taken to be in a discrete G-module. While this yields a rich and useful theory,
containing within it many analogues of results from the cohomology theory of
abstract groups, it only tells half the story. One can glimpse other facets of
the cohomology from time to time, for instance when Serre, [152] p.10, notes
that if A is finite then H2(G,A) classifies extensions of G by A. Later Brumer,
in [34], very nearly takes the plunge as he considers a homology theory which
is pseudocompact in the values it takes and in his thesis, Wambsganß-Türk,
[163], develops universal central extensions for a perfect profinite group, G,
provided the Brumer homology H2(G; Ẑ) is finite and hence discrete.

In this chapter our aim is to indicate how easy and useful it is to be “free of
one’s inhibitions” and to define Hn(G,A) when A is a pseudocompact Ẑ[[G]]-
module, where Ẑ is the profinite completion of the integers and, as before,
Ẑ[[G]] is the pseudocompact completed group algebra of G. The generalisation
of a large amount of theory from the abstract to the profinite case then turns
out to be a relatively painless process, in fact in most cases a proof obtained
by substituting “profinite group” for “group”, “continuous morphism” for
“morphism” etc. in a proof of the “classical” result works. We should however
mention the proviso that the old proof be in a suitable form, for instance, if the
construction of a homomorphism is given in terms of its values on generators,
one must check that in the profinite case the generators provide a space which
topologically generates the required group, that the definition of the map on
the topological generators is continuous (which rarely causes problems) and
that the analogues of the classical relations generate all the necessary relations
in the profinite case. The conditions can often be quite tricky to check and in
such cases it is sometimes simpler to use a different form of proof, more based
on universal properties perhaps, which avoids these difficulties. To illustrate
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why we wish to develop this theory, we mention two applications, both of
which will be handled in detail later on in this chapter.

(i) Abelian extensions: In the classical abstract theory, an Abelian exten-
sion

e : 1 κ→ A
π→ G→ Q→ 1

of a group Q, by an Abelian group, A, determines a Q-module structure on A
and a class in the cohomology group H2(Q,A). If Q is a profinite group and we
wish the extension to be a profinite extension, i.e. for G and A to be profinite,
with κ and π continuous, then we expect and find A to be a topological
Q-module. By a result of Gildenhuys and Mackay [71], if A is a profinite
Abelian group and a topological Q-module, then it is a pseudocompact Ẑ[[G]]-
module. Using the well known result that continuous epimorphisms of profinite
groups have continuous sections (cf. Schatz, [150], or Serre [152]), one easily
checks that each such extension determines and is determined by a class in
H2(Q,A), the continuous cohomology of Q with coefficients in A. Likewise
one can discuss the theory of profinite central and stem extensions and their
applications.

(ii) Profinite homotopy types. Classically the homotopy 2-type of a CW-
complex, X, is determined by π1(X), π2(X) considered as a π1(X)-module,
and a class k ∈ H3(π1(X), π2(X)). This class can be represented by a crossed
module, (C,G, ∂), or a crossed 2-fold extension

0→ π2(X)→ C
∂→ G→ π1(X)→ 1.

(If X1 denotes the 1-skeleton of X, i.e. the union of the 1- and 0-dimensional
cells in the cellular decomposition of X, then this crossed extension can be
written

π2(X)→ π2(X,X1)→ π1(X1)→ π1(X)

i.e. by part of the exact sequence of the pair (X,X1).) These links between
classes of crossed extensions, classes in the third cohomology group and 2-
types have their profinite analogue, but this needs profinite coefficients. Later
we will also look at the profinite analogues of Huebschmann’s results, [86],
which identify Hn(Q,A) in terms of equivalence classes of crossed “long”
extensions, again it is clear that this is only feasible if A is pseudocompact.

Finally we should mention the policy we have adopted when presenting
and proving results. Many results in the theory of covering and representation
groups, treated for instance in Beyl and Tappe [12], clearly generalise with
little or no problem. Rather than giving a list of these, we have limited our-
selves to showing how the minor modification necessary for a profinite version
of classical universal central extension theory can be made. We hope that the
message that such generalisations are quite easy will enable workers with profi-
nite groups to use these ideas without need for the inclusion here of explicit
statements and proofs. This is just one example of several; we have in each
case chosen a particular aspect of the area and have given explanation and
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statements of some of the key theorems. Many of these theorems can safely
be left to the reader to prove in detail and in that case, accompanying the
statement, there will be found a precise reference to a proof of the analogous
abstract group result that will generalise “painlessly”. In the rare cases where
no such proof has been found, we have given the details either of a complete
proof, if necessary, or of a bridging section to adapt some existing “abstract
group” proof.

Remark: With C as in the previous chapters, it seems possible that a
pro−p version of much of the material here can be produced. There is a
fair amount known on cohomology modulo a variety, notably in the work
of Lue, [110, 111] and Stammbach, [155, 156], however, as a development of
cohomology modulo the variety pro−C has not appeared in the literature, that
idea needs further study before it can be evaluated as to its usefulness, etc.
We thus have limited ourselves in this, and several of the following sections,
to the profinite case only.

Notational Implication: The above means that Ẑ replaces ẐC , Prof.CMod
replaces Pro−C.CMod, etc.

7.2 Continuous cohomology of profinite groups.

7.2.1 The definition

The definition of Hi(G,A) given by Serre, [152], clearly can be applied when
A is not a discrete topological G-module. We repeat the definition (suitably
adapted) for convenience.

Let G be a profinite group and A, a pseudocompact Ẑ[[G]]-module. We
denote by Cn(G,A), the Abelian group of continuous maps from Gn to A.
The coboundary

d : Cn(G,A)→ Cn+1(G,A)

is given by the usual formula:

df(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)

+
i=n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn).

Thus one obtains a complex C ·(G,A), whose cohomology groups Hn(G,A)
will be called the cohomology groups of G with coefficients in A.
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7.2.2 Interpretation in low dimensions

In low dimensions, the interpretation of these groups is simple and follows the
classical abstract case:

H0(G,A) = AG,

that is, the fixed submodule of A on which G acts trivially. Next

H1(G,A) = Der(G,A)/Pder(G,A),

that is, it is the quotient of the module of continuous derivations from G to
A by those of the form

da : G→ A

da(g) = (g − 1)a

for some fixed a ∈ A.
The group, H2(G,A), can be described as the group of classes of contin-

uous factor sets from G to A and also as the group Opext(G,A) of Abelian
extensions of G by A, modulo congruence of extensions. The proof of this last
fact can be manufactured from any of the standard proofs in the abstract case
using the existence of continuous sections, (Corollary 1, page 12).

At the risk of over emphasizing the advantages of pseudocompact modules,
let us again point out that in an extension by profinite groups of G by some
topological module, A, since A appears as a kernel of a continuous homomor-
phism from E, say, to G it must be itself profinite, hence pseudocompact,
and it will be discrete only if finite. Thus arbitrary discrete modules are not
appropriate for handling extensions.

7.2.3 The bar resolution

The profinite analogue of the bar resolution BG of a profinite group G was
mentioned in the last chapter in conjunction with the standard profinite
crossed resolution CG. Here we note that BG yields another description of
the complex, C ·(G,M), above, namely

C(G,M) = Hom(BG,M)

for M in Pc.G−Mod.
This complex BG is made up of free pseudocompact Ẑ[[G]]-modules and

yields a pseudocompact projective resolution of Ẑ with the trivial G-action, as
in the abstract case (cf. MacLane, [112]). This thus leads to an isomorphism,

Extn(Ẑ,M) ∼= Hn(G,M),

where the Extn is taken within the category Pc.G−Mod. This readily implies
the existence of long exact sequences corresponding to short exact sequences
of coefficients and by using the defining short exact sequence
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0→ Î(G)→ Ẑ[[G]]→ Ẑ→ 0

of the completed augmentation ideal in the first variable of a Hom-Ext long
exact sequence, one gets a second natural isomorphism

Hn(G,M) ∼= Extn−1(Î(G),M)

in the standard way.

7.2.4 Induced and Coinduced Modules

As we saw in section 1.11, the usual results on induced and coinduced modules
relative to an inclusion H ↪→ G between profinite groups go through with
the obvious changes, although some care is needed when checking CoinGHM
is pseudocompact. In particular, there is a profinite analogue of Shapiro’s
lemma: if H ⊆ G and M is an H-module, then there is an isomorphism,
natural in M ,

H∗(H,M) ∼= H∗(G,CoinGHM).

The proof, say in Brown, [21], p.73, adapts easily.

7.2.5 Limits of finite coefficients.

One natural question is the exact nature of the link between this cohomology
with the standard profinite one. We know that if A is finite and discrete, then
they are identical (since even the definitions coincide!). If we write a general
pseudocompact module, A, as the limit of its finite length discrete quotient
modules, A = LimαAα, what is the relationship between Hn(G,A) and the
various Hn(G,Aα)? There is a natural map

Hn(G,A)→ LimαH
n(G,Aα);

is it an isomorphism?
To answer these questions, we first look at what sensible topology if any

one can put on the Cn(G,A). (The work of Calvin Moore, [120–122], suggests
that consideration of topologies on chain and cochain complexes may be of
great importance in this area.) Suppose that A is finite and discrete, then
Cn(G,A), with the topology of pointwise convergence, is a compact Abelian
group and the coboundary maps are continuous. As a consequence, Hn(G,A)
is also a compact Abelian group if we give it the quotient topology of the
subspace topology of Zn(G,A). We only need this in order to note that if
A = LimαAα, then the derived functors Lim(i) of Lim will be zero when
evaluated on Hn(G,Aα), since these latter groups are compact and the linking
morphisms between them are continuous.
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Proposition 45. If A = LimAα in the category Pc.G −Mod, with the Aα
discrete, then the natural morphism

Hn(G,A)→ LimαH
n(G,Aα)

is an isomorphism for all n.

Proof: Firstly we recall a result that is to be found in Jensen, [94], p.35. Let
A = {Aα} be any projective system of R-modules and let M be an R-module.
Then there are two spectral sequences

E
(1)p,q
2 = Lim(p)ExtqR(M,Aα)

and
E

(2)p,q
2 = ExtpR(M,Lim(q)Aα)

with the same limits.
We must adapt this before we can use it as, although Pc.G−Mod is an

Abelian category with very nice properties, it does not seem to be of the
form R−Mod. Jensen’s result is based on the construction of Roos of a (co)-
complex Π•A, whose cohomology groups are the derived functors of Lim.
Taking a projective resolution P of M , one has a bicomplex Hom(P, Π•A).
The two spectral sequences of Jensen’s result are those associated with this
bicomplex. Each step of this proof goes across to Pc.G−Mod (as this category
has exact products, which are preserved by the forgetful functor to G-Mod).
We thus obtain for M = Ẑ, A = {Aα}

E
(1)p,q
2 =

{
Lim Hq(G,Aα) if p = 0
0 if p 6= 0,

by the remarks preceding the statement of the theorem, and

E(2)p,q =
{
Hp(G,LimAα) if q = 0
0 otherwise. .

Thus both spectral sequences collapse giving the required isomorphism. (An
explicit calculation shows that this isomorphism is the obvious morphism.)

Remark: It is instructive to recall here the well known forms that
Hn(G,A) takes when A is discrete: (i) Hq(G,A) ∼= ColimHq(G/U,AU ),
where the colimit is taken over open normal subgroups of G and, as usual,
AU = {a : au = a for all u ∈ U} and (ii) Hq(G,A) ∼= ColimBH

q(G,B), where
the colimit is taken over all B ⊂ A of finite type.

7.3 Relative cohomology groups.

7.3.1 What are they?

Any treatment of relative cohomology groups, even in the abstract group
situation, encounters a problem, namely that there is no single accepted def-
inition of what they are! The setting is that G is a profinite group with H
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as a closed (often normal) subgroup; the idea is that the cohomology group,
Hn(G,H;M), for a pseudocompact G-module, M , is made up of classes of
n-cochains on G, which vanish on H, and have values in M , the difference in
opinion is as to the extent to which these cochains vanish on H.

In this section we look at two of the possibilities in detail, especially in low
dimensions, concentrating on the connections between the two theories. (For
a survey of the possible theories, we suggest that the interested reader do as
we did, and consults the collected Maths. Reviews on Infinite Groups, where
most of the early papers on this subject are listed.)

The main contenders for the definitions of the relative cohomology, denoted
Hn(G,H;M), have been developed initially by the following authors.:

(i) M.Auslander [7]; L.Ribes, [146]; Takasu, [159]; Massey (although I have
found no exact reference for this latter work other than a mention in another
paper), and Gildenhuys and Ribes, [72].

(ii) Adamson, [1]; Hochschild, [84]; Ostberg, [132].
Both of these theories lead to relative groups Hn(G,H;M). An alternative

when H is normal is to consider the relative group Hn(Q,G;M) for M a Q-
module, with Q = G/H as do, for instance, Loday [105], and, in more general
contexts, Rinehart, [149], Van Osdol [161] and others. (A short discussion of
the link between these two views together with further references can be found
in Huebschmann’s paper, [87].)

7.3.2 The Auslander-Ribes theory

We start with the Auslander-Ribes theory in its profinite version studied in
[147]:

We consider G, a profinite group, H, a closed subgroup of G and M a
discrete G-module. Restriction along the inclusion followed by extension yields
the discrete module, M∗ = CoinGH(M), (cf. Serre, [152], p.13); this G-module
M∗ is defined as the set of continuous homomorphisms m∗ : G → M such
that m∗(hx) = h.m∗(x) for all h ∈ H. The group G acts on M∗ by the rule:

(gm∗)(x) = m∗(xg).

There is an injective homomorphism

i : M →M∗

given by: i(m)(x) = x.m. This yields a homomorphism,

i∗ : Hq(G,M)→ Hq(G,M∗) ∼= Hq(H,M),

by Shapiro’s lemma, which coincides with the restriction map.
In this general situation, one can consider the Abelian group, denoted

X(G,H;M) by Ribes [147], of continuous G-derivations from G to M that
vanish on H, that is, X(G,H;M) is {f : G → M | f(xy) = xf(y) +
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f(x), f is continuous and f |H = 0}. Since the category of discrete G-modules
has enough injectives, one can consider the right derived functors ofX(G,H;−).
It is these that Ribes calls the nth cohomology group Hn(G,H;M) of the pair,
(G,H), with coefficients in M . Now let Γ (M) = Coker(i : M → M∗), then
one has

HomG(Ẑ, Γ (M)) ∼= X(G,H;M),

by calculation, (see [147]), so Hn(G,H;M) ∼= Hn−1(G,Γ (M)).
In our context there is a slight problem: if M is a pseudocompact G-

module, although the majority of the above definitions make sense, one cannot
use injectives to define the right derived functors of X(G,H;−) as Pc.G−Mod
does not have enough injectives. Of course, one can still define

Hn(G,H;M) = Extn−1(Ẑ, Γ (M)),

since the group on the right makes sense in terms of projective resolutions
of Ẑ or, using neither projectives nor injectives, in a Yoneda style description
using (n−1)-fold extensions. We shall be needing both these types of treatment
later.

The above suggests another means of defining the groups Hn(G,H;M) as
follows:

The inclusion H
j→ G induces a map of bar resolutions

BH
B(j)→ BG,

over the change of rings, Ẑ[[H]] → Ẑ[[G]], and hence yields a monomorphism
of complexes of pseudocompact G-modules

(BH ⊗H Ẑ[[G]])→ BG

which on generators is merely inclusion of Hn into Gn at level n. This, in
turn, yields an epimorphism

C(G,M) = Hom(BG,M)→ Hom((BH ⊗H Ẑ[[G]]),M),

which is split at each level and is natural in M . We write K(M) for the kernel
of this epimorphism, then we have

Hn(G,H;M) ∼= Hn−1(K(M)).

This tells us that the elements of Hn(G,H;M) can be represented by con-
tinuous (n−1)-cocycles f : Gn → M that vanish on the subspace, Hn, of
Gn.

Another description of the homotopy type of K(M) can be manufactured
from this:

Writing BGH for BH ⊗H Ẑ[[G]], for short, the monomorphism

BGH
B(j)→ BG
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is locally split, i.e. is split at each level. Let C(j) denote its cokernel. Then
K(M) ∼= HomG(C(j),M). Alternatively (ignoring that B(j) is a monomor-
phism), we might form its mapping cone/homotopy cokernel, Ch(j), then
K(M) ' Hom(Ch(j),M). Both of these yield useful alternative descriptions
of the elements of Hn(G,H;M). These cohomology groups are also functorial
in (G,H) in an obvious sense which we will not make precise here.

In low dimensions these relative cohomology groups have the following
interpretation: a 1-cocycle is, as we have already noted, a continuous G-
derivation f : G → M such that f(h) = 0 for all h ∈ H. As the principal
G-derivations and principal H-derivations coincide, there are no coboundaries
at this level, so H1(G,H;M) = X(G,H;M).

Depending on the model for the homotopy type of K(M) that we use,
we get a different argument leading to an interpretation of elements of
H2(G,H;M). Let us consider Ch(j), the homotopy cokernel of B(j). In di-
mension n, this is BGn ⊕ BGHn−1 with differential given by

(x, y) 7→ (dGx+B(j)y,−dHy).

Thus a homomorphism f : Ch(j)n → M can be decomposed as f = f1 + f2,
where f1 : BGn → M and f2 : BGHn−1 → M . Such a cochain is a cocycle if
fd = 0, i.e., if

f1dGx+ (f1B(j)y − f2dHy) = 0

for all x ∈ BGn+1, y ∈ BHn. Restricting to the pair (x, 0) ∈ Ch(j) gives
that f1 : BGn → M is an n-cocycle which, when restricted to BH, gives a
boundary. We will use this description in general later, but for the moment
we restrict attention to the cases of n = 1 and 2.

Although we already have a description of the relative cocycles for n = 1,
it is useful as a first step to see how this general description works out in
that case. We have f1 : BG1 → M is a cocycle (hence f1 can be thought of
as a derivation, f1 : G → M) such that f1B(j)1 is a boundary, i.e. there is
a morphism, f2 : Ẑ[[H]] → M , such that for any y ∈ H, f1(y) = f2dH(y) =
f2(y− 1). Since f2(y− 1) is yf2(1)− f2(1), writing m = f2(1), we can replace
f1 by f̄1, given by f̄1[x] = f1[x] − mx + m, so that cls f̄1 = cls f1; f̄1 is
again a derivation, f̄1 : G → M , but now f̄1(y) = 0 for any y ∈ H and we
have a description as before: a class in H1(G,H;M) can be represented by a
G-derivation f : G→M that vanishes on H.

When one looks at n = 2, one has a 2-cocycle f : BG2 → M such that
f | BH2 is a coboundary. Thus using f one can build, in the usual way, an
Abelian extension of G by M ,

Ef : 1→M → E
p→ G→ 1,

say, such that the action of G on M is the given one; M is, of course, a closed
normal subgroup of the profinite group E. To examine the implications of the
condition: “f |H2 is a coboundary”, we need to recall the way E is constructed
from f : G2 →M .
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We take the underlying space of E to be M ×G and put on it the multi-
plication

(m1, x1) · (m2, x2) = (m1 + x1 ·m2 + f(x1, x2), x1x2).

Now assume that there is some h : H →M such that for all x1, x2 ∈ H

f(x1, x2) = (∂h)(x1.x2)
= x1h(x2)− h(x1, x2) + h(x1).

Then the section s(x) = (h(x), x) of p over the subgroup H is, in fact, a
continuous splitting of the induced sequence j∗(Ef ), i.e., the cocycle (f, h) :
Ch(j)2 → M yields an Abelian extension that is split over the subgroup H,
together with a splitting of that induced sequence. It is easily checked that if
(f, h) and (f ′, h′) are two such cocycles, then they are cohomologous if and
only if the two sequences Ef and Ef ′ are congruent in such a way that the two
splittings differ by a “principal splitting”, i.e. a splitting corresponding to a
principal derivation.

We must wait until later to discuss interpretations of elements ofHn(G,H;M)
for n ≥ 3 for this Auslander-Ribes theory.

7.3.3 The Adamson-Hochschild theory.

We next turn to the Adamson-Hochschild theory. Again our initial data con-
sists of a profinite group G, a closed subgroup H and a G-module M . We
have mentioned already that the usual results on restriction and induction of
modules relative to the inclusion H ↪→ G go over to pseudocompact modules
with no difficulty. We thus obtain an adjoint pair

Pc.G−Mod
resGH //

Pc.H−Modoo

where the unmarked functor is −⊗̂H Ẑ[[G]]. The general theory of relative
homological algebra thus applies (cf. Hochschild, [84], or MacLane, [112]).

For a pseudocompact G-module M , we define the relative cohomology
groups for (G,H) with coefficients in M to be Extn(R,S)(Ẑ,M) where, for ease

of printing, we have written R for Ẑ[[G]] and S for Ẑ[[H]], and the relative Ext
is constructed using a (R,S)-projective resolution of Ẑ. We will denote these
relative cohomology groups by Hn((G,H);M) to distinguish them from those
considered earlier.

In Hochschild’s paper, [84], the abstract/discrete analogue of this construc-
tion is given and it is shown that these relative groups coincide with those
introduced in 1954 by I.T. Adamson, [1]. Adamson exploited the fact that the
set of cosets of H in G is a G-set and mixed this structure into a resolution in
order to build the relative groups. Explicitly (in the notation of Hochschild’s



7.3 Relative cohomology groups. 157

paper, [84]), for n ≥ 0, let Xn be the free Abelian group generated by the
(n + 1)-tuples (A0, . . . , An) of cosets Ai = giH with gi ∈ G. There is a G-
module structure on Xn given by, for g ∈ G, g ·(A0, . . . , An) = (gA0, . . . , gAn).
For n = −1, take Xn = Z to give the augmentation and for n < −1, Xn = 0.
The differentials are given by the usual formulae, d0 : X0 → X−1 being the
coefficient sum, then (X, d) is easily checked to be an acyclic ZG-complex.
Defining h−1 : X−1 → X0 by h−1(z) = z(H) and for n ≥ 0, hn : Xn → Xn+1

by hn(A0, . . . , An) = (H,A0, . . . , An), yields a homotopy that is ZH-linear,
but not ZG-linear. The cohomology groups Hn((G,H);M) are then defined
as those of the complex HomZG(X,M) for M a G-module.

Of course, this description adapts easily to the case of a profinite group
pair, (G,H), and a pseudocompact Ẑ[[G]]-module, M . All the maps (differen-
tials and homotopies) so defined are continuous. As in the abstract group case,
if H C G, we have any (continuous) cocycle f : Xn → M , has image in the
fixed module MH of M for the induced H action. (To see why, use the second
complex introduced by Hochschild, [84] p.263.) This indicates why in case
H C G, one may identify Hn((G,H);M) with Hn(Q,MH) where Q = G/H;
a proof is given in Adamson, [1], or may easily be constructed from the above
facts.

The resolution X of Ẑ is, of course, the relative version of the “unnormal-
ized non-homogeneous bar resolution”. It is easy to give a normalized version
by requiring that each Xn be replaced by a quotient X̄n obtained by dividing
out by those (n+1)-tuples with an adjacent pair equal, Ai = Ai+1, for some i.
In this latter form it is easily seen that each continuous cochain f : X̄n →M
determines another, f̄ , say, with domain Gn+1 obtained by composition with
the quotient

f̄(g0, . . . , gn) = f(g0H, . . . , gnH)

and that not only is f̄ normalized, but it satisfies the stronger conditions:
(i) f̄(g0, . . . , gn) = f̄(g0h0, . . . , gnhn) for any h0, . . . , hn ∈ H,
(ii) f̄(g0, . . . , gn) = 0 if some gig−1

i−1 ∈ H.
In order to compare with Auslander-Ribes cocycles, it is useful to pass one

stage further and to look at the conditions on the corresponding homogeneous
cocycles.

The first condition is awkward to write down, but the second normalization
condition is

f̄([x1| . . . |xn]) = 0 if any xi ∈ H.

Thus any Adamson-Hochschild cocycle is automatically an Auslander-Ribes
one. To compare them, it will pay to have a description of the Adamson-
Hochschild groups in low dimensions.

In dimension zero an Adamson-Hochschild cocycle is an element of MH .
In dimension 1, the only difference is that an Adamson-Hochschild cochain

f : G→M must take values in MH if H is normal.
In dimension 2, an Adamson-Hochschild cocycle determines a relatively

split pair of extensions
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1 // M // E
p // G // 1

1 // M // E|H //

OO

H
soo

OO

// 1

but, in addition, one has that the splitting s can be extended to a (continuous)
transversal γ : G→ E such that γ(gh) = γ(g)s(h) for all g ∈ G, h ∈ H. (The
discrete case is analysed by Hochschild, [84] p.263; this simpler description is
given by Ostberg, [132].)

Ostberg, [132], deals with the interpretation of the relative H3 in terms of
relative abstract kernels, but we will briefly return to this later.

7.4 Extensions and long exact sequences.

In this section, we wish to investigate some of the long exact sequences linking
the cohomology groups of the groups in a profinite extension:

1→ N → G
π→ Q→ 1.

7.4.1 Long exact sequences in cohomology

As we have seen, given an extension

1→ N → G
π→ Q→ 1

of profinite groups, one obtains an exact sequence

0→ NAb → Ẑ[[Q]]⊗̂GÎ(G) π̃→ Î(Q)→ 1

of pseudocompact Ẑ[[Q]]-modules. This short exact sequence gives us a quick
proof of the following:

Proposition 46. Given an extension

1→ N → G
π→ Q→ 1

of profinite groups, and a pseudocompact Ẑ[[Q]]-module, A, there is a long exact
sequence

0→ Der(Q,A)→ Derπ(G,A)→ HomQ(NAb, A)
→ H2(Q,A)→ H2(G, π∗(A))→ Ext1Q(NAb, A)

→ H3(Q,A)→ . . . ,

where the ExtiQ denote the derived functors of the hom-functor HomQ(−,−)
within Pc.Q-Mod .
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Remark: Some people prefer the similar sequence that starts

0→ H1(Q,A)→ H1(G, π∗(A))→ HomQ(NAb, A)→ . . . .

This can easily be derived from the above by noting that

H1(Q,A) ∼= Der(Q,A)/Pder(Q,A),

whilst
H1(G, π∗(A)) ∼= Der(G, π∗(A))/Pder(G, π∗(A)),

but Der(G, π∗(A)) is identifiable as Derπ(G,A), whilst the induced map from
Der(Q,A) to Derπ(G,A) in that sequence maps Pder(Q,A) isomorphically
onto Pder(G, π∗(A)) modulo the above identification.

Proof of Proposition: The sequence is obtained from the Hom−Ext
long exact sequence of

1→ N → G→ Q→ 1

with coefficients in A, after identification of the various terms as follows:
a) Î(Q) ∼= DQ, so Hom(Î(Q), A) ∼= Der(Q,A);
b) Ẑ[[Q]]⊗̂GÎ(G) ∼= Dπ, so Hom(Ẑ[[Q]]⊗̂GÎ(G), A) ∼= Derπ(G,A).
c) The isomorphism (cf. section 2.5 )

Hn(G,M) ∼= Extn−1(Î(G),M)

for M in Pc.G-Mod can now be used to identify the (3k + 4)th terms in the
sequence and, modulo an evident natural isomorphism

ExtiQ(Ẑ[[Q]]⊗̂GÎ(G),−) ∼= ExtiG(Î(G), π∗(−)),

also to handle the remaining terms. �

7.4.2 The Lyndon-Hochschild-Serre spectral sequence.

Given an extension
1→ N → G→ Q→ 1

and a G-module, M , the Lyndon-Hochschild-Serre spectral sequence gives in
low dimensions a five term exact sequence,

0→ H1(Q,MN )→ H1(G,M)→ H1(N,M)Q → H2(Q,MN )→ H2(G,M).

Serre comments that if the extension is a sequence of profinite groups, and M
is a discrete G-module, the usual derivation of the L-H-S spectral sequence
generalises so the five term sequence is also valid in that case. Moore, [122],
discusses such spectral sequences for general topological G-modules, but terms
such as Hp(Q,Hq(N,M)) involve a more general class of coefficients than
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we have considered here. Thus no treatment of a profinite version of the L-
H-S spectral sequence would seem to be possible wholly within the context
of profinite groups and pseudocompact modules, however Boggi, [14], does
give a form of the L-H-S spectral sequence with a slightly different choice of
coefficients for cohomology.

Whatever way around these difficulties is used, the five term sequence
makes perfect sense in our context and the question arises how one may derive
its exactness without using Moore’s version of the L-H-S argument. There
seem to be various ways of doing this. In the next section, we look at the
Auslander-Ribes relative cohomology groups again and their relation to this
sequence will be examined, via their link with the Adamson-Hochschild groups
given earlier.

7.4.3 Long exact sequences and relative cohomology

Let us assume a more general situation than that given by our extension.
Suppose H is a closed subgroup of the profinite group G. For ease we will
write, as before, BGH = BH⊗̂H Ẑ[[G]].

We get a short exact sequence

0→ BGH → BG→ C(j)→ 0,

of complexes of Ẑ[[G]]-modules. Applying HomG(−,M) and taking the associ-
ated long exact sequence we get, after some fairly self evident identifications.

Proposition 47. (cf. Gildenhuys and Ribes, [72]) Let H be a closed subgroup
of a profinite group G and let M be a pseudocompact Ẑ[[G]]-module. There is
a long exact sequence,

0→MG →MH δ→ H1(G,H;M)
j→ H1(G;M) i→ H1(H;A)

→ H2(G,H;M)
j→ H2(G,M) i→ . . .

where the is are restriction maps induced by the inclusion H → G and the js
are restriction maps induced by the inclusion (G, 1)→ (G,H). �

It is worth noting that MG = H0(G;M) and MH = H0(H;M).
The link with the Lyndon-Hochschild-Serre 5-term exact sequence goes as

follows:
Suppose N C G is a closed normal subgroup and Q = G/N then we note

that for a pseudocompact G-module, M ,

H1(Q,MN ) = H1((G,N);M)
∼= X(G,N ;M)/Imδ

= H1(G,N ;M)/Imδ.

Thus dividing out by Im δ yields the start of the L-H-S sequence
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0→ H1(Q,MN )→ H1(G,M).

The next point to note is that the image of H1(G,M) i→ H1(N,M) lies in the
fixed subgroup, H1(N,M)Q, for the induced Q-action. The standard proof,
for instance in MacLane, [112] p.349, Lemma 9.1, extends to the profinite case
with no difficulty.

The connection between

H2(Q,MN ) ∼= H2((G,N);M)

and the corresponding Auslander-Ribes group, H2(G,N ;M), is subtler than
in dimension 1. We have so far two interconnected sequences (the top one has
not at this stage been proven to be exact)

0 // H1(Q,MN ) //

∼=

H1(G,M) //

∼= �
�
�

H1(N,M)Q

��

// ...

0 // H1(G,N ;M)/Imδ // H1(G,M) // H1(N,M) // ...

. . . δ // H2(Q,MN ) //

?

��

H2(G,M)

��
. . . δ// H2(G,N ;M) // H2(G,M)

and it is the properties of the dotted arrow that are in doubt. However we
have detailed knowledge of how the maps δ are defined and also we know that
any Adamson-Hochschild cocycle yields an Auslander-Ribes one.

First we choose a continuous section

t : Q→ G

for the quotient map λ : G→ Q, so that t(1) = 1. Then given any continuous
derivation f : N → M , we can set f̄(g) = t(q)f(n) for g ∈ G, where q =
π(g) ∈ Q and g = t(q)n. The map f̄ : G → M is continuous and extends
to a continuous homomorphism f̄ : BG1 → M . As ∂f = 0, we have that ∂f̄
vanishes on BGN2 and hence gives an Auslander-Ribes cocycle f ′ : C(j)2 →
M , which yields the class of the desired relative 2-cocycle, i.e. δ(cls f) = cls f ′.

If f is a Q-invariant 1-cocycle, then the value of f ′ can be given quite
simply; it is f ′(g1, g2) = t(q1q2)f(t(q1q2)−1t(q1)t(q2)), which is, of course,
an Adamson-Hochschild 2-cocycle. In other words the restriction of δ to
H1(N,M)Q yields a map into

H2((G,N),M) ∼= H2(Q,MN ),
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as required. We thus need next to turn to exactness at these fourth terms.
Suppose f : C(j)2 → M is an Auslander-Ribes cocycle which becomes a
coboundary on composition with the map BG2 → C(j)2, then f(g1, g2) =
g1h(g2) − h(g1g2) + h(g1) for some h : BG1 → M . However f(n1, n2) = 0 if
n1, n2 ∈ N , so h, when restricted to BGN1, yields a derivation as required.

If f is an Adamson-Hochschild cocycle, one can say more, as routine calcu-
lations show that h is nearly Q-invariant, in fact g−1h(gn)−h(n) is a principal
derivation for fixed g ∈ G. This shows that both sequences are exact as re-
quired, since it is easily checked that the composites are zero.

The usefulness of the exact sequence for Auslander-Ribes relative coho-
mology is that exactness is more or less self evident and that it is a “long”
exact sequence not just a sequence of 5 terms. The Lyndon-Hochschild-Serre
sequence is part of a longer sequence (cf. Huebschmann, [87]), but some of
these terms are more difficult to handle, however the above comparison of
the first five terms of the two sequences shows the extent to which the L-H-
S sequence gives more detailed and useful information than does the other
sequence; the interpretation of H2(G,N ;M) is less immediate than that of
H2(Q,MN ).

7.5 The Profinite Schur Multiplier

7.5.1 The direct approach

The full treatment of both the profinite Schur multiplier and the profinite
Universal Coefficient Theorem really needs a discussion of profinite homology,
so these topics will crop up again in the next chapter. However one of our
principal aims in introducing the profinite Schur multiplier and in proving the
Universal Coefficient Theorem in a profinite version is to provide an example
where the fact that we can take pseudocompact/profinite coefficients in a
cohomology group is necessary to avoid awkward restrictions on the validity of
the results. As a full treatment of profinite homology is not strictly necessary
for this, we have chosen to pick a shorter, more group theoretical, path to
our goal by using a treatment based on that in Beyl and Tappe’s notes, [12].
This has the advantage that many of the proofs in that source generalise very
easily to the profinite case, although it does lead to some slight duplication
with material in the next chapter.

The profinite version of the Schur multiplier has been introduced and used
by Fröhlich, [64]. Its definition uses the profinite analogue of the Schur-Hopf
formula. (Versions in Pro−C, for C a Serre class of groups, have also been
considered in the above mentioned source.)

Let G be a profinite group and let

e : 1→ R→ F → G→ 1

be a profinite presentation of G. We set
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M(G) =
R ∩ [F, F ]

[F,R]
,

where, as usual, [F,R] is the closed normal subgroup generated by the elements
xyx−1y−1, x ∈ F , y ∈ R.

This group is an Abelian profinite group and is easily shown to be inde-
pendent (up to isomorphism) of the choice of e, cf. Beyl and Tappe, [12]. Thus
when proving, say, functoriality of M(G), it suffices to produce a functorial
presentation, namely:

e(G) : 1→ RG → FG
πG→ G→ 1,

where FG is the free profinite group on the underlying profinite space of G
and RG is the kernel of the natural map πG : FG → G. On the other hand
explicit profinite presentations in the form (X : R) allow one to link M(G)
with combinatorial group theoretic information on G such as the deficiency.

The functoriality of M means that given any extension

e : 1→ N
κ→ G

π→ Q→ 1

of profinite groups, there is a continuous morphism

M(G)
M(π)→ M(Q)

of profinite Abelian groups. This fits into a 5-term exact sequence as in the
abstract case, namely:

Proposition 48. (cf. [12], p.31) Given the profinite extension

e : 1→ N
κ→ G

π→ Q→ 1,

there is a natural exact sequence

M(G)
M(π)−→ M(Q)

θ∗(e)−→ N

[N,G]
κ′−→ GAb

πAb−→ QAb → 0.

If e′ is another profinite extension congruent to e, then θ∗(e) and θ∗(e′) are
compatible via a commutative 5-term ladder diagram. �

If G = F is free, then θ∗(e) is “just” the inclusion

M(G) ∼=
N ∩ [F, F ]

[N,F ]
→ N

[N,G]
.

The proof for the abstract case, given by Beyle and Tappe, [12] p.31, gener-
alises to the profinite case without difficulty.

It is also worth noting (cf. [12], p.33) that if e is a (profinite) central
extension, so [N,G] = 1, the sequence becomes
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M(G)
M(π)→ M(Q)

θ∗(e)→ N
κAb→ G

πAb→ QAb

These 5-term exact sequences have, of course, a homological interpretation.
We will later on give this, using the adaptation of the classical arguments due
to Wambsganß-Türk, [163], but will also give a group theoretic extension of
this to an 8-term sequence using the Brown-Loday exterior product suitably
extended to apply to profinite groups.

7.6 The Universal Coefficient Theorem

A profinite version of this for finite discrete coefficients was given in his thesis,
[163] by Wambsganß-Türk. The key to his proof is the observation that the
p-adic integers Ẑp form a local ring of global dimension 1, so as Ẑ can be
decomposed as a product of various Ẑp, we have gl. dim Ẑ = 1 and the usual
proofs of the Universal Coefficient Theorem go over with little or no change.
His proof generalises easily to pseudocompact coefficients, but as it is couched
in terms of homology, we will state a form of the theorem in the style of Beyl
and Tappe.

Theorem 8. Let G and A be profinite groups with A Abelian, then there is a
natural short exact sequence

0→ Ext1(GAb, A)
ψ→ H2(G,A) θ∗→ Hom(M(G), A)→ 0,

which is split. Identifying H2(G,A) with Cext(G,A), the group of central
extensions of G by A, the maps ψ and θ∗ have the following descriptions.

(i) Let ab : G → GAb be the natural continuous morphism and let [e] ∈
Ext1(GAb, A) with

e : 0→ A→ E → GAb → 0

then ψ[e] = ab∗[e], the extension induced along ab.
(ii) If e : 1 → A → E → G → 1 is a central extension, then θ∗(e) :

M(G)→ A corresponds to e, as in the 5-term exact sequence. �

The proof in Beyl and Tappe, [12] p.34, goes through almost word for word
- note that as Ẑ has global dimension 1, closed subgroups of free profinite
Abelian groups are free profinite-Abelian; this is needed to replace the fact
that a subgroup of a free Abelian group is free Abelian in their proof.

7.7 Universal Profinite Central Extensions.

7.7.1 Perfection!

Suppose G is a profinite group, we will say it is perfect if [G,G] = G, i.e.
it is topological generated by commutators. If G is perfect profinite, then
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its Abelianization, GAb, is zero. This simple observation easily leads to the
following facts about G (as in the abstract group case).

a) For any profinite Abelian group A, there is a natural isomorphism

H2(G,A) θ∗→ Hom(M(G), A)

Thus we get
b) H2(G,−) is representable, i.e. there is an element [e] ∈ H2(G,M(G))

so that θ∗(e) = IdM(G) and hence if [e′] ∈ H2(G,A), there is a unique ϕ :
M(G)→ A (in fact ϕ = θ∗(e′)) satisfying θ∗[e] = [e′].

c) Identifying H2(G,A) with Cext(G,A), [e] gives a central profinite ex-
tension

e : 1→M(G)→ E → G→ 1

with the property that all other central extensions

e′ : 1→ A→ E′ → G→ 1

have the form ϕ∗(e) up to isomorphism, for some unique continuous ϕ :
M(G)→ A determined by e′.

We say that an epimorphism π : E → G is a perfect cover if E is perfect
and Ker π ⊆ Z(E), the centre of E. In the extension e above, π is a perfect
cover of G. In fact, looking at the 5-term exact sequence determined by e, we
get

M(E)
M(π)→ M(G)

θ∗(e)→ M(G)→ E
πAb→ GAb → 0

and, as θ∗(e) is the identity, πAb is an isomorphism, but GAb is trivial.
e) There is a one-one correspondence between closed subgroups of M(G)

and isomorphism classes of perfect covers of G. If U ≤ M(G) is a closed
subgroup, it gives an extension

e/U : 1→M(G)/U → E/U
πU→ G→ 1.

By the previous observations, this corresponds to the epimorphism θ∗(e/U) :
M(G)→M(G)/U given by the natural quotient map. Again using the 5-term
exact sequence, but this time for e/U , one finds πU is an isomorphism so E/U
is again perfect.

This sets up a Galois correspondence between the closed subgroups of
M(G) and the perfect profinite covers of G, (cf. Beyl and Tappe, [12] p.114-
115, and Kervaire, [99] for the abstract group case).

f) One can realise e quite easily; in fact e is isomorphic to the extension

e0 :
R ∩ [F, F ]

[R,F ]
→ [F, F ]

[R,F ]
→ G,

where R→ F → G is a free profinite presentation of G. This is an extension
since ρ : [F, F ] → G is onto. The argument on p.115 of Beyl and Tappe goes
over without change.
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Remarks: a) The above depended in an elementary, but crucial, way on
the possibility of taking coefficients in a profinite Abelian group.

b) The discussion of universal covering groups and Kervaire’s results given
here only scratches the surface. The treatment in depth of these notions given,
for example, in Beyl and Tappe, [12] pp. 115 - 120, would seem to go over
to the profinite case with little or no difficulty, however we have not checked
that this is the case.

c) The above is an example of a Galois theory in the sense of Borceux
and Janelidze, [18], and hence again suggests links to the general area of
Grothendieck’s Pursuit of Stacks, [76]. This, of course, raises the possibility of
interpreting later results on cohomology and homology in this context. There
is much more to be done to clarify these links, even in the abstract group case.

7.8 Cohomology and profinite crossed extensions

7.8.1 Cochains

Consider a pseudocompact G-module, M , and a non-negative integer n. We
can form the chain complex, K(M,n), having M in dimension n and zeroes
elsewhere. We can also form a profinite crossed complex, K(M,n), that plays
the role of the nth Eilenberg-MacLane space of M in this setting. We call it
the nth Eilenberg-MacLane crossed complex of M :

If n = 0, K(M,n)0 = GnM , K(M,n)i = 0, i > 0.
If n ≥ 1, K(M,n)0 = G, K(M,n)n = M , K(M,n)i = 0, i 6= 0 or n.
One way to view cochains is as chain complex morphisms. Thus on looking

at Ch(Pc.G−Mod)(BG,K(M,n)), one finds exactly Zn+1(G,M), the (n+1)-
cocycles of the cochain complex C(G,M). Using the adjointness between ∆G

and ξG given in Chapter 6, and the fact, which the attentive reader will,
of course, have noticed, that K(M,n) = ∆G(K(M,n)), we can also view
Zn+1(G,M) as Prof.CrsG(CG,K(M,n)).

In the category of chain complexes, one has that a homotopy from BG to
K(M,n) between 0 and f , say, is merely a coboundary, so that Hn+1(G,M) ∼=
[BG,K(M,n)], adopting the usual homotopical notation for the group of ho-
motopy classes of maps from the bar resolution BG to K(M,n). This descrip-
tion has its analogue in the crossed complex case as we shall see.

7.8.2 Homotopies

Let C, C′ be two profinite crossed complexes with Q and Q′ respectively as
the cokernels of their bottom morphism. Suppose λ, µ : C → C′ are two
morphisms inducing the same map ϕ : Q→ Q′.

A homotopy from λ to µ is a family, h = {hk : k ≥ 0}, of continuous maps
hk : Ck → C ′k+1 for k ≥ 1 satisfying the following conditions:

H1) h0 : C0 → C ′1 is a continuous derivation along µ0 (i.e. for x, y ∈ C0,
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h0(xy) = h0(x)(µ0h0(y)), )

such that
δ1h0(x) = λ0(x)µ0(x)−1, x ∈ C0.

H2) h1 : C1 → C ′2 is a continuous C0-homomorphism with C0 acting on
C ′2 via λ0 (or via µ0, it makes no difference) such that

δ2h1(x) = µ1(x)−1(h0δ1(x)−1λ1(x)) for x ∈ C1.

H3) for k ≥ 2, hk is a continuous Q-homomorphism (with Q acting on the
C ′k via the induced map ϕ : Q→ Q′) such that

δk+1hk + hk−1δk = λk − µk.

We note that the condition that λ and µ induce the same map, ϕ : Q → Q′,
is, in fact, superfluous as this is implied by H1.

The properties of homotopies and the relation of homotopy are as one
would expect. The continuous analogues of Huebschmann’s results, [86] pp.
307-308, go through without difficulty and one findsHn+1(G,M) ∼= [CG,K(M,n)].
Given that in higher dimensions, this is the same set exactly as [BG,K(M,n)]
means that there is not much to check and so the proof has been omitted.

7.8.3 Huebschmann’s description of cohomology classes.

The transition from this position to obtaining the profinite analogue of Hueb-
schmann’s descriptions of cohomology classes, [86], is now more or less formal.
We will, therefore, only sketch the main points.

If G is a profinite group, M is a pseudocompact G-module and n ≥ 1,
a profinite crossed n-fold extension is an exact augmented profinite crossed
complex,

0→M → Cn−1 → . . .→ C1 → C0 → G→ 1.

The notion of similarity of such extensions is analogous to that of n-fold exten-
sions in the Abelian Yoneda theory, (cf. MacLane, [112]), as is the definition of
a Baer sum. We leave the details to the reader. This yields an Abelian group,
Opextn(G,M), of similarity classes of profinite crossed n-fold extensions of G
by M .

Given a cohomology class in Hn+1(G,M) realisable as a homotopy class
of maps, f : CG→ K(M,n), one uses f to form an induced crossed complex,
much as in the Abelian Yoneda theory:

Jn(G) //

f ′ pushout

��

Cn−1
//

��

. . . // C0
//

��

G

0 // M // Mn−1
// . . . // M0

// G
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where Jn(G) is Ker(Cn−1G → Cn−2G). (Thus JnG is also Im(CnG →
Cn−1G) and as the map f satisfies fδ = 0, it is zero on the subgroup δ(Cn+1G)
(i.e. is constant on the cosets) and hence passes to Im(CnG → Cn−1G) in a
well defined way.) Arguments using lifting of maps and homotopies show that
the assignment of this element of Opextn(G,M) to cls(f) ∈ Hn+1(G,M)
establishes an isomorphism between them. The continuity of the maps and
homotopies is assured by the fact that they are constructed using the freeness
clauses satisfied by the various parts of the crossed resolution CG.

7.8.4 Interpretation in low dimensions.

The importance of having such a description of classes in Hn(G,M) probably
resides in low dimensions. To describe classes in H3(G,M), one has profinite
crossed 2-fold extensions

0→M → C1
∂→ C0 → G→ 1,

where ∂ is a profinite crossed module and so M does need to be a pseudocom-
pact G-module for this to work. In the abstract case, one has for any group
G, a crossed 2-fold extension

0→ Z(G)→ G
∂G→ Aut(G)→ Out(G)→ 1

where ∂G sends g ∈ G to the corresponding inner automorphism of G. An
abstract kernel (in the sense of Eilenberg-MacLane, [52]) is a homomorphism
ψ : Q→ Out(G) and hence provides, by pulling back, a 2-fold extension of Q
by the centre Z(G) of G. In the profinite case, since Aut(G) need not be profi-
nite, abstract kernels may cause problems, however crossed 2-fold extensions
work regardless.

Conrad, [38], has examined the possibility of generalising the notions of
stem extensions to crossed 2-fold extensions for higher order analogues of the
Schur multiplier. It seems likely that these notions and constructs go through
to the profinite case, but we have not checked if this is so.

7.9 Relative crossed extensions

Our aim in this section is to give descriptions of the Auslander-Ribes relative
groups for a pair, (G,H), of profinite groups with coefficients in a pseudo-
compact G-module, M . The descriptions we seek should be the higher order
analogues of the descriptions given above of H1 and H2 in both cases, using
n-fold crossed extensions in the profinite case, however we have not managed
to find such an interpretation for the Adamson-Hochschild theory above H3.

First let us point out that Ostberg, [132], has already begun this process
(in the abstract group case) with a description of the Adamson-Hochschild
H3 using relative abstract kernels.

We will start by looking at the Auslander-Ribes theory:



7.9 Relative crossed extensions 169

7.9.1 Crossed interpretations of the Auslander-Ribes theory

We saw in section 7.3.2, that an Auslander-Ribes relative cohomology class
could be realised by a continuous cochain

f : Ch(j)n →M,

where Ch(j)n = BGn ⊕ BGHn−1. The differential of Ch(j) being given by
d(x, y) = (dGx+ B(j)y,−dHy), such a cochain is a cocycle if and only if, on
writing f = f1 + f2, where f1 : BGn → M , f2 : BGHn−1 → M , f1 is an
n-cocycle and f1|H (i.e. f1B(j)) is a coboundary: f1B(j)y = f2dHy.

Although we have already considered the case n = 2, it will pay to look
at it again as the interpretation given in section 7.3.2 needs to be adapted
slightly before it can be generalised to higher dimensions.

A cocycle f : C1G → M determines an extension as usual, however this
can be viewed in a slightly different way. The continuous map f induces a
map from J1G to M , but

J1G→ C0G→ G

is the extension
N → FG → G,

which determines an Abelian extension,

0→ NAb → F/[N,N ]→ G→ 1.

The map f : J1G→M factors via a map fAb : NAb →M , and hence induces
an extension in the usual way

0 // NAb //

��

F/[N,N ] //

��

G //

=

��

1

0 // M // Ef // G // 1

with the left hand square a pushout.
If the G-action on M is trivial, then the map fAb : NAb → M factors

further via N/[G,N ], and one gets a central extension.
Now turning to the relative case, as we have not defined a homotopy

cokernel in the context of profinite crossed complexes, we must be careful.
We have a relative cocycle, (f1, f2), where f1 : C1G → N is a G-cocycle and
where f2 : C0H →M satisfies f2∂ = f1C1(j), i.e., we have a diagram
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C1H
C1(j) //

∂

��

C1G
f1 //

��

M

C0H
C0(j)

//

��

f2

55llllllllllllllll
C0G

��
H

j
// G

Passing to the Abelianisations yields

NAb
H

N(j)Ab//

��

NAb
G

fAb1 //

��

M

FH //

��

f2

66mmmmmmmmmmmmmmmmm
FG

��
H

j
// G

and as before the induced extensions Ef over G and E ′ over H will be given by
pushouts along fAb1 and fAb1 NAb(j) respectively. However the induced exten-
sion E ′ over H is easily checked to be congruent to the restricted one, j∗(Ef ),
which, by our arguments in earlier sections, is split. How can we see it is split
directly? This is, in fact, easy, since we have a diagram

NAb
H

//

��

M

i

��
FH //

��

f2

==

E′

��
H

j
// H

(Top square a pushout)

and f2 induces a continuous map, E′ →M , splitting i.
Now this treatment generalises easily to higher dimensions. In general, if

(f1, f2) : Ch(j)n → M is a relative n-cocycle, we have a profinite crossed
n-fold extension E determined by f1 and the diagram

0 // Jn(G) //

f ′

��

Cn−1
//

��

. . . // C0
//

��

G

0 // M // Mn−1
// . . . // C0G // G
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with the first square a pushout. Corresponding to f1C(j), there is a split
profinite crossed n-fold extension of H with the splitting determined by f2,
i.e., what could be called a relatively split crossed n-fold extension. Choosing
a different but cohomologous pair, (f

′

1, f
′

2) say, changes the n-fold extensions
by a congruence, but the splittings over H will not necessarily be preserved,
instead they will be “homotopic” i.e. differing by a map from the last-but-three
term in the extension. With this description one should be able to give a simple
description of the boundary terms in the Auslander-Ribes exact sequence. As
we have no immediate application in mind, we will leave the final details to
the reader.

7.9.2 Adamson-Hochschild theory

We now turn more briefly to the Adamson-Hochschild theory. This, in general,
is much more difficult to interpret. In fact apart from Ostberg’s description
of classes in H3 given in [132], it is difficult to find any definite results. Hueb-
schmann, [87], has an interpretation in a general case, but as his description
involves automorphism groups, it does not easily generalise to the profinite
case. Loday, [105], gives a neat description if H is a normal subgroup of G and
H acts trivially on M , but in this case M is a Q-module and, by the results
of Adamson, [1], H3((G,H);M) ∼= H3(Q,M), so we can give a description of
elements in this case already. (Loday’s results are, however, of interest because
of their link with relative universal central extensions, see also Conrad, [37].)
No really adequate interpretation of relative cohomology classes (in the sense
of Adamson and Hochschild) seems to have yet appeared in print - at least
as far as we have seen. The importance of such an interpretation would be
the possibility of working out more information on the next level within the
L-H-S spectral sequence. All the above refers to the “abstract” group case,
but it applies equally to the profinite case.

We finish with a brief look at Ostberg’s relative crossed 2-fold extensions.
(He uses the language of abstract kernels, but, in the profinite case, crossed
2-fold extensions are more appropriate.)

A profinite relative crossed 2-fold extension is a diagram,

0 // M

=

// C1
∂ // C0

p // G // 1

0 // M // C ′1
∂′
//

OO

C ′0
p′
//

OO

H //

j

OO
s

__

1

,

with the two rows being profinite crossed 2-fold extensions of G or H by
the pseudocompact G-module M , together with a continuous homomorphism
s : H → C0 such that ps = j and such that there is a continuous transversal
γ : G → C0 satisfying γj = s and γ(gh) = γ(g)s(h), γ(hg) = s(h)γ(g) for all
g ∈ G, h ∈ H.
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Although higher order versions of this can be written down, it is difficult
to check that such gadgets contain equivalent information to relative cocycles.
There would seem to be a need for further invesitgation here.

7.10 Profinite 2-types and profinite cohomology

We now turn to a discussion of the second type of application that was men-
tioned as motivation in the introduction to this chapter. In classifying homo-
topy types and in obstruction theory, one frequently has invariants that are
elements in cohomology groups of the form Hm(X,π), where typically π is
the nth homotopy group of some space. When dealing with profinite homo-
topy types, π will be a profinite group, usually Abelian with a π1 action, i.e.
we are exactly in the situation described in this chapter, except that X is a
profinite homotopy type not a profinite group. Of course, provided that X is
connected, we can replace X by a profinite simplicial group, bringing us even
nearer to the situation of this chapter. A complete “work-out” of these ideas
is however still lacking, but in one case we can handle this in complete detail,
namely for describing profinite 2-types. We shall work within the category of
profinite simplicial groups.

7.10.1 Profinite 2-types

Recall, from chapter 2, that a morphism

f : G→ H

of simplicial groups is called a 2-equivalence if it induces isomorphisms

π0(f) : π0(G)→ π0(H, )

and
π1(f) : π1(G)→ π1(H).

Clearly there is no obstruction to extending this definition to profinite or pro-
C simplicial groups, and we will consider this ‘done’. We can form a quotient
category, Ho2(Prof.Simp.Grps), of Prof.Simp.Grps by formally inverting
the 2-equivalences. Then we say two profinite simplicial groups, G and H, have
the same profinite 2-type if they are isomorphic in Ho2(Prof.Simp.Grps).

This is, of course, just a special case of the general notion of n-type
in which “n-equivalences” are inverted, thus forming the quotient category
Hon(Prof.Simp.Grps). An n-equivalence is a morphism, f , inducing isomor-
phisms, πi(f), for i = 0, 1, . . . n − 1. (Do not forget the cautionary note on
page 59.)
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7.10.2 Profinite 1-types

Before examining profinite 2-types in detail, it will pay to think about 1-types.
A morphism f as above is a 1-equivalence if it induces an isomorphism on π0,
i.e. π0(f) is an isomorphism. Given any profinite group G, there is a profinite
simplicial group, K(G, 0) consisting of G in each dimension with face and
degeneracy maps all identities. Given a profinite simplicial group H, having
G ∼= π0(H), the natural quotient map

H0 → π0(H) ∼= G,

extends to a natural 1-equivalence between H and K(π0(H), 0).
It is fairly routine to check that

π0 : Prof.Simp.Grps→ Prof.Grps

has K(−, 0) as an adjoint and that, as the unit is a natural 1-equivalence, and
the counit an isomorphism, this adjoint pair induces an equivalence between
the category Ho1(Prof.Simp.Grps) of 1-types and the category, Prof.Grps,
of profinite groups. In other words,

profinite groups are algebraic models for profinite 1-types.

7.10.3 Algebraic models for profinite n-types?

So much for profinite 1-types. Can one provide algebraic models for profinite
2-types or, in general, profinite n-types? We touched on this in Chapter 2.1.
The criteria that any such “models” might satisfy are debatable. Perhaps ide-
ally, or even unrealistically, there should be an isomorphism class of algebraic
“gadget” for each 2-type. An alternative weaker solution is to say that a no-
tion of equivalence between the models is possible, only equivalence classes,
not isomorphism classes, correspond to 2-types, but the notion of equivalence
is algebraically defined. It is this weaker possibility that corresponds to our
aim here.

7.10.4 Algebraic models for profinite 2-types.

In section 4.3, we discussed how to pass from profinite simplicial groups to
profinite crossed modules, and back again. Recall that if G is a profinite
simplicial group, then we can form a profinite crossed module

∂ :
NG1

d0(NG2)
→ G0,

where the action of G0 is via the degeneracy, s0 : G0 → G1, and ∂ is induced
by d0. (As before we will denote this profinite crossed module by M(G, 1).)
The kernel of ∂ is
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Ker d0 ∩Ker d1

d0(NG2)
∼= π1(G),

whilst its cokernel is
G0

d0(NG1)
∼= π0(G),

and so we have a profinite crossed 2-fold extension

0→ π1(G)→ NG1

d0(NG2)
→ G0 → π0(G)→ 1

and hence a cohomology class k(G) ∈ H3(π0(G), π1(G)).
Suppose now that f : G→ H is a morphism of profinite simplicial groups,

then one obtains a commutative diagram

0 // π1(G) //

π1(f)

��

NG1
d0(NG2)

//

��

G0
//

f0

��

π0(G) //

π0(f)

��

1

0 // π1(H) // NH1
d0(NH2)

// H0
// π0(H) // 1

If, therefore, f is a 2-equivalence, π0(f) and π1(f) will be isomorphisms
and the diagram shows that, modulo these isomorphisms, k(G) and k(H) are
the same cohomology class, i.e. the 2-type of G determines π0, π1 and this
cohomology class, k in H3(π0, π1).

Conversely, suppose we are given a profinite group π, a pseudocompact
Ẑ[[π]]-module, M , and a cohomology class k ∈ H3(π,M), then we can realise
k by a profinite 2-fold extension

0→M → C
∂→ G→ π → 1

(by the results of section 7.8.3). The profinite crossed module, X = (C,G, ∂),
determines a profinite simplicial group E(X ) as in section 4.3 and

M(E(X ), 1) ∼= X .

Suppose we had chosen an equivalent profinite 2-fold extension

0→M → C ′
d′→ G′ → π → 1

The equivalence guarantees that there is a zig-zag of maps of 2-fold extensions
joining it to that considered earlier. We need only look at the case of a direct
basic equivalence:

0 // M //

=

��

C
∂ //

��

G //

��

π //

=

��

1

0 // M // C ′
∂′ // G′ // π // 1
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giving a map of profinite crossed modules, ϕ : X → X ′, where X ′ =
(C ′, G′, ∂′). This induces a morphism of simplicial groups,

E(ϕ) : E(X )→ E(X ′),

that is, of course, a 2-equivalence. If there is a longer zig-zag between X and
X ′ then the intermediate profinite crossed modules give intermediate profinite
simplicial groups and a zig-zag of 2-equivalences so that E(X ) and E(X ′) are
isomorphic in Ho2(Prof.Simp.Grps), i.e. they have the same 2-type. This
argument can, of course, be reversed.

If G and H have the same 2-type, they are isomorphic within the cat-
egory Ho2(Prof.Simp.Grps), so they are linked in Prof.Simp.Grps by a
zig-zag of 2-equivalences, hence the corresponding cohomology classes in
H3(π0(G), π1(G)) are the same up to identification of H3(π0(G), π1(G)) and
H3(π0(H), π1(H)). This proves the profinite analogue of the result of MacLane
and Whitehead, [114], that we mentioned earlier, 36, giving an algebraic model
for 2-types of connected CW-complexes.

Theorem 9. (MacLane and Whitehead, [114]) Profinite 2-types are classi-
fied by a profinite group π0, a pseudocompact π0-module, π1 and a class in
H3(π0, π1). �

We have handled this in such a way as to derive an equivalence of categories:

Proposition 49. There is an equivalence of categories,

Ho2(Prof.Simp.Grps) ∼= Ho(Prof.CMod),

where Ho(Prof.CMod) is formed from Prof.CMod by formally inverting
those maps of crossed modules that induce isomorphisms on both the kernels
and the cokernels. �

The corresponding abstract group case can be found in various sources, for
instance, Baues, [9].

We could equally well attempt to look at the cohomology classes of crossed
n-fold extensions, but these will not correspond to all (profinite) n-types as
there is extra structure in the general n-type. We will look at this shortly.

7.11 Summary and Conclusions.

In this chapter we have attempted to give a “survey” of some of those parts
of the cohomology theory of groups that generalise to the profinite case if
one replaces the usual discrete coefficients of the cohomology by pseudocom-
pact ones. We hope we have convinced the potential user that this theory is
quite accessible, it being, for the most part, a moderately simple process to
transform the “abstract” theory into the profinite/pseudocompact context.
Versions of much of this material can also be developed for pro−C groups.
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The main algebriac application that we have given is to the theory of uni-
versal central extensions of perfect profinite groups, but, as we have indicated,
much of the cohomological treatment of stem extensions and of representation
groups (given in Beyl and Tappe, [12], for instance) can be adapted on much
the same lines. We have only aimed to indicate what is possible not to give an
exhaustive survey parallel to existing treatments in the abstract group case.

Our treatment of the relative cohomology groups will hopefully draw at-
tention to the need for a unified approach. Many authors have worked in
this area, but a detailed comparison of the Auslander-Ribes and Adamson-
Hochschild approaches does not, as yet, exist except in low dimensions as here.
The importance of this for understanding the possible extensions of the 5-term
exact sequence and also for non-Abelian cohomology, seems clear. This is true
even for the abstract case; in the profinite case, certain of the constructions hit
the additional difficulty that automorphism groups of profinite groups need
not be profinite, and perhaps this indicates a need to work with prodiscrete
localic groups or similar objects that may allow automorphism objects to be
constructed.

When it comes to the theory of profinite crossed extensions, we have again
not been exhaustive in our treatment. No definitive version in the abstract
case yet exists. For the would-be user of this, for instance, in the case of 2-
fold extensions, we would draw their attention to Loday’s paper, [105], and
also to Conrad’s two articles [37] and [38], which treat central and stem 2-
fold extensions and higher versions of the Schur multiplier respectively. These
would seem to have considerable potential for application. Of course, for the
development of the general theory, Huebschmann’s work should be consulted,
see the bibliography.

The profinite generalisation of the results of MacLane and Whitehead,
[114], further supports the view that pseudocompact coefficients are needed
to get a complete picture of the potential of profinite cohomology. Analogues
for n-types in general will be given in Chapter ??.

Finally we would like to raise the tantalising problem of the link between
this cohomology theory and profinite presentations of (pro)finite groups. The
powerful results of Golod and Safarevic (cf. [152]) showed that the cohomology
theory of finite p-groups yields detailed information on the relative numbers
of generators and relations needed. Now one has the additional information, is
it possible to analyse this information yet further perhaps to give even better
knowledge of the deficiency of a p-group?
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Homology of Profinite Groups

Many of the applications of the new crossed module techniques have been
in the homology rather than the cohomology of groups. In particular the
development by Brown and Loday, [31], of a non-Abelian tensor product for
groups and its subsequent purely algebraic treatment by Ellis, [53, 54], has
yielded eight term exact homology sequences with explicit descriptions of the
extra terms. This work grew out of the crossed module and crossed square
versions of van Kampen’s theorem, [31].

As we suggested in the previous chapter, the natural way to handle cen-
tral extensions is via a profinite valued homology theory. Such a theory was
defined by Brumer, [34], but although Wambsganß-Türk, [163], and Korkes
have pushed his results further along the classical lines of homological alge-
bra, no treatment of this theory is at present in the published literature. In
this chapter we not only include a brief resumé of this foundational material,
but will push the homology theory further along the lines already developed
by Brown, Loday, Ellis and others in the case of abstract groups, introduc-
ing tensor and exterior products of profinite groups, and applying them to
give further information on central extensions, an eight term homology exact
sequence, and so on.

We will assume that the reader has some basic background knowledge of
homological algebra and the homology of groups.

8.1 Tensor and Torsion Products of Pseudo-Compact
Ẑ[[G]]-modules and Homology Groups of Profinite
Groups.

8.1.1 Tensor products of modules

We start by examining in more detail the construction of the tensor product
of pseudocompact modules as given by Brumer, [34]. We have already used it
earlier.
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Definition: Let M be a right pseudocompact Ẑ[[G]]-module and N a
left pseudocompact Ẑ[[G]]-module, then their (completed) tensor product is
a pseudocompact Ẑ-module, M⊗̂GN defined as an inverse limit of the tensor
products of their finite quotient modules M/U and N/V , where U ∈ Ω(M),
V ∈ Ω(N), that is, U and V are taken from the directed sets of all open
submodules of M and N , respectively, that are of finite colength:

M⊗̂GN = Lim{(M/U)⊗G (N/V ) : U ∈ Ω(M), V ∈ Ω(N)}.

Since each M/U and N/V is a Ẑ[[G]]-module of finite length, their tensor
product over G is also of finite length and hence M⊗̂GN is a pseudocompact
Ẑ-module. Of course, if either M is a left pseudocompact Ẑ[[H]]-module, or
N is a right pseudocompact Ẑ[[H]]-module, then M⊗̂GN will inherit that
structure.

8.1.2 Representing elements in completed tensors.

If m ∈ M then, since M ∼= Lim{M/U : U ∈ Ω(M)}, we can represent m
by a system of elements m = (mU )U∈Ω(M), where mU = m + U ∈ M/U . If
m = (mU ) and n = (nV ) then we will, of course, denote by m⊗n the element
{mU ⊗ nV : U ∈ Ω(M), V ∈ Ω(N)} in M⊗̂GN .

There is a continuous function

f : M ×N →M⊗̂GN

defined by f(m,n) = m ⊗ n . This mapping is bilinear and is the universal
bilinear map with domain M ×N .

8.1.3 Torsion products

Brumer, [34], notes that Pc.G−Mod has enough projectives, see also, [148].
Using this, it is routine to define torsion products.

Definition: Let M be a right and N a left pseudocompact Ẑ[[G]]-module.
The nth torsion product, TorGn (M,N) and N is defined to be the nth left
derived functor of M⊗̂− evaluated at N .

One thus takes a projective resolution P of N within the category Pc.G−
Mod and one puts

TorGn (M,N) = Hn(M⊗̂GP).

The usual properties of TorGn follow as in the non-topological case.

8.1.4 Homology

Again turning to Brumer, we find the following:
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Definition: Let G be a profinite group and let M be a right pseudocom-
pact Ẑ[[G]]-module. The nth homology group of G with coefficients in M , is
given by

Hn(G,M) = TorGn (M, Ẑ).

If M is also a left pseudocompact Ẑ[[G]]-module, then each Hn(G,M) will
be one as well. (To see this note that M⊗̂GP will be within Pc.H−Mod, hence
so will be its homology).

If G = LimGi and M = LimMi where the Mi are pseudocompact Gi-
modules, then Brumer proves ([34], p.455) that

TorGn (M, Ẑ) ∼= LimTorGin (Mi, Ẑ)

and thus, as a particular case, one obtains

Hn(G,M) = Lim {Hn(G/U,M/MÎ(U)) : U ∈ Ω(G)}

A “rival” definition was given in [133] by Poitou. The aim of his theory
was towards a duality theory rather than towards homological dimension, as
was that of Brumer. Poitou’s definition is:

Hn(G,M) = Lim {Hn(G/U,MU ) : U ∈ Ω(G)},

where, as usual, MU = {m ∈M : um = m for all u ∈ U}.

8.2 A profinite Hopf formula

In section 7.5, in the last chapter, we introduced the profinite version of the
Schur multiplier:

M(G) =
R ∩ [F, F ]

[F,R]
.

Of course, we should expect that this is isomorphic to H2(G, Ẑ) as in the
classical theory for abstract groups. We would also expect the proof to be
more or less the same. We start this section with a resumé of this proof.

8.2.1 The profinite Stallings 5-term exact homology sequence.

We have already seen the following (Proposition 40, p.130):
If

1→ K
φ→ G

ψ→ Q→ 1

is an exact sequence of profinite groups and continuous homomorphisms, then
there is an exact sequence

0→ KAb φ̃→ Ẑ[[Q]]⊗̂GÎ(G)
ψ̃→ Î(Q)→ 0

of pseudocompact Ẑ[[Q]]-modules.
The Stallings 5-term exact homology sequence (see Stallings [154]) has a

profinite analogue:
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Proposition 50. Given an exact sequence of profinite groups and continuous
homomorphisms, as above, then for M a pseudocompact Ẑ[[Q]]-module, the
following sequence is exact:

H2(G,M)→ H2(Q,M)→M⊗̂QKAb →M⊗̂GÎ(G)→M⊗̂QÎ(Q)→ 0.

�

The usual proof for the abstract group case, which involves the long exact
TorQ∗ (M,−)-sequence, goes over with no difficulty, so a detailed proof will
not be given here. This is, as we will see later, the same result as Proposition
48, when M = Ẑ. One of the key lemmas in the proof of the above is that
there is a natural isomorphism

TorQi−1(M, Î(Q)) ∼= Hi(Q,M), i ≥ 2.

This is proved using the TorQ∗ (M,−)-sequence applied to the short exact
augmentation sequence,

0→ Î(Q)→ Ẑ[[Q]] ε→ Ẑ→ 0.

In the case i = 1, a weaker result holds, namely that

0→ H1(Q,M)→M⊗̂QÎ(Q)→M⊗̂QẐ[[Q]]→M⊗̂QẐ

is exact, so that H1(Q,M) = Ker(M⊗̂QÎ(Q)→ M), since M⊗̂QẐ[[Q]] ∼= M .
This map from M⊗̂QÎ(Q) to M is, of course, given on generators by m⊗a =
ma, so if the action of Q on M is trivial, this map is zero and H1(Q,M) ∼=
M⊗̂QÎ(Q). Thus, in this situation (and in particular when M = Ẑ), we get a
5-term exact sequence

H2(G,M)→ H2(Q,M)→M⊗̂KAb → H1(G,M)→ H1(Q,M)→ 0.

The particular case of the above in which M = Ẑ is of most interest. We write
Hi(G) for Hi(G, Ẑ). This then gives, as a special case of the above, an exact
sequence

H2(G)→ H2(Q)→ Ẑ⊗̂KAb → H1(G)→ H1(Q)→ 0.

This sequence is isomorphic, as we shall show, to that given by Proposition
48, page 163:

M(G)→M(Q)→ K

[K,G]
→ GAb → QAb → 0

where M(G) is the profinite Schur multiplier.
The first point to note, that H1(G) ∼= GAb, is an easy consequence of the

isomorphism H1(G) ∼= Ẑ⊗̂GÎ(G) as in the discrete case.
We next note the following:
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Proposition 51. If F is a free profinite group, then for any pseudocompact
ẐF -module, M , and any n ≥ 2, Hn(F,M) = 0 .

Proof: By Corollary 12, Î(F ) is a free pseudocompact Ẑ[[F ]]-module, hence

0→ Î(F )→ Ẑ[[F ]]→ Ẑ→ 0

is a free resolution of Ẑ. Of course, as in the abstract case, this implies that
TorFn (M, Ẑ) = 0 for n ≥ 2; an alternative way is to use the isomorphism

Hi(F,M) ∼= Tori−1(M, Î(F )) for i ≥ 2

and the freeness of Î(F ). �

8.2.2 Comparison of the 5-term sequences

To continue our comparison of the two five term exact sequences, we need to

investigate Ẑ⊗̂KAb and the quotient,
K

[K,G]
.

Let M be a pseudocompact Ẑ[[Q]]-module with trivial Q-action, and

p : K/[K,K]→ K/[K,G],

the obvious natural morphism. It is sufficient to prove that

p∗ : HomẐ(
K

[K,G]
,M)→ HomẐ[[Q]](K

Ab,M)

is an isomorphism, since the right hand group is isomorphic toHomẐ(Kab⊗̂Ẑ,M),
in the usual way. Here HomẐ denotes the continuous Ẑ-module morphisms.
(We recall, from section 3.2.5, that KAb is a pseudocompact Ẑ[[Q]]-module,
since K → G is a profinite crossed module).

Given θ : KAb → M , over Ẑ[[Q]], then the kernel of θ, Ker θ, contains
[K,G]/[K,K], since if [k, g] is a commutator with k ∈ K, g ∈ G,

θ([k, g][K,K] = θ(k[K,K]) + ψ(g)θ(k−1[K,K])
= θ(k[K,K])− ψ(g)θ(k[K,K])
= 0,

since the action of ψ(g) on M is trivial. Hence there exists a morphism θ̄ :
K/[K,G] → M induced by θ, i.e., p∗ is onto. To complete the proof, we
have to show it is one-one, but as p is an epimorphism in the category of
pseudocompact Z[[Q]]-modules, this is immediate.

We record this as a lemma for future reference.

Lemma 17. The natural isomorphism from KAb to K/[K,G] induces a nat-
ural isomorphism

KAb⊗̂Ẑ→ K/[K,G].

�
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8.2.3 Profinite Hopf formula

This lemma leads, as in the classical abstract case, to an isomorphism between
H1(G) and M(G), the profinite Schur multiplier. The following was noted by
both Türk, [163], and Korkes, [100].

Proposition 52. Let the profinite group G have a presentation (X : R), then
writing F for F (X) the free profinite group on X, and N(R) for the closed
normal closure of R, there is a natural isomorphism

H2(G, Ẑ) ∼=
N(R) ∩ [F, F ]

[F,N(R)]
= M(G).

Proof: Writing N for N(R), we get a short exact sequence

1→ N → F → G→ 1

and hence a five-term exact sequence for M a pseudocompact Ẑ[[G]]-module,

H2(F,M)→ H2(G,M)→M⊗̂GNAb →M⊗̂F Î(F ))→M⊗̂GÎ(G)→ 0.

We have already noted (Proposition 51) that H2(F,M) = 0, so

H2(G,M) ∼= Ker(M⊗̂GNAb →M⊗̂F Î(F )).

In the case where M is the trivial Ẑ[[G]]-module, Ẑ, we have calculated that
this is equivalent to

H2(G, Ẑ) ∼= Ker

(
N

[F,N ]
→ F

[F, F ]

)
),

i.e.,

H2(G, Ẑ) ∼=
N ∩ [F, F ]

[F,N ]
,

as required. �

8.2.4 8-term sequences?

This profinite Hopf formula shows, as promised, that H2(G) ∼= M(G) thus
linking up the homologically derived 5-term exact sequence with that derived
earlier by non-homological means. The homological sequence has a well-known
extension to an eight term exact sequence if the initial short exact sequence

1→ N → G→ Q→ 1

is a weak stem central extension. The sixth term, first noted by Ganea, [67],
is GAb ⊗N . The next two terms are H3 of Q and G respectively, giving
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H3(G)→ H3(Q)→ GAb ⊗N → H2(G)→ H2(Q)
→ N/[G,N ]→ H1(G)→ H1(Q)→ 0

Gut [80] also has this eight term sequence as well as a ten term sequence.
The blockage to non-central versions of this is the difficulty of deciding what
a non-Abelian tensor product of groups should be. We will turn to this in the
profinite case shortly.

The central version of the eight term exact sequence for profinite group
homology has been derived from the abstract case by Türk, [163]. We will
give a more general result with no centrality conditions later in this chapter,
based on the work of Korkes, [100]. This partially fills the gap between the
8-term exact sequence of the homological case and the “elementary” Schur
multiplier approach which only yields a 5-term sequence.

The main applications we will give of this material are to a homological
treatment of universal central extensions via a profinite version of the Brown-
Loday tensor product, which will be given shortly, and a profinite ‘Stallings
theorem’ on the lower central series quotients.

8.2.5 A profinite Stallings theorem.

As one would expect, the definition of the lower central series of a profinite
group is obtained from that in the abstract case by taking the closure of the
commutator subgroups. For completeness we give it in full:

Let G be a profinite group, and define subgroups Gi, i = 0, 1, . . . by the
rules: G0 = G, Gn+1 = [G,Gn] = closed subgroup generated by the relevant
commutators [x, y], x ∈ G, y ∈ Gn. The series G0 ⊇ G1 ⊇ . . . ⊇ Gn ⊇ . . . is
the lower central series of G. Note each Gn is a closed normal subgroup of G.

Proposition 53. Let g : G→ H be a continuous morphism of profinite groups
such that g induces an isomorphism g∗ : GAb → HAb and an epimorphism
g∗ : H2(G)→ H2(H), then g induces isomorphisms

gn : G/Gn → H/Hn, n ≥ 0.

Proof: For n ≥ 2, we have exact sequences

1→ Gn−1 → G→ G/Gn−1 → 1

and
1→ Hn−1 → H → H/Hn−1 → 1.

These give us a commutative exact ‘ladder’ in homology

H2(G) //

β1

��

H2(G/Gn−1) //

β2

��

Gn−1/[G,Gn−1] //

β3

��

GAb //

β4

��

(G/Gn−1)Ab //

β5

��

0

H2(H) // H2(H/Hn−1) // Hn−1/[H,Hn−1] // HAb // (H/Hn−1)Ab // 0,
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where the βi are induced by g. We are given that β4 is an isomorphism, whilst
β1 is an epimorphism. We note that the morphism

gn : G/Gn → H/Hn

is trivially an isomorphism for n = 0 and that the hypothesis of the statement
of the result includes the case n = 1. We assume as induction hypothesis
that gn−1 is an isomorphism. This implies that β2 and β5, in the ‘ladder’, are
isomorphisms and, by the Five Lemma, so is β3. We thus know that in the
following diagram

Gn−1/Gn //

β3

��

G/Gn //

gn

��

G/Gn−1

gn−1

��
Hn−1/Hn

// H/Hn
// H/Hn−1

with exact rows, gn−1 is an isomorphism (by hypothesis), and β3 is by the
above, hence gn is. �

8.3 Non-Abelian tensor products of profinite groups

As mentioned earlier, the problem of extending the five-term exact sequence
to the left is easily resolved if the extension involved is central. Ganea, [67],
found a tensor product term that does the job. In general this suggests that
one needs a non-Abelian tensor product. Such is provided in the abstract case
via the theory of crossed squares and by Brown-Loday, [31], in their work on
van Kampen theorems for catn-groups. The non-Abelian tensor product is
not, however, limited in its usefulness to plugging a hole in an exact sequence!
It provides a new neat description of H2 of a group that completes that given
by C. Miller, [118], and involves “universal commutator relations”. It also
gives a “Hopf-like” description of H3. For perfect groups it provides insight
into the structure of the universal central extensions. All of these aspects have
their analogues in the profinite case. Most will be treated later in this chapter.

8.3.1 The non-Abelian tensor product

Let G and H be profinite groups and further suppose that G acts continuously
on the left on H and H similarly acts continuously on the left of G, the two
actions being compatible in the sense that for g, g′ ∈ G, h, h′ ∈ H,

(gh)g′ = g(h(g−1g′g)) (hg)h′ = h(g(h−1h′h)).

Thus we are also considering G and H acting on themselves by conjugation.
The profinite tensor product of G and H, written G⊗̂H is the profinite group
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generated by the profinite space G × H, a typical generator being written
(g ⊗ h), on which G and H act diagonally and in which the relations

(1) gg′ ⊗ h = g(g′ ⊗ h)(g ⊗ h)

(2) g ⊗ hh′ = (g ⊗ h)h(g ⊗ h′)
are satisfied for all g, g′ ∈ G, h, h′ ∈ H.

8.3.2 Tensor relations, commutators and crossed pairings.

We note the similarity between these relations and the commutator relations
within a group G,

[gg′, h] = g[g′, h][g, h]

and
[g, hh′] = [g, h]h[g, h′].

Of course g[g′, h] = [gg′, gh], so the action is of the same diagonal type as
well. This observation will be useful later on.

If M , N are closed normal subgroups of G then there is a commutator
map

[ , ] : M ×N → G.

The remark above shows that this has certain good properties. In the
abstract group case, Brown and Loday have extracted these properties to
obtain the definition of a crossed pairing (see Brown-Loday, [31]).

Definition: If G, H and A are profinite groups with continuous left actions
of G and H on themselves, each other and on A, a continuous crossed pairing
is a continuous function

f : G×H → A

satisfying
(i) f(gg′, h) = gf(g′h)f(g, h),
(ii) f(g, hh′) = f(g, h)hf(g, h′),
(iii) f(mg,m h) = mf(g, h),
for any g, g′ ∈ G, h, h′ ∈ H, any elements m of G or H (or equivalently any
m ∈ G ∗H, the free product of G and H).

Proposition 54. The function

φ : G×H → G⊗̂H,

given by φ(g, h) = g ⊗ h, is a continuous crossed pairing.
Moreover, given any continuous crossed pairing

φ′ : G×H → A,

there is a unique continuous homomorphism θ : G⊗̂H → A satisfying φ = θφ,
(φ is a universal continuous crossed pairing).
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Proof: As the inclusion of G×H into the free profinite group, F (G×H),
is continuous and the quotient from that second group to G⊗̂H is as well, the
map φ is clearly continuous. The conditions for φ to be a crossed pairing are
easily checked; for example

(i) φ(gg′, h) = gg′ ⊗ h
= g(g′ ⊗ h).g ⊗ h
= gφ(g′, h)φ(g, h)

by definition. The other two are just as easy.
Given φ′ : G×H → A, it is clear that if θ exists, it must satisfy θ(g⊗h) =

φ′(g, h), so uniqueness is again easy. The existence of θ follows from the fact
that the extension of φ′ to F (G×H) must vanish on the relations of the given
presentation of G⊗̂H. �

8.4 Universal profinite central extensions

8.4.1 Universal profinite central extensions revisited

We have already briefly considered the existence of universal profinite central
extensions in the previous chapter, p. 164. There we used cohomology and the
Schur multiplier. This gives, for a perfect profinite group, G, with profinite
presentation sequence

R→ F → G,

the usual form
R ∩ [F, F ]

[R,F ]
→ [F, F ]

[R,F ]
→ G

for the universal profinite central extension. (This theory when H2(G) =
M(G) is finite can also be found in Wambsganß-Türk, [163]). For convenience
we will briefly reformulate the basic definitions here.

An extension

1→ N
α→ G

β→ Q→ 1 . . . (∗)

of profinite groups is said to be central if the natural action of Q on N makes
it a trivial pseudocompact Q-module. Of course, this happens exactly when
N ⊂ Z(G), the centre of G, since for any choice t : Q→ G of transversal for
β, the Q-action on N is given by

α(qn) = t(q)α(n)t(q)−1.

A central profinite extension (*) of Q by N is said to be universal if given
any central profinite extension

1→M → H → Q→ 1
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of Q, there exists a unique continuous homomorphism from G to H (over Q)
i.e. there exists a unique ϕ : G→ H such that β′ϕ = β.

A central profinite extension (*) is split if there is a continuous homomor-
phism s : Q → G such that βs = identity on Q, i.e., the epimorphism of the
extension is split.

The results that follow are the profinite analogues of the results in the
abstract case given by Milnor, [119]. The proofs are easy adaptations of those
given there, but are included for convenience.

Proposition 55. Let
1→ N → G→ Q→ 1

and
1→M → H → Q→ 1

be two central profinite extensions and suppose that G is perfect profinite.
Then there is at most one continuous homomorphism from G to H over G.

Proof: Suppose α1 and α2 are continuous homomorphisms from G to H over
Q, then for g1, g2 ∈ G, we have

α1(g1) = α2(g1)m1

and
α1(g2) = α2(g2)m2,

where m1, m2 ∈M and hence are central in H.
Thus

α1([g1, g2]) = α2([g1, g2]) for all g1, g2 ∈ G,
but as G = [G,G], this means α1 = α2. �

Corollary 14. If G is not perfect profinite in the above, there exists a profinite
central extension

1→M → H → Q→ 1

with at least two homomorphisms α1, α2 : G→M over Q.

Proof: As G is not profinite perfect, there is a nonzero continuous f from
G to some Abelian profinite group M . Take H = M × Q with β′(q,m), for
q ∈ Q, m ∈M . We set

α1(g) = (β(g), 1), α2(g) = (β(g), f(g)).

These are clearly continuous and over Q. �

Proposition 56. If
1→ N → G→ Q→ 1

is a central profinite extension of a perfect profinite group Q, then the closed
commutator subgroup G′ = [G,G] of G is perfect and maps onto Q. Thus

1→ N ∩G′ → G′ → Q→ 1

is a perfect profinite extension of Q.



188 8 Homology of Profinite Groups

Proof: As Q = [Q,Q], it is clear that β(G′) = Q. Thus every element g ∈ G
can be written as a product g′a for g′ ∈ G, a ∈ N . Therefore any (topological)
generator [g1, g2] can be rewritten [g′1, g

′
2] for some g′1,g′2 ∈ G′. Thus G′ =

[G′, G′] as required. �

8.4.2 The link with tensor products.

We saw in an earlier section that given a perfect profinite group Q, and a
profinite presentation sequence

1→ R→ F → Q→ 1

then the sequence

1→ R ∩ [F, F ]
[F,R]

→ [F, F ]
[F,R]

→ Q→ 1 . . . (†)

is a universal central extension. (The proof from Beyl and Tappe, [12], p.115,
extends without difficulty.) We can see this directly now that we have a few
more results at our disposal.

The extension
1→ R

[F,R]
→ F

[F,R]
θ→ Q→ 1

will be central whatever Q we have, but, if Q is perfect profinite, then θ
induces an epimorphism from [F, F ]/[R,F ] to Q giving us the sequence (†)
above. It remains to prove universality.

Suppose

1→M → H
p→ Q→ 1

is a central extension of Q, then there is a lifting to a morphism f : F → H
over Q, i.e. pf = θ, because F is free profinite. Furthermore, as the given
extension is central f([F,R]) = 1 and f induces a morphism from F/[F,R]
to H over Q. Restricting this morphism to [F, F ]/[R,F ] gives a morphism of
sequences. Why is this morphism unique? By an earlier result, it is sufficient to
prove that [F, F ]/[R,F ] is perfect profinite, but this follows from the previous
proposition.

Of course, the left-hand term of this universal profinite central extension
is M(Q), i.e. is isomorphic to H2(Q), the second homology group of Q. We
thus have a construction of profinite central extensions when Q is profinite.
It is easy to see that if

1→ N → G→ Q→ 1

is a universal profinite central extension, then G must be perfect profinite,
but this implies Q must be perfect profinite, so it is only the perfect profinite
groups that have universal profinite central extensions. It is worth noting that
Q may be perfect profinite, without being perfect as an abstract group.
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The disadvantage of the above “classical” style construction using a profi-
nite presentation is that it suggests that the universal profinite central ex-
tension (u.p.c.e.) can only be constructed if one has already got a profinite
presentation. The non-Abelian profinite tensor product gives a way of con-
structing this u.p.c.e. starting from G.

Proposition 57. Let G be a perfect profinite group. Then the continuous map

[ , ] : G⊗̂G→ G

is a universal extension of G.

Proof: We first look at continuity. The map, [ , ], is defined on generators
by [ , ](g1 ⊗ g2) = [g1, g2]. This certainly gives a continuous map defined on
G × G and thus on F (G × G). We have to check what happens to relations,
but if g, h,k ∈ G,

[gh, k] = g[h,l][g, k]

and
[g, hk] = [g, h]h[g, k],

i.e., [ , ] : G×G→ G is a continuous crossed pairing, which thus induces [ , ]
defined on G⊗̂G.

Now suppose
1→ N → H

f→ G→ 1 (∗)

is a central extension of G. We know (Corollary 2, p. 13) that f has a contin-
uous transversal, s : G→ H. Using s, we define a mapping

ϕ : G×G→ H

by ϕ(g1, g2) = [s(g1), s(g2)]. As (*) is central, ϕ is a crossed pairing. [To see
this we check: First we note that for g1, g2 ∈ G, s(g1g2)s(g2)−1s(g1)−1 ∈ N ⊆
Z(H), so that s(g1g2) = s(g1)s(g2)n for some n ∈ Z(H) and hence

ϕ(gg′g′′) = [s(gg′), s(g′′)]
= [s(g)s(g′), s(g′′)]
= s(g)[s(g′), s(g′′)][s(g), s(g′′)]
= s(g)ϕ(g′, g′′)ϕ(g, g′′).

It remains only to recall that as (*) is central, G acts continuously on H
via gh = s(g)hs(g)−1 and the action is independent of the choice of s.]

We thus have a continuous homomorphism

ϕ : G⊗̂G→ H

such that fϕ = [ , ]. In fact this ϕ is independent of the choice of s, as is
easily seen. This however is not quite enough to check universality. For that
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we must check ϕ is unique with the property that fϕ = [ , ] and for this it is
sufficient to check if G⊗̂G is perfect.

Remembering that G is perfect profinite, we see that G⊗̂G is generated
by the elements g ⊗ g′ and g, g′ ∈ [G,G] (because this is exactly G ). Thus
by the defining relations for G⊗̂G, it is generated by the space of elements of
the form g⊗ g′ with g, g′ simple commutators. However, if g1, g2, g′1, g′2 ∈ G,
we have

[g1 ⊗ g2, g
′
1 ⊗ g2] = [g1, g2]⊗ [g′1, g

′
2]

so G⊗̂G is generated by its own commutators, i.e., it is perfect profinite. �

Remark: In the abstract case, this proposition can be found in Dennis
[45], as well as in Brown and Loday, [30].

8.4.3 Exterior product

The commutators [g, g], g ∈ G are, of course, all trivial. This observation leads
one to study an exterior product G∧̂G derived from G⊗̂G as follows:

Definition: The exterior square or exterior product of G, denoted G∧̂G, is
the profinite group topologically generated by symbols g∧h for (g, h) ∈ G×G
with the following relations,
(1) gg′ ∧ h = g(g′ ∧ h)(g ∧ h),
(2) g ∧ hh′ = (g ∧ h)h(g ∧ h′),
(3) g ∧ h = 1 if g = h.

Thus G∧̂G is a quotient of G⊗̂G by the symmetric elements g ⊗ g. The
commutator map

[ , ] : G⊗̂G→ G,

thus factors via a second continuous commutator map

[ , ]′ : G∧̂G→ G.

Proposition 58. If G is perfect profinite then

[ , ]′ : G∧̂G→ G

is the universal central extension of G.

Proof: Much as in the proof of Proposition 57, we construct for a central
extension,

1→ N → H
f→ G→ 1 . . . (∗),

a symmetric crossed pairing

ϕ : G×G→ H

using a continuous transversal s : G→ H. Again as G is perfect profinite, so
is G∧̂G, and the proof structure is more or less identical to that of Proposition
57. �
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Corollary 15. If G is a perfect profinite group, then there is a natural iso-
morphism

H2G ∼= Ker([ , ]′ : G∧̂G→ G)

Proof: The homology group H2G is isomorphic to the kernel of the universal
central extension of G. �

This produces an invariant description of H2G. We will see an alternative
approach to G∧̂G in the next section in which again commutators will be very
important.

8.4.4 Tensors and exterior products

Comparing the two constructions above, one immediately asks for the relation
between G⊗̂G and G∧̂G in general. Clearly there is a quotient map from G⊗̂G
to G∧̂G. If G is perfect profinite, then we have that this quotient map is an
isomorphism. We will examine the general question when we have looked at
other questions and have introduced a generalisation of the exterior product.

Another problem is, of course, the relationship of this tensor product of
(possibly non-Abelian) profinite groups, with the usual tensor product of
Abelian profinite groups. The following proposition provides the necessary
technical results to answer this question. (The abstract group analogue is in
Brown-Loday, [31]). We use in this the profinite coproduct G∗̂H of profinite
groups G and H. We will study this in more detail in section 8.5.3.

Proposition 59. Let G, H be groups equipped with compatible actions on
each other.
a) The profinite coproduct G∗̂H acts continuously on G⊗̂H so that

p(g ⊗ h) = pg ⊗ ph g ∈ G, h ∈ H, p ∈ G∗̂H.

b) There are continuous homomorphisms

λ : G⊗̂H → G, λ′ : G⊗̂H → H

such that
λ(m⊗ n) = mnm−1, λ′(m⊗ n) = mnn−1

c) The triples (G⊗̂H,G, λ), (G⊗̂H,H, λ′) with the given actions are profinite
crossed modules.
d) If ` ∈ G⊗̂H, g′ ∈ G, h′ ∈ H, then

(λ`)⊗ h′ = `(h
′
`)−1, g′ ⊗ (λ′`) = (g

′
`)`−1.

e) The actions of G on Ker λ′ and H on Ker λ are trivial.
f) If `, `′ ∈ G⊗̂H, then

[`, `′] = λ`⊗ λ′`′

and, in particular,

[g ⊗ h, g′ ⊗ h′] = (g(hg)−1)⊗ ((g
′
h′)h′−1).
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Proof: Quite a lot of this follows immediately from the defining relations for
G⊗̂H and the universal property. We note for future use that if g, g′ ∈ G,
h, h′ ∈ H, then we can form hgh−1 and ghg−1 within G∗̂H and G∗̂H acts
continuously on both G and H, furthermore:

(hg)(g′) = hgg′(hg)−1

= h(g h
−1
g′g−1)

= hgh−1
g′,

similarly (gh)(h′) = ghg−1
h′.

The first result that may cause some difficulty is the Peiffer identity in c).
Given the construction of G⊗̂H, it suffices to prove this on the generators.
First we look at gg′ ⊗ hh′ and expand it in two different ways:

gg′ ⊗ hh′ = g(g′ ⊗ hh′)(g ⊗ hh′)
= g((g′ ⊗ h)h(g′ ⊗ h′))(g ⊗ h)h(g′ ⊗ h′)
= g(g′ ⊗ h)gh(g′ ⊗ h′)(g ⊗ h)h(g′ ⊗ h′)

and also

gg′ ⊗ hh′ = (gg′ ⊗ h)h(gg′ ⊗ h′)
= g(g′ ⊗ h)(g ⊗ h)hg(g′ ⊗ h′)h(g′ ⊗ h′).

On comparing these we get

gh(g′ ⊗ h′)(g ⊗ h) = (g ⊗ h)hg(g′ ⊗ h′).

Now suppose ` = g ⊗ h, `′ = g′ ⊗ h′, and we examine λ``′.

ghg−1
(g′ ⊗ h′) = ghg−1

g′ ⊗ ghg−1
h′

= ghg−1h−1
g′ ⊗ ghg−1h−1

h′ from our earlier observation

= gh(g
−1h−1

g′ ⊗ g−1h−1
h′)

= (g ⊗ h)hg(g
−1h−1

g′ ⊗ g−1h−1
h′)(g ⊗ h)−1

= (g ⊗ h)(g′ ⊗ h′)(g ⊗ h)−1

as required. The general case follows.
For d) again it is sufficient to look at the case ` = g ⊗ h. Then

λ`⊗ h′ = ghg−1 ⊗ h′

= g(hg−1 ⊗ h′)(g ⊗ h′)
= gh(g−1 ⊗ h−1h′h)(g ⊗ h′)
= g(g−1 ⊗ h)−1g(g−1 ⊗ h′h)(g ⊗ h′)
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= (g ⊗ h)g(g−1 ⊗ h′)gh
′
(g−1 ⊗ h)(g ⊗ h′)

= (g ⊗ h)(g ⊗ h′)−1gh′(g−1 ⊗ n)(g ⊗ h′)
= (g ⊗ h)h

′g(g−1 ⊗ n)

= (g ⊗ h)h
′
(g ⊗ h)−1 = l(h

′
l)−1

as required. The proof of the second formula is similar.
The proof of e) is now straightforward. For instance if λ′` = 1 then

m′``−1 = m′ ⊗ λ′` = m′ ⊗ 1 = 1,

so m′` = l.
Finally if `, `′ ∈ G⊗H, then

λ`⊗ λ′`′ = `λ
′`′`−1

= ``′`−1`′−1 = [`, `′]

by the Peiffer identity. �

8.4.5 The case of the trivial action

Proposition 60. If G acts trivially on H and H acts trivially on G then

G⊗̂H = GAb⊗̂HAb,

the ordinary pseudocompact tensor product of the corresponding Abelianisa-
tions.

Proof: If the actions are trivial, then both λ and λ′ are trivial homomorphisms
(by b) of Proposition 59). By f), G⊗̂H is Abelian, and by e), the actions
of G and H on G⊗̂H are trivial. As this action is diagonal, any generator
gg′g−1⊗h = g(g′⊗h) must be congruent modulo the relations to the generator
g′ ⊗ h and similarly in the H-variable. Hence the natural morphisms from G
to GAb and H to Hab induce an isomorphism

G⊗̂H → GAb⊗̂HAb,

where, for the moment, the righthand term is the “non-Abelian” profinite
tensor product of the groups GAb and HAb, i.e., we still have to check that
this latter is the pseudocompact module tensor product, as they are differently
defined. However, writing the defining relations for G⊗̂H in an additive form
reduces them to bilinearity conditions, so in fact there is nothing to worry
about. �
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8.4.6 The commutator map

Another interesting consequence of the above results is the following.
Suppose that we take G = H with conjugation as the action. Then λ =

λ′ = [ , ] : G⊗̂G→ G, the map that we considered earlier. Part d) above can
therefore be rephrased in this special case.

Proposition 61. The commutator map [ , ] : G⊗̂G → G together with the
diagonal action of G by conjugation gives a profinite crossed module.

Proof: This is an immediate corollary of the earlier result. �

There are several useful further consequences of this. Firstly we have that
the kernel of this commutator map is central in G⊗̂G. We write J2(G) =
Ker ([ , ] : G⊗̂G → G), and, for convenience, write k = [ ], then there is an
exact sequence

1→ J2(G)→ G⊗̂G→ G→ GAb → 1.

This is a crossed extension of GAb by J2(G). If G is perfect, we have already
noted that J2(G) is H2(G) and this extension reduces to the universal central
extension. In general, this group J2(G) will be useful in comparing G⊗̂G and
G∧̂G. We will shortly be able to provide a similar crossed extension of GAb by
H2(G), but before that we will have to look at profinite analogues of Miller’s
results, [118], which we will do in section 8.5.

Another consequence of these propositions is that they provide part of a
result yielding a second universal property for G⊗̂H. To handle this we need
to introduce crossed squares and their analogue in the profinite case.

8.4.7 Crossed squares: an introduction

We saw earlier that (profinite) crossed modules were like (closed) normal
subgroups except that the inclusion map is replaced by a homomorphism
that need not be a monomorphism. We even saw that all (profinite) crossed
modules are, up to isomorphism, obtainable by applying π0 to a (profinite)
simplicial “inclusion crossed module”.

Given a pair of (closed) normal subgroups M , N of a (profinite) group G,
we can form a square

M ∩N //

��

N

��
M // G

in which each morphism is a profinite inclusion crossed module and there is
a commutator map

h : M ×N →M ∩N

h(m,n) = [m,n].
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This forms a crossed square of (profinite) groups. We will be dealing with
crossed squares and their higher dimensional analogues later. Here we will
give an interim definition of crossed squares. The notion is due to Guin-Walery
and Loday [79]. This slightly shortened form of the definition is adapted from
Brown-Loday [31].

A profinite crossed square (more correctly crossed square of profinite
groups) is a commutative square of profinite groups and continuous homo-
morphisms

L
λ //

λ′

��

M

µ

��
N

ν // P

together with continuous actions of the group P on L, M and N (and hence
continuous actions of M on L and N via µ and of N on L and M via ν) and a
continuous function h : M ×N → L. This structure is to satisfy the following
axioms:
(i) the maps λ , λ′ preserve the actions of P , furthermore with the given
continuous actions, the maps µ, ν and κ = µλ = µ′λ′ are profinite crossed
modules;
(ii) λh(m,n) = mnm−1, λ′h(m,n) = mnn−1;
(iii) h(λ`, n) = `n`−1, h(m,λ′`) = m``−1;
(iv) h(mm′, n) = mh(m′, n)h(m,n), h(m,nn′) = h(m,n)nh(m,n′) ;
(v) h(pm, pn) = ph(m,n) ;
for all ` ∈ L, m,m′ ∈M , n, n′ ∈ N and p ∈ P .

There is an evident notion of morphism of crossed squares and we obtain
a category Prof.Crs2, the category of profinite crossed squares. It clearly also
exists in pro-C versions.

8.4.8 Examples

(a) Given any profinite simplicial group G and two closed simplicial normal
subgroups M and N , the square

M ∩N //

��

N

��
M // G

with inclusions and with h = [ , ] : M × N → G is a simplicial “inclusion
crossed square” of profinite simplicial groups. Applying π0 to the diagram
gives a profinite crossed square and, as we will show later on, all profinite
crossed squares arise in this way (up to isomorphism).

(b) The conditions on the h-map are exactly those of a continuous crossed
pairing, so it should come as no surprise that given profinite crossed modules
(M,P, µ), (N,P, ν), the square
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M⊗̂N
λ //

λ′

��

M

µ

��
N ν

// P

together with the universal continuous crossed pairing

M ×N →M⊗̂N

and the action of M on N and N on M via P , gives one a profinite crossed
square.

c) Any profinite simplicial group G yields a profinite crossed square,
M(G, 2) defined by

NG2

d0(Ker d1 ∩Ker d2)

��

// Ker d1

��
Kerd2

// G1

for suitable maps (see later in section ??, page ??). This is, in fact, part of
the construction that shows that all connected profinite 3-types are modelled
by crossed squares.

8.4.9 Universal properties

The definition of a continuous morphism of profinite crossed squares is hope-
fully clear. It is a map of diagrams continuous at each corner, commuting with
actions and the h-maps. Given this, the following proposition is not surprising
and it gives a second interpretation of the universal property of M⊗̂N .

Proposition 62. Let (M,P, µ), (N,P, ν) be profinite crossed modules and let

L
λ //

λ′

��

M

µ

��
N ν

// P

(
simplified notation

(
L M
N P

))

be an arbitrary profinite crossed square extending the two given profinite
crossed modules. Then there is a unique map of profinite crossed squares

θ :
(
M⊗̂N M
N P

)
→
(
L M
N P

)
which is the identity on M , N and P .
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Proof: It is clear that h : M ×N → L is a continuous crossed pairing, hence
induces a morphism from M⊗̂N to L. The fact that this is a map of crossed
squares is immediate from the properties of the h-map. Uniqueness follows
from the uniqueness clause of the universal property of ⊗̂ together with the
fact that θ(h(m,n)) = θ(m)⊗ θ(n). �

8.4.10 The universal property as a pushout

Brown and Loday [31], in the abstract case, found a beautifully elegant refor-
mulation of this (their Proposition 2.15, p.318). Here is the profinite analogue.
Their proof goes over without change, but we have included it for complete-
ness.

Proposition 63. The following diagram of inclusions of profinite crossed
squares is a pushout in the category of profinite crossed squares(

1 1
1 P

)
//

��

(
1 M
1 P

)

��(
1 1
N P

)
//
(
M⊗̂N M
N P

)
.

Proof: We will show the equivalence of this with the universal property of
the previous proposition. First we note that there are two forgetful functors
from Prof.Crs2 to Prof.CMod namely

U1

(
L M
N P

)
= (M,P, µ)

and

U2

(
L M
N P

)
= (N,P, ν).

These both have right adjoints, given by

G1(M,P, µ) =
(
M M
P P

)
,

resp.

G2(N,P, ν) =
(
N P
N P

)
.

In the first of these the h-map is given by h(m, p) = m(pm)−1, in the
second by h(p, n) = pnn−1. Thus U1 and U2 preserve colimits and hence
pushouts. (These functors also have left adjoints, so also preserve limits).

Using this we see that if the diagram
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1 1
1 P

)
//

��

(
1 M
1 P

)

��(
1 1
N P

)
//
(
L M ′

N ′ P ′

)
.

is a pushout in Prof.Crs2, then M ∼= M ′, N ∼= N ′, P ∼= P ′, but then there
is a unique continuous morphism

θ :
(
M⊗̂N M
N P

)
→
(
L M
N P

)
.

As this gives a commutative square of the same type as above, the universal
property of pushouts gives that there is a ϕ such that θϕ is the identity. The
tensor universal property then shows that ϕθ is also the identity, so θ is an
isomorphism as required. The proof that this pushout property implies the
universal property of the completed tensor product is straightforward. �

We saw earlier that profinite crossed modules formed a category equivalent
to that of profinite cat1-groups, that is, category objects in Prof.Grps. The
category Prof.Crs2 is similarly equivalent to Cat2(Prof.Grps), i.e., double
category objects in Prof.Grps or profinite cat2-groups (see later) . In this
interpretation, the left and right adjoints to the forgetful functors U1 and
U2 correspond to discrete category and “chaotic” or “indiscrete” category
structures respectively.

We will return to profinite crossed squares and their higher order analogues
later on.

8.5 Profinite Associated Groups

8.5.1 C. Miller and exterior products

The exterior product in the abstract case grew out of the work of Brown
and Loday on generalised versions of the van Kampen theorem, [30, 31]. The
interpretations we have given of the tensor product in the previous section are
in terms of crossed squares, yet the exterior product was in essence known in
the 1950s in the work of C. Miller, [118], in 1953. She considered a group that
is, roughly speaking, the group of all relations satisfied by commutators of a
group G. Her treatment proved several useful results which can be interpreted
as giving results about exterior products. We will adapt her arguments to the
profinite situation. Unlike much of the previous sections, the proofs in this
section are not immediate analogues of the proofs in the abstract case. They
need more care.
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8.5.2 Profinite Associated Groups

Let G be as usual a profinite group and let 〈G,G〉 denote the free profinite
group on symbols 〈g, g′〉 with g, g′ ∈ G, thus 〈G,G〉 = F (G×G), but we want
the notation 〈g, g′〉 to mirror the commutator notation.

There is a continuous homomorphism

φ : 〈G,G〉 → [G,G]

given by φ〈g, g′〉 = [g, g′] = gg′g−1g′−1, thus φ is onto.
We set

Z(G) = {z ∈ 〈G,G〉 : φ(z) = 1},

the kernel of φ. Let B(G) be the closed normal subgroup of 〈G,G〉 topologi-
cally generated by the following words of 〈G,G〉:

w1(g, g) = 〈g, g〉 for each g ∈ G;
w2(g, g′) = 〈g, g′〉〈g′, g〉 for each pair g, g′ ∈ G;

w3(g, g′, x) = 〈gg′, x〉〈g, x〉−1〈gg′, gx〉−1 for each triple g, g′, x ∈ G;
w3′(g, x, g′) = 〈g, xg′〉〈xg,x g′〉−1〈g, x〉−1 for each triple g, g′, x ∈ G;
w4(x, g, g′) = x〈g, g′〉〈g, g′〉−1〈x, [g, g′]〉−1 for each triple x, g, g′ ∈ G,

where x〈g, g′〉 = 〈xg, xg′〉 = 〈xgx−1, xg′x−1〉.

Of course these correspond to the universal commutator relations:

1) 〈g, g′〉 ≡ 1 if g = g′,
2) 〈g, g′〉−1 ≡ 〈g′, g〉,
3) 〈gg′, x〉 ≡ 〈gg′,g x〉〈g, x〉,
3′) 〈g, xg′〉 ≡ 〈g, x〉〈xg,x g′〉,
4) x〈g, g′〉 ≡ 〈x, [g, g′]〉〈g, g′〉,

for all g, g′ and x in G and ≡ is congruence in 〈G,G〉 mod B(G).
As B(G) is a closed normal subgroup of Z(G), so we can form the profinite

associated group H(G) of G as the quotient

H(G) = Z(G)/B(G).

If f : A → A′ is a continuous homomorphism of profinite groups, then f
induces a continuous homomorphism,

f̄ : 〈A,A〉 → 〈A′, A′〉

and f̄ sends Z(A) to Z(A′) and B(A) into B(A′), thus f induces a continuous

f∗ : H(A)→ H(A′),

giving a functor H defined on Prof.Grps.
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8.5.3 Associated groups of profinite coproducts

The aim of the next few paragraphs will be to investigate the behaviour of
H on profinite coproducts. First we will give the definition of these. (Ribes,
[147], calls this a profinite amalgamated product and Binz-Neukirch-Wenzel,
[13], use the term free profinite product.)

Definition: Let Cα, α ∈ I, be profinite groups. The profinite coproduct
of the Cαs consists of a system, {C, {φα}α∈I}, where C is a profinite group
C and continuous monomorphisms

φα : Cα → C

with the usual universal property: given any profinite group A and continuous
homomorphisms

θα : Cα → A α ∈ I

then there is a unique continuous homomorphism θ : C → A such that θφα =
θα for all α ∈ I.

Note the restriction that the φα be monomorphisms. The subgroup
⋃
α φα(Cα)

algebraically generates a dense subgroup of C and as each Cα is compact Haus-
dorff, each φα is topologically an embedding, (cf. Ribes [147] ). We will write
C = ∗̂αCα and if I contains just two elements, C = C1∗̂C2 as before.

We are restricting attention to profinite groups here. There are clearly
pro−C coproducts that can be defined, and Ribes shows in [147] that pro−C
coproducts always exist provided C is the class of finite groups or finite p-
groups; however strange things happen if one tries to form profinite coprod-
ucts with amalgamated subgroup (i.e., pushouts). Ribes, [146], gives examples,
for C equal to ‘finite groups’ and for C being ‘p-groups’, where, although the
pushout exists, the “inclusions” of the various cofactors are not monomor-
phisms. A detailed discussion of the problems met with in these cases can be
found in [148], Chapter 9.

Proposition 64. If G = M ∗̂N is the profinite coproduct of profinite groups
M and N , then H(G) ∼= H(M)×H(N).

Proof: Let i : M → G and j : N → G be the natural continuous injections
and let α : G→M , β : G→ N be the natural continuous projections obtained
functorially by the homomorphism N → 1 inducing

α : G = M ∗̂N →M ∗̂1 ∼= M,

and similarly for β. This gives a commutative diagram
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H(M)
i′

$$HHHHHHHHH

=

��

H(N)

j′{{vvvvvvvvv

=

��

H(G)

H(M)

α′
::vvvvvvvvv

H(N)
β′

ccHHHHHHHHH

This shows that i′ and j′ are embeddings and that i′H(M) and j′H(N) have
intersection {1}. Moreover, if we can show that H(G) is the profinite group
product i′H(M)j′H(N) then clearly we will have H(G) = i′H(M)× j′H(N)
as required. Thus we are left to check that i′H(M) and j′H(N) together
topologically generate H(G).

We first let G1 = M ∗N , the algebraic coproduct of the underlying groups
M and N . The map from G1 into G has dense image. Now if X is any profi-
nite space and X1 a dense subspace of X, then F (X1), the free profinite
group on X1, is isomorphic to F (X̂1), the free profinite group on the profinite
completion X̂1 of X1 and there is an epimorphism

F (X1)→ F (X)

induced by the continuous surjection from X̂1 to X. We will apply this with
X1 equal to G1 ×G1.

Abusing notation slightly, we will write 〈G1, G1〉 for F (G1×G1) and hence
will get an epimorphism

τ : 〈G1, G1〉 → 〈G,G〉,

since the space G1 ×G1 topologically generates 〈G,G〉.
Now let Z(G1) be the kernel of the commutator map

φ : 〈G1, G1〉 → [G,G],

then the induced map from Z(G1) to Z(G) is onto. Let B(G1) be generated
by the same words as B(G), but with g, g′, x, etc. in G1, then we can write
H(G1) = Z(G1)/B(G1) and have a continuous epimorphism

H(G1)→ H(G).

Writing q : M → G1, p : N → G1 for the natural injections, it will suffice
to prove that q′(H(M)) and p′(H(N)) algebraically generate a dense subgroup
of H(G1), since there is a commutative diagram
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H(G1)

H(M)

q′
::uuuuuuuuu

i′ $$IIIIIIIII
H(N)

p′
ddIIIIIIIII

j′zzuuuuuuuuu

H(G)

so the image under the epimorphism of the dense subgroup will be the sub-
group algebraically generated by i′(HM)) and j′(H(N)), hence this latter
subgroup will be dense.

Now if 〈g, g′〉 is a generator of 〈G1, G1〉, say with

g = x1y1x2y2 . . . xnyn and g′ = x′1y
′
1x
′
2y
′
2 . . . x

′
mym

with the xi, x′j ∈ M and the yi, y′i ∈ N , then a repeated application of the
universal commutator relations 3) and 3′) above reduces 〈g, g′〉 modulo B(G1)
to a product of symbols of the form z〈x, x′〉, z〈y, y′〉, z〈x, y〉 and z〈y, x〉 where
x, x′ ∈M , y, y′ ∈ N and z ∈ G1. Each element of this form can be written as
a product of terms of the same type, but without the exponent z appearing,
by repeated use of the simple rules:

5) x0〈x, x′〉 = 〈x0x, x0x′〉,
4′) y0〈x, x′〉 = 〈y0x, y0x′〉 ≡ 〈y0, [x, x′]〉〈x, x′〉 mod B(G1),
6) x0〈x, y〉 ≡ 〈x0x, y〉〈y, x0〉 mod B(G1),
7) y0〈x, y〉 ≡ 〈y0, x〉〈x, y0y〉 mod B(G1),

and four similar rules, obtained by swapping the rôles of x and y, x0 and y0,
etc. Each is a simple consequence of the basic commutator relations.

We thus note that each generator 〈g, g′〉 and hence any element k in a
dense subgroup of 〈G1G1〉 is congruent (modB(G1)) to a product of terms
〈x, x′〉, 〈y, y′〉, 〈x, y〉 and 〈y, x〉.

In fact for arbitrary such k,

k ≡ η ≡ η′τ mod B(G1)

with τ a product of terms 〈y, y′〉 and η′ a product of terms 〈x, x′〉, 〈x, y〉 and
〈y, x〉. We can do this because of the two derived moves

8) 〈y, y′〉〈x0, y0〉 ≡ 〈[y, y′], x0〉〈x0, [y, y′]y0〉〈y, y′〉,
9) 〈y, y′〉〈y0, x0〉 ≡ 〈[y, y′]y0, x0〉〈x0, [y, y′]〉〈y, y′〉,
10) 〈y, y′〉〈x2, x

′〉 = 〈yy′y−1, xx−1x′〉〈x, x′〉〈y, y′〉,

which can be checked to be consequences of the basic relations (cf., Miller,
[118], p.589). These moves have “duals” obtained by reversing the rôles of
x and y; using these dual moves enables us to push all occurrences of 〈x, x〉
terms to the left.



8.5 Profinite Associated Groups 203

This gives
k ≡ γη′′τ

where η′′ involves only terms 〈x, y〉 or 〈y, x〉 and γ a product of terms 〈x, x′〉.
Since 〈y, x〉 = 〈x, y〉−1, we have

k ≡ γρτ mod B(G1)

with γ ∈ 〈qM, qM〉, τ ∈ 〈pN, pN〉 and ρ ∈ D, the subgroup generated by all
symbols 〈x, y〉 with x 6= 1 ∈M , y 6= 1 ∈ N .

Now if ψ(k) = 1 then writing k̄ = ψ(k) etc., we get γ̄ρ̄τ̄ = k̄ = 1 ∈ [G,G] ⊂
G. Projecting onto M yields γ̄ = 1, similarly τ̄ = 1 and hence ρ̄ = 1. We have

ρ = 〈x1, y1〉ε1〈x2, y2〉ε2 . . . 〈xm, ym〉εm ,

where ε2 = ±1, xi 6= 1, yi 6= 1 for all i. We see that ρ̄ can be written as a
finite sequence of elements in G1, but G1 = M ∗N , the algebraic coproduct
(free product) of M and N , so ρ̄ = 1 only if m = 0 and ρ = 1, as in the
“abstract” case. Finally ρ = 1 implies

k ≡ γτ with γ̄ = 1 and τ̄ = 1.

Thus q′H(M) and p′H(N) together algebraically generate a dense subgroup
of H(G1), H(G1) = q′H(M)p′H(N) in Prof.Grps and as the map H(G1)→
H(G) is onto, we get that the images of H(M) and H(N) generate H(G) as
required. �

8.5.4 The generating relations of B(G) as universal commutator
relations.

The generating relations of B(G) are designed to behave like “universal com-
mutators”. We list three more consequences that illustrate this.

a) 〈g, x−1〉 ≡ g〈g−1, x〉,
b) 〈g, x〉−1 = x〈g, x−1〉,
c) 〈g, x〉〈g′, x′〉〈g, x〉−1 ≡ [g,x]〈g′, x′〉,

These can easily be deduced from the earlier list of consequences of the rela-
tions (or some indications of proofs can be found in Miller, [118] p.589).

8.5.5 Exterior squares revisited

The correspondence
〈g, g′〉 ←→ g ∧ g′

extends to give an isomorphism between 〈G,G〉/B(G) and G∧̂G. This implies
of course that H(G) ∼= Ker(G∧̂G → G). There is a nice homotopical inter-
pretation of this kernel (cf., Ellis, [54]). We briefly mentioned that crossed
modules and crossed squares correspond to 2-types and 3-types of simplicial
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groups and hence to 3-types and 4-types of reduced simplicial sets. (Recall
that an n-type is a truncated homotopy type, so there are no non-trivial ho-
motopy groups above a certain level). We shall be looking in detail at this
later, but here we need only note that given a (profinite) crossed square

L
λ //

λ′

��

M

µ

��
N ν

// P,

the third homotopy group of the corresponding 3-type is Kerλ∩Kerλ′. For in-
stance if (M,P, µ), (N,P, ν) are given, we can form profinite universal crossed
squares

M⊗̂N //

��

M

µ

��
N ν

// P,

and M ∧̂N //

��

M

µ

��
N ν

// P,

and obtain the profinite analogues of the groups Ellis denotes π3(M ⊗N) and
π3(M ∧ N). In particular π3(G ∧ G) ∼= H(G) corresponds to the π3 of the
crossed square

G∧̂G //

��

G

=

��
G =

// G,

8.5.6 H of a free f.g. profinite group is trivial

Our next aim is to prove that H of a free profinite group is trivial. In the
abstract case, Miller proves this (in [118]) by first noting that H(F (1)) = 0,
where F (1) is free on one generator. This step is easy also in the profinite
case; one argues as follows:

Suppose F (1) = 〈x : 〉. We will examine 〈xr, xs〉 for r, s ∈ Z.
(i) If r = s = 1, then 〈xr, xs〉 = 〈x, x〉 ≡ 1 (by 1)
(ii) If r = 1, s = −1 then 〈xr, xs〉 = 〈x, x−1〉 ≡ x−1〈x, x〉 ≡ 1 (by b)

above.
Similarly, if r = 1, and s = 1;
(iii) If r > 0 and s = −t < 0 then 〈xr, xs〉 = xt〈xr, xt〉, so we can reduce

to examining r, t > 0 in this case.
Similarly, if r < 0 and s > 0
(iv) If s = 0, then since for any g′,

〈xr, g′〉 = 〈xr, 1g′〉
≡ 〈xr, 1〉〈xr, g′〉,

we must have 〈xr, 1〉 ≡ 1, and similarly 〈1, xs〉 ≡ 1.
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Finally, if r, s > 1, 〈xr, xs〉 ≡ 〈xr, x〉〈xr, xs−1〉, and 〈xr, x〉 ≡ 〈xr−1, x〉〈x, x〉,
so by induction 〈xr, xs〉 ≡ 1 in this case as well, thus within 〈F (1), F (1)〉, a
dense subset of the space of generators is within B(F (1)), so F (1)∧F (1) = 1
and H(F (1)) = 1 as a result.

If F (n) is generated by a set of n elements, then F (n) = F (n − 1)∗̂F (1),
so by a simple inductive argument, H(F (n)) ∼= 1. As a consequence if F is a
finitely generated free profinite group, then H(F ) = 1.

Our next aim will be to extend this to arbitrary free profinite groups. We
cannot here use the sort of argument used by Miller, [118], in the abstract
group case, since profinite spaces are inverse not direct limits of finite sets, so
we next turn to the interaction of H with inverse limits.

8.5.7 H and inverse limits.

The interaction of homology with inverse limits is usually much more subtle
than that with direct limits. In the latter case the two constructions commute,
but in the former one gets spectral sequences measuring the lack of commuta-
tion of the two constructions, see, for instance, Jensen, [94]. On looking at such
spectral sequences, it is of note that many terms are of the form Lim(i)Hj ,
i.e. they are obtained from the homology of an inverse system of modules or
chain complexes, by applying the derived functors of limit. Although the H
construction is clearly a homology (as it is constructed as Z(G)/B(G)), the
theory of derived functors of the limit on non-Abelian groups is much less easy
to use than that on modules. However for the moment if we pretended to use
a spectral sequence argument, we would find that the Hjs would be profinite
or pseudocompact, hence that Lim(i)Hj would vanish if i was positive. Thus
our supposed spectral sequence would collapse and the two operations would
commute: LimH(G(i) = H(LimG(i)). Of course this is no argument, but
it does suggest that a different, perhaps more direct, attack would be worth
making.

Let, therefore, G = LimG(i) be a profinite group expressed as a limit
of finite quotient groups. For every G(i), i ∈ I, we form 〈G(i), G(i)〉, a free
profinite group on the set

{〈gi, g′i〉 : gi, g′i ∈ G(i)}

There are natural epimorphisms

φ(i) : 〈G(i), (G(i)〉 → [G(i), G(i)]

as before and we write Z(G(i)) = Ker φ(i), hence obtaining an exact sequence
of the groups

1→ Z(G(i))→ 〈G(i), G(i)〉 → [G(i), G(i)]→ 1

This is natural in G(i) so forms a “pro exact sequence”, that is an inverse
system of exact sequences, of which we will take the limit,
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1→ LimZ(G(i))→ Lim 〈G(i), G(i)〉 → Lim [G(i), G(i)]→ 1

The resulting sequence is exact since the groups involved were all profinite.
Next we recall the result of Gildenhuys and Lim, [70], that F (LimX(i)) ∼=

LimF (Xi), so Lim 〈G(i), G(i)〉 ∼= 〈G,G〉. As each [G(i), G(i)] is within the
corresponding G(i) and limits of groups are calculated using a subgroup of
the product, ΠG(i), with pointwise multiplication and inversion, it is easily
checked that [G,G] ∼= Lim [G(i), G(i)], the isomorphism being compatible
with that of 〈G,G〉 with Lim 〈G(i), G(i)〉. Thus Z(G) is naturally isomorphic
to LimZ(G(i)).

A similar argument shows that B(G) ∼= LimB(G(i)) and so we obtain:

Proposition 65. If G ∼= LimG(i), then

G∧̂G ∼= Lim (G(i)∧̂G(i))

and
H(G) ∼= LimH(G(i)).

�

Corollary 16. If F is a free profinite group, then the natural commutator
map

F ∧̂F → [F, F ]

is an isomorphism.

Proof: Our calculations showed H(F ) ∼= 1, and H(F ) is the kernel of the
commutator map. �

8.5.8 Profinite tensor square of finite groups are finite.

Ellis, [54], shows that the tensor product of finite groups is finite. This suggests
that if G is finite, G⊗̂G and hence G∧̂G should be finite as well. To adapt his
argument to prove this profinite analogue would lead us too far afield for the
present, however we can note the following.

Proposition 66. If G is profinite, and G = LimG(i), then

G⊗̂G ∼= Lim (G(i)⊗̂G(i)).

Proof: One can easily adapt the above proof for ∧̂. (By omitting w1 from
the relations in B(G), this gives a group isomorphic to G⊗̂G ; now rerun the
above discussion of H and inverse limits.) �
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8.6 Exterior products and Homology

8.6.1 Exterior squares and free profinite groups

In Corollary 57, we saw that if G is a perfect profinite group, then the kernel
of the commutator map from G∧̂G to G is isomorphic to H2G. The restriction
on G is, in fact, not necessary as we will see. To work towards this result, we
need to see how the profinite exterior product interacts with presentations.

Proposition 67. If F is a free profinite group and i : R → F , the inclu-
sion map of a closed normal free profinite subgroup, R, then the canonical
continuous homomorphisms

i∧̂1 : R∧̂R→ F ∧̂R and i∧̂i : R∧̂R→ F ∧̂F

are normal inclusions.

Proof: (see Ellis, [54], for the abstract group case): Using the commutative
squares

R∧̂R
' //

ib∧1

��

[R,R]

and
��

R∧̂R
' //

ib∧i
��

[R,R]

,

��
F ∧̂R // [F,R] F ∧̂F // [F, F ]

one has that the two homomorphisms are monomorphisms. Normality follows
from the fact that if f ∈ F , r, r′, r′′ ∈ R, then

(f ∧ r)(r′ ∧ r′′)(f ∧ r)−1 = ([f,r]r′ ∧ [f,r]r′′).

�

Remark: As the proof uses that

R∧̂R→ [R,R]

is an isomorphism (or at least a monomorphism), it is difficult to see how to
avoid the restriction that R be free profinite. This returns us to the problem of
calculating H2(N) if N is a closed normal subgroup of a free profinite group,
F .

8.6.2 Exterior pairings

When we introduced the profinite tensor product, we also looked at continu-
ous crossed pairings, but when we considered the exterior product no corre-
sponding pairing was defined since at that stage we did not need it. It is now
convenient to fill this gap.
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Let M and N be closed normal subgroups of a profinite group G. Given
another profinite group H, a continuous exterior pairing from M × N to H
is a continuous map

h : M ×N → H

such that, for all m,m′ ∈M , n, n′ ∈ N ,
1) h(mm′, n) = h(mm′,m n)h(m,n),
2) h(m,nn′) = h(m,n)h(nm,n n′),
3) h(m,n) = 1, whenever m = n.

The universal continuous exterior pairing is, of course, given by

M ×N →M ∧̂N,

(m,n) 7→ m ∧ n.

It will later be important that the commutator map from M×N to M ∩N
is a continuous exterior pairing.

We note that to verify a property for continuous exterior pairings, it suffices
to check it for the universal one. For instance, arguments for Proposition 59,
page 191, used only the rules of the tensor product, hence these arguments
apply equally well to the exterior product. We state the corresponding results
below:

Proposition 68. Let M and N be closed subgroups of a profinite group G.
a) The group G acts continuously on M ∧̂N so that

g(m ∧ n) = gm ∧ gn g ∈ G,m ∈M,n ∈ N.

b) There are continuous homomorphisms

λ : M ∧̂N →M, λ′ : M ∧̂N → N

such that λ(m ∧ n) = [m,n] = λ′(m ∧ n).
c) The triples (M ∧̂N,M, λ) and (M ∧̂N,N, λ′) are profinite crossed modules
with the given actions.
d) If l ∈M ∧̂N,m ∈M and n ∈ N , then

λl ∧ n = l(nl)−1, m ∧ λ′l = (ml)l−1

e) The actions of M on Kerλ and of N on Kerλ′ are trivial.
f) If l, l′ ∈M ∧̂N , then

[l, l′] = λl ∧ λ′l′

and in particular [m ∧ n,m′ ∧ n′] = [m,n] ∧ [m′, n′].

Proof: As remarked above, one can easily adapt the proof of proposition 59
to give a proof here. �
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Corollary 17. Let M be a closed normal subgroup of a profinite group, G and
let h : G ×M → H be a continuous exterior pairing, then for any m,m′ ∈
M, g, g′ ∈ G, the following equations hold:

(A) h(m, [g,m′]) = h(mg,mm′)h(g,m′)

and
(B) [h(g,m), h(g′,m′)] = h([g,m], [g′,m′]).

Proof: For (A) we first note that as M is contained in G, the left hand term
makes sense. In the universal example h(g,m) = g ∧ m and h(m, [g,m′]) =
m ∧ λ′(g,m′), so this equation is then a consequence of d) in the proposition
above. In general there is a continuous homomorphism ϕ : G ∧M → H such
that h(g,m) = ϕ(g ∧ m), and the equation holds in H because ϕ preserves
the equation in the universal example.

Similarly for (B), using f) above in the universal example gives the re-
quired form. �

8.6.3 Profinite presentations and exterior products.

Given a free profinite presentation

R→ F
α→ G

of a profinite group, G, we can construct an exact sequence,

1→ R ∧R→ F ∧R→ C → 1

for some profinite group C. The next result is the first step to identifying C.

Proposition 69. (cf. Ellis, [54]) Given a free profinite presentation, as above,
of a profinite group, G, there is a continuous exterior pairing

h : F ×R→ Î(G)⊗̂GRAb

with the following properties:
(i) h(r, r′) = 1 for all pairs (r, r′) ∈ R×R, i.e., h vanishes on R×R.
(ii) given any continuous exterior pairing h′ : F × R → H that vanishes on
R×R, there is a unique factorisation via

ψ : Î(G)⊗̂GRAb → H

(i.e. h′ = ψh, and h is a “universal continuous pairing relative to R”).

Proof: We define h : F ×R→ Î(G)⊗̂GRAb by

h(f, r) = (αf − 1)⊗ r
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for all (f, r) ∈ F ×R and r ∈ RAb represented by r. The continuous map, h,
is an exterior pairing, since, if fu ∈ F and r ∈ R, we have:

h(fu, r) = (α(fu)− 1)⊗ r
= (α(fu)− α(f))⊗ r + (α(f)− 1)⊗ r
= (α(fuf−1)− 1)⊗ frf−1 + (α(f)− 1)⊗ r
= h(fu,f r)h(f, r).

Similarly for f ∈ F , r, r′ ∈ R,

h(f, rr′) = h(f, r)h(rf,r r′)

and for r ∈ R, as α(r) = 1, h(r, r) = 0. Of course, this also shows that h
vanishes on R×R, so (i) is satisfied.

As h is a continuous exterior pairing, it induces a unique continuous ho-
momorphism, ϕ, from F ∧̂R to Î(G)⊗̂GRAb, so that on denoting the natural
universal continuous exterior pairing by

k : F ×R→ F ∧̂R,

we have h = ϕk. We also have an isomorphism

l : R∧̂R→ [R,R]

l(r ∧ r′) = [r, r′],

since R is assumed to be free. We assemble these maps into the commutative
diagram

R×R inc //

k

��

F ×R h //

k

��

Î(G)⊗̂RAb

R∧̂R
∼= // [R,R] // inc // F ∧̂R

φ

99ssssssssss

[Statement (ii) of the proposition is thus equivalent to the identification of
Î(G)⊗̂RAb as the cokernel, C, in the exact sequence we constructed at the
start of this section. Its universal property in terms of continuous exterior
products is, however, easier to check, although, of course, equivalent to that
of the cokernel.]

Suppose h′ : F ×R→ H is a continuous exterior pairing that vanishes on
R×R. We pick a continuous section s : G→ F for α and another t : Rab → R
for the quotient homomorphism, β : R→ RAb. Define a map

Ψ : Î(G)×RAb → H

on generators by Ψ(g − 1, r) = h′(s(g), t(r)). This is clearly continuous and
as the set of elements of form g − 1 topologically generates Î(G), this defines
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Ψ on the whole of Î(G)×RAb. If we pick other sections s′, t′ then for g ∈ G,
(r) ∈ RAb, there are elements r′, r′′ with r′′ ∈ [R,R] such that

s′(g) = s(g)r′, t′(r) = t(r)r′′,

thus we have a possibly different map, Ψ ′, given by

Ψ ′(g − 1, r) = h′(s′(g), t′(r)),

but

h′(s′(g), t′(r)) = h′(s(g)r′, t(r)r′′)
= h′(s(g)r′,s(g) t(r)r′′)h′(s(g), t(r)r′′)
= h′(s(g), t(r)r′′) since h′(R×R) = 1
= h′(s(g), t(r))h′(t(r)s(g),t(r) r′′).

The term t(r)r′′ ∈ [R,R], so this second term will vanish if h′(f,−) vanishes
on commutators, but

h′(f, [r, r′]) = h′(fr,f r′)h′(r, r′)−1,

which is trivial, since h′ vanishes on R×R. Thus Ψ = Ψ ′ and Ψ is independent
of the choice of s and t.

To define Ψ on the tensor, we really need to check it is bilinear. This
initially looks awkward since H is an arbitrary profinite group, but the above
equality shows that

[h′(m,n), h′(m′, n′)] = h′([m,n], [m′, n′]),

and if m ∈ F and n ∈ R, both commutators are in R and h′ vanishes on
R × R so all commutators are trivial and the image of h′ is Abelian, hence
we may as well assume H is Abelian. It will also be expedient to rewrite the
operation in H as addition. The exterior pairing rules now give

h′(mm′, n) = h′(mm′,m n) + h′(m,n),
h′(m,nn′) = h′(m,n) + h′(nm,n n′),
h′(m,n) = 0 if f = r.

We can now look at Ψ((g − 1)g′, r); this is

ψ(gg′ − g, r) = ψ(gg′ − 1, r)− ψ(g′ − 1, r)
= h′(s(gg′), t(r)− h′(s(g′), t(r))
= h′(s(g)s(g′),s(g) t(r)) + h′(s(g), t(r))− h′(s(g′), t(r))
= h′(s(g), [s(g′), t(r)]) + h′(s(g), t(r))

by (A) of our previous corollary. If Ψ is to be G-bilinear, we must hope that
this is the same as h′(s(g),s(g

′) t(r)), but this latter is
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h′(s(g), [s(g′), t(r)]t(r)) = h′(s(g), [s(g′), t(r)])+h′([s(g′),t(r)]s(g), [s(g
′),t(r)]t(r)),

which expression we will call (b), and

α([s(g′),t(r)]s(g)) = α([s(g′), t(r)]s(g)[s(g′), t(r)]−1),

so as t(r) ∈ R = Ker α, this is s(g), whilst β([[s(g), t(r)], t(r)]) = 1, since
the commutator is in RAb. Thus the second term of (b) is h(s(g), t(r)) by the
same argument as we used to prove independence of Ψ from the choice of s
and t.

To sum up, we have shown Ψ to be G-bilinear and hence to define a
uniquely determined ψ : Î(G)⊗̂GRAb → H. It is clear that h′ = ψh and that
ψ is uniquely determined by this property. �

Corollary 18. Given a free profinite presentation

1→ R→ F → G→ 1

of a profinite group, G, then there is a short exact sequence of profinite groups

1→ R∧̂R→ F ∧̂R φ→ Î(G)⊗̂GRAb → 1.

�

This follows immediately from the previous result.

8.6.4 Preparation for Miller’s theorem

We need one more general result about the profinite exterior product before
we can complete the link-up with homology.

Suppose that K, M , N are closed normal subgroups of a profinite group
G with K ⊂M ∩N . Then there are induced homomorphisms

i1 : K∧̂N →M ∧̂N i2 : M ∧̂K →M ∧̂N

given by i1(k ∧ n) = k ∧ n, i2(m ∧ k) = m ∧ k, with the obvious abuse of
notation!

Lemma 18. a) (K∧̂N,M ∧̂N, i1) and (M ∧̂K,M ∧̂N, i2) are profinite crossed
modules.
b) The images K1 = Im i1, K2 = Im i2 are closed normal subgroups of M ∧̂N .
c) There is a natural isomorphism:

(M/K )∧̂ (N/K ) ∼=
M ∧̂N
K1K2

.
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Proof: a) The profinite group M ∧̂N acts continuously on K∧̂N by conjuga-
tion:

m∧n(k ∧ n′) = [m,n]k ∧ [m,n′]n′,

but this makes the same sense if k ∧ n is considered as an element of K∧̂N
or of M ∧̂N . This then essentially says that i1 preserves the action. The other
crossed module axiom is also more or less trivial: if m = k′ ∈ K in the above,
this same equation provides the necessary verification.

b) follows immediately from a).
c) Consider the mapping

h : M ×N →M/K ∧̂N/K
given by h(m,n) = p(m) ∧ p(n), where p : G → G/K is the natural epimor-
phism. We note that the usual generating set of M/K ∧̂N/K is contained in
the image of h.

h(mm′, n) = p(m)p(m′) ∧ p(n)
= (p(m)p(m′) ∧ p(m)p(n))(p(m) ∧ p(n))
= h(mm′,mn)h(m,n),

similarly for the other exterior pairing relations, so h induces a homomor-
phism,

ϕ : M ∧̂N → (M/K )∧̂(N/K ),

which by our earlier comment is onto. Clearly Ker ϕ contains both K1 and
K2, hence also K1K2, their group product, i.e., ϕ induces an epimorphism

ϕ̄ :
M ∧̂N
K1K2

→ (M/K )∧̂(N/K ).

There is a map,

k : M/K ×N/K →
M ∧̂N
K1K2

,

defined as follows: pick a continuous section s : G/K → G and set k(m̄, n̄) =
(s(m̄) ∧ s(n̄))K1K2. We check this does not depend on the choice of s. If
s′ is another continuous section, there are elements k′, k′′ ∈ k such that
s′(m̄) = s(m̄)k′, s′(n̄) = s(n̄)k′′, so

s′(m̄) ∧ s′(n̄) = s′(m̄)k′ ∧ s′(n̄)k′′

and a simple argument (which by now should be routine) shows this is con-
gruent modulo K1K2 to s(m̄) ∧ s(n̄), i.e., k is independent of the choice of s.
Similarly

k(m̄m̄′, n̄) = (s(m̄m̄′) ∧ s(n̄))K1K2

and although s(m̄m̄′) need not be the same as s(m̄)s(m̄′), they differ by an
element of K and so again a, by now, routine argument gives that k is an
exterior pairing.
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If ` : M/K ×N/K → H is any continuous exterior pairing, we can define
a homomorphism

ψ :
M ∧̂N
K1K2

→ H

by ψ(m∧n)K1K2) = `(p(m), p(n)). This is well defined and satisfies ψk = ` (a
routine verification left to the reader). The uniqueness of ψ with this property
is easily checked, so in fact ϕ̄ is an isomorphism as required. �

Proposition 70. Suppose we have a presentation sequence

1→ R→ F → G→ 1

of a profinite group G, then

G∧̂G ∼= [F, F ]/[F,R].

Proof: This is really a corollary of the preceding lemma. (Note we do not need
to impose the restriction that R be free profinite.) We note that as G ∼= F/R,
G∧̂G ∼= (F/R)∧̂(F/R), so if, in that result, we take M = N = F , K = R,
then

Im(R∧̂F → F ∧̂F ) = Im(F ∧̂R→ F ∧̂F ) = [F,R],

so we get G∧̂G ∼= [F, F ]/[F,R], as required. �

8.6.5 Miller’s Theorem

Suppose we have, as above, a presentation sequence

1→ R→ F → G→ 1

of a profinite group G, the previous result gives

Ker([ , ]′ : G∧̂G→ G)

is isomorphic to Ker([F, F ]/[F,R]→ G), i.e., we have:

Theorem 10. (cf. Miller, [118]) There is a natural isomorphism

H2(G) ∼= Ker(G∧̂G→ G).

Proof: The result follows from the profinite Hopf formula. �
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8.6.6 H3(G)?

If
1→ R→ F → G→ 1

is a presentation sequence for a profinite group G, then the exact sequence
(see chapter 7):

0→ RAb → Ẑ[[G]]⊗̂F Î(F )→ Î(G)→ 0

has as its middle term, a free pseudocompact G-module on the space of gen-
erators of F . This then gives us a partial resolution of Ẑ as a pseudocompact
G-module, namely

Ẑ[[G]]⊗̂F Î(F ) //

%%LLLLLLLLLL
Ẑ[[G]] // Ẑ

RAb
99

99ssssssssss
Î(G)

<<yyyyyyyy

In an earlier chapter, we have already used the bottom part of this to note
that

TorGi−1(M, Î(G)) ∼= Hi(G,M) if i ≥ 2

and
0→ H1(G,M)→M⊗̂GÎ(G) δ→M⊗̂GẐ[[G]]→M⊗̂GẐ

is exact. Here we need rather to work with resolutions of the coefficient module
M , which in our application will be Ẑ, giving formulae for Hi(G, Ẑ), i.e.,
Hi(G).

The exact sequence

0→ Î(G)→ Ẑ[[G]]→ Ẑ→ 0

together with the fact that Hi(G, Ẑ[[G]]) = 0, Ẑ[[G]] being, of course, free, gives
us that

Hi(G) ∼= Hi−1(G, Î(G)) for i ≥ 2.

Using a similar argument with the exact sequence

0→ RAb → Ẑ[[G]]⊗̂F Î(F )→ Î(G)→ 0

gives
Hj(G, Î(G)) ∼= Hj−1(G,RAb) for j ≥ 2,

which together give us

Hi(G) ∼= Hi−2(G,RAb) for i ≥ 3.

In particular we have
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H3(G) ∼= H1(G,RAb).

We also know from the earlier exact sequence that

H1(G,RAb) = Ker(δ : RAb⊗̂Î(G)→ RAb).

This homomorphism δ is induced by the inclusion of Î(G) into Ẑ[[G]] followed
by the identification of Ẑ[[G]]⊗̂GRAb with RAb itself. Thus δ(g − 1) ⊗ r̄ is, in
the notation used earlier, β(s(g)t(r̄)s(g)−1) and Im δ is [F,R]/[R,R].

Notation: At this point it is helpful to introduce the notation π3(F ∧̂R)
for Ker(F ∧̂R→ [F,R]). The reason for the π3 is that this corresponds to the
π3 of the homotopy type represented by the exterior product crossed square
(see Ellis, [54], and later results here). Following Ellis, [54] in the abstract
group case, gives us a commutative diagram with exact rows and columns

1

��

1

��
π3(F ∧̂R)

��

H3(G)

��
1 // R∧̂R //

��

F ∧̂R //

��

Î(G)⊗̂RAb //

��

1

1 // [R,R] // [F,R] //

��

[F,R]/[R,R] //

��

1

1 1

but this implies that π3(F ∧̂R) and H3(G) are isomorphic, provided that R is
free profinite, so as to guarantee that the left hand arrow is an isomorphism.
We are thus ready to prove the profinite version of Brown and Loday’s result
giving an analogue for H3(G) of the Hopf-formula for H2(G).

Proposition 71. Given any profinite group G, let

1→ R→ F → G→ 1

be the profinite presentation of G given by F = F (G), the free profinite group
on the underlying space of G, then there is an isomorphism of pseudocompact
modules,

H3(G)
∼=→ Ker(F ∧̂R→ R).

Proof: We note that we have the result from the above discussion, provided
that the presentation is free, i.e., that R is free and thus in particular if G is
finite.
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We also know that if G = LimGi,

H3(G) ∼= LimH3(Gi)

by the result of Brumer, [34] p.455, mentioned earlier in this chapter. It there-
fore remains to prove the analogous result for π3(F ∧̂R).

Assuming the Gi are finite, by the result of Gildenhuys and Lim, [70], used
earlier, F ∼= LimF (Gi). Thus our situation is that, at each level, we have a
presentation

1→ Ri → Fi → Gi → 1,

so on taking the limit we get

R ∼= LimRi,

and each Ri is free on finitely many generators. Adapting an earlier argument
we have:

F ∧̂R ∼= Lim (Fi∧̂Ri),

where for convenience we have written Fi for F (Gi), andH3(G) ∼= Ker (F ∧̂R→
R), as required. �

Remark: The problem of showing that the above is independent of the
presentation, i.e., given any profinite presentation of G, the analogous state-
ment holds, seems to depend on techniques that seem tricky. These are related
to problems involving analogues of Tietsze’s theorem in the profinite case:
given two profinite presentations of a profinite group, are they “homotopic”
in any reasonable sense and is such a homotopy realisable by some “profinite
Tietsze transformations”?
This may be resolvable using crossed module / simplicial techniques, but it is
not at all certain how. The result that follows, together with earlier remarks
on H2 of non-free normal subgroups of free profinite groups may contribute
to the understanding of this area. It is the analogue for profinite groups of a
result of Ellis and Porter, [57], in the abstract case.

8.6.7 The crossed module analogue of the Hopf formula.

In chapter 3, we noted the existence of two exact sequences associated to a
free profinite crossed module, (C,G, ∂), on a continuous function f : X → G.
We recall the notation:

E = F (G×X), the free profinite group on G×X;
P = the Peiffer subgroup of E, that is, the closed normal subgroup gen-

erated by the Pieffer elements

uvu−1(θuv)−1,

where θ(g, x) = gf(x)G−1;
C = E/P ;
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N = Im(∂ : C → G);
I = Ker(E → N);
The two exact sequences are then

1→ P → E → C → 1, (a)

and
1→ I → E → N → 1. (b)

Proposition 72. Let ∂ : C → G be a projective profinite crossed module with
∂C = N , say. Then

H2(N) ∼= Ker ∂ ∩ [C,C].

Proof: By the Hopf formula, and the profinite presentation (b),

H2(N) ∼=
I ∩ [E,E]

[E, I]
.

Now let ∂′ : C ′ → G be the free profinite crossed module on ∂ : C → G
(considered as a continuous function). This gives an epimorphism

C ′
ψ //

∂′   AAAAAAA C

∂��~~~~~~~

G

and as (C,G, ∂) is assumed projective, ψ splits, but then as ψ is a crossed
module map, it is itself a profinite crossed module and Ker ψ is central. This
implies that ψ induces an isomorphism

[C ′, C ′]
∼=→ [C,C].

We are therefore reduced to proving the proposition for free profinite crossed
modules.

We have from Proposition 28, that ∂ : C → N is free profinite and epi-
morphic, hence using (b) again and Proposition 27, we get

C ∼=
E

[E, I]
,

so

[C,C] ∼=
[E,E]
[E, I]

,

with ∂ being induced by the projection of E onto N .
Finally we note that

Ker∂ ∩ [C,C] ∼=
I ∩ [E,E]

[E, I]
,

which completes the proof. �

Remark: For the proof we only used the fact that (b) was a profinite
presentation, not any details of how it was constructed.
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8.6.8 Ratcliffe’s lemma.

In [145], Ratcliffe proved a lemma (his lemma 2.1) by manipulation of com-
mutators. As was noted by Ellis and Porter in [57] for the abstract case, this
result on commutators can be elegantly proved using arguments similar to the
above.

Proposition 73. (Ratcliffe [145] 2.1 for the abstract version). Given a con-
tinuous function f : X → G with G a profinite group, and (C,G, ∂), the free
profinite crossed module on f , then using the notation as above:

[E, I] ∼= P ∩ [E,E]

Proof: Since C ∼= E/P , [C,C] = [E,E]/(P ∩ [E,E]), but we noted earlier
that [C,C] = [E,E]/[E, I], and the result follows. �

The interest of these two results is twofold. We have noted that if P =
(X : R) is a profinite presentation of a profinite group G, the identity module
κ(P) is the kernel of ∂ : C(P) → F (X) (cf., section 4.2.1). In the abstract
case, H2(Im∂) = 0, since the Nielsen-Schreier theorem implies Im∂ is free;
in the profinite case

H2(Im∂) = κ(P) ∩ [C(P), C(P)],

and will be present in all κ(P) regardless of what P is. In the abstract case,
one can interpret this in terms of “Y -sequences” and “Peiffer sequences”,
cf., Brown-Huebschmann, [29]. It would be interesting to see if any profinite
analogue of this was possible.

8.7 An eight term exact sequence in profinite homology

We are now able to fulfil our promise to extend the Stallings exact sequence
some terms to the left. In the abstract case, this particular formulation was
first developed by Brown and Loday, [31], using topological methods. We will
follow the treatment in Ellis, [54], again adapting in the obvious way to the
profinite case.

8.7.1 G and two closed normal subgroups.

Given a profinite group G and two closed normal subgroups M , N , we have
induced maps

M ∧̂N

��
M ∩N

 α→


G∧̂G

��
G

→

G/M ∧̂G/M

��
G/M

×

G/N ∧̂G/N

��
G/N
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If H is any profinite group with H0, H1 closed normal subgroups, let
〈H0, H1〉H be the subgroup of H∧̂H generated by the elements h0 ∧ h1 with
h0 ∈ H0, h1 ∈ H1, thus the image of the top part of α, α1, is 〈M,N〉G, there
are isomorphisms,

G/M ∧̂G/M ∼= (G∧̂G)/〈M,G〉G
and

G/N ∧̂G/N ∼= (G∧̂G)/〈N,G〉G
and the images of M ∧̂N →M ∩N and 〈M,N〉G → G are both [M,N ]. The
final ingredient that we will need is that given any M , N , G, as here,

1→M ∩N α→ G
β→ G/M ×G/N → 1

is exact provided G = MN , the group product of the normal subgroups. (The
only non-obvious thing here is that β is onto, but the fact that any g ∈ G can
be written as a limit of elements of the form mn ensures that it is.

Proposition 74. Given a profinite group G and two closed normal subgroups
so that G = MN , then there is an exact sequence

π3(M ∧̂N)→ π3(G∧̂G)→ π3(G/M ∧̂G/M )× π3(G/N ∧̂G/N )

→ {M ∩N}/[M,N ] → GAb → (G/M )Ab × (G/N )Ab → 1

Proof: We first note the group theoretic “snake lemma”:

Lemma 19. Given a commutative diagram

1 // A1
//

α

��

B1
//

β

��

C1
//

γ

��

1

1 // A0
// B0

// C0
// 1

of (profinite) groups and (continuous) homomorphisms, where the rows are
exact and the images of α, β, γ are normal in the respective codomains, then
there is a six-term exact sequence

1→ Ker α→ Ker β → Ker γ
δ→ Coker α→ Coker β → Coker γ → 1,

where the maps are either induced from those of the original diagram or are
defined in the usual way (for δ). The homomorphism δ is continuous.

Proof of lemma: This is standard except for continuity of δ which follows if
one picks a continuous section of the epimorphism from B1 to C1. �

Return to the main Proof: Consider the diagram above and replace
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M ∧̂N → G∧̂G

by 〈M,N〉G → G∧̂G. We note there is an epimorphism from M ∧̂N to
〈M,N〉G compatible with the commutator maps so that π3(M ∧̂N) maps down
onto

Ker(〈M,N〉G → G).

Now the result follows from the snake lemma. �

8.7.2 A “Mayer-Vietoris type” sequence and a possible
identification of π3(M∧̂N)?

We note that given the earlier results on H2(G) and π3(G∧̂G), the above
sequence is

π3(M ∧̂N)→ H2(G)→ H2(G/M)⊕H2(G/N)→ (M∩N)/[M,N ]

→ H1(G)→ H1(G/M)⊕H1(G/N)→ 0

If G = G1∗̂G2 the amalgamated free product of G1 and G2 over A, then
(provided the difficulties noted by Ribes, [147], do not occur in this example),
taking M to be the image of G1 and N to be that of G2, M ∩ N = A and
[M,N ] ∼= [A,A], so the term (M ∩N)/[M,N ] is H1(A). The identification of
π3(M ∧̂N) as H2(A) is then probable if still conjectural.

8.7.3 A special case.

If G = N , the condition that G = MN is clearly satisfied and we get the five-
term exact sequence yet again, but this time with an extra term π3(G∧̂M)
on the left hand end. Before we discuss this term by itself, we will show how
it is involved in another exact sequence.

We have M C G and so have an exact sequence

1→M → G
β→ Q→ 1,

where Q = G/M . Pick a profinite presentation sequence,

1→ R→ F
p→ G→ 1,

for G and let S = Ker(F
βp→ Q), then

1→ R→ S →M → 1

and
1→ S → F → Q→ 1

are exact, (but beware, given the problem with subgroups of free profinite
groups, we cannot assume S is free). Next note that
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F ∧̂R //

��

F ∧̂S //

��

G∧̂M //

��

1

1 // R // S // M // 1

is exact, since G∧̂M ∼= (F/R)∧̂(F/S), which in turn can be identified with
(F ∧̂S)/〈F,R〉F . Now using the snake lemma on this, we get

Proposition 75. In the above situation there is an exact sequence, (A),

π3(F ∧̂R)→ π3(F ∧̂S)→ π3(G∧̂M)

∂→ R

[F,R]
→ S

[F, S]
→ M

[G,M ]
→ 0

of Abelian profinite groups. �

The special case of the “Mayer-Vietoris” sequence for G = N gave us an
exact sequence, (B),

π3(G∧̂M) θ→ H2(G)→ H2(Q)→ M

[G,M ]
→ H1(G)→ H1(Q)→ 0

This suggests that somehow the two sequences are related. Of course
H2(G) ∼= (R ∩ [F, F ])/[F,R] ⊂ R/[F,R], similarly for H2(Q). The map from
π3(G∧̂M) to R/[F,R] is the continuous boundary link coming from the snake
lemma, and so we can give it an explicit description:
If x ∈ π3(G∧̂M), there is some y ∈ F ∧̂S mapping to x and the image of y in
S is in R, of course, ∂(x) = y[F,R]. Again, of course, the image of the map
from F ∧̂S to S is [F, S], so

∂(x) ∈ R ∩ [F, F ]
[F,R]

.

In sequence (B), the map θ is induced by the inclusion of G∧̂M into G∧̂G.
If x ∈ π3(G∧̂M), then for y ∈ F ∧̂S covering it, θ(x) = y[F,R] according to
the calculations made earlier in the previous section.

Putting this together we get

π3(G∧̂M) θ //

∼=
��

H2(G) //

inc

��

H2(Q) //

inc

��

M/[G,M ]

=

��

// · · ·

π3(G∧̂M) ∂ // R/[F,R] // S/[F, S] // M/[G,M ]

commutes with both rows exact, but this means that we can weld the two
sequences together to get an eight-term exact sequence.
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Proposition 76. (due to Brown-Loday in the abstract group case) Given an
exact sequence

1→M → G→ Q→ 1,

there is an exact sequence

H3(G)→ H3(Q)→ π3(G∧̂M)→ H2(G)→ H2(Q)

→M/[G,M ] → H1(G)→ H1(Q)→ 0

�

8.7.4 Ganea’s and other related results

Various such exact sequences have been proposed in the abstract case. Ganea,
[67], looked at the case when M is central in G. In this case G operates
trivially on M , so G⊗̂M is isomorphic to GAb⊗̂MAb and hence to GAb⊗̂M .
The Ganea term is GAb ⊗M , which, of course, maps down onto G∧̂M and
π3(G∧̂M) ∼= G∧̂M in this central case. Eckmann and Hilton, [50], (again in
the abstract case) showed that there was a sequence as above with π3(G∧̂M)
replaced by a “Coker σ” term where σ is a homomorphism defined using
a spectral sequence. With Stammbach, [51], they investigated “weak stem
extensions” where the map µ : M ⊗M → GAb⊗M is zero. These include the
stem extensions where N ⊂ [G,G]. In this case the mysterious coker σ term
is GAb⊗̂M . For general central extensions, they considered the diagram

M⊗̂M
χ̄ //

µ

��

H2M

µ

��
GAb⊗̂M

χ // H2G

where χ, χ̄ are commutator maps (cf. Ganea [67]) and is the map χ(g⊗m) =
g ∧m if we identify H2G with the kernel of G ∧G→ G, similarly for χ̄. Now
take

U = µ(Kerχ̄)

and they prove that the missing term corresponding to π3(G∧̂M) is (GAb⊗̂M)/U .
It is clear that this is isomorphic to π3(G∧̂M) in this case, as G∧̂M is obtained
from G⊗̂M by requiring that m ∧m = 1 for all m ∈M .

8.7.5 Ellis’s work

The proofs in this section have largely been based on the purely algebraic
proofs of Ellis. The amount of adjustment needed to handle the profinite case
has been minimal, except where the lack of the subgroup theorem for free
profinite groups has complicated matters. We have, we hope, laid the basis for
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a fuller understanding of homology and its relationship with commutators and
tensor and exterior products. We have not handled all the available results
in this direction, however, and would mention Ellis’s work on multirelative
homology, [55]. Other workers have results using simplicial methods. So far
we have concentrated on the homological algebra techniques. We will now be
starting to bridge the gap between these techniques and simplicial techniques,
linking homological with homotopical algebra and algebraic homotopy.
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309–360.

[124] F. Morel, Ensembles profinis simpliciaux et interprétation géométrique
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213, Editions du C.N.R.S., Paris, Math. Rev. 36 ] 137.

[134] T. Porter, Stability results for topological spaces, Math. Z., 140, (1974),
1–21, ISSN 0025-5874.

[135] T. Porter, Abstract homotopy theory in procategories, Cahiers Topologie
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