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Introduction

These notes were originally intended to supplement lectures given at the Buenos Aires meeting in
December 2006, and have been extended to give a lot more background for a course in cohomology
at Ottawa (Summer term 2007). They introduce some of the family of crossed algebraic gadgetry
that have their origins in combinatorial group theory in the 1930s and ‘40s, then were pushed
much further by Henry Whitehead in the papers on Combinatorial Homotopy, in particular, [169].
Since about 1970, more information and more examples have come to light, initially in the work of
Ronnie Brown and Phil Higgins, (for which a useful central reference will be the forthcoming, [41]),
in which crossed complexes were studied in depth. Explorations of crossed squares by Loday and
Guin-Valery, [91, 119] and from about 1980 onwards indicated their relevance to many problems in
algebra and algebraic geometry, as well as to algebraic topology have become clear. More recently
in the guise of 2-groups, they have been appearing in parts of differential geometry, [13, 32] and
have, via work of Breen and others, [28–31], been of central importance for non-Abelian cohomology.
This connection between the crossed menagerie and non-Abelian cohomology is almost as old as
the crossed gadgetry itself, dating back to Dedecker’s work in the 1960s, [64]. Yet the basic
message of what they are, why they work, how they relate to other structures, and how the crossed
menagerie works, still need repeating, especially in that setting of non-Abelian cohomology in all
its bewildering beauty.

The original notes have been augmented by additional material, since the link with non-Abelian
cohomology was worth pursuing in much more detail. These notes thus contain an introduction to
the way ‘crossed gadgetry’ interacts with non-Abelian cohomology and areas such as topological
and homotopical quantum field theory. This entails the inclusion of a fairly detailed introduction
to torsors, gerbes etc. This is based in part on Larry Breen’s beautiful Minneapolis notes, [31].

If this is the first time you have met this sort of material, then some words of warning and
welcome are in order.

There is much too much in these notes to digest in one go!

There is probably a lot more than you will need in your continuing research. For instance, the
material on torsors, etc., is probably best taken at a later sitting and the chapter ‘Beyond 2-types’
is not directly used until a lot later, so can be glanced at.

I have concentrated on the group theoretic and geometric aspects of cohomology, since the
non-Abelian theory is better developed there, but it is easy to attack other topics such as Lie
algebra cohomology, once the basic ideas of the group case have been mastered and applications in
differential geometry do need the torsors, etc. I have emphasised approaches using crossed modules
(of groups). Analogues of these gadgets do exist in the other settings (Lie algebras, etc.), and most
of the ideas go across without too much pain. If handling a non-group based problem (e.g. with
monoids or categories), then the internal categorical aspect - crossed module as internal category
in groups - would replace the direct method used here. Moreover the group based theory has the
advantage of being central to both algebraic and geometric applications.

The aim of the notes is not to give an exhaustive treatment of cohomology. That would be
impossible. If at the end of reading the relevant sections the reader feels that they have some
intuition on the meaning and interpretation of cohomology classes in their own area, and that they
can more easily attack other aspects of cohomological and homotopical algebra by themselves, then
the notes will have succeeded for them.

Although not ‘self contained’, I have tried to introduce topics such as sheaf theory as and when
necessary, so as to give a natural development of the ideas. Some readers will already have been
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introduced to these ideas and they need not read those sections in detail. Such sections are, I
think, clearly indicated. They do not give all the details of those areas, of course. For a start, those
details are not needed for the purposes of the notes, but the summaries do try to sketch in enough
‘intuition’ to make it reasonable clear, I hope, what the notes are talking about!

(This version is a shortened version of the notes. It does not contain the material on gerbes. It
is still being revised. The full version will be made available later.)
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Chapter 1

Preliminaries

1.1 Groups and Groupoids

Before launching into crossed modules, we need a word on groupoids. By a groupoid, we mean a
small category in which all morphisms are isomorphisms. (If you have not formally met categories
then do not worry, the idea will come through without that specific formal knowledge, although a
quick glance at Wikipedia for the definition of a category might be a good idea at some time soon.
You do not need category theory as such at this stage.) These groupoids typically arise in three
situations (i) symmetry objects of a fibered structure, (ii) equivalence relations, and (iii) group
actions. It is worth noting that several of the initial applications of groups were thought of, by
their discoverers, as being more naturally this type of groupoid structure.

For the first, assume we have a family of sets {Xa : a ∈ A}. Typically we have a function
f : X → A and Xa = f−1a for a ∈ A. We form the symmetry groupoid of the family by taking
the index set, A, as the set of objects of the groupoid, G, and, if a, a′ ∈ A, then G(a, a′), the set of
arrows in our symmetry groupoid from a to a′, is the set Bijections(Xa, Xa′). This G will contain
all the individual symmetry groups / permutation groups of the various Xa, but will also record
comparison information between different Xas.

Of course, any group is a groupoid with one object and if G is any groupoid, we have, for each
object a of G, a group G(a, a), of arrows that start and end at a. This is the ‘automorphism group’,
autG(a), of a within G. It is also referred to as the vertex group of G at a, and denoted G(a). This
later viewpoint and notation emphasise more the combinatorial, graph-like side of G’s structure.
Sometimes the notation G[1] may be used for G as the process of regarding a group as a groupoid
is a sort of ‘suspension’ or ‘shift’. It is one aspect of ‘categorification’, cf. Baez and Dolan, [12].

That combinatorial side is strongly represented in the second situation, equivalence relations.
Suppose that R is an equivalence relation on a set X. Going back to basics, R is a subset of X×X
satisfying:

(a) if a, b, c ∈ X and (a, b) and (b, c) ∈ R, then (a, c) ∈ R, i.e., R is transitive;

(b) for all a ∈ X, (a, a) ∈ R, alternatively the diagonal ∆ ⊆ R, i.e., R is reflexive;

(c) if a, b ∈ X and (a, b) ∈ R, then (b, a) ∈ R, i.e., R is symmetric.

Two comments might be made here. The first is ‘everyone knows that!’, the second ‘that is not the
usual order to put them in! Why?’

13
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It is a well known, but often forgotten, fact that from R, you get a groupoid (which we will
denote by R). The objects of R are the elements of X and R(a, b) is a singleton if (a, b) ∈ R and
is empty otherwise. (There is really no need to label the single element of R(a, b), when this is
non empty, but it is sometimes convenient to call it (a, b) at the risk of over using the ordered pair
notation.) Now transitivity of R gives us a composition function: for a, b, c ∈ X,

◦ : R(a, b)×R(b, c)→ R(a, c).

(Remember that a product of a set with the empty set is itself always empty, and that for any set,
there is a unique function with domain ∅ and codomain the set, so checking that this composition
works nicely is slightly more subtle than you might at first think. This is important when handling
the analogues of equivalence relations in other categories., then you cannot just write (a, b)◦(b, c) =
(a, c), or similar, as ‘elements’ may not be obvious things to handle.) Of course this composition
is associative, but if you have not seen the verification, it is important to think about it, looking
for subtle points, especially concerning the empty set and empty function and how to do the proof
without ‘elements’.

This composition makes R into a category, since (a) gives the existence of identities for each
object. (Ida = (a, a) in ‘elementary’ notation.) Finally (c) shows that each (a, b) is invertible, so
R is a groupoid. (You now see why that order was the natural one for the axioms. You cannot
prove that (a, a) is an identity until you have a composition, and similarly until you have identities,
inverses do not make sense.) We may call R, the groupoid of the equivalence relation R.

This shows how to think of R as a groupoid, R. The automorphism groups, R(a), are all
singletons as sets, so are trivial groups. Conversely any groupoid, G, gives a diagram

Arr(G)
s //
t
// Ob(G)

i
oo

with s = ‘source’, t = ‘target’. It thus gives a function

Arr(G)
(s,t) // Ob(G)×Ob(G) .

The image of this function is an equivalence relation as is easily checked. We will call this equivalence
relation R for the moment. If G is a groupoid such that each G(a) is a trivial group, then each
G(a, b) has at most one element (check it), so (s, t) is a one-one function and it is then trivial to
note that G is isomorphic to the groupoid of the equivalence relation, R.

We have looked at this simple case in some detail as in applications of the basic ideas, especially
in algebraic geometry, arguments using elements are quite tricky to give and the initial intuition
coming from this set-based case can easily be forgotten.

The third situation, that of group actions, is also a common one in algebra and algebraic
geometry. Equivalence relations often come from group actions. If G is a group and X is a G-set
with (left) G-action,

G×X // X

(g, x) g · x
,

(i.e., a function act(g, x) = g · x, which must satisfy the rules 1 · x = x and for all g1, g2 ∈ G,
g1 · (g2 · x) = (g1g2) · x, a sort of associativity law), then we get a groupoid ActG(X), that will be
called the action groupoid of the G-set, as follows:
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• the objects of ActG(X) are the elements of X;

• if a, b,∈ X,
ActG(X)(a, b) ∼= {g | g · a = b}.

An important word of caution is in order here. Logical complications can occur here ifActG(X)(a, b)
is set equal to {g | g · a = b}, since then a g can occur in several different ‘hom-sets’. A good way
to avoid this is to take

ActG(X)(a, b) = {(g, a) | g · a = b}.

This is a non-trivial change. It basically uses a disjoint union, but although very simple, it is
fundamental in its implications. We could also do it by taking ArrG(X) = G×X with source and
target maps s(g, x) = x, t(g, x) = g ·x. (It is useful, if you have not seen this before, to see how the
various parts of the definition of an action match with parts of the structural rules of a groupoid.
This is important as it indicates how, much later on, we will relax those rules in various ways.)

We will sometimes use the notation, Gy X, when discussing a left action of a group G on X.

In a groupoid, G, we say two objects, x and y are in the same connected component of G, if
G(x, y) is not empty. This gives an equivalence relation on the set of objects of G, as you can
easily check. The equivalence classes re called the connected components of G and the set of
connected components is usually denoted π0(G), by analogy with the usual notion for the set of
connected components of a topological space.

We have not discussed morphisms of groupoids. These are straightforward to define and to
work with. Together groupoids and the morphisms between them form a category, the category of
groupoids, which will be denoted Grpds.

(As we introduced structures of various types, we will usually introduce a corresponding form
of morphism and it will be rare that the resulting ‘context’ of objects and morphisms does not form
a category. It is important to look up the definition of categories and functors, but for the moment
you will not need to know any ‘category theory’ to read the notes. It will suffice to get to grips
with that as we go further and have good motivating examples for what is needed.)

Most of the concepts that we will be handling in what follows exist in many-object, groupoid
versions as well as single-object, group based ones. For simplicity we will often, but not always,
give concepts in the group based form, and will leave the other many-object form ‘to the reader’.
The conversion is usually not that difficult.

For more details on the theory of groupoids, the best two sources are Ronnie Brown’s book,
[36] or Phil Higgins’ monograph, now reprinted as [93].

1.2 A very brief introduction to cohomology

Partially as a case study, at least initially, we will be looking at various constructions that relate
to group cohomology. Later we will explore a more general type of (non-Abelian) cohomology,
including ideas about the non-Abelian cohomology of spaces, but that is for later. To start with
we will look at a simple group theoretic problem that will be used for motivation at several places
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in what follows. Much of what is in books on group cohomology is the Abelian theory, whilst we
will be looking more at the non-Abelian one. If you have not met cohomology at all, take a look at
the Wikipedia entries for group cohomology. You may not understanding everything, but there are
ideas there that will recur in what follows, and some terms that are described there or on linked
entries, that will be needed later.

1.2.1 Extensions.

Given a group, G, an extension of G by a group K is a group E with an epimorphism p : E → G
whose kernel is isomorphic to K (i.e. a short exact sequence of groups

E : 1→ K → E
p→ G→ 1.

As we asked that K is isomorphic to Ker p, we could have different groups E perhaps fitting into
this, yet they would still be essentially the same extension. We say two extensions, E and E ′, are
equivalent if there is an isomorphism between E and E′ compatible with the other data. We can
draw a diagram

E

��

1 // K //

=

��

E //

∼=
��

G //

=

��

1

E ′ 1 // K // E′ // G // 1

A typical situation might be that you have an unknown group E′ that you suspect is really E (i.e.
is isomorphic to E). You find a known normal subgroup K of E is isomorphic to one in E′ and
that the two quotient groups are isomorphic,

1 // K //

∼=
��

E //

?
���
�
� G //

∼=
��

1

1 // K ′ // E′ // G′ // 1

(But always remember, isomorphisms compare snap shots of the two structures and once chosen
can make things more ‘rigid’ than perhaps they really ‘naturally’ are. For instance, we might have
G a cyclic group of order 5 generated by an element a, and G′ one generated by b. ‘Naturally’
we choose an isomorphism ϕ : G → G′ to send a to b, but why? We could have sent a to any
non-identity element of G′ and need to be sure that this makes no difference. This is not just
‘attention to detail’. It can be very important. It stresses the importance of Aut(G), the group of
automorphisms of G in this sort of situation.)

A simple case to illustrate that the extension problem is a valid one, is to consider K = C3 =
〈a | a3〉, G = C2 = 〈b | b2〉.

We could take E = S3, the symmetric group on three symbols, or alternatively D3 (also called
D6 to really confuse things, but being the symmetry group of the triangle). This has a presentation
〈a, b | a3, b2, (ab)2〉. But what about C6 = 〈c | c6〉? This has a subgroup {1, c2, c4} isomorphic to K
and the quotient is isomorphic to G. Of course, S3 is non-Abelian, whilst C6 is. The presentation of
C6 needs adjusting to see just how similar the two situations are. This group also has a presentation
〈a, b | a3, b2, aba−1b〉, since we can deduce aba−1b = 1 from [a, b] = 1 and b2 = 1 where in terms
of the old generator c, a = c2 and b = c3. So there is a presentation of C3 which just differs by a
small ‘twist’ from that of S3.
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How could one be sure if S3 and C6 are the ‘only’ groups (up to isomorphism) that we could
put in that central position? Can we classify all the extensions of G by K?

These extension problems were one of the impetuses for the development of a ‘cohomological’
approach to algebra, but they were not the only ones.

1.2.2 Invariants

Another group theoretic input is via group representation theory and the theory of invariants. If
G is a group of n × n invertible matrices then one can use the simple but powerful tools of linear
algebra to get good information on the elements of G and often one can tie this information in to
some geometric context, say, by identifying elements of G as leaving invariant some polytope or
pattern, so G acts as a subgroup of the group of the symmetries of that pattern or object.

If, therefore, we use the group Gl(n,K) of such invertible matrices over some field K, then we
could map an arbitrary G into it and attempt to glean information on elements of G from the
corresponding matrices. We thus consider a group homomorphism

ρ : G→ Gl(n,K),

then look for nice properties of the ρ(g). of course, ρ need not be a monomorphism and then we
will loose information in the process, but in any case such a morphism will make G act (linearly)
on the vector space Kn. We could, more generally, replace K by a general commutative ring R, in
particular we could use the ring of integers, Z, and then replace Kn by a general module, M , over
R. If R = Z, then this is just an Abelian group. (If you have not formally met modules look up a
definition. The theory feels very like that of vector spaces to start with at least, but as elements
in R need not have inverses, care needs to be taken - you cannot cancel or divide in general, so
rx = ry does not imply x = y! Having looked up a definition, for most of the time you can think of
modules as being vector spaces or Abelian groups and you will not be far wrong. We will shortly
but briefly mention modules over a group algebra, R[G], and that ring is not commutative, but
again the complications that this does cause will not worry us at all.)

We can thus ‘represent’ G by mapping it into the automorphism group of M . This gives M the
structure of a G-module. We look for invariants of the action of G on M - what are they? Suppose
that G is some group of symmetries of some geometric figure or pattern, that we will call X, in
Rn, then for each g ∈ G, gX = X, since g acts by pushing the pattern around back onto itself. An
invariant of G, considered as acting on M , or, to put it more neatly, of the G-module, M , is an
element m in M such that g.m = m for all g ∈ G. These form a submodule,

MG = {m | gm = m for all g ∈ G}.

Clearly, it will help in our understanding of the structure of G if we can calculate and analyse
these modules of invariants. Now suppose we are looking at a submodule N of M , then NG

is a submodule of MG and we can hope to start finding invariants, perhaps by looking at such
submodules and the corresponding quotient modules, M/N . We have a short exact sequence

0→ N →M →M/N → 0,

but, although applying the (functorial) operation (−)G does yield

0→ NG →MG → (M/N)G,
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the last map need not be onto so we may not get a short exact sequence and hence a nice simple
way of finding invariants!

Example: Try G = C2 = {1, a}, M = Z, the Abelian group of integers, with G action,
a.n = −n, and N = 2Z, the subgroup of even integers, with the same G action. Now calculate the
invariant modules MG and NG; they are both trivial, but M/N ∼= Z2, and ..., what is (M/N)G for
this example?

The way of studying this in general is to try to to continue the exact sequence further to the right
in some universal and natural way (via the theory of derived functors). This is what cohomology
does. We can get a long exact sequence,

0→ NG →MG → (M/N)G → H1(G,N)→ H1(G,M)→ H1(G,M/N)→ H2(G,N)→ . . . .

But what are these Hk(G,M) and how does one get at them for calculation and interpretation?
In fact what is cohomology in general?

Its origins lie within Algebraic Topology as well as in Group Theory and that area provides
some useful intuitions to get us started, before asking how to form group cohomology.

1.2.3 Homology and Cohomology of spaces.

Naively homology and cohomology give methods for measuring the holes in a space, holes of different
dimensions yield generators in different (co)homology groups. The idea is easily seen for graphs
and low dimensional simplicial complexes.

First we recall the definition of simplicial complex as we will need to be fairly precise about
such objects and their role in relation to triangulations and related concepts.

Definition: A simplicial complex, K, is a set of objects, V (K), called vertices and a set, S(K),
of finite non-empty subsets of V (K), called simplices. The simplices satisfy the condition that if
σ ⊂ V (K) is a simplex and τ ⊂ σ, τ 6= ∅, then τ is also a simplex.

We say τ is a face of σ. If σ ∈ S(K) has p+ 1 elements it is said to be a p-simplex. The set of
p-simplices of K is denoted by Kp. The dimension of K is the largest p such that Kp is non-empty.

We will sometimes use the notation, P(X), for the power set of a set X, i.e., the set of subsets of
X. Suppose that X = {0, . . . , p}, then there is a simple example of a simplicial complex, known as
the standard abstract p-simplex, ∆[n], with vertex set, V (∆[n]) = X and with S(∆[n]) = P(X)\{∅},
in other words all non-empty subsets of X are to be simplices. (If you have not met simplicial
complexes before this is a good example to work with working out what it looks like and
‘feels like’ for n = 0, 1, 2 and 3. It is too regular to be general, so we will, below, see another
example which is perhaps a bit more typical.

When thinking about simplicial complexes, it is important to have a picture in our minds of
a triangulated space (probably a surface or similar, a wireframe as in computer graphics). The
simplices are the triangles, tetrahedra, etc., and are determined by their sets of vertices. Not every
set of vertices need be a simplex, but if a set of vertices does correspond to a simplex then all its
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non-empty subsets do as well, as they give the faces of that simplex. Here is an example:
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Here V (K) = {0, 1, 2, 3, 4} and S(K) consists of {0, 1, 2}, {2, 3}, {3, 4} and all the non-empty
subsets of these. Note the triangle {0, 1, 2} is intended to be solid, (but I did not work out how to
do it on the Latex system I was using!)

Simplicial complexes are a natural combinatorial generalisation of (undirected) graphs. They
not only have vertices and edges joining them, but also possible higher dimensional simplices
relating paths in that low dimensional graph. It is often convenient to put a (total) order on the
set V (K) of vertices of a simplicial complex as this allows each simplex to be specified as a list
σ = 〈v0, v1, . . . , vn〉 with v0 < v1 < . . . < vn, instead of as merely a set {v0, v1, . . . , vn} of vertices.
This, in turn, allows us to talk, unambiguously, of the kth face of such a simplex, being the list
with vk omitted, so the zeroth face is 〈v1, . . . , vn〉, the first is 〈v0, v2, . . . , vn〉 and so on.

Although strictly speaking different types of object, we tend to use the terms ‘vertex’ and ‘0-
simplex’ interchangeably and also use ‘edge’ as a synonym for ‘1-simplex’. We will usually write K0

for V (K) and may write K1 for the set of edges of a graph, thought of as a 1-dimensional simplicial
complex.

An abstract simplicial complex is a combinatorial gadget that models certain aspects of a spatial
configuration. Sometimes it is useful, perhaps even necessary, to produce a topological space from
that data in a simplicial complex.

Definition: To each simplicial complex K, one can associate a topological space called the
polyhedron of K often also called or geometric realisation of K and denoted |K|.

This can be constructed by taking a copy K(σ) of a standard topological p-simplex for each
p-simplex of K and then ‘gluing’ them together according to the face relations encoded in K.

Definition: The standard (topological) p-simplex is usually taken to be the convex hull of the
basis vectors e1, e2, . . . , ep+1 in Rp+1, to represent each abstract p-simplex, σ ∈ S(K), and then
‘gluing’ faces together, so whenever τ is a face of σ we identify K(τ) with the corresponding face
of K(σ). This space is usually denoted ∆p.

There is a canonical way of constructing |K| as follows: |K| is the set of all functions from
V (K) to the closed interval [0, 1] such that

• if α ∈ |K|, the set

{v ∈ V (K) | α(v) 6= 0}

is a simplex of K;
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• for each v ∈ V (K),
∑

α∈V (K)

α(v) = 1.

We can put a metric d on |K| by

d(α, β) =
( ∑
v∈V (K)

(pv(α)− pv(β))2
) 1

2
.

This however gives |K| as a subspace of R#(V (K)), and so is usually of much higher dimension then
might seem geometrically significant in a given context. For instance, the above example would be
represented as a subspace of R5, rather than R2, although that is the dimension of the picture we
gave of it.

Given two simplicial complexes K, L, then a function on the vertex sets, f : V (K) → V (L)
is a simplicial map if it preserves simplices. (But that needs a bit of care to check out its exact
meaning! ... for you to do. Look it up, or better try to see what the problem might be, try to
resolve it yourself and then look it up! )

1.2.4 Betti numbers and Homology

One of the first sorts of invariant considered in what was to become Algebraic Topology was the
family of Betti numbers. Given a simple shape, the most obvious piece of information to note would
be the number of ‘pieces’ it is made up of, or more precisely, the number of components. The idea
is very well known, at least for graphs, and as simplicial complexes are closely related to graphs,
we will briefly look at this case first.

For convenience we will assume the vertices V = V (Γ) of a given finite graph, Γ, are ordered,
so for each edge e of Γ, we can assign a source s(e) and a target t(e) amongst the vertices. Two
vertices v and w are said to be in the same component of Γ if there is a sequence of edges e1, . . . , ek
of Γ joining them1. There are, of course, several ways of thinking about this, for instance, define
a relation ∼ on V by : for each e, s(e) ∼ t(e). Extend ∼ to an equivalence relation on V in the
standard way, then v ∼ w if and only if they are in the same component. The zeroth Betti number,
β0(Γ), is the number of components of Γ.

The first Betti number, β1(Γ), somewhat similarly, counts the number of cycles of Γ. We have
ordered the vertices of Γ, so have effectively also directed its edges. If e is an edge, going from u
to v, (so u < v in the order on Γ0), we write e also for the path going just along e and −e for
that going backwards along it, then extend our notation so s(−e) = t(e) = v, etc. Adding in these
‘negative edges’ corresponds to the formation of the symmetric closure of ∼. For the transitive
closure we need to concatenate these simple one-edge paths: if e′ is an edge or a ‘negative edge’
from v to w, we write e+ e′ for the path going along e then e′. Playing algebraically with s and t
and making them respect addition, we get a ‘pseudo-calculation’ for their difference ∂ = t− s:

∂(e+ e′) = t(e+ e′)− s(e+ e′) = t(e) + t(e′)− s(e)− s(e′) = t(e′)− s(e) = u− w,

since t(e) = v = s(e′). In other words, defined in a suitable way, we would get that ∂, equal to
‘target minus source’, applies nicely to paths as well as edges, so that, for instance, two vertices

1In fact here, the ordering we have assumed on the vertices complicates the exposition a little, but it is useful
later on so will stick with it here.
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would be related in the transitive closure of ∼ if there was a ‘formal sum’ of edges that mapped
down to their ‘difference’. We say ‘formal sum’ as this is just what it is. We will need ‘negative
vertices’ as well as ‘negative edges’.

We set this up more formally as follows: Let
C0(Γ) = the set of formal sums,

∑
v∈Γ0

avv with av ∈ Z, the additive group of integers, (an
alternative form is to take av ∈ R.;
C1(Γ) = the set of formal sums,

∑
e∈Γ1

bee with be ∈ Z,
where Γ1 denotes the set of edges of Γ, and ∂ : C1(Γ)→ C0(Γ) defined by extending additively the
mapping given on the edges by ∂ = t− s.

The task of determining components is thus reduced to calculating when integer vectors differ by
the image of one in C1(Γ). The Betti number β0(Γ) is just the rank of the quotient C0(Γ)/Im(∂),
that is, the number of free generators of this commutative group. This would be exactly the
dimension of this ‘vector space’ if we had allowed real coefficients in our formal sums not just
integer ones.

Having reformulated components and ∼ in an algebraic way, we immediately get a pay-off in
our determination of cycles. A cycle is a path which starts and ends at the same vertex; a path is
being modelled by an element in C1(Γ), so a cycle is an element x in C1(γ) satisfying ∂(x) = 0.
With this we have β1(Γ) = rank(Ker(∂)), a similar formulation to that for β0. The similarity is
even more striking if we replace the graph Γ by a simplicial complex K. We can then define in
general and in any dimension p, Cp(K) to be the commutative group of all formal sums

∑
σ∈Kp aσσ.

We next need to get an analogue of the ∂ = t − s formula. We want this to correspond to
the boundary of the objects to which it is applied. For instance, if σ was the triangle / 2-simplex,
〈v0, v1, v2〉, we would want ∂σ to be 〈v1, v2〉+ 〈v0, v1〉 − 〈v0, v2〉, since going (clockwise) around the
triangle, that cycle will be traced out:

〈v1〉

〈v0〉 〈v2〉........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
............................................................................................................................................................................

〈v0, v1〉 〈v1, v2〉

〈v0, v2〉

If we write, in general, diσ for the ith face of a p-simplex σ = 〈v0, . . . , vp〉, then in this 2-
dimensional example ∂σ = d0σ − d1σ + d2σ, changing the order for later convenience. This is the
sum of the faces with weighting (−1)i given to diσ. This is consistent with ∂ = t− s in the lower
dimension as t = d0 and s = d1. We can thus suggest that

∂ = ∂p : Cp(K)→ Cp−1(K)

be defined on p-simplices by

∂pσ =

p∑
i=0

(−1)idiσ,

and then extended additively to all of Cp(K).

As an example of what this does, look at a square K, with vertices v0, v1, v2, v3, edges 〈vi, vi+1〉
for i = 0, 1, 2 and 〈v0, v2〉, and 2-simplices σ1 = 〈v0, v1, v2〉 and σ2 = 〈v0, v2, v3〉. As the square
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has these two 2-simplices, we can think of it as being represented by σ1 + σ2 in C2(K), then
∂(σ1 + σ2) = 〈v0, v1〉 + 〈v1, v2〉 + 〈v2, v3〉 − 〈v0, v3〉, as the two occurrences of the diagonal 〈v0, v2〉
cancel out as they have opposite sign, and this is the path around the actual boundary of the
square.

It is important to note that the boundary of a boundary is always trivial, that is, the composite
mapping

Cp(K)
∂p→ Cp−1(K)

∂p−1→ Cp−2(K)

is the mapping sending everything to 0 ∈ Cp−1(K).
The idea of the higher Betti numbers, βp(K), is that they measure the number of p-dimensional

‘holes’ in K. Imagine we has a tunnel-shaped hole through a space K, then we would have a cycle
around the hole at one end of the tunnel and another around the hole at the other end. If we
merely count cycles then we will get at least two such coming from this hole, but these cycles are
linked as there is the cylindrical hole itself and that gives a 2 dimensional element with boundary
the difference of the two cycles. In general, a p-cycle will be an element x of Cp(K) with trivial
boundary, i.e., such that ∂x = 0, and we say that two p-cycles x and x′ are homologous if there is
an element y in Cp+1(K) such that ∂y = x − x′. The ‘holes’ correspond to classes of homologous
cycles as in our tunnel.

The number of ‘independent’ cycle classes in the various dimensions give the corresponding
Betti number. Using some algebra, this is easier to define rigorously, but, at the same time, the
geometric insights from the vaguer description are important to try to retain. (They are not always
put in a central enough position in textbooks!) This algebraic approach identifies βp(K) as the
(torsion free) rank of a certain commutative group formed as follows: the pth homology group of
K is defined to be the quotient:

Hp(K) =
Ker(∂p : Cp(K)→ Cp−1(K))

Im(∂p : Cp+1(K)→ Cp(K))
,

and then βp(K) = rank(Hp(K)).
Thus far we have from K built a sequence of modules, C(K)n, generated by the n-simplices

of K and with homomorphisms ∂p : Cp(K) → Cp−1(K) satisfying ∂p−1∂p = 0.. (We abstract this
structure calling it a chain complex. We will look at in more detail at several places later in these
notes.)

Exercises: Try to investigate this homology in some very simple situations perhaps including
some of the following:
(a) V (K) = {0, 1, 2, 3}, S(K) = P(V (K)) \ {∅, {0, 1, 2, 3}}. This is an empty tetrahedron so one
expects one 3-dimensional hole., i.e., β3(K) = 1 but the others are zero.
(b) ∆[2] is the (full) triangle and ∂∆[2] its boundary, so is an empty triangle. Find the homology
of ∂∆[2]× ∂∆[2], which is a triangulated torus.
(c) Find the homology of ∆[1]× ∂∆[2], which is a cylinder.

Note, it is up to you to find the meaning of product in this context. Remember the discussion
of the square, above, which is, of course ∆[1]×∆[1].

Often cohomology is more use than homology. Starting with K and a module M work out
Cn(K,M) = Hom(C(K)n,M). Now the boundary maps increase (upper) degree by one. The
cohomology is Hn(K,M) = Ker ∂n/Im∂n−1. Again this measures ‘holes’ detectable by M ! What



1.2. A VERY BRIEF INTRODUCTION TO COHOMOLOGY 23

does that mean? The cohomology groups are better structured than the homology ones, but how
are these invariants be interpreted?

A simplicial map, f : K → L, will induce a map on cohomology groups. Try it! We can
equally well do this for chain or ‘cochain complexes’. There is a notion of chain map between chain
complexes, say, ϕ : C → D and such a map will induce maps on both homology ad cohomology.
Of special interest is when the induced maps are isomorphisms. The chain map is then called a
quasi-isomorphism.

1.2.5 Interpretation

The question of interpretation is a very crucial question, but, rather than answering it now, we
will return to the cohomology of groups. The terminology may seem a bit strange. Here we have
been talking about measuring holes in a space, so how does that relate to groups. The idea is
that one builds a space from a group in such a way as the properties of the space reflect those of
the group in some sense. The simplest case of this is an Eilenberg-MacLane space, K(G, 1). The
defining property of such a space is that its fundamental group is G whilst all other homotopy
groups are trivial. Eilenberg and Maclane showed that however such a space was constructed its
cohomology could be got just from G itself and that cohomology was related with the extension
problem and the invariant module problem. Their method was to build a chain complex that would
copy the structure of the chain complex on the K(G, 1). This chain complex, the bar resolution,
was very important because although in the group case there was an alternative route via the
topological space K(G, 1), for many other types of algebraic system (Lie algebras, associative
algebras, commutative algebras, etc.), the analogous basic construction could be used, and in those
contexts no space was available. Thus from G, we want to construct a nice chain complex directly.
The construction is reasonably simple. It gives a natural way of getting a chain complex, but it
does not exploit any particular features of the group so if the group is infinite, the modules will be
infinitely generated, which will occupy us later, as we use insights from combinatorial group theory
to construct smaller models for equivalent resolutions, and better still look at ‘crossed’ versions.

For the moment we just need the definition (adapted from the account given in Wikipedia):

1.2.6 The bar resolution

The input data is a group G and a module M with a left G-action (i.e., a left G-module).
For n ≥ 0, we let Cn(G,M) be the group of all functions from the n-fold product Gn to M :

Cn(G,M) = {ϕ : Gn →M}

This is an Abelian group; its elements are called the n-cochains. We further define group homo-
morphisms

∂n : Cn(G,M)→ Cn+1(G,M)

by

∂n(ϕ)(g0, . . . , gn) = g0 · ϕ(g1, . . . , gn)

+

n−1∑
i=0

(−1)i+1ϕ(g0, . . . , gi−1, gigi+1, gi+2, . . . , gn)

+(−1)n+1ϕ(g0, . . . , gn−1)
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These are known as the coboundary homomorphisms. The crucial thing to check here is ∂n+1 ◦∂n =
0, thus we have a chain complex and we can ‘compute’ its cohomology. For n ≥ 0, define the group
of n-cocycles as:

Zn(G,M) = Ker ∂n

and the group of n-coboundaries as{
B0(G,M) = 0

Bn(G,M) = Im(∂n−1) n ≥ 1

and

Hn(G,M) = Zn(G,M)/Bn(G,M).

Thinking about this topologically, it is as if we had constructed a sort of space / simplicial complex,
K, out of G by taking Kn = Gn. We will see this idea many times later on. This cochain complex
is often called the bar resolution. It exists in a normalised and a unnormalised form. This is the
unnormalised one. It can also be constructed via a chain complex, sometimes denoted βG, so that
this C(G,M) is formed by taking Hom(βG,M), in a suitable sense.

There are lots of properties that are easy to check here. Some will be suggested as exercises for
you to do. For others, you can refer to some of the standard textbooks that deal with introductions
to group cohomology, for instance, K. Brown’s [34].

One further point is that this cohomology used a module, and so encodes ‘commutative’ or
Abelian information. We will be also looking at the non-Abelian case.

Before we leave this introduction to cohomology, it should be mentioned that in the topological
case, if we do not have a simplicial complex to start with, we either use the singular complex (see
next section) which is a simplicial set and not a simplicial complex, but the theory extends easily
enough, or we use open covers of the space to build a system of simplicial complexes approximating
to the space. We will see this later as Čech cohomology. This is most powerful when the module
M of coefficients is allowed to vary over the various points of the space. For this we will need the
notion of sheaf, which will be discussed in some detail later.

1.3 Simplicial things in a category

1.3.1 Simplicial Sets

Simplicial objects are extremely useful. Simplicial sets extend ideas of simplicial complexes in a neat
way. They combine a reasonably simple combinatorial definition with subtle algebraic properties.
Their original construction was motivated in algebraic topology by the singular complex of a space.

If X is a topological space, Sing(X) denotes the collection of sets and mappings defined by

Sing(X)n = Top(∆n, X), n ∈ N,

where ∆n is the usual topological n-simplex given, for example, by

{x ∈ Rn+1 |
∑

xi = 1; all xi ≥ 0}.
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There are inclusion maps δi : ∆n−1 → ∆n and ‘squashing’ maps σi : ∆n+1 → ∆n and these induce
the face maps,

di : Sing(X)n → Sing(X)n−1, 0 ≤ i ≤ n,

and degeneracy maps,

si : Sing(X)n → Sing(X)n+1, 0 ≤ i ≤ n.

These satisfy the simplicial identities,

didj = dj−1di if i < j,

disj =


sj−1di if i < j,
id if i = j or j + 1,
sjdi−1 if i > j + 1,

sisj = sjsi−1 if i > j.

Generally this structure is abstracted to give a family of sets, {Kn : n ≥ 0}, face maps di : Kn →
Kn−1 and degeneracy maps, si : Kn → Kn+1, satisfying these simplicial identities. The result is a
simplicial set.

Remark: Using the singular complex, we can proceed much as in our earlier discussion to
define singular homology groups for a space. Starting from Sing(X), take a free Abelian group in
each dimension then take the alternating sum of the faces to get a boundary map and thus a chain
complex, C(X), then take the homology of that. (We do not give details as this is very readily
available in standard texts on algebraic topology.)

If C is any category, a simplicial object in C is given by a family of objects of C, {Kn : n ≥ 0}
and morphisms di and si as above. If ∆ denotes the category of finite ordinal sets, [n] = {0 < 1 <
. . . < n} and order preserving functions between them, then a simplicial object in C is simply a
functor, K : ∆op → C, so the obvious definition of a simplicial map will be a natural transformation
of functors, f : K → L. This translates as a family of morphisms, fn : Kn → Ln, compatible in
the obvious way with the di and si.

We denote the category of simplicial objects in C by Simp(C) or Simp.C, but will shorten
Simp(Sets) to S.

The category, S, models all homotopy types of spaces. It is a presheaf category, so is a topos
and has a lot of nice structure including products, and mapping space objects S(K,L), where

S(K,L)n = S(K ×∆[n], L).

Here ∆[n] = ∆(−, [n]), the standard simplicial n-simplex. This has a special n-simplex, namely
the element ιn in ∆[n]n determined by the identity map.

The Yoneda lemma, from category theory, gives us an isomorphism S(∆[n],K) ∼= Kn, and so,
for any n-simplex, x, gives us a simplicial map pxq : ∆[n] → K, which is sometimes called the
name, or representing map of x. From pxq, you get x back by evaluating on pxq on ιn.

Examples of simplicial sets.
First let us have a trivial example, ..., trivial but often very useful.
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Definition: Given a set, X, the discrete simplicial set, K(X, 0), is defined to have K(X, 0)n =
X for all n and to have all face and degeneracy maps given by the identity function on X. A
simplicial set K is said to be discrete if it is isomorphic to one of form K(X, 0) for some set X.
(An easy extension gives the notion of discrete simplicial object in a category.)

With more substance, we have the following examples:

(i) If A is a small category or a groupoid, we can form a simplicial set, Ner(A), defined by
Ner(A)n = Cat([n],A), with the obvious face and degeneracy maps induced by composition with
the analogues of the δi and σi. The simplicial set, Ner(A), is called the nerve of the category A.
An n-simplex in Ner(A) is a sequence of n composable arrows in A.

This is easier to understand in pictures:

Ner(A)0 is the set of objects;

Ner(A)1 is the set of arrows or morphisms;

Ner(A)2 is the set of composable pairs of morphisms, so σ ∈ Ner(A)2 will be of form σ =

(a0
α1→ a1

α2→ a2). Visualising this as a triangle shows the faces more clearly:

a1

α2

!!BBBBBBBB

a0

α1

==||||||||
α1α2

// a2

The case Ner(A)n for n = 3, etc. are left to you. This is worth doing if you have not seen it before.

Note that in these contexts, we will sometimes use composition in the ‘left-to-right’ order, but
in general categorical settings will use gf being first do f then g. To stick exclusively to one or the
other is usually awkward, so we use both as appropriate. This sometimes means we have to take
extra care over the conventions that we are using at a particular time.

If we have a group, G, consider it as the one object groupoid G[1] as before, then Ner(G[1]) is
really the simplicial set corresponding to our construction of the bar resolution of G. It is called
the nerve of G, and is a classifying space for G, an aspect that we will explore later in some detail.

If we have a discrete category A, i.e. A has no non-identity morphisms between objects, then
A is really just a set, and Ner(A) is a discrete simplicial set.

(ii) Suppose we have a simplicial complex K, then it almost is a simplicial set. There are some
problems, but they are easily resolved. If we, a bit näıvely, set Kn to be the set of n-simplices of
K, then how are we to define the face maps, and if K has no simplices in dimensions greater than
n say, Kn+1 will be empty so degeneracies cause problems as you cannot map from a non-empty
set to an empty one!

That was too näıve, so we pick a partial order on the vertices ofK such that any simplex is totally
ordered, (for instance, a total order on V (K) does the job, but may not be convenient sometimes
and so may be ‘overkill’). Now, reset Kn to be the set of all ordered strings, σ = 〈x0, . . . , xn〉
of vertices, for which the underlying (unordered) set is a simplex of K. The degeneracies now
can be handled simply. For example, if σ = 〈x0, x1〉 is a 1-simplex in this simplicial set, then
s0σ = 〈x0, x0, x1〉, whilst s1σ = 〈x0, x1, x1〉. (The details are left to you to complete. Note we did
not specify how to define the face maps, so you need to do that as well and to verify that it all fits
together neatly.)
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If you want to learn more about simplicial set theory, the old paper of Curtis, [58] and Peter
May’s monograph, [127], are very readable. There is a fairly well behaved notion of homotopy in
S, and simplicial homotopy theory is the subject of many good books. A chatty introduction to it
can be found in Kamps and Porter, [111], which, of course, is highly recommended!

The homotopy theory of simplicial sets yields a notion of weak equivalence. (This is similar to
‘quasi-isomorphism’ in the homotopy theory of chain complexes.) There are homotopy groups and
f : K → L is a weak equivalence if f induces isomorphisms on all homotopy groups. We will not
need the detailed definition yet.

We next look at some simplicial algebraic gadgets, especially simplicial groups and simplicially
enriched groupoids. We will concentrate on the first but must mention the second for completeness.

1.3.2 Simplicial Objects in Categories other than Sets

If A is any category, we can form Simp.A = A∆op
. (Sometimes we will use a variant notation:

Simp(A), as occasionally the first notation may be ambiguous.)

These categories often have a good notion of homotopy as briefly mentioned above; see also the
discussion of simplicially enriched categories in [111]. Of particular use are:

(i) Simp.Ab, the category of simplicial Abelian groups. This is equivalent to the category of
chain complexes by the Dold-Kan theorem, which we will mention in more detail later.

(ii) Simp.Grps, the category of simplicial groups. This ‘models’ all connected homotopy
types, by Kan, [112] (cf., Curtis, [58]). There are adjoint functors G : Sconn → Simp.Grps,
W : Simp.Grps → Sconn, with the two natural maps GW → Id and Id → WG being weak
equivalences.

Results on simplicial groups by Carrasco, [51], generalise the Dold-Kan theorem to the non-
Abelian case, (cf., Carrasco and Cegarra, [52]).

(iii) ‘Simp.Grpds’: in 1984 Dwyer and Kan, [69], (and also Joyal and Tierney, and Duskin and
van Osdol, cf., Nan Tie, [142, 143]) noted how to generalise the (G,W ) adjoint pair to handle all
simplicial sets, not just the connected ones. (Beware there are several important printing errors in
the paper [69].) For this they used a special type of simplicial groupoid. Although the term used
in [69] was exactly that, ‘simplicial groupoid’, this is really a misnomer and may give the wrong
impression, as not all simplicial objects in the category of groupoids are used. A probably better
term would be ‘simplicially enriched groupoid’, although ‘simplicial groupoid with discrete objects’
is also used. We will denote this category by S−Grpds.

This category ‘models’ all homotopy types using a mix of algebra and combinatorial structure.

We will later describe both G and W in some detail, and will use simplicially enriched groupoids
and simplicially enriched categories as well.

(iv) Nerves of internal categories: Suppose that D is a category with finite limits and C is an
internal category in D. What does that mean? In our earlier discussion on groupoids, we had the
diagram that looked a bit like

C1

s //

t
// C0

i
oo

.
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We complete this one stage to build in the set of composable pairs C2 = C1 ×C0 C1 and the
multiplication/ composition map, which we denote here by m.

C2

p1 //
m //
p2 //

C1

s //

t
// C0

i
oo

.

We did this previously within the category of sets, but could do it equally well in D. We should also
mention an object C3 given by a ‘triple pullback’, which is useful when discussing the associativity
of composition. This will give us the analogue of a small category, but in which the object of objects
and the object of arrows are both themselves objects of D and the source target and composition
maps are all morphisms in that category.

If one interprets this for D = Sets, it becomes clear that this diagram that we seem to be
building is part of the diagram specifying the nerve of the small category, C, with C0 the set of
objects, C1 that of morphisms, C2 that of composable pairs and so on. (We have not specified the
two degeneracies from C1 to C2 in the diagram, but this is merely because we left the details of
the rules governing identities out of our earlier discussion.) This builds a simplicial object in D as
follows: take an n-fold pullback to get

Cn = C1 ×C0 C1 ×C0 C1 ×C0 . . .×C0 C1︸ ︷︷ ︸
n

,

define face and degeneracies by the same sort of rules as in the set based nerve, that is, in dimension
n, d0 and dn each leave out an end, whilst the di use the composition in the category to get a
composite of two adjacent ‘arrows’, and the degeneracies are ‘insertion of identities’. (Working out
how to do these morphisms in terms of diagrams is quite fun!) We thus get a simplicial object in
D called the nerve of the internal category, C. We will use this in several situations later in a key
way. In particular, we will use the case D = Grps.

Later on, we will use internal functors and natural transformations as well. For the moment, the
description of these structures is left to you. Notationally, we will write Cat(D) for the category
of internal categories in D. As you might expect, the above nerve construction is a functor from
Cat(D) to Simp(D). (If you know about such things, you might also expect that Cat(D) can be
thought of as a 2-category, . . . , you would be right, but we will leave that until much later on.)

(v) Bisimplicial and multisimplicial objects: A useful category in which we can take simplicial
objects is S itself, and the same is true for other categories of form Simp(A). For simplicity we
will start by looking at simplicial objects in S.

As a simplicial object in a category A is just a functor from ∆op to A, a simplicial object in
S is such a functor taking values that themselves are functors from ∆op to Sets. Another way to
look at these is a ‘functor of two variables’ using a categorical version of the way that a function
of two variables, f : X × Y → Z, can be thought of as a function f̃ : X → ZY from X to the set of
functions from Y to Z. Of course, f(x, y) = f̃(x)(y) and similarly for the functors. We thus have
a description of a simplicial object in S as corresponding to a functor X : ∆op ×∆op → Sets.

Definition: A bisimplicial set is a functor X : ∆op×∆op → Sets. . A morphism of bisimplicial
sets, f : X → Y is a natural transformation between the corresponding functors. More generally a
bisimplicial object in a category A is a functor X : ∆op×∆op → A, similarly for the corresponding
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morphisms. The corresponding categories will denoted BiS := BiSimp(Sets) and in general
BiSimp(A).

A simplicial set can be specified by giving sets Xn and face and degeneracy ‘operators’ between
them satisfying the simplicial idenities. A bisimplicial set is similarly specified by a bi-indexed
family of sets Xp,q and two families of simplicial operators. We may use the terms ‘horizontal’ and
‘vertical’ for these two families as that is how the corresponding diagrams are often drawn. For
instance, the bottom part of a bisimplicial set will look a bit like the following:

...

dv0
��

dv2
�� ��

...

dv0
��

dv2
�� ��

· · ·
dh0 //

dh2

//// X1,1

dh0 //

dh1

//

dv0
��

dv1
��

X0,1

dv0
��

dv1
��

· · ·
dh0 //

dh2

//// X1,0

dh0 //

dh1

// X0,0

(As usual in such diagrams, there is not really room to show the degeneracy maps and so these
are omitted from the picture.) In addition to the simplicial identities holding in each direction,
each horizontal face or degeneracy has to be a simplicial map between the vertical simplicial sets.
Practically this means that the diagram must commute.

We will later meet bisimplicial groups, and also briefly multisimplicial objects in which the
number of variables is not limited to two. For instance, the nerve of a simplicial group is most
naturally viewed as a bisimplicial set, and similarly the nerve of a bisimplicial group is a trisimplicial
set, that is a functor from ∆op×∆op×∆op to Sets. There are ways of passing between such things
as we will see later.

(vi) Cosimplicial things: At certain points in the development of cohomology and related areas
we will have need to talk of cosimplicial sets.

Definition: A cosimplicial set is a functor K : ∆ → Sets, and a morphism of such is a
natural transformation between the corresponding functors. The category of such will be denoted
CoSimp(Sets), and similarly for the obvious generalisations to other settings, namely cosimplicial
objects in a category A, being functors K : ∆ → A with corresponding morphisms forming a
category CoSimp(A).

This looks at one and the same time very similar and very different to simplicial objects.
Certainly analysis of, say, simplicial groups is much easier than that of cosimplicial groups, but, as
any functor, K : ∆ → A, gives uniquely a functor, Kop : ∆op → Aop, a cosimplicial object is also
a simplicial object in the opposite category. The problem, thus, is that often the opposite category
of a well known category, such as that of groups, is a lot less nice. Even the dual of Sets is not
that ‘well behaved’.

Conjugation: There is an ‘inversion’ operation on each finite ordinal in ∆, which forms reverse
the order on the ordinal, that is, it sends {0 < 1 < . . . < n} to {0 > 1 > . . . > n}. Of course the
resulting object is isomorphic to the original, but is not compatible with the face or degeneracy
maps. This operation induces an operation on simplicial objects, that we will call conjugation.
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Definition: Given a simplicial object, X in a category A, the conjugate simplicial object,
ConjX, is defined by

(ConjX)n = Xn,

di : (ConjX)n → (ConjX)n−1 = dn−i : Xn → Xn−1

for each 0 ≤ i ≤ n, and, similarly,

si : (ConjX)n → (ConjX)n+1 = sn−i : Xn → Xn+1.

Clearly X and ConjX are closely related. For instance, they have isomorphic geometric re-
alisation, isomorphic homotopy groups, ..., but the actual comparisons are quite difficult to give
because there are, in general, very few simplicial morphisms from X to ConjX.

Example: In some contexts, a situation naturally leads to a variant form of the nerve functor
being used. Suppose that A is a category. Our usual notation for an n-simplex in Ner(A would

be something like (a0
α1→ a1 → . . .

αn→ an), but sometimes the order of the terms is reversed as it

is more natural, in certain situations, to use (a′n
α′n→ a′n−1 →

α′1→ a′0). This might typically arise if
one has a right action of some group instead of the left actions that we will tend to meet more
often. It also occurs sometimes in the way that terms of the Bousfield-Kan form of the homotopy
colimit construction are presented, (see the comment on page ??). The link between the two forms
is a′i = an−i and α′i = αn−i+1. The face operators delete or compose in the conjugate way. Of
course, the nerve based on this notational form is the conjugate of the one we have defined earlier.
We will refer to it as the conjugate nerve of the category.

1.3.3 The Moore complex and the homotopy groups of a simplicial group

Given a simplicial group G, the Moore complex, (NG, ∂), of G is the chain complex defined by

NGn =

n⋂
i=1

Ker dni

with ∂n : NGn → NGn−1 induced from dn0 by restriction. (Note there is no assumption that the
NGn are Abelian.)

The nth homotopy group, πn(G), of G is the nth homology of the Moore complex of G, i.e.,

πn(G) ∼= Hn(NG, ∂),

=
(⋂n

i=0Ker d
n
i

)
/dn+1

0

(⋂n+1
i=1 Ker d

n+1
i

)
.

(You should check that ∂NGn+1 / NGn.)

The interpretation of NG and πn(G) is as follows:

for n = 1, g ∈ NG1,

1•
g // •∂g



1.3. SIMPLICIAL THINGS IN A CATEGORY 31

and g ∈ NG2 looks like

•
∂g

��1
111111

g

•
1
//

1

FF
•

and so on.
We note that g ∈ NG2 is in Ker ∂ if it looks like

•
1

��1
111111

g

•
1
//

1

FF
•

whilst it will give the trivial element of π2(G) if there is a 3-simplex x with g on its third face and
all other faces identity.

This simple interpretation of the elements of NG and πn(G) will ‘pay off’ later by aiding
interpretation of some of the elements in other situations. The homotopy groups we have introduced
above have been defined purely algebraically as homology of a related complex. Any simplicial
group gives us a base pointed simplicial set simply by forgetting the group structure and taking
the identity element as the base point. Any pointed simplicial set gives homotopy groups in two
different ways. There is an intrinsic way that is described in detail in, for instance, May’s book,
[127], but they can also be defined via a geometric realisation, which produces a space from the
simplicial set. These two ways always give the same answer, and in the case that we are looking
at of an underlying simplicial set of a simplicial group, this group coincides with that defined via
the Moore complex. (This is easily found in the literature if you want to check up on it, so we will
not repeat it here.)

n-equivalences and homotopy n-types Let n ≥ 0. A morphism, f : G → H, of simpli-
cial group(oid)s is an n-equivalence if the induced homomorphisms, πk(f) : πk(G) → πk(H) are
isomorphisms for all k < n.

Inverting the n-equivalences in Simp.Grps gives a category Hon(Simp.Grps) and two simplicial
groups have the same n-type if they are isomorphic in Hon(Simp.Grps).

Remark and warning: For a space or simplicial set K, πk(K) ∼= πk−1(G(K)), so these
simplicial group n-types correspond to restrictions on πk(K) for k ≤ n in the spatial context.

To consider the application of this to homotopical and homological algebra, we will also need
the following:

Definitions: (i) A simplicial group, G, is augmented by specifying a constant simplicial group
K(G−1, 0) and a surjective group homomorphism, f = d0

0 : G0 → G−1 with fd1
0 = fd1

1 : G1 → G−1.
An augmentation of the simplicial group G is then a map

G −→ K(G−1, 0),
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where K(G−1, 0) is the constant simplicial group with value G−1.

(ii) An augmented simplicial group, (G, f), is acyclic if the corresponding complex is acyclic,
i.e., Hn(NG) ∼= 1 for n > 0 and H0(NG) ∼= G−1.

Remarks: (i) The above notions are just particular instances of the general notion of an
augmented simplicial object in a category, and the corresponding idea of acyclic such things in
settings where the definition makes sense.

(ii) When considering augmented simplicial objects, we sometimes use the notation d0 or d0
0 for

the augmentation map as then the condition fd1
0 = fd1

1 becomes d0d0 = d0d1, which is a natural
extension of the simplicial identities.

1.3.4 Kan complexes and Kan fibrations

Within the category of simplicial sets, there is an important subcategory determined by those
objects that satisfy the Kan condition, that is the Kan complexes.

As before we set ∆[n] = ∆(−, [n]) ∈ S, then, for each i, 0 ≤ i ≤ n, we can form, within ∆[n],
a subsimplicial set, Λi[n], called the (n, i)-horn or (n, i)-box, by discarding the top dimensional n-
simplex (given by the identity map on [n]) and its ith face. We must also discard all the degeneracies
of those simplices.

By an (n, i)-horn or box in a simplicial set K, we mean a simplicial map f : Λi[n]→ K. Such
a simplicial map corresponds intuitively to a family of n simplices of dimension (n − 1), fitting
together to form a ‘funnel’ or ‘empty horn’ shaped subcomplex within K. The family is thus a
sequence, (k0, . . . , ki−1,−, ki+1, . . . , kn), with each k` ∈ Kn−1, satisfying d`kj = dj−1k`, for ` < j,
whenever both k` and kj are in the sequence. The idea is that a Kan fibration of simplicial sets
is a map in which the horns in the domain can be ‘filled’ if their images in the codomain can be.
More formally:

Definition: A map p : E → B is a Kan fibration if, for any n, i as above, given any (n, i)-horn
in E, specified by a map f1 : Λi[n]→ E, together with an n-simplex, f0 : ∆[n]→ B, such that

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
// B

commutes, then there is an f : ∆[n] → E such that pf = f0 and f.inc = f1, i.e., f lifts f0 and
extends f1.

We also say that p satisfies the Kan lifting condition if this is true.

Definition: A simplicial set, K, is a Kan complex if the unique map K → ∆[0] is a Kan
fibration. This is equivalent to saying that every horn in K has a filler, i.e., any f1 : Λi[n] → Y
extends to an f : ∆[n]→ Y .

Singular complexes, Sing(X), and the simplicial mapping spaces, Top(X,Y ), are always Kan
complexes.
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Lemma 1 The nerve of a category, C, is a Kan complex if and only if the category is a groupoid.
�

The proof is left to the reader.

This is very important as the filler structure involves compositions and inverses, so encodes the
algebraic structure of C. Later we will use this many times, sometimes explicitly, but often it will
be giving structure behind the scenes, for instance, internally within some other category.

There is a property of Kan fibrations, that is very useful, namely that the pullback of a Kan
fibration along a simplicial map is again a Kan fibration. More precisely:

Proposition 1 Let p : E → B be a Kan fibration, and let f : X → B be a simplicial map, and
form the pullback of p along f , written f∗(p) : Ef → X. This map is a Kan fibration.

Proof: (Just to help you think about f∗(p) : Ef → X more concretely, first note that f∗(p) :
Ef → X is only really defined up to isomorphism as it is given by a universal property in the usual
way, but we can find a particular ‘model’ of that isomorphism class of potential things as follows.
Look at the simplicial set X ×B E, where

(X ×B E)n = {(x, e) | x ∈ Xn, e ∈ En, f(x) = p(e)}

and where face and degeneracy maps are defined componentwise, so di(x, e) = (di(x), di(e)), etc.
The map, f∗(p) is then represented by the first projection. We will not use this model explicitly.
It is just there to help you if need be. Make sure you have looked up the universal property of
pullbacks as we will need it.)

We have a pullback square:

Ef
f ′ //

f∗(p)

��

E

p

��
X

f
// B.

Now assume we are given a diagram

Λi[n]
f1 //

inc
��

Ef

f∗(p)

��
∆[n]

f0
// X

and we seek a lift of f0 to Ef . Composing f0 and f on the base, and f1 and f ′ up top, and using the
Kan fibration property of p, we get a lift, g, of ff0 to E. (Draw the diagram.) Using the maps
f0 and g, you check that ff0 = pg, and the universal property of the original pullback square gives
you a map, h, say, to Ef . It now just remains to check that this is a lift of f0, and an extension of
f1, and checking that is left to you. �

This result is often stated by saying that the class of Kan fibrations is pullback stable.
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1.3.5 Simplicial groups are Kan

If G is a simplicial group, then its underlying simplicial set is a Kan complex. Moreover, given a
box in G, there is an algorithm for filling it using products of degeneracy elements. A form of this
algorithm is given below. More generally if f : G → H is an epimorphism of simplicial groups,
then the underlying map of simplicial sets is a Kan fibration.

The following description of the algorithm is adapted from May’s monograph, [127], page 67.

Proposition 2 Let G be a simplicial group, then every box has a filler.

Proof: Let (y0, . . . , yk−1,−, yk+1, . . . , yn) give a horn in Gn−1, so the yis are (n− 1) simplices that
fit together as if they were all but one, the kth one, of the faces of an n-simplex. There are three
cases:

(i) k = 0: Let wn = sn−1yn and then wi = wi+1(si−1diwi+1)−1si−1yi for i = n, . . . , 1, then w1

satisfies diw1 = yi, i 6= 0;

(ii) 0 < k < n: Let w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for i = 0, . . . , k − 1, then
take wn = wk−1(sn−1dnwk−1)−1sn−1yn, and finally a downwards induction given by wi =
wi+1(si−1diwi+1)−1si−1yi, for i = n, . . . , k + 1, then wk+1 gives diwk+1 = yi for i 6= k;

(iii) the third case, k = n uses w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for i = 0, . . . , n− 1, then
wn−1 satisfies diwn−1 = yi, i 6= n. �

Some discussion of how you can think of this algorithm can be found in [111].
(You could see if you can adapt the idea of this proof to prove the result mentioned immediately

before the statement, namely: if f : G → H is an epimorphism of simplicial groups, then the
underlying map of simplicial sets is a Kan fibration. What about the converse?)

Later on we will meet the simplicial mapping space, S(K,L), of simplicial maps from K to L.
It is defined by S(K,L)n = S(K ×∆[n], L), with the obvious induced maps. It is easy to see that
if L is a Kan complex, then so is S(K,L), for any K. (Try to prove it, but then look at May,
[127], to compare your attempt with his proof.) This result has a useful generalisation that we will
state as a lemma, but again will leave you to give or find a proof.

Lemma 2 If p : L→M is a Kan fibration, and K is an arbitrary simplicial set, then the induced
map, S(K, p) : S(K,L)→ S(K,M), is also one. �

(To give you a hint consider what a horn in S(K,L) looks like, and likewise what an n-simplex
in S(K,M) is. Why should you be able to put the information together to build an n-simplex in
S(K,L)? Look at low dimensional examples to build up some geometric intuition about what is
going on. That is important even if you later look up a proof as not every proof that you will find
gives the intuitive idea behind.)

1.3.6 T -complexes

There is quite a difference between the Kan complex structure of the nerve of a groupoid, G, and
that of a singular complex. In the first, if we are given a (n, i)-horn, then there is exactly one
n-simplex in Ner(G), since the (n, i)-horn has a chain of n-composable arrows of G in it (at least
unless (n, i) = (2, 0) or (2, 2), which cases are left to you) and that chain gives the required
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n-simplex. In other words, there is a ‘canonical’ filler for any horn. In Sing(X), there will usually
be many fillers. (Think about why this is true.)

One attempt to handle ‘canonical fillers’ interacts with a notion that we will encounter later on,
namely that of crossed complexes, for which see section 3.1. The resulting notion of a simplicial
T -complex is one sort of ‘Kan complex with canonical fillers’ and various of the intuitions and
arguments that this introduces will recur frequently in the following chapters. It assumes there is
always a unique special filler. There may be other non-special ones, but that is not controlled in
the process, as we will see. Simplicial T -complexes were introduced by Dakin, [59]:

Definition: A simplicial T -complex consists of a pair (K,T ), where K is a simplicial set and
T = (Tn)n≥1 is a graded subset of K with Tn ⊆ Kn. Elements of T are called thin. The thin
structure satisfies the following axioms:

T .1 Every degenerate element is thin.

T .2 Every box in K has a unique thin filler.

T .3 A thin filler of a thin box also has its last face thin.

Example: The nerve of a groupoid has a T -complex structure in which each simplex of dimen-
sion greater than or equal to 2 is thin. Our earlier comments give the proof. Conversely, if (K,T )
is a T -complex with Tn = Kn for all n ≥ 2, then K is the nerve of a groupoid with set of objects
K0 and set of arrows, K1. (It is left to you to see how to compose arrows, to prove that it is an
associative composition, and that there are identities at all objects.)

A box or horn is, of course, as in section 1.3.4, a collection of n-simplices that fits together like
the collection of all but one faces of an (n+ 1)-simplex. The collection of such n-boxes with given
face missing can be formulated in terms of a pullback and hence axioms T2 and T3 can be encoded
in a form suitable for adapting to other contexts. Similar ideas are used by Duskin, [65], and
Nan-Tie, [142, 143], and we will have occasion to refer back to these later. We will need to adapt
those ideas initially to T -complexes within the setting of groups (group T -complexes as below) but
later we may need them in various other settings. Group T -complexes were briefly considered by
Ashley, [10], but their main theory has been clarified and extended by Carrasco, [51], and Cegarra
and Carrasco, [52], using ideas that will be discussed briefly later.

1.3.7 Group T-complexes

Definition: A group T -complex is “a T -complex (G,T ) in which G is a simplicial group and T is
a graded subgroup of G”, (Ashley, [10]).

Ashley proved a series of results that gave a neat alternative formulation of this concept. We
note the following observations:

Lemma 3 Let D = (Dn)n≥1 be the graded subgroup of G generated by the images of the degeneracy
maps, si : Gn → Gn+1, for all i and n, then any box in G has a standard filler in D.
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Proof: In fact, the algorithmic formulae used when proving that any simplicial group is a Kan
complex (cf., Proposition 2) give a filler defined as a product of degenerate copies of the faces of
the box. �

Proposition 3 If (G,T ) is a group T -complex then T = D.

Proof: To see this, we note that axiom T1 implies that D ⊆ T . Conversely if t ∈ Tn, then it fills
the box made up of ( , d1t, . . . , dnt). This, in turn, has a filler, d, in D, but, as this filler is also
thin, it must be that t = d, since thin fillers are uniquely determined (T2). �

This is neat since it says there is essentially at most one group T -complex structure on any
given simplicial group. The next results says when such a structure does exist.

Theorem 1 (Ashley, [10]) If G is a simplicial group, then (G,D) is a group T -complex if and only
if NG ∩D is the trivial graded subgroup.

Proof: One way around, this is nearly trivial. If (G,D) is a group T -complex and x ∈ NGn, then
x fills a box ( , 1, . . . , 1), so if x ∈ NGn ∩ Dn, x must itself be the thin filler, however 1 is also a
thin filler for this box, so x = 1 as required.

Conversely if NG∩D = {1}, then we must check T2 and T3, T1 being trivial. As any box has
a standard filler in D, we only have to check uniqueness, but if x and y are in Dn, and both fill the
same box (with the kth face missing) then z = xy−1 fills a box with 1s on all faces (and the kth

face missing).
If k = 0, then as z ∈ NGn ∩Dn, we have z = 1 and x and y are equal. If k > 0, assume that

if ` < k and z ∈ Dn ∩
⋂
i 6=`Ker di then z = 1, (i.e, that we have uniqueness up to at least the

(k − 1)st case). Consider w = zsk−1dkz
−1. This is still in Dn and diw = 1 unless i = k − 1, hence

by assumption w = 1. Of course, this implies that z = sk−1dkz, but then dk−1z = dkz. We know
that dk−1z = 1, so dkz = 1 and z = 1, i.e., x = y and we have uniqueness at the next stage.

To verify T3, assume that x ∈ Dn+1 and each dix ∈ Dn for i 6= k, then we can assume that
k = 0, since otherwise we can skew the situation around as before to get that to be true, verify it
in that case and ‘skew’ it back again later. Suppose therefore that dix ∈ Dn for all 0 < i < n. As
x must be the degenerate filler given by the standard method, we can calculate x as follows: let
wn = sn−1dnx, wi = wi+1(si−1diwi+1)−1si−1yi for i = 1, then x = w1. We can therefore check that
d0x ∈ Dn as required. �

Remark: Ashley, [10], in fact assumes a seemingly stronger conclusion, namely that Dn ∩⋃n
`=0(

⋂
i 6=`Ker di) = 1. The reduction to the single case is noted by Carrasco, [51].

Thus a group T -complex is a simplicial group in which the Moore complex contains no non-
trivial product of degenerate elements.

It is often useful to have a ‘dimensionwise’ terminology in the following sense. We could say that
a group T -complex satisfies the thin filler condition or simply, the T -condition, in all dimensions.
That suggests that we extract that condition ‘dimensionwise’ as follows:

Definition: A simplicial group G satisfies the thin filler condition in dimension n if NGn∩Dn

is trivial. We may abbreviate that to T -condition in dimension n.
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This terminology lends itself well to such variants as ‘G satisfies the thin filler condition in
dimensions greater that k’ meaning that NGn ∩Dn is trivial for all n > k, and so on.

It is left as an exercise to prove that any simplicial Abelian group is a group T -complex. (At
this stage, this is moderately challenging, and it may help to take a brief look at the later section
on Conduché’s decomposition and the Dold-Kan theorem.)
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Chapter 2

Crossed modules - definitions,
examples and applications

We will give these for groups, although there are analogues for many other algebraic settings.

2.1 Crossed modules

Definition: A crossed module, (C,G, δ), consists of groups C and G with a left action of G on
C, written (g, c) → gc for g ∈ G, c ∈ C, and a group homomorphism δ : C → G satisfying the
following conditions:
CM1) for all c ∈ C and g ∈ G,

δ(gc) = gδ(c)g−1,

CM2) for all c1, c2 ∈ C,
δ(c2)c1 = c2c1c

−1
2 .

(CM2 is called the Peiffer identity.)

If (C,G, δ) and (C ′, G′, δ′) are crossed modules, a morphism, (µ, η) : (C,G, δ) → (C ′, G′, δ′),
of crossed modules consists of group homomorphisms µ : C → C ′ and η : G→ G′ such that

(i) δ′µ = ηδ and (ii) µ(gc) = η(g)µ(c) for all c ∈ C, g ∈ G.
Crossed modules and their morphisms form a category, of course. It will usually be denoted

CMod.
There is, for a fixed group G, a subcategory CModG of CMod, which has, as objects, those

crossed modules with G as the “base”, i.e., all (C,G, δ) for this fixed G, and having as morphisms
from (C,G, δ) to (C ′, G, δ′) just those (µ, η) in CMod in which η : G → G is the identity homo-
morphism on G.

Several well known situations give rise to crossed modules. The verification will be left to you.

2.1.1 Algebraic examples of crossed modules

(i) Let H be a normal subgroup of a group G with i : H → G the inclusion, then we will
say (H,G, i) is a normal subgroup pair. In this case, of course, G acts on the left of H by

39
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conjugation and the inclusion homomorphism i makes (H,G, i) into a crossed module, an
‘inclusion crossed modules’. Conversely it is an easy exercise to prove

Lemma 4 If (C,G, ∂) is a crossed module, ∂C is a normal subgroup of G. �

(ii) Suppose G is a group and M is a left G-module; let 0 : M → G be the trivial map sending
everything in M to the identity element of G, then (M,G, 0) is a crossed module.

Again conversely:

Lemma 5 If (C,G, ∂) is a crossed module, K = Ker ∂ is central in C and inherits a natural
G-module structure from the G-action on C. Moreover, N = ∂C acts trivially on K, so K
has a natural G/N -module structure. �

Again the proof is left as an exercise.

As these two examples suggest, general crossed modules lie between the two extremes of normal
subgroups and modules, in some sense, just as groupoids lay between equivalence relations
and G-sets. Their structure bears a certain resemblance to both - they are “external” normal
subgroups, but also are “twisted” modules.

(iii) Let G be a group, then, as usual, let Aut(G), denote the group of automorphisms of G.
Conjugation gives a homomorphism

ι : G→ Aut(G).

Of course, Aut(G) acts on G in the obvious way and ι is a crossed module. We will need this
later so will give it its own name, the automorphism crossed module of the group, G and its
own notation: Aut(G).

More generally if L is some type of algebra then U(L) → Aut(L) will be a crossed module,
where U(L) denotes the units of L and the morphism send a unit to the automorphism given
by conjugation by it.

This class of example has a very nice property with respect to general crossed modules.
For a general crossed module, (C,P, ∂), we have an action of P on C, hence a morphism,
α : P → Aut(C), so that α(p)(c) = pc. There is clearly a square

C
= //

∂

��

C

ι
��

P α
// Aut(C)

and we can ask if this gives a morphism of crossed modules. ‘Clearly’ it should. The re-
quirements are that the square commutes and that the actions are compatible in the obvious
sense, (recall page 39). To see that the square commutes, we just note that, given c ∈ C, ∂c
acts on an x ∈ C, by conjugation by c: ∂cx = c.x.c−1 = ι(c)(x), whilst to check that the
actions match correctly remember that α(p)(c) = px by definition, so we do have a morphism
of crossed modules as expected.
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(iv) We suppose given a morphism

θ : M → N

of left G-modules and form the semi-direct product N o G. This group we make act on M
via the projection from N oG to G.

We define a morphism

∂ : M → N oG

by ∂(m) = (θ(m), 1), where 1 denotes the identity element of G, then (M,N o G, ∂) is a
crossed module. In particular, if A and B are Abelian groups, and B is considered to act
trivially on A, then any homomorphism, A→ B is a crossed module.

(v) Suppose that we have a crossed module, C = (C,G, δ), and a group homomorphism ϕ : H →
G, then we can form the ‘pullback group’ H ×GC = {(h, c) | ϕ(h) = δc}, which is a subgroup
of the product H × C. There is a group homomorphism, δ′ : H ×G C → H, namely the
restriction of the first projection morphism of the product, (so δ′(h, c) = h). You are left
to construct an action of H on this group, H ×G C such that ϕ∗(C) := (H ×G C,H, δ′) is a
crossed module, and also such that the pair of maps ϕ and the second projection H×GC → C
give a morphism of crossed modules.

Definition: The crossed module, ϕ∗(C), thus defined, is called the pullback crossed module
of C along ϕ

(vi) As a last algebraic example for the moment, let

1→ K
a→ E

b→ G→ 1

be an extension of groups with K a central subgroup of E, i.e., a central extension of G by
K. For each g ∈ G, pick an element s(g) ∈ b−1(g) ⊆ E. Define an action of G on E by: if
x ∈ E, g ∈ G, then

gx = s(g)xs(g)−1.

This is well defined, since if s(g), s′(g) are two choices, s(g) = ks′(g) for some k ∈ K, and
K is central. (This also shows that this is an action.) The structure (E,G, b) is a crossed
module.

A particular important case is: for R a ring, let E(R) be the group of elementary matrices
of R, E(R) ⊆ G`(R) and St(R), the corresponding Steinberg group with b : St(R) → E(R),
the natural morphism, (see later, page 103, or [131], for the definition). This, then, gives a
central extension

1→ K2(R)→ St(R)→ E(R)→ 1

and thus a crossed module. In fact, more generally,

b : St(R)→ G`(R)

is a crossed module. The group, G`(R)/Im(b), is K1(R), the first algebraic K-group of the
ring.
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2.1.2 Topological Examples

In topology there are several examples that deserve looking at in detail as they do relate to
aspects of the above algebraic cases. They require slightly more topological knowledge than
has been assumed so far.

(vii) Let X be a pointed space, with x0 ∈ X as its base point, and A a subspace with x0 ∈ A.
Recall that the second relative homotopy group, π2(X,A, x0), consists of relative homotopy
classes of continuous maps

f : (I2, ∂I2, J)→ (X,A, x0)

where ∂I2 is the boundary of I2, the square, [0, 1]× [0, 1], and J = {0, 1}× [0, 1]∪ [0, 1]×{0}.
Schematically f maps the square as:

x0x0 X

x0

A

so the top of the boundary goes to A, the rest to x0 and the whole thing to X. The relative
homotopies considered then deform the maps in such a way as to preserve such structure,
so intermediate mappings also send J to x0, etc. Restriction of such an f to the top of the
boundary clearly gives a homomorphism

∂ : π2(X,A, x0)→ π1(A, x0)

to the fundamental group of A, based at x0. There is also an action of π1(A, x0) on π2(X,A, x0)
given by rescaling the ‘square’ given by

a

�
�
��

@
@
@@

f

a−1

where f is partially ‘enveloped’ in a region on which the mapping is behaving like a.

Of course, this gives a crossed module

π2(X,A, x0)→ π1(A, x0).

A direct proof is quite easy to give. One can be found in Hilton’s book, [95] or in Brown-
Higgins-Sivera, [41]. Alternatively one can use the argument in the next example.
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(viii) Suppose F
i→ E

p→ B is a fibration sequence of pointed spaces. Thus p is a fibration,
F = p−1(b0), where b0 is the basepoint of B. The fibre F is pointed at f0, say, and f0 is taken
as the basepoint of E as well.

There is an induced map on fundamental groups

π1(F )
π1(i)−→ π1(E)

and if a is a loop in E based at f0, and b a loop in F based at f0, then the composite path
corresponding to aba−1 is homotopic to one wholly within F . To see this, note that p(aba−1)
is null homotopic. Pick a homotopy in B between it and the constant map, then lift that
homotopy back up to E to one starting at aba−1. This homotopy is the required one and its
other end gives a well defined element ab ∈ π1(F ) (abusing notation by confusing paths and
their homotopy classes). With this action (π1(F ), π(E), π1(i)) is a crossed module. This will
not be proved here, but is not that difficult. Links with previous examples are strong.

If we are in the context of the above example, consider the inclusion map, f of a subspace A
into a space X (both pointed at x0 ∈ A ⊂ X). Form the corresponding fibration,

if : Mf → X,

by forming the pullback

Mf πf //

jf

��

XI

e0

��
A

f
// X

so Mf consists of pairs, (a, λ), where a ∈ A and λ is a path from f(a) to some point λ(1). Set
if = e1π

f , so if (a, λ) = λ(1). It is standard that if is a fibration and its fibre is the subspace
Fh(f) = {(a, λ) | λ(1) = x0}, often called the homotopy fibre of f . The base point of Fh(f) is
taken to be the constant path at x0, (x0, cx0).

If we note that
π1(Fh(f)) ∼= π2(X,A, x0)

π1(Mf ) ∼= π1(A, x0)

(even down to the descriptions of the actions, etc.), the link with the previous example becomes
clear, and thus furnishes another proof of the statement there.

(ix) The link between fibrations and crossed modules can also be seen in the category of simplicial
groups. A morphism f : G→ H of simplicial groups is a fibration if and only if each fn is an
epimorphism. This means that a fibration is determined by the fibre over the identity which
is, of course, the kernel of f . The (G,W )-links between simplicial groups and simplicial sets
mean that the analogue of π1 is π0. Thus the fibration f corresponds to

Ker f
C→ G

and each level of this is a crossed module by our earlier observations. Taking π0, it is easy to
check that

π0(Ker f)→ π0(G)
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is a crossed module. In fact any crossed module is isomorphic to one of this form. (Proof left
to the reader.)

If M = (C,G, ∂) is a crossed module, then we sometimes write π0(M) := G/∂C, π1(M) := Ker ∂,
and then have a 4-term exact sequence:

0→ π1(M)→ C
∂→ G→ π0(M)→ 1.

In topological situations when M provides a model for (part of) the homotopy type of a space X
or a pair (X,A), then typically π1(M) ∼= π2(X), π0(M) ∼= π1(X).

Mac Lane and Whitehead, [126], showed that crossed modules give algebraic models for all
homotopy 2-types of connected spaces. We will visit this result in more detail later, but loosely
a 2-equivalence between spaces is a continuous map that induces isomorphisms on π1 and π2, the
first two homotopy groups. Two spaces have the same 2-type if there is a zig-zag of 2-equivalences
joining them.

2.1.3 Restriction along a homomorphism ϕ/ ‘Change of base’

Given a crossed module, (C,H, ∂), over H and a homomorphism ϕ : G → H, we can form the
pullback:

D

∂′

��

ψ // C

∂
��

G ϕ
// H

in Grps. Clearly the universal property of pullbacks gives a good universal property for this, namely
that any morphism (ϕ′, ϕ) : (C ′, G, δ)→ (C,H, ∂) factors uniquely through (ψ,ϕ) and a morphism
in CModG from (C ′, G, δ) to (D,G, ∂′). Of course this statement depends on verification that
(D,G, ∂′) is a crossed module and that the resulting maps are morphisms of crossed modules, but
this is routine, and will be left as an exercise. (You may need to recall that D can be realised,
up to isomorphism, as G×H C = {(g, c) | ϕ(g) = ∂c}. It is for you to see what the action is.)

This construction also behaves nicely on morphisms of crossed modules over H and yields a
functor,

ϕ∗ : CModH → CModG,

which will be called restriction along ϕ.

We next turn to the use of crossed modules in combinatorial group theory.

2.2 Group presentations, identities and 2-syzygies

2.2.1 Presentations and Identities

(cf. Brown-Huebschmann, [42]) We consider a presentation, P = (X : R), of a group G. The
elements of X are called generators and those of R relators. We then have a short exact sequence,

1→ N → F → G→ 1,
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where F = F (X), the free group on the set X, R is a subset of F and N = N(R) is the normal
closure in F of the set R.

A standard if somewhat trivial example is given by the standard presentation of a group, G.
We take X = {xg | g ∈ G, g 6= 1}, to be a set in bijective correspondence with the underlying set
of G. (You can take X equal to that set if you like, but sometimes it is better to have a distinct
set, for instance, it make for an easier notation for the description of certain morphisms.) The set
of relations will be R = {xg.xh = xgh | g, h ∈ G}.

The group F acts on N by conjugation: uc = ucu−1, c ∈ N, u ∈ F and the elements of N are
words in the conjugates of the elements of R:

c = u1(rε11 )u2(rε22 ) . . . un(rεnn )

where each εi is +1 or − 1. One also says such elements are consequences of R. Heuristically
an identity among the relations of P is such an element c which equals 1. The problem of what
this means is analogous to that of working with a relation in R. For example, in the presentation
(a : a3) of C3, the cyclic group of order 3, if a is thought of as being an element of C3, then a3 = 1,
so why is this different from the situation with the ‘presentation’, (a : a = 1)? To get around that
difficulty the free group on the generators F (X) was introduced and, of course, in F ({a}), a3 is
not 1. A similar device, namely free crossed modules on the presentation will be introduced in a
moment to handle the identities. Before that consider some examples which indicate that identities
exist even in some quite common-or-garden cases.

Example 1: Suppose r ∈ R, but it is a power of some element s ∈ F , i.e. r = sm. Of course,
rs = sr and

srr−1 = 1

so sr.r−1 is an identity. In fact, there will be a unique z ∈ F with r = zq, q maximal with this
property. This z is called the root of r and if q > 1, r is called a proper power.

Example 2: Consider one of the standard presentations of S3, (a, b : a3, b2, (ab)2). Write
r = a3, s = b2, t = (ab)2. Here the presentation leads to F , free of rank 2, but N(R) ⊂ F , so it
must be free as well, by the Nielsen-Schreier theorem. Its rank will be 7, given by the Schreier index
formula or, geometrically, it will be the fundamental group of the Cayley graph of the presentation.
This group is free on generators corresponding to edges outside a maximal tree as in the following
diagram:

1 - a
J
J
J
J
J
J
JJ]

a2















�

b





�

�

ba
J
J
Ĵ
ab-

�

�
�

M ^ 1 - a

a2















�

b





�

�

ba

ab-
θ1 θ2 θ3

θ6 θ7

θ4 θ5

The Cayley graph of S3 and a maximal tree in it.
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The set of normal generators of N(R) has 3 elements; N(R) is free on 7 elements (corresponding
to the edges not in the tree), but is specified as consisting of products of conjugates of r, s and t,
and there are infinitely many of these. Clearly there must be some slight redundancy, i.e., there
must be some identities among the relations!

A path around the outer triangle corresponds to the relation r; each other region corresponds to
a conjugate of one of r, s or t. (It may help in what follows to think of the graph being embedded
on a 2-sphere, so ‘outer’ and ‘outside’ mean ‘round the back face.) Consider a loop around a region.
Pick a path to a start vertex of the loop, starting at 1. For instance the path that leaves 1 and
goes along a, b and then goes around aaa before returning by b−1a−1 gives abrb−1a−1. Now the
path around the outside can be written as a product of paths around the inner parts of the graph,
e.g. (abab)b−1a−1b−1(bb)(b−1a−1b−1a−1) . . . and so on. Thus r can be written in a non-trivial way
as a product of conjugates of r, s and t. (An explicit identity constructed like this is given in [42].)

Example 3: In a presentation of the free Abelian group on 3 generators, one would expect the
commutators, [x, y], [x, z] and [y, z]. The well-known identity, usually called the Jacobi identity,
expands out to give an identity among these relations (again see [42], p.154 or Loday, [120].)

2.2.2 Free crossed modules and identities

The idea that an identity is an equation in conjugates of relations leads one to consider formal
conjugates of symbols that label relations. Abstracting this a bit, suppose G is a group and
f : Y → G, a function ‘labelling’ the elements of some subset of G. To form a conjugate, you need
a thing being conjugated and an element ‘doing’ the conjugating, so form pairs (p, y), p ∈ G, y ∈ Y ,
to be thought of as py, the formal conjugate of y by p. Consequences are words in conjugates of
relations, formal consequences are elements of F (G × Y ). There is a function extending f from
G× Y to G given by

f̄(p, y) = pf(y)p−1,

converting a formal conjugate to an actual one and this extends further to a group homomorphism

ϕ : F (G× Y )→ G

defined to be f̄ on the generators. The group G acts on the left on G × Y by multiplication:
p.(p′, y) = (pp′, y). This extends to a group action of G on F (G × Y ). For this action, ϕ is
G-equivariant if G is given its usual G-group structure by conjugations / inner automorphisms.
Naively identities are the elements in the kernel of this, but there are some elements in that kernel
that are there regardless of the form of function f . In particular, suppose that g1, g2 ∈ G and
y1, y2 ∈ Y and look at

(g1, y1)(g2, y2)(g1, y1)−1((g1f(y1)g−1
1 )g2, y2)−1.

Such an element is always annihilated by ϕ. The normal subgroup generated by such elements is
called the Peiffer subgroup. We divide out by it to obtain a quotient group. This is the construction
of the free crossed module on the function f . If f is, as in our initial motivation, the inclusion of
a set of relators into the free group on the generators we call the result the free crossed module on
the presentation P and denote it by C(P).

We can now formally define the module of identities of a presentation P = (X : R). We form
the free crossed module on R → F (X), which we will denote by ∂ : C(P) → F (X). The module
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of identities of P is Ker ∂. By construction, the group presented by P is G ∼= F (X)/Im∂, where
Im∂ is just the normal closure of the set, R, of relations and we know that Ker ∂ is a G-module.
We will usually denote the module of identities by πP .

We can get to C(P) in another way. Construct a space from the combinatorial information
in C(P) as follows. Take a bunch of circles labelled by the elements of X; call it K(P)1, it is
the 1-skeleton of the space we want. We have π1(K(P)1

∼= F (X). Each relator r ∈ R is a word
in X so gives us a loop in K(P)1, following around the circles labelled by the various generators

making up r. This loop gives a map S1 fr→ K(P)1. For each such r we use fr to glue a 2-
dimensional disc e2

r to K(P)1 yielding the space K(P). The crossed module C(P) is isomorphic to

π2(K(P),K(P)1)
∂→ π1(K(P)1.

The main problem is how to calculate πP or equivalently π2(K(P)). One approach is via an
associated chain complex. This can be viewed as the chains on the universal cover of K(P), but
can also be defined purely algebraically, for which see Brown-Huebschmann, [42], or Loday, [120].
That algebraic - homological approach leads to ‘homological syzygies’. For the moment we will
concentrate on:

2.3 Cohomology, crossed extensions and algebraic 2-types

2.3.1 Cohomology and extensions, continued

Suppose we have any group extension

E : 1→ K → E
p→ G→ 1,

with K Abelian, but not necessarily central. We can look at various possibilities.
If we can split p, by a homomorphism s : G→ E, with ps = IdG, then, of course, E ∼= K oG

by the isomorphisms,
e −→ (esp(e)−1, p(e)),

ks(g)←− (k, g),

which are compatible with the projections etc., so there is an equivalence of extensions

1 // K //

=

��

E //

∼=
��

G //

=

��

1

1 // K // K oG // G // 1.

Our convention for multiplication in K oG will be

(k, g)(k′, g′) = (kgk′, gg′).

But what if p does not split. We can build a (small) category of extensions Ext(G,K) with objects
such as E above and in which a morphism from E to E ′ is a diagram

1 // K //

=

��

E //

α

��

G //

=

��

1

1 // K // E′ // G // 1.
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By the 5-lemma, α will be an isomorphism, so Ext(G,K) is a groupoid.
In E , the epimorphism p is usually not splittable, but as a function between sets, it is onto so we

can pick an element in each p−1(g) to get a transversal (or set of coset representatives), s : G→ E.
We get a comparison pairing / obstruction map or ‘factor set’ :

f : G×G→ E

f(g1, g2) = s(g1)s(g2)s(g1g2)−1,

which will be trivial, (i.e., f(g1, g2) = 1 for all g1, g2 ∈ G) exactly if s splits p, i.e., if s is a
homomorphism. This construction assumes that we know the multiplication in E, otherwise we
cannot form this product! On the other hand given this ‘f ’, we can work out the multiplication.
As a set, E will be the product K ×G, identified with it by the same formulae as in the split case,
noting that pf(g1, g2) = 1, so ‘really’ we should think of f as ending up in the subgroup K, then
we have

(k1, g1)(k2, g2) = (k1
s(g1)k2f(g1, g2), g1g2).

The product is twisted by the pairing f . Of course, we need this multiplication to be associative
and, to ensure that, f must satisfy a cocycle condition:

s(g1)f(g2, g3)f(g1, g2g3) = f(g1, g2)f(g1g2, g3).

This is a well known formula from group cohomology, more so if written additively:

s(g1)f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0.

Here we actually have various parts of the nerve of G involved in the formula. The group G ‘is’ a
small category (groupoid with one object), which we will, for the moment, denote G. The triple
σ = (g1, g2, g3) is a 3-simplex in Ner(G) and its faces are

d0σ = (g2, g3),

d1σ = (g1g2, g3),

d2σ = (g1, g2g3),

d3σ = (g1, g2).

This is all very classical. We can use it in the usual way to link π0(Ext(G,K)) with H2(G,K) and
so is the ‘modern’ version of Schreier’s theory of group extensions, at least in the case that K is
Abelian.

For a long time there was no obvious way to look at the elements of H3(G,K) in a similar way.
In Mac Lane’s homology book, [122], you can find a discussion from the classical viewpoint. In
Brown’s [33], the link with crossed modules is sketched although no references for the details are
given, for which see Mac Lane’s [124].

If we have a crossed module C
∂→ P , then we saw that Ker ∂ is central in C and is a P/∂C-

module. We thus have a ‘crossed 2-fold extension’:

K
i→ C

∂→ P
p→ G,

where K = Ker ∂ and G = P/∂C. (We will write N = ∂C.)
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Repeat the same process as before for the extension

N → P → G,

but take extra care as N is usually not Abelian. Pick a transversal s : G→ P giving f : G×G→ N
as before (even with the same formula). Next look at

K
i→ C → N,

and lift f to C via a choice of F (g1, g2) ∈ C with image f(g1, g2) in N .
The pairing f satisfied the cocycle condition, but we have no means of ensuring that F will do

so, i.e. there will be, for each triple (g1, g2, g3), an element c(g1, g2, g3) ∈ C such that

s(g1)F (g2, g3)F (g1, g2g3) = i(c(g1, g2, g3))F (g1, g2)F (g1g2, g3),

and some of these c(g1, g2, g3) may be non-trivial. The c(g1, g2, g3) will satisfy a cocycle condition
correspond to a 4-simplex in Ner(G), and one can reconstruct the crossed 2-fold extension up to
equivalence from F and c. Here ‘equivalence’ is generated by maps of ‘crossed’ exact sequences:

1 // K //

=

��

C //

��

P //

��

G //

=

��

1

1 // K // C ′ // P ′ // G // 1,

but these morphisms need not be isomorphisms. Of course, this identifies H3(G,K) with π0 of the
resulting category.

What about H4(G,K)? Yes, something similar works, but we do not have the machinery to do
it here, yet.

2.3.2 Not really an aside!

Suppose we start with a crossed module C = (C,P, ∂). We can build an internal category, X (C), in
Grps from it. The group of objects of X (C) will be P and the group of arrows C o P . The source
map

s : C o P → P is s(c, p) = p,

the target
t : C o P → P is t(c, p) = ∂c.p.

(That looks a bit strange. That sort of construction usually does not work, multiplying two
homomorphisms together is a recipe for trouble! - but it does work here:

t((c1, p1).(c2, p2)) = t(c1
p1c2, p1p2)

= ∂(c1
p1c2).p1p2,

whilst t(c1, p1).t(c2, p2) = ∂c1.p1.∂c2.p2, but remember ∂(c1
p1c2) = ∂c1.p1.∂c2.p

−1
1 , so they are

equal.)
The identity morphism is i(p) = (1, p), but what about the composition. Here it helps to draw

a diagram. Suppose (c1, p1) ∈ C o P , then it is an arrow

p1
(c1,p1)−→ ∂c1.p1,
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and we can only compose it with (c2, p2) if p2 = ∂c1.p1. This gives

p1
(c1,p1)−−−−→ ∂c1.p1

(c2,∂c1.p1)−−−−−−→ ∂c2∂c1.p1.

The obvious candidate for the composite arrow is (c2c1, p1) and it works!
In fact, X (C) is an internal groupoid as (c−1

1 , ∂c1.p1) is an inverse for (c1, p1).
Now if we started with an internal category

G1

s //

t
// G0

i
oo

,

etc., then set P = G0 and C = Ker s with ∂ = t |C to get a crossed module.

Theorem 2 (Brown-Spencer,[47]) The category of crossed modules is equivalent to that of internal
categories in Grps. �

You have, almost, seen the proof. As beginning students of algebra, you learnt that equivalence
relations on groups need to be congruence relations for quotients to work well and that congru-
ence relations ‘are the same as’ normal subgroups. That is the essence of the proof needed here,
but we have groupoids rather than equivalence relations and crossed modules rather than normal
subgroups.

Of course, any morphism of crossed modules has to induce an internal functor between the
corresponding internal categories and vice versa. That is a good exercise for you to check that
you have understood the link that the Brown-Spencer theorem gives.

This is a good place to mention 2-groups. The notion of 2-category is one that should be fairly
clear even if you have not met it before. For instance, the category of small categories, functors
and natural transformations is a 2-category. Between each pair of objects, we have not just a set
of functors as morphisms but a small category of them with the natural transformations between
them as the arrows in this second level of structure. The notion of 2-category is abstracted from
this. We will not give a formal definition here (but suggest that you look one up if you have not
met the idea before). A 2-category thus has objects, arrows or morphisms (or sometimes ‘1-cells’)
between them and then some 2-cells (sometimes called ‘2-arrows’ or ‘2-morphisms’) between them.

Definition: A 2-groupoid is a 2-category in which all 1-cells and 2-cells are invertible.
If the 2-groupoid has just one object then we call it a 2-group.

Of course, there are also 2-functors between 2-categories and so, in particular, between 2-groups.
Again this is for you to formulate, looking up relevant definitions, etc.

Internal categories in Grps are really exactly the same as 2-groups. The Brown-Spencer theorem
thus constructs the associated 2-group of a crossed module. The fact that the composition in the
internal category must be a group homomorphism implies that the ‘interchange law ’ must hold.
This equation is in fact equivalent via the Brown-Spencer result to the Peiffer identity. (It is left
to you to find out about the interchange law and to check that it is the Peiffer axiom in disguise.
We will see it many times later on.)

Here would be a good place to mention that an internal monoid in Grps is just an Abelian group.
The argument is well known and is usually known by the name of the Eckmann-Hilton argument.
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This starts by looking at the interchange law, which states that the monoid multiplication must
be group homomorphism. From this it derives that the monoid identity must also be the group
identity and that the two compositions must coincide. It is then easy to show that the group is
Abelian.

2.3.3 Perhaps a bit more of an aside ... for the moment!

This is quite a good place to mention the groupoid based theory of all this. The resulting objects
look like abstract 2-categories and are 2-groupoids. We have a set of objects, K0, a set of arrows,
K1, depicted x

p−→ y, and a set of two cells

x

p

$$

∂c.p

::
�� ��
��(c,p) y .

In our previous diagrams, as all the elements of P started and ended at the same single object, we
could shift dimension down one step; our old objects are now arrows and our old arrows are 2-cells.
We will return to this later.

The important idea to note here is that a ‘higher dimensional category’ has a link with an
algebraic object. The 2-group(oid) provides a useful way of interpreting the structure of the crossed
module and indicates possible ways towards similar applications and interpretations elsewhere. For
instance, a presentation of a monoid leads more naturally to a 2-category than to any analogue of
a crossed module, since kernels are less easy to handle than congruences in Mon.

There are other important interpretations of this. Categories such as that of vector spaces,
Abelian groups or modules over a ring, have an additional structure coming from the tensor product,
A ⊗ B. They are monoidal categories. One can ‘multiply’ objects together and this is linked to a
related multiplication on morphisms between the objects. In many of the important examples the
multiplication is not strictly associative, so for instant, if A,B,C are objects there is an isomorphism
between (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C), but this isomorphism is most definitely not the identity
as the two objects are constructed in different ways. A similar effect happens in the category of
sets with ordinary Cartesian product. The isomorphism is there because of universal properties,
but it is again not the identity. It satisfies some coherence conditions, (a cocycle condition in
disguise), relating to associativity of four fold tensors and the associahedron that we gave earlier,
is a corresponding diagram for the five fold tensors. (Yes, there is a strong link, but that is not for
these notes!) Our 2-group(oid) is the ‘suspension’ or ‘categorification’ of a similar structure. We
can multiply objects and ‘arrows’ and the result is a strict ‘gr-groupoid’, or ‘categorical group’, i.e.
a strict monoidal category with inverses. This is vague here, but will gradually be explored later
on. If you want to explore the ideas further now, look at Baez and Dolan, [12].

(At this point, you do not need to know the definition of a monoidal category, but remember
to look it up in the not too distance future, if you have not met it before, as later on the
insights that an understanding of that notion gives you, will be very useful. It can be found in
many places in the literature, and on the internet. The approach that you will get on best with
depends on your background and your likes and dislikes mathematically, so we will not give one
here.)
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Just as associativity in a monoid is replaced by a ‘lax’ associativity ‘up to coherent isomorphisms’
in the above, gr-groupoids are ‘lax’ forms of internal categories in groups and thus indicate the
presence of a crossed module-like structure, albeit in a weakened or ‘laxified’ form. Later we will
see naturally occurring gr-groupoid structures associated with some constructions in non-Abelian
cohomology. There is also a sense in which the link between fibrations and crossed modules given
earlier here, indicates that fibrations are like a related form of lax crossed modules. In the notion
of fibred category and the related Grothendieck construction, this intuition begins to be ‘solidified’
into a clearer strong relationship.

2.3.4 Automorphisms of a group yield a 2-group

We could also give this section a subtitle:

The automorphisms of a 1-type give a 2-type.

This is really an extended exercise in playing around with the ideas from the previous two
sections. It uses a small amount of categorical language, but, hopefully, in a way that should be
easy for even a categorical debutant to follow. The treatment will be quite detailed as it is that
detail that provides the links between the abstract and the concrete.

We start with a look at ‘functor categories’, but with groupoids rather than general small
categories as input. Suppose that G and H are groupoids, then we can form a new groupoid, HG ,
whose objects are the functors, f : G → H. Of course, functors in this context are just morphisms
of groupoids, and, if G, and H are G[1] and H[1], that is, two groups, G and H, thought of as one
object groupoids, then the objects of HG are just the homomorphisms from G to H thought of in
a slightly different way.

That gives the objects of HG . For the morphisms from f0 to f1, we ‘obviously’ should think
of natural transformations. (As usual, if you are not sufficiently conversant with elementary cate-
gorical ideas, pause and look them up in a suitable text of in Wikipedia.) Suppose η : f0 → f1 is a
natural transformation, then, for each x, an object of G, we have an arrow,

η(x) : f0(x)→ f1(x),

in H such that, if g : x→ y in G, then the square

f0(x)
η(x) //

f0(g)
��

f1(x)

f1(g)
��

f0(y)
η(y)

// f1(y)

commutes, so η ‘is’ the family, {η(x) | x ∈ Ob(G}. Now assume G = G[1] and H = H[1], and that
we try to interpret η(x) : f0(x) → f1(x) back down at the level of the groups, that is, a bit more
‘classically’ and group theoretically. There is only one object, which we denote ∗, if we need it, so
we have that η corresponds to a single element, η(∗), in H, which we will write as h for simplicity,
but now the condition for commutation of the square just says that, for any element g ∈ G,

hf0(g) = f1(g)h,
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i.e., that f0 and f1 are conjugate homomorphisms, f1 = hf0h
−1..

It should be clear, (but check that it is), that this definition of morphism makes HG into a
category, in fact into a groupoid, as the morphisms compose correctly and have inverses. (To get
the inverse of η take the family {η(x)−1 | x ∈ Ob(G} and check the relevant squares commute.)

So far we have ‘proved’:

Lemma 6 For groupoids, G and H, the functor category, HG, is a groupoid. �

We will be a bit sloppy in notation and will write HG for what should, more precisely, be written
H[1]G[1].

We note that it is usual to observe that, for Abelian groups, A, and B, the set of homomorphisms
from A to B is itself an Abelian group, but that the set of homomorphisms from one non-Abelian
group to another has no such nice structure. Although this is sort of true, the point of the above
is that that set forms the set of objects for a very neat algebraic object, namely a groupoid!

If we have a third groupoid, K, then we can also form KH and KG , etc. and, as the objects of
KH are homomorphisms from H to K, we might expect to compose with the objects of HG to get
ones of KG . We might thus hope for a composition functor

KH ×HG → KG .

(There are various things to check, but we need not worry. We are really working with functors
and natural transformations and with the investigation that shows that the category of small
categories is 2-category. This means that if you get bogged down in the detail, you can easily find
the ideas discussed in many texts on category theory.) This works, so we have that the category,
Grpds has also a 2-category structure. (It is a ‘Grpds-enriched’ category; see later for enriched
categories. The formal definition is in section ??, although the basic idea is used before that.)

We need to recall next that in any category, C, the endomorphisms of any object, X, form
a monoid, End(X) := C(X,X). You just use the composition and identities of C ‘restricted to
X’. If we play that game with any groupoid enriched category, C, then for any object, X, we will
have a groupoid, C(X,X), which we might write End(X), (that is, using the same font to indicate
‘enriched’) and which also has a monoid structure,

C(X,X)× C(X,X)→ C(X,X).

It will be a monoid internal to Grpds. In particular, for any groupoid, G, we have such an internal
monoid of endomorphisms, GG , and specialising down even further, for any group, G, such an
internal monoid, GG. Note that this is internal to the category of groupoids not of groups, as its
monoid of objects is the endomorphism monoid of G, not a single element set. Within GG, we
can restrict attention to the subgroupoid on the automorphisms of G. We thus have this groupoid,
Aut(G), which has as objects the automorphisms of G and, as typical morphism, η : f0 → f1, a
conjugation. It is important to note that as η is specified by an element of G and an automorphism,
f0, of G, the pair, (g, f0), may then be a good way of thinking of it. (Two points, that may be
obvious, but are important even if they are, are that the morphism η is not conjugation itself, but
conjugates f0. One has to specify where this morphism starts, its domain, as well as what it does,
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namely conjugate by g. Secondly, in (g, f0), we do have the information on the codomain of η, as
well. It is gf0g

−1 = f1.)
Using this basic notation for the morphisms, we will look at the various bits of structure this

thing has. (Remember, η : f0 → f1 and f1 = gf0g
−1, as we will need to use that several times.)

We have compositions of these pairs in two ways:
(a) as natural transformations: if

η : f0 → f1, η = (g, f0),
and η′ : f1 → f2, η′ = (g′, f1),

then the composite is η′]1η = (g′g, f0). (That is easy to check. As, for instance, f2 = g′f1(g′)−1 =
(g′g)f0(g′g)−1, . . . , it all works beautifully). (A word of warning here, (g′g)f0(g′g)−1 is the
conjugate of the automorphism f0 by the element (g′g). The bracket does not refer to f0 applied
to the ‘thing in the bracket’, so, for x ∈ G, ((g′g)f0(g′g)−1)(x) is, in fact, (g′g)f0(x)(g′g)−1. This
is slightly confusing so think about it, so as not to waste time later in avoidable confusion.)

b) using composition, ]0, in the monoid structure. To understand this, it is easier to look at
that composition as being specialised from the one we singled out earlier,

KH ×HG → KG ,

which is the composition in the 2-category of groupoids. (We really want G = H = K, but, by
keeping the more general notation, it becomes easier to see the roles of each G.)

We suppose f0, f1 : G → H, f ′0, f
′
1 : G → H, and then η : f0 → f1, η′ : f ′0 → f ′1. The 2-categorical

picture is

·

f0

##

f1

;;
�� ��
�� η ·

f ′0

##

f ′1

;;
�� ��
�� η
′ · = ·

f ′0f0

##

f ′1f1

;;
�� ��
��η
′′ · ,

with η′′ being the desired composite, η′]0η, but how is it calculated. The important point is the
interchange law . We can ‘whisker’ on the left or right, or, since the ‘left-right’ terminology can
get confusing (does ‘left’ mean ‘diagrammatically’ or ‘algebraically’ on the left?), we will often use
‘pre-’ and ‘post-’ as alternative prefixes. The terminology may seem slightly strange, but is quite
graphic when suitable diagrams are looked at! Whiskering corresponds to an interaction between
1-cell and 2-cells in a 2-category. In ‘post-whiskering’, the result is the composite of a 2-cell followed
by a 1-cell:

Post-whiskering:
f ′0]0η : f ′0]0f0 → f ′0]0f1,

·

f0

##

f1

;;
�� ��
�� η ·

f ′0 // ·

(It is convenient, here, to write the more formal f ′0]0f0, for what we would usually write as f ′0f0.)
The natural transformation, η is given by a family of arrows in H, so f ′0]0η is given by mapping
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that family across to K using f ′0. (Specialising to G = H = K = G[1], if η = (g, f0), then
f ′0]0η = (f ′0(g), f ′0f0), as is easily checked; similarly for f ′1]0η.)

Pre-whiskering:
η′]0f0 : f ′0]0f0 → f ′1]0f0,

· f0 // ·

f ′0

##

f ′1

;;
�� ��
�� η
′ · .

Here the morphism f0 does not influence the g-part of η′ at all. It just alters the domains. In the
case that interests us, if η′ = (g′, f ′0), then η′]0f0 = (g′, f ′0f0).

The way of working out η′]0η is by using ]1-composites. First,

η′]0η : f ′0f0 → f ′1f1,

and we can go
η′]0f0 : f ′0f0 → f ′1f0,

and then, to get to where we want to be, that is, f ′1f1, we use

f ′1]0η : f ′1f0 → f ′1f1.

This uses the ]1-composition, so

η′]0η = (f ′1]0η)]1(η′]0f0)

= (f ′1(g), f ′1f0)]1(g′, f ′0f0)

= (f ′1(g).g′, f ′0f0),

but f ′1(g) = g′f0(g)(g′)−1, so the end results simplifies to (g′f0(g), f ′0f0). Hold on! That looks
nice, but we could have also calculated η′]0η using the other form as the composite,

η′]0η = (η′]0f1)]1(f ′0]0η)

= (g′, f ′0f1)]1(f ′0(g), f ′0f0)

= (g′f ′0(g), f ′0f0),

so we did not have any problem. (All the properties of an internal groupoid in Grps, or, if you
prefer that terminology, 2-group, can be derived from these two compositions. The ]1 composition
is the ‘groupoid’ direction, whilst the ]0 is the ‘group’ one.)

We thus have a group of natural transformations made up of pairs, (g, f0) and whose multipli-
cation is given as above. This is just the semi-direct product group, G o Aut(G), for the natural
and obvious action of Aut(G) on G. This group is sometimes called the holomorph of G.

We have two homomorphisms from G o Aut(G) to Aut(G). One sends (g, f0) to f0, so is just
the projection, the other sends it to f1 = gf0g

−1 = ιg ◦ f0. We can recognise this structure as
being the associated 2-group of the crossed module, (G,Aut(G), ι), as we met on page 40. We call
Aut(G), the automorphism 2-group of G..
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2.3.5 Back to 2-types

From our crossed module, C = (C,P, ∂), we can build the internal groupoid, X (C), as before, then
apply the nerve construction internally to the internal groupoid structure to get a simplicial group,
K(C).

Definition: Given a crossed module, C = (C,P, ∂), the nerve (taken internally in Grps) of the
internal groupoid, X (C), defined by C, will be called the nerve of C or, if more precision is needed,
its simplicial group nerve and will be denoted K(C).

The simplicial set, W (K(C)), or its geometric realisation, would be called the classifying space
of C.

We need this in some detail in low dimensions.

K(C)0 = P

K(C)1 = C o P d0 = t, d1 = s

K(C)2 = C o (C o P ),

where d0(c2, c1, p) = (c2, ∂c1.p), d1(c2, c1, p) = (c2.c1, p) and d2(c2, c1, p) = (c1, p). The pattern
continues with K(C)n = C o (. . . o (C o P ) . . .), having n-copies of C. The di, for 0 < i < n, are
given by multiplication in C, d0 is induced from t and dn is a projection. The si are insertions of
identities. (We will examine this in more detail later.)

Remark: A word of caution: for G a group considered as a crossed module, this ‘nerve’ is not
the nerve of G in the sense used earlier. It is just the constant simplicial group corresponding to G.
What is often called the nerve of G is what here has been called its classifying space. One way to
view this is to note that X (C) has two independent structures, one a group, the other a category,
and this nerve is of the category structure. The group, G, considered as a crossed module is like a
set considered as a (discrete) category, having only identity arrows.)

The Moore complex of K(C) is easy to calculate and is just NK(C)i = 1 if i ≥ 2; NK(C)1
∼= C;

NK(C)0
∼= P with the ∂ : NK(C)1 → NK(C)0 being exactly the given ∂ of C. (This is left as an

exercise. It is a useful one to do in detail.)

Proposition 4 (Loday, [119]) The category CMod of crossed modules is equivalent to the subcat-
egory of Simp.Grps, consisting of those simplicial groups, G, having Moore complexes of length 1,
i.e. NGi = 1 if i ≥ 2. �

This raises the interesting question as to whether it is possible to find alternative algebraic descrip-
tions of the structures corresponding to Moore complexes of length n.

Is there any way of going directly from simplicial groups to crossed modules? Yes. The last two
terms of the Moore complex will give us:

∂ : NG1 → NG0 = G0

and G0 acts on NG1 by conjugation via s0, i.e. if g ∈ G0 and x ∈ NG1, then s0(g)xs0(g)−1 is
also in NG1. (Of course, we could use multiple degeneracies to make g act on an x ∈ NGn just
as easily.) As ∂ = d0, it respects the G0 action, so CM1 is satisfied. In general, CM2 will not be
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satisfied. Suppose g1, g2 ∈ NG1 and examine ∂g1g2 = s0d0g1.g2.s0d0g
−1
1 . This is rarely equal to

g1g2g
−1
1 . We write 〈g1, g2〉 = [g1, g2][g2, s0d0g1] = g1g2g

−1
1 .(∂g1g2)−1, so it measures the obstruction

to CM2 for this pair g1, g2. This is often called the Peiffer commutator of g1 and g2. Noting that
s0d0 = d0s1, we have an element

{g1, g2} = [s0g1, s0g2][s0g2, s1g1] ∈ NG2

and ∂{g1, g2} = 〈g1, g2〉. This second pairing is called the Peiffer lifting (of the Peiffer commutator).
Of course, if NG2 = 1, then CM2 is satisfied (as for K(C), above).

We could work with what we will call M(G, 1), namely

∂ :
NG1

∂NG2
→ NG0,

with the induced morphism and action. (As d0d0 = d0d1, the morphism is well defined.) This is a
crossed module, but we could have divided out by less if we had wanted to. We note that {g1, g2}
is a product of degenerate elements, so we form, in general, the subgroup Dn ⊆ NGn, generated
by all degenerate elements.

Lemma 7

∂ :
NG1

∂(NG2 ∩D2)
→ NG0

is a crossed module. �

This is, in fact, M(sk1G, 1), where sk1G is the 1-skeleton of G, i.e., the subsimplicial group gener-
ated by the k-simplices for k = 0, 1.

The kernel of M(G, 1) is π1(G) and the cokernel π0(G) and

π1(G)→ NG1

∂NG2
→ NG0 → π0(G)

represents a class k(G) ∈ H3(π0(G), π1(G)). Up to a notion of 2-equivalence, M(G, 1) represents
the 2-type of G completely. This is an algebraic version of the result of Mac Lane and Whitehead
we mentioned earlier. Once we have a bit more on cohomology, we will examine it in detail.

This use of NG2 ∩ D2 and our noting that {g1, g2} is a product of degenerate elements may
remind you of group T -complexes and thin elements. Suppose that G is a group T -complex in the
sense of our discussion at the end of the previous chapter (page 35). In a general simplicial group,
the subgroups, NGn∩Dn, will not be trivial. They give measure of the extent to which homotopical
information in dimension n on G depends on ‘stuff’ from lower dimensions., i.e., comparing G with
its (n− 1)-skeleton. (Remember that in homotopy theory, invariants such as the homotopy groups
do not necessarily vanish above the dimension of the space, just recall the sphere S2 and the subtle
structure of its higher homotopy groups.)

The construction here of M(sk1G, 1) involves ‘killing’ the images of our possible multiple ‘D-
fillers’ for horns, forcing uniqueness. We will see this again later.
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Chapter 3

Crossed complexes

Accurate encoding of homotopy types is tricky. Chain complexes, even of G-modules, can only
record certain, more or less Abelian, information. Simplicial groups, at the opposite extreme, can
encode all connected homotopy types, but at the expense of such a large repetition of the essential
information that makes calculation, at best, tedious and, at worst, virtually impossible. Complete
information on truncated homotopy types can be stored in the catn-groups of Loday, [119]. We will
look at these later. An intermediate model due to Blakers and Whitehead, [169], is that of a crossed
complex. The algebraic and homotopy theoretic aspects of the theory of crossed complexes have
been developed by Brown and Higgins, (cf. [38, 39], etc., in the bibliography and the forthcoming
monograph by Brown, Higgins and Sivera, [41]) and by Baues, [19–21]. We will use them later on
in several contexts.

3.1 Crossed complexes: the Definition

We will initially look at reduced crossed complexes, i.e., the group rather than the groupoid based
case.

Definition: A crossed complex, which will be denoted C, consists of a sequence of groups and
morphisms

C : . . .→ Cn
δn→ Cn−1

δn−1→ . . .→ C3
δ3→ C2

δ2→ C1

satisfying the following:
CC1) δ2 : C2 → C1 is a crossed module;
CC2) each Cn, (n > 2), is a left C1/δ1C2-module and each δn, (n > 2) is a morphism of left C1/δ2C2-
modules, (for n = 3, this means that δ3 commutes with the action of C1 and that δ3(C3) ⊂ C2

must be a C1/δ2C2-module);
CC3) δδ = 0.

The notion of a morphism of crossed complexes is clear. It is a graded collection of morphisms
preserving the various structures. We thus get a category, Crsred of reduced crossed complexes.

As we have that a crossed complex is a particular type of chain complex (of non-Abelian groups
near the bottom), it is natural to define its homology groups in the obvious way.
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Definition: If C is a crossed complex, its nth homology group is

Hn(C) =
Ker δn
Im δn+1

.

These homology groups are, of course, functors from Crsred to the category of Abelian groups.

Definition: A morphism f : C→ C′ is called a weak equivalence if it induces isomorphisms on
all homology groups.

There are good reasons for considering the homology groups of a crossed complex as being its
homotopy groups. For example, if the crossed complex comes from a simplicial group then the
homotopy groups of the simplicial group are the same as the homology groups of the given crossed
complex (possibly shifted in dimension, depending on the notational conventions you are using).

The non-reduced version of the concept is only a bit more difficult to write down. It has C1

as a groupoid on a set of objects C0 with each Ck, a family of groups indexed by the elements
of C0. The axioms are very similar; see [41] for instance or many of the papers by Brown and
Higgins listed in the bibliography. This gives a category, Crs, of (unrestricted) crossed complexes
and morphisms between them. This category is very rich in structure. It has a tensor product
structure, denoted C⊗D and a corresponding mapping complex construction, Crs(C,D), making it
into a monoidal closed category. The details are to be found in the papers and book listed above
and will be recalled later when needed.

It is worth noting that this notion restricts to give us a notion of weak equivalence applicable
to crossed modules as well.

Definition: A morphism, f : C→ C′, between two crossed modules, is called a weak equivalence
if it induces isomorphisms on π0 and π1, that is, on both the kernel and cokernel of the crossed
modules.

The relevant reference for π0 and π1 is page 44.

3.1.1 Examples: crossed resolutions

As we mentioned earlier, a resolution of a group (or other object) is a model for the homotopy
type represented by the group, but which usually is required to have some nice freeness properties.
With crossed complexes we have some notion of homotopy around, just as with chain complexes,
so we can apply that vague notion of resolution in this context as well. This will give us some neat
examples of crossed complexes that are ‘tuned’ for use in cohomology.

A crossed resolution of a group G is a crossed complex, C, such that for each n > 1, Im δn =
Ker δn−1 and there is an isomorphism, C1/δ2C2

∼= G.

A crossed resolution can be constructed from a presentation P = (X : R) as follows:

Let C(P ) → F (X) be the free crossed module associated with P. We set C2 = C(P), C1 =
F (X), δ1 = ∂. Let κ(P) = Ker(∂ : C(P) → F (X)). This is the module of identities of the
presentation and is a left G-module. As the category G-Mod has enough projectives, we can form
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a free resolution P of κ(P). To obtain a crossed resolution of G, we join P to the crossed module
by setting Cn = Pn−2 for n > 3, δn = dn−2 for n > 3 and the composite from P0 to C(P ) for n = 3.

3.1.2 The standard crossed resolution

We next look at a particular case of the above, namely the standard crossed resolution of G. In
this, which we will denote by CG, we have

(i) C1G = the free group on the underlying set of G. The element corresponding to u ∈ G will
be denoted by [u].

(ii) C2G is the free crossed module over C0G on generators, written [u, v], considered as elements
of the set G×G, in which the map δ1 is defined on generators by

δ[u, v] = [uv]−1[u][v].

(iii) For n > 3, CnG is the free left G-module on the set Gn, but in which one has equated to zero
any generator [u1, . . . , un] in which some ui is the identity element of G.

If n > 2, δ : Cn+1G→ CnG is given by the usual formula

δ[u1, . . . , un+1] = [u1][u2, . . . , un+1]

+
n∑
i=1

(−1)i[u1, . . . , uiui+1, . . . , un+1] + (−1)n+1[u1, . . . , un].

For n = 2, δ : C3G→ C2G is given by

δ[u, v, w] = [u][v, w].[u, v]−1.[uv,w]−1[u, vw].

This is the crossed analogue of the inhomogeneous bar resolution, BG, of the group G. A groupoid
version can be found in Brown-Higgins, [37], and the abstract group version in Huebschmann, [100].
In the first of these two references, it is pointed out that CG, as constructed, is isomorphic to the
crossed complex, π(BG), of the classifying space of G considered with its skeletal filtration.

For any filtered space, X = (Xn)n∈N, its fundamental crossed complex, π(X), is, in general, a
non-reduced crossed complex. It is defined to have

π(X)n = (πn(Xn, Xn−1, a))a∈X0

with π(X)1, the fundamental groupoid Π1X1X0, and π(X)2, the family, (π2(X2, X1, a))a∈X0 . It
will only be reduced if X0 consists just of one point.

Most of the time we will only discuss the reduced case in detail, although the non-reduced case
will be needed sometimes. Following that, we will often use the notation Crs for the category of
reduced crossed complexes unless we need the more general case. This may occasionally cause a
little confusion, but it is much more convenient for most of the time.

There are two useful, but conflicting, conventions as to indexation in crossed complexes. In the
topologically inspired one, the bottom group is C1, in the simplicial and algebraic one, it is C0.
Both get used and both have good motivation. The natural indexation for the standard crossed
resolution would seem to be with Cn being generated by n-tuples, i.e. the topological one. (I am
not sure that all instances of the other have been avoided, so please be careful!)
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G-augmented crossed complexes. Crossed resolutions of G are examples of G-augmented
crossed complexes. A G-augmented crossed complex consists of a pair (C, ϕ) where C is a crossed
complex and where ϕ : C1 → G is a group homomorphism satisfying

(i) ϕδ1 is the trivial homomorphism;
(ii) Ker ϕ acts trivially on Ci for i ≥ 3 and also on CAb2 .

A morphism
(α, IdG) : (C, ϕ)→ (C′, ϕ′)

of G-augmented crossed complexes consists of a morphism

α : C→ C′

of crossed complexes such that ϕ′α0 = ϕ.
This gives a category, CrsG, which behaves nicely with respect to change of groups, i.e. if

ϕ : G→ H, then there are induced functors between the corresponding categories.

3.2 Crossed complexes and chain complexes: I

(Some of the proofs here are given in more detail as they are less routine and are not that available
elsewhere. A source for much of this material is in the work of Brown and Higgins, [39], where
these ideas were explored thoroughly for the first time; see also the treatment in [41].)

We have introduced crossed complexes where normally chain complexes of modules would have
been used. We have seen earlier the bar resolution and now we have the standard crossed resolution.
What is the connection between them? The answer is approximately that chain complexes form
a category equivalent to a reflective subcategory of Crs. In other words, there is a canonical way
of building a chain complex from a crossed one akin to the process of Abelianising a group. The
resulting reflection functor sends the standard crossed resolution of a group to the bar resolution.
The details involve some interesting ideas.

In chapter 2, we saw that, given a morphism θ : M → N of modules over a group G, ∂ :
M → N o G, given by ∂(m) = (θ(m), 1G) is a crossed module, where N o G acts on M via the
projection to G. That example easily extends to a functorial construction which, from a positive
chain complex, D, of G-modules, gives us a crossed complex ∆G(D) with ∆G(D)n = Dn if n > 1
and equal to D1 oG for n = 1.

Lemma 8 ∆G : Ch(G−Mod)→ CrsG is an embedding.

Proof: That ∆G is a functor is easy to see. It is also easy to check that it is full and faithful, that
is it induces bijections,

Ch(G−Mod)(A,B)→ CrsG(∆G(A),∆G(B)).

The augmentation of ∆G(A) is given by the projection of A1 oG onto G. �

We can thus turn a positive chain complex into a crossed complex. Does this functor have a
left adjoint? i.e. is there a functor ξG : CrsG → Ch(G−Mod) such that

Ch(G−Mod)(ξG(C),D)→ CrsG(C,∆G(D))?
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If so it would suggest that chain complexes of G-modules are like G-augmented crossed complexes
that satisfy some additional equational axioms. As an example of a similar situation think of
‘Abelian groups’ within ‘groups’ for which the inclusion has a left adjoint, namely Abelianisation
(G)Ab = G/[G,G]. Abelian groups are of course groups that satisfy the additional rule [x, y] = 1.
Other examples of such situations are nilpotent groups of a given finite rank c. The subcategories
of this general form are called varieties and, for instance, the study of varieties of groups is a very
interesting area of group theory. Incidentally, it is possible to define various forms of cohomology
modulo a variety in some sense. We will not explore that here.

We thus need to look at morphisms of crossed complexes from a crossed complex C to one of
form ∆G(D), and we need therefore to look at morphisms into a semidirect product. These are
useful for other things, so are worth looking at in detail.

3.2.1 Semi-direct product and derivations.

Suppose that we have a diagram

H
f //

α
  @@@@@@@@ K oG

proj{{wwwwwwwww

G

where K is a G-module (written additively, so we write g.k not gk for the action). This is like the
very bottom of the situation for a morphism f : C→ ∆G(D).

As the codomain of f is a semidirect product, we can decompose f , as a function, in the form

f(h) = (f1(h), α(h)),

identifying its second component using the diagram. The mapping f1 is not a homomorphism. As
f is one, however, we have

(f1(h1h2), α(h1h2)) = f(h1)f(h2) = (f1(h1) + α(h1)f1(h2), α(h1h2)),

i.e. f1 satisfies
f1(h1h2) = f1(h1) + α(h1)f1(h2)

for all h1, h2 ∈ H.

3.2.2 Derivations and derived modules.

We will use the identification of G-modules for a group G with modules over the group ring,
Z[G], of G. Recall that this ring is obtained from the free Abelian group on the set G by defining a
multiplication extending linearly that of G itself. (Formally if, for the moment, we denote by eg, the
generator corresponding to g ∈ G, then an arbitrary element of Z[G] can be written as

∑
g∈G ngeg

where the ng are integers and only finitely many of them are non-zero. The multiplication is by
‘convolution’ product, that is,(∑

g∈G
ngeg

)(∑
g∈G

mgeg

)
=
∑
g∈G

( ∑
g1∈G

ng1mg−1
1 geg

)
.
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Sometimes, later on, we will need other coefficients that Z in which case it is appropriate to use
the term ‘group algebra’ of G, over that ring of coefficients.

We will also need the augmentation, ε : Z[G] → Z, given by ε(
∑

g∈G ngeg) =
∑

g∈G ng and its
kernel I(G), known as the augmentation ideal.

Definitions: Let ϕ : G→ H be a homomorphism of groups. A ϕ-derivation

∂ : G→M

from G to a left Z[H]-module, M , is a mapping from G to M , which satisfies the equation

∂(g1g2) = ∂(g1) + ϕ(g1)∂(g2)

for all g1, g2 ∈ G.

Such ϕ-derivations are really all derived from a universal one.

Definition: A derived module for ϕ consists of a left Z[H]-module, Dϕ, and a ϕ-derivation,
∂ϕ : G→ Dϕ with the following universal property:

Given any left Z[H]-module, M , and a ϕ-derivation ∂ : G→M , there is a unique morphism

β : Dϕ →M

of Z[H]-modules such that β∂ϕ = ∂.
The derivation ∂ϕ is called the universal ϕ derivation.

The set of all ϕ-derivations from G to M has a natural Abelian group structure. We denote
this set by Derϕ(G,M). This gives a functor from H-Mod to Ab, the category of Abelian groups.
If (Dϕ, ∂ϕ) exists, then it sets up a natural isomorphism

Derϕ(G,M) ∼= H−Mod(Dϕ,M),

i.e., (Dϕ, ∂ϕ) represents the ϕ-derivation functor.

3.2.3 Existence

The treatment of derived modules that is found in Crowell’s paper, [56], provides a basis for what
follows. In particular it indicates how to prove the existence of (Dϕ, ∂ϕ) for any ϕ.

Form a Z[H]-module, D, by taking the free left Z[H]-module, Z[H](X), on a set of generators,
X = {∂g : g ∈ G}. Within Z[H](X) form the submodule, Y , generated by the elements

∂(g1g2)− ∂(g1)− ϕ(g1)∂(g2).

Let D = Z[H](X)/Y and define d : G→ D to be the composite:

G
η−→ Z[H](X) quotient−−−−−→ D,

where η is “inclusion of the generators”, η(g) = ∂g, thus d, by construction, will be a ϕ-derivation.
The universal property is easily checked and hence (Dϕ, ∂ϕ) exists.
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We will later on construct (Dϕ, ∂ϕ) in a different way which provides a more amenable descrip-
tion of Dϕ, namely as a tensor product. As a first step towards this description, we shall give a
simple description of DG, that is, the derived module of the identity morphism of G. More precisely
we shall identify (DG, ∂G) as being (I(G), ∂), where, as above, I(G) is the augmentation ideal of
Z[G] and ∂ : G→ I(G) is the usual map, ∂(g) = g − 1.

Our earlier observations give us the following useful result:

Lemma 9 If G is a group and M is a G-module, then there is an isomorphism

DerG(G,M)→ Hom/G(G,M oG)

where Hom/G(G,MoG) is the set of homomorphisms from G to MoG over G, i.e., θ : G→MoG
such that for each g ∈ G, θ(g) = (g, θ′(g)) for some θ′(g) ∈M . �

3.2.4 Derivation modules and augmentation ideals

Proposition 5 The derivation module DG is isomorphic to I(G) = Ker(Z[G]→ Z). The univer-
sal derivation is

dG : G→ I(G)

given by dG(g) = g − 1.

Proof:

We introduce the notation fδ : I(G) → M for the Z[G]-module morphism corresponding to a
derivation

δ : G→M.

The factorisation fδdG = δ implies that fδ must be defined by fδ(g − 1) = δ(g). That this works
follows from the fact that I(G), as an Abelian group, is free on the set {g − 1 : g ∈ G} and that
the relations in I(G) are generated by those of the form

g1(g2 − 1) = (g1g2 − 1)− (g1 − 1).

�

We note a result on the augmentation ideal construction that is not commonly found in the
literature.

The proof is easy and so will be omitted.

Lemma 10 Given groups G and H in C and a commutative diagram

G
δ //

ψ

��

M

ϕ

��
H

δ′
// N

(∗)
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where δ, δ′ are derivations, M is a left Z[G]-module, N is a left Z[H]-module and ϕ is a module
map over ψ, i.e., ϕ(g.m) = ψ(g)ϕ(m) for g ∈ G, m ∈M . Then the corresponding diagram

I(G)
fδ //

ψ
��

M

ϕ

��
I(H)

fδ′
// N

(∗∗)

is commutative. �

The earlier proposition has the following corollaries:

Corollary 1 The subset ImdG = {g − 1 : g ∈ G} ⊂ I(G) generates I(G) as a Z[G]-module.
Moreover the relations between these generators are generated by those of the form

(g1g2 − 1)− (g1 − 1)− g1(g2 − 1).

�

It is useful to have also the following reformulation of the above results stated explicitly.

Corollary 2 There is a natural isomorphism

DerG(G,M) ∼= G−Mod(I(G),M).

�

3.2.5 Generation of I(G).

The first of these two corollaries raises the question as to whether, if X ⊂ G generates G, does the
set GX = {x− 1 : x ∈ X} generate I(G) as a Z[G]-module.

Proposition 6 If X generates G, then GX generates I(G).

Proof: We know I(G) is generated by the g − 1s for g ∈ G. If g is expressible as a word of length
n in the generators X then we can write g − 1 as a Z[G]-linear combination of terms of the form
x−1 in an obvious way. (If g = w.x with w of lesser length than that of g, g−1 = w−1+w(x−1),
so use induction on the length of the expression for g in terms of the generators.) �

When G is free: If G is free, say, G ∼= F (X), i.e., is free on the set X, we can say more.

Proposition 7 If G ∼= F (X) is the free group on the set X, then the set {x − 1 : x ∈ X} freely
generates I(G) as a Z[G]-module.

Proof: (We will write F for F (X).) The easiest proof would seem to be to check the universal
property of derived modules for the function δ : F → Z[G](X), given on generators by

δ(x)(y) =

{
1 if x = y
0 if y 6= x;
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then extended using the derivation rule to all of F using induction. This uses essentially that each
element of F has a unique expression as a reduced word in the generators, X.

Suppose then that we have a derivation ∂ : F → M , define ∂ : Z[G](X) → M by ∂(ex) = ∂(x),
extending linearly. Since by construction ∂δ = ∂ and is the unique such homomorphism, we are
home. �

Note: In both these proofs we are thinking of the elements of the free module on X as being
functions from X to the group ring, these functions being of ‘finite support’, i.e. being non-zero
on only a finite number of elements of X. This can cause some complications if X is infinite or
has some topology as it will in some contexts. The idea of the proof will usually go across to that
situation but details have to change. (A situation in which this happens is in profinite group theory
where the derivations have to be continuous for the profinite topology on the group, see [151].)

3.2.6 (Dϕ, dϕ), the general case.

We can now return to the identification of (Dϕ, dϕ) in the general case.

Proposition 8 If ϕ : G→ H is a homomorphism of groups, then Dϕ
∼= Z[H]⊗G I(G), the tensor

product of Z[H] and I(G) over G.

Proof: If M is a Z[H]-module, we will write ϕ∗(M) for the restricted Z[G]-module, i.e. M with
G-action given by g.m := ϕ(g).m. Recall that the functor ϕ∗ has a left adjoint given by sending a
G-module, N to Z[H] ⊗G N , i.e. take the tensor of Abelian groups, Z[H] ⊗ N and divide out by
x⊗ g.n ≡ xϕ(g)⊗ n.

With this notation we have a chain of natural isomorphisms,

Derϕ(G,M) ∼= DerG(G,ϕ∗(M))
∼= G−Mod(I(G), ϕ∗(M))
∼= H−Mod(Z[H]⊗G I(G),M),

so by universality,
Dϕ
∼= Z[H]⊗G I(G),

as required. �

3.2.7 Dϕ for ϕ : F (X)→ G.

The above will be particularly useful when ϕ is the “co-unit” map, F (X) → G, for X a set
that generates G. We could, for instance, take X = G as a set, and ϕ to be the usual natural
epimorphism.

In fact we have the following:

Corollary 3 Let ϕ : F (X)→ G be an epimorphism of groups, then there is an isomorphism

Dϕ
∼= Z[G](X)

of Z[G]-modules. In this isomorphism, the generator ∂x, of Dϕ corresponding to x ∈ X, satisfies

dϕ(x) = ∂x

for all x ∈ X. �

(You should check that you see how this follows from our earlier results.)



68 CHAPTER 3. CROSSED COMPLEXES

3.3 Associated module sequences

3.3.1 Homological background

Given an exact sequence
1→ K → L→ Q→ 1

of abstract groups, then it is a standard result from homological algebra that there is an associated
exact sequence of modules,

0→ KAb → Z[Q]⊗L I(L)→ I(Q)→ 0.

There are several different proofs of this. Homological proofs give this as a simple consequence of
the TorL-sequence corresponding to the exact sequence

0→ I(L)→ Z[L]→ Z→ 0

together with a calculation of TorL1 (Z[Q],Z), but we are not assuming that much knowledge of
standard homological algebra. That homological proof also, to some extent, hides what is happening
at the ‘elementary’ level, in both the sense of ‘simple’ and also that of‘what happens to the ‘elements’
of the groups and modules concerned.

The second type of proof is more directly algebraic and has the advantage that it accentuates
various universal properties of the sequence. The most thorough treatment of this would seem to
be by Crowell, [56], for the discrete case. We outline it below.

3.3.2 The exact sequence.

Before we start on the discussion of the exact sequence, it will be useful to have at our disposal
some elementary results on Abelianisation of the groups in a crossed module. Here we actually
only need them for normal subgroups but we will need it shortly anyway in the more general form.
Suppose that (C,P, ∂) is a crossed module, and we will set A = Ker∂ with its module structure
that we looked at before, and N = ∂C, so A is a P/N -module.

Lemma 11 The Abelianisation of C has a natural Z[P/N ]-module structure on it.

Proof: First we should point out that by “Abelianisation” we mean CAb = C/[C,C], which is,
of course, Abelian and it suffices to prove that N acts trivially on CAb, since P already acts in a
natural way. However, if n ∈ N , and ∂c = n, then for any c′ ∈ C, we have that nc′ = ∂cc′ = cc′c−1,
hence nc′(c′)−1 ∈ [C,C] or equivalently

n(c′[C,C]) = c′[C,C],

so N does indeed act trivially on CAb. �

Of course NAb also has the structure of a Z[P/N ]-module and thus a crossed module gives one
three P/N -modules. These three are linked as shown by the following proposition.

Proposition 9 Let (C,P, ∂) be a crossed module. Then the induced morphisms

A→ CAb → NAb → 0

form an exact sequence of Z[P/N ]-modules.
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Proof: It is clear that the sequence

1→ A→ C → N → 1

is exact and that the induced homomorphism from CAb to NAb is an epimorphism. Since the
composite homomorphism from A to N is trivial, A is mapped into Ker(CAb → NAb) by the
composite A→ C → CAb. It is easily checked that this is onto and hence the sequence is exact as
claimed. �

Now for the main exact sequence result here:

Proposition 10 Let

1→ K
ϕ→ L

ψ→ Q→ 1

be an exact sequence of groups and homomorphisms. Then there is an exact sequence

0→ KAb ϕ̃→ Z[Q]⊗LI(L)
ψ̃→ I(Q)→ 0

of Z[Q]-modules.

Proof: By the universal property of Dψ, there is a unique morphism

ψ̃ : Dψ → I(Q)

such that ψ̃∂ψ = I(ψ)∂L.

Let δ : K → KAb = K/[K,K] be the canonical Abelianising morphism. We note that ∂ψϕ :
K → Dψ is a homomorphism (since

∂ψϕ(k1k2) = ∂ψϕ(k1) + ψϕ(k1)∂ψϕ(k2)

= ∂ψϕ(k1) + ∂ψϕ(k2), )

so let ϕ̃ : KAb → Dψ be the unique morphism satisfying ϕ̃δ = ∂ψϕ with KAb having its natural
Z[Q]-module structure.

That the composite ψ̃ϕ̃ = 0 follows easily from ψϕ = 0. Since Dψ is generated by symbols d`
and ψ̃(d`) = ψ(`)− 1, it follows that ψ̃ is onto. We next turn to “Ker ψ̃ ⊆ Im ϕ̃”.

If we can prove α : Dψ → I(Q) is the cokernel of ϕ̃, then we will have checked this inclusion
and incidentally will have reproved that ψ̃ is onto.

Now let Dψ → C be any morphism such that αϕ̃ = 0. Consider the diagram

K
ϕ //

δ
��

L

∂ψ
��

ψ // Q

∂Q
��

KAb
ϕ̃ // Dψ

ψ̃ //

α
""EEEEEEEEE C(Q)

C
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The composite α∂ψ vanishes on the image of ϕ since α∂ψϕ = αϕ̃δ and αϕ̃ is assumed zero.
Define d : Q → C by d(q) = α∂ψ(`) for ` ∈ L such that ψ(`) = q. As α∂ψ vanishes on Im ϕ, this
is well defined and

d(q1q2) = α∂ψ(`1`2)

= α∂ψ(`1) + α(ψ(`1)∂ψ(`2))

= d(q1) + q1d(q2)

so d factors as ᾱ∂Q in a unique way with ᾱ : I(Q)→ C. It remains to prove that α = ψ̃, but

ψ̃∂ψ = IC(ψ)∂L

= ∂Qψ

by the naturality of ∂. Now finally note that ᾱ∂Q = d and dψ = α∂ψ to conclude that ψ̃∂ψ and α∂ψ
are equal. Equality of α and ᾱψ̃ then follows by the uniqueness clause of the universal property of
(Dψ, ∂ψ).

Next we need to check that KAb → Dψ is a monomorphism. To do this we use the fact that
there is a transversal, s : Q → L, satisfying s(1) = 1. This means that, following Crowell, [56] p.
224, we can for each ` ∈ L, q ∈ Q, find an element q × ` uniquely determined by the equation

ϕ(q × `)) = s(q)`s(qψ(`))−1,

which, of course, defines a function from Q× L to K. Crowell’s lemma 4.5 then shows

q × `1`2 = (q × `1)(qψ(`1)× `2) for `1, `2 ∈ L.

Now let M = Z[Q](X), with X = {∂` : ` ∈ L}, so that there is an exact sequence

M → Dψ → 0.

The underlying group of Z[Q] is the free Abelian group on the underlying set of Q. Similarly M ,
above, has, as underlying group, the free Abelian group on the set Q×X.

Define a map τ : M → KAb of Abelian groups by

τ(a, ∂`) = δ(q × `).

We check that if p(m) = 0, then τ(m) = 0. Since Ker p is generated as a Z[Q]-module by elements
of the form

∂(`1`2)− ∂`1 − ψ(`1)∂`2,

it follows that as an Abelian group, Ker p is generated by the elements

(q, ∂(`1`2))− (q, ∂`1)− (qψ(`1), ∂`2).

We claim that τ is zero on these elements; in fact

τ(q, ∂(`1`2)) = δ(q × (`1`2))

= δ(q × `1) + δ(qψ(`1)× `2)

= τ(q, `1) + τ(qψ(`1), `2).
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Thus τ induces a map η : Dψ → KAb of Abelian groups.
Finally we check ηϕ̃ = identity, so that ϕ̃ is a monomorphism: let b ∈ KAb, k ∈ K be such that

δ(k) = b, then

ηϕ̃(b) = ηϕ̃δ(k)

= η∂ψ(k)

= δ(1× ϕ(k)),

but 1× ϕ(k) is uniquely determined by

ϕ(1× ϕ(k)) = s(1)ϕ(k)s(1ψϕ(k))−1 = ϕ(k),

since s(1) = 1, hence 1× ϕ(k) = k and ηϕ̃(b) = δ(k) = b as required. �

A discussion of the way in which this result interacts with the theory of covering spaces can
be found in Crowell’s paper already cited. We will very shortly see the connection of this module
sequence with the Jacobian matrix of a group presentation and the Fox free differential calculus. It
is this latter connection which suggests that we need more or less explicit formulae for the maps ϕ̃
and ψ̃ and hence requires that Crowell’s detailed proof be used, not the slicker homological proof.

3.3.3 Reidemeister-Fox derivatives and Jacobian matrices

At various points, we will refer to Reidemeister-Fox derivatives as developed by Fox in a series of
articles, see [80], and also summarised in Crowell and Fox, [57]. We will call these derivatives Fox
derivatives.

Suppose G is a group and M a G-module and let δ : G → M be a derivation, (so δ(g1g2) =
δ(g1) + g1δ(g2) for all g1, g2 ∈ G), then, for calculations, the following lemma is very valuable,
although very simple to prove.

Lemma 12 If δ : G→M is a derivation, then
(i) δ(1G) = 0;
(ii) δ(g−1) = −g−1δ(g) for all g ∈ G;
(iii) for any g ∈ G and n ≥ 1,

δ(gn) = (
n−1∑
k=0

gk)δ(g).

Proof: As was said, these are easy to prove.
δ(g) = δ(1g) + 1δ(g), so δ(1) = 0, and hence (i); then

δ(1) = δ(g−1g) = δ(g−1) + g−1δ(g)

to get (ii), and finally induction to get (iii). �

The Fox derivatives are derivations taking values in the group ring as a left module over itself.
They are defined for G = F (X), the free group on a set X. (We usually write F for F (X) in what
follows.)
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Definition: For each x ∈ X, let
∂

∂x
: F → ZF

be defined by
(i) for y ∈ X,

∂y

∂x
=

{
1 if x = y
0 if y 6= x;

(ii) for any words, w1, w2 ∈ F ,

∂

∂x
(w1w2) =

∂

∂x
w1 + w1

∂

∂x
w2.

Of course, a routine proof shows that the derivation property in (ii) defines ∂w
∂x for any w ∈ F .

This derivation, ∂
∂x , will be called the Fox derivative with respect to the generator x.

Example: Let X = {u, v}, with r ≡ uvuv−1u−1v−1 ∈ F = F (u, v), then

∂r

∂u
= 1 + uv − uvuv−1u−1,

∂r

∂v
= u− uvuv−1 − uvuv−1u−1v−1.

This relation is the typical braid group relation, here in Br3, and we will come back to these simple
calculations later.

It is often useful to extend a derivation δ : G→M to a linear map from ZG to M by the simple
rule that δ(g + h) = δ(g) + δ(h).

We have
Der(F,ZF ) ∼= F−Mod(IF,ZF ),

and that
IF ∼= ZF (X),

with the isomorphism matching each generating x−1 with ex, the basis element labelled by x ∈ X.
(The universal derivation then sends x to ex.)

For each given x, we thus obtain a morphism of F -modules:

dx : ZF (X) → ZF

with

dx(ey) = 1 if y = x

dx(ey) = 0 if y 6= x,

i.e., the ‘projection onto the xth-factor’ or ‘evaluation at x ∈ X’ depending on the viewpoint taken
of the elements of the free module, ZF (X).

Suppose now that we have a group presentation, P = (X : R), of a group, G. Then we have a
short exact sequence of groups

1→ N
ϕ→ F

γ→ G→ 1,
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where N = N(R), F = F (X), i.e., N is the normal closure of R in the free group F . We also have
a free crossed module,

C
∂→ F,

constructed from the presentation and hence, two short exact sequences of G-modules with κ(P) =
Ker ∂, the module of identities of P,

0→ κ(P)→ CAb → NAb → 0,

and also
0→ NAb ϕ̃→ IF ⊗F ZG→ IG→ 0.

We note that the first of these is exact because N is a free group, (see Proposition 12, which will
be proved shortly), further

CAb ∼= ZG(R),

(the proof is left to you to manufacture from earlier results), and the map from this to NAb in the
first sequence sends the generator er to r[N,N ].

We next revisit the derivation of the associated exact sequence (Proposition 10, page 69) in
some detail to see what ϕ̃ does to r[N,N ]. We have ϕ̃(r[N,N ]) = ∂γϕ(r) = ∂γ(r), considering r
now as an element of F , and by Corollary 3, on identifying Dγ with ZG(X) using the isomorphism
between IF and ZF (X), we can identify ∂γ(x) = ex. We are thus left to determine ∂γ(r) in terms
of the ∂γ(x), i.e., the ex. The following lemma does the job for us.

Lemma 13 Let δ : F →M be a derivation and w ∈ F , then

δw =
∑
x∈X

∂w

∂x
δx.

Proof: By induction on the length of w. �

In particular we thus can calculate

∂γ(r) =
∑ ∂r

∂x
ex.

Tensoring with ZG, we get

ϕ̃(r[N,N ]) =
∑ ∂r

∂x
ex ⊗ 1.

There is one final step to get this into a usable form:
From the quotient map γ : F → G, we, of course, get an induced ring homomorphism, γ :

ZF → ZG, and hence we have elements γ( ∂r∂x) ∈ ZG. Of course,

∂r

∂x
ex ⊗ 1 = ex ⊗ γ(

∂r

∂x
),

so we have, on tidying up notation just a little:

Proposition 11 The composite map

ZG(R) → NAb → ZG(X)

sends er to
∑
γ( ∂r∂x)ex and so has a matrix representation given by JP =

(
γ( ∂ri∂xj

)
)
. �
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Definition: The Jacobian matrix of a group presentation, P = (X : R) of a group G is

JP =
(
γ(
∂ri
∂xj

)
)
,

in the above notation.

The application of γ to the matrix of Fox derivatives simplifies expressions considerable in the
matrix. The usual case of this is if a relator has the form rs−1, then we get

∂rs−1

∂x
=
∂r

∂x
− rs−1 ∂s

∂x

and if r or s is quite long this looks moderately horrible to work out! However applying γ to the
answer, the term rs−1 in the second of the two terms becomes 1. We can actually think of this as
replacing rs−1 by r − s when working out the Jacobian matrix.

Example: Br3 revisited. We have r ≡ uvuv−1u−1v−1, which has the form (uvu)(vuv)−1.
This then gives

γ(
∂r

∂u
) = 1 + uv − v and γ(

∂r

∂v
) = u− 1− vu,

abusing notation to ignore the difference between u, v in F (u, v) and the generating u, v in Br3.

Homological 2-syzygies: In general we obtain a truncated chain complex:

ZG(R) d2→ ZG(X) d1→ ZG d0→ Z→ 0,

with d2 given by the Jacobian matrix of the presentation, and d1 sending generator e1
x to 1− x, so

Imd1 is the augmentation ideal of ZG.

Definition: A homological 2-syzygy is an element in Ker d2.

A homological 2-syzygy is thus an element to be killed when building the third level of a
resolution of G. What are the links between homotopical and homological syzygies? Brown and
Huebschmann, [42], show they are isomorphic, as Ker d2 is isomorphic to the module of identities.
We will examine this result in more detail shortly.

Extended example: Homological Syzygies for the braid group presentations: The
Artin braid group, Brn+1, defined using n+ 1 strands is given by

• generators: yi, i = 1, . . . , n;

• relations: rij ≡ yiyjy−1
i y−1

j for i+ 1 < j;

rii+1 ≡ yiyi+1yiy
−1
i+1y

−1
i y−1

i+1 for 1 ≤ i < n.

We will look at such groups only for small values of n.
By default, Br2 has one generator and no relations, so is infinite cyclic.

The group Br3: (We will simplify notation writing u = y1, v = y2.)
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This then has presentation P = (u, v : r ≡ uvuv−1u−1v−1). It is also the ‘trefoil group’, i.e.,
the fundamental group of the complement of a trefoil knot. If we construct X(2) = K(P), this is
already a K(Br3, 1) space, having a trivial π2. There are no higher syzygies.

We have all the calculation for working with homological syzygies here. The key part of the
complex is the Jacobian matrix as that determines d2:

d2 =
(

1 + uv − v u− 1− vu
)
.

This has trivial kernel, but, in fact, that comes most easily from the identification with homotopical
syzygies.

The group Br4: simplifying notation as before, we have generators u, v, w and relations

ru ≡ vwvw−1v−1w−1,

rv ≡ uwu−1w−1,

rw ≡ uvuv−1u−1v−1.

The 1-syzygies are made up of hexagons for ru and rw and a square for rv. There is a fairly obvious
way of fitting together squares and hexagons, namely as a permutohedron, and there is a labelling
of such that gives a homotopical 2-syzygy.

The presentation yields a truncated chain complex with d2

ZG(ru,rv ,rw) d2−→ ZG(u,v,w)

with

d2 =

 0 1 + vw − w v − 1− wv
1− w 0 u− 1

1 + uv − v u− 1− vu 0


and Loday, [120], has calculated that for the permutohedral 2-syzygy, s, one gets another term of
the resolution, ZG(s), and a d3 : ZG(s) → ZG(ru,rv ,rw) given by

d3 =
(

1 + vu− u− wuv v − vwu− 1− uv − vuwv 1 + vw − w − uvw
)
.

For more on methods of working with these syzygies, have a look at Loday’s paper, [120], and some
of the references that you will find there.

3.4 Crossed complexes and chain complexes: II

(The source for the material and ideas in this section is once again [39].)

3.4.1 The reflection from Crs to chain complexes

It is now time to return to the construction of a left adjoint for ∆G.

Theorem 3 ( Brown-Higgins, [39] in a slightly more general form.) The functor, ∆G, has a left
adjoint.
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Proof: We construct the left adjoint explicitly as follows:
Let f. : (C, ϕ) → ∆G(M.) be a morphism in CrsG, then we have the following commutative

diagram

. . . // C2
δ2 //

f2
��

C1
δ1 //

f1
��

C0
ϕ //

f0
��

G

IdG
��

. . . //M2
δ2 //M1

δ1 //M0 oG
prG // G

Since the right hand square commutes, f0 is given by some formula

f0(c) = (∂(c), ϕ(c)),

where ∂ : C0 →M0 is a ϕ-derivation. Thus ∂ = f̃0∂ϕ for a unique G-module morphism, f̃0 : Dϕ →
M0, and f0 factors as

C0
ϕ̄→ Dϕ oG

f̃0oG→ M0 oG,

where ϕ̄(c) = (∂ϕ(c), ϕ(c)).
The map ∂ϕδ1 : C1 → Dϕ is a homomorphism since

∂ϕδ1(c1c2) = ∂ϕ∂1(c1) + ϕ∂1(c1)∂ϕ∂1(c2)

= ∂ϕ∂1(c1) + ∂ϕ∂1(c2),

ϕ∂1 being trivial (because (C, ϕ) is G-augmented). We thus obtain a map d : CAb1 → Dϕ given
by d(c[C,C]) = ∂ϕ∂1(c) for c ∈ C1. As we observed earlier the Abelian group CAb1 has a natural
Z[G]-module structure making d a G-module morphism.

Similarly there is a unique G-module morphism,

f̃1 : CAb1 →M1,

satisfying
f̃1(c[C,C]) = f1(c).

Since for c ∈ C1,
(d1f̃1(c), 1) = f0(δ1c) = (f̃0∂ϕ(δ1c1), 1),

we have that the diagram

CAb1

f̃1 //

d
��

M1

d1
��

Dϕ
f̃0 //M0

commutes.
We also note that since δ2 : C2 → C1 maps into Ker δ1, the composite

C2
δ2→ C1

can→ CAb1
d→ Dϕ,

being given by d(δ2(c)[C,C] = ∂ϕδ1δ2(c), is trivial and that f̃1δ2(c[C,C]) = f1δ2(c) = d2f2(c), thus
we can define ξ = ξG(C, ϕ) by

ξn = Cn if n ≥ 2

ξ1 = CAb1 ,

ξ0 = Dϕ,
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the differentials being as constructed. We note that as Ker ϕ acts trivially on all Cn for n ≥ 2, all
the Cn have Z[G]-module structures.

That ξG gives a functor
Crs→ Ch(G−Mod)

is now easy to check using the uniqueness clauses in the universal properties of Dϕ and Abeliani-
sation. Again uniqueness guarantees that the process “f goes to f̃” gives a natural isomorphism

Ch(G−Mod)(ξG(C, ϕ),M) ∼= CrsG((C, ϕ),∆G(M))

as required. �

It is relatively easy to extend the above natural isomorphism to handle morphisms of crossed
complexes over different groups. For a detailed treatment one needs a discussion of the way that
the change of groups functors work with crossed modules or crossed complexes, that is, if we have
a morphism of groups θ : G → H then we would expect to get functors between CrsG and CrsH
induced by θ. These do exist and are very nicely behaved, but they will not be discussed here, see
[151] for a full treatment in the more general context of profinite groups.

3.4.2 Crossed resolutions and chain resolutions

One of our motivations for introducing crossed complexes was that they enable us to model more
of the sort of information encoded in a K(G, 1) than does the usual standard algebraic models,
e.g. a chain complex such as the bar resolution. In particular, whilst the bar resolution is very
good for cohomology with Abelian coefficients for non-Abelian cohomology the crossed version can
allow us to push things further, but then comparison on the Abelian theory is very necessary! It is
therefore of importance to see how this K(G, 1) information that we have encoded changes under
the functor ξ : Crs→ Ch(G−Mod).

We start with a crossed resolution determined in low dimensions by a presentation P = (X : R)
of a group, G. Thus, in this case, C0 = F (X) with ϕ : F (X) → G, the ‘usual’ epimorphism, and
C1 → C0 is C → F (X), the free crossed module on R → F (X). It is not too hard to show that
CAb1

∼= Z[G](R), the free Z[G]-module on R. (The proof is left as an exercise.) This maps down
onto N(R)Ab, the Abelianisation of the normal closure of R in F (X) via a map

∂∗ : Z[G](R) → N(R)Ab,

given by ∂∗(er) = r[N(R), N(R)], where er is the generator of Z[G] corresponding to r ∈ R.
There is also a short exact sequence

1→ N(R)
i→ F (X)

ϕ→ G→ 1

and hence by Proposition 10, a short exact sequence

0→ N(R)Ab
ĩ→ Z[G]⊗F I(F )

ϕ̃→ I(G)→ 0

(where we have written F = F (X)).
By the Corollary to Proposition 8, we have

Z[G]⊗F I(F ) ∼= Z[G](X).



78 CHAPTER 3. CROSSED COMPLEXES

The required map CAb1 → Dϕ is the composite

Z[G](R) ∂∗→ N(R)Ab
ĩ→ Z[G](X).

We have given an explicit description of ∂∗ above, so to complete the description of d, it remains to
describe ĩ, but ĩ satisfies ĩδ = ∂ϕi, where δ : N(R)→ N(R)Ab, so ĩ(r[N(R), N(R)]) = dϕ(r). Thus
if r is a relator, i.e., if it is in the image of the subgroup generated by the elements of R, then ∂(er)
can be written as a finite sum of the form

∑
x axex and the elements ax ∈ Z[G] are the images of

the Fox derivatives.
This operator can best be viewed as the Alexander matrix of a presentation of a group, further

study of this operator depends on studying transformations between free modules over group rings,
and we will not attempt to study those here.

The rest of the crossed resolution does not change and so, on replacing I(G) by Z[G]→ Z, we
obtain a free pseudocompact Z[G]-resolution of the trivial module Z,

. . .→ Z[G](R) d→ Z[G](X) → Z[G]→ Z

built up from the presentation. This is the complex of chains on the universal cover, K̃(G, 1), where
K(G, 1) is constructed starting from a presentation P.

3.4.3 Standard crossed resolutions and bar resolutions

We next turn to the special case of the standard crossed resolution of G discussed briefly earlier.
Of course this is a special case of the previous one, but it pays to examine it in detail.

Clearly in ξ = ξ(CG,ϕ), we have:
ξ0 = the free Z[G]-module on the underlying set of G, individual generators being written [u], for
u ∈ G;
ξ1 = the free Z[G] -module on G×G, generators being written [u, v];
ξn = CnG, the free Z[G] -module on Gn+1, etc.

The map d2 : ξ2 → ξ1 induced from δ2 is given by

d2[u, v, w] = u[v, w]− [u, v]− [uv,w] + [u, vw],

and the map d1 : ξ1 → ξ0 by

d1([u, v]) = dϕ([uv]−1[u][v])

= v−1u−1(−[uv] + [u] + u[v]),

a unit times the usual bar resolution formula. Thus, as claimed earlier, the standard crossed
resolution is the crossed analogue of the bar resolution.

3.4.4 The intersection A ∩ [C,C].

We next turn to a comparison of homological and homotopical syszygies. We have almost all the
preliminary work already. The next ingredient is a result that will identify the intersection of the

kernel of a crossed module, A = Ker(C
∂→ P ) and the commutator subgroup of C.

The kernel of the homomorphism from A to CAb is, of course, A ∩ [C,C] and this need not be
trivial. In fact, Brown and Huebschmann ([42], p.160) note that in examples of type (G,Aut(G), ∂),
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the kernel of ∂ is, of course, the centre ZG of G and ZG ∩ [G,G] can be non-trivial, for instance,
if G is dicyclic or dihedral.

We will adopt the same notation as previously with N = ∂P etc.

Proposition 12 If, in the exact sequence of groups

1→ A→ C
p→ N → 1,

the epimorphism from C to N is split (the splitting need not respect G-action), then A ∩ [C,C] is
trivial.

Proof: Given a splitting s : N → C, (so ps is the identity on N), then the group C can be written
as A o s(N). The commutators in C, therefore, all lie in s(N) since A is Abelian, but then, of
course, A ∩ [C,C] cannot contain any non-trivial elements. �

We used this proposition earlier in the case where N is free. We are thus using the fact that
subgroups of free groups are free, in that case. Of course, any epimorphism with codomain a free
group is split.

Brown and Huebschmann, [42], p. 168, prove that for an group G with presentation P, the
module of identities for P is naturally isomorphic to the second homology group, H2(K̃(P)), of the
universal cover of K(P), the 2-complex of the presentation. We can approach this via the algebraic
constructions we have.

Given a presentation P = 〈X : R〉 of a group G, the algebraic analogue of K(P), we have

argued above, is the free crossed module C(P)
d→ F (X) and the chains on the universal cover of

K(P) will be given by ξG of this, i.e., by the chain complex

Z[G](R) d→ Z[G](X).

In general there will be a short exact sequence

0→ κ(P) ∩ [C(P), C(P)]→ κ(P)→ H2(ξ(C(P))→ 0.

This short exact sequence yields the Brown-Huebschmann result as N(R) will a free group so
the epimorphism onto N(R) splits and we can use the above Proposition 12. We thus get

Proposition 13 If P = 〈X : R〉 is a free presentation of G, then there is an isomorphism

κ
∼=−→ H2(ξ(CC(P)) = Ker(d : Z[G]R → Z[G]X).

�

Note: Here we are using something that will not be true in all algebraic settings. A subgroup
of a free group is always free, but the analogous statement for free algebras of other types is not
true.
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3.5 Simplicial groups and crossed complexes

3.5.1 From simplicial groups to crossed complexes

Given any simplicial group G, the formula,

C(G)n+1 =
NGn

(NGn ∩Dn)d0(NGn+1 ∩Dn+1)
,

in higher dimensions with, at its ‘bottom end’, the crossed module,

NG1

d0(NG2 ∩D2)
→ NG0

gives a crossed complex with ∂ induced from the boundary in the Moore complex. The detailed
proof is too long to indicate here. It just checks the axioms, one by one.

We should have a glance at this formula from various viewpoints, some of which will be revisited
later. Once again there is a clear link with the non-uniqueness of fillers for horns in a simplicial
group if it is not a group T -complex. We have all those (NGn ∩Dn) terms involved!

Suppose that we had our simplicial group G and wanted to construct a quotient of it that was a
group T -complex. We could do this in a silly way since the trivial simplicial group is clearly a group
T -complex, but let us keep the quotient as large as possible. This problem is related to the question
of whether the category of group T -complexes forms a reflexive subcategory of Simp.Grps. The
condition NG∩D = 1 looks like some sort of ‘equational specification’. Our question can thus really
be posed as follows: Suppose we have a simplicial group morphism f : G → H and H is a group
T -complex. Remember that in group T -complexes, as against the non-algebraic ones, the thin
structure is not an added bit of structure. The thin elements are determined by the degeneracies,
so whether or not H is or is not a group T -complex is somehow its own affair, and nothing to do
with any external factors! Does f factor universally through some ‘group T -complexification’ of
G? Something like

G
f //

proj ��;;;;;;; H

G/T (G)
f̂

AA�������

with G/T (G) a group T -complex and f̂ uniquely determined by the diagram.
One sensible way to look at such a question is to assume, provisionally, that such a factorisation

exists and to see what T (G) would have to be. In general, if f : G → H is any simplicial group
morphism (with no restriction on H for the moment), then with a hopefully obvious notation,

fn(NGn ∩D(G)n) ⊆ NHn ∩D(H)n,

since f sends degenerate elements to degenerate elements and preserves products! Back in our
situation in which H is a group T -complex, then fn(NGn ∩D(G)n) = 1, for the simple reason that
the right hand side of that displayed formula is trivial by assumption. We thus have that if some
such T (G) exists, then we must have NGn ∩ D(G)n ⊆ T (G)n and our first attempt might be to
look at the possibility that they should be equal. This is wrong and for fairly trivial reasons. The
subgroup T (G)n of Gn has to be normal if we are to form the quotient by it, and there is no reason
why NGn ∩D(G)n should be a normal subgroup in general.
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We might then be tempted to take the normal subgroup generated by NGn ∩D(G)n, but that
is ‘defeatist’ in this situation. We might hope to do detailed calculations with the subgroup and
if it is specified as a normal closure, we will lose some of our ability to do that, at least without
considerable more effort. (Let’s be lazy and see if we can get around that difficulty.) If we look
again, we find another thing that ‘goes wrong’ with any attempt to use NGn∩D(G)n as it is. This
subgroup would be within NGn, of course, and we want to induce a map from the Moore complex
of G to that of G/T (G). For that to work, we would need not only NGn ∩D(G)n ⊆ T (G)n, but
the image of NGn ∩D(G)n under d0 to be in T (G)n−1. Going up a dimension, we thus need not
only NGn ∩ D(G)n, but d0(NGn+1 ∩ D(G)n+1) ⊆ T (G)n. We thus need the product subgroup
(NGn ∩D(G)n)d0(NGn+1 ∩D(G)n+1) to be in T (G)n. This looks a bit complicated. Do we need
to go any further up the Moore complex? No, because d0d0 is trivial. We might thus try

T (G)n = (NGn ∩D(G)n)d0(NGn+1 ∩D(G)n+1)

You might now think that this is a bit silly because we would still need this product subgroup to
be normal in order to form the quotient ... , but it is! The lack of normality of our earlier attempt
is absorbed by the image of the next level up. (That is pretty!)

Of course, there are very good reasons why this works. These involve what are sometimes called
Peiffer pairings. We will see some of these later.

As a consequence of the above discussion, we more or less have:

Proposition 14 If G is a group T -complex, then NG is a crossed complex. �

We certainly have a sketch of

Proposition 15 The full subcategory of Simp.Grps determined by the group T -complexes is a
reflective subcategory. �

Of course, the details of the proofs of both of these are left for you to write down. Nearly all of the
reasoning for the second result is there for you, but some of the detailed calculations for the first
are quite tricky.

The close link between group T -complexes and crossed complexes is evident from these results.
You might guess that they form equivalent categories. They do. We will look at the way back from
crossed complexes (of groups) to simplicial groups later on, but we need to get back to cohomology.

3.5.2 Simplicial resolutions, a bit of background

We need some such means of going from simplicial groups to crossed complexes so because we can
also use simplicial resolutions to ‘resolve’ a group (and in many other situations). We first sketch
in some historical background.

In the 1960s, the connection between simplicial groups and cohomology was examined in detail.
The basic idea was that given the adjoint “free-forget” pair of functors between Groups and Sets,
one could generate a free resolution of a group, G, using the resulting comonad (or cotriple) (cf.
MacLane, [122]). This resolution was not, however, by a chain complex but by a free simplicial
group, F , say. It was then shown (Barr and Beck, [17]) that given any G-module, M , and working
in the category of groups over G, one could form the cosimplicial G-module, HomGps/G(F,M),
and hence, by a dual form of the Dold-Kan theorem, a cochain complex C(G,M), whose homotopy
type, and hence whose homology, was independent of the choice of F . This homology was the usual
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Eilenberg-MacLane cohomology of G with coefficients in M , but with a shift in dimension (cf. Barr
and Beck, [17]).

Other theories of cohomology were developed at about the same time by Grothendieck and
Verdier, [7], André, [4, 5], and Quillen, [152, 153]. The first of these was designed for use with
“sites”, that is, categories together with a Grothendieck topology.

André and Quillen developed, independently, a method of defining cohomology using simplicial
resolutions. Their work is best known in commutative algebra, but their methods work in greater
generality. Unlike the theory of Barr and Beck (monadic cohomology), they only assume there
is enough structure to construct free resolutions; a (co)monad is just one way of doing this. In
particular, André, [4, 5], describes a step-by-step, almost combinatorial, process for constructing
such resolutions. This ties in well with our earlier comments about using a presentation of a group
to construct a crossed resolution and the important link with syzygies. André’s method is the
simplicial analogue of this.

We will assume for the moment that we have a simplicial resolution, F , of our group, G.
Both André and Quillen then consider applying a derived module construction dimensionwise to
F , obtaining a simplicial G-module. They then use “Dold-Kan” to give a chain complex of G-
modules, which they call the “cotangent complex”, denoted LG or LAb(G), of G (at least in the
case of commutative algebras). The homotopy type of LAb(G) does not depend on the choice of
resolution and so is a useful invariant of G. We will need to look at this construction in more detail,
but will consider a slightly more general situation to start with.

3.5.3 Free simplicial resolutions

Standard theory (cf. Duskin, [65]) shows that if F and F ′ are free simplicial resolutions of groups,
G and H, say, and f : G → H is a morphism, then f can be lifted to f ′ : F → F ′. The method
is the simplicial analogue of lifting a homomorphism of modules to a map of resolutions of those
modules, which you should look at first as it is technically simpler. Any two such lifts are homotopic
(by a simplicial homotopy).

Of course, f will also lift to a morphism of crossed complexes, f : C(F ) → C(F ′), and any
two such lifts will be homotopic as crossed complex morphisms. Thus whatever simplicial lift,
f ′ : F → F ′, we choose, C(f ′) will be a lift in the “crossed” case, and although we do not know at
this stage of our discussion of the theory if a homotopy between two simplicial lifts is transferred
to a homotopy between the images under C, this does not matter as the relation of homotopy is
preserved at least in this case of resolutions.

Any group has a free simplicial resolution. There is the obvious adjoint pair of functors

U : Groups→ Sets

F : Sets→ Groups

Writing η : Id → UF and ε : FU → Id for the unit and counit of this adjunction (cf. MacLane,
[122, 123]), we have a comonad (or cotriple) on Groups, the free group comonad, (FU, ε, FηU).
We write L = FU , δ = FηU , so that

ε : L→ I

is the counit of the comonad whilst

δ : L→ L2
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is the comultiplication. (For the reader who has not met monads or comonads before, (L, η, δ)
behaves as if it was a monoid in the dual of the category of “endofunctors” on Groups, see MacLane,
[123] Chapter VI. We will explore them briefly in section ??, starting on page ??.)

Now suppose G is a group and set F (G)i = Li+1(G), so that F (G)0 is the free group on the
underlying set of G and so on. The counit (which is just the augmentation morphism from FU(G)
to G) gives, in each dimension, face morphisms

di = Ln−iεLi(G) : Ln+1(G)→ Ln(G),

for i = 0, . . . , n, whilst the comultiplication gives degeneracies

si : Ln(G)→ Ln+1(G)

si = Ln−1−iδLi,

for i = 0, . . . , n− 1, satisfying the simplicial identities.

Remark: Here we follow the conventions used by Duskin, in his Memoir, [65]. Later we will also
need to look at similar resolutions where the labelling of the faces and degeneracies are reversed.

This simplicial group, F (G), satisfies π0(F (G)) ∼= G (the isomorphism being induced by ε(G) :
F0(G) → G) and πn(F (G)) is trivial if n ≥ 1. The reason for this is simple. If we apply U once
more to F (G), we get a simplicial set and the unit of the adjunction

η : 1→ UF

allows one to define for each n

ηU(FU)n : ULn → ULn+1,

which gives a natural contraction of the augmented simplicial set, UF (G) → U(G), (cf. Duskin,
[65]). We will look at this in detail in our later treatment of augmentations, etc. For the moment,
it suffices to accept the fact that we do get a resolution, as we do not need to know the details of
why this construction works, at least not yet.

If we denote the constant simplicial group on G by K(G, 0), the augmentation defines a simplical
homomorphism

ε : F (G)→ K(G, 0)

satisfying Uε.inc = Id, where inc : UK(G, 0)→ UF (G) is the ‘inclusion’ of simplicial sets given by
η, and then these extra maps, (UF )nηU , in fact, give a homotopy between inc.Uε and the identity
map on UF (G), i.e., ε is a weak homotopy equivalence of simplicial groups. Thus F (G) is a free
simplicial resolution of G. It is called the comonadic free simplicial resolution of G.

This simplicial resolution has the advantage of being functorial, but the disadvantage of being
very big. We turn next to a ‘step-by-step’ method of constructing a simplicial resolution using
ideas pioneered by André, [5], although most of his work was directed more towards commutative
algebras, cf. [4].
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3.5.4 Step-by-Step Constructions

This section is a brief résumé of how to construct simplicial resolutions by hand rather than
functorially. This allows a better interpretation of the generators in each level of the resolution.
These are the simplicial analogues of higher syzygies. The work depends heavily on a variety of
sources, mainly [4], [116] and [134]. André only treats commutative algebras in detail, but Keune
[116] does discuss the general case quite clearly. The treatment here is adapted from the paper by
Mutlu and Porter, [139].

Recall of notation: We first recall some notation and terminology, which will be used in the
construction of a simplicial resolution. Let [n] be the ordered set, [n] = {0 < 1 < · · · < n}. Define
the following maps: the injective monotone map δni : [n− 1]→ [n] is given by

δni (k) =

{
k if k < i,
k + 1 if k ≥ i,

for 0 ≤ i ≤ n 6= 0. The increasing surjective monotone map αni : [n+ 1]→ [n] is given by

αni (k) =

{
k if k ≤ i,
k − 1 if k > i,

for 0 ≤ i ≤ n. We denote by {m,n} the set of increasing surjective maps [m]→ [n].

3.5.5 Killing Elements in Homotopy Groups

Let G be a simplicial group and let k ≥ 1 be fixed. Suppose we are given a set, Ω, of elements:
Ω = {xλ : λ ∈ Λ}, xλ ∈ πk−1(G), then we can choose a corresponding set of elements θλ ∈ NGk−1 so
that xλ = θλ ∂k(NGk). (If k = 1, then as NG0 = G0, the condition that θλ ∈ NG0 is immediate.)
We want to ‘kill’ the elements in Ω.

We form a new simplicial group Fn where
1) Fn is the free Gn-group, (i.e., group with Gn-action)

Fn =
∐
λ,t

Gn{yλ,t} with λ ∈ Λ and t ∈ {n, k},

where Gn{y} = Gn∗ < y >, the co-product of Gn and a free group generated by y.
2) For 0 ≤ i ≤ n, the group homomorphism sni : Fn → Fn+1 is obtained from the homomorphism

sni : Gn → Gn+1 with the relations

sni (yλ,t) = yλ,u with u = tαni , t : [n]→ [k].

3) For 0 ≤ i ≤ n 6= 0, the group homomorphism dni : Fn → Fn−1 is obtained from dni : Gn →
Gn−1 with the relations

dni (yλ,t) =


yλ,u if the map u = tδni is surjective,
t′(θλ) if u = δkkt

′,
1 if u = δkj t

′ with j 6= k,

by extending multiplicatively.
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We sometimes denote the F, so constructed by G(Ω).

Remark: In a ‘step-by-step’ construction of a simplicial resolution, (see below), there will
thus be the following properties: i) Fn = Gn for n < k, ii) Fk = a free Gk-group over a set of
non-degenerate indeterminates, all of whose faces are the identity except the kth, and iii) Fn is a
free Gn-group on some degenerate elements for n > k.

We have immediately the following result, as expected.

Proposition 16 The inclusion of simplicial groups G ↪→ F , where F = G(Ω), induces a homo-
morphism

πn(G) −→ πn(F )

for each n, which for n < k − 1 is an isomorphism,

πn(G) ∼= πn(F )

and for n = k−1, is an epimorphism with kernel generated by elements of the form θ̄λ = θλ∂kNGk,
where Ω = {xλ : λ ∈ Λ}. �

3.5.6 Constructing Simplicial Resolutions

The following result is essentially due to André, [4].

Theorem 4 If G is a group, then it has a free simplicial resolution F.

Proof: The repetition of the above construction will give us the simplicial resolution of a group.
Although ‘well known’, we sketch the construction so as to establish some notation and terminology.

Let G be a group. The zero step of the construction consists of a choice of a free group F and
a surjection g : F → G which gives an isomorphism F/Ker g ∼= G as groups. Then we form the
constant simplicial group, F (0), for which in every degree n, Fn = F and dni = id = snj for all i, j.

Thus F (0) = K(F, 0) and π0(F (0)) = F. Now choose a set, Ω0, of normal generators of the closed

normal subgroup N = Ker (F
g−→ G), and obtain the simplicial group in which F

(1)
1 = F (Ω0) and

for n > 1, F
(1)
n is a free Fn-group over the degenerate elements as above. This simplicial group will

be denoted by F (1) and will be called the 1-skeleton of a simplicial resolution of the group G.
The subsequent steps depend on the choice of sets, Ω0, Ω1,Ω2, . . . ,Ωk, . . . . Let F (k) be the

simplicial group constructed after k steps, that is, the k-skeleton of the resolution. The set Ωk is

formed by elements a of F
(k)
k with dki (a) = 1 for 0 ≤ i ≤ k and whose images ā in πk(F

(k)) generate

that module over F
(k)
k and F (k+1).

Finally we have inclusions of simplicial groups

F (0) ⊆ F (1) ⊆ · · · ⊆ F (k−1) ⊆ F (k) ⊆ · · ·

and in passing to the inductive limit (colimit), we obtain an acyclic free simplicial group F with

Fn = F
(k)
n if n ≤ k. This F , or, more exactly, (F, g), is thus a simplicial resolution of the group G.

The proof of theorem is completed. �

Remark: A variant of the ‘step-by-step’ construction gives: if G is a simplicial group, then
there exists a free simplicial group F and a continuous epimorphism F −→ G which induces iso-
morphisms on all homotopy groups. The details are omitted as they should be reasonably clear.
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The key observation, which follows from the universal property of the construction, is a freeness
statement:

Proposition 17 Let F (k) be a k-skeleton of a simplicial resolution of G and (Ωk, g(k)) k-dimension
construction data for F (k+1). Suppose given a simplicial group morphism Θ : F (k) −→ G such that
Θ∗(g

(k)) = 0, then Θ extends over F (k+1).

This freeness statement does not contain a uniqueness clause. That can be achieved by choosing
a lift for Θkg

(k) to NGk+1, a lift that must exist since Θ∗(πk(F
(k))) is trivial.

When handling combinatorially defined resolutions, rather than functorially defined ones, this
proposition is as often as close to ‘left adjointness’ as is possible without entering the realm of
homotopical algebra to an extent greater than is desirable for us here.

We have not talked here about the homotopy of simplicial group morphisms, and so will not dis-
cuss homotopy invariance of this construction for which one adapts the description given by André,
[4], or Keune, [116]. Of course, the resolution one builds by any means would be homotopicallly
equivalent to any other so, for cohomological purposes, it makes no difference how the resolution
is built.

Of course, from any simplicial resolution F of G, you can get an augmented crossed complex
C(F ) over G using the formula given earlier and this is a crossed resolution.

3.6 Cohomology and crossed extensions

3.6.1 Cochains

Consider a G-module, M , and a non-negative integer n. We can form the chain complex, K(M,n),
having M in dimension n and zeroes elsewhere. We can also form a crossed complex, K(M,n),
that plays the role of the nth Eilenberg-MacLane space of M in this setting. We may call it the
nth Eilenberg-MacLane crossed complex of M :

If n = 0, K(M,n)0 = M oG, K(M,n)i = 0, i > 0.

If n ≥ 1, K(M,n)0 = G, K(M,n)n = M , K(M,n)i = 0, i 6= 0 or n.

One way to view cochains is as chain complex morphisms. Thus on looking at Ch(BG,K(M,n)),
one finds exactly Zn+1(G,M), the (n+ 1)-cocycles of the cochain complex C(G,M). We can also
view Zn+1(G,M) as CrsG(CG,K(M,n)).

In the category of chain complexes, one has that a homotopy from BG to K(M,n) between
0 and f , say, is merely a coboundary, so that Hn+1(G,M) ∼= [BG,K(M,n)], adopting the usual
homotopical notation for the group of homotopy classes of maps from the bar resolution BG to
K(M,n). This description has its analogue in the crossed complex case as we shall see.

3.6.2 Homotopies

Let C, C′ be two crossed complexes with Q and Q′ respectively as the cokernels of their bottom
morphism. Suppose λ, µ : C→ C′ are two morphisms inducing the same map ϕ : Q→ Q′.

A homotopy from λ to µ is a family, h = {hk : k ≥ 1}, of maps hk : Ck → C ′k+1 satisfying the
following conditions:

H1) h0 : C1 → C ′2 is a derivation along µ0 (i.e. for x, y ∈ C0,

h0(xy) = h0(x)(µ0h0(y)), )
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such that
δ1h0(x) = λ0(x)µ0(x)−1, x ∈ C0.

H2) h1 : C1 → C ′2 is a C0-homomorphism with C0 acting on C ′2 via λ0 (or via µ0, it makes no
difference) such that

δ2h1(x) = µ1(x)−1(h0δ1(x)−1λ1(x)) for x ∈ C1.

H3) for k ≥ 2, hk is a Q-homomorphism (with Q acting on the C ′k via the induced map
ϕ : Q→ Q′) such that

δk+1hk + hk−1δk = λk − µk.

We note that the condition that λ and µ induce the same map, ϕ : Q→ Q′, is, in fact, superfluous
as this is implied by H1.

The properties of homotopies and the relation of homotopy are as one would expect. One finds
Hn+1(G,M) ∼= [CG,K(M,n)]. Given that in higher dimensions, this is the same set exactly as
[BG,K(M,n)] means that there is not much to check and so the proof has been omitted.

3.6.3 Huebschmann’s description of cohomology classes

The transition from this position to obtaining Huebschmann’s descriptions of cohomology classes,
[100], is now more or less formal. We will, therefore, only sketch the main points.

If G is a group, M is a G-module and n ≥ 1, a crossed n-fold extension is an exact augmented
crossed complex,

0→M → Cn → . . .→ C2 → C1 → G→ 1.

The notion of similarity of such extensions is analogous to that of n-fold extensions in the Abelian
Yoneda theory, (cf. MacLane, [122]), as is the definition of a Baer sum. We leave the details to
you. This yields an Abelian group, Opextn(G,M), of similarity classes of crossed n-fold extensions
of G by M .

Given a cohomology class in Hn+1(G,M) realisable as a homotopy class of maps, f : CG →
K(M,n), one uses f to form an induced crossed complex, much as in the Abelian Yoneda theory:

Jn(G) //

f ′ pushout

��

Cn //

��

. . . // C1
//

��

G

0 //M //Mn
// . . . //M1

// G

where Jn(G) is Ker(CnG → Cn−1G). (Thus JnG is also Im(Cn+1G → CnG) and as the map f
satisfies fδ = 0, it is zero on the subgroup δ(Cn+2G) (i.e. is constant on the cosets) and hence passes
to Im(Cn+1G → CnG) in a well defined way.) Arguments using lifting of maps and homotopies
show that the assignment of this element of Opextn(G,M) to cls(f) ∈ Hn+1(G,M) establishes an
isomorphism between these groups.

3.6.4 Abstract Kernels.

The importance of having such a description of classes in Hn(G,M) probably resides in low di-
mensions. To describe classes in H3(G,M), one has, as before, crossed 2-fold extensions

0→M → C2
∂→ C1 → G→ 1,
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where ∂ is a crossed module. One has for any group G, a crossed 2-fold extension

0→ Z(G)→ G
∂G→ Aut(G)→ Out(G)→ 1

where ∂G sends g ∈ G to the corresponding inner automorphism of G. An abstract kernel (in the
sense of Eilenberg-MacLane, [73]) is a homomorphism ψ : Q → Out(G) and hence provides, by
pulling back, a 2-fold extension of Q by the centre, Z(G), of G.

3.7 2-types and cohomology

In classifying homotopy types and in obstruction theory, one frequently has invariants that are
elements in cohomology groups of the form Hm(X,π), where typically π is the nth homotopy group
of some space. When dealing with homotopy types, π will be a group, usually Abelian with a π1-
action, i.e., we are exactly in the situation described earlier, except that X is a homotopy type not
a group. Of course, provided that X is connected, we can replace X by a simplicial group, bringing
us even nearer to the situation of this section. We shall work within the category of simplicial
groups.

3.7.1 2-types

A morphism

f : G→ H

of simplicial groups is called a 2-equivalence if it induces isomorphisms

π0(f) : π0(G)→ π0(H, )

and

π1(f) : π1(G)→ π1(H).

We can form a quotient category, Ho2(Simp.Grps), of Simp.Grps by formally inverting the
2-equivalences, then we say two simplicial groups, G and H, have the same 2-type, (or, more
exactly, homotopy 2-type), if they are isomorphic in Ho2(Simp.Grps).

This is, of course, just a special case of the general notion of n-type in which “n-equivalences”
are inverted, thus forming the quotient category Hon(Simp.Grps).

We recall the following from earlier:

Definition: An n-equivalence is a morphism, f , of simplicial groups (or groupoids) inducing
isomorphisms, πi(f), for i = 0, 1, . . . , n− 1.

Definition: Two simplicial groups, G and H, have the same n-type (or, more exactly, homotopy
n-type if they are isomorphic in Hon(Simp.Grps).

Sometimes it is convenient to say that a simplicial group, G, is an n-type. This is taken to mean
that it represents an n-equivalence class and has zero homotopy groups above dimension n− 1.
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3.7.2 Example: 1-types

Before examining 2-types in detail, it will pay to think about 1-types. A morphism f as above is
a 1-equivalence if it induces an isomorphism on π0, i.e., π0(f) is an isomorphism. Given any group
G, there is a simplicial group, K(G, 0) consisting of G in each dimension with face and degeneracy
maps all being identities. Given a simplicial group, H, having G ∼= π0(H), the natural quotient
map

H0 → π0(H) ∼= G,

extends to a natural 1-equivalence between H and K(π0(H), 0).
It is fairly routine to check that

π0 : Simp.Grps→ Grps

has K(−, 0) as an adjoint and that, as the unit is a natural 1-equivalence, and the counit an
isomorphism, this adjoint pair induces an equivalence between the category Ho1(Simp.Grps) of
1-types and the category, Grps, of groups. In other words,

groups are algebraic models for 1-types.

3.7.3 Algebraic models for n-types?

So much for 1-types. Can one provide algebraic models for 2-types or, in general, n-types? We
touched on this earlier. The criteria that any such “models” might satisfy are debatable. Perhaps
ideally, or even unrealistically, there should be an isomorphism class of algebraic “gadgets” for each
2-type. An alternative weaker solution is to ask that a notion of equivalence between the models
is possible, and that only equivalence classes, not isomorphism classes, correspond to 2-types, but,
in addition, the notion of equivalence is algebraically defined. It is this weaker possibility that
corresponds to our aim here.

3.7.4 Algebraic models for 2-types.

If G is a simplicial group, then we can form a crossed module

∂ :
NG1

d0(NG2)
→ G0,

where the action of G0 is via the degeneracy, s0 : G0 → G1, and ∂ is induced by d0. (As before we
will denote this crossed module by M(G, 1).) The kernel of ∂ is

Ker d0 ∩Ker d1

d0(NG2)
∼= π1(G),

whilst its cokernel is
G0

d0(NG1)
∼= π0(G),

and so we have a crossed 2-fold extension

0→ π1(G)→ NG1

d0(NG2)
→ G0 → π0(G)→ 1

and hence a cohomology class k(G) ∈ H3(π0(G), π1(G)).
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Suppose now that f : G → H is a morphism of simplicial groups, then one obtains a commu-
tative diagram

0 // π1(G) //

π1(f)

��

NG1
d0(NG2)

//

��

G0
//

f0

��

π0(G) //

π0(f)

��

1

0 // π1(H) // NH1
d0(NH2)

// H0
// π0(H) // 1

If, therefore, f is a 2-equivalence, π0(f) and π1(f) will be isomorphisms and the diagram shows
that, modulo these isomorphisms, k(G) and k(H) are the same cohomology class, i.e. the 2-type
of G determines π0, π1 and this cohomology class, k in H3(π0, π1).

Conversely, suppose we are given a group π, a π-module, M , and a cohomology class k ∈
H3(π,M), then we can realise k by a 2-fold extension

0→M → C
∂→ G→ π → 1

as above.
The crossed module, C = (C,G, ∂), determines a simplicial group K(C) as follows:
Suppose C = (C,P, ∂) is any crossed module, we construct a simplicial group, K(C), by

K(C)0 = P, K(C)1 = C o P,

s0(p) = (1, p), d1
0(c, p) = ∂c.p, d1

1(c, p) = p.

Assuming K(C)n is defined and that it acts on C via the unique composed face map to K(C)0 = P
followed by the given action of P on C, we set

K(C)n+1 = C oK(C)n;

dn+1
0 (cn+1, . . . , c1, p) = (cn+1, ..., c2, ∂c1.p);

dn+1
i (cn+1, . . . , ci+1, ci, . . . , c1, p) = (cn+1, . . . , ci+1ci, . . . c1, p)

for 0 < i < n+ 1;

dn+1
n+1(cn+1, . . . , c1, p) = (cn, . . . , c1, p);

sni (cn, . . . , c1, p) = (cn, . . . , 1, . . . , c1, p),

where the 1 is placed in the ith position.
Clearly Ker d1

1 = {(c, p) : p = 1} ∼= C, whilst Ker d2
1 ∩ Ker d2

2 = {(c2, c1, p) : (c1, p) =
(1, 1) and (c2c1, p) = (1, 1)} ∼= {1}, hence the “top term” of M(K(C), 1) is isomorphic to C
itself, whilst K(C)0 is P itself. The boundary map ∂ in this interpretation is the original ∂, since
it maps (c, 1) to d0(c), i.e., we have

Lemma 14 There is a natural isomorphism

C ∼= M(K(C), 1).

�

This construction is the internal nerve of the corresponding internal category in Grps, as we
noted earlier. All the ideas that go into defining the nerve of a category adapt to handling internal
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categories, and they produce simplicial objects in the corresponding ambient category. As we have a
simplicial group K(C), we might check if it is a group T -complex, but this is more or less immediate
as NK(C)n = 1 for n ≥ 2, whilst NK(C)1 is {(c, p) : p = 1} and s0(K(C)0 = {(c, p) : c = 1}.

Suppose now that we had chosen an equivalent 2-fold extension

0→M → C ′
d′→ G′ → π → 1

The equivalence guarantees that there is a zig-zag of maps of 2-fold extensions joining it to that
considered earlier. We need only look at the case of a direct basic equivalence:

0 //M //

=

��

C
∂ //

��

G //

��

π //

=

��

1

0 //M // C ′
∂′ // G′ // π // 1

giving a map of crossed modules, ϕ : C→ C′, where C′ = (C ′, G′, ∂′). This induces a morphism of
simplicial groups,

K(ϕ) : K(C)→ K(C′),

that is, of course, a 2-equivalence. If there is a longer zig-zag between C and C′, then the in-
termediate crossed modules give intermediate simplicial groups and a zig-zag of 2-equivalences so
that K(C) and K(C′) are isomorphic in Ho2(Simp.Grps), i.e. they have the same 2-type. This
argument can, of course, be reversed.

If G and H have the same 2-type, they are isomorphic within the category Ho2(Simp.Grps),
so they are linked in Simp.Grps by a zig-zag of 2-equivalences, hence the corresponding coho-
mology classes in H3(π0(G), π1(G)) are the same up to identification of H3(π0(G), π1(G)) and
H3(π0(H), π1(H)). This proves the simplicial group analogue of the result of MacLane and White-
head, [126], that we mentioned earlier, giving an algebraic model for 2-types of connected CW-
complexes.

Theorem 5 (MacLane and Whitehead, [126]) 2-types are classified by a group π0, a π0-module,
π1 and a class in H3(π0, π1). �

We have handled this in such a way so as to derive an equivalence of categories:

Proposition 18 There is an equivalence of categories,

Ho2(Simp.Grps) ∼= Ho(CMod),

where Ho(CMod) is formed from CMod by formally inverting those maps of crossed modules that
induce isomorphisms on both the kernels and the cokernels. �

3.8 Re-examining group cohomology with Abelian coefficients

3.8.1 Interpreting group cohomology

We have had
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• A definition of group cohomology via the bar resolution: for a group G and a G-module, M :

Hn(G,M) = Hn(C(G,M))

together with an identification of C(G,M) with maps from the classifying space / nerve, BG,
of G to M , up to shifts in dimension;

• Interpretations

H0(G,M) ∼= MG, the module of invariants

H1(G,M) ∼= Der(G,M)/Pder(G,M)

− by inspection, where Pder(G,M) is the submodule of

principal derivations;

H2(G,M) ∼= Opext(G,M), i.e. classes of extensions

0→M → H → G→ 1

and we also have

Hn(G,M) ∼= Opextn(G,M), n ≥ 2, via crossed resolutions
∼= [C(G),K(M,n)]

Another interpretation, which will be looked at shortly is as Extn(Z,M), where Z is given the
trivial G-module structure. This leads to

Hn(G,M) ∼= Extn−1(I(G),M),

via the long exact sequence coming from

0→ I(G)→ Z[G]→ Z→ 0.

3.8.2 The Ext long exact sequences

There are several different ways of examining the long exact sequence that we need. We will use
fairly elementary methods rather than more ‘homologically intensive’ one. These latter ones are
very elegant and very powerful, but do need a certain amount of development before being used.
The more elementary ones have, though, a hidden advantage. The intuitions that they exploit
are often related to ones that extend, at least partially, to the non-Abelian case and also to the
geometric situations that will be studied later in the notes.

The idea is to explore what happens to an exact sequence of modules

E : 0→ A
α→ B

β→ C → 0

over some given ring (we need it for G-modules so there the ring is Z[G], the group ring of G),
when we apply the functor Hom(−,M) for M another module. Of course one gets a sequence

Hom(E ,M) : 0→ Hom(C,M)
β∗→ Hom(B,M)

α∗→ Hom(A,M)

and it is easy to check that this is exact, but there is no reason why α∗ should be onto since a
morphism f : A → M may or may not extend to some g defined over the bigger module B. For
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instance, if M = A, and f is the identity morphism, then f extends if and only if the sequence
splits (so B ∼= A⊕ C). We examine this more closely.

We have

0 // A
α //

f
��

B
β // C // 0

M

and can form a new diagram

0 // A
α //

f

��

B
β //

f
��

C //

=

��

0

0 //M
α // N

β // C // 0

where the left hand square is a pushout. You should check that you see why there is an induced
morphism β : N → C ‘emphusing the universal property of pushouts. (This is important as
sometimes one wants this sort of construction, or argument, for sheaves of modules and there
working with elements causes some slight difficulties.) The existence of this map is guaranteed
by the universal property and does not depend on a particular construction of N . Of course this
means that the bottom line is defined only up to isomorphism although we can give a very natural
explicit model for N, namely it can be represented as the quotient of B ⊕M by the submodule
L of elements of the form (α(a),−f(a)) for a ∈ A. Then we have β(b,m) = β(b). (Check it is
well defined.) It is also useful to have the corresponding formulae for α(m) = (0,m) + L and for
f(b) = (b, 0) + L. This gives an extension of modules

f∗(E) : 0→M
α→ N

β→ C → 0.

If f extends over B to give g, so gα = f , then we have a morphism g′ : N → M given by
g′((m, b) + L) = m+ g(b). (Check that g′ is well defined.)

Lemma 15 f extends over B if and only if f∗(E) is a split extension.

Proof: We have done the ‘only if’. If f∗(E) is split, there is a projection g′ : N → M such that
g′α(m) = m for all m. Define g = g′f to get the extension. �

We thus get a map

Hom(A,M)
δ→ Ext1(C,M)

δ(f) = [f∗(E)]

which extends the exact sequence one step to the right.
Here it is convenient to define Ext1(C,M) to be the set (actually Abelian group) of extensions

of form

0→M →?→ C → 0

modulo equivalence (isomorphism of middle terms with the ends fixed). The Abelian group struc-
ture is given by Baer sum (see entry in Wikipedia, or many standard texts on homological algebra).
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Important aside: ‘Recall’ the ‘snake lemma: given a commutative diagram of modules with
exact rows

0 //M //

µ

��

N //

ν

��

P //

ψ
��

0

0 //M ′ // N ′ // P ′ // 0

there is an exact sequence

0→ Ker µ→ Ker ν → Ker ψ
δ→ Coker µ→ Coker ν → Coker ψ → 0

This has as a corollary that if µ and ψ are isomorphisms then so is ν. (Do check that you can
construct δ and prove exactness, i.e. using a simple diagram chase.)

Back to extensions: It is fairly easy to show that Hom(E ,M) extends even further to 6 terms
with

. . .
β∗→ Ext1(B,M)

α∗→ Ext1(A,M)

Here is how α∗ is constructed. Suppose E1 : 0 → M → N → B → 0 gives an element of
Ext1(B,M), then we can form a diagram

α∗(E1) : 0 //M //

=

��

α−1(N)
p′ //

α′

��

A

α

��

// 0

E1 : 0 //M // N p
// B // 0

by restricting E1 along α using a pull back in the right hand square. We can give α−1(N) explicitly
in the form that the usual construction of pullbacks in categories of modules gives it to us

α−1(N) ∼= {(a, n) | α(a) = p(n)}

and p′ and α′ are projections. The construction of β∗ is done similarly using pullback along β. It is
then easy to check that the obvious extension to Hom(E ,M), mentioned above, is exact, but that
there is again no reason why α∗ should be onto. (Of course, knowledge of the purely homological
way of getting these exact sequence will suggest that there is an Ext2(C,M) term to come.)

We examine an obstruction to it being so. Suppose given E ′ : 0 → M → N1
p′→ A → 0, giving

us an element of Ext′(A,M). If α∗ were onto, we would need a E1 : 0 → M → N → B → 0 such
that α−1(N) ∼= N1 leaving M fixed and relating to α as above by a pullback. We can splice E ′ and
E1 together to get a suitable looking diagram

E ′ ∗ E1 : 0 //M // N ′ //

p′
��?? B // C // 0

A
α
AA��

and the row is exact. If we change E ′ by an isomorphism than clearly this spliced sequence would
react accordingly. If you check up, as suggested, on the Baer sum structure if Ext1(A,M) and
Ext2(C,M) then you can again check that the above splicing construction yields a homomorphism
from the first group to the second. Moreover there is no reason not to extend the splicing con-
struction to a pairing operation on the whole graded family of Ext-groups. This is given in detail
in quite a few of the standard books on Homological Algebra, so will not be gone into here.
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Two facts we do need to have available are about the structure of Ext2(C,M). Let Ext2(C,M)
be the category of 4-term exact sequences

0→M → N → P → C → 0

and morphisms which are commuting diagrams

0 //M //

=

��

N //

��

P

��

// C

=

��

// 0

0 //M // N ′ // P ′ // C // 0

,

then Ext2(C,M) is the set of connected components of this category. The important thing to note
is that the morphisms are not isomorphisms in general, so two 4-term sequences give the same
element in Ext2(C,M) if they are linked by a zig-zag of intermediate terms of this form. The
second fact is that the zero for the Baer sum addition is the class of the 4-term extension

0→M →M
0→ C → C → 0

with ‘equals’ on the unmarked maps.

Suppose now that the top row in

0 //M //

=

��

N1
p //

α′

��

A

α

��

// 0

0 //M // N p
// B // 0

is obtained by restriction along α from the bottom row. We now form the spliced sequence

0→M → N1
αp→ B → C → 0.

We would hope that this 4-term sequence was trivial, i.e. equivalence to the zero one. We clearly
must use the given element in Ext1(B,M) in a constructive way in the proof that it is trivial, so
we form the pushout of αp along α′ getting us a diagram

0 //M //

=

��

N1
αp //

α′

��

B

��

// C

=

��

// 0

0 //M // N // B′ // C // 0

,

with the middle square a pushout. It is now almost immediate that the morphism from B to B′ is
split, since we can form a commutative square

N1
αp //

α′

��

B

=

��
N p

// B
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giving us the required splitting from B′ to B. It is now a simple use of the snake lemma, to show
that the complementary summand of B in B′ is isomorphic to C. We thus have that the bottom
row of the diagram above is of the form

0→M → N → B ⊕ C → C.

This looks hopeful but to finish off the argument we just produce the morphism:

0 //M //

=

��

M
0 //

��

C

incl2
��

// C

=

��

// 0

0 //M // N
incl1p
// B ⊕ C // C // 0

and we have a sequence of maps joining our spliced sequence to the trivial one. (A similar argument
goes through in higher dimensions.) Now you should try to prove that if a spliced sequence is
linked to a trivial one then it does come from an induced one. That is quite tricky, so look
it up in a standard text. An alternative approach is to use the homological algebra to get the
trivialising element (coboundary or homotopy, depending on your viewpoint) and then to construct
the extension from that. Another thing to do is to consider how the Ext-groups, Extk(A,M), vary
in M rather than with A. This will be left to you.

3.8.3 From Ext to group cohomology

If we look briefly at the classical homological algebraic method of defining ExtK(A,M), we would
take a projective resolution P· of A, apply the functor Hom(−,M), to get a cochain complex
Hom(P·,M), then take its (co)homology, with Hn(Hom(P·,M)) being isomorphic to Extn(A,M),
or, if you prefer, Extn(A,M) being defined to be Hn(Hom(P·,M)). This method can be studied in
most books on homological algebra (we cite for instance, MacLane, [122], Hilton and Stammbach,
[94] and Weibel, [168]), so is easily accessible to the reader - and we will not devote much space
to it here as a result. We will however summarise some points, notation, definitions of terms etc.,
some of which you probably know.

First the notion of projective module:

Definition: A module P is projective if, given any epimorphism, f : B → C, the induced map
Hom(P, f) : Hom(P,B)→ Hom(P,C) is onto. In other words any map from P to C can be lifted
to one from P to B.

Any free module is projective.
Of the properties of projectives that we will use, we will note that Extn(P,M) = 0 for P

projective and for any M . To see this recall that any n-fold extension of P by M will end with an
epimorphism to P , but such things split as their codomain is projective. It is now relatively easy
to use this splitting to show the extension is equivalent to the trivial one.

A resolution of a module A is an augmented chain complex

P· : . . .→ P1 → P0 →M

which is exact, i.e. it has zero homology in all dimensions. This means that the augmentation
induces an isomorphism between P0/∂P1 and M . The resolution is projective if each Pn is a
projective module.
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If P· and Q· are both projective resolutions of A, then the cochain complexes Hom(P·,M)
and Hom(Q·,M) always have the same homology. (Once again this is standard material from
homological algebra so is left to the reader to find in the usual sources.)

An example of a projective resolution is given by the bar resolution, BG·, and the construction
Cn(G,M) in the first chaper is exactly Hom(BG·,M). This reolution ends with BG0 = Z[G] and
the resolution resolves the Abelian group Z with trivial G-module structure. (This can be seen
from our discussion of homological syzygies where we had

Z[G](R) → Z[G](X) → Z[G]→ Z.

In fact we have

Hn(G,M) ∼= Extn(Z,M)

by the fact that BG· is a projective resolution of Z and then we can get more information using
the short exact sequence

0→ I(G)→ Z[G]→ Z→ 0.

As Z[G] is a free G-module, it is projective and the long exact sequence for Ext(−,M) thus has
every third term trivial (at least for n > 0), so

Extn(Z,M) ∼= Extn−1(I(G),M)

giving another useful interpretation of Hn(G,M).

3.8.4 Exact sequences in cohomology

Of course, the identification of Hn(G,M) as Extn(Z,M) means that, if

0→ L→M → N → 0

is an exact sequence of G-modules, we will get a long exact sequence in Hn(G,−), just by looking
at the long exact sequence for Extn(Z,−).

What is more interesting - but much more difficult - is to study the way that Hn(G,M) varies
as G changes. For a start it is not completely clear what this means! If we change the group in a
short exact sequence,t

1→ G→ H → K → 1

say, then what type of modules should be used fro the ‘coefficients’, that is to say a G-modules or
one over H or K. This problem is, of course, related to the change of groups along an arbitrary
homomorphism, so we will look at an group homomorphism ϕ : G → H, with no assumptions as
to monomorphism, or normal inclusion, at least to start with.

Suppose given such a ϕ, then the ‘restriction functor’ is

ϕ∗ : H−Mod→ G−Mod,

where, if N is in H−Mod, ϕ∗(N) has the same underlying Abelian group structure as N , but is a
G-module via the action, g.n := ϕ(g).n. We have already used that ϕ∗ has a left adjoint ϕ∗ given
by ϕ∗(M) = ZH ⊗ZGM . Now we also need a right adjoint for ϕ∗.
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To construct such an adjoint, we use the old device of assuming that it exists, studying it and
then extracting a construction from that study. We have M in G−Mod and N in H−Mod, and
we assume a natural isomorphism

G−Mod(ϕ∗(N),M) ∼= H−Mod(N,ϕ](M)).

If we take N = ZH, then, as H−Mod(ZH,ϕ](M)) ∼= ϕ](M), we have a construction of ϕ](M), at
least as an Abelian group. In fact this gives

ϕ](M) ∼= G−Mod(ϕ∗(ZH),M)

and as ZH is also a right G-module, via h.g := h.ϕ(g), we have a left G-module structure of ϕ](M)
as expected. In fact, this is immediate from the naturality of the adjunction isomorphism using the
left hand position of G−Mod(ϕ∗(ZH),M), as for fixed M , the functor converts the right G-action
of Z to a left one on ϕ](M). This allows us to get an explicit elementwise formula for this action
as follows: let m∗ : ZH → M be a left G-module mrphsim This can be specified by what it does
to the natural basis of ZH (as Abelian group), and so is often written m∗ : H → M , where the
function m∗ must satisfy a G-equivariance property: m∗(ϕ(g).h) = g.m∗(h). Any such function
can, of course, be extended linearly to a G-module morphism of the earlier form. If g ∈ G, we get
a morphism

−.ϕ(g) : ϕ∗(ZH)→ ϕ∗(ZH)

given by ‘h goes to hϕ(g)’. This is a G-module morphism as the G-module structure is by left
multiplication, which is independent of this right multiplication. Applying G−Mod(−,M), we get
g.m∗ is given by

g.m∗(h)−m∗(h.ϕ(g).

This is a left G-module structure, although at first that may seem strange. That it is linear is easy
to check. What take a little bit of work is to check (g1g2).m∗ = g1(g2.m

∗): applying both sides to
an element h ∈ H gives

(g1g2).m∗(h) = m∗(hϕ(g1)ϕ(g2)),

whilst

g1(g2.m
∗)(h) = (g2.m

∗)(h.ϕ(g1)) = m∗(hϕ(g1)ϕ(g2)).

(The checking that g1.m
∗ does satisfy the G-equivariance property is left to the reader.)

Remark: There are great similarities between the above calculations and those needed later
when examining bitorsors. This is certainly not coincidental!

We built ϕ](M) in such a way that it is obviously functorial in M and gives a right adjoint to
ϕ∗. This implies that there is a natural morphism

i : N → ϕ]ϕ
∗(N).

We denote this second module by N∗, when the context removes any ambiguity, and especially
when ϕ is the inclusion of a subgroup. The morphism sends n to n∗ : H → N , where n∗(h) = h.n.
(Check that n∗(ϕ(g).h) = g.n∗(h). This reminds us that the codomain of n∗ is infact just the set
N underlying both the H-module N and the G-module ϕ∗(N).)
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We examine the cohomology groups Hn(H,N∗). These are the (co)homology groups of the
cochain complex Hom(P·, N

∗), where P· is a projective H-module resolution of Z. The adjunction
shows that this is isomorphic to Hom(ϕ∗(P·), ϕ

∗(N)). If ϕ∗(P·) is a projective G-module resolution
of the trivial G-module Z then the cohomology of this complex will be Hn(G,N), where N has the
structure ϕ∗(N).

The condition that free or projective H modules restrict to free or projective G-modules is
satisfied in one important case, namely when G is a subgroup of H, since ZH is a free Abelian
group on the set H and H is a disjoint union of right G-cosets, so ZH splits as a G-module into a
direct sum of copies of ZG. This provides part of the proof of Shapiro’s lemma

Proposition 19 If ϕ : G→ H is an inclusion, then for a H-module N , there is a natural isomor-
phism

Hn(H,N∗) ∼= Hn(G,N).

�

Corollary 4 The morphism i : N → N∗ and the above isomorphism yield the restriction morphism

Hn(H,N)→ Hn(G,N).

�

This suggest other results. Suppose we have an extension

1→ N → G→ Q→ 1

(so here we replace H by G with N in the old role of G, but in addition, being normal in G).
If we look at BN and BG in dimension n, these are free modules over the sets Nn and Gn

respectively, with the inclusion between them; G is a disjoint union of N -cosets, indexed by elements
of Q, so can we use this to derive properties of the cokernel of ZG⊗ZN BN → BG, and to tie them
into some resolution of Q, or perhaps, of Z as a trivial Q-module. The answer must clearly be
positive, perhaps with some restrictions such as finiteness, but there are several possible ways
of getting to an answer having slightly different results. (You have in the (ϕ∗, ϕ

∗) and (ϕ∗, ϕ])
adjunctions, enough of the tools needed to read detailed accounts in the literature, so we will not
give them here.)

This also leads to relative cohomology groups and their relationship with the cohomology of
the quotient Q. We can also consider the crossed resolutions of the various groups in the extension
and work, say, with the induced maps

C(N)→ C(C)

looking at its cokernel or better what should be called its homotopy cokernel.
Another possibility is to examine C(N) and C(Q) and the cocycle information needed to specify

the extension, and to use all this to try to construct a crossed resolution of G. (We will see
something related to this in our examination of non-Abelian cohomology a little later.) A simple
case of this is when the extension is split, G ∼= NoQ and using a twisted tensor product for crossed
complexes, one can produce a suitable C(N)⊗τ C(Q) resolving G, (see Tonks, [165]).
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Chapter 4

Syzygies, and higher generation by
subgroups

Syzygies are one of the routes to working with resolutions. They often provide insight as to how a
presentation relates to geometric aspects of a group, for instance giving structured spaces such as
simplicial complexes, or, better, polytopes, on which the group acts. Syzygies extend the role of
‘relations’ in group presentations to higher dimensions and hence are ’relations between relations
... between relations’. They thus form a very well structured (and thus simpler) case of higher
dimensional rewriting. Later we will see relations between this and several important aspects of
cohomology. We will also explore some links with ideas from rewriting theory.

4.1 Back to syzygies

There are both homotopical and homological syzygies. We have met homological syzygies earlier
and also have:

4.1.1 Homotopical syzygies

We have built a complex, K(P), from a presentation, P, of a group, G. Any element in π2(K(P))
can, of course, be represented by a map from S2 to K(P) and, by cellular approximation, can be
replaced, up to homotopy, by a cellular decomposition of S2 and a cellular map φ : S2 → K(P).
We will adopt the terminology of Kapranov and Saito, [113], and Loday, [120], and say

Definition: A homotopical 2-syzygy consists of a cellular subdivision of S2 together with a
map, φ : S2 → K(P), cellular for that decomposition..

Of course, such an object corresponds to an identity among the relations of P, but is a specific
representative of such an identity. The specification of the cellular decomposition provides valuable
combinatorial and geometric information on the presentation.

Definition: A family, {φλ}λ∈Λ, of such homotopical 2-syzygies is then called complete when
the homotopy classes {[φλ]}λ∈Λ generate π2(K(P)).

101
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In this case, we can use the φλ to form the next stage of the construction of an Eilenberg-Mac
Lane space, K(G, 1), by killing this π2. More exactly, rename K(P) as X(2) and form

X(3) := X(2) ∪
⋃
λ∈Λ

e3
λ,

by, for each λ ∈ Λ, attaching a 3-cell, e3
λ, to X(2) using φλ. Of course, we then have

π1(X(3)) ∼= G, π2(X(3)) = 0.

Again π3(X(3)) may be non-trivial, so we consider homotopical 3-syzygies. Such a thing, s, will
consist of an oriented polytope decomposition of S3 together with a continuous map, fs from S3

to X(3), which sends the i-skeleton of that decomposition to X(i), i = 0, 1, 2.
At this stage we have X(0) = K(P)0, a point, X(1) = K(P)1, and X(2) = K(P)2. One wants

enough such 3-syzygies, s, identified algebraically and combinatorially, so that the corresponding
homotopy classes, {[fs]} generate π3(X(3)).

It is clear, by induction, we get a notion of homotopical n-syzygy. We assume X(n) has been
built inductively by attaching cells of dimension ≤ n along homotopical k-syzygies for k < n, so
that

π1(X(n)) ∼= G, πk(X(n)) = 0, k = 2, . . . , n− 1,

then a homotopical n-syzygy, s, is an oriented polytope decomposition of Sn and a continuous
cellular map fs : Sn → X(n).

After a choice of a set, Rn, of n-syzygies, so that {[ss] | s ∈ Rn} generates πn(X(n)) as a
G-module, we can form X(n + 1) by attaching n + 1-dimensional cells en+1

s along these fs for
s ∈ Rn.

If we can do this in a sensible way, for all n, we say the resulting system of syzygies is complete
and the limit space X(∞) =

⋃
X(n) is then a cellular model for BG, the classifying space of the

group G. We will look at classifying spaces again later.

This construction is, of course, just a homotopical version of the construction of a free resolution
of the trivial G-module, Z.

Remark: Some additional aspects of this can be found in Loday’s paper [120], in particular
the link with the ‘pictures’ of Igusa, [102, 103].

Example and construction: Given any group, G, we can find a presentation with {〈g〉 | g 6=
1, g ∈ G} as set of generators and a relation, rg,g′ := 〈g〉〈g′〉〈g′g〉−1, for each pair (g, g′) of elements
of G. (We write 〈1〉 = 1 for convenience.) We will have earlier call this the standard presentation
of the group, G. It is closely related to the nerve of G[1], and also to the various bar resolutions.
(There may be a need later to consider a variant in which the identity element of G is not excluded
as a generator, however that will still be loosely called the standard presentation. Note that since
then 〈1〉.〈g〉 = 〈1.g〉 = 〈g〉, the identification 〈1〉 = 1 is automatic. )

The relation rg,g′ gives a triangle
.

g′

  AAAAAAA

.

g
>>}}}}}}}
g′g

// .
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and, for each triple (g, g′, g′′), we get a homotopical 2-syzygy in the form of a tetrahedron.

Higher homotopical syzygies occur for any tuple, (g1, . . . , gn), of non-identity elements of G,
by labelling a n-simplex. The limiting cellular space, X(∞), constructed from this context is just
the usual model of the classifying space, BG, as geometric realisation of the nerve of G, or if you
prefer, of the groupoid G[1] with one object. The corresponding free resolution, (C∗(G), d), is the
classical normalised bar resolution. Using the bar resolution above dimension 2 together with the
crossed module of the presentation at the base, one gets the standard free crossed resolution of the
group, G, as we saw in section 3.1.2.

4.1.2 Syzygies for the Steinberg group

(This is adapted from Kapranov and Saito, [113].)

Let R be an associative ring with 1. Recall that the (nth unstable) Steinberg group, Stn(R),
has generators, xij(a), labelling the elementary matrices εij(a), having

εij(a)k,l =


1 if k = l
a if (k, l) = (i, j), a ∈ R
0 otherwise,

and relations

St1 xi,j(a)xi,j(b) = xi,j(a+ b);

St2 [xi,j(a), xk,`(b)] =

{
1 if i 6= `, j 6= k,
xi,`(ab) i 6= `, j = k

and in which all indices are positive integers

less than or equal to n.

The terminology ‘nth unstable’ is to make the contrast with the group St(R), the stable version.
The unstable version, Stn(R), models ‘universal’ relations satisfied by the n×n elementary matrices,
whilst, in St(R), the indices, i, j, k etc. are not constrained to be less than or equal to n. We will
look at the stable version later.

The identities / homotopical 2-syzygies are built from three types of polygon:

a) a triangle, Tij(a, b) for each i, j, i 6= j, coming from St1;

b) a square,

xij(a)
.....................
..................
....

......................
xij(a)

.................
....

xkl(b) xkl(b)

corresponding to the first case of St2 and

c) a pentagon, for the second:
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xij(a)

............................................................................................
..................
....

......................

.....................................................................................................................................
..
..........................................................................................

....................
..

...................................................................................................................
......................

xij(a)xik(ab)

xjk(b)

xjk(b)

Then for any pairs (i, j), (k, l), (m, p) with xij(a), xkl(b), xmp(c), commuting by virtue of St2’s first
clause, we will have a homotopical syzygy in the form of a labelled cube.

There is also a homotopy 2-syzygy given by the associahedron labelled by generators as shown:
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xk`(c)

xjk(b)

xj`(bc)

xk`(c)

xk`(c)

xi`(abc)

xk`(c)

xi`(abc) xk`(c)

xij(a)

xik(ab)

xij(a)xij(a)

xik(ab) xjk(b)

xjk(b)

xij(a)

xjl(bc)

xjk(b)

xij(a)

xjk(b)

Remark: Kapranov and Saito, [113], have conjectured that the space X(∞) obtained by gluing
labelled higher Stasheff polytopes together, is homotopically equivalent to the homotopy fibre of

f : BSt(R)→ BSt(A)+,

where (−)+ denotes Quillen’s plus construction. The associahedron is a Stasheff polytope and,
by encoding the data that goes to build the identities / syzygies schematically in a ‘hieroglyph’,
Kapranov and Saito make a link between such hieroglyphs and polytopes.

4.2 A brief sideways glance: simple homotopy and algebraic K-
theory

The study of the Steinberg group is closely bound up with the development of algebraic K-theory.
That subject grew out of two apparently unrelated areas of algebraic geometry and algebraic
topology. The second of these, historically, was the development by Grothendieck of (geometric
and topological) K-theory based on projective modules over a ring, or finite dimensional vector
bundles on a space. (The connection between these is that the space of global sections of a finite
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dimensional vector bundle on a nice enough space, X, is a finitely generated projective module over
the ring of continuous real or complex functions on X. We will look at vector bundles and this link
with K-theory a bit more in detail later on; see section ??. We will be discussing other forms of
K-theory in that section as well, so will not give more detail on that more purely topological side
of the subject here.)

Algebraic K-theory was initially a body of theory that attempted to generalise parts of lin-
ear algebra, notably the theory of dimension of vector spaces, and determinants to modules over
arbitrary rings. It has grown into a well developed tool for studying a wide range of algebraic,
geometric and even analytic situations from a variety of points of view.

For the purposes here we will give a short description of the low dimensional K-groups of a ring,
R, with for initial aim to provide examples for use with the further discussion of rewriting, group
presentations, syzygies, and homotopy. The discussion will, however, also look a bit more deeply
at various other aspects when they seem to fit well into the overall structure of the notes.

4.2.1 Grothendieck’s K0(R)

For our discussion here, it will suffice to say that, given an associative ring, R, we can form the set,
[Projfg(R)] of isomorphism classes of finitely generated projective modules over R. Direct sum
gives this a monoid structure. This is then ‘completed’ to get an Abelian group. We will give a
more detailed discussion of this later in Proposition ??, but here we will just give the formula:

K0(R) := F ([Projfg(R)])/〈[P ] + [Q]− [P ⊕Q]〉

in which P and Q are finitely generated projective modules, F is the free Abelian group functor
and [P ] indicates the isomorphism class of P . The relations force the abstract addition in the free
Abelian group to mirror the direct sum induced addition on the generators.

4.2.2 Simple homotopy theory

The other area that led to algebraic K-theory was that of simple homotopy theory. J. H. C. White-
head, following on from earlier ideas of Reidemeister, looked at possible extensions of combinatorial
group theory, with its study of presentations of groups, to give a combinatorial homotopy theory;
see [? ]. This would take the form of an ‘algebraic homotopy theory’ giving good algebraic models
for homotopy types, and would hopefully ease the determination of homotopy equivalences for in-
stance of polyhedra. The ‘combinatorial’ part was exemplified by his two papers on ‘Combinatorial
Homotopy Theory’ [169? ], but raised an interesting question. In combinatorial group theory, a
major role is played by Tietze’s theorem:

Theorem 6 (Tietze’s theorem, 1908, [? ]) Given two finite presentations of the same group, one
can be obtained from the other by a finite sequence of Tietze transformations. �

Proofs of this are easy to find in the literature. For instance, one based on a series of exercises
is given in Gilbert and Porter, [82], p.135.

We clearly need to make precise what are the Tietze transformations.

Let P = (X : R) be a group presentation of a group, G and set F (X) to be the free group on
the set X. We consider the following transformations:
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T1: Adding a superfluous relation: (X : R) becomes (X : R′), where R′ = R ∪ {r} and
r ∈ N(R), the normal closure of the relations in the free group on X, i.e., r is a consequence of R;

T2: Removing a superfluous relation: (X : R) becomes (X : R′) where R′ = R−{r}, and
r is a consequence of R′;

T3: Adding a superfluous generator: (X : R) becomes (X ′ : R′), where X ′ = X ∪ {g}, g
being a new symbol not in X, and R′ = R ∪ {wg−1}, where w is a word in the other generators,
that is w is in the image of the inclusion of F (X) into F (X ′);

T4: Removing a superfluous generator: (X : R) becomes (X ′ : R′), where X ′ = X −{g},
and R′ = R− {wg−1} with w ∈ F (X ′) and wg−1 ∈ R and no other members of R′ involve g.

Definition: These transformations are called Tietze transformations.

The question was to ask if there was a higher dimensional version of the Tietze transformations
that would somehow generate all homotopy equivalences.

Let us imagine the transformation of the complex, K(P), of P under these moves. The complex
is, of course, a simple form of CW-complex, built by attaching cells in dimensions 1 and then 2.
If we add a superfluous generator to P as above (T3), then effectively we add a 2-cell labelled by
wg−1 and it will be glued on by an attaching map that is defined on a semi-circle in its boundary
and on which the path represents the word, w. The other semi-circle yields the loop representing
the new generator. This process therefore does not change the homotopy type of K(P). On the
other hand, adding a superfluous relation will change the homotopy type of the complex. The new
relation corresponds to a 2-cell glued on to K(P), but the attaching map is already null-homotopic
in K(P) as it represents a consequence of the relations. The effect is that K(P ′) has the homotopy
type of K(P) ∨ S2, and the module of identities has an extra free summand.

These thus show both types of behaviour when attaching a cell to a pre-existing complex. In the
first, the relation 2-cell is attached by part of its boundary. In the second the new cell is attached
by gluing along all of its boundary, so will change the homotopy type of K(P). It will not change
its fundamental group, just its higher homotopy groups. This raises and interesting question, and
that is to mirror these Tietze transformations by higher order ones which do not change the n-type,
for some n, but may change the whole homotopy type, but we need to get back towards simple
homotopy theory.

Tietze transformations had given a way of manipulating presentations and thus suggested a
way of manipulating complexes. The thought behind simple homotopy theory was to produce a
way of constructing homotopy equivalences between complexes. This, if it worked, might simplify
the task of determining whether two spaces (defined, say, as simplicial complexes) were of the same
homotopy type, and if so was it possible to build up the homotopy equivalences between them in
some simple way.

The resulting theory was developed initially by Reidemeister and then by Whitehead, culmi-
nating in his 1950 paper, [? ]. The theory received a further important stimulus with Milnor’s
classic paper, [? ], in which the emphasis was put on elementary expansions.

(A good source for the theory of simple homotopy is Cohen’s book, [? ].)
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We will work here with finite CW-complexes. These are built up by induction by gluing on
n-cells, that is copies of Dn = {x ∈ Rn |

∑
x2
i ≤ 1}, at each stage. Each Dn has a boundary

an (n − 1)-sphere, Sn−1 = {x ∈ Rn |
∑
x2
i = 1}. The construction of objects in the category of

finite CW-complexes is by attaching cells by means of maps defined on part of all of the boundary
of a cell. This will usually change the homotopy type of the space, creating or filling in a ‘hole’.
The homotopy type will not be changed if the attaching map has domain a hemisphere. We write
Sn−1 = Dn−1

− ∪Dn−1
+ , with each hemisphere homeomorphic to a (n− 1)-cell, and their intersection

being the equatorial (n− 2)-sphere, Sn−2, of Sn−1.

Given, now, a finite CW-complex, X, we can build a new complex Y , consisting of X and two
new cells, en and en−1 together with a continuous map, ϕ : Dn → Y satisfying

(i) ϕ(Dn−1
+ ) ⊆ Xn−1;

(ii) ϕ(Sn−2) ⊆ Xn−2;

(iii) the restriction of ϕ to the interior of Dn is a homeomorphism onto en;

and

(iv) the restriction of ϕ to the interior of Dn−1
− is a homeomorphism onto en−1.

There is an obvious inclusion map, i : X → Y , which is called an elementary expansion. There
is also a retraction map r : Y → X, homotopy inverse to i, and which is called an elementary
contraction. Both are homotopy equivalences. Can all homotopy equivalences between finite CW-
complexes be built by composing such elementary ones? More precisely if we have a homotopy
equivalence f : X → X ′, is f homotopic to a composite of a finite sequence of elementary expansions
and contractions? Such a homotopy equivalence would be called simple. Whitehead showed that
not all homotopy equivalences are simple and constructed a group of obstructions for the problem
with given space X, each non-identity element of the group corresponding to a distinct homotopy
class of non-simple homotopy equivalences.

4.2.3 The Whitehead group and K1(R)

We will very briefly sketch how the investigation goes, skimming over the details; for them, see
Milnor, [? ], or Cohen’s book, [? ].

Starting with a homotopy equivalence, f : X → Y , we can convert it to a deformation retraction
using the mapping cylinder construction. (We will see this in more detail later, but do not need that
detail here). This means that we have a CW-pair, (Y,X), with a deformation retraction from Y to
X. Classifying the simple homotopy types of X is then transformed into a problem of classifying
these. Passing first to their universal covering spaces, Ỹ and X̃, and then to the cellular chain
complexes associated to both these, the problem is reduced to examining the relative cellular chain
complex, C(Ỹ , X̃), obtained from the exact sequence

0→ C(X̃)→ C(Ỹ )→ C(Ỹ , X̃)→ 0

All of these can be considered as chain complexes of modules over the group ring of π1X. As there
are only finitely many cells in X and Y , this chain complex has only finitely many non-zero levels
in it. It is also acyclic, i.e., has zero homology because the inclusion of C(X̃) into C(Ỹ ) induces
isomorphism on homology. The cells in Y −X give a preferred basis to the modules concerned.
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One further reduction takes the direct sum of the even dimensional C(Ỹ , X̃)n, and similarly
that of the odd ones, and the induced boundary from the odds to the evens. (At each stage the
reduction is checked to preserve what one want, namely whether or not the inclusion of X into Y
is given by some combinations of elementary expansions and contractions. (The last part of this
can be examined intuitively by thinking about what happens if you add in an n-cell by a n− 1-cell
in its boundary.)

This reduces the task to one of examining an isomorphism between two based free modules over
Zπ1X, and that brings us, finally, to the main point of this section namely the definition of the
group K1(R). (For this original application to simple homotopy theory, one takes R = Zπ1X.)

We will not take a historical order, concentrating on K1, which was extracted from Whitehead’s
work, and studied for its own sake by Bass, [? ]. Other aspects relating to simple homotopy theory
may be looked at later on when we have more tools available.

Let R be an associative ring with 1. As usual G`n(R) will denote the general linear group of
n × n non-singular matrices over R. There is an embedding of G`n(R) into G`n+1(R) sending a
matrix M = (mi,j) to the matrix M ′ obtained from M by adding an extra row and columnof zeros
except that m′n+1,n+1 = 1. This gives a nested sequence of groups

G`1(R) ⊂ G`2(R) ⊂ . . . ⊂ G`n(R) ⊂ G`n+1(R) ⊂ . . .

and we write G`(R) for the colimit (union) of these. It will be called the stable general linear group
over R

Definition: The group, K1(R), is G`(R)Ab = G`(R)/[G`(R), G`(R)].

This is functorial in R, so that a ring homomorphism, ϕ : R → S induces K1(ϕ) : K1(R) →
K1(S).

The main initial problem with the above definition of K1(R) is that of controlling the commu-
tator subgroup of G`(R). The key is the stable elementary linear group, E(R).

We extend the earlier definition of elementary matrices (on page 119 from the finite dimensional
case, i.e., within G`n(R), to being within G`(R). Here an elementary matrix is of the form eij(a) ∈
G`(R), for some pair (i, j) of distinct positive integers and which, thus, has an a in the (i, j) position,
1s in every diagonal position and 0 elsewhere. Although there is a small risk of confusion from
notational reuse, we will, none-the-less, follow the standard notational convention and write En(R)
for the subgroup generated by the elementary matrices in G`n(R) and E(R) for the corresponding
union of the En(R) within G`(R). We will call En(R) the elementary subgroup of G`n(R),

Lemma 16 If i, j, k are distinct positive integers, then

eij(a) = [eik(a), ekj(1)].

�

This was already commented on when looking at the Steinberg group, Stn(R), which abstracts the
‘generic’ properties of the elementary matrices. The following is now obvious.

Proposition 20 For n ≥ 3, En(R) is a perfect group, i.e.,

[En(R), En(R)] = En(R).

�
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Now let M = (mij) be any n× n matrix over R. (It is not assumed to be invertible.)
We note that in G`2n(R), (

In M
0 In

)
=

n∏
i=1

n∏
j=1

ei,j+n(mij),

so this is in E2n(R). Similarly

(
In 0
M In

)
∈ E2n(R).

Next, let M ∈ G`n(R) and note(
M 0
0 M

)
=

(
In 0

M−1 − In In

)(
In In
0 In

)(
In 0

M − In In

)(
In −M−1

0 In

)
(as is easily verified). We thus have (

M 0
0 M

)
∈ E2n(R),

hence it is a product of commutators.

Lemma 17 If M,N ∈ G`n(R), then(
[M,N ] 0

0 In

)
=

(
M 0
0 M−1

)(
N 0
0 N−1

)(
(NM)−1 0

0 NM

)
,

so is in E2n(R).

Proof: Just calculation. �

Passing to the stable groups, we get the famous Whitehead lemma:

Proposition 21
[G`(R), G`(R)] = E(R).

�

This was, thus, very easy to prove, but it is crucial for the development of algebraic K-theory. It
should be noted that it did depend on having ‘enough dimensions’, so [G`n(R), G`n(R)] ⊆ E2n(R).
For our purposes here, we do not need to question whether ‘unstable’ versions of this hold, however
we will mention that, if n ≥ 3 and R is a commutative ring, then [G`n(R), G`n(R)] = En(R). The
proof is given in many texts on algebraic K-theory.

4.2.4 Milnor’s K2

We have already met the definition ofK2(R) (page 41). The stable elementary linear group, E(R), is
a quotient of the stable Steinberg group, St(R). (It will help to glance back at the presentation given
on page 103 and to check that these are ‘generic’ relationships between elementary matrices.) This
stable Steinberg group is obtained from the various Stn(R) together with the inclusions Stn(R)→
STn+1(R) obtained by including the generators of the first into the generating set of the second in
the obvious way. the colimit of these ‘unstable’ groups yields the stable Steinberg group
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As we mentioned early and will prove shortly, there is a central extension:

1→ K2(R)→ St(R)
ϕ−→ E(R)→ 1

and thus ϕ : St(R) → E(R), a crossed module. The group, G`(R)/Im(b), is K1(R), the first
algebraic K-group of the ring.

In fact, this is a universal central extension and certain observations about such objects will
help interpret what information is contained in K2(R). We will ‘backtrack’ a bit so as to keep
things relatively self-contained.

Let, as usual, Z(G) denote the centre of a group G.

Lemma 18 (i) Z(E(R)) = 1;
(ii) Z(St(R)) = K2(R).

Proof: This is elementary, but fun!
Suppose that N ∈ Z(E(R)), then N ∈ En(R) for some n. Within E2n(R),(

N 0
0 I

)(
I I
0 I

)
=

(
I I
0 I

)(
N 0
0 I

)
,

since N is central in E(R). This works out as(
N N
0 I

)
=

(
N I
0 I

)
,

i.e., N = I.
Next suppose that M ∈ Z(St(R)), then, as ϕ is surjective, ϕ(M) ∈ Z(E(R)), so must be trivial,

as required. �

Proposition 22
1→ K2(R)→ St(R)

ϕ−→ E(R)→ 1

is a central extension. �

We next need to examine universal central extensions.

Definitions: (i) A central extension

1→ K
k−→ H

σ−→ G→ 1

is said to be weakly universal if, given any other central extension of G,

1→ L
k′−→ E

σ′−→ G→ 1,

there is a homomorphism ψ : H → E making the diagram

1 // K
k //

ψ|K
��

H
σ //

ϕ

��

G //

=

��

1

1 // L
k′
// E

σ′
// G // 1
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commutes.
(ii) The central extension, as above, of G is universal if it is weakly universal and, in the

previous definition, the morphism ψ is unique with that property.

Proposition 23 Every group has a weakly universal central extension.

Proof: Suppose that we have a presentation (X : R) of G, or more usefully for us, a presentation
sequence:

1→ K
k−→ F

p−→ G→ 1,

(so F = F (X), the free group on X, and K = N(R) is the kernel of p). The subgroup, [K,F ]. of
F generated by the commutators, [k(x), y], with x ∈ K, and y ∈ F , is normal , as is easily checked
and is in K, so we can form an extension

1→ K

[K,F ]
→ F

[K,F ]
→ G→ 1.

(Note that ‘dividing out by this subgroup identifies all k(x)y and yk(x), so should make a central
extension. It ‘kills’ the conjugation action of F on K.)

We will write H = F/[K,F ] with σ : H → G for the induced epimorphism, so we now have

E : 1→ Ker σ → H
σ−→ G→ 1.

This is a central extension, as is easily checked (left to you).
Now suppose

E′ : 1→ L
k−→ E

σ′−→ G→ 1

is another central extension. We have to construct a morphism, ψ : E → E′, i.e., ϕ : H → E,
compatibly with the projections to G, (and their kernels). As F is free and σ′ is an epimorphism,
we can find τ : F → E such that στ = p. Now σ′τk = 1, so τk = k′ψ|K : K → L. We
examine a commutator [k(x), y] with x ∈ K, y ∈ F . The image of this under τ will be τ [k(x), y] =
[τk(x), τ(y)] = [k′τ |K(x), τ(y)] = 1, since E′ is a central extension, so τ induces a ψ : H → E
compatibly with the projections to G, and hence with their kernels. �

When will G have a universal central extension? The answer is: when G is perfect.

Definition: Suppose G is a group, it is perfect if [G,G] = G, i.e., it is generated by commuta-
tors.

Proposition 24 Every perfect group, G, has a universal central extension.

Proof: (We can pick up ideas and notation from the previous proof.) As G is perfect, we can
restrict σ : H → G to the subgroup [H,H] and still get a surjection. We thus have

1 // K ∩ [H,H] //

��

[H,H]
σ //

��

G

=

��

// 1

1 // K // H σ
// G // 1
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It is clear that as the bottom is weakly universal, so is the top one.
We next need a subsidiary result.

Lemma 19 If 1→ Ker σ → H
σ−→ G→ 1 is a weakly universal central extension and H is perfect,

then G is perfect and the central extension is universal.

Proof: The first conclusion should be clear, so we are left to prove ‘universal’. Suppose we have
E′ as before and obtain two morphism ϕ and ϕ′, from H to E such that σ′ϕ = σ′ϕ′ = σ. We have,
for h1, h2 ∈ H, ϕ(h1) = ϕ′(h1)c, and ϕ(h2) = ϕ′(h2)d for some c, d,∈ L. we calculate that

ϕ(h1h2h
−1
1 h−1

2 ) = ϕ′(h1h2h
−1
1 h−1

2 ),

since c and d are central in E, but as commutators generate H, ϕ = ϕ′ everywhere in H. �

To complete the proof of the proposition, we show that, back in case [[H,H] is itself perfect.
We have

[H,H] =

[
F

[K,F ]
,

F

[K,F ]

]
=

[F, F ]

[K,F ]
,

now as G is perfect, every element in F can be written in the form x = ck with c ∈ [F, F ] and
k ∈ K. (One could say ‘F is perfect up to K’.)

Take, now, a [x, y] ∈ [H,H], i.e., a commutator of x, y ∈ F/[K,F ] with x denoting the coset
x[K,F ], etc. Set x = ck, y = d`, c, d,∈ [F, F ]

xyx−1y−1 = x.y.x−1.y−1

= c.d.c−1.d
−1

= cdc−1d−1 ∈ [[H,H], [H,H]]

since elements ofK commute with elements of F mod [K,F ]. We thus have [H,H] = [[H,H], [H,H]],
as claimed. �

To summarise, suppose we have a group presentation, G = (X : R), of a perfect group, G. This
gives us an exact ‘presentation sequence’

1→ K → F → G→ 1

where we abbreviate N(R) to K. There is, then, a short exact sequence:

1→ K ∩ [F, F ]

[K,F ]
→ [F, F ]

[K,F ]
→ G→ 1

and this is its universal central extension.

Remark: The term on the left is the usual formula for the Schur multiplier of G and is one of
the origins of group homology. It gives the Hopf formula for H2(G,Z), the second homology of G
with coefficients in the trivial G-module, Z.

To apply this theory and discussion back to the Steinberg group, St(R), we need to check that
St(R) is a perfect group and that the central extension that we have is weakly universal. the first
of these is simple.
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Lemma 20 The group St(R) is perfect.

Proof:We can write any generator xij(a) as [xik(a), xkj(1)] for some k other than i or j, so the
proof is the same as that En(R) is perfect (for n ≥ 3), that we gave earlier. �

This leaves us to check that the central extension

1→ K2(R)→ St(R)
ϕ−→ E(R)→ 1

that we saw earlier is weakly universal (as it will then be universal by the previous lemma).
Suppose that we have

1→ L→ E
σ−→ E(R)→ 1

is a central extension. We have to define a morphism ψ : St(R)→ E projecting down to the identity
morphism on E(R). As we have St(R) defined by a presentation, the obvious way to proceed is
to find suitable images in E for the generators, xij(a), and then see if the Steinberg relations are
satisfied by them.

To start with, for each generator xij(a) of St(R), we pick an element, yij(a), in E such that
σ(yij(a)) = eij(a), the corresponding elementary matrix, which is, of course, the image of xij(a) in
E(R). (Note that any other choice of the yij(a) will differ from this by a family of elements of the
kernel, L, and hence by central elements of E.)

We will prove, or note, various useful identities, which will give us what we need.

• [u, [v, w]] = [uv,w][w, u][w, v] for u, v, w,∈ E;

• for convenience, for u ∈ E, write ū = σ(u) ∈ E(R), and for u, v ∈ E, write u ∼ v if uv−1 ∈ L,
then note that if u ∼ u′ and v ∼ v′, we have [u, v] = [u′, v′];

• if u, v, w,∈ E with [ū, v̄] = [ū, w̄] = 1, then

[u, [v, w]] = 1.

To see this, put a = [u, v], b = [u,w], so, by assumption, ā = b̄ = 1 and a, b ∈ L. We then
have uvu−1 = av, uwu−1 = bw, and [av, bw] = [v, w], since a, b ∈ L. Next look at

[u, [v, w]] = u[v, w]u−1[v, w]−1 = [uvu−1, uwu−1][v, w]−1 = 1

by our previous calculation.

We are now ready to look at the yij(a)s and see how nearly they will satisfy the Steinberg relations,
(St1 and St2 of page 103). (They will not necessarily satisfy them ‘on-the-nose’, but we can use
them to get another choice that will work.)

• If i 6= j, k 6= `, so the corresponding ys make sense, and further i 6= `, j 6= k (to agree with the
condition of the first part of the St2) relation), then [yij(a), yk`(b)] = 1. To see this we choose
n bigger than all the indices involved here, so that we can have yk`(b) ∼ [ykn(b), yn`(1)], as
they give the same element when mapped down to E(R). We thus have

[yij(a), yk`(b)] = [yij(a), [ykn(b), yn`(1)]] = 1,

by the above, so the ys do go some way towards what we need, (but the other relations need
not hold). We will use them, however, to make a better choice.
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• Suppose i, j and n are distinct, and, as always, a ∈ R. Set

znij(a) = [yin(a), yjn(1)].

It is easy to see that this depends on i, j and a, and, slightly less obviously, that it does not
depend on the choice of the yk`s. Actually it does not depend on n at all. (The details are
left for you to check, but use the commutator rules above to show znik(ab) = [yij(a), yjk(b)].
That is independent of n.) We write zij(a) for znij(a), as n is irrelevant, as long as it is
sufficiently large. These zij(a) will do the trick!

We define ψ : St(R) → E by defining ψ(xij(a)) = zij(a) and will check that zij(a) satisfies the
relations of St(R), (as that will mean that this assignment does define a homomorphism by what
is sometimes known as von Dyck’s Theorem).

Most have been done (and checking this is again left to you), except for

zij(a)zij(b) = zij(a+ b).

Clearly their difference is central in E, but that is not enough. We calculate

zij(a+ b) = zij(b+ a)

= [zik(b+ a), zkj(1)] withk 6= i, j

= [zik(b)zik(a), zkj(1)] as the ‘difference is central’

= [zik(b), zij(a)]zij(a)zij(b) using the first commutator identity above

= zij(a)zij(b)

as required.
We have checked, in quite a lot of detail, that

Proposition 25
1→ K2(R)→ St(R)

ϕ−→ E(R)→ 1

is a universal central extension. �

4.2.5 Higher algebraic K-theory: some first remarks

Milnor’s definition of K2(R) was initially given in a course at Princeton in 1967. The search for
higher algebraic K-groups was then intense; see Weibel’s excellent history of algebraic K-theory, [?
]. The breakthrough was due to Quillen, who in 1969/70, gave the ‘plus construction’, which was
a method of ‘killing’ the maximal perfect subgroup of a fundamental group, π1(X). Applying this
to the classifying space, BG`(R), of the stable general linear group, gave a space BG`(R)+, whose
homotopy groups had the right sort of properties expected of those mysterious higher groups and
so were taken to be Kn(R) := πn(BG`(R)+).

Several other constructions of Kn(R) were given in 1971 and were gradually shown to be equiva-
lent to Quillen’s. One of these which was based upon the theory of ‘buildings’ and upper triangular
subgroups was by I. Volodin, [167]. We will look at the general construction in the next few sections
as it relates closely to our theme of higher szyzygies.

We note that there are several other approaches that were developed at about the same time,
but will not be looked at in this chapter. There are also generalisations of these ideas.
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4.3 Higher generation by subgroups

We now return to more general discussions relating to presentations, syzygies and rewriting, al-
though we will see the link with ideas and methods from K-theory coming in later on.

Often one has a group, G, and a family H, of subgroups. For example (i) suppose G is given
with a presentation, (X : R), then subsets of X yield subgroups of G, and a family of subsets
naturally leads to a family of subgroup, or (ii) a group may be a symmetry group of some geometric
or combinatorial structure and certain substructures may be fixed by a subgroup, so families of
subgroups may correspond to families of substructures. It is common, in this sort of situation, to
try to see if information on G can be gleaned from information on the subgroups in H. This will
happen to some extent even if it is simply the case that the union of the elements in the subgroups
generate G.

A simple example would be if G is generated by three elements a, b and c with some relations
(possibly not known or not completely known), H consists of the subgroup generated by a, and
that generated by b. There is a possibility that c is not in the subgroup generated by a and b, but
how might this become apparent.

It may be that we have, instead of a presentation of G, presentations of the subgroups in
H, can we find a presentation of G, and, more generally, suppose we have knowledge of higher
(homotopical or homological) syzygies of the presentations of the subgroups in H, can we find
not only a presentation of G, but build up knowledge of (at least some of) the syzygies for that
presentation?

The key to attacking these problems is a knowledge of the way that the subgroups interact and
by building up knowledge of the correspondence between the combinatorics of that interaction and
of the induction process of building out from H to the whole group, G.

Various instances of this process had been studied, notably by Tits, e.g. in [162–164], since, in
the situations studied in those papers, the combinatorics leads to the building of a Tits system.
They also occur in the work of Behr, [22] and Soulé, [156], but, because of their general approach
and the explicit link made to identities among relations, we will use the beautiful paper by Abels
and Holz, [1]. This, and some subsequent developments, provides the basis for a way of calculating
some syzygies in some interesting situations.

There is also a strong link with Volodin’s approach to higher algebraic K-theory, but that will
be slightly later in the notes. Here we sketch some of the background and intuition, giving some
very elementary examples. When we have more knowledge of how to work with syzygies using
both homotopical and homological methods, whether ‘crossed’ or not, we will return to look in
more detail. We will see that this study of ‘higher generation’ leads in some interesting directions,
towards geometric constructions and concepts of use elsewhere.

4.3.1 The nerve of a family of subgroups

We start, therefore, with a group, G, and a family, H = {Hi | i ∈ I} of subgroups of G. Each
subgroup, H, determines a family of right cosets, Hg, which cover the set, G. Of course, these
partition G, so there are no non-trivial intersections between them. If we use all the right cosets,
Hig, for all the Hi in H, then, of course, we expect to get non-trivial intersections.

Remark: There is some disagreement as to which terminology for cosets is the most logical, so
we should say exactly what we mean by ‘right coset’. A subgroup H of G give a left action, H y G
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on the set, G, by multiplication on the left, and hence a groupoid whose connected components are
the right cosets, Hg. The terminology ‘right coset’ corresponds to the g being on the right. If we
considered the right action then we would have left cosets in the corresponding role.

Another notational point is that when writing cosets, we follow the usual rule that there is
some informal set of coset representatives being used, or more exactly that the notation looks like
that! This can be delicate if we step outside a set based situation, as choosing a set of coset
representatives uses the axiom of choice, and in some contexts that would be ‘dodgy’.

Let

H =
∐
i∈I

Hi\G = {Hig | Hi ∈ H},

where the g is more as an indicator of right cosets than strictly speaking an index. This is the
family of all right cosets of subgroups in H. This covers G and we write N(H) for the corresponding
simplicial complex, which is the nerve of this covering.

In many situations, ‘nerves’ in some form are used to help ‘integrate’ local information into
global, since they record the way the ‘localities’ of the information fit together. (We will refer
to this type of problem as a ‘local-to-global’ problem. They occur in many different contexts.)
We have met nerves of categories, and will later meet nerves of open covers of topological spaces,
but in that latter situation, the topological features of the construction are not central to that
construction. We will consider the fairly general case of the nerve of a relation in a while, but for
the moment, we will give a working definition, specific to the application that we have in mind
here. We will refine and extend that definition later on.

Definition: LetG be a group andH a family of subgroups ofG. Let H denote the corresponding
covering family of right cosets, Hig, Hi ∈ H. (We will write H = H(G,H) or even H = (G,H),
as a shorthand as well.) The nerve of H is the simplicial complex, N(H), whose vertices are the
cosets, Hig, i ∈ I, and where a non-empty finite family, {Higi}i∈J , is a simplex if it has non-empty
intersection.

Examples: (i) If H consists just of one subgroup, H, then H is just the set of cosets, H\G and
N(H) is 0-dimensional, consisting just of 0-simplices / vertices.

(ii) If H = {H1, H2}, (and H1 and H2 are not equal!), then any right H1 coset, H1g, will
intersect some of the right H2-cosets, for instance, H1g ∩H2g always contains g. The nerve, N(H),
is a bipartite graph, considered as a simplicial complex. (If the group G is finite, or more generally,
if both subgroups have finite index, the number of edges will depend on the sizes or indcices of H1,
H2 and H1 ∩ H2.) It is just a graphical way of illustrating the intersections of the cosets, a sort
of intersection diagram. (There is an error in [16] in which it is claimed that each coset H1 will
intersect with each of those of H2.)

As a specific very simple example, consider:

• S3 ≡ (a, b : a3 = b2 = (ab)2 = 1), (so a denotes, say, the 3-cycle (1 2 3) and b, a transposition
(1 2)).

• Take H1 = 〈a〉 = {1, (1 2 3), (1 3 2)}, yielding two cosets H1 and H1b.

• Similarly take H2 = 〈b〉 = {1, (1 2)} giving cosets H2, H2a and H2a
2.
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The covering of S3 is then H = {H1, H1b,H2, H2a,H2a
2} and has nerve

H1

||||||||

DDDDDDDD

VVVVVVVVVVVVVVVVVVVVVVVVVV H1b

hhhhhhhhhhhhhhhhhhhhhhhhh

yyyyyyyy

FFFFFFFF

H2 H2a H2a
2

4.3.2 n-generating families

Abels and Holz, [1], give the following definition:

Definition: A family, H, of subgroups of G is called n-generating if the nerve, N(H), of the
corresponding coset covering is (n− 1)-connected, i.e., πiN(H) = 0 for i < n.

The following results illustrate the idea and motivate the terminology. (They are to be found
in [1].)

Proposition 26 The group, G, is generated by the union of the subgroups, H, in H if, and only
if, N(H) is connected.

We will take this apart rather than use the short proof given in [1]. (Hopefully this will show how
the idea works and how simple minded the proof can be!)

Proof: Suppose we have that G is generated by the various H in H and we are given two
vertices Hg1 and Kg2 for H,K ∈ H. (The case H = K is allowed here.) Of course, g1g

−1
2 ∈ G,

so is a product of elements from the various His, say, g1g
−1
2 = hi1 . . . hin with hik ∈ Hik . (This

observation suggests an induction on the length of this expression.)
To ‘test the water’, we assume g1g

−1
2 = h1 ∈ H1, but then g1 ∈ Hg1 ∩ H1g2 and also g2 ∈

H1g2 ∩Kg2. (We can indicate this diagrammatically as

Hg1
g1

H1g2
g2

Kg2,

where each edge is decorated by an element that witnesses that the intersection of the two cosets
is non-empty.)

If we try next with g1g
−1
2 = h1h2, then g1 = h1h2g2, so we have

Hg1
g1
H1(h2g2)

h2g2
H2g2

g2
Kg2,

and the pattern gives the model for an induction on the length of the expression giving g1g
−1
2 in

terms of elements of the His. (Note the link between the expression and the path is very simple.)
Conversely, suppose that N(H) is connected, then if g ∈ G, we look at Hg and H for some

choice of H. There is a sequence of edges in N(H) joining these two vertices. We examine the
length, `, of such an edge path. If ` = 1, there is some h ∈ H ∩Hg, so g ∈ H. If ` = 2,

H
x1

H ′g1
x2

Hg,

and we have x1 = h1 = h2g1 with h2 ∈ H ′, whilst x2 = h3g1 = h4g. We thus obtain g = h−1
4 h3g1

and g1 = h−1
2 h1, so g = h−1

4 h3h
−1
2 h1, i.e., we have an expansion of g in terms of elements of the

various Hs. A proof of the general case is now easy. �
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We next form a diagram, D, consisting of the subgroups, Hi, and all their pairwise intersections,
together with the natural inclusions, and we write H := t

∩
H for colimD. (Note that this colimit is

within the category of groups.) More exactly, there is a poset {Hj , Hj ∩Hk | j, k ∈ I}, ordered by
inclusion and D is the inclusion of this diagram into the category of groups. There is a presentation
of H with generators xg, g ∈

⋃
Hj and with relations xg · xh = xgh if g and h are both in some Hi.

(This group, H, is thus a ‘coproduct’ with amalgamated subgroups.)
There is an obvious homomorphism

H = t
∩
H → G

induced by the inclusions.

Proposition 27 The family, H, is 2-generating if, and only if, the natural homomorphism,

H = t
∩
H → G,

is an isomorphism. �

In fact,

Proposition 28 There are isomorphisms:
(a) π0N(H) ∼= G/〈

⋃
Hj〉;

(b) π1N(H) ∼= Ker(t
∩
H → G). �

We almost have shown (a) in our above argument, but will postpone more detailed proofs until
later. (They are, in fact, quite easy to give by direct calculation.)

Remark: It is often helpful to take the family, H, of subgroups and to close it up under (finite)
intersection and sometimes the inclusion order on the intersections comes in useful as well. This
closure operation does not change the homotopy type of the nerve of the corresponding coverings by
cosets, in fact, the process of taking intersections corresponds to taking the barycentric subdivision
of the original nerve.

4.3.3 A more complex family of examples

An important example of the above situation is in algebraic K-theory. It occurs with the general
linear group, G`n(R), of invertible n×n matrices together with a family of subgroups corresponding
to lower triangular matrices, .... but with some subtleties involved.

Let R be an associative ring with identity and n a positive integer.
Let ∆ = {(i, j) | i 6= j, 1 ≤ i, j ≤ n} be the set of non-diagonal positions in an n× n array. We

will say that a subset, α ⊆ ∆, is closed if

(i, j) ∈ α and (j, k) ∈ α implies (i, k) ∈ α.

Note that if (i, j) ∈ α and α is closed then (j, i) /∈ α.
Let Φ = {α ⊆ ∆ | α is closed}. There is a reflexive relation ≤ on Φ by α ≤ β if α ⊆ β. These

αs are transitive relations on subsets of the set of integers from 1 to n, so essentially order the
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elements of the subset. The reason for their use is the following: suppose (i, j) ∈ ∆ and r ∈ R.
The elementary matrix, εij(r), is the matrix obtained from the identity n × n matrix by putting
the element r in position (i, j),

i.e., εij(r)k,l =


1 if k = l

r if (k, l) = (i, j)

0 otherwise .

Let G`n(R)α, for α ∈ Φ, denote the subgroup of G`n(R) generated by

{εij(r) | (i, j) ∈ α, r ∈ R}.

It is easy to see that (akl) ∈ G`n(R)α if and only if

ak,l =


1 if k = l

arbitrary if (i, j) ∈ α
0 if (i, j) ∈ ∆\α.

If α ≤ β, then there is an inclusion, G`n(R)α≤β of G`n(R)α into G`n(R)β.

We will consider the G`n(R)α as forming a family, G`n(R), of subgroups of G`n(R).

Remark: Although a similar idea is found in Wagoner’s paper [? ], I actually learnt the idea
for this approach to these subgroups from papers by A. K. Bak, [14, 15], and, with others, in [16],
and from talks he gave in Bangor and Bielefeld. In these sources, this construction leads on to a
discussion of his notion of a global action, and, in the third paper cited, the variant known as a
groupoid atlas. The motivation, there, is to study the unstable algebraic K-theory groups, whilst
Volodin’s original and Wagoner’s approach are more centred on the stable version.

There is a lot more that could be said about these groupoid atlasses, which were introduced
to handle the intrinsic homotopy involved in Volodin’s definition of a form of algebraic K-theory,
[167]. We will not use them explicitly here, but will attempt to show the link between the above
and the question of syzygies, higher generation by subgroups, etc.

The nerve of this family would consist of the cosets of these subgroups, linked via their inter-
sections. We need to extract another description of the homotopy type of this simplicial complex
and for that will examine the intersections of cosets, and of the subgroups. We will do this in a
slightly strange way in as much as we will turn first, or rather after some preparation, to descrip-
tions related to Volodin’s version of the higher K-theory of an associative ring. Our approach will
be via Volodin spaces as used, for instance, in a paper by Suslin and Wodzicki, [? ] and then an
examination of the various nerves of a relation, before returning to this setting.

4.3.4 Volodin spaces

Let X be a non-empty set, and denote by E(X), the simplicial set having E(X)p = Xp+1, so a
p-simplex is a p+ 1 tuple, x = (x0, . . . , xp), each xi ∈ X, and in which

di(x) = (x0, . . . , x̂i, . . . xp),
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and
sj(x) = (x0, . . . , xj , xj , . . . xp),

so di omits xi, whilst sj repeats xj .

Lemma 21 The simplicial set, E(X), is contractible.

Proof: We thus have to prove that the unique map E(X)→ ∆[0] is a homotopy equivalence. (That
this is the case is well known, but we will none the less give a sketch proof of it as firstly we have not
assumed that much knowledge of simplicial homotopy and also as it gives some interesting insights
into that subject in a very easy situation.) We pick some a0 ∈ X and obtain a map ∆[0]

a0−→ E(X)
by mapping the single 0-simplex of ∆[0] to the 0-simplex, (a0) in E(X). We now show that the

identity map on E(X) is homotopic to the composite map, E(X)→ ∆[0]
a0−→ E(X), that ‘sends all

simplices to a0’.
We will look at simplicial homotopies in more detail later, (in particular around page 280), but

clearly, a homotopy h : f ' g : K → L, between two simplicial mapsa f, g : K → L, should be a
simplicial map h : K × ∆[1] → L, restricting to f and g on the two ends of K × ∆[1].. Here we
need a homotopy h : E(X)×∆[1]→ E(X) and we look at what this must be on a cylinder over a
simplex, (x0, . . . , xp). To see what to do, look at almost the simplest case, p = 1, then a schematic
representation of h on (x0, x1)×∆[1] must look like:

a0 // a0

x0 //

=={{{{{{{{

OO

x1

OO

More precisely, the two simplices of E(X)×∆[1] that we need have two forms

σ1 = ((x0, 0), (x1, 0), (x1, 1))

and
σ2 = (x0, 0), (x0, 1), x1, 1))

being, respectively the bottom right and the top left hand ones. We need h(σ1) = (x0x1, a0) and
h(σ2) = (x0, a0, a0). Now it is easy to see how to set up h, in general, giving the required contracting
homotopy. �

Remark: Any homotopy can be specified by a family of maps, hni : Kn → Ln+1, satisfying
some rules that will be given later (page 282). It is then easy to specify the hni : E(X)n → E(X)n+1

generalising the formula we have given above. (We leave this to you if you have not seen it before,
as it is easy, but also instructive.)

The case we are really interested in is when we replace the general set, X, by the underlying
set of a group, G. (As usual, we will not introduce a special notation for the underlying set of G,
just writing G for it.) In this case we have the simplicial set E(G) and the group, G, acts freely on
E(G) by

g · (g0, . . . , gp) = (gg0, . . . , ggp).

(Here we have used a left action of G, and leave you to check that the evident right action could
equally well be used.) The quotient simplicial set of orbits, will be denoted G\E(G). It is often
useful to write [g1, . . . , gp] for the orbit of the p-simplex (1, g1, g1g2, . . . , g1g2 . . . gp) ∈ E(G)p.
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It is ‘instructive’ to calculate the faces and degeneracy maps in this notation. We will only look
at [g1, g2] in detail. This element has representative (1, g1, g1g2). We thus have:

• d0(1, g1, g1g2) = (g1, g1g2) ≡ (1, g2), so d0[g1, g2] = [g2];

• d1(1, g1, g1g2) = (1, g1g2), so d1[g1, g2] = [g1g2];

• d2(1, g1, g1g2) = (1, g1), so d2[g1, g2] = [g1].

(That looks familiar!)
For the degeneracies,

• s0(1, g1, g1g2) = (1, 1, g1, g1g2), so s0[g1, g2] = [1, g1, g2];

• s1(1, g1, g1g2) = (1, g1, g1, g1g2), so s1[g1, g2] = [g1, 1, g2];

and similarly s2[g1, g2] = [g1, g2, 1].
The general formulae are now easy to guess and to prove - so they will be left to you, and

then the following should be obvious.

Lemma 22 There is a natural simplicial isomorphism,

G\E(G)
∼=−→ Ner(G[1]) = BG.

�

We thus have that G\E(G) is a ‘classifying space’ for G.
We note that this shows that G\E(G) is a Kan complex, since we already have that Ner(G[1])

is one. It is easy enough to check it directly. Of course, E(G) is Kan as well. Jumping ahead of
ourselves, we will sketch that the fundamental group of G\E(G) is π1(G\E(G)) ∼= G, whilst for
k > 1, πk(G\E(G)) is trivial. (We will have to ‘fudge’ the details as they either need material that
will not be directly handled in these notes (and hence, for which the reader is referred to standard
texts on simplicial homotopy theory), or they may depend on ideas that will be only explored later
on in the notes, so we will sketch enough to whet the appetite!)

First we take on trust that if K is a connected Kan complex, then the kth homotopy group of
K can be ‘calculated’ by looking at homotopy classes of mappings from the boundary of a k + 1-
simplex into K, based at a base point. If you have a map, ∂∆[k + 1]→ Ner(G[1]), then you have
all the information needed to extend it to a map defined on ∆[k+1], i.e., the map you started with
is null homotopic. (If you want more intuition on this, try looking at the case k = 2 and writing
down what the various faces in ∂∆[3] will give and then see how they determine a 3-simplex in
Ner(G[1]).)

For dimension 1, the construction of π1 is, of course, that of the fundamental group(oid), so
gives a presentation with set of generators {[g] | g ∈ G} and, for each pair (g1, g2), a relation
rg1,g2 corresponding to [g1, g2] ∈ G\E(G)2, and which gives [g1][g2][g1g2]−1, but this was our prime
example of a presentation of G, so π1(G\E(G)) ∼= G.

There is, here, another useful fact for the reader to check. The quotient map from E(G)
to G\E(G) is a Kan fibration (and this is a useful example to do in detail if you are not
that conversant with Kan fibrations). The fibre of this quotient map is a constant (or ‘discrete’)
simplicial set with value G, so is a K(G, 0). As is well known, and as we will introduce and use later,
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there is a long exact sequence of homotopy groups for any pointed fibration sequence, F → E → B,
so we can apply this to

K(G, 0)→ E(G)→ G\E(G)

to get πi(G\E(G) ∼= πi−1(K(G, 0)) and another proof that G\E(G) is an ‘Eilenberg Mac Lane
space’ for G, i.e., a K(G, 1) in the usual notation, (... and yes, this is related to covering spaces
...).

Returning to the construction of what are called ‘Volodin spaces’ (cf. [? ]), we put ourselves back
in the context of a group, G, and a family, H, of subgroups of G. We suppose that H = {Hi | i ∈ I}
for some indexing set, I. (We may assume extra structure on I, as before, when we get further into
the construction.)

Definition: (Suslin-Wodzicki, [? ], p. 65.) We denote by V (G,H), or V (H), the simplicial
subset of E(G) formed by simplices, (g0, . . . , gp), that satisfy the condition that there is some i ∈ I
such that, for all 0 ≤ j, k ≤ p, gjg−1

k ∈ Hi.
The simplicial set, V (G,H), will be called the Volodin space of (G,H).

Remark: The actual definition given in [? ] uses g−1
j gk ∈ Hi, as there the convention on cosets

is gH rather than our Hg.

The subobject, V (G,H), of E(G) is a G-subobject, i.e., it is invariant under the action of G.
The corresponding quotient simplicial set G\V (G,H) coincides with the union of the BHi within
the classifying space, BG.

Remark: The construction of V (G,H) is usually ascribed to Volodin in his approach to the
higher K-theory groups of a ring, but in fact, the basic construction is essentially much older,
being due to Vietoris in the 1920s, but in a different setting, namely that of a simplicial complex
associated to an open covering of a space. This was further studied by Dowker, [? ], in 1952, where
he abstracted the situation to construct two simplicial complexes from a relation between two sets.

4.3.5 The two nerves of a relation: Dowker’s construction

The results of the next few sections are of much more general use than just for a group and a family
of its subgroups. We therefore present things in an abstract version.

Let X,Y be sets and R a relation between X and Y , so R j X×Y . We write xRy for (x, y) ∈ R.

Fairly generic example: Let X be a set (often a topological space) and Y be a collection of
(usually open) subsets of X covering X, i.e.,

⋃
Y = X. The classical case is when Y is an index

set for an open cover of X. The relation is xRy if and only if x ∈ y, or, more exactly, x is in the
subset indexed by y.

Returning to the abstract setting, we define two simplicial complexes associated to R, as follows:

(i) K = KR :

(a) the set of vertices is the set X;
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(b) a p-simplex of K is a set {x0, · · · , xp} ⊆ X such that there is some y ∈ Y with xiRy for
i = 0, 1, · · · , p.

(ii) L = LR :

(a) the set of vertices is the set, Y ;

(b) p-simplex of K is a set {y0, · · · , yp} ⊆ Y such that there is some x ∈ X with xRyj for
j = 0, 1, · · · , p.

Clearly the two constructions are in some sense dual to each other. The original motivating example
was as above. It had X, a space, and Y = U = {Uα : α ∈ A}, an open cover of X, and, in that case,
KR is the Vietoris complex of U , V (U) or V (X,U), of the cover. The ‘dual’ construction has the
open cover, U , or better, the indexing set, A, as its set of vertices, and σ = 〈α0, α1, ..., αp〉, belongs
to LR if and only if the open sets, Uαj , j = 0, 1, . . . , p, have non-empty common intersection.

This is the simplicial complex known as the Čech complex, Čech nerve or simply, nerve, of the
open covering, U , and it will be denoted N(X,U), or N(U). We will have occasion to repeat
this definition later, both when considering Čech non-Abelian cohomology, (starting on page 242),
and also when looking at triangulations when examining methods of constructing some simple
topological quantum field theories, page ??.

We will extend the terminology so that for a given relation, R, KR will be called the Vietoris
nerve of R, whilst LR is its Čech nerve. (This is rather arbitrary as the Vietoris nerve of R is the
Čech nerve of the opposite relation, Rop, from Y to X.)

In the situation in this chapter, we have a pair, (G,H), and X is G, whilst Y is the family, H,
of right cosets of subgroups from the family H. The relation is ‘xRy if and only if x ∈ y’.

The simplicial complex, KR, thus has G as its set of vertices and (g0, . . . , gp) is a p-simplex of
KR if, and only if, all the gks are in some common right coset, Hix, in the family H. It is then just
a routine calculation to check that this is the same as saying that the simplex is in V (H). In other
words, the Volodin complex of (G,H) is the same as the Vietoris complex of H, and it is convenient
that both names begin with the letter ‘V’ ! The one difference is that the Vietoris complex is a
simplicial complex, whilst the Volodin space is a simplicial set. For each p-simplex {g0, . . . , gp}, of
V (H), there are p! simplices in the Volodin space.

The corresponding Čech nerve, LR, is N(H) as introduced earlier, so if σ ∈ N(H)p σ =
{H0g0, · · · , Hpgp} with the requirement that ∩σ = ∩

i=0

pHigi 6= ∅.

Before turning to Dowker’s result, we will examine barycentric subdivisions as these play a neat
role in his proof.

4.3.6 Barycentric subdivisions

Combinatorially, if K is a simplicial complex with vertex set, VK , then one associates to K the
partially ordered set of its simplices. (We avoid our earlier notation of V (K) for the vertex set as
being too ambiguous here.) Explicitly we write S(K) for the set of simplices of K and (S(K),⊆)
for the partially ordered set with ⊆ being the obvious inclusion. The barycentric subdivision, K ′, of
K has S(K) as its set of vertices and a finite set of vertices of K ′ (i.e., simplices of K) is a simplex
of K ′ if it can be totally ordered by inclusion.) We may sometimes write Sd(K) instead of K ′.)
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Remark: It is important to note that there is, in general, no natural simplicial map from K ′

to K. If, however, VK is given an order in such a way that the vertices of any simplex in K are
totally ordered (for instance by picking a total order on VK), then one can easily specify a map,

ϕ : K ′ → K,

by:
if σ′ = {x0, · · · , xp} is a vertex of K ′ (so σ′ ∈ S(K)), let ϕσ′ be the least vertex of σ′ in the given
fixed order.

This preserves simplices, but reverses order so if σ′1 ⊂ σ′2 then ϕ(σ′1) ≥ ϕ(σ′2).

If one changes the order, then the resulting map is contiguous:

Definition: Let ϕ,ψ : K → L be two simplicial maps between simplicial complexes. They are
said to be contiguous if for any simplex σ of K, ϕ(σ) ∪ ψ(σ) forms a simplex in L.

Contiguity gives a constructive form of homotopy applicable to simplicial maps between sim-
plicial complexes.

If ψ : K → L is a simplicial map, then it induces ψ′ : K ′ → L′ after subdivision. As there is no
way of knowing/picking compatible orders on VK and VL in advance, we get that on constructing

ϕK : K ′ → K

and

ϕL : L′ → L

that ϕLψ
′ and ψϕ will be contiguous to each other, but rarely equal.

4.3.7 Dowker’s lemma

Returning to KR and LR, we order the elements of X and Y , then suppose y′ is a vertex of L′R,
so y′ = {y0, · · · , yp}, a simplex of LR and there is an element x ∈ X with xRyi, i = 0, 1, · · · , p. Set
ψy′ = x for one such x.

If σ = {y′0, · · · , y′q} is a q-simplex of L′R, assume y′0 is its least vertex (in the inclusion ordering)

ϕL(y′0) ∈ y′0 ⊂ y′ for each yi ∈ σ,

hence ψy′iRϕL(y′0) and the elements ψy′0, · · · , ψy′q form a simplex in KR, so ψ : L′R → KR is a
simplicial map. It, of course, depends on the ordering used and on the choice of x, but any other
choice x̄ for ψy′ gives a contiguous map.

Reversing the rôles of X and Y in the above, we get a simplicial map,

ψ̄ : K ′R → LR.

Applying barycentric subdivisions again gives

ψ̄′ : K ′′R → L′R,
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and composing with ψ : L′R → KR gives a map

ψψ̄′ : K ′′R → KR.

Of course, there is also a map

ϕKϕ
′
K : K ′′R → KR.

Proposition 29 (Dowker, [? ] p.88). The two maps ϕKϕ
′
K and ψψ̄′ are contiguous.

Before proving this, note that contiguity implies homotopy and that ϕϕ′ is homotopic to the
identity map on KR after realisation, i.e., this shows that

Corollary 5

|KR| ' |LR|.

�

The actual homotopy depends on the ordering of the vertices and so is not natural.

Proof of the Proposition:

Let σ′′′ = {x′′0, x′′1, · · · , x′′q} be a simplex of K ′′R and as usual assume x′′0 is its least vertex, then
for all i > 0

x′′0 ⊂ x′′i .

We have that ϕ′K is clearly order reversing, so ϕ′Kx
′′
i ⊆ ϕ′Kx

′′
0. Let y = ϕ̄ϕ′Kx

′′
0, then for each

x ∈ ϕ′Kx′′0, xRy. Since ϕKϕ
′
Kx
′′
i ∈ ϕ′Kx′′i ⊆ ϕ′Kx′′0, we have ϕKϕ

′
Kx
′′
iRy.

For each vertex x′ of x′′i , ψ̄x
′ ∈ ψ̄′x′′i , hence as ϕ′Kx

′′
0 ∈ x′′0 ⊂ x′′i , y = ψ̄ϕ′Kxx

′′
0 ∈ ψ̄′x′′i for each

x′′i , so for each x′′i , ψψ̄
′x′′iRy, however we therefore have

ϕkϕ
′
K(σ′′) ∪ ψψ̄(σ′′′) =

⋃
ϕkϕ

′
K(x′′i ) ∪ ψψ̄;x′′i

forms a simplex in KR, i.e., ϕKϕ
′
K and ψψ̄′ are contiguous. �

To prove this we had to choose orders on the two sets, and thus we were working with the
non-degenerate simplices of the corresponding simplicial sets. (Abels and Holz, [1], use the neat
notation of writing N simp(R), etc. for the corresponding simplicial set, either dependent on order
or taking all possible orders, i.e., a p-tuple is a simplex in the simplicial set if its underlying set
of elements is a simplex in the simplicial complex. Which method is used make essentially no
difference most of the time. Their notation can be useful, but we will tend to ignore the difference
as the homotopy groups and homotopy types are independent of which approach one takes.)
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4.3.8 Flag complexes

The construction of the barycentric subdivision is closely related to that of a flag complex of a
poset.

Suppose that P = (P,≤) is a partially ordered set (poset), then we can consider is as a category
and hence look at its nerve. This is the associated simplicial set of the flag complex of P, which
is a simplicial complex, whose construction uses some ideas that can be of use later on, so we will
briefly discuss how it relates to our situation.

Definition: A subset, σ,of P = (P,≤) is said to be a flag if it satisfies, for all x.y ∈ P , either
x ≤ y or y ≤ x.

A finite non-empty flag, thus, is a linearly ordered subset of P , i.e., is of the form {x0, . . . xp},
where x0 < . . . xn are elements of the set P .

Definition: Let P = (P,≤) be a poset. The flag complex, Flag(P) of P is the simplicial
complex having the elements of P as its vertices and in which a p-simplex will be a non-empty flag,
x0 < . . . xn. in P.

This is often also called the order complex of the poset.

Lemma 23 The flag complex construction gives a functor

Flag : Posets→ SimComp,

from the category of partially ordered sets and order preserving maps, to the category of simplicial
complexes and simplicial morphisms between them. �

As a simplicial complex, K, consists of a set, V (K) of vertices and a set S(K) ⊆ P (V (K))− {∅},
S(K) can naturally be ordered by inclusion to get a partially ordered set U(K) = (S(K),⊆). This
gives a functor,

U : SimpComp→ Posets.

The composite functor,
Flag ◦ U : SimpComp→ SimpComp

is the barycentric subdivision functor, Sd.

If X is a set and U = {Ui | i ∈ I} is a family of subsets of X, we may think of U as being
ordered by inclusion and thus get a poset. (Of course, this will only be significant if there are some
inclusions between the Uis, for instance if U is closed under finite intersection.) This gives a poset,
(U ,⊆) and we will abbreviate Flag(U ,⊆) to F (U).

The links between nerves and flag complexes are strong.

Proposition 30 (Abels and Holz, [1], p. 312) Suppose given (X,U) as above, and that U is such
that, if U and V are in U and U ∩V is not empty, then U ∩V ∈ U , then there is a natural homotopy
equivalence,

|N(U)| ' |F (U)|.
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We cannot give a full proof here as it involves a result, namely Quillen’s Theorem A, [? ], that will
not be discussed in these notes. We can however give a sketch (based on the treatment in [1]).

Sketch proof: Abusing notation so as to consider the simplicial complex, N(U), as being the
same as the poset of its simplices, we define a mapping:

f : N(U)→ U

sending σ = {U0, . . . , Up} to Uσ = ∩pi=0Ui. This is order reversing. (Note that it, of course, needs U
to be closed under pairwise non-empty intersections.) Writing Uop for the poset, (U ,⊇), that is with
the opposite order, the poset U ↓ f of objects under some U ∈ Uop is just {τ ∈ N(U) | Uτ ⊇ U},
so is a directed poset, and hence is contractible. By Quillen’s theorem A, f induces a homotopy
equivalence as claimed. �

Remark: An interesting variant of these nerve and flag complex constructions combines some
aspects of the Vietoris complex construction with the idea of flags to construct a bisimplicial
set. A (p, q)-simplex will be pair consisting of a subset {x0, . . . , xp} of X together with a flag
U0 ⊂ U1 ⊂ . . . ⊂ Uq, such that all the xi are in U0. We will not explore this idea here as we have
not discussed bisimplicial sets in any detail yet.

Within geometric group theory, the term ‘flag complex’ is also applied to a closely related, but
distinct, concept. These ‘flag complexes’ are abstract simplicial complexes that satisfy a particular
defining property, rather than being defined by how they are constructed. We will see other similar
ideas later on in less geometric contexts, but for the moment will give a brief discussion based on
the treatment of Bridson and Haefliger, [? ], p. 210.

Definition: Let L be a simplicial complex with set of vertices V (L). It satisfies the no triangles
condition if every finite subset of V (L) that is pairwise joined by edges, is a simplex. More precisely,
if {v0, . . . , vn} is such that for each i, j ∈ {1, . . . , n}, {vi, vj} is a 1-simplex of L, then {v0, . . . , vn}
is a simplex of L.

An alternative name for the condition are the ‘no empty simplices’ condition. It is also said
that in this case L is determined by its 1-skeleton. The point is

Proposition 31 If simplicial complex, L, is an order complex of some partially ordered set then
it is determined by its 1-skeleton. �

The proof should be evident.

Geometric group theory contains many other examples of this sort of construction, especially
with relation to Coxeter groups. (Perhaps we will return to this later one)

4.3.9 The homotopy type of Vietoris-Volodin complexes

Returning to V (H), the second complex associated to a pair (G,H), it is possible to extract some
homotopy information from it using fairly elementary methods. To go into its structure more deeply
we will need to bring more explicitly in the group action of G as well, but that is for later.
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The great advantage now is that as we know N(H) and V (H) have the same homotopy type
(after realisation) so we can use either when working out homotopy invariants. We can also use
N simp(H), or V simp(H) the corresponding simplicial sets, although, in fact, the Volodin space was
actually defined as a simplicial set. We will usually leave out the difference between the simplicial
complex and the simplicial set as that distinction is largely unnecessary.

If we look at any gHi ∈ H, then we have a subcomplex of V (H) consisting of those (g0, . . . , gp)
all of which are in gHi. In the simplest case, where g = 1, this is a copy of E(Hi), and, in general,
it is a translated copy of E(Hi), so each forms a contractible subcomplex.

Example: (already considered in section 4.3.1)

G = S3 = (a, b | a3 = b2 = (ab)2 = 1), with a = (1, 2, 3), b = (1, 2);

H1 = 〈a〉 = {1, (1, 2, 3), (1, 3, 2)},
H2 = 〈b〉 = {1, (1, 2)};
H = {H1, H2}

The intersection diagram given in our earlier look at this example, on page 116, is just the nerve,
N(H), having 5 vertices and 6 edges. The other complex, V (H), is almost as simple. It has 6
vertices corresponding to the 6 elements of S3, and each orbit yields a simplex

• H1 = {1, a, a2} gives a 2-simplex (and three 1-simplices),

• H1b = {b, ab, a2b} also gives a 2-simplex;

• H2 = {1, b} yields a 1-simplex, as do its cosets H2a and H2a
2.

We can clearly see here the contractible subcomplexes mentioned earlier. We have that V (H) looks
like two 2-simplices joined by 1-simplices at the vertices, (see below).

2

1 a

a

b

ab

a b
2

V (S3, {〈a〉, 〈b〉})

As N(H) is a connected with 5 vertices and 6 edges, we know π1N(H) is free on 2 generators. (The
number of generators is the number of edges outside a maximal tree.) This same rank can be read
of equally easily from V (H) as that complex is homotopically equivalent to a bouquet of 2 circles,
(i.e., a figure eight). The generators of π1V (H) can be identified with words in the free product
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H1∗H2 (one such being shown in the picture) and relate to the kernel of the natural homomorphism
from H1 ∗H2 to S3. The heavy line in the figure corresponds to a loop at 1 given by

1
(1,b) // b

(b,ab) // ab
(ab,a2)// a2

(a2,1) // 1

We write g0
(g0,g1)−−−−→ g1 as there is an edge, (g0, g1) joining g0 to g1 in V (H). We, thus, have that

there is a g and an index i such that {g0, g1} ∈ Hig, but the index and the elements are not
necessarily uniquely determined. We saw that this means that g1g

−1
0 ∈ Hi, so g1 = hg0 for some

h ∈ Hi, and we could equally well abbreviate the notation to g0
h−→ g1. Note that the only condition

required is that h is in some Hi, so the lack of uniqueness mention above is without importance.
In our example, we can redraw the diagram corresponding to the heavier loop and we get

1
b // b

a // ab
b // a2 a // 1

so the loop, representing an element in π1N(H), is given by the word baba ∈ C2 ∗ C3, which, of
course, is in the kernel of the homomorphism from C2 ∗ C3 to S3. The reason that this works is
clear. Starting at 1, each part of the loop corresponds to a left multiplication either by an element
of H1

∼= C3 or of H2
∼= C2. We thus get a word in H1 ∗H2

∼= C2 ∗ C3. As the loop also finishes at
1, we must have that the corresponding word must evaluate to 1 when projected down into S3.

Note that the two subgroups had simple presentations that combine to give a partial presenta-
tion of S3. The knowledge of the fundamental group, π1N(H), then provides information on the
‘missing’ relations.

In more complex examples, the interpretation of π1(V (H), 1) will be the similar, but sometimes
when G has more elements, N(H) may be easier to analyse than V (H), but the second may give
links with other structure and be more transparent for interpretation. The important idea to retain
is that the two complexes give the same information, so either can be used or both together.

Example: G = K4, the Klein 4 group, {1, a, b, c} ∼= C2 × C2, so a2 = b2 = c2 = 1 and ab = c;
H = {Ha, Hb, Hc} where Ha = {1, a}, etc. Set HK4 = (K4,H).

The cosets are Ha, Hab,Hb, Hba,Hc, Hca, each with two elements, so V (HK4) ∼= the 1-skeleton
of ∆[3]:

a

3333333
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b

N(HK4) is “prettier” and a bit more ‘interesting’: Labelling the cosets from 1 to 6 in the order
given above, we have 6 vertices, 12 1-simplices and 4 2-simplices. For instance, {1, 3, 5} has the
identity in the intersection, {1, 4, 6} gives Ha ∩Hba ∩Hca, so contains a and so on. The picture is
of the shell of an octahedron with 4 of the faces removed.
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2

1

6

4
3

5

N(HK4)

From either diagram it is clear that π1HK4 is free of rank 3. Again explicit representations for
elements are easy to give. Using V (H) and the maximal tree given by the edges 1a, 1b and 1c, a
typical generating loop would be

1→ a→ b→ 1,

i.e., (1, a, b, 1) as the sequence of points. There is an obvious representative word for this, namely

1
a // a c // b

b // 1 .

In general, any based path at 1 in an V (G,H) will yield a word in tH, the free product of the
family H. We will think of the path as being represented by a (finite) sequence (f(n)) of elements
in G, linked by transitions, hi in the various subgroups. Whether or not that representative is
unique depends on whether or not there are non-trivial intersections and “nestings” between the
subgroups in the family H, since, for instance, if Hi is a subgroup of Hj , then if f(n) → f(n+ 1)
using g ∈ Hi, it could equally well be taken to be g ∈ Hj . As we have mentioned before, the
characteristic of the Vietoris-Volodin spaces, V (G,H), is that there is only one possible element of
G linking f(n) to the next f(n+ 1) namely f(n+ 1)f(n)−1, but this may be in several of the Hi.
We thus have a strong link between π1(V (G,H)) and t

∩
H, the ‘amalgamated product’ of H over

its intersections, and an analysis of homotopy classes will prove (later) that

π1(V (G,H), 1) ∼= Ker(t
∩
H → G),

since a based path (g1, g2, · · · , gn) ends at 1 if and only if the product g1 · · · gn = 1. These identifi-
cations will be investigated more fully shortly.

We note that composites of such ‘paths’ may involve two adjacent transitions between elements
being in the same Hi in which case we can use the rewriting system determined by the contractible
E(Hi) to simplify the representatives.

Example: The number of subgroups in H clearly determines the dimension of N(H), when
H = H(G,H). Here is another 3 subgroup example.

Take q8 = {1, i, j, k,−1,−i,−j,−k} to be the quaternion group, so i4 = j4 = k4 = 1, and ij = k.
Set Hi = {1,−1, i,−i} etc., so Hi ∩Hj = Hi ∩Hk = Hj ∩Hk = {1,−1} and let H = {Hi, Hj , Hk},
and Hq8 = H(q8,H).
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Then N(Hq8) is, as above in Example 4.3.9, a shell of an octahedron with 4 faces missing. Note
however that V (Hq8) has 8 vertices and, comparing with V (HK4), each edge of that diagram has
become enlarged to a 3-simplex. It is still feasible to work with V (Hq8) directly, but N(Hq8) gives
a clearer indication that

π1(Hq8, 1) is free of rank 3.

Example: Consider next the symmetric group, S3, given by the presentation

S3 := (x1, x2 | x2
1 = x2

2 = 1, (x1x2)3 = 1)

Take H1 = 〈x1〉, H2 = 〈x2〉, so both are of index 3. Each coset intersects two cosets in the other
list giving a nerve of form (see below):

so π1N(H(S3,H)) is infinite cyclic.

Example: The next symmetric group, S4, has presentation

S4 := (x1, x2, x3 | x2
1 = x2

2 = x2
3 = 1, (x1x2)3 = (x2x3)3 = 1, (x1x3)2 = 1).

Take H1 = 〈x1, x2〉, H2 = 〈x2, x3〉, H3 = 〈x1, x3〉. H1 and H2 are copies of S3, but H3 is isomorphic
to the Klein 4 group, K4. Thus there are 4 + 4 + 6 cosets in all. There are 36 pairwise intersections
and each edge is in two 2-simplices. Each vertex is either at the centre of a hexagon or a square,
depending on whether it corresponds to a coset of H1, H2 or of H3. There are 24 triangles, and
N(S4,H) is a surface. Calculation of the Euler characteristic gives 2, so this is a triangulation of
S2, the two sphere. (Thanks to Chris Wensley for help with the calculation using GAP.)

The fundamental group of N(S4,H) is thus trivial and, using the result mentioned above,

S4
∼= t
∩
Hi,

the coproduct of the subgroups amalgamated over the intersection.

Accepting Proposition 28 for the moment, we can examine an important class of examples.

Example: Some graphs of groups. Let us suppose that H = {H1, H2}, so just two sub-
groups of G, then we have

H1 t
H1∩H2

H2 → G.

This is an isomorphism if and only if N(H) is a connnected graph which has trivial fundamental
group, thus exactly when N(H) is a tree. The vertices of N(H) are the cosets in H1\GtH2\G and
H1g1 and H2g2 are connected by an edge if they intersect. This gives us one of the two basic types
of a graph of groups as defined by Serre, [? ? ],

H1 H1∩H2
H2
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corresponding to a free product with amalgamation. Note this does not seem to give us the other
basic type of graph of groups which corresponds to an HNN extension. We will see another connec-
tion with this theory a bit later or, more exactly, we will see a connection with the generalisation
complexes of groups due to Corson, [? ? ? ] and Haefliger, [? ? ] and developed extensively in
the book by Bridson and Haefliger, [? ].

We have now seen, somewhat informally, discussions of the low dimensional homotopy invariants
of these two nerves, both in examples and, to some extent, in general. We turn now to more formal
calculations of those, and in the process will prove Proposition 28.

We will approach the determination of the invariants in an ‘elementary’ but reasonably formal
way. We will repeat some arguments that we have already seen partially to get everything in the
same place, but also to impose some more consistent notation.

The set, π0(V (G,H)), of connected components: The vertex set of V (G,H) is the set of
elements of G, so we have to work out when two vertices, g and g′, are in the same connected
component.

Suppose they are connected by a path, that is a sequence of edges, (〈g0, g1〉, 〈g1, g2〉, . . . 〈gn−1, gn〉),
in V (G,H) and for some n. We have that an edge such as 〈g0, g1〉 has d0〈g0, g1〉 = g1 and
d1〈g0, g1〉 = g0 and it is an edge because there is some Hα1 ∈ H and some x1 ∈ G such that
g0 and g1 are in the coset Hα1x1. Of course, this means that there are h0, h1 ∈ Hα1 with g0 = h0x1

and g1 = h1x1, hence that g0g
−1
1 ∈ Hα1 . (Conversely if g0g

−1
1 ∈ Hα1 , then both g0 and g1 are in

Hα1g1, so 〈g0, g1〉 is an edge.)

We thus have from our path that there are indices α1, . . . , αn such that gi−1g
−1
i ∈ Hαi for

each i, whilst g = g0 and g′ = gn. We then note that gg′−1 is in 〈
⋃
H〉, the subgroup generated

by the union of the subgroups in the family H, so, if g and g′ are in the same component, then
gg′−1 ∈ 〈

⋃
H〉.

Conversely, suppose gg′−1 ∈ 〈
⋃
H〉, then there is a finite sequence of indices, α1, . . . , αn for

some n and elements hi ∈ Hαi such that gg′−1 = h1h2 . . . hn. We define g0 = g, gi = h−1
i gi−1 and

note that gi−1, gi ∈ Hαigi, thus giving us a path from g to gn = h−1
n gn−1 = h−1

n . . . h−1
1 g0 = g′.

We thus have proved that π0(V (G,H)) is in bijection with G/〈
⋃
H〉, that is the first part of

Proposition 28.

The fundamental group, π1(V (G,H), 1), and groupoid, Π1(V (G,H)): Although V (G,H)
comes with a natural choice of basepoint, namely 1, and we will eventually be looking at loops
at 1, it is more in tune with our just previous discussion to look at the fundamental groupoid
Π1(V (G,H)) rather than the fundamental group π1(V (G,H), 1) of V (G,H) based at 1. We will
sometimes abbreviate Π1(V (G,H)) to Π1H.

The set of objects of this groupoid will be the vertices of V (G,H) and so are the elements of G,
and the set of arrows Π1H(g, g′) will be the set of homotopy classes of paths from g to g′. We saw
that a path from, g to g′ corresponds to a finite sequence, h = (h1, h2, . . . , hn), of elements from
the various subgroups Hαi in H. It is convenient to write

g
(h1,h2,...,hn)−−−−−−−−→ g′ = g

h−→ g′,
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where h−1
n . . . h−1

1 g = g′. We can see that given two composable paths

g
h−→ g′

h′−→ g′
′
,

the defining sequence of the composite is given by the concatenation of the two sequences,

hh′ = (h1, h2, . . . , hn, h
′
1, h
′
2, . . . , h

′
m).

Remark: This notation is not quite accurate. The h does not indicate from where the arrow,
so labelled, starts. Of course, it is visually clear, but ‘really’ we should denote the arrows by (g, h),
so then

(g, h) · (h−1g, h′) = (g, hh′),

or similar. This is clearly a form related to, but not identical, to some sort of ‘action groupoid’, but
that does not quite fit. For a start, it does not give a groupoid as where are the inverses? It does
give a category, however. (It is left for you to check that 〈g0, g0〉 is the identity at the ‘object’
g0.)

the paths between the vertices are not the actual arrows in the fundamental groupoid Π1H. For
that we need to divide out by relations coming from 2-simplices.

For any simplicial complex or simplicial set, K, one can form the fundamental groupoid, (also
called in this context the edge path groupoid), by taking the free groupoid on the directed graph
given by the 1-skeleton and then dividing out by the 2-simplices. (We will see this several times
later; see pages 202, and ??. It is the classical edge-path groupoid to be found, for instance, in
Spanier’s book, [157].) The arrows are sequences of concatenated edges and then, if 〈v0, v1, v2〉 is a
2-simplex, we add a ‘relation’

〈v0, v1〉〈v1, v2〉 = 〈v0, v2〉,

or if you prefer, rewrite rules:
〈v0, v1〉〈v1, v2〉 ⇔ 〈v0, v2〉.

For Π1H, a 2-simplex in V (G,H) will, of course, be a triple, (g0, g1, g2), of elements of G contained
in some Hαx. We explore this in detail as before. There will be three elements, h0, h1, h2 in Hα

with gi = hix for i = 0, 1, 2 and thus gig
−1
j ∈ Hα, for each i and j.

Dividing out by these relations has several neat consequences which ‘control’ the paths and their
compositions. For instance, working in the simplicial set version of V (G,H), if we have 〈g0, g1〉 in
V (G,H), then 〈g1, g0〉 is there as well, and so is 〈g0, g0〉 and as 〈g0, g1, g0〉 is in V (G,H)2, we have
that

〈g0, g1〉〈g1, g0〉 = 〈g0, g0〉,

so 〈g0, g1〉 has 〈g1, g0〉 as its inverse. Another important result of these relations is that it allows
simplification of the path labelling sequences. Suppose we have a composite path

g0
h1−→ g1

h2−→ g2

which stays more than one step in a given coset, i.e., both h1 and h2 are in some Hα. In this case
we can clearly replace that path, up to homotopy, that is, modulo the relations, by

g0
h1h2−−−→ g2
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as 〈g0, g1, g2〉 is a 2-simplex. This means that every arrow in Π1H has a representative whose
corresponding sequence h corresponds to an element of the coproduct (aka free product), tHi, of
the groups in H. This is still not a unique representative however. We may have a situation

g0
h1−→ g1

h2−→ g2
h3−→ g3

where h1, h2 ∈ Hi and h2, h3 ∈ Hj , so we will have an overlap with 〈g0, g1〉〈g1, g2〉〈g2, g3〉 rewriting
both to 〈g0, g2〉〈g2, g3〉 and to 〈g0, g1〉〈g1, g3〉, and so we have to amalgamate the coproduct over
intersections.

Let us be a bit more precise about this. We form up a diagram of the subgroups Hi in H,
together with their pairwise intersections, Hi ∩Hj . We write H = t

∩
H for its colimit.

Definition: Given a family, H, of subgroups of G, its free product or coproduct amalgamated
along the intersections is the colimit, H, specified above.

This group, H, can be given as simple presentation. Take as set of generators a set, X = {xg |
g ∈

⋃
Hj}, in bijection with the elements of the union of the underlying sets of subgroups in H,

and for relations all xh1xh2 = xh1h2 where h1 and h2 are both in some group, Hi, of the family.
The inclusion of each Hj into G gives a cocone on the diagram of groups, so induces a homomor-

phism, p : t
∩
H → G, which will be essential in our description. This homomorphism, p, thus takes

a sequence h = (h1, . . . , hn) representing some element of H and evaluates it within G mapping it
to the product h1 . . . hn ∈ G.

Clearly we have

Proposition 32 The fundamental groupoid, Π1H, has for objects the elements of G and an arrow
from g to g′ is representable, uniquely, by an element h in t

∩
H such that g = p(h)g′. �

The proof is by comparison of the two presentations.

Corollary 6 There is an isomorphism

π1H ∼= Ker(p : t
∩
H → G)

Proof: The group π1(V (G,H), 1) is the vertex group at 1 of the edge path groupoid, so consists
of the hin H, which evaluate to 1, since here g = g′ = 1, i.e. the vertex group is just Ker p. �

This means that we have p : H → G, whose ‘cokernel’, G/p(H), ‘is’ π0(V (G,H)) and whose
kernel is π1(V (G,H), 1).

What about π2V (H)? We will limit ourselves, here, to a special case, and will merely quote
a result from the paper of Abels and Holz, [1]. We suppose as always that we are given (G,H)
and now assume that we use the standard presentation Pj := (Xj : Rj) of each Hj . Combining
these we get X =

⋃
Xj , R =

⋃
Rj . We have H is 2-generating for G if and only if P = (X,R) is

a presentation of G. (That is nice, since it says that there are no hidden extra relations needed,
and that corresponds to the intuitions that we were mentioning earlier. There is better to come!)
Assuming that P is a presentation of G, we have a module of identities, πP . We also have all
the πPj , the identity modules for each of the presentations, Pj . The inclusions of generators and
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relations induce morphisms of the crossed modules, C(Pj) → C(P), and hence of the modules
πPj → πP , although here there is the slight complication that this is a morphism of modules over
the inclusion of Hj into G, which we will not look further into here. We let πH be the sub G-module
of πP generated by the images of these πPj . We can think of πH as the sub-module of πP consisting
of those identities that come from the presentations of the subgroups.

In the above situation, i.e., with standard presentations for the subgroups, we have ([1] Cor.
2.9.)

Proposition 33 If H is 2-generating, then there is an isomorphism:

π2(N(H) ∼= πP/πH.

�

We should therefore, and in this case at least, interpret π2(N(H) as telling us about the 2-syzygies
that are not due to the presentations of the subgroups. We will give shortly a neat example of this
but first would note that this does not interpret the 2-type of V (H) in general, and that somehow
is a lack in the theory as developed so far. Abels and Holz do extend thie away from the standard
presentations of the subgroups, but this requires a bit more than we have available at this stage in
the notes so will be ‘put on hold’ until later.

This gives all the easily available data on these Vietoris-Volodin complexes as far as their
elementary homotopy information is concerned. We can, and will, extract more later on, but now
want to look at the main example for their original introduction.

4.3.10 Back to the Volodin model ...

Our ‘more complex family’ of section 4.3.3 leads to a link with higher algebraic K-theory in the
version developed initially by Volodin. The usual approach, however, uses a slightly different
notation and for some of its details ends up looking different, so here we will give the version of
that example nearer to that given by, for instance, Suslin and Wodzicki, [? ], or Song, [? ]. Let,
as before, R be an associative ring, and now let σ be a partial order on {1, . . . , n}. If i is less that

j in the partial order σ, it is convenient to write i
σ
< j. (Note that this means that some of the

elements may only be related to themselves and hence are really not playing a role in such a σ.)
We will write PO(n) for the set of partial orders of {1, . . . , n}.

Definition: We say an n× n matrix, A = (aij) is σ-triangular if, when i 6
σ
≤ j, aij = 0, and all

diagonal entries, aii are 1.

We let T σn (R) be the subgroup of G`n(R) formed by the σ-triangular matrices.

Lemma 24 If n ≥ 3, T σn (R) has a presentation with generators xij(a), where i
σ
< j and a ∈ R,

and with relations:

xij(a)xij(b) = xij(a+ b) i
σ
< j, a, b ∈ R

and
[xij(a), xjk(b)] = xik(ab) i

σ
< j

σ
< k, a, b ∈ R,
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xij(a)xk`(b) = xk`(b)xij(a), i 6= `, j 6= k, a, b ∈ R.

�

Remark: In fact, Kapranov and Saito, [113], mention that, not only is this a presentation of
T σn (R), but with the addition of the syzygies that they describe (and which up to dimension 2 are
those given in our section 4.1.2) gives a complete set of syzygies, of dimension 3.

We can ‘stablise’ the above, since it σ is a partial order on {1, . . . , n}, then it extends uniquely
to one on {1, . . . , n+ 1} by specifying that n+ 1 is related to itself in the extended version, but to
no other. (The notation and treatment for this is not itself that ‘stable’ and some sources do not
go into a detailed handling of this point, presumably because it is clear what is going on.) We will
write Tn = (G`n(R), Tn), where Tn = {T σn (R) | σ ∈ PO(n)}, and then, letting n ‘go to infinity’
write T for the corresponding system based on G`(R) with all σ-triangular subgroups for all partial
orders having finite ‘support’, i.e., in which outside some finite set, (its support), the partial order
is trivial.

Proposition 34 For n ≥ 3, the subgroup of G`n(R) generated by the union of the T σn (R) is En(R),
the elementary subgroup of G`n(R).

Proof: This should be more or less clear as, by definition, any elementary matrix is σ-triangular
for many σ’, and conversely, any T σn (R) is given as a subgroup of En(R). �

Corollary 7 The Volodin nerve, V (T), has

π0V (T) ∼= K1(R).

�

The obvious next question to pose is what π1(V (T), 1) will be. We know it to be the kernel of
t
∩
T σn (R)→ E(R), and the obvious guess would be that it was Milnor’s K2(R). That’s right. Proofs

are given in several places in the literature, but usually they require a bit more machinery than
we have been assuming up to this point in these notes, so we will not give one of those proofs
here. The most usual proofs use the natural action of G on N(H) and a covering space argument.
We will mention this in a bit more detail after we have looked at a sketch proof and will explore
aspects of this sort of approach more in a later chapter, but here will attempt to give that sketch
proof which, it is hoped, seems more direct and which starts from the descriptions of π0V (T) that
are consequences of what we have already done above. (We will still need a covering space-type
argument, which, since central extensions behave like covering spaces from many points of view,
is suggestive of a general approach that is, it seems, nowhere given in the literature with the
conceptual simplicity it seems to deserve. Kervaire’s treatment of universal central extensions, [? ],
perhaps goes some way towards what is needed.) We start by looking at paths in V (T), especially,
but not only, those which start at 1. We will be, in part, following Volodin’s original treatment in
[167] as this is very elementary and ‘constructive’ in nature. As we said above, he uses covering
space intuitions as well, as this seems almost optimal for the identification we need. (Remember
that one classical construction of universal covering spaces is from the space of paths that start at
the base point, followed by quotienting by fixed end point homotopy as a relation.)
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A path in V (T) as it is of finite length, must live in some V (Tn). We thus can represent it by
a pair, (g, t), with t = (t1, . . . , tk) for some k, a word with each ti in some T σin (R), and g in En(R)
which will be the starting element of the path. (Of course, this representation is not unique, because
of the amalgamated subgroups, and we will need to break each ti up as a product of elementary
matrices shortly. The non-uniqueness will be taken account of later on.)

We say that ti is a segment of the path, and that the paths is elementary if all the tis used are
elementary matrices.

We now need some ‘elementary’ linear algebra. We will look at it with respect to the standard
maximal linear order on {1, . . . , n} and hence for upper triangular matrices.

Lemma 25 Let B = (bij) be an upper triangular matrix (with 1s on its diagonal), so bij is zero if
j < i. There is a factorisation

B =
∏
(i,j)

eij(bij),

with the order of multiplication given by increasing lexicographic order, so (i, j) > (i1, j1) if either
a) j > j1 of b) j = j1 and i > i1. �

The proof should be obvious.

We can replace tk by a path consisting only of elementary matrices (for the ordering σi) and

with the order of terms given by a lexicographic order in the (i, j)s relative to
σi
<. The resulting

tk =
∏

(i,j) eij(bij) and can be ‘lifted’ to an element

tk =
∏
(i,j)

eij(xij) ∈ Stn(R).

This element maps down to the element tk in En(R).

Suppose s is a loop, based at 1, in V (T), but consisting just of elementary matrices in some
T σkn (R). (We will say s is an elementary loop. We will work with the standard linear order.) As s is
a loop at 1, it has a representation as (1, s), where s = (s1, . . . , sN ) and the sks are in lexicographic
order, each sk is some eij(aij) and, as the path s is a loop,

∏
(i,j) eij(aij) = 1.

Lemma 26 If s is an elementary loop at 1 in Tn(R), then its lift s is 1 ∈ Stn(R).

Before giving a proof, remember the intuition that seems to be built in Volodin’s approach. The
T σn (R) are seen as patches over which there is a way of lifting paths, so you decompose a long
path into bits in the various patches, and then lift them successively. The lifted bits give elements
in Stn(R), and ‘up there’ we have divided out by the homotopy that comes from the relations /
rewriting 2-cells. In each patch we expect to get that the lift of s that we are using gives a trivial
element (i.e. something like a null-homotopic loop. We thus expect to have to use the presentation
of St(R) and, in particular, the embryonic homotopies given by the rewriting 2-cells / relations.
As we will see that is exactly what happens.

Proof: We let m be larger than all the i, j involved in the expression for s. (We will gen-
erally write xij(a) etc where a is variable and is really just a ‘place marker’.) As xim(a)xkj(b) =
xkj(b)xim(a) for i 6= j, k 6= m, and

xim(a)xki(b) = xkm(−ab)xki(b)xim(a) = xki(b)xkm(−ab)xim(a),
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we can move all terms of form xim(a) to the right of the product expression for s. In Stm(R), we
thus have ∏

i<j≤m
xij(a) =

∏
i<j≤m−1

xij(a) ·
∏
i<m

xim(a),

where, as we said, the a is just a place marker. We thus have that s in St(R) can be decomposed
as the product of two parts corresponding to loops (down in E(R)). These are

∏
i<j≤m−1 xij(a)

and
∏
i<m xim(a). (As this latter is in the subgroup of Stm(R) generated by the xim(a), this must

itself evaluate to 1 as the product does, hence also the other factor must.) Working on the product∏
i<m xim(a) and using the facts firstly that the terms commute with each other by the first rule

we recalled above, and then using the first Steinberg relation: St1 : xim(a)xim(b) = xim(a+ b), we
can now check that this word must itself be trivial as it evaluates to 1.

We now can use backwards induction on m to gradually you get back to the minimal value
possible and get the result. �

Corollary 8 If s is an elementary loop in some T σn (R), then the corresponding lifted word in St(R)
is trivial.

Proof: We have done most of this, except it was in the case of the standard linear order. One can
either adapt the above to the general case, or more neatly note that s conjugates, using permutation
matrices, to give an element in that linear case. The lifting goes across to St(R) and so the result
follows after a bit of checking. �

Now look at any path in V (T), starting at 1. Take an elementary representative and examine

the initial segment, 1
t1−→ t−1

1 , so t1 ∈ T σ1n (R). We can lift t1 to give an element t1 ∈ Stn(R).
This will, in general, depend on the choice of σ1, but if σ′1 is another possible partial order (i.e.,

t1 ∈ T σ1n (R) ∩ T σ
′
1

n (R), then the resulting two lifts of t1 will form a ‘loop’ t1 · t′
−1
1 in Stn(R), but

then this loop must be trivial by the lemma and its corollary. We pass to the next ‘node’ in the
path and continue. The next segment does not start at 1, but the argument adapts easily as the
corresponding labelling element in the coproduct with amalgamation is all that is used.

This gives that each path s in V (T) uniquely determines an element s in St(R). It is now fairly
clear where the argument has to go. The standard classical construction of a universal covering
space is via paths starting at some base point ‘modulo’ fixed endpoint homotopy, so one checks
that homotopic paths lift to the same element of St(R). (This is Volodin’s Lemma 3.4 of [167], but
it is easy to see how it is to go.) Volodin is using the ‘patches’ given by the T σn (R) to lift a path in
En(R). (This mix of topological intuition with combinatorics and algebra is the starting point of
Bak’s theory of global actions, [14, 15], that was mentioned earlier.)

It is now feasible to complete the proof à la Volodin, that the universal cover of V (En(R), {T σn (R)})
is ‘related to’ Stn(R), but that is not really satisfactory as it mixes the categories in which we are
working. (A simplicial complex is not a group!) We have a more limited aim, namely to note that
if we have an element in π1(V (T), 1), then we can pick a loop, s, representing it. We can lift s
uniquely by lifting over each ‘patch’ T σn (R) that it uses, to obtain an element in St(R), but as it
is a loop its evaluation, back down in G`(R) will be trivial. (Topologically its endpoint is over
the basepoint!) It is in the kernel of the homomorphism from St(R) to G`(R), so determines an
element of K2(R). Finally one reverses the argument to say that if s ∈ K2(R), then it is in the
image of this morphism. We have thus given an idea of how Volodin’s theorem, below, can be
proved, using fairly elementary ideas.
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Theorem 7 (Volodin, [167], Theorem 2)

π1(V (T), 1) ∼= K2(R).

�

Remark: The usual proofs of this result given in more recent sources tend to use the classifying
spaces, BT σn (R) together with the induced mappings to BG`(R) to obtain⋃

BT σn (R)→ BG`(R),

which is then shown to give the ‘homotopy fibre’ of the map to BG`(R)+. This does seem slightly
too reliant on spatially based methods from homotopy theory and a more purely combinatorial
group theoretic or ‘rewriting’ analysis of the constructions, related to Volodin’s original proof,
should be possible.

We hope to return to the study of the Volodin model for higher algebraic K-theory later on,
but are near to the limit of what can be done with the limited tools at our disposal here, so will
put it aside for the moment.

4.3.11 The case of van Kampen’s theorem and presentations of pushouts

The above example / case study coming from algebraic K-theory is very rich in its structure and
its applications, but is complex, so we will return to a simpler situation to indicate the direction
that this theory of ‘higher generation by subgroups’ can lead us to. To motivate this recall the
formulation of the classical form of van Kampen’s theorem.

Theorem 8 (van Kampen) Let X = U ∪ V , where U , V and U ∩ V are non-empty, open and
arc-wise connected. Let x0 ∈ U ∩ V be chosen as a base point, then the diagram

π1(U ∩ V )
jV ∗ //

jU∗
��

π1(V )

iV ∗
��

π1(U)
iU∗

// π1(X)

is a pushout square of groups, where each fundamental group is based at x0. �

Proofs can be found in many places in ‘the literature’, for instance, in Massey’s introduction, [? ],
or in Crowell and Fox, [57]. A proof of a neat more general form of the result is given in Brown’s
book, [36]. There the result is given in terms of fundamental groupoids, which is very useful for
many applications and several variants are also given there. We may have need for some of these
later on, but for the moment what we want is the version in terms of group presentations, cf. [57],
page 71, for example. This just translates the above pushout result into one about presentations.

Theorem 9 (van Kampen: alternative form) Let X = U ∪ V , etc., be as above. Suppose

• that π1(U, x0) has a presentation, (X : R),

• that π1(V, x0) has a presentation, (Y : S),
and
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• that π1(U ∩ V, x0) has one, (Z : T),

then π1(X,x0) has a presentation,

(X ∪Y : R ∪ S ∪ {(jU∗(z))(jV ∗(z))−1 | z ∈ Z}),

where jU∗(z) is a word in the free group, F (X) representing jU∗(z), and similarly for jV ∗(z). �

This form gives a way of calculating a presentation, P, of π1(X,x0) given presentations of the
parts. If we see a presentation as the first part of a recipe to construct a resolution of a group, or
alternatively to construct an Eilenberg-Mac Lane space for the group, then this is useful and, of
course, is used in courses on elementary algebraic topology to calculate the fundamental groups of
surfaces. The obvious points to note are that the we take the union of the two generating sets, X
and Y, to be the generating set of π1(X,x0), but use the generators in Z to help form relations
in the pushout presentation, then we use the union of the two sets of relations to give the other
relations (which seems sort of natural). This leaves a query. Whatever happened to the relations
in the presentation of π1(U ∩ V, x0)? To get some idea of what they do, think along the following
somewhat vague lines. As those relations correspond to maps of 2-discs into the complex, K(P),
of the presentation, P, used to ‘kill’ the corresponding words, we have two 2-discs with ‘the same’
boundary and hence map of a 2-sphere into K(P) with no reason for it being homotopically trivial.
This suggests that the relations in T are going to give homotopical 2-syzygies, and this is the case.
It also suggests that to build an Eilenberg-MacLane / classifying space from the presentation, P, we
could do worse than take the pushout of the complexes of the various other presentations involved.

It is a good idea to abstract this out a bit away from the van Kampen situation for the moment.
We suppose that G = A∗CB is a ‘free product with amalgamation’, so we can describe G by means
of a pushout of groups:

C
j //

i
��

B

i′

��
A

j′
// G

It is a standard result that if i and j are injective, then so are i′ and j′.

The van Kampen examples can be too complex to work through, but we can in fact gain some
intuition about them from one of the simplest examples of such situations. Consider the trefoil
knot group, G(T2,3). This has a presentation (a, b : a3b−2 = 1). It is therefore an amalgamated
coproduct / pushout of three infinite cyclic groups:

(z : ∅) j //

i
��

(b : ∅)

��
(a : ∅) // G(T2,3)

where i(z) = a3 and j(z) = b2. We note that all the input presentations are with empty sets of
relations, yet G(T2,3) has a single non-trivial relation. If we took the complexes of each presentation,
we would merely have a circle for each, and that of the presentation of G(T2,3) has to have a 2-cell
in it, hence we can see that the construction of the presentation of G(T2,3) does not just result from
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a ‘pushout of presentations’ ! (In fact, what is needed is a homotopy pushout, or, in more general
situations than the pushout of a diagram of group, a homotopy colimit. We will say a bit more on
this shortly.) We now return to our general situation.

Our abstracted situation is that we have presentations,PQ = (XQ : RQ) for Q = A,B and C,
and get the corresponding presentation for G, given by the analogue of that in the above discussion.
We take complexes K(PQ modelling each of the presentations in turn. The morphisms between
the groups in the diagram lift give a diagram

K(PC)
j∗ //

i∗
��

K(PB)

i′∗
��

K(PA)
j′∗

// K(PG)

but as the lifts have to be chosen, they are only determined up to homotopy, and this will in general
only be a square that is homotopy coherent, i.e., commutative up to a specified homotopy, (see the
later discussion in Chapter 11). In fact, as we do not know that i∗ and j∗ are injective, the result
need not be a pushout, so does not tell us much. An alternative is to see what we can construct
from the ‘corner’:

K(PC)
j∗ //

i∗
��

K(PB)

K(PA)

from this we can take its ‘homotopy pushout’ which begins to be more like the square we had. We
have not met this construction yet; it is a double mapping cylinder. This would form a cylinder
on K(PC) and use the maps to glue copies of the other spaces to its two ends. In here, we will be
getting a cylinder with the discs corresponding to the relations in PC and these will to cylindrical
2-cells in that double mapping cylinder and hence to a potential homotopical 2-syzygy. This will
be picked up by the crossed module of that space or better still the crossed complex. An analysis of
this can be found in Brown-Higgins-Sivera, [41], starting on page 338. This is based on an earlier
paper by Brown, Moore, Porter and Wensley, [45]. (As an exercise, it is worth looking at the
trefoil group from this viewpoint and to draw what intuitively the mapping cylinder must look
like ... as much as this is feasible.)

We have used this discussion above for two main reasons, first to suggest that the situation
naturally leads to having to take the homotopies seriously and that implies a study of (at least
some) homotopy coherence theory, and homotopy colimits in particular. The other reason is that
it suggests that it provides a key set of concepts, as yet at a vague intuitive level, to understand
more fully the theory of ‘higher generation by subgroups’ of Abels and Holz, [1]. If we get our
group G, and a 1-generating family of subgroups, H, and want to work out the ‘syzygies of G’, i.e.,
some combinatorial information to enable a (crossed) resolution or a small model of a K(G, 1) to be
formed, then the idea is that by calculating the syzygies of each of the input groups, the n-syzygies
of G should involve those of the His, but also the (n − 1)-syzygies of the pairwise intersections,
Hi∩Hj , and then, why not, the (n−2)-syzygies of the triple intersections, and so on. We certainly
do not have the machinery to pursue this here, and so will leave it vague.
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(In addition to the above references on the pushout, which use homotopy colimits of crossed
complexes over groupoids, the original paper of Abels and Holz, [1], also uses homotopy colimit
techniques, but this time with chain complexes. It uses these to prove results on the homological
finiteness properties of certain groups. That paper is well worth reading. This use of homotopy
colimits is also explored in Stephan Holz’s thesis, [98].)



Chapter 5

Beyond 2-types

The title of this chapter promises to go beyond 2-types and in particular, we want to model them
algebraically. We have so far only done this with the crossed complexes. These do give all the
homotopy groups of a simplicial group, but the homotopy types they represent are of a fairly
simple type, as they have vanishing Whitehead products.

We will return to crossed complexes later on, but will first look at the general idea of n-types,
going into what was said earlier in more detail.

5.1 n-types and decompositions of homotopy types

We will start with a fairly classical treatment of the ideas behind the idea of n-types of topological
spaces.

5.1.1 n-types of spaces

We earlier (starting in section 3.7.1) discussed ‘n-equivalences’ and ‘n-types’. As homotopy types
are enormously complex in structure, we can try to study them by ‘filtering’ that information
in various ways, thus attempting to see how the information at the nth-level depends on that at
lower levels. The informational filtration by n-type is very algebraic and very natural. It has two
very satisfying interacting aspects. It gives complete models for a subclass of homotopy types,
namely those whose homotopy groups vanish for all high enough n, but, at the same time, gives a
set of approximating notions of equivalence that, on all ‘spaces’, give useful information on weak
equivalences.

We start with one version of the topological notion:

Definition: Given a cellular mapping, f : (X,x0)→ (Y, y0), between connected pointed spaces,
f is said to be an n-equivalence if the induced homomorphisms, πk(f) : πk(X,x0)→ πk(Y, y0), for
1 ≤ k ≤ n, are all isomorphisms. More generally, on relaxing the connectedness requirements on
the spaces, a cellular mapping, f : X → Y , is an n-equivalence if it induces a bijection on π0, that
is, π0(f) : π0(X)→ π0(Y ) is a bijection, and for each x0 ∈ X and 1 ≤ k ≤ n, πk(f) : πk(X,x0)→
πk(Y, f(x0)) is an isomorphism.

Remark: It is important to note that here the mappings are cellular, not just continuous. We
will see consequences of this later.

143
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There are alternative descriptions and these can be useful. We recall them next, emphasis-
ing certain facts and viewpoints that perhaps have not yet been stressed enough in our earlier
treatments, but can be useful for our use of these ideas here.

We start by recalling some standard notions of classical homotopy theory. We let CW be
the category of all CW-complexes and cellular maps, and CWc∗ be the corresponding category of
pointed connected complexes, again with cellular maps. (The notions below generalise easily to
the non-connected multi-pointed case.) If X is such a CW-complex, then we will write Xn for its
n-skeleton, that is, the union of all the cells in X of dimension at most n. We say that X has
dimension n if X = Xn.

It is important to remember that the homotopy type of Xn is not an invariant of the homotopy
type of X. (Just think about subdivision if you are in doubt about this.) It was partially to handle
this that Whitehead introduced the notion of N -type, as this does give such invariants. The two
ways of viewing n-types, which we have already mentioned, are both important. We recall that in
one, they are certain equivalence classes of CW-complexes, whilst in the other, they are homotopy
types of certain spaces with special characteristics. (Useful sources for this topic include Baues’
Handbook article on ‘Homotopy Types’, [21].)

Let CWn+1
c∗ be the full subcategory of CWc∗ consisting of complexes of dimension ≤ n+ 1. (To

emphasise where we are working, we will sometimes write Xn+1, Y n+1, etc. for objects here.) Let
f, g : Xn+1 → Y n+1 be two maps in CWn+1

c∗ and f |Xn , g|Xn : Xn → Y n+1 their restrictions to the
n-skeleton of X. (Note that the codomain is still the n+ 1-skeleton of Y .)

Definition: We say f , and g, as above, are n-homotopic if f |Xn ' g|Xn (that is, within Y n+1).
We write f 'n g in this case.

It can be useful to remember that f and g, in this, need only be defined on the (n+ 1)-skeleton
of X. (This statement is true, but is deliberately silly. We, in fact, assumed that X had dimension
≤ n + 1, but what we said is still useful, since if we have any complex, X, we can restrict to its
(n+ 1)-skeleton, Xn+1, yet do not need f or g to be defined on all of X, merely on Xn+1.)

Our first version of (connected) n-types, in this approach, is obtained by taking CWn+1
c∗ / 'n,

that is, taking the complexes of dimension ≤ n+ 1 and the cellular maps between them, and then
dividing out the hom-sets by the equivalence relation, 'n. From this perspective, we have:

Definition: (à là Whitehead.) A connected n-type is an isomorphism class in the category,
CWn+1

c∗ / 'n.

That sets up, a bit more formally, the first type of description of n-types. If we have a connected
CW-complex, X, then we assign to it the isomorphism class of Xn+1 in CWn+1

c∗ / 'n (for any choice
of base point) to get its n-type. From this viewpoint, we get a notion of n-equivalence from the
notion of n-homotopy:

Definition: A cellular map, f : X → Y , between CW-complexes is an n-equivalence if fn+1 :
Xn+1 → Y n+1 gives an isomorphism in CWn+1

c∗ / 'n.
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This is also called n-homotopy equivalence, with the earlier version, that based on the homotopy
groups, then called n-weak equivalence. It amounts to fn+1 having a n-homotopy inverse, gn+1 :
Y n+1 → Xn+1, so fn+1gn+1 'n 1Y n+1 gn+1fn+1 'n 1Xn+1 . Here it is not claimed that there is
some g : Y → X that extends gn+1 to the whole of Y , merely there is a map, g, defined on the
(n+ 1)-skeleton.

(These are stated for connected spaces, but as usual the extension to non-connected complexes
is easy to do.)

Let us take these ideas apart one stage more. Suppose that P is a CW-complex of dimension
≤ n, and f : X → Y is a n-equivalence in the above sense. We note that, as we are looking at
cellular maps and cellular homotopies, the inclusion in+1 : Xn+1 → X induces a bijection

[P, in+1] : [P,Xn+1]→ [P,X],

but then it is clear that

[P, f ] : [P,X]→ [P, Y ]

is also a bijection. (Note that if we had required P to have dimension n + 1, then [P, in+1] :
[P,Xn+1] → [P,X] might not be injective as two non-homotopic maps with image in Xn+1 may
be homotopic within the whole of X. That being so [P, in+1] will be surjective, but just not a
bijection. The same would be true for [P, f ].)

So much for the first viewpoint, i.e., as equivalence classes of objects in CWc∗. For the second
approach, that is, n-types as homotopy types of certain spaces delineated by conditions, we work
in the bigger category of (pointed connected) CW-complexes and all continuous maps, i.e., not
just the cellular ones (although, remember, the classical cellular approximation theorem tells us
that any (general continuous) map is homotopic to a cellular one). We will temporarily call this
category ‘spaces’, (following the treatment in Baues’ Handbook article, [21]). We form spaces/ ',
the quotient category of ‘spaces’ and homotopy classes of maps.

Definition: The subcategory, n−types, of spaces/ ', is the full subcategory consisting of
spaces, X, with πi(X) = 0 for i > n. Such spaces, or their homotopy types, may also be called
n-types. The generalisation to the non-connected case should be clear.

We now have two different definitions of n-type of CW-complexes (and that is without men-
tioning n-types of simplicial sets, simplicial groups S-groupoids, etc.). We need to check on the
relationship between them. For this, we introduce Postnikov functors and in a later section will
study the related Postnikov tower that decomposes a homotopy type. Note the Postnikov functors
are usually defined so as to be functorial at the level of the homotopy categories, not at the level
of the spaces and maps, although this is possible. We will comment on this a bit more later on,
but let us describe the main ideas first as these directly relate to the comparison of the two ways
of approaching n-types.

Definition: The nth Postnikov functor,

Pn : CWc∗/ '→ n−types
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is defined by killing homotopy groups above dimension n, that is, we choose a CW-complex, PnX,
with

(PnX)n+1 = Xn+1,

and, by attaching cells to X in dimensions > n, with πi(PnX) = 0 for i > n. If f : X → Y is a
cellular map, we choose a map Pnf : PnX → PnY , so that (Pnf)n+1 = fn+1. The functor Pn takes
the homotopy class, [f ], to [Pnf ].

The first point to note is that the choices are absorbed by the homotopy. To examine this more
deeply we make several:

Remarks: (i) First a word about ‘killing homotopy groups’. (This is very like the construction
of resolutions of a group.)

Suppose that we have a space, X, and a set of representatives, ϕg : Sn+1 → X, of generators,
g, of the homotopy group, πn+1(X), then we form

X(1) := X t{ϕg}
⊔
g

Dn+2,

i.e., we glue (n + 2)-dimensional discs to X, along their boundaries, using the representing maps.
We now take πn+2(X(1)) and a generating set for that, form X(2) by the same sort of construction,
and continue to higher dimensions.

If f : X → Y , then each f(ϕg) : Sn+1 → Y defines an element of πn+1(Y ), and this will be
‘killed’ within πn+1(Y (1)). There is thus a null homotopy for that map within Y (1). We choose
one such and use it to extend f over the disc attached by ϕg. Doing this for each generator, we
extend f to f(1) : X(1)→ Y (1), and so on.

This is unbelievably non-canonical and non-functorial at the level of spaces, but the different
choices can fairly easily be shown to yield homotopy equivalent spaces and homotopic maps. This
is discussed in many of the standard algebraic topology textbooks, see, for instance, Hatcher, [92].

The basis of these constructions is a simple extension lemma, (cf. Hatcher, [92], lemma 4.7,
p.350, for instance).

Lemma 27 Given a CW pair, (X,A), and a map, f : A→ Y , with Y path connected, then f can
be extended to a map X → Y if πn−1(Y ) = 0 for all n such that X −A has cells in dimension n.�

(ii) Things are clearer when working with simplicial sets as we will see shortly. In that case,
there is a good functorial ‘Postnikov tower’ of Postnikov functors, defined at the level of simplicial
sets, and morphisms and not merely at the homotopy level. That works beautifully for what we
need, but at the slight cost of moving from ‘spaces’ to simplicial sets, there using Kan complexes
(which is no real bother, as singular complexes are Kan), and finally taking geometric realisations
to get back to the spaces. As we said, we will look at this shortly.

There are inclusion maps, Pn(X) : X → PnX, whose homotopy classes give a natural trans-
formation from the identity to Pn. (This is defined on the homotopy categories of course.) For
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f : X → Y in CWc∗, then Pnf can be chosen to make the square

X
f //

pn(X)
��

Y

pn(Y )
��

PnX Pnf
// PnY

commutative ‘on the nose’. We note that these maps make each (Pn+1X,X) into a CW-pair and,
as Pn+1X−X has only cells of dimension n+3 or greater, and πi(PnX) = 0 in those dimensions, we
can apply the extension lemma to the map, pn(X) : X → PnX and thus extend it to Pn+1X, giving
pn+1
n (X) : Pn+1X → PnX, and this satisfies pn+1

n (X) · pn+1(X) = pn(X). These map, pn+1
n (X) fit

into a tower diagram with a ‘cone’ of maps from X:

...

��
P3X

p32(X)
��

P2X

p21(X)
��

X
p1(X)
//

p2(X)yyyy

<<yyy

p3(X)
�������

EE�������

HH�
�

�
�

�
�

�
�

�
�

�
�

P1(X)

The limit of the tower is isomorphic to X itself. This is known as a Postnikov tower for X. We
will return to such towers in section 5.1.3.

It is useful to refer to X → PnX, or more loosely to PnX as a Postnikov section of X, or as
the nth-Postnikov section of X, even though it is only determined up to homotopy equivalence.

We return to the nth Postnikov functor, Pn, and can use it to define n-equivalences in a different
way.

Definition: A map, f : X → Y , is called a Pn-equivalence if the induced morphism, [Pnf ], in
n−types is an isomorphism.

Of course, we expect these Pn-equivalences to just be n-equivalences under another name. To
examine this, we look again at Pn.

We had the Postnikov functor:

Pn : CWc∗/ '→ n−types.

If we look at CWn+1
c∗ / 'n, we need to see that a Pn construction adapts to give a functor

Pn : CWn+1
c∗ / 'n→ n−types,



148 CHAPTER 5. BEYOND 2-TYPES

as this does not follow trivially from the previous case. Suppose X and Y are (n+ 1)-dimensional
connected pointed CW complexes and f 'n g : X → Y , then f |Xn ' g|Xn . We have to check that
Pnf ' Png.

We have some h : f |Xn ' g|Xn : Xn × I → Y n+1 ↪→ PnY , and also have the map from
PnX × {0, 1} to PnY given by Pnf and Png. These are compatible so define a map from the
subcomplex, Xn× I ∪PnX ×{0, 1} of PnX × I, to PnY . The cells in PnX × I that are not in that
subcomplex, all have dimension n+ 3 or greater, since Pn is obtained from Xn+1 by adding cells.
We have πi(PnY ) = 0 for i > n, so an application of the extension lemma gives us an extension ver
PnX × I giving a homotopy between Pnf and Png, as required. This proves

Lemma 28 Pn give a functor from CWn+1
c∗ / 'n to n−types. �

We claim that this functor is an equivalence of categories, which will show, after a bit more
checking, that the two notions of n-equivalence coincide and will relate the main notions of (topo-
logical) homotopy n-types.

To prove that Pn is an equivalence of categories, it is, perhaps, easiest to look for a functor
in the opposite sense that might serve as a ‘quasi-inverse’. If we have that X is a (connected,
pointed) CW-complex with πi(X) = 0 for i > n, then we can take its (n + 1)-skeleton, Xn+1 to
get something in CWn+1

c∗ . This is not quite a functor, since not all the morphisms in spaces are
cellular. Each continuous map between such complexes is homotopic to a cellular map, but, whilst
taking the (n+ 1)-skeleton is a functor with respect to cellular maps, we have to verify that if we
choose two cellular approximations for some f : X → Y , then their (n+ 1)-skeletons are, at least,
n-homotopic.

Suppose that f0, f1 : X → Y are two cellular maps between n-types (to be thought of, in the
first instance, as two ‘rival’ cellular approximations to some f : X → Y ). We assume they are
homotopic by a homotopy h : f0 ' f1, which again using cellular approximation, can be assumed
to be a cellular homotopy. We take fn+1

0 and fn+1
1 and see if they are n-homotopic.- Yes they are.

They may not be homotopic, since h may use n + 2-cells in the process of ‘homotoping’ between
fn+1

0 and fn+1
1 within Y , but F0|Xn and f1|Xn are homotopic via h restricted to Xn×I, i.e., exactly

what is needed.

We have checked not only that our idea of taking (n+1)-skeletons is compatible with the cellular
approximations, but also that that assignment induces a functor from n−types to CWn+1

c∗ / 'n.
(Of course, in fact, this is the restriction of a functor from spaces to CWc∗/ 'n, as we nowhere use
that X and Y were n-types.)

Theorem 10 The nth Postnikov functor, Pn, gives an equivalence of categories between CWc∗/ 'n
and n−types. A quasi inverse is given by the (n+ 1)-skeleton functor.

Proof: We examine the two composite functors.

If X is in CWc∗, then (PnX)n+1 = Xn+1, by definition. The inclusion of Xn+1 into X gives an
isomorphism in CWc∗/ 'n, since 'n uses nothing in X above dimension n+ 1.

The other composite starts with an n-type, Y , say, takes Y n+1, then forms Pn(Y n+1). The
inclusion of Y n+1 into Y extends by the extension lemma, to a map Pn(Y n+1)→ Y , which induces



5.1. N -TYPES AND DECOMPOSITIONS OF HOMOTOPY TYPES 149

isomorphisms on all homotopy groups, so is a weak homotopy equivalence, and thus, as we are han-
dling CW-complexes, is a homotopy equivalence, i.e., an isomorphism in n−types, which completes
the proof. �

Remark: It is worth noting that, in the above, we have ‘naturally’ defined maps from X to
(PnX)n+1 and from Pn(Y n+1) to Y , which suggests an adjointness behind the equivalence. In fact,
we actually did not assume that X was in CWn+1

c∗ / 'n, so, in some sense, proved that n−types
was equivalent to a homotopically reflective subcategory of CWc∗. (Of course, connectedness has
nothing to do with the picture and was for convenience only.)

We thus have a fairly complete picture of homotopy n-types and n-equivalence in the topological
case. If f : X → Y is such that [Pnf ] is an isomorphism in n−types, then [fn+1] is an isomorphism
in CWn+1

c∗ / 'n, hence an n-equivalence á lá Whitehead.

If X and Y are (connected, pointed) (n + 1)-dimensional CW-complexes, and f : X → Y is
cellular, then f is an n-equivalence if, and only if, it induces isomorphisms on all πi for i ≤ n. In
general, i.e., with no dimensional constraint, as we have defined it, f is an n-equivalence if, and
only if fn+1 is an n-equivalence in this more restricted sense.

We write Hon(Top) for the category of CW-complexes (or more generally, topological spaces,
after inverting the n-equivalences. If we are just considering the CW-complexes, this is just the same
as n−types up to equivalence and n-types are just isomorphism classes of objects in this category.
(If considering spaces other than those having the homotopy types of CW-complexes, then this is
better thought of as the singular n-types, but we will not usually need this level of generality in our
development.) It seems that, in his original thoughts on algebraic homotopy theory, Whitehead
hoped to find algebraic models for n-types, that is, to find algebraic descriptions of isomorphism
classes of spaces within Hon(Top). Classifying 1-types is ‘easy’ as they have models that are just
groups, so classification reduces to classifying groups up to isomorphism. This is still not an easy
task, but there are a wide range of tools available for it. As was previously mentioned, Mac Lane
and Whitehead, [126], gave a complete algebraic model for 2-types. (Note: their 3-types are modern
terminology’s 2-types.) The model they proposed was the crossed module and we have seen the
extension of their result to n-types given by Loday.

It should be pointed out that, although n-equivalence is defined in terms of the πk, 0 ≤ k ≤ n,
the interactions between the various πks mean that not every sequence {ϕk : πk(X)→ πk(Y )}0≤k≤n
can be realised as the induced morphisms coming from some f : X → Y , even if the ϕk are all
isomorphisms.

One approach that we will be looking at in our exploration of the basics of Whitehead’s idea of
Algebraic Homotopy and its implications and developments, is to convert the problems to ones in
the study simplicial groups or, more generally, in S-groupoids. For this we will need a knowledge
of the corresponding theory for n-types of simplicial sets. This is very elegant, so would, in any
case, be worth looking at in some detail.
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5.1.2 n-types of simplicial sets and the coskeleton functors

(Sources for this section include, at a fairly introductory level, the description of the coskeleton
functors in Duskin’s Memoir, [65], his paper, [68], and Beke’s paper, [23]. There is also a description
of the skeleton and coskeleton constructions in the nLab, [145], (search on ‘simplicial skeleton’).
The original introduction of this construction would seem to be by Verdier in SGA4, [7], with an
early use being in Artin and Mazur’s Étale homotopy, Lecture Notes, [9].)

First let us summarise some basic ideas. For simplicial sets and simplicially enriched group(oid)s,
the definitions of n-equivalence are analogous, and we give them now for convenience:

Definition: For f : G→ H a morphism of S-groupoids, f is an n-equivalence if π0f : π0G→
π0H is an equivalence of the fundamental groupoids of G and H and for each object x ∈ Ob(G)
and each k, 1 ≤ k ≤ n,

πkf : πk(G{x})→ πk(H{f(x)})

is an isomorphism.

We write Hon(S−Grpd) for the corresponding category of n-types, i.e., S−Grpd(Σ−1
n ), where

Σn is the class of all n-equivalences of S-groupoids. An n-type of S-groupoids is atreatment of
coskeletons was by verdier,n isomorphism class within Hon(S−Grpd).

Cautionary note: If K is a simplicial set, then as πk(K) ∼= πk−1(GK), the n-type of K
corresponds to the (n− 1)-type of GK.

We need to look at simplicial n-types, in general, and in some more detail, and will start by
the theory for simplicial sets. On a first reading the above summary may suffice.

The theory sketched out in the previous section uses the (n + 1)- and n-skeletons of a CW-
complex in a neat way. If we go over to simplicial sets as models for homotopy types then skeletons
are easy to define, but some points do need making about them.

The n-skeleton of a CW-complex is the union of all cells of dimension less than or equal to
n, so the set of higher dimensional cells in an n-skeleton is, clearly, empty. On the other hand,
a simplicial set, K, has in addition to the simplices in each dimension, the face and degeneracy
operators, i.e., the various di : Kn → Kn−1 and sj : Kn → Kn+1, so to get the n-skeleton of K,
we cannot just take the k-simplices for k ≤ n, throwing away everything in higher dimensions, and
hope to get a simplicial set. If σ ∈ Kn, then the sjσ are in Kn+1, so Kn+1 cannot be empty. The
point is rather that, in the n-skeleton, all simplices in dimensions greater than n will be degenerate.

Our first task, therefore, is to set this up more abstractly and categorically. A simplicial set, K
is a functor, K : ∆op → Sets and we want to restrict attention to those parts of K in dimensions
less than or equal to n, discarding, initially, all higher dimensional simplices, before reinstating
those that we need.

(We will introduce the ideas for simplicial sets, but we can, and will later, extend the discussion
to simplicial groups, and, in general, to simplicial objects in a category, A. The latter situation will
require some conditions on the existence of various limits and colimits in A, but we will introduce
these as we go along. The ability to use more general categories is a great simplification for later
developments.)
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Recall that the category, ∆, consists of all finite ordinals and all order preserving maps between
them. Given any natural number n, we can form a full subcategory, ∆[0, n], with objects the
ordinals [0], . . . , [n], and all order preserving maps between them. As the category of simplicial
sets is S = Sets∆

op
, there is a restriction functor, call n-truncation or, more fully, simplicial

n-truncation,

trn : S → Sets∆[0,n]op ,

which, to a simplicial set, K, assigns the n-truncated simplicial set, trn(K), with the same data
in dimensions less than n+ 1, but which forgets all information on higher dimensions. A functor,
K : ∆[0, n]op → Sets is equivalent to a system, K = {(Kk)0≤k≤n, di, sj}, of sets and functions, (or
more generally of objects and arrows of A). These are to be such that the di and sj verify the
simplicial identities wherever they make sense.

Remark: Setting up notation and terminology for the more general case, we have a category
TrnSimp.A = A∆[0,n]op of n-truncated simplicial objects in A. The category of n-truncated sim-
plicial sets is then TrnSimp.Sets = TrnS = Sets∆[0,n]op . Back in the general case, the analogue
of the above restriction functor gives us a restriction functor:

trn : Simp.A → TrnSimp.A.

If the category A has finite colimits, then this functor, trn has a left adjoint, which we will
denote skn, and which is called the n-skeleton of the truncated simplicial object. The proof that
this left adjoint exists is most neatly seen by using the theory of Kan extensions, for which see
Mac Lane, [123], here with a discussion starting in section ??, or the nLab, [145], (search on ‘Kan
extension’.)

The idea of the construction of that left adjoint is, however, quite simple and is just an encoding
of the intuitive idea that we sketched out above. We first look at it in the case of a simplicial set. We
have K in TrnS, and want (sknK)n+1, that is the first missing level, (after that we can presumably
repeat the idea to get the higher levels of sknK). We clearly need degenerate copies of all simplices
in Kn and that suggests, (slightly incorrectly), that we take this (sknK)n+1 to be the disjoint
union of sets, si(Kn) = {si(x) | x ∈ Kn}. (The elements si(x) are just copies of x indexed by the
degeneracy mapping. If you prefer another notation, use pairs (x, si) as this corresponds more to
one of the usual models of disjoint unions.) This is not right, since these si(x) are not independent
of each other. If x is already a degenerate element, say x = sjy then six = sisjy and, as we will
need the simplicial identities to hold in the end result, this must be the same element as sj+1siy,
(this is if i ≤ j). In other words, we should not use a disjoint union of these sets, si(Kn), but will
have to identify elements according to the simplicial identities, that is, we must form some sort
of colimit. In fact, one forms a diagram consisting of copies of Kn and Kn−1, and then forms its
colimit to get (sknK)n+1. The next task is to define the face and degeneracy maps linking the new
level with the old ones, so as to get an (n+ 1)-truncated simplicial sets. (It is a good idea to try
this out in some simple cases such as for n = 1 and 2 and then to look up a ‘slick’ version, as then
you will, more easily, see what makes the slick version work.)

Of course, the use of simplicial sets here is not crucial, but if working with simplicial objects in
some A, then we will need, as we mentioned earlier, that A has finite colimits so as to be able to
form (sknK)n+1. The process is then repeated as we now have a (n+ 1)-truncated object.
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Remark: Shortly we will be using skeletons (and coskeletons) of simplicial groups. In such
a context, it should be noted that not all elements in (sknG)m, for m > n, need be, themselves,
degenerate. For instance, we might have g, and g′, in Gn, so have for two different indices, i, j,
elements sig and sjg

′ in (sknG)n+1, but, more often than not, their product sig.sjg
′, will not be a

degenerate element. This fact is crucial and is one reason why, in homotopy theory, it is possible
to have non-trivial homotopy groups above the dimension of a space.

If we are considering simplicial sets, or, more generally, simplicial objects in A, where A has
finite limits, the truncation functor, trn, has a right adjoint, which will be denoted coskn. This is
called the n-coskeleton functor. (Warning: this term will also be used for the composite coskn◦trn,
from Simp.A to itself as it is too useful to ‘waste’ on the more restrictive situation! Usually no
confusion will arise, especially as we will use a slightly different notation.)

The fact that coskn is right adjoint to trn means that, at least in the case of simplicial sets,
coskn has a very simple description. If K is a simplicial set and L is an n-truncated simplicial set,
then we have

TrnS(trn(K), L) ∼= S(K, cosknL).

Taking K = ∆[m], the simplicial m-dimensional simplex, we get

(cosknL)m = S(∆[m], cosknL) ∼= TrnS(trn(∆[m]), L),

giving us a recipe for the simplices of cosknL in all dimensions. As trn∆[m] is an n-dimensional
shell of a m-dimensional simplex, we can think of it intuitively as being a family of n-simplices
stuck together along lower dimensional bits in some neat way (governed by the simplicial identities).
We thus would expect coskLm to be made up of compatible families of n-simplices of L, and this
suggests a ‘limit’ - which makes sense as sknL was thought of as a colimit.

As with the left adjoint of trn, the right adjoint can be described as a Kan extension, which
would give an explicit ‘end’ formula and also a limit formula that we could take apart. At this
stage in the notes, it is not being assumed that those parts of categorical toolbag are available to
us. (They are discussed later with Kan extension starting on page ?? and with ends (and coends)
discussed in section ??.) Because of this it seems better to adopt a fairly ‘barehands’ approach,
which is more elementary and nearer the initial intuition of what is needed, but the way to go
beyond the limitations of this approach is to understand Kan extensions fully. (The approach that
we will use will be adapted from Duskin’s memoir, [65].)

For a category, A, with finite limits, we suppose given an n-truncated simplicial object, L ∈
TrnSimp.A and we consider all the face maps at level n

d0, . . . , dn : Ln → Ln−1.

Definition: An object, Kn+1, together with morphisms p0, . . . , pn+1 : Kn+1 → Ln is said to
be the simplicial kernel of (d0, . . . , dn) if the family (p0, . . . , pn+1) satisfies the simplicial identities
with respect to the dis and, moreover, has the following universal property: given any family,
x0, . . . , xn+1 of morphisms from some object, T , to Ln, which satisfy the simplicial identities with
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respect to the face morphisms, d0, . . . , dn (so that for 0 ≤ i < j ≤ n+ 1, dixj = dj+1xi), there is a
unique morphism x = 〈x0, . . . , xn+1〉 : T → Kn+1 such that for each i, pix = xi.

This is clearly just a special type of limit. We would expect to get this Kn+1, together wiht
the projections, pi, as some sort of multiple pullback, corresponding to the ‘naive’ description we
gave above. (To gain intuition on this oint, look at the case n = 1, so we have d0, d1 : L1 → L0

and want K2 with maps p0, p1, p2 : K2 → L1, and these must satisfy the simplicial identities. It is
worth your while, if you have not seen this before, to draw a diagram, consisting of some copies
of L1 and L0, and the face maps built from d0, d1 : L1 → L0, so that the limit of the diagram is
K2.)

If the simplicial kernel is to do the job, we should be able to use it to take (cosknL)n+1 = Kn+1,
that is to form a (n+ 1)-truncated simplicial objects from it having the right properties. We, first,
need face and degeneracy morphism defined in a natural way. As the pi were to satisfy the face
simplicial identities, they are the obvious candidates for the face morphisms. We will, then, need
to define for each j between 0 and n, a morphism sj : Ln → Kk+1. The universal property of Kn+1

gives that such a morphism will be of the form

sj = 〈sj,0, . . . , sj,n+1〉,

for sj,k : Ln → Ln, and, of course, in this notation di : Kn+1 → Ln will be the ith projection, pi.
This gives us the recipe for determining the sj,k as we must have, for instance, if k < j,

sj,k = dksj = sj−1dk,

so as to make sure that the sj satisfy the simplicial identities. (It is useful to list the various cases
yourself.) It is now clear that the following holds:

Lemma 29 The data ((cosknL)k, (di), (sj)), where

(i) (cosknL)k is equal to Lk for k ≤ n and (cosknL)n+1 = Kn+1, the simplicial kernel (as above),

(ii) the di are the structural limit cone projections,
and

(iii) the sj are defined by the universal property and the simplicial identities,

defines an (n+ 1)-truncated simplicial object. �

We denote this by trn+1cosknL, as it is the next step in the construction of cosknL.

We have as a consequence the following:

Proposition 35 Suppose given a simplicial object, T , and a morphism, f : trnT → L, then there
is a unique morphism,

f̃ : trn+1T → trn+1cosknL,

that extends f in the obvious sense. �
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We may now construct cosknL by successive simplicial kernels in the obvious way, and, general-
ising the above proposition to each successive dimension, prove that the result gives a right adjoint
to trn.

Remarks: (i) The n-skeleton functor, that we saw earlier, can be given by an analogous sim-
plicial cokernel construction using the degeneracy operators instead of the faces to give a universal
object, and then applying the universal property to obtain the face morphisms. The object skn(L)
is then obtained by iterating that construction. (This is a good exercise to follow up on as
it sheds useful light on what the skeleton will be in other situations where our intuitions are less
strong than for simplicial sets.)

(ii) We are often, in fact, usually, interested more bby the composites

skn := skn ◦ trn,

and
coskn := coskn ◦ trn,

which will be called the n-skeleton and n-coskeleton functors on Simp.A. (The superfix / suffix
notation is just to distinguish them and no special significance should be read into it.)

Proposition 36 (i) If p ≥ q, then coskpcoskq = coskq.
(ii) If p ≤ q, then coskpcoskq = coskp.

Proof: This is a simple exercise in the definition, or, alternatively, in the constructions, so is left
to the reader to work out or check up on in the literature. �

A similar result holds for skeletons, and this is, again, left to you to investigate.

So far in this section we have just looked at the skeleton and coskeleton functors, but we are
wanting these for a discussion of simplicial n-types. If we adopt the view that an n-type is a
homotopy type with vanishing homotopy groups above dimension n, this goes across without pain
to the context of simplicial sets, and, in fact, to many other situations such as simplicial sheaves
on a space or simplicial objects in a (Grothendieck) topos, E .

Aside: A good reason for briefly looking at this is that it introduces several useful concepts
and the linked terminology. These in the main are due to Jack Duskin, who developed them for
the study of simplicial objects in a topos. We will give the definitions and subsequent discussion
within the classical setting of Sets, but this is really only because we have not given a thorough
and detailed treatment of toposes earlier. The basic point is that if the arguments used in the
development are ‘constructive’ then, usually with some minor changes, the theory will generalise
from a category of sets, to one of sheaves, and eventually to any Grothendieck topos. To make that
statement more precise would require quite a lot more discussion, and would take us away from
our main themes, so investigation is left to you.

We start with a slight variant of the Kan fibration definition that we met earlier, (see page
32). We recall that Λi[n] is the (n, i)-horn or (n, i)-box, obtained by discarding the top dimensional
n-simplex and its ith face and all the degeneracies of those simplices.
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Definition: A simplicial map p : E → B is a Kan fibration, or satisfies the Kan lifting
condition, in dimension n if, in every commutative square (of solid arrows) of form

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
//

f
==|

|
|

|
B

a diagonal map (indicated by the dashed arrow) exists, i.e., there is an f : ∆[n] → E such that
pf = f0, f.inc = f1, so f lifts f0 and extends f1.

We thus have that p is a Kan fibration if it is one in all dimensions. We can refine the above
(following Duskin, [66]).

Definition: A simplicial map p : E → B satisfies the exact Kan lifting condition in dimension
n if, in every commutative square (as above), precisely one diagonal map f exists.

Starting with the Kan fibration condition, we singled out the Kan complexes as being those
simplicial sets for which the unique map K → ∆[0] was a Kan fibration. We clearly can do a similar
thing here.

Definition: A simplicial set K is an exact n-type, or n-hypergroupoid, if K → ∆[0] is a Kan
fibration that is exact in dimensions greater than n.

The definition of n-hypergroupoid used by Glenn, [85], is slightly different from this as it only
requires the (exact) Kan condition in dimensions greater than n, so not requiring K to ‘be’ a
Kan complex in lower dimensions. The n-hypergroupoid terminology is due to Duskin, [66], whilst
‘exact n-type’ is Beke’s, [23].

If we need a version of these ideas in Simp(E) or Simp.A, then we can easily adapt our earlier
discussion of horns and Kan objects in that context. For instance:

Proposition 37 If A is a finite limit category, a morphism, p : E → B, in Simp.A is an exact
Kan fibration in dimension n if, and only if, the natural maps En → Λk[n](E)×Λk[n](B) Bn are all
isomorphisms in A. �

Corollary 9 In Simp.A, an object, K, is an exact n-type (or n-hypergroupoid) if, and only if, the
natural map, Kk → Λj [k](K), is an epimorphism for k ≤ n and an isomorphism for k > n. �

To begin to take ‘exact n-types’ apart, we will need to look again at look at the coskeleton
functors. It is very useful for our purposes to have a description of when a simplicial set, K, is
isomorphic to its own n-coskeleton. The following summary is actually adapted from Beke’s paper,
[23], but is quite well known and moderately easy to prove, so the proof will be left as an exercise.

Proposition 38 For a simplicial set, K, the following are equivalent:
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1) K is isomorphic to an object in the image of coskn.

2) The natural morphism K → coskn(K) is an isomorphism.

3) Writing ∂∆k(K) for the set

∂∆k(K) = {(x0, . . . , xk) | xi ∈ Kk−1 and, whenever i < j, dixj = dj−1xi},

(so ∂∆k(K) ∼= S(∂∆[k],K)), the natural ‘boundary’ map bk(x) = (d0x, . . . , dkx), from Kk to
∂∆k(K) is a bijection for all k > n.

4) The natural map, Kk → Sets∆[0,n]op(trn∆[k], trn(K)), which sends a k-simplex x of K, consid-
ered as its ‘name’, pxq : ∆[k]→ K, to the n-truncation, of pxq, is a bijection for all k > n.

5) For any k > n, and any pair of (solid) arrows

∂∆[k] //

��

K

∆[k]

<<z
z

z
z

z

there is precisely one (dotted) arrow making the diagram commute. �

As we said, the proof is left to you, as it is just a question of translating between different
viewpoints.

Definition: If K satisfies any, and hence all, of the above conditions, it is called n-coskeletal.

The first two conditions can be transferred verbatim for simplicial objects in any category
with finite limits, and thus for simplicial objects in a topos. Condition 3 can also be handled in
those contexts, using iterated pullbacks to construct ∂∆k(K). Condition 4) can also be used if
the category of simplicial objects has finite cotensors (see the discussion of tensors and cotensors
in simplicially enriched categories in section 11.3.2, page 431). A similar comment may be made
about 5), since using cotensors allows one to ‘internalise’ the condition - but it ends up then being
3) in an enriched form. The details will not be needed in our later discussion, so are left to you
if you need them.

We use this notion of n-coskeletal object in the following way

Proposition 39 (cf. Beke, [23], proposition 1.3) (i) If K satisfies the exact Kan condition above
dimension n, then K must be (n+ 1)-coskeletal.
(ii) If K is n-coskeletal, then it satisfies the exact Kan condition above dimension n+ 1.
(iii) If K is an n-coskeletal Kan complex, then it has vanishing homotopy groups in dimensions n
and above.
(iv) An exact n-type has vanishing homotopy groups above dimension n.

Before we prove this, it needs noting that there is an internal version in Simp(E) for E a topos,
see [23]. We have refrained from giving it only to avoid the need to define the homotopy groups of
such an object internally.
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Proof: (i) Suppose we are given a map b : ∂∆[k]→ K for k > n+ 1, then we can omit d0b to
get a (k, 0)-horn in K. By assumption, this horn has a filler, f : ∆[k] → K, so we consider both
d0f and d0b. As they have the same boundary and since K satisfies the exact Kan condition above
dimension n, they must coincide. We have thus that f is a filler for b. By exactness, we have that
it is unique.

(ii) If m > n + 1, trn(Λk[m]) → trn(∆[m]) is fairly obviously an isomorphism. Now coskn(K)
satisfies the exact Kan condition in dimension m if, and only if, for any horn, x : Λk[m]→ K, there
is a diagram

Λk[m]
x //

inc
��

cosknK

��
∆[k] //

∃!
::t

t
t

t
t

1

with unique diagonal. Using the adjunction, this gives a diagram

trnΛk[m]
x //

inc
��

K

��
trn∆[k] //

?

;;w
w

w
w

w
1

and we have noted that the left hand side is an isomorphism if m > n+ 1.

(iii) If K is Kan, the topological description of homotopy groups goes over to K, i.e., as the
group of homotopy classes of maps from ∂∆[n] to K mapping a vertex to chosen basepoint. Such a
map will fill in dimensions k ≥ n, so all the πk(K) will be trivial for any base point. (You should
fill in the details of this argument.)

(iv) This just combines (i) and (iii). �

We note that (iv) above says that exact n-types are n-types!

5.1.3 Postnikov towers

In the topological case, we saw above that given any (connected) CW-complex, X, we could con-
struct a sequence of Postnikov sections, PnX, and maps between them, Pn+1X → PnX. We
referred to this as a Postnikov tower for X. In the simplicial case, we found that the coskeletons
gave us a corresponding construction, (and we will shortly see an alternative, if related, one). It
is often useful to demand a bit more structure in the tower, structure that is always potentially
there but which is usually not in its ‘optimal form’. To make them more ‘useful’, we first review
the definition of Postnikov towers and some of their properties. (We refer the reader, who wants a
slightly more detailed introduction, to Hatcher’s book, [92], p. 410.) First a redefinition,(adapted
to our needs from [92])
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Definition: A Postnikov tower for a (connected) space X is a commutative diagram:

...

��
X3

p32(X)
��
X2

p21(X)
��

X
p1(X)

//

p2(X)
}}}

>>}}}

p3(X)
�������

FF�������

II�
�

�
�

�
�

�
�

�
�

�
X1

such that

(i) the map X → Xn induces an isomorphism on πi for i ≤ n;

(ii) πi(Xi) = 0 for i > n.

Remark: A Postnikov tower for X always exists by our discussion in section 5.1.1 and, hidden
in that discussion is the information that shows that the tower is unique up to a form of homotopy
equivalence for towers.

If we convert each maps Xn → Xn−1 into a fibration (in the usual way be pulling back the
pathspace fibration on Xn−1 along this map, see the discussion of the corresponding construction
for chain complexes, in section 8.2.1, where the term mapping cocone is used), then its fibre (which
is, then, the homotopy fibre of the original map), will be an Eilenberg-Mac Lane space, K(πnX,n),
as the difference between the homotopy groups of Xn and Xn−1 is exactly πn(X) in dimension n.
(More exactly, we should look at the long exact homotopy sequence for this fibration, but we do
not have this available within the notes so far so if you need more precision on this refer to Hatcher,
[92], or other texts on homotopy theory.)

Definition: A fibrant Postnikov tower for X is a Postnikov tower (as above) in which each
Xn → Xn−1 is a fibration.

The discussion above shows that any Postnikov tower can be replaced, up to homotopy equiv-
alence, by a fibrant one. There is here a technical remark that is worth making, but requires that
the reader has met the theory of model categories. (It can safely be ignored if you have not yet
met this.) On the category of towers of spaces (or or simplicial sets, etc.) there is a model category
structure in which these fibrant towers are exactly the fibrant objects.

Moving over to the simplicial case, we restrict attention to Kan complexes, as they are much
better behaved, homotopically, than arbitrary ones. We have the nth coskeleton, cosknK of a Kan
complex, K, and the first query is whether it is a Kan complex itself. Certainly in dimensions lower
than n, as it agrees with K there, any k-horn will have a filler. We thus look at an (n + 1)-horn,
x0, . . . , x̂i, . . . , xn+1, corresponding to the map, x : Λi[n+1]→ cosknK, (using the usual convention
with a ‘hat’ indicating the missing face). All the faces, xk, are in (cosknK)n = Kn, so all toegther
they form a (n+1)-horn in K, which, of course, can be filled by some y ∈ Kn+1 We have its naming
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map pyq : ∆[n + 1] → K, which we restrict to skn∆[n + 1] to get a filler for our original x. We
thus do have that cosknK satisfies the Kan filler condition in dimension n+ 1.

We look, next, at dimension n = 2 (expecting, of course, that the situation there will tell us
how to handle the general case in higher dimensions). In fact, we have already seen the argument
that we will use above.

Suppose x : Λi[n + 2] → cosknK, then x corresponds, under the adjunction to a map, x :
sknΛi[n + 2] → K, but, and this is the neat argument we saw before, sknΛi[n + 2] = skn∆[n + 2]
(or, if you want to be precise, the inclusion of Λi[n + 2] into ∆[n + 2] restricts to the ‘identity’
isomorphism on the n-skeletons). This means that x is already in (cosknK)n+2. (Of course, dotting
i’s and crossing t’s, that statement is also not true, but means Λi[`]→ ∆[`] induces a bijection

S(∆[`], cosknK)
∼=−→ S(Λi[`], cosknK)

for ` = n+ 2, and, in fact, for all ` ≥ n+ 2, so sknΛi[n+ 2]
∼=−→ skn∆[n+ 2] for all ` ≥ n+ 2.) We

summarise this in a proposition for possible later use.

Proposition 40 If K is a Kan complex, then so is cosknK. �

We next glance at the canonical map

pn+1
n : coskn+1K → cosknK.

This does not seem to be a fibration, but that is not too worrying since (i) we can replace is by a
fibration as in the topological case, and (ii) we will see there is a subtower of this cosk tower which
is fibrant and very neat and we turn to it next. Its beauty is that it adapts well to many other
simplicial settings, such as that of simplicial groups, without much adjustment, and it is functorial.

The canonical map, pn = η(K) : K → cosknK, which is the unit of the adjunction, can be very
easily described in combinatorial terms, since (cosknK)m = S(sknδ[m],K). If x is a m-simplex in
K, then its ‘name’ pxq : ∆[m]→ K determines it precisely and conversely, (by the Yoneda lemma
and the equation pxqιn = x). There is an inclusion, im : skn∆[m] → ∆[m], and pxq ◦ im is an
m-simplex in cosknK. This is eta(x).

In (cosknK)m, there can be simplices that are not restrictions of m-simplices in K and these
are, for instance, simplices that, together, ‘kill’ the homotopy groups (above dimension n, that
is.) As K is Kan, πm(K) ∼= [Sm,K], the set of pointed homotopy classes of pointed maps from
Sm = ∂∆[m+ 1] or alternatively, Sm = ∆[m]/∂∆[m]. (Both identifications are useful and we can
go from one to the other since they are weakly homotopy equivalent.) We note that, for instance,
skm−1S

m = skm−1∆[m], so any m-sphere in K has a canonical filler in coskm−1K. Other cases are
slightly more tricky, but can be left to you, as, in any case, when we consider these more formally
slightly later on we will use a slightly different argument.

The image of η(K) is, in each dimension m, obtained by dividing Km by the equivalence
relation determined by η(K)m, i.e., define ∼n on Km by x ∼n y if, and only if, the representing
maps, x, y : ∆[m]→ K agree on skn∆[m]. (We will dispense with the ‘name’ notation, pxq, here,
as it tends to clutter the notation and is not needed, if no confusion is likely to occur. We are thus
pretending that Km = S(∆[m],K), rather than merely being naturally isomorphic.)
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We write [x]n for the ∼n-equivalence class of x. We note that if m ≤ n then ∼n is simply
equality as the n-skeleton of ∆[m] is all of ∆[m].

Definition: The simplicial set, K(n) := K/ ∼n is called the nth Postnikov section of K.

That ∼m is compatible with the face and degeneracy maps is easy to check, so K(n) is a
simplicial set and , equally simply, the natural quotient, qn : K → K(n), so qn(x) = [x]n, is
simplicial. (It is the codomain restriction of pn = η(K).) This is best seen using the fact that is is
induced from the cosimplicial inclusions skn∆[m] → ∆[m]. The cosimplicial viewpoint also gives
that the inclusions skn∆[m] → skn+1∆[m] induce the quotient maps, qn+1

n : K(n + 1) → K(n),
(which are the restrictions of the pn+1

n ), and that qn+1
n qn+1 = qn.

Lemma 30 For a (connected) Kan complex, K, and for each n:
(i) The map qn : K → K(n) is a Kan fibration, and K(n) is a Kan complex.
(ii) The map, qn+1

n : K(n+ 1)→ K(n), is a Kan fibration.
(iii) The map, qn, induces an isomorphism on πi for 0 ≤ i ≤ n.
(iv) The homotopy groups of K(n) are trivial above dimension n, K(n) is an n-type.

Proof: (i) Suppose we have a commutative diagram

Λi[m]
(x0,...,x̂i,...,xm) //

��

K

qn

��
∆[m]

[y]n

// K(n)

where we have written the i-horn as an (m+ 1)-tuple of (m− 1)-simplices, with a gap at the ‘hat’.
We need to lift [y]n to some y agreeing with the xks, i.e., dky = xk.

If m ≤ n, there is no problem as qn the identity in those dimensions.
For m = n + 1, we have if y is a representative of [y]n, then as ∼n is the identity relation in

dimension n, dky = xk for k 6= i, so y is a suitable lift.
For m > n + 1, we use that K is Kan to find a filler x ∈ Knm+ 1 for the (m, i)-horn, so

dkx = x−k for k 6= i. Now sknΛi[m] = skn∆[m], as we have used before, and so qn(x) = [x]n = [y]n.
In general, if p : K → L is a surjective Kan fibration and K is a Kan complex, then L is Kan,

so the last part of (i) follows.
(ii) Look at K(n+ 1) and form K(n+ 1)(n), i.e. divide it out by ∼n. This gives K(n) with the

quotient being just qn+1
n . By (i), this will be a fibration.

We next pick a base vertex, v ∈ K0 and look at the various πm(K, v) and πm(K(n), [v]n).
Clearly, as qn ‘is the identity’ in dimensions m ≤ n, the induced morphisms πm(qn) ‘is the identity’
in dimensions m < n. For (iii), we have, thus, only to examine πn(qn). Suppose f : ∆[n] → K
sends ∂∆[n] to {v}, i.e., represents an element of πn(K), and that qnf is null-homotopic, then qnf
extends to a map,F : ∆[n+ 1]→ K(n) such that qnf = d0F , and diF = v for i 6= 0. We can lift F
to a map F : ∆[n+ 1]→ K, since qn is surjective and the n-dimensional faces are mapped by the
identity. We thus have that f itself was null-homotopic, so πn(qn) is a monomorphism. As πn(qn)
is cearly an epimorphism, this handles (iii).

(iv) Any map f : ∆[m]→ K(n) is determined by its restriction,f | : skn∆[m]→ K, but

skn∂∆[m]→ skn∆[m]
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is the identity if m > n, and f |∂∆[m] is constant with value v, so πm(K(n)) = 0 if m > n. �

We thus have proved the connected case of the following:

Theorem 11 If K is a Kan complex, (K(n), qn+1
n , qn), forms a (functorial) fibrant Postnikov tower

for K. �

The non-connected case is a simple extension of this connected one involving disjoint unions, so ....

Of course, the inclusion of K(n) into cosknK is a weak equivalence.

Remarks: (i) A note of caution seems in order. Some sources tend to confuse K(n) and
cosknK, and whilst, for many homotopical purposes, this is not critical, for certain purposes the
use of one is prefereable to that of the other, so it seems better to keep the restriction.

(ii) The study of Postnikov complexes, which abstract the properties of the K(n), is important
in the study of coskeletal simplicial sets and nerves of higher categories, for which see the important
paper of Duskin, [68].

(iii) Putting a naturally defined model category structure on the category of n-types (and on the
corresponding simplicial presheaves and sheaves) has been done using these Postnikov sections, see
Biedermann, [24]. He notes that his construction depends on using the Postnikov section approach
that we have just outlined, rather than the coskeleton, as that latter one disturbs some of the
necessary structure.

(iv) If you need more on Postnikov towers in simplicial sets, a good source is Goerss and
Jardine, [86], Chapter 6, whilst Duskin’s paper, [68], mentioned above, gives some powerful tools
for manipulating them and also coskeletons.

5.1.4 Whitehead towers

Postnikov towers approximate a homotopy type by its tower of n-types, that is, by ‘n-co-connected’
spaces. The Whitehead tower of a homotopy type produces a sequence of n-connected approxima-
tions to it. Before we look at this in detail, let us consider what this should mean. (As sources, we
will initially use Hatcher, [92], p. 356 in the topological case, before looking at the simplicial case.
Another useful source is the nLab page on ‘Whitehead towers’, ([145], and search on ‘Whitehead
tower’).)

What we would expect from a naive dualisation of Postnikov tower for a pointed space, X,
would be a diagram,

. . . //

**UUUUUUUUUUUU Z2
//

((QQQQQQQQQQQQQQQ Z1

  BBBBBBBB
// Z0

��
X

with Zn an n connected space, (so πi(Zn) = 0 for i ≤ n), and the composite map Zn → X inducing
an isomorphism on all homotopy groups, πi for i > n. The space Z0 would be path connected and
homotopy equivalent to the component of X containing the base point. The next space, Z1 would
be simply connected and would have the homotopy properties of the universal cover of Z0. We
would then think of Zn → X as an ‘n-connected cover’ of the (pointed connected component, Z0,
of the)space, X.
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Definition: The Whitehead tower of a pointed space, (X,x) is a sequence of fibrations

. . .→ X〈n〉 → . . .→ X〈1〉 → X〈0〉 → X

where each X〈n〉 → X〈n − 1〉 induces isomorphisms on the homotopy groups, πi, for i > n and
such that X〈n〉 is n-connected, so πk(X〈n〉) is trivial for all k ≤ n.

The problem of constructing such a tower was posed by Hurewicz and solved by George White-
head in 1952. We will assume that we have chosen a Postnikov tower for a CW-complex, X, so
giving a map pn : X → PnX.

We next to form the homotopy fibre or mapping cocone of this map, over the basepoint, x0, of
PnX. We have already seen this idea, page 43, so will just briefly review how it is constructed. We
first form the pullback

Mpn πpn //

jpn

��

(PnX)I

e0

��
X pn

// PnX

so Mpn consists of pairs, (x, λ), where x ∈ X and λ : I → PnX is a path with λ(0) = pn(x). We set
ipn = e1 ◦ πpn , so that ipn(x, λ) = λ(1). The fact that ipn : Mpn → PnX is a fibration is standard,
as is that jpn : Mpn → X is a homotopy equivalence. (If you want a proof of these, after trying
to give one yourself, there are proofs in many standard textbooks, such as that of Hatcher, and
the abstract setting of such results is discussed in Kamps and Porter, [111]. This all fits well into a
‘homotopical’ context, and that is explored more on the nLab, [145], search under ‘mapping cocone’
and follow the links.) For brevity, we will write X for Mpn , pn : X → PnX for ipn . The homotopy
fibre of pn is then the fibre of pn over the base point of PnX. It is F h(pn) = {(x, λ) | λ(1) = x0}.

We thus have a fibration sequence,

F h(pn)→ X → PnX,

and, hence, by standard homotopy theory, a long exact sequence of homotopy groups,

. . .→ πk(F
h(pn))→ πk(X)→ πk(PnX)→ πk−1(F h(pn))→ . . .

Note that πk(X) ∼= πk(X), since jpn is a homotopy equivalence. (If you have not met this long
fibration exact sequence before, check it up, briefly in any standard book on homotopy theory.
We will look at it, and also the dual situation in cohomology, in more detail later on, starting in
section 8.2.)

If we look at this long exact sequence, below the value k = n, the homomorphism πk(X) →
πk(PnX) is an isomorphism, so πk(F

h(pn)) = 0 in that range, whilst as πk(PnX) = 0 if k > n,
there πk(F

h(pn))→ πk(X) is an isomorphism. Thus the homotopy fibre, F h(pn) is n-connected.
This looks good, as this is a functorial construction (or, more exactly, any lack of functoriality is

due to a lack of functoriality of the Postnikov tower). We have a composite map F h(pn)→ X → X.
This sends (x, λ) to x, of course. We will write X〈n〉 := F h(pn), in the expectation that it will
form part of a ‘Whitehead tower’.

The next ingredient that we need will be a map

X〈n+ 1〉 → X〈n〉.
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We do have a (chosen) map pn+1
n : Pn+1X → PnX, which is compatible with the ‘projections’

pn : X → PnX, so pn+1
n pn+1 = pn. This induces a map from the homotopy fibre of pn+1 to that of

pn. (This is left to you to check. The usual proof uses the functoriality of (−)I and the naturality
of the various mappings, and then the universal property of pullbacks. Everything is being ‘chosen
up to homotopy’ so there are subtleties that do need thinking about, and it is a good idea to try
to get a reasonably homotopy ‘coherent’ argument going on behind the proof. The construction is
a ‘homotopy pullback’ and the property you a looking for is the analogue of the universal property
of pullbacks to this more structured setting. It is, in the long term, important to get used to this
sort of situation as well as to the sort of geometric / higher categorical picture that it corresponds
to, as this is needed for generalisations.)

We note that the fibre of X〈n+ 1〉 → X〈n〉 is a K(πn(X), n).

Remarks: (i) The above hides slightly the fact that the construction of a Whitehead tower is
only really ‘natural’ up to homotopy as that was already the case for the Postnikov tower in the
topological case.

(ii) For the simplicial case, we can use either the coskeleton based tower or, better, the Postnikov
section one, as that is already fibrant as we saw. As the pn and pn+1

n are fibrations in that case, we
can replace the homotopy pullbacks by pullbacks, and the homotopy fibres by fibres, thus gaining
more insight into the relationship of the objects in the corresponding Whitehead tower to the Kan
complex being ‘resolved’. (The detailed description is left to you.)

(iii) The theory and constructions adapt well to other simplicial contexts such as that of sim-
plicial groups, where, as fibrations are simply degreewise epimorphisms, many of the constructions
take on a much simpler algebraic aspect.

The case of a topological group, G: In this case, one can find a topological model for
each G〈n〉 which is a topological group, and, as there is a topological Abelian group model for the
K(π, n)s occurring as the fibres in the tower, there is a short exact sequence

1→ K(πn(G), n)→ G〈n+ 1〉 → G〈n〉 → 1.

Example: The Whitehead tower of the orthogonal group, O(n).
For large n, the orthogonal group, O(n), has the following homotopy groups:

i 0 1 2 3 4 5 6 7

πi(O(n)) C2 C2 0 C∞ 0 0 0 C∞

There are then periodicity results for higher dimensions giving πk+8(O(n)) ∼= πk(O(n)). The first
space of the Whitehead tower of O(n) is, of course, O(n)〈0〉 = SO(n), as it is the (0-)connected
component of the identity element.

The next space is the group, O(n)〈1〉 = Spin(n), (which we will look at in more detail later;
see section ??). There is a short exact sequence:

1→ C2 → Spin(n)→ SO(n)→ 1.

The next homotopy group is trivial and O(n)〈2〉 = O(n)〈3〉 = String(n). This is a very interesting
group, but we have not yet the machinery to do it justice. (For more on it in our sort of setting,
see, for instance, Jurco, [110], Schommer-Pries, [155]. We will return to it later.)
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5.2 Crossed squares

We next turn back to algebraic models of these n-types that we have now introduced more formally.
We have already seen models for 2-types, namely the crossed modules that we looked at earlier,
now we turn to 3-types. There are several different types of model here. We start with one that is
relatively simple in its apparent structure.

5.2.1 An introduction to crossed squares

We saw earlier that crossed modules were like normal subgroups except that the inclusion map is
replaced by a homomorphism that need not be a monomorphism. We even noted that all crossed
modules are, up to isomorphism, obtainable by applying π0 to a simplicial “inclusion crossed
module”.

Given a pair of normal subgroups M , N of a group G, we can form a square

M ∩N //

��

N

��
M // G

in which each morphism is an inclusion crossed module and there is a commutator map

h : M ×N →M ∩N

h(m,n) = [m,n].

This forms a crossed square of groups, in fact, it is a special type of such that we will call an
inclusion crossed square. Later we will be dealing with crossed squares as crossed n-cubes, for
n = 2. Here we will give an interim definition of crossed squares. The notion is due to Guin-Walery
and Loday, [91], and this slightly shortened form of the definition is adapted from Brown-Loday,
[44].

5.2.2 Crossed squares, definition and examples

Definition: (First version) A crossed square (more correctly crossed square of groups) is a com-
mutative square of groups and homomorphisms

L
λ //

λ′

��

M

µ

��
N

ν // P

together with actions of the group P on L, M and N (and hence actions of M on L and N via
µ and of N on L and M via ν) and a function h : M × N → L. This structure is to satisfy the
following axioms:
(i) the maps λ , λ′ preserve the actions of P , furthermore with the given actions, the maps µ, ν
and κ = µλ = µ′λ′ are crossed modules;
(ii) λh(m,n) = mnm−1, λ′h(m,n) = mnn−1;
(iii) h(λ`, n) = `n`−1, h(m,λ′`) = m``−1;
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(iv) h(mm′, n) = mh(m′, n)h(m,n), h(m,nn′) = h(m,n)nh(m,n′) ;
(v) h(pm, pn) = ph(m,n) ;
for all ` ∈ L, m,m′ ∈M , n, n′ ∈ N and p ∈ P .

There is an evident notion of morphism of crossed squares, just preserve all the structure, and
we obtain a category Crs2, the category of crossed squares.

Examples
In addition to the above class of examples, we have the following:
(a) Given any simplicial group, G, and two simplicial normal subgroups, M and N , the square

M ∩N //

��

N

��
M // G

with inclusions and with h = [ , ] : M × N → G is a simplicial “inclusion crossed square” of
simplicial groups. Applying π0 to the diagram gives a crossed square and, in fact, all crossed
squares arise in this way (up to isomorphism).

b) Any simplicial group, G, yields a crossed square, M(G, 2), defined by

NG2

d0(NG3)

��

// Ker d1

��
Kerd2

// G1

for suitable maps. This is, in fact, part of the construction that shows that all connected 3-types
are modelled by crossed squares.

Another way of encoding 3-types is using the truncated simplicial group and Conduché’s notion
of 2-crossed module.

5.3 2-crossed modules and related ideas

5.3.1 Truncations.

Definition: Given a chain complex, (X, ∂), and an integer n, the truncation of X at level n is the
complex tn]X defined by

(tn]X)i =


0 for i > n
Xn/Im∂n
Xi for i < n.

For i < n, the differential of tn]X is the same as that of X, whilst the nth-differential is induced by
∂.

(For more on truncations see Illusie [104, 105]). Truncation is, of course, functorial.
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Remark on terminology: There are several schools of thought on the terminology here. The
problem is whether this should be ‘truncation’ or ‘co-truncation’. To some extent both are ‘wrong’
as n-truncated chain complexes should not have any information available in dimensions greater
than n, if the model of simplicial sets was to be followed. This would then be expected to have right
and left adjoints, which would correspond, approximately to the coskeleton and skeleton functors
of simplicial set theory that we have already seen. At the moment the ‘jury’ seems to be out and
the terminological conventions fairly lax. (We may thus decide to change this later on if convincing
arguments are presented.)

This construction will work for chain complexes of groups provided each Im∂ is a normal
subgroup of the corresponding X, i.e., provided X is a normal chain complex of groups.

Proposition 41 There is a truncation functor tn] : Simp.Grps→ Simp.Grps such that there is a
natural isomorphism

tn]NG ∼= Ntn]G,

where N is the Moore complex functor from Simp.Grps to the category of normal chain complexes
of groups.

Proof: We first note that d0(NGn+1) is contained in Gn as a normal subgroup and that all
face maps of G vanish on it. We can thus take

(tn]G)i = Gi for all i < n

(tn]G)n = Gn/d0(NGn+1)

and for i > n, we take the semidirect decomposition of Gi, which we will see shortly, given by
Proposition 54, delete all occurrences of NGk for k > n and replace any NGn by NGn/d0(NGn+1).
The definition of face and degeneracy is easy as is the verification that tn]N and Ntn] are the same
and that the various actions are compatible. �

This truncation functor has nice properties. (In the chain complex case, these are discussed in
Illusie, [104].)

Proposition 42 Let Tn] be the full subcategory of Simp.Grps defined by the simplicial groups
whose Moore complex is trivial in dimensions greater than n and let in : Tn] → Simp.Grps be the
inclusion functor.

a) The functor tn] is left adjoint to in. (We will usually drop the in and so also write tn] for
the composite functor.)

b) The natural transformation, η, co-unit of the adjunction, is a natural epimorphism which
induces an isomorphism on πi for i ≤ n. The unit of the adjunction is isomorphic to the identity
transformation, so Tn] is a reflective subcategory of Simp.Grps.

c) For any simplicial group G, πi(tn]G) = 0 if i > n.

d) To the inclusion, Tn] → Tn+1], there corresponds a natural epimorphism ηn from tn+1] to tn].
If G is a simplicial group, the kernel of ηn(G) is a K(πn+1(G), n + 1), i.e., has a single non-zero
homotopy group in dimension n + 1, that being πn+1(G), i.e., is an ‘Eilenberg-MacLane space’ of
type (πn+1(G), n+ 1). �
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As each statement is readily verified using the Moore complex and the semidirect product
decomposition, the proof of the above will be left to you, however you will need Proposition 54,
page 203.

Definition: We will say that a simplicial group, G, is n-truncated if NGk = 1 for all k > n.

Of course, Tn] is the category of n-truncated simplicial groups.

A comparison of these properties with those of the coskeleton functors (cf., above, section 5.1.2,
page 150, or for an ‘original’ source, Artin and Mazur, [9]) is worth making. We will not look at
this in detail here, but will just summarise the results. We will meet them again later on; see page
??.

Given any integer k ≥ 0, there is a functor, coskk, defined on the category of simplicial sets,
which is the composite of a truncation functor (differently defined) and its right adjoint. The n-
simplices of coskkX are given by Hom(skk∆[n], X), the set of simplicial maps from the k-skeleton
of the n-simplex, ∆[n], to the simplicial set, X. There is a canonical map from X to coskkX,
whose homotopy fibre is (k − 1)-connected. The canonical map from coskkX to coskk−1X thus
has homotopy fibre an Eilenberg-MacLane ‘space’ of type (πk(X), k).

This k-coskeleton is constructed using finite limits and there is an analogue in any category
of simplicial objects in a category, D, provided only that D has finite limits, thus in particular in
Simp.Grps. Conduché, [54], has calculated the Moore complex of coskk+1G for a simplicial group,
G, using a construction described in Duskin’s Memoir, [65]. His result gives

N(coskk+1G)r = 0 if r > k + 2

N(coskk+1G)k+2 = Ker(∂k+1 : NGk+1 → NGk),

and

N(coskk+1G)r = NGr if r ≤ k + 1.

There is an epimorphism from coskn+1G to tn]G, which, on passing to Moore complexes, gives

0 // Ker ∂k+1
//

��

NGk+1
//

��

NGk
∂k+1 //

��

NGk−1

��
0 // 0 // 0 // NGk/Im/∂m+1

// NGk−1

This epimorphism of chain complexes thus has a kernel with trivial homology. The epimor-
phism therefore induces an isomorphism on all homotopy groups and hence is a weak homotopy
equivalence. We may thus use either tn]G or coskn+1G as a model of the n-type of G.

5.3.2 Truncated simplicial groups and the Brown-Loday lemma

The theory of crossed n-cubes that we have hinted at above is not the only way of encoding higher
n-types. Another method would be to use these truncated simplicial groups as suggested above. A
detailed study of this is complicated in high dimension, but feasible for 3-types and, in fact, reveals
some interesting insights into crossed squares in the process.
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As a first step to understanding truncated simplicial groups a bit more, we will give a variant
of an argument that we have already seen. We will look at a 1-truncated simplicial group. The
analysis is really a simple use of the sort of insights given by the Brown-Loday lemma.

Proposition 43 (The Brown-Loday lemma) Let N2 be the (closed) normal subgroup of G2 gener-
ated by elements of the form

F(1),(0)(x, y) = [s1x, s0y][s0y, s0x]

for x, y ∈ NG1 = Ker d1. Then NG2 ∩D2 = N2 and consequently

∂(NG2 ∩D2) = [Ker d0,Ker d1].

�

Note the link with group T -complex type conditions through the intersection, NG2 ∩D2.
The form of this element, F(1),(0)(x, y), is obtained by taking the two elements, x and y, of degree

1 in the Moore complex of a simplicial group, G, mapping them up to degree 2 by complementary
degeneracies, and then looking at the component of the result that is in the Moore complex term,
NG2. (It is easy to show that G2 is a semidirect product of NG2 and degenerate copies of lower
degree Moore complex terms.) The idea behind this pairing can be extended to higher dimensions.
It gives the Peiffer pairings

Fα,β : NGp ×NGq → NGp+q.

In general, these take x ∈ NGp and y ∈ NGq and (α, β) a complimentary pair of index strings (of
suitable lengths), and sends (x, y) to the component in NGp+q of [sαx, sβy]; see the series of papers
[137–141]. This again uses the Conduché decomposition lemma, [54], that we will see later on, cf.
page 203. It is also worth noting that the Peiffer pairing ends up in NGp+q ∩Dp+q, so would all
be zero in a group T -complex.

A very closely related notion is that of hypercrossed complex as in Carrasco and Cegarra, [51,
52]. There one uses the component of sαx.sβy in NGp+q to give a pairing and adds cohomological
information to the result to get a reconstruction technique for G from NG, i.e., an ultimate Dold-
Kan theorem, thus hypercrossed complexes generalise 2-crossed modules and 2-crossed complexes
to all dimensions.

5.3.3 1- and 2-truncated simplicial groups

Suppose that G is a simplicial group and that NGi = 1 for i ≥ 2. This leaves us just with

∂ : NG1 → NG0.

We make NG0 = G0 act on NG1 by conjugation as before

gc = s0(g)cs0(g)−1 for g ∈ G0, c ∈ NG1,

and, of course, ∂( gc) = g.∂c.g−1. Thus the first crossed module axiom is satisfied. For the other
one, we note that F(1),(0)(c1, c2) ∈ NG2, which is trivial, so

1 = d0([s1c1, s0c2][s0c2, s0c1])

= [s0d0c1, c2][c2, c1] = ( ∂c1c2)(c1c2c
−1
1 )−1,
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so the Peiffer identity holds as well. Thus ∂ : NG1 → NG0 is a crossed module. As we have already
seen that the functor G provides a way to construct a simplicial group from a crossed module and
that the result has Moore complex of length 1, we have the following slight reformulation of earlier
results:

Proposition 44 The category of crossed modules is equivalent to the subcategory T1] of 1-truncated
simplicial groups. �

The main reason for restating and proving this result in this form is that we can glean more
information from the proof for examining the next level, 2-truncated simplicial groups.

If we replace our 1-truncated simplicial group by an arbitrary one, then we have already intro-
duced the idea of a Peiffer commutator of two elements, and there we used the term ‘Peiffer lifting’
without specifying what particular interest the construction had. We recall that here: Given a
simplicial group, G, and two elements c1, c2 ∈ NG1 as above, then the Peiffer commutator of c1

and c2 is defined by
〈c1, c2〉 = (∂c1c2)(c1c2c

−1
1 )−1.

We met earlier, F(1),(0), which gives the Peiffer lifting denoted

{−,−} : NG1 ×NG1 → NG2,

where
{c1, c2} = [s1c1, s0c2][s0c2, s0c1]

and we noted
∂{c1, c2} = 〈c1, c2〉.

These structures come into their own for a 2-truncated simplicial group. Suppose that G is now
a simplicial group, which is 2-truncated, so its Moore complex looks like:

. . . 1→ NG2
∂2−→ NG1

∂1−→ NG0.

For the moment, we will concentrate our attention on the morphism ∂2.
The group NG1 acts on NG2 via conjugation using s0 or s1. We will use s0 for the moment,

so that if g ∈ NG1 and c ∈ NG2,
gc = s0(g)cs0(g)−1.

It is once again clear that ∂2( gc) = g.∂2(c).g−1 and, as before, we consider, for c1, c2 ∈ NG2 this
time, the Peiffer pairing given by

[s1c1, s0c2][s0c2, s0c1],

which is, this time, the component of [s1c1, s0c2] in NG3. However that latter group is trivial, so
this element is trivial, and hence, so is its image in NG2. The same calculation as before shows
that, with this s0-based action of NG1 on NG2, (NG2, NG1, ∂2) is a crossed module.

We also know that there is a Peiffer lifting

{−,−} : NG1 ×NG1 → NG2,

which measures the obstruction to NG1 → NG0 being a crossed module, since ∂{−,−} is the
Peiffer commutator, whose vanishing is equivalent to NG1 → NG0 being a crossed module. We
do not have yet in our investigation a detailed knowledge of how the two structures interact, nor
any other distinguishing properties of {−,−}. We will not give such a detailed derivation here, but
from it we can obtain the following:
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Proposition 45 Let G be a 2-truncated simplicial group. The Peiffer lifting

{−,−} : NG1 ×NG1 → NG2,

has the following properties:
(i) it is a map such that if m0,m1 ∈ NG1,

∂{m0,m1} = ∂m0m1.(m0m1m
−1
0 )−1;

(ii) if `0, `1 ∈ NG2,
{∂`0, ∂`1} = [`0, `1];

(iii) if ` ∈ NG2 and m ∈ NG1, then

{m, ∂`}{∂`,m} = ∂m`.`−1;

(iv) if m0,m1,m2 ∈ NG1, then

a) {m0,m1m2} = {m0,m1} (m0m1m
−1
0 ){m0,m2},

b) {m0m1,m2} = ∂m0{m1,m2}{m0,m1m2m
−1
1 };

(v) if n ∈ NG0 and m0,m1 ∈ NG1, then

n{m0,m1} = { nm0,
nm1}.

�

The above can be encoded in the definition of a 2-crossed module.

5.3.4 2-crossed modules, the definition

Definition: A 2-crossed module is a normal complex of groups

L
∂2−→M

∂1−→ N,

together with an action of N on all three groups and a mapping

{−,−} : M ×M → L

such that

(i) the action of N on itself is by conjugation, and ∂2 and ∂1 are N -equivariant;

(ii) for all m0,m1 ∈M ,
∂2{m0,m1} = ∂1m0m1.m0m

−1
1 m−1

0 ;

(iii) if `0, `0 ∈ L, then
{∂2`0, ∂2`} = [`1, `0];

(iv) if ` ∈ L and m ∈M , then
{m, ∂`}{∂`,m} = ∂m`.`−1;

(v) for all m0,m1,m2 ∈M ,
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(a) {m0,m1m2} = {m0,m1}{∂{m0,m2}, (m0m1m
−1
0 )}{m0,m2};

(b) {m0m1,m2} = ∂m0{m1,m2}{m0,m1m2m
−1
1 };

(vi) if n ∈ N and m0,m1 ∈M , then

n{m0,m1} = { nm0,
nm1}.

The pairing {−,−} : M ×M → L is often called the Peiffer lifting of the 2-crossed module.

The only one of these axioms that looks ‘daunting’ is (v)a). Note that we have not specified
that M acts on L. We could have done that as follows: if m ∈M and ` ∈ L, define

m` = {∂`,m}`.

Now (v)a) simplifies to the expression

{m0,m1m2} = {m0,m1} (m0m1m
−1
0 ){m0,m2}.

We denote such a 2-crossed module by {L,M,N, ∂2, ∂1}, or similar, only adding in notation for
the actions and the pairing if explicitly needed for the context. A morphism of 2-crossed modules
is, fairly obviously, given by a diagram

L
∂2 //

f2
��

M
∂1 //

f1
��

N

f0
��

L′
∂′2

//M ′
∂′1

// N ′

,

where f0∂1 = ∂′1f1,f1∂2 = ∂′2f2,

f1( nm) = f0(n)f1(m), f2( n`) = f0(n)f2(`),

and

{−,−}(f1 × f1) = f2{−,−},

for all ` ∈ L, m ∈M , n ∈ N .

These compose in an obvious way giving a category which we will denote by 2−CMod.

The following should be clear.

Theorem 12 The Moore complex of a 2-truncated simplicial group is a 2-crossed module. The
assignment is functorial. �

We will denote this functor by C(2) : T2] → 2−CMod. It is an equivalence of categories.

5.3.5 Examples of 2-crossed modules

Of course, the construction of 2-crossed modules from simplicial groups gives a generic family of
examples, but we can do better than that and show how these new crossed gadgets link in with
others that we have met earlier.



172 CHAPTER 5. BEYOND 2-TYPES

Example 1: Any crossed module gives a 2-crossed module, since if (M,N, ∂) is a crossed
module, we need only add a trivial L = 1, and the resulting sequence

L→M → N

with the ‘obvious actions’ is a 2-crossed module! This is, of course, functorial and CMod can be
considered to be a full subcategory of 2−CMod in this way. It is a reflective subcategory since
there is a reflection functor obtained as follows:

If
L

∂2−→M
∂1−→ N

is a 2-crossed module, then Im∂2 is a normal subgroup of M and we have (with a small abuse of
notation):

Proposition 46 If L
∂2−→M

∂1−→ N is a 2-crossed module then there is an induced crossed module
structure on

∂1 :
M

Im∂2
→ N.

�

But we can do better than this:

Example 2: Any crossed complex of length 2, that is one of form

. . .→ 1→ 1→ C2
∂2−→ C1

∂1−→ C0,

gives us a 2-crossed complex on taking L = C2, M = C1 and N = C0, with {m,m′} = 1 for all
m,m′ ∈ M . We will check this in a moment, but note that this gives a functor from Crs2] to
2−CMod extending the one we gave in Example 1.

Of course, (i) crossed complexes of length 2 are the same as 2-truncated crossed complexes.

5.3.6 Exploration of trivial Peiffer lifting

Suppose we have a 2-crossed module

L
∂2−→M

∂1−→ N,

with the extra condition that {m0,m1} = 1 for all m0,m1 ∈M . The obvious thing to do is to see
what each of the defining properties of a 2-crossed module give in this case.

(i) There is an action of N on L and M and the ∂s are N -equivariant. (This gives nothing new
in our special case.)

(ii) {−,−} is a lifting of the Peiffer commutator - so if {m0,m1} = 1, the Peiffer identity holds
for (M,N, ∂1), i.e. that is a crossed module;

(iii) if `0, `1 ∈ L, then 1 = {∂2`0, ∂2`1} = [`1, `0], so L is Abelian
and,

(iv) as {−,−} is trivial ∂m` = `, so ∂M has trivial action on L.
Axioms (v) and (vi) vanish.
We leave the reader, if they so wish, to structure this into a formal proof that the 2-crossed

module is precisely a 2-truncated crossed complex.
Our earlier discussion should suggest:
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Proposition 47 The category Crs2] of crossed complexes of length 2 is equivalent to the full sub-
category of 2−CMod given by those 2-crossed complexes with trivial Peiffer lifting. �

We leave the proof of this to the reader.

A final comment is that in a 2-truncated simplicial group, G, one obviously has that it satisfies
the thin filler condition (cf. page 36) in dimensions greater than 2, since NGk = 1 for all k > 2 and
if the Peiffer lifting is trivial in the corresponding 2-crossed module, G satisfies it in dimensions 2
as well. (As D1 is s0(G0), any simplicial group satisfies the thin filler condition in dimension 1.)

In the next section we will give other examples of 2-crossed modules, those coming from crossed
squares.

5.3.7 2-crossed modules and crossed squares

We now have several ‘competing’ models for homotopy 3-types. Since we can go from simplicial
groups to both crossed square and 2-crossed modules, there should be some link between the latter
two situations. In his work on homotopy n-types, Loday gave a construction of what he called a
‘mapping cone’ for a crossed square. Conduché later noticed that this naturally had the structure
of a 2-crossed module. This is looked at in detail in a paper by Conduché, [55].

Suppose that

L
λ //

λ′

��

M

µ

��
N

µ′
// P

is a crossed square, then its mapping cone complex is

L
∂2→M oN

∂1→ P,

where ∂2` = (λ`−1, λ′`) and ∂1(m,n) = µ(m)ν(n).

We first note that the semi-direct product M oN is formed by making N act on M via P , i.e.

nm = ν(n)m,

where the P -action is the given one. The fact that (λ−1, λ′) and µν are homomorphisms is an
interesting and instructive, but easy, exercise:

i) (m,n)(m′, n′) = (mν(n)m′, nn′), so

∂1((m,n)(m′, n′)) = µ(mν(n)m′).ν(nn′)

= µ(m)ν(n)µ(m′)ν(n)−1ν(n)ν(n′)

= (µ(m)ν(n))(µ(m′)ν(n′));

(ii) if `, `′ ∈ L, then, of course,

∂1(``′) = (λ(``′)−1, λ′(``′))

= (λ(`′)−1λ(`)−1, λ′(`)λ′(`′)).



174 CHAPTER 5. BEYOND 2-TYPES

whilst

∂1(`)∂1(`′) = (λ(`)−1, λ′(`))(λ(`′)−1, λ′(`′))

= (λ(`)−1.νλ
′(`−1)λ(`′)−1, λ′(``′)),

thus the second coordinates are the same, but, as νλ′ = µλ, the first coordinates are also equal.
These elementary calculations are useful as they pave the way for the calculation of the Peiffer

commutator of x = (m,n) and y = (c, a) in the above complex:

〈x, y〉 = ∂xy.xy−1x−1

= µm.νn(c, a).(m,n)(a
−1
c−1, a−1)(n

−1
m−1, n−1)

= (µmνnc, µmνna)(mν(na−1)c−1.ν(na−1n−1)m−1, na−1n−1),

which on multiplying out and simplifying is

(ν(na−1n−1)m.m−1, µm(nan−1).(na−1n−1)).

(Note that any dependence on c vanishes!)
Conduché defined the Peiffer lifting in this situation by

{x, y} = h(m,nan−1).

It is immediate to check that this works

∂2{x, y} = (λh(m,nan−1), λ′h(m,nan−1))

= (ν(na−1n−1)m.m−1, µm(nan−1).(na−1n−1),

by the axioms of a crossed square.

We will not check all the axioms for a 2-crossed module for this structure, but will note the
proofs for one or two of them as they illustrate the connection between the properties of the h-map
and those of the Peiffer lifting.

2CM(iii) : {∂`0, ∂`1} = [`1, `0]. As ∂` = (λ`−1, λ′`), this needs the calculation of

h(λ`−1
0 , λ′(`0`1`

−1
0 )),

but the crossed square axiom :
h(λ`, n) = `.n`−1, and h(m,λ′`) = m`.`−1,

together with the fact that the map λ : L→M is a crossed module, give

h(λ`−1
0 , λ′(`0`1`

−1
0 )) = µλ(`−1

0 (`0`1`
−1
0 ).`0`

−1
1 `−1

0 )

= [`1, `0].

We need {(m,n), (λ`−1, λ′`)}{(λ`−1, λ′`), (m,n)} to equal µ(m)ν(n)`.`−1, but evaluating the initial
expression gives

h(m,n.λ′`.n−1)h(λ`−1, λ′`.n.λ′`−1) = h(m,λ′(n`))h(λ`−1, λ′`.n.λ′`−1)

= µ(m)ν(n)`.ν(n)`−1.`−1.νλ
′(`).ν(n).νλ′`−1

`,
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and this does simplify as expected to give the correct results.

We thus have two ways of going from a simplicial group, G, to a 2-crossed module:
(a) directly to get

NG2

∂NG3
→ NG1 → NG0;

(b) indirectly via M(G, 2) and then by the above construction to get

NG2

∂NG3
→ Ker d0 oKer d1 → G1

and they clearly give the same homotopy type. More precisely G1 decomposes as Ker d0 o s0G0

and the Ker d0 factor in the middle term of (b) maps down to that in this decomposition by the
identity map, thus d0 induces a quotient map from (b) to (a) with kernel isomorphic to

1→ Ker d0
=→ Ker d0,

which is acyclic/contractible.

5.3.8 2-crossed complexes

(These were not discussed in the lectures in Buenos Aires due to lack of time.) Crossed complexes
are a useful extension of crossed modules allowing not only the encoding of an algebraic model for
the 2-type, but also information on the ‘chains on the universal cover’, e.g. if G is a simplicial
group, earlier, in section 3.5.1, we had C(G), the crossed complex constructed from the Moore
complex of G, given by

C(G)n =
NGn

(NGn ∩Dn)d0(NGn+1 ∩Dn+1)
,

in higher dimensions and having at its ‘bottom end’ the crossed module,

NG1

d0(NG2 ∩D2)
→ NG0.

For a crossed complex, π(X), coming from a CW-complex (as a filtered space, filtered by its
skeleta), these groups in dimensions ≥ 3 coincide with the corresponding groups of the complex of
chains on the universal cover of X. In general, the analogue of that chain complex can be extracted
functorially from a general crossed complex; see [41] or [151]. The tail on a crossed complex allows
extra dimensions, not available just with crossed modules, in which homotopies can be constructed.
The category Crs is very much better structured than is CMod itself and so ‘adding a tail’ would
seem to be a ‘good thing to do’, so with 2-crossed modules, we can try and do something similar,
adding a similar ‘tail’.

We have an obvious normal chain complex of groups that ends

. . .→ C(G)3 →
NG2

d0(NG3 ∩D3)
→ NG1 → NG0.

Here there are more of the structural Peiffer pairings of the Moore complex NG that survive to
the quotient, but it should be clear that, as they take values in the NGn ∩ Dn, in general these
will again be almost all trivial if the receiving dimension, n, is greater than 2. For n ≤ 2, these
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pairings are those that we have been using earlier in this chapter. The one exceptional case that
is important here, as in the crossed complex case, is that which gives the action of NG0 on Cn(G)
for n ≥ 3, which, just as before, gives Cn(G) the structure of a π0G-module. Abstracting from this
gives the definition of a 2-crossed complex.

Definition: A 2-crossed complex is a normal complex of groups

. . .→ Cn
∂n−→ Cn−1 −→ . . . −→ C0,

together with a 2-crossed module structure given on C2 → C1 → C0 by a Peiffer lifting function
{−,−} : C1 × C1 → C2, such that, on writing π = Coker(C1 → C0),

(i) each Cn, n ≥ 3 and Ker ∂2 are π-modules and the ∂n for n ≥ 4, together with the codomain
restriction of ∂3, are π-module homomorphisms;

(ii) the π-module structure on Ker ∂2 is the action induced from the C0-action on C2 for which
the action of ∂1C1 is trivial.

A 2-crossed complex morphism is defined in the obvious way, being compatible with all the
actions, the pairings and Peiffer liftings. We will denote by 2− Crs, the corresponding category.

There are reduced and unreduced versions of this definition. In the discussion and in the
notation we use, we will quietly ignore the groupoid based non-reduced version, but it is easy to
give simply by replacing simplicial groups by simplicially enriched groupoids, and making fairly
obvious changes to the definitions.

Proposition 48 The construction above defines a functor, C(2), from Simp.Grps to 2− Crs. �

There are no prizes for guessing that the simplicial groups whose homotopy types are accurately
encoded in 2− Crs by this functor are those that satisfy the thin condition in dimensions greater
than 3. In fact, the construction of the functor C(2) explicitly kills off the intersection NGk ∩Dk

for k ≥ 3.

We have noted above that any 2-crossed module,

L
∂2−→M

∂1−→ N,

gives us a short crossed complex by dividing L by the subgroup {M,M}, the image of the Peiffer
lifting. (We do not need this, but {M,M} is easily checked to be a normal subgroup of L.) We
also discussed those 2-crossed complexes that had trivial Peiffer lifting. They were just the length
2 crossed complexes. This allows one to show that crossed complexes form a reflexive subcategory
of 2− Crs and to give a simple description of the reflector:

Proposition 49 There is an embedding

Crs→ 2−Crs,

which has a left adjoint, L say, compatible with the functors defined from Simp.Grps to 2−Crs
and to Crs, i.e. C(G) ∼= LC(2)(G). �



5.4. CATN -GROUPS AND CROSSED N -CUBES 177

5.4 Catn-groups and crossed n-cubes

5.4.1 Cat2-groups and crossed squares

In the simplest examples of crossed squares, µ and µ′ are normal subgroup inclusions and L = M∩N,
with h being the conjugation map. Moreover this type of example is almost ‘generic’ since, if

M ∩N //

��

M

��
N // G

is a simplicial crossed square constructed from a simplicial group, G, and two simplicial normal
subgroups, M and N , then applying π0, the square gives a crossed square and, up to isomorphism,
all crossed squares arise in this way.

Although when first defined by D. Guin-Walery and J.-L. Loday, [91], the notion of crossed
squares was not linked to that of cat2-groups, it was in this form that Loday gave their generalisation
to an n-fold structure, catn-groups (see [119] and below).

Definition: A cat1-group is a triple, (G, s, t), where G is a group and s, t are endomorphisms
of G satisfying conditions
(i) st = t and ts = s.
(ii) [Ker s, Ker t] = 1.

A cat1-group is a reformulation of an internal groupoid in Grps. (The interchange law is given
by the [Ker,Ker] condition; left for you to check) As these latter objects are equivalent to crossed
modules, we expect to be able to go between cat1-groups and crossed modules without hindrance,
and we can:

Setting M = Ker s, N = Ims and ∂ = t|M, then the action of N on M by conjugation within
G makes ∂ : M → N into a crossed module. Conversely if ∂ : M → N is a crossed module, then
setting G = M oN and letting s, t be defined by

s(m,n) = (1, n)

and
t(m,n) = (1, ∂(m)n)

for m ∈ M , n ∈ N, we have that (G, s, t) is a cat1-group. Again this is one of those simple, but
key calculations that are well worth doing yourself.

For a cat2-group, we again have a group, G, but this time with two independent cat1-group
structures on it. Explicitly:

Definition: A cat2-group is a 5-tuple (G, s1, t1, s2, t2), where (G, si, ti), i = 1, 2, are cat1-groups
and

sisj = sjsi, titj = tjti, sitj = tjsi

for i, j = 1, 2, i 6= j.
There is an obvious notion of morphism between cat2-groups and with this we obtain a category,

Cat2(Grps).
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Theorem 13 [119] There is an equivalence of categories between the category of cat2-groups and
that of crossed squares.

Proof: The cat1-group (G, s1, t1) will give us a crossed module with M = Ker s1, N = Ims1, and
∂ = t|M, but, as the two cat1-group structures are independent, (G, s2, t2) restricts to give cat1-
group structures on both M and N and makes ∂ a morphism of cat1-groups as is easily checked.
We thus get a morphism of crossed modules

Ker s1 ∩Ker s2
//

��

Ims1 ∩Ker s2

��
Ker s2 ∩ Ims1

// Ims1 ∩ Ims2,

where each morphism is a crossed module for the natural action, i.e., conjugation in G. It remains
to produce an h-map, but this is given by the commutator within G, since, if x ∈ Ker s2 ∩ Ims1

and y ∈ Ims2 ∩Ker s1, then [x, y] ∈ Ker s1 ∩Ker s2. It is easy to check the axioms for a crossed
square. The converse is left as an exercise. �

5.4.2 Interpretation of crossed squares and cat2-groups

We have said that crossed squares and cat2-groups give equivalent categories and we will see that,
similarly, for the crossed n-cubes and catn-groups, which will be introduced shortly. The simplest
case of that general situation is one that we have already already met namely that of crossed
modules and cat1-groups, and there we earlier saw how to interpret a crossed modules as being the
essential data for a 2-group(oid).

We thus have, you may recall (combining ideas from pages 49 and 177), that a crossed module,
(C,P, ∂), gives us a cat1-group / 2-group, (C o P, s, t), with s(c, p) = p being the source of an
element (c, p) and t(c, p) = ∂c.p being its target. The definition of cat2-group does not explicitly
use the language of ‘internal categories’, we mentioned that the [Ker s,Ker t] = 1 condition is a
version of the interchange law, and that a cat1group can be interpreted as an internal category in
Grps. This leads to pictures such as

p1
(c1,p1)−→ ∂c1.p1,

(cf. section 2.3.2, page 49) indicating that (c, p) interprets as an arrow having source and target as
indicated. We could equally well use the 2-category or 2-group(oid) style diagram:

.

p

##

∂c.p

;;
�� ��
�� (c,p) .

as we discussed earlier in section 2.3.3.
If we start with a cat1-group, (G, s, t), then the picture is

s(g)
g−→ t(g).

It thus looks that the source and target are ‘objects’ of the category structure that we know to be
there. Where do they live? Clearly in Ims or Im t, or both. Life is easy on us however. We note
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that Ims = Im t, since st = t implies that Im t ⊆ Ims, whilst we also have ts = s, giving the
other inclusion. The subgroup Ims, corresponds to the group P of the crossed module, considered
as a subgroup of the ‘big group’ C o P .

It is sometimes more convenient to write an internal category in the form

G1

σ //

τ
// G0

ι
oo

,

so that G1 is an object of arrows and G0 the object of objects, in our case, the ‘group of objects’.
The cat1-group notation replaces the source, target and identity maps by the composites s = ισ
and t = ιτ . This, of course, gives endomorphisms of G1, which are simpler to handle than having a
‘many sorted’ picture with two separate groups. The downside of that simplicity is that the object
of objects is slightly hidden. Of course, it is this subgroup, Ims, and the inclusion of that subgroup
into G = G1 is the morphism denoted ι. It is therefore reasonable to draw the ‘objects’ as blobs or
points rather than as elements of G, e.g., as loops on the single real object of the group thought of
as a single object groupoid. The resulting pictures are easier to draw! and to interprete.

A cat2-group is similarly a category-like structure, internal to cat1-groups, so is a double cat-
egory internal to the category of groups, as the two category structures are independent of each
other. This is emphasised if we look at the elements of a cat2-group in an analogous way to the
above. First suppose that (G, s1, t1, s2, t2) is a cat2-group, then we might draw, for each g ∈ G, a
square diagram:

. t2g // .

.

s1g

OO

s2g
//

g

.

t1g

OO

Now the left vertical arrow is in the subgroup, Ims1 = Im t1. (We can refer to s1g as the 1-
source, and t1g as the 1-target, of g, and similarly for 2-source, and so on.) The square is a schema
consistent the the equations: s1t2 = t2s1, and the three other similar ones. The element s1t2g is
the 1-source of the 2-target of g, so is the vertex at the top left of the square. It is also the 2-target
of the 1-source of g, of course.

Such squares compose horizontally and vertically, provided the relevant sources and targets
match, but how does this relate to the group structure on G?

Looking back, once more, to a cat1-group, (G, s, t) and a resulting composition

s(g)
g−→ t(g) = s(g′)

g′−→ t(g′),

it is not immediately clear how the composite is to be studied, but look back to the corresponding
crossed module based description and it becomes clearer. We had in section 2.3.2,

p
(c,p)−→ ∂c.p

(c′,∂c.p)−→ ∂c′∂c.p,

and the composition was given as (c′, ∂c.p) ? (c, p) = (c′c, p). Back in cat1-group language, this
corresponds to g′?g = g′s(g′)−1g. (We can check that s(g′s(g′)−1g) = s(g) and that t(g′s(g′)−1g) =
t(g′), as we would expect.)
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We can extend this to cat2-groups giving a way of composing the squares that we have in this
context. For instance, for horizontal composition, we have

. // . // . . // .

.

OO

//

g

.

OO

//
g′

.

=

OO

.

OO

//
g′s1(g′)−1g

.

OO

and similarly for vertical composition, replacing s1 by s2.

That gives a double category interpretation for a cat2-group, but how does this relate to a
crossed square,

L
λ //

λ′

��

M

µ

��
N

µ′
// P

with h-map h : M ×N → L. The construction hinted at earlier is first to form the cat1-groups of
the two vertical crossed modules, giving

∂ : LoN →M o P, with ∂(`, n) = (λ(`), ν(n)),

with ∂ the induced map. There is an action of M o P on LoN (which will be examined shortly)
giving a crossed module structure to the result. This action is non-trivial to define (or discover),
so here is a way of thinking of it that may help.

We ‘know’ that a crossed square is meant to be a crossed module of crossed modules, so, if
the above ∂ and action does give a crossed module, we will then be able to form a ‘big group’,
(L o N) o (M o P ), with a cat2-group structure on it. The action of M o P on L o N will
need to correspond to conjugation within this ‘big group’ as the idea of semi-direct products is,
amongst other things, to realise an action: if G acts on H, H o G has multiplication given by
(h1, g1)(h2, g2) = (h1

g1h2, g1g2). In particular, it is easy to work out

(h, g)−1 = ( g
−1
h−1, g−1),

so

(1, g)(h, 1)(1, g)−1 = (gh, 1).

In our situation, we thus can work out the conjugation,

((1, 1), (m, p))((`, n), (1, 1))((1, 1), (p
−1
m−1, p−1)) = ((m,p)(`, n), (1, 1)).

Now this looks as if we are getting nowhere, but let us remember that any crossed square is
isomorphic to the π0 of an ‘inclusion crossed square’ of simplicial groups, (this was mentioned on
page 165). This suggests that we first look at a group G, and a pair of normal subgroups M , N ,
and the inclusion crossed square

M ∩N //

��

N

��
M // G
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with h(m,n) = [m,n]. If we track the above discussion of the action and the definition of ∂ in
this example, we get the induced map, ∂, is the inclusion of (M ∩ N) o N into M o G. Here,
therefore, there is, ‘gratis’, an action of M oG on (M ∩N) oN , namely by inner automorphisms
/ conjugation:

(m, g)(`, n)(g
−1
m−1, g−1)) = (m, g)(`.n.g

−1
m.n−1, ng)

= (m.g`.gn.m.gn−1, gmg−1),

which can conveniently be written
(mg`.[m, gn], gn).

This suggests a formula for an action in the general case

(m,p)(`, n) = m(p`, pn)

= (µ(m)p`.h(m, pn), pn).

If we start with a simplicial inclusion crossed square, and form its ‘big simplicial group’ simplicially
using the previous formula, then this will give the action of M o P on LoN in the general case,
so our guess looks as if it is correct. Note that in both the particular case of the inclusion crossed
square and this general case, we can derive h(m,n) as a commutator within the ‘big group’. (Of
course, for the first of these, the h-map was defined as a commutator within G.)

We could go on to play around with other facets of this construction. This would be well
worthwhile - but is better left to the reader. For instance, one obvious query is that (L o
N)o (M oP ) should not be dependent on thinking of a crossed square as a morphism of (vertical)
crossed modules. It is also a morphism of horizontal crossed modules, so this ‘big group’, if it is
to give a useful object, should be isomorphic to (L oM) o (N o P ). It is, but what is a specific
natural isomorphism doing the job. As somehow M has to ‘pass through’ N , we should expect to
have to use the h-map.

There are other ‘games to play’. Central extensions gave an instance of crossed modules, so
what is their analogue for crossed squares. Double central extensions have been introduced by
Janelidze in [106] and have been further studied by others, [76, 87, 154]. They provide a related
idea. It is left to you to explore any connections that there are.

If we start with a crossed square, as above, what is the analogue of the picture

p1
(c1,p1)−→ ∂c1.p1,

representing an element of the ‘big group’ of a crossed module. Suppose (`, n,m, p) is such an
element, then it is easy to see the 2-cell that corresponds to it must be:

ν(n)p
λ(`).ν(n)m,ν(n)p)// µ(λ(`))ν(n)µ(m)p

p

(n,p)

OO

(m,p)
//

(`,n,m,p)

µ(m)p

λ′(`)n,µ(m)p)

OO
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The details of how to compose, etc. are again left to you. It is, however, worth just checking the
way in which the two edges on the top and on the right do match up. The right hand edge will
clearly end at ν(λ′(`))ν(n)µ(m)p, which, as νλ′ = µλ, gives the expression on the top right vertex.
Of more fun is the top edge. This ends at

µ(λ(`)).µ(ν(n)m).ν(n).p = µ(λ(`)).ν(n)µ(m)ν(n)−1ν(n)p,

so is as required, using the fact that µ is a crossed module.

In such a square 2-cell, the square itself is in the ‘big group’, the edges are in the cat1-groups
corresponding to vertical and horizontal crossed modules of the crossed square, and the vertices
are in P .

Particularly interesting is the case of two crossed modules, µ : M → P and ν : N → P , together
with the corresponding L = M ⊗ N , the Brown-Loday tensor product of the two, (cf. [43, 44]).
Approximately, M ⊗N is the universal codomain for an h-map based on the two given sides of the
resulting crossed square. (A treatment of this construction has been included in the notes, [151], -
please ignore the profinite conditions if using it ‘discretely’.)

5.4.3 Catn-groups and crossed n-cubes, the general case

Of the two notions named in the title of this section, the first is easier to define.

Definition: A catn-group is a group G together with 2n endomorphisms si, ti, (1 ≤ i ≤ n) such
that

siti = ti, and tisi = si for all i,

sisj = sjsi, titj = tjti, sitj = tjsi for i 6= j

and, for all i,

[Ker si,Ker ti] = 1.

A catn-group is thus a group with n independent cat1-group structures on it.

As a cat1-group can also be reformulated as an internal groupoid in the category of groups, a
catn-group, not surprisingly, leads to an internal n-fold groupoid in the same setting.

The definition of crossed n-cube as an n-fold crossed module was initially suggested by Ellis in
his thesis. The only problem was to determine the sense in which one crossed module should act
on another. Since the number of axioms controlling the structure increased from crossed modules
to crossed squares, one might fear that the number and complexity of the axioms would increase
drastically in passing to higher ‘dimensions’. The formulation that resulted from the joint work,
[75], of Ellis and Steiner showed how that could be avoided by encoding the actions and the h-maps
in the same structure.

We write 〈n〉 for the set {1, . . . , n}.

Definition: A crossed n-cube, M, is a family of groups, {MA : A ⊆ 〈n〉}, together with
homomorphisms, µi : MA → MA−{i}, for i ∈ 〈n〉, A ⊆ 〈n〉, and functions, h : MA ×MB → MA∪B,
for A,B ⊆ 〈n〉, such that if ab denotes h(a, b)b for a ∈ MA and b ∈ MB with A ⊆ B, then for
a, a′ ∈MA, b, b

′ ∈MB, c ∈MC and i, j ∈ 〈n〉, the following axioms hold:
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(1) µia = a if a /∈ A
(2) µiµja = µjµia

(3) µih(a, b) = h(µia, µib)

(4) h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B
(5) h(a, a′) = [a, a′]

(6) h(a, b) = h(b, a)−1

(7) h(a, b) = 1 if a = 1 or b = 1

(8) h(aa′, b) = ah(a′, b)h(a, b)

(9) h(a, bb′) = h(a, b)bh(a, b′)

(10) ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1

(11) ah(b, c) = h(ab,ac) if A ⊆ B ∩ C.

A morphism of crossed n-cubes

{MA} → {M ′A}

is a family of homomorphisms, {fA : MA →M ′A |A ⊆ 〈n〉}, which commute with the maps, µi, and
the functions, h. This gives us a category, Crsn, equivalent to that of catn-groups.

Remarks: 1. In the correspondence between catn-groups and crossed n-cubes (see Ellis and
Steiner, [75]), the catn-group corresponding to a crossed n-cube, (MA), is constructed as a repeated
semidirect product of the various MA. Within the resulting “big group”, the h-functions interpret
as being commutators. This partially explains the structure of the h-function axioms.

2. For n = 1, these eleven axioms reduce to the usual crossed module axioms. For n = 2, they
give a crossed square:

M〈2〉
µ2 //

µ1
��

M{1}

µ1

��
M{2} µ2

//M∅

,

with the h-map, that was previously specified, being h : M{1} ×M{2} → M〈2〉. The other h-maps
in the above definition correspond to the various actions as explained in the definition itself.

Theorem 14 [75] There are equivalences of categories

Crsn ' Catn(Grps),

�

5.5 Loday’s Theorem and its extensions

In 1982, Loday proved a generalisation of the MacLane-Whitehead result that stated that connected
homotopy 2-types (they called them 3-types) were modelled by crossed modules. The extension
used catn-groups, and, as cat1-groups ‘are’ crossed modules, we should expect catn-groups to model
connected (n+ 1)-types (if the MacLane-Whitehead result is to be the n = 1 case, see page 165).

We have mentioned that ‘simplicial groupoids’ model all homotopy types and had a construction
of both a crossed module M(G, 1) and a crossed square, M(G, 2) from a simplicial group, G. These
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are the n = 1 and n = 2 cases of a general construction of a crossed n-cube from G that we will
give in a moment First we note a rather neat result.

We saw early on in these notes, (Lemma 4, page 40), that if ∂ : C → P was a crossed module,
then ∂C / P , i.e. is a normal subgroup of P . A crossed square

L
λ //

λ′

��

M

µ

��
N

µ′
// P

can be thought of as a (horizontal or vertical,) crossed module of crossed modules:

L

��

M

��
−→

N P

(λ, ν) gives such a crossed module with domain (L,N, λ′) and codomain (M,P, µ) and so on.
(Working out the precise meaning of ‘crossed module of crossed modules’ and, in particular, what
it should mean to have an action of one crossed module on another, is a very useful exercise; try
it!) The image of (λ, ν) is a normal sub-crossed module of (M,P, µ), so we can form a quotient

µ : M/λL→ P/νN,

and this is a crossed module. (This is not hard to check. There are lots of different ways of checking
it, but perhaps the best way is just to show how P/νN acts on M/λL, in an obvious way, and then
to check the induced map, µ, has the right properties - just by checking them. This gives one a
feeling for how the various parts of the definition of a crossed square are used here.)

Another result from near the start of these notes, (Lemma 5), is that Ker ∂ is a central subgroup
of C and ∂C acts trivially on it, soKer ∂ has a natural P/∂C-module structure. Is there an analogue
of this for a crossed square? Of course, referring again to our crossed square, above, the kernel of
(λ, ν) would be λ′ : Ker λ → Ker ν (omitting any indication of restriction of λ′ for convenience).
Both Ker λ and Ker ν are Abelian, as they themselves are kernels of crossed modules, so Ker λ
is a M/λL-module and Ker ν is a P/νN -module. (It is left to the diligent reader to work out the
detailed structure here and to explore crossed modules that are modules over other ones.)

We had, for a given simplicial group, G, the crossed square

NG2

d0(NG3)

��

// Ker d1

��
Kerd2

// G1

which was denoted M(G, 2). (The top horizontal and left vertical maps are induced by d0.) Let us
examine the horizontal quotient and kernel.

First the quotient, this has NG1/d0NG2 as its ‘top’ group and G1/Ker d0
∼= G0, as its bottom

one. Checking all the induced maps shows quite quickly that the quotient crossed module is
M(G, 1), up to isomorphism.
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What about the kernel? Well, the bottom horizontal map is an inclusion, so has trivial kernel,
whilst the top is induced by d0, and so the kernel here can be calculated to be Ker d0∩NG2, divided
by d0(NG3), but that is Ker ∂/Im∂ in the Moore complex, so is H2(NG) and thus is π2(G). We
thus have, from previous calculations, that for M(G, 1), there is a crossed 2-fold extension

π1(G)→ NG1

∂NG2
→ NG0 → π0(G)

and for M(G, 2), a similar object, a crossed 2-fold extension of crossed modules:

1 // π2(G)

��

// Ker d1
//

��

NG2/d0(NG3)

��

// Ker d1NG1/d0(NG2) //

��

//

��

1

1 // 1 // Ker d0
// G1

// G0
// 1

‘Obviously’ this should give an element of ‘H3(M(G, 2), (π2(G)→ 1))’, but we have not given any
description of what that cohomology group should be. It can be done, but we will not go in that
direction for the moment. Rather we will use the route via simplicial groups.

5.5.1 Simplicial groups and crossed n-cubes, the main ideas

We have that simplicial groups yield crossed squares by the M(G, 2) construction, and that, from
M(G, 2), we can calculate π0(G), π1(G), and π2(G). If G represents a 3-type of a space (or the 2-
type of a simplicial group), then we would expect these homotopy groups to be the only non-trivial
ones. (Any simplicial group can be truncated to give one with these πi as the only non-trivial ones.)
This suggests that going from 3-types to crossed squares in a nice way should be just a question of
combining the functorial constructions

Spaces
Sing−→ Simplicial Sets

Simplicial Sets
G( )−→ S−Groupoids

S−Groupoids M( ,2)−→ Crossed squares.

Of course, we would need to see if, for f : X → Y a 3-equivalence (so f induces isomorphisms on
πi for i = 0, 1, 2, 3), what would be the relationship between the corresponding crossed squares.
We would also need to know that each crossed square was in sense ‘equivalent’ to one of the form
M(G, 2) for some G constructed from it, in other words to reverse, in part, the last construction.
(The other constructions have well known inverses at the homotopy level.)

We will use a ‘multinerve’ construction, generalising the nerve that we have already met. We
will denote this by E(n)(M) for M a crossed n-cube.

For n = 1, E(1) is just the nerve of the crossed module, so if M = (C,P, ∂), we have E(1)(M) =
K(M) as given already on page 56.

For n = 2, i.e., for a crossed square, M, we form the ‘double nerve ’ of the associated cat2-group
of M. From M, we first form the ‘crossed module of cat1-groups’

LoN
(λ,ν)−→ M o P,
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where, for instance, in M o P the source endomorphism is s(m, p) = (1, p) and the target is
t(m, p) = (1, ∂m.p). (We could repeat in the horizontal direction to form (LoN)o (MoP ), which
is the ‘big group’ of the cat2-group associated to M, but, in fact, will not do this except implicitly,
as it is easier to form a simplicial crossed module in this situation. This,

E(1)(L
λ′→ N) −→ E(1)(M

µ→ P ),

is obtained by applying the E(1) construction to the vertical crossed modules. The two parts are
linked by a morphism of simplicial groups induced from (λ, ν) and which is compatible with the
action of the right hand simplicial group on the left hand one. (This action is not that obvious
to write down - unless you have already done the previously suggested ‘exercises’. It uses the
h-maps from M × N to L, etc. in an essential way, and is, in some ways, best viewed within
(L o N) o (M o P ) as being derived from conjugation. Details are, for instance, in Porter, [151]
or [149] as well as in the discussion of the equivalence between catn-groups and crossed n-cubes in
the original, [75].)

With this simplicial crossed module, we apply the nerve in the second horizontal direction to
get a bisimplicial group, E(2)(M). (Of course, if we started with a crossed n-cube, we could repeat
the application of the nerve functor n-times, one in each direction to get an n-simplicial group
E(n)(M).)

There are two ways of getting from a bisimplicial set or group to a simplicial one. One is
the diagonal, so if {Gp,q} is a bisimplicial group, diag(G•,•)n = Gn,n with fairly obvious face and
degeneracy maps. The other is the codiagonal (also sometimes called the ‘bar construction’). This
was introduced by Artin and Mazur, [8]. It picks up related terms in the various Gp,q for p+ q = n.
(An example is for any simplicial group, G, on taking the nerve in each dimension. You get a
bisimplicial set whose codiagonal is W (G), with the formula given later in these notes.) We will
consider the codiagonal in some detail later on, (starting on page ??). The two constructions
give homotopically equivalent simplicial groups. Proofs of this can be found in several places
in the literature, for instance, in the paper by Cegarra and Remedios, [53]. Here we will set
E(n)(M) = diagE(n)(M).

At this stage, for the reader trying to understand what is going on here, it is worth calculating
the Moore complex of these simplicial groups. This is technically quite tricky as it is easy to make
a slip, but it is not hard to see that they are ‘closely related’ to the 2-crossed module / mapping
cone complex:

L→M oN → P

that we met earlier, (page 173), that is due to Loday and Conduché, see [55]. Of course, such
detailed calculations are much harder to generalise to crossed n-cubes and other techniques are
used, see [149] or the alternative version based on the technology of catn-groups due to Bullejos,
Cegarra and Duskin, [48].

In any of these approaches from a crossed n-cube or catn-group, you either extract a n-simplicial
group and then a simplicial group, by diagonal or codiagonal, or going one stage further, applying
the nerve functor to the n-simplicial group to get a (n+ 1)-simplicial set, which is then ‘attacked’
using the diagonal or codiagonal functors to get out a simplicial set. This end result is the simplicial
model for the crossed n-cube and has the same homotopy groups as M. It is known as the classifying
space of the crossed n-cube or catn-group. (That term is usual, but it actually gives rise to an
interesting obvious question, which has a simple answer in some ways but not if one looks at it
thoroughly. That question is : what does this classifying space classify? That question will to some
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extent return to haunt us later one. The simple answer would be certain types of simplicial fibre
bundles with fibre a n+ 1-type, but that throws away all the hard work to get the crossed n-cube
itself, so ... .

Returning to the simplicial group approach, one applies the M(−, n)-functor, that we have so
far seen only for n = 1 and 2, to get back a new crossed n-cube. This is not M itself in general,
but is ‘quasi-isomorphic’ to it.

Definition: A morphism, f : M→ N, of crossed n-cubes will be called a trivial epimorphism if
E(n)(f) : E(n)(M) → E(n)(N) is an epimorphism (and thus a fibration) of simplicial groups having
contractible kernel.

Starting with the category, Crsn, of crossed n-cubes, inverting the trivial epimorphisms gives
a category, Ho(Crsn), and f will be called a quasi-isomorphism if it gives an isomorphism in this
category.

Remark: Any trivial epimorphism of crossed modules is a weak equivalence in the sense of
section 3.1, page 60. This follows from the long exact fibration sequence. Conversely any such
weak equivalence is a quasi-isomorphism.

We can now state Loday’s result in the form given in [149]:

Theorem 15 The functor

M(−, n) : Simp.Grps→ Crsn

induces an equivalence of categories

Hon(Simp.Grps)
'→ Ho(Crsn).

�

As yet we have not actually given the definition of M(G,n) for n > 2 so here it is:

Definition Given a simplicial group, G, the crossed n-cube, M(G,n), is given by:

(a) for A ⊆ 〈n〉,

M(G,n)A =

⋂
{Ker dnj : j ∈ A}

d0(Ker dn+1
1 ∩

⋂
{Ker dn+1

j+1 : j ∈ A})
;

(b) if i ∈ 〈n〉, the homomorphism µi : M(G,n)A →M(G,n)A\{i} is induced from the inclusion
of
⋂
{Ker dnj : j ∈ A} into

⋂
{Ker dnj : j ∈ A \ {i}};

(c) representing an element in M(G,n)A by x, where x ∈
⋂
{Ker dnj : j ∈ A}, (so the overbar

denotes a coset), and, for A,B ⊆ 〈n〉, x ∈M(G,n)A, y ∈M(G,n)B,

h(x, y) = [x, y] ∈M(G,n)A∪B.
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Where this definition ‘comes from’ and why it works is a bit to lengthy to include here, so we
refer the interested reader to [151]. From its many properties, we will mention just the following
one, linking M(G,n) with M(G,n− 1) in a similar way to that we have examined for n = 2.

We will use the following notation: M(G,n)1 will denote the crossed (n− 1)-cube obtained by
restricting to those A ⊆ 〈n〉 with 1 ∈ A and M(G,n)0 that obtained from the terms with A ⊆ 〈n〉
with 1 6∈ A .

Proposition 50 Given a simplicial group G and n ≥ 1, there is an exact sequence of crossed
(n− 1)-cubes:

1→ K →M(G,n)1
µ1→M(G,n)0 →M(G,n− 1)→ 1,

where, if B ⊆ 〈n− 1〉 and B 6= 〈n− 1〉, then KB = {1}, whilst K〈n−1〉 ∼= πn(G). �

There are some special cases of crossed n-cubes, or the associated catn-groups that are worth
looking at. For instance in [148], Paoli gives a new perspective on catn groups. It identifies a
full subcategory of them (which are called weakly globular) which is sufficient to model connected
n + 1-types, but which has much better homotopical properties than the general ones. This, in
fact, gives a more transparent algebraic description of the Postnikov decomposition and of the
homotopy groups of the classifying space, and it also gives a kind of minimality property. Using
weakly globular catn groups one can also describe a comparison functor to the Tamsamani model
of n+ 1-types (cf. Tamsamani, [160]) which preserves the homotopy type.

5.5.2 Squared complexes

We have met crossed squares and 2-crossed modules and the different ways they encode the homo-
topy 3-type. We have extended 2-crossed modules to 2-crossed complexes, so it is natural curiosity
to try to extend crossed squares to a ‘cube’ formulation. We will see this is just the start of another
hierarchy which is in some ways simpler than that suggested by the hypercrossed complexes, and
their variants, etc. The first step is the following which was introduced by Ellis, [74].

Definition: A squared complex consists of a diagram of group homomorphisms

N
µ

  AAAAAAAA

. . . // C4
∂4 // C3

∂3 // L

λ′
>>~~~~~~~~

λ   @@@@@@@@ P

M

µ′

>>~~~~~~~~

together with actions of P on L,N,M and Ci for i ≥ 3, and a function h : M × N −→ L. The
following axioms need to be satisfied.

(i) The square

 L

λ′ ��

λ // N
µ��

M
µ′
// P

 is a crossed square;

(ii) The group Cn is Abelian for n ≥ 3
(iii) The boundary homomorphisms satisfy ∂n∂n+1 = 1 for n ≥ 3, and ∂3(C3) lies in the intersection
Ker λ ∩Ker λ′;
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(iv) The action of P on Cn for n ≥ 3 is such that µM and µ′N act trivially. Thus each Cn is a
π0-module with π0 = P/µMµ′N.
(v) The homomorphisms ∂n are π0-module homomorphisms for n ≥ 3.

This last condition does make sense since the axioms for crossed squares imply that Ker µ′ ∩
Kerµ is a π0-module.

Definition: A morphism of squared complexes,

Φ :

(
C∗,

 L

λ′ ��

λ // N
µ��

M
µ′
// P

) −→ (
C ′∗,

 L′

λ′ ��

λ // N ′
µ��

M ′
µ′
// P ′

)

consists of a morphism of crossed squares (ΦL,ΦN ,ΦM ,ΦP ), together with a family of equivariant
homomorphisms Φn for n ≥ 3 satisfying ΦL∂3 = ∂′3ΦL and Φn−1∂n = ∂′nΦn for n ≥ 4. There is
clearly a category SqComp of squared complexes.

A squared complex is thus a crossed square with a ‘tail’ attached.
Any simplicial group will give us such a gadget by taking the crossed square to be M(sk2G, 2),

that is,
NG2

d0(NG3 ∩D3)

��

// Ker d1

��
Kerd2

// G1

and then, for n ≥ 3,

Cn(G) =
NGn

(NGn ∩Dn)d0(NGn+1 ∩Dn+1)
.

The above complex contains not only the information for the crossed square M(G, 2) that represents
the 3-type, but also the whole of C(2)(G), the 2-crossed complex of G and thus the crossed complex
and the ‘chains on the universal cover’ of G.

The advantage of working with crossed squares or squared complexes rather than the more
linearly displayed models is that they can more easily encode ‘non-symmetric’ information. We
will show this in low dimensions here but will later indicate how to extend it to higher ones.
For instance, one gets a building process for homotopy types that reflects more the algebra. In
examples, given two crossed modules, µ : M → P and ν : N → P , there is a universal crossed
square defining a ‘tensor product’ of the two crossed modules. We have

M⊗N λ //

λ′

��

M

µ

��
N ν

// P

is a crossed square and hence represents a 3-type. It is universal with regard to crossed squares
having the same right-hand and bottom crossed modules, (see [43, 44] for the original theory and
[151] for its connections with other material).
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Equivalently we could represent its 3-type as a 2-crossed module

M⊗N −→M oN
µν−→ P

or

M⊗N −→ (M oN)

∼
−→ P

µM
,

where ∼ corresponds to dividing out by the µM action. However, of these, the crossed square lays
out the information in a clearer format and so can often have some advantages.

5.6 Crossed N-cubes

5.6.1 Just replace n by N?

We have already suggested (page 168) how one might model all homotopy types using hypercrossed
complexes, i.e. by adding more of the potential structure to the Moore complex of a simplicial
group. We also saw how crossed modules (which are, from this viewpoint, 1-truncated hypercrossed
complexes) generalised to crossed complexes, which have a better structured homotopical and
homological algebra. We have seen earlier the transition from 2-crossed modules (= 2-truncated
hypercrossed complexes) to 2-crossed complexes and briefly in the previous section, how crossed
squares generalised to give squared complexes.

We will end this progression by looking at an elegant theoretical treatment of a generalisation
of both crossed complexes and squared complexes. These gadgets are related to the “Moore chain
complexes of order (n+1) of a simplicial group”, as briefly studied by Baues in [20], but have some
of the advantages of crossed squares over 2-crossed modules, namely they can be ‘non-symmetric’,
and hence are easily specified by, say, an ‘inclusion crossed n-cube’ consisting of a simplicial group
and n simplicial normal subgroups. This allows for extra freedom in constructions. Also the axioms
are very much simpler!

The definition of a crossed n-cube involves the set 〈n〉 = {1, 2, . . . , n}. One obvious way to
extend this, eliminating dependence on n, is to try replacing 〈n〉 by N = {1, 2, . . .} and taking the
subsets A,B,C, in that definition to be finite, a condition previously automatic. This gives the
notion of a crossed N-cube:

Definition: A crossed N-cube, M, is a family of groups,

{MA | A ⊂ N, A finite},

together with homomorphisms, µi : MA → MA−{i}, (i ∈ N, A ⊂fin N), and functions, h : MA ×
MB →MA∪B, (A,B ⊂fin N), such that if ab denotes h(a, b)b for a ∈MA and b ∈MB with A ⊆ B,
then for a, a′ ∈MA, b, b

′ ∈MB, c ∈MC and i, j ∈ N, the following axioms hold:
(1) µia = a if a /∈ A
(2) µiµja = µjµia
(3) µih(a, b) = h(µia, µib)
(4) h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B
(5) h(a, a′) = [a, a′]
(6) h(a, b) = h(b, a)−1

(7) h(a, b) = 1 if a = 1 or b = 1



5.6. CROSSED N-CUBES 191

(8) h(aa′, b) = ah(a′, b)h(a, b)
(9) h(a, bb′) = h(a, b)bh(a, b′)
(10) ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1
(11) ah(b, c) = h(ab,ac) if A ⊆ B ∩ C.

(We have written A ⊂fin N as a shorthand for A ⊂ N with A finite.) Of course, these are
formally identical to those given previously except in as much as there is no bound on the size of
the finite sets A,B,C involved.

Examples: The first example is somewhat obvious, the second slightly surprising.
(i) As, for any n, 〈n〉 ⊂ N, if M is a crossed n-cube, then we can extend it trivially to an crossed

N-cube by defining MA = MA if A ⊆ 〈n〉, and MA = 1 otherwise. The h-maps MA×MB →MA∪B
are then clearly determined by those of the original crossed n-cube.

(ii) Suppose M = {MA, µi, h} is a crossed N-cube, which is such that MA is trivial unless A is
of form 〈n〉 for some n, (where we interpret ∅ as being 〈0〉, and so M∅ is not required to be trivial).
We will write Cn = M〈n〉 and ∂n : Cn → Cn−1 for the morphism µn : M〈n〉 →M〈n−1〉.

We note that ∂n−1∂n is trivial as it factorises via the trivial group:

M〈n〉 //

��

M〈n−1〉

��
MA

//M〈n−2〉

where A = 〈n〉 − {n− 1}, so MA = 1. We thus have that (Cn, ∂n) is a complex of groups.
There is a pairing

C0 × Cn → Cn

given by h : M∅ ×M〈n〉 →M〈n〉, and thus an action

ab = h(a, b)b,

whilst ∂(ab) = a∂b, since µnh(a, b) = h(µna, µnb), which is h(a, µnb), since n 6∈ ∅!
The map ∂1 : C1 → C0 is a crossed module by exactly the proof that a crossed 1-cube is a

crossed module.
If a = ∂1b, then for c ∈ Cn, n ≥ 2,

ac = h(∂1b, c)c

= h(b, µ1c)c,

since 1 ∈ 〈1〉 ∩ 〈n〉, but µ1c ∈M〈n〉−{1}, the trivial group so

ac = c.

We will not systematically check all the axioms, but clearly (Cn, ∂) is a crossed complex. (The
detailed checking is best left to the reader.) Conversely any crossed complex gives a crossed N-cube.

These examples show that both crossed n-cubes, for all n, and crossed complexes are examples
of crossed N-cubes. The obvious question, given our previous discussion, is to try to put Ellis’
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squared complex in the same framework. There is an obvious method to try out, and it works!
One takes MA = 1 unless A = 〈n〉 for some n ∈ N or if A ⊆ 〈2〉. This does it, but it also indicates
an effective way of encoding higher dimensional analogues of these squared complexes.

To do this, given n ≥ 1, we have a subcategory of the category of crossed N-cubes specified by
the crossed n-cube complexes, that is, by MA = 1 unless A = 〈m〉 for some m ∈ N or if A ⊆ 〈n〉
for the given n.

As we are going to explore these gadgets in a bit of detail, we introduce some notation.

CrsN will denote the category of crossed N-cubes of groups; Crsn.Comp will denote the sub-
category of CrsN determined by the crossed n-cube complexes. Thus, for instance, Crs1.Comp
becomes an alternative notation for the category of crossed complexes.

5.6.2 From simplicial groups to crossed n-cube complexes

To show how these gadgets relate to ordinary ‘bog-standard’ models of homotopy types, we will
show how to obtain a crossed n-cube complex from a simplicial group G.

To obtain a crossed n-cube complex from a simplicial group G, one analyses the constructions
giving crossed complexes and crossed square complexes. For crossed complexes, one used the
relative homotopy groups of G, so that the base crossed module is

NG1

(NG1 ∩D1)d0(NG2 ∩D2)
→ G0,

but NG1 ∩D1 = 1 since D1 is generated by the s0(g) with g ∈ G0.

For an arbitrary simplicial group, H, the crossed module M(H, 1) was given by

NH1

d0(NH2)
→ H0,

so the earlier crossed module was M(sk1G, 1), as N(sk1G)2 = NG2 ∩D2.

Similarly for the crossed square complex associated to G, we explicitly took the ‘base’ crossed
square to be M(sk2G, 2).

Proposition 51 Let G be a simplicial group and n ∈ N. Define a family MA, A ⊂ N, A finite, by
(i) if A = 〈m〉 and m > n, then

MA =
NGm

(NGm ∩Dm)d0(NGm+1 ∩Dm+1)
;

(ii) if A ⊆ 〈n〉,

MA = M(sknG,n)A

=

⋂
{Ker dnj : j ∈ A}

d0(Ker dn+1
1 ∩

⋂
{Ker dn+1

j+1 : j ∈ A} ∩Dn+1)
:

(iii) if A is otherwise, then MA is trivial.

Further define µi : MA →MA−{i} by
(iv) if i ∈ A, then µi is the identity morphism;
(v) if A = 〈m〉, with m > n and i = m, then µm is induced by d0, and is trivial if i 6= m;
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(vi) if A ⊆ 〈n〉, then µi is induced by the inclusions of intersections (i.e. as in M(sknG,n));
(vii) otherwise µi is trivial.

Finally define h : MA ×MB →MA∪B by
(viii) if A = ∅ and B = 〈m〉 with m > n then as M∅ = Gn−1 and MB = C(G)m, if a ∈ M∅ and
b ∈MB,

h(a, b) = [sm−n+1
0 (a), b] ∈MB;

similarly if A = 〈m〉 and B = ∅;
(ix) if A,B ⊆ 〈n〉, h is defined as in M(sknG,n);
(x) otherwise h is trivial.

This data defines a crossed N-cube which is, in fact, a crossed n-cube complex.

Proof: Much of this can be safely ‘left to the reader’. It uses results from earlier parts of the notes.
Note, however, that (viii) and (x) effectively say that it is only the sn−1

0 G0 part of Gn−1 that acts
on any M〈m〉 and even then the image of d0 : NG1 → G0 acts trivially. To see this note that any
a ∈ Gn−1 that is in some Ker di is in the image of some µi, hence a = µix say, but then

h(a, b) = h(µix, b)

= h(x, µib)

= 1,

by necessity if the structure is to be crossed N-cube. Thus to check that the h-maps, and, in
particular, those involved with part (viii) of the definition, satisfy the axioms, it suffices to use the
methods mentioned earlier for checking that C(G) was a crossed complex, see [151]. �

We might denote this crossed n-cube complex by C(G,n), as it combines both the technology
of the M(G,n) and the C(G). These models have yet to be explored in any depth, but see [151]
and below for some preliminary results.

5.6.3 From n to n− 1: collecting up ideas and evidence

We noted earlier that given M(G,n), the quotient crossed (n − 1)-cube was M(G,n − 1). Is a
similar result true here? Is there an epimorphism from C(G,n) to C(G,n−1)? In fact this is linked
with another problem. We have a nested sequence of full categories of CrsN,

Crs1.Comp ⊂ Crs2.Comp ⊂ . . . ⊂ Crsn.Comp ⊂ . . . ⊂ CrsN.

Does the inclusion of Crsn−1.Comp into Crsn.Comp have a left adjoint, in other words, is Crsn−1.Comp
a reflexive subcategory of Crsn.Comp? We investigate this question here only for n = 2 as this is
at the same time easiest to see and also one of the most useful cases.

In this case, the crossed square complexes can be neatly represented as

C := . . . // C3
µ3 // C〈2〉

µ2 //

µ1
��

C〈1〉

µ1

��
C{2} µ2

// C∅

,
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whilst those corresponding to crossed complexes look like

D := . . . // D3
µ3 // D〈2〉

µ2 //

µ1

��

D〈1〉

µ1

��
1 µ2

// D∅

.

A map ϕ in Crs2.Comp from C to D, clearly, must kill off C{2} and hence must also kill off µ2(C{2}),
which is normal in C∅. That is not all. If a ∈ C{2}, b ∈ C{1} or C〈2〉, then

ϕ(h(a, b)) = h(ϕa, ϕb) = 1,

and ϕa = 1, thus ϕ must kill off the action of C{2} on C〈2〉, and all elements of this form, h(a, b)
with a ∈ C{2}, b ∈ C{1} or C〈2〉.

Example: To illustrate what is happening let us examine the case of an inclusion crossed
square. Suppose G is a group and M , N normal subgroups, then

C =

M ∩N //

��

M

��
N // G


is a crossed square. Any 2-truncated crossed complex also gives a crossed square

D =


D2

//

��

D1

��
1 // D0

 ,

and any map from C to D factors through

M∩N
[M,N ]

//

��

M
[M,N ]

��
1 // G/N

Proposition 52 The inclusion of Crs1.Comp into Crs2.Comp has a left adjoint, denoted L. This
left adjoint is a reflection, fixing the objects of the subcategory. �

The proof should be fairly obvious so we will leave it as an exercise.

From C(G, 2) to C(G, 1): What happens if we apply this L to C(G, 2)? The answer is not
that much of a surprise!

Proposition 53 If G is a simplicial group, then there is a natural isomorphism

L(C(G, 2)) ∼= C(G, 1).

�
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(Of course, the ‘crossed 1-cube complex’, C(G, 1), is just the crossed complex C(G) under another
name.)

This does generalise to higher dimensions. We thus have a series of crossed approximations to
homotopy types, each one reflecting nicely down to the previous one, but what do these crossed
gadgets tell us about the spaces being modelled? To explore that we must go back to crossed
modules and their classifying spaces. There is a two way process here, algebraic gadgets tell us
information about spaces, but conversely spaces can inform us about algebra.
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Chapter 6

Classifying spaces, and extensions

We will first look in detail at the construction of classifying spaces and their applications for the
non-Abelian cohomology of groups. This will use things we have already met. Later on we will
need to transfer some of this to a sheaf theoretic context to handle ‘gerbes’ and to look at other
forms of non-Abelian cohomology.

6.1 Non-Abelian extensions revisited

We again start with an extension of groups:

E : 1→ K → E
p→ G→ 1.

From a section, s, we constructed a factor set, f , but this is a bit messy. What do we mean by
that? We are working in the category of groups, but neither s nor f are group morphisms. For s,
there is an obvious thing to do. The function s induces a homomorphism, k1, from C1(G), the free
group on the set, G, to E and

C1(G) //

k1
��

G

=

��
E

p // G

commutes. One might be tempted to do the same for f , but f is partially controlled by s, so we
try something else. When we were discussing identities among relations (page ??), we looked at
the example of taking X = {〈g〉 | g 6= 1, g ∈ G} and a relation rg,g′ := 〈g〉〈g′〉〈gg′〉−1 for each pair
(g, g′) of elements of G. (Here we will write 〈g1, g2〉 for rg1,g2 .)

We can use this presentation P to build a free crossed module

C(P) := C2(G)→ C1(G).

We noted earlier that the identities were going to correspond to tetrahedra, and that, in fact, we
could continue the construction by taking Cn(G) = the free G-module on 〈g1, . . . , gn〉, gi 6= 1, i.e.
the normalised bar resolution. This is very nearly the usual bar resolution coming from the nerve
of G, but we have a crossed module at the base, not just some more modules.

We met this structure earlier when we were looking at syzygies, and later on with crossed n-fold
extensions, but is it of any use to us here?

197
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We know pf(g1, g2) = 1, so f(g1, g2) ∈ K, and C2(G) is a free crossed module ... . Also, K → E
is a normal inclusion, so is a crossed module ... . Thinking along these lines, we try

k2 : C2(G)→ K

defined on generators by f , i.e., i(k2(〈g1, g2〉) = f(g1, g2). It is fairly easy to check this works, that

∂k2(〈g1, g2〉) = k1∂(〈g1, g2〉),

and that the actions are compatible, i.e., k : C(P) → E , where will write E also for the crossed
module (K,E, i).

In other words, it seems that the section and the resulting factor set give us a morphism of
crossed modules, k. We note however that f satisfies a cocycle condition, so what does that look
like here? To answer this we make the boundary, ∂3 : C3(G)→ C2(G), precise.

∂3〈g1, g2, g3〉 = 〈g1〉〈g2, g3〉〈g1, g2g3〉〈g1g2, g3〉−1〈g1, g2〉−1

and, of course, the cocycle condition just says that k2∂3 is trivial.
We can use the idea of a crossed complex as being a crossed module with a tail which is a chain

complex, to point out that k gives a morphism of crossed complexes:

C(G) : ... //

��

C3(G) //

��

C2(G) //

k2
��

C1(G) //

k1
��

G

��
E : ... // 1 // K // E // G

where the crossed module E is thought of as a crossed complex with trivial tail.
Back to our general extension,

E : 1→ K → E
p→ G→ 1,

we note that the choice of a section, s, does not allow the use of an action of G on K. Of course,
there is an action of E on K by conjugation and hence s does give us an action of C1(G) on K.
If we translate ‘action of G on a group, K’, to being a functor from the groupoid, G[1], to Grps
sending the single object of G[1] to the object K, then we can consider the 2-category structure
of Grps with 2-cells given by conjugation, (so that if K and L are groups, and f1, f2 : K → L
homomorphisms, a 2-cell α : f1 =⇒ f2 will be given by an element ` ∈ L such that

f2(x) = `f1(x)`−1

for all x ∈ K). With this categorical perspective, s does give a lax functor from G[1] to Grps.
We essentially replace the action G → Aut(K), when s is a splitting, by a lax action (see Blanco,
Bullejos and Faro, [25]);

// C2(G) //

k2
��

C1(G)

k1
��

K //

=

��

E

��
K // Aut(K).



6.1. NON-ABELIAN EXTENSIONS REVISITED 199

Using this lax action and k, we can reinterpret the classical reconstruction method of Schreier as
forming the semidirect product K o C1(G), then dividing out by all pairs,

(k2(〈g1, g2〉), ∂2(〈g1, g2〉)−1).

(We give Brown and Porter’s article, [46], as a reference for a discussion of this construction.)

By itself this reinterpretation does not give us much. It just gives a slightly different viewpoint,
however two points need making. This formulation is nearer the sort of approach that we will need
to handle the classification of gerbes and the use of K → Aut(K) to handle the lax action of G
reveals a problem and also a power in this formulation.

Dedecker, [64], noted that any theory of non-Abelian cohomology of groups must take account
of the variation with K. Suppose we have two groups, K and L, and lax actions of G on them.
What should it mean to say that some homomorphism α : K → L is compatible with the lax
actions?

A lax action of G on K can be given by a morphism of crossed modules / complexes, ActG,K :
C(G)→ Aut(K), but Aut(K) is not functorial in K, so we do not automatically get a morphism of
crossed modules, Aut(α) : Aut(K)→ Aut(L). Perhaps the problem is slightly wrongly stated. One
might say α is compatible with the lax G-actions if such a morphism of crossed modules existed
and such that ActG,L = Aut(α)ActG,K . It is then just one final step to try to classify extensions
with a finer notion of equivalence.

Definition: Suppose we have a crossed module, Q = (K,Q, q). An extension of K by G of the
type of Q is a diagram:

1 // K //

=

��

E //

ω
��

G // 1

K q
// Q

where ω gives a morphism of crossed modules.

There is an obvious notion of equivalence of two such extensions, where the isomorphism on the
middle terms must commute with the structural maps ω and ω′. The special case when Q = Aut(K)
gives one the standard notion. In general, one gets a set of equivalence classes of such extensions
ExtK→Q(G,K) and this can be related to the cohomology set H2(G,K → Q). This can also be
stated in terms of a category ExtQ(G) of extensions of type Q, then the cohomology set is the set
of components of this category.

This latter object can be defined using any free crossed resolution of G as there is a notion
of homotopy for morphisms of crossed complexes such that this set is [C(G),Q]. Any other free
crossed resolution of G has the same homotopy as C(G) and so will do just as well. Finding a
complete set of syzygies for a presentation of G will do.

Example:

G = (x, y |x2 = y3)

This is the trefoil group. It is a one relator presentation and has no identities, so C(P) is already
a crossed resolution. A morphism of crossed modules, k : C(P) → Q, is specified by elements
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qx, qy ∈ Q, and ar ∈ K such that k(ar) = (qx)2(qy)
−3. Using this one can give a presentation of

the E that results.

Remark: Extensions correspond to ‘bitorsors’ as we will see. These in higher dimensions then
yields gerbes with action of a gr-stack and a corresponding cohomology. In the case of gerbes, as
against extensions, a related notion was introduced by Debremaeker, [60–63]. This has recently
been revisited by Milne, [129], and Aldrovandi, [3], who consider the special case where both K
and Q are Abelian and the action of Q is trivial. This links with various important structures on
gerbes and also with Abelian motives and hypercohomology. In all these cases, Q is being viewed
as the coefficients of the cohomology and the gerbes / extensions have interpretations accordingly.
Another very closely related approach is given in Breen, [28, 30]. We explore these ideas later in
these notes.

We can think of the canonical case K → Aut(K) as being a ‘natural’ choice for extensions by
K of a group, G. It is the structural crossed module of the ‘fibre’. The crossed modules case says
we can restrict or, alternatively, lift this structural crossed module to Q. This may, perhaps, be
thought of as analogous to the situation that we will examine shortly where geometric structure
corresponds to the restriction or the lifting of the natural structural group of a bundle. Both
restricting to a subgroup and lifting to a covering group are useful and perhaps the same is true
here.

6.2 Classifying spaces

The classifying spaces of crossed modules are never far from the surface in this approach to coho-
mology and related areas. They will play a very important role in the discussion of gerbes, as, for
instance, in Larry Breen’s work, [28–30] and later on here.

Classifying spaces of (discrete) groups are well known. One method of construction is to form
the nerve, Ner(G), of the group, G, (considered as a small groupoid, G or G[1], as usual). The
classifying space is obtained by taking the geometric realisation, BG = |Ner(G)|.

To explore this notion, and how it relates to crossed modules, we need to take a short excursion
into some simplicially based notions.

A classifying space of a group classifies principal G-bundles (G-torsors) over a space, X, in terms
of homotopy classes of maps from X to BG, using a universal principal G-bundle EG→ BG.

This is very topological! If possible, it is useful to avoid the use of geometric realisations, since
(i) this restricts one to groups and groupoids and makes handling more general ‘algebras’ difficult
and (ii) for algebraic geometry, the topology involved is not the right kind as a sheaf-theoretic,
topos based construction would be more appropriate. Thus the classifying space is often replaced
by the nerve, as in Breen, [30].

How about classifying spaces for crossed modules? Given a crossed module, M = (C,G, θ), say,
we can form the associated 2-group, X (M). This gives a simplicial group by taking the nerve of
the groupoid structure, then we can form W of that to get a simplicial set, Ner(M). To reassure
ourselves that this is a good generalisation of Ner(G), we observe that if C is the trivial group,
then Ner(M) = Ner(G). But this raises the question:

What does this ‘classifying space’ classify?

To answer that we must digress to provide more details on the functors G and W , we mentioned
earlier.
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6.2.1 Simplicially enriched groupoids

We denote the category of simplicial sets by S and that of simplicially enriched groupoids by
S−Grpds. This latter category includes that of simplicial groups, but it must be remembered that
a simplicial object in the category of groupoids will, in general, have a non-trivial simplicial set as
its ‘object of objects’, whilst in S − Grpds, the corresponding simplicial object of objects will be
constant. This corresponds to a groupoid in which each collection of ‘arrows’ between objects is a
simplicial set, not just a set, and composition is a simplicial morphism, hence the term ‘simplicially
enriched’. We will often abbreviate the term ‘simplicially enriched groupoid’ to ‘S-groupoid’, but
the reader should note that in some of the sources on this material the looser term ‘simplicial
groupoid’ is used to describe these objects, usually with a note to the effect that this is not a
completely accurate term to use.

Remark: Later, in section 11.2.1, we will need to work with S-categories, i.e., simplicially
enriched categories. Some brief introduction can be found in [111], in the notes, [150] and the
references cited there. We will give a fairly detailed discussion of the main parts of the elementary
theory of S-categories later.

The loop groupoid functor of Dwyer and Kan, [69], is a functor

G : S −→ S−Grpds,

which takes the simplicial set K to the simplicially enriched groupoid GK, where (GK)n is the free
groupoid on the directed graph

Kn+1
s //
t
// K0 ,

where the two functions, s, source, and t, target, are s = (d1)n+1 and t = d0(d2)n with relations
s0x = id for x ∈ Kn. The face and degeneracy maps are given on generators by

sGKi (x) = sKi+1(x),

dGKi (x) = dKi+1(x), for x ∈ Kn+1, 1 < i ≤ n
and

dGK0 (x) = (dK0 (x))−1(dK1 (x)).

This loop groupoid functor has a right adjoint, W , called the classifying space functor. The details
as to its construction will be given shortly. It is important to note that if K is reduced, i.e. has
just one vertex, then GK will be a simplicial group, so is a well known type of object. This helps
when studying these gadgets as we can often use simplicial group constructions, suitable adapted,
in the S-groupoid context. The first we will see is the Moore complex.

Definition: Given any S-groupoid, G, its Moore complex, NG, is given by

NGn =

n⋂
i=1

Ker(di : Gn −→ Gn−1)

with differential ∂ : NGn −→ NGn−1 being the restriction of d0. If n ≥ 1, this is just a disjoint
union of groups, one for each object in the object set, O, of G. If we write G{x} for the simplicial
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group of elements that start and end at x ∈ O, then at object x, one has

NG{x}n = (NGn){x}.

In dimension 0, one has NG0 = G0, so the NGn{x}, for different objects x, are linked by the
actions of the 0-simplices, acting by conjugation via repeated degeneracies.

The quotient NG0/∂(NG1) is a groupoid, which is the fundamental groupoid of the simplicially
enriched groupoid, G. We can also view this quotient as being obtained from the S-enriched
category G by applying the ‘connected components’ functor π0 to each simplicial hom-set G(x, y).
If G = G(K), the loop groupoid of a simplicial set K, then this fundamental groupoid is exactly the
fundamental groupoid, ΠK, of K and we can take this as defining that groupoid if we need to be
more precise later. This means that ΠK is obtained by taking the free groupoid on the 1-skeleton
of K and then dividing out by relations corresponding to the 2-simplices: if σ ∈ K2, we have a
relation

d2(σ).d0(σ) ≡ d1(σ).

(You are left to explore this a bit more, justifying the claims we have made. You may also like
to review the treatment in the book by Gabriel and Zisman, [81].)

For simplicity in the description below, we will often assume that the S-groupoid is reduced,
that is, its set O, of objects is just a singleton set {∗}, so G is just a simplicial group.

Suppose that NGm is trivial for m > n.

If n = 0, then NG0 is just the group G0 and the simplicial group (or groupoid) represents an
Eilenberg-MacLane space, K(G0, 1).

If n = 1, then ∂ : NG1 −→ NG0 has a natural crossed module structure.

Returning to the discussion of the Moore complex, if n = 2, then

NG2
∂−→ NG1

∂−→ NG0

has a 2-crossed module structure in the sense of Conduché, [54] and above section 5.3. (These
statements are for groups and hence for connected homotopy types. The non-connected case,
handled by working with simplicially enriched groupoids, is an easy extension.)

In all cases, the simplicial group will have non-trivial homotopy groups only in the range covered
by the non-trivial part of the Moore complex.

Now relaxing the restriction onG, for each n > 1, letDn denote the subgroupoid ofGn generated
by the degenerate elements. Instead of asking that NGn be trivial, we can ask that NGn ∩Dn be.
The importance of this is that the structural information on the homotopy type represented by G
includes structure such as the Whitehead products and these all lie in the subgroupoids NGn∩Dn.
If these are all trivial then the algebraic structure of the Moore complex is simpler, being that of a
crossed complex, and WG is a simplicial set whose realisation is the classifying space of that crossed
complex, cf. [40]. The simplicial set, WG, is isomorphic to the nerve of the crossed complex.

Notational warning. As was mentioned before, the indexing of levels in constructions with
crossed complexes may cause some confusion. The Dwyer-Kan construction is essentially a ‘loop’
construction, whilst W is a ‘suspension’. They are like ‘shift’ operators for chain complexes. For
example G decreases dimension, as an old 1-simplex x yields a generator in dimension 0, and so
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on. Our usual notation for crossed complexes has C0 as the set of objects, C1 corresponding to
a relative fundamental groupoid, and Cn abstracting its properties from πn(Xn, Xn−1, p), hence
the natural topological indexing has been used. For the S-groupoid G(K), the set of objects is
separated out and G(K)0 is a groupoid on the 1-simplices of K, a dimension shift. Because of this,
in the notation being used here, the crossed complex C(G) associated to an S-groupoid, G, will
have a dimension shift as well: explicitly

C(G)n =
NGn−1

(NGn−1 ∩Dn−1)d0(NGn ∩Dn)
for n ≥ 2,

C(G)1 = NG0, and, of course, C0 is the common set of objects of G. In some papers where only
the algebraic constructions are being treated, this convention is not used and C is given without
this dimension shift relative to the Moore complex. Because of this, care is sometimes needed when
comparing formulae from different sources.

6.2.2 Conduché’s decomposition and the Dold-Kan Theorem

The category of crossed complexes (of groupoids) is equivalent to a reflexive subcategory of the
category S−Grpds and the reflection is defined by the obvious functor : take the Moore complex of
the S-groupoid and divide out by the NGn∩Dn, see [70, 71]. We will denote by C : S−Grpds −→
Crs the resulting composite functor, Moore complex followed by reflection. Of course, we have the
formula, more or less as before, (cf. page 80),

C(G)n+1 =
NGn

(NGn ∩Dn) d0(NGn+1 ∩Dn+1)
.

The Moore complex functor itself is part of an adjoint (Dold-Kan) equivalence between the category
S − Grpds and the category of hypercrossed complexes, [52], and this restricts to the Ashley-
Conduché version of the Dold-Kan theorem of [10].

In order to justify the description of the nerve, and thus the related classifying space, of a crossed
complex C, we will specify the functors involved, namely the Dold-Kan inverse construction and
the W . (We will leave the reader to chase up the detailed proof of this crossed complex form
of the Dold-Kan theorem. The functors will be here, but the detailed proofs that they do give an
equivalence will be left to you to give or find in the literature.)This will also give us extra tools for
later use. We will first need the Conduché decomposition lemma, [54].

Proposition 54 If G is a simplicial group(oid), then Gn decomposes as a multiple semidirect
product:

Gn ∼= NGn o s0NGn−1 o s1NGn−1 o s1s0NGn−2 o s2NGn−1 o . . . sn−1sn−2 . . . s0NG0

�

The order of the terms corresponds to a lexicographic ordering of the indices ∅; 0; 1; 1,0; 2; 2,0;
2,1; 2,1,0; 3; 3,0; . . . and so on, the term corresponding to i1 > . . . > ip being si1 . . . sipNGn−p.

The proof of this result is based on a simple lemma, which is easy to prove.

Lemma 31 If G is a simplicial group(oid), then Gn decomposes as a semidirect product:

Gn ∼= Ker dnn o sn−1
n−1(Gn−1).

�
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We next note that in the classical (Abelian) Dold-Kan theorem, (cf. [58]), the equivalence of
categories is constructed using the Moore complex and a functor K constructed via the original
direct sum / Abelian version of Conduché’s decomposition, cf. for instance, [58].

For each non-negatively graded chain complex, D = (Dn, ∂). in Ab, KD is the simplicial
Abelian group with

(KD)n = ⊕a(Dn−](a), sa),

the sum being indexed by all descending sequences, a = {n > ip ≥ ... ≥ i1 ≥ 0}, where sa =
sip ...si1 , and where ](a) = p, the summand Dn corresponding to the empty sequence.

The face and degeneracy operators in KD are given by the rules:
(1) if disa = sb, then di will map (Dn−p, sa) to (D(n−1)−(p−1), sb) by the identity on Dn−p; its
components into other direct summands will be zero;
(2) if disa = sbd0, then di will map (Dn−p, sa) to (Dn−p−1, sb) as the homomorphism ∂n−p : Dn−p →
Dn−p−1; its components into other direct summands will be zero;
(3) if disa = sbdj , j > 0, then di(Dn−p, sa) = 0;
(4) if sisa = sb, then si maps (Dn−p, sa) to (D(n+1)−(p+1), sb) by the identity on Dn−p; its compo-
nents into other direct summands will be zero.

This suggests that we form a functor

K : Crs→ S −Grpds

using a semidirect product, but we have to take care as there will be a dimension shift, our lowest
dimension being C1:
if C is in Crs, set

K(C)n = Cn+1 o s0Cn o s1Cn o s1s0Cn−1 o · · ·o sn−1sn−2 . . . s0C1.

The order of terms is to be that of the proposition given above. The formation of the semidirect
product is as in the proof we hinted at of that proposition, that is the bracketing is inductively
given by

(Cn+1 . . .o sn−2 . . . s0C2) o (sn−1Cn o . . .o sn−1 . . . s0C1);

each sα(Cn+1−](α)) is an indexed copy of Cn+1−](α); the action of

sn−1Cn−1 o . . .o sn−1 . . . s0C0 (∼= sn−1K(C)n−1)

on Cn+1 o . . . sn−2 . . . s0C1, is given componentwise by the actions of each Ci and as C is a crossed
complex, these are all via C0. This implies, of course, that the majority of the components of these
actions are trivial.

To see how this looks in low dimensions, it is simple to give the first few terms of the simplicial
group(oid). As we are taking a reduced crossed complex as illustration, the result is a simplicial
group, K(C), having

• K(C)0 = C1

• K(C)1 = C2 o s0(C1)

• K(C)2 = (C3 o s0C2) o (s1C2 o s1s0C1)

• K(C)3 = (C4 o s0C3 o s1C3 o s1s0C2) o (s2C3 o s2s0C2 o s2s1C2 o s2s1s0C1).
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and so on.
The face and degeneracy maps are determined by the obvious rules adapting those in the

Abelian case, so that if c ∈ Ck, the corresponding copy of c in sαCk will be denoted sαc and a
face or degeneracy operator will usually act just on the index. The exception to this is if, when
renormalised to the form sβdγ using the simplicial identities, γ is non-empty. If dγ = d0 then dγc
becomes δkc ∈ Ck−1, otherwise dγc will be trivial.

Lemma 32 The above defines a functor

K : Crs→ S −Grpds

such that CK ∼= Id. �

This extends the functor K : CMod → Simp.Grps, given earlier, to crossed complexes as there
Ck = 1 for k > 2.

One obvious question, given our earlier discussion of group T complexes, and its fairly obvious
adaptation to groupoid T -complexes, is if we start with a crossed complex C and construct this
simplicially enriched groupoid K(C), is this a groupoid T -complex? As the thin filler condition
for groupoid T -complexes involves the Moore complex, it is enough to look at the single object
simplicial group case. We have the following:

Proposition 55 If C is a crossed complex, then KC is a group T -complex.

Proof: We have to check that NK(C)n ∩ Dn = 1. We suppose g ∈ NK(C)n is a product of
degenerate elements, then, using the semidirect decomposition, we can write g in the form

g = s1(g1) . . . sn−1(gn−1). (∗)

The only problem in doing this is handling any element that comes from C0, but this can be done
via the action of C0 on the Ci.

As g ∈ Ker dn, we have

1 = dng = s1dn−1(g1) . . . sn−2dn−1(gn−2).gn−1,

so we can replace gn−1 by a product of degenerate elements and use sn−1si = sisn−2 and rewriting
to obtain a new expression for g in the form (*), but with no sn−1 term. Repeating using dn−1 on
this new expression yields that the new gn−2 is also in Dn−1 and so on until we obtain

g = s0(g(1))

where g(1) ∈ Dn−1, writing g(1) in the form (*) gives

g = s0s0(g1
(1) . . . s0sn−2(gn−2

(1)),

but d1dng = 1, so gn−2
(1) ∈ Dn−2. Repeating we eventually get g = s0s0(g(n)) with g(2) ∈ Dn−2.

This process continues until we get g = s0
(n)(g(n)) with g(n) ∈ K(C)0, but d1 . . . dng = g(n) and

d1 . . . dng = 1, so g = 1 as required. �
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Note that this proof, which is based on Ashley’s proof that simplicial Abelian groups are group
T -complexes (cf., [10]), depends in a strong way on being able to write g in the form (∗), i.e., on
the triviality of almost all the actions together with the explicit nature of the action of C0.

Collecting up the pieces we have all the main points in the proof of the following Dold-Kan
theorem for crossed complexes.

Theorem 16 There is an equivalence of categories

Grpd.T−comp. '←→ Crs.

�

Checking that we do have all the parts necessary and providing any missing pieces is a good exercise,
so will be left to you. A treatment more or less consistent with the conventions here can be found
in [151].

6.2.3 W and the nerve of a crossed complex

We next need to make explicit the W construction. The simplicial / algebraic description of the
nerve of a crossed complex, C, is then as W (K(C)). We first give this description for a general
simplicially enriched groupoid.

Let H be an S-groupoid, then WH is the simplicial set described by

• (WH)0 = ob(H0), the set of objects of the groupoid of 0-simplices (and hence of the groupoid
at each level);

• (WH)1 = arr(H0), the set of arrows of the groupoid H0:
and for n ≥ 2,

• (WH)n = {(hn−1, . . . , h0) | hi ∈ arr(Hi) and s(hi−1) = t(hi), 0 < i < n}.

Here s and t are generic symbols for the domain and codomain mappings of all the groupoids
involved. The face and degeneracy mappings between W (H)1 and W (H)0 are the source and
target maps and the identity maps of H0, respectively; whilst the face and degeneracy maps at
higher levels are given as follows:

The face and degeneracy maps are given by

• d0(hn−1, . . . , h0) = (hn−2, . . . , h0);

• for 0 < i < n, di(hn−1, . . . , h0) = (di−1hn−1, di−2hn−2, . . . , d0hn−ihn−i−1, hn−i−2, . . . , h0);
and

• dn(hn−1, . . . , h0) = (dn−1hn−1, dn−2hn−2, . . . , d1h1);
whilst

• s0(hn−1, . . . , h0) = (iddom(hn−1), hn−1, . . . , h0);
and,

• for 0 < i ≤ n, si(hn−1, . . . , h0) = (si−1hn−1, . . . , s0hn−i, idcod(hn−i), hn−i−1, . . . , h0).
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Remark: We note that if H is a constant simplicial groupoid, W (H) is the same as the nerve
of that groupoid for the algebraic composition order. Later on, when re-examining the classifying
space construction, we may need to rework the above definition in a form using the functional
composition order.

To help understand the structure of the nerve of a (reduced) crossed complex, C, we will calculate
Ner(C) = W (K(C)) in low dimensions. This will enable comparison with formulae given earlier.
The calculations are just the result of careful application of the formulae for W to H = K(C):

• Ner(C)0 = ∗, as we are considering a reduced crossed complex - in the general case, this is
C0;

• Ner(C)1 = C1, as a set of ‘directed edges’ or arrows - we will avoid using a special notation
for ‘underlying set of a group(oid)’;

• Ner(C)2 = {(h0, h1) | h1 = (c2, s0(c1)), h0 = c′1, with c2 ∈ C2, c1, c
′
1 ∈ C1}, and such a

2-simplex has faces given as in the diagram

c′1

��@@@@@@@@@@@@@@@@

c1

(h1,h0)

??~~~~~~~~~~~~~~~~
δc2.c1.c′1

//

Note that h1 : c1 −→ δc2.c1 in the internal category corresponding to the crossed module,
(C2, C1, δ), so the formation of this 2-simplex corresponds to a right whiskering of that 2-cell
(in the corresponding 2-groupoid) by the arrow c′1;

• Ner(C)3 = {(h2, h1, h0) |h1 = (c3, s0c
0
2, s1c

1
2, s1s0c1), h1 = (c′2, s0(c′1)), h0 = c′′1} in the evident

notation. Here the faces of the 3-simplex (h2, h1, h0) are as in the diagrams, (in each of which
the label for the 2-simplex itself has been abbreviated):

d3 :

c′1

��@@@@@@@@@@@@@@@@

c1

c12

??~~~~~~~~~~~~~~~~
δc12.c1.c

′
1

//

; d2 :

δc′2.c
′
1.c
′′
1

��@@@@@@@@@@@@@@@@

c1

c02c
1
2

??~~~~~~~~~~~~~~~~
δ(c02c

1
2).c1.δc′2.c

′
1.c
′′
1

//

d1 :

c′′1

��@@@@@@@@@@@@@@@@

δc12.c1.c
′
1

δc3.c02.
δc12.c1c′2

??~~~~~~~~~~~~~~~~
δ(c02c

1
2).c1.δc′2.c

′
1.c
′′
1

//

; d0 :

c′′1

��@@@@@@@@@@@@@@@@

c′1

c′2

??~~~~~~~~~~~~~~~~
δc′2.c

′
1.c
′′
1

//
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The only face where any real thought has to be used is d1. In this the d1 face has to be checked to
be consistent with the others. The calculation goes like this:

δ(δc3.c
0
2.
δc12.c1c′2).(δc1

2.c1.c
′
1).c′′1 = δc0

2.(δc
1
2.c1.δc

′
2.c
−1
1 .(δc1

2)−1).δc1
2.c1.c

′
1.c
′′
1

= δ(c0
2c

1
2).c1.δc

′
2.c
′
1.c
′′
1

This uses (i) δδc3 is trivial, being a boundary of a boundary, and (ii) the second crossed module
rule for expanding δ(δc

1
2.c1c′2) as δc1

2.c1.δc
′
2.c
−1
1 .(δc1

2)−1.

This diagrammatic representation, although useful, is limited. A recursive approach can be
used as well as the simplicial / algebraic one given above. In this, Ner(C) is built up via its
skeletons, specifying a simplex in Ner(C)n as an element of Cn, together with the empty simplex
that it ‘fills’, i.e. the set of compatible (n− 1)-simplices. This description is used by Ashley, ([10],
p.37). More on nerves of crossed complexes can be found in Nan Tie, [142, 143]. There is also a
very neat ‘singular complex’ description, Ner(C)n = Crs(π(n),C), where π(n) is the free crossed
complex on the n-simplex, ∆[n]. We will have occasion to see this in more detail later.

This singular complex description shows another important feature. If we have an n-simplex
f : π(n) → C, we will say it is thin if the image f(ιn) of the top dimensional generator in π(n) is
trivial. The nerve together with the filtered set of thin elements forms a T -complex in the sense of
section 1.3.6. This is discussed in Ashley, [10], and Brown-Higgins, [40].

6.3 Simplicial Automorphisms and Regular Representations

The usual enrichment of the category of simplicial sets is given by :
for each n ≥ 0, the set of n-simplices is

S(K,L)n = S(K ×∆[n], L),

together with obvious face and degeneracy maps.
Composition : for f ∈ S(K,L)n, g ∈ S(L,M)n, so f : ∆[n]×K → L, g : ∆[n]× L→M ,

g ◦ f := (∆[n]×K diag×K−→ ∆[n]×∆[n]×K ∆[n]×f−→ ∆[n]× L g→M);

Identity : idK : ∆[0]×K
∼=→ K.

Definition: The simplicial set, S(K,L), defined above, is called the simplicial mapping space
of maps from K to L.

This clearly is functorial in both K and L. (Of course, with differing ‘variance’. It is ‘contra-
variant’ in K, so that S(−, L) is a functor from Sop to S, but S(K,−) : S → S. In the category,
S, each of the functors ‘product with K’ for K a simplicial set, has a right adjoint, namely this
S(K,−). Technically S is a Cartesian closed category, a notion we will explore briefly in the next
section. In any such setting we can restrict to looking at endomorphisms of an object, and, here
we can go further and get a simplicial group of automorphisms of a simplicial set, K, analogously
to our construction of the automorphism 2-group of a group (recall from section 2.3.4).

Explicitly, for fixed K, S(K,K) is a simplicial monoid, called the simplicial endomorphism
monoid of K and aut(K) will be the corresponding simplicial group of invertible elements, that is
the simplicial automorphism group of K.
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If f : K ×∆[n] −→ L is an n-simplex, then we can form a diagram

K ×∆[n]
(f,p) //

##HHHHHHH
L×∆[n]

{{wwwwwww

∆[n]

in which the two slanting arrow are the obvious projections, (so (f, p)(k, σ) = (f(k, σ), σ)). Taking
K = L, f ∈ aut(K) if and only if (f, p) is an isomorphism of simplicial sets.

Given a simplicial set K, and an n-simplex, x, in K, there is a representing map,

x : ∆[n] −→ K,

that sends the top dimensional generating simplex of ∆[n] to x.
As was just said, the mapping space construction, above, is part of an adjunction,

S(K × L,M) ∼= S(L,S(K,M)),

in which, given θ : K × L −→M and y ∈ Ln, the corresponding simplicial map

θ̄ : L −→ S(K,M)

sends y to the composite

K ×∆[n]
K×y // K × L θ //M .

In a simplicial group G, the multiplication is a simplicial map, #0 : G × G −→ G, and so, by
the adjunction, we get a simplicial map

G −→ S(G,G)

and this is a simplicial monoid morphism. This gives the right regular representation of G,

ρ = ρG : G −→ aut(G).

We will look at this idea of representations in more detail later.
This morphism, ρ, needs careful interpretation. In dimension n, an element g ∈ Gn acts by

multiplication on the right on G, but even in dimension 0, this action is not as simple as one might
think. (NB. Here aut(G) is the simplicial group of ‘simplicial automorphisms of the underlying
simplicial set of G’ as, of course, multiplication by an element does not give a mapping that
respects the group structure.) Simple examples are called for:

In general, 0-simplices give simplicial maps corresponding to multiplication by that element, so
that for g ∈ G0, and x ∈ Gn,

ρ(g)(x) = x#0s
(n)
0 (g).

Suppose, now, g ∈ G1, then ρ(g) ∈ aut(G)1 ⊂ S(G,G)1 = S(G×∆[1], G). In other words, ρ(g)
is a homotopy between ρ(d1g) and ρ(d0g). Of course, it is an invertible element of S(G,G)1 and
this will have implications for its properties as a homotopy, and, to use a geometric term, we will
loosely refer to it as an isotopy.
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In dimension 1, we, thus, have that elements give isotopies, and in higher dimensions, we have
‘isotopies of isotopies’, and so on.

Of course, the existence of these automorphism simplicial groups, aut(K), leads to a notion of a
(permutation) representation for a simplicial group, G, as being a simplicial group morphism from
G to aut(K) for some simplicial set K. Likewise, if we have a simplical vector space, V , then we
can construct a group of its automorphisms and thus consider linear representations as well. We
will return to this later so give no details here.

6.4 Simplicial actions and principal fibrations

We saw, back in the first chapter, (page 14), the idea of a group, G, acting on a set, X. This is
clearly linked to what was discussed in the previous section. A group action was given by a map,

a : G×X → X,

(and we may write g.x, or simply gx, for the image a(g, x)), satisfying obvious conditions such as
an ‘associativity’ rule g2.g1).x = g2.(g1.x) and an ‘identity’ rule 1G.x = x, both for all possible gs
and xs. Of course, this ‘action by g’ gives a permutation of X, that is, a bijection form X to itself.

6.4.1 More on ‘actions’ and Cartesian closed categories

We know that the behaviour we have just been using for simplicial sets is also ‘there’ in the much
simpler case of Sets, i.e., given sets X, Y and Z, there is a natural isomorphism

Sets(X × Y,Z) ∼= Sets(X,Sets(Y, Z)),

given by sending a ‘function of two variables’, f : X × Y → Z, to f̃ : X → Sets(Y,Z), where
f̃(x) : Y → Z sends y to f(x, y). (We often write ZY for Sets(Y,Z), since, for instance, if
Y = {1, 2}, a two element set, Sets(Y,Z) ∼= Z × Z = Z2, in the usual sense.) Technically, this is
saying that −× Y has an adjoint given by Sets(Y,−).

Definition: A category, C, is Cartesian closed or a ccc, if it has all finite products and for any
two objects, Y and Z, there is an exponential , ZY , in C, so that (−)Y is right adjoint to −× Y .

Recall or note: To say that C has all products says that, for any two objects X and Y in C,
their product X × Y is also there, and that there is a terminal object, and conversely. If you have
not really met ‘terminal objects’ explicitly before an object T is terminal if, for any X in C, there
is a unique morphism from X to T . The simplest examples to think about are (i) any one element
(singleton) set is terminal in Sets, (ii) the trivial group is terminal in Groups, and so on. The dual
notion is initial object . An object, I, is initial if there is a unique morphism from I to X, again
for all X in C. The empty set is initial in Sets; the trivial group is initial in Groups.

If you have not formally met these, now is a good time to check up in texts that give an
introduction to category theory and categorical ideas. In particular, it is worth thinking about why
the terminal object in a category, if it exists, is the ‘empty product’, i.e., the product of an empty
family of objects. This can initially seem strange, but is a very useful insight that will come in
later, when we discuss sheaves.
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We can use this property of Sets, and S, or more generally for any ccc, to give a second
description of a group action. The function a : G×X → X gives, by the adjunction, a function

ã : G→ Sets(G,G).

This set, Sets(G,G), is a monoid under composition, and we can pick out Perm(X) or if you
prefer the notations, Symm(X) or Aut(X), the subgroup of self bijections or permutations of G.
In this guise, an action of G on X is a group homomorphism from G to Perm(X). (You might like
to consider how this selection of the invertibles in the ‘internal’ monoid, C(X,X), could be
done in a general ccc.)

As we mentioned, the category, S, is also Cartesian closed, and we can use the above observation,
together with our identification of the simplicial group of automorphisms, aut(Y ), of a simplicial
set Y from our earlier discussion, to describe the action of a simplicial group, G, on a simplicial
set, Y . A simplicial action would thus be, equivalently, a simplicial map,

a : G× Y → Y,

satisfying associativity and identity rules, or a morphism of simplicial groups,

ã : G→ aut(Y ).

We thus have the well known equivalence of ‘actions’ and ‘representations’. This will be another
recurring theme throughout these notes with embellishments, variations, etc. in different contexts.
it is sometimes the ‘aut’-object version that is easiest to give, sometimes not, and for some contexts,
although C(X,X) will always be a monoid internal to some base category, the automorphisms may
be hard to ‘carve’ out of it. (The structure may only be ‘monoidal’ not ‘Cartesian’ closed, for
instance.) For this reason it pays to have both approaches.

We can identify various properties of group actions for a special mention. Here G may be a
group or a simplicial group (or often more generally, but we do not need that yet) and X will be a
set respectively a simplicial set, etc. (We choose a slightly different form of condition, than we will
be using later on. The links between them can be left to you.)

Definition: (i) A left group action

a : G×X → X,

is said to be effective (or faithful) if gx = x for all x ∈ X implies that g = 1G.

(ii) The G-action is said to be free (or sometimes, principal, cf. May, [127]) if gx = x for some
x ∈ X implies g = 1G.

(iii) If x ∈ X, the orbit of x is the set {g.x | g ∈ G}.

Clearly (i) can be, more or less equivalently, stated as, if g 6= 1G, then there is an x ∈ X such
that gx 6= x. This is a form sometimes given in the literature. Whether or not you consider it
equivalent depends on your logic. The use of negation means that in some context this formulation
of the condition is less easy to use than the former.



212 CHAPTER 6. CLASSIFYING SPACES, AND EXTENSIONS

For future use, it will be convenient to also have slightly different, but equivalent, ways of
viewing these simplicial actions. For these we need to go back again to the simplicial mapping
space, S(K,L) and the composition, (see page 208). Suppose we have, as there, three simplicial
sets, K, L and M , and the composition:

S(K,L)× S(L,M)→ S(K,M).

(The product is symmetric so this is equivalent to

S(L,M)× S(K,L)→ S(K,M).

The former is the viewpoint of the ‘algebraic’ concatentation composition order, the latter is the
‘analytic’ and ‘topological’ one. Of course, which you choose is up to you. We will tend to use the
second, but sometimes .... . )

We want to look at the situation where K = ∆[0]. As ∆[0] is the terminal object in S,
∆[0]×∆[n] ∼= ∆[n], so S(∆[0], L) ∼= L. If we substitute from this back into the previous composition,
we get

eval : L× S(L,M)→M.

(It is equally valid, to write the product around the other way, giving

eval : S(L,M)× L→M,

which correspond better to the ‘analytic’ Leibniz composition order. We will often use this form
as well.) In either notational form, this is the simplicially enriched evaluation map, the analogue
of eval(x, f) = f(x) in the set theoretic case. (We will usually write eval for this sort of map.) Of
course, if L = M , this situation is exactly that of the simplicial action of the simplicial monoid of
self maps of L on L itself.

We can take the simplicial version apart quite easily, to see what makes it work.

Going back one stage, if g ∈ S(K,L)n and f ∈ S(L,M)n, we can form their composite using the
trick we saw earlier, in the discussion in section 6.3, page 208. We can replace g : K ×∆[n] → L,
by a map over ∆[n], given by g = (g, p2) : K × ∆[n] → L × ∆[n], and then compose with
f : L × ∆[n] → M to get the composite f ◦ g ∈ S(K,M)n, or use the ‘over ∆[n] version to get
f ◦ g = fg : K ×∆[n]→M ×∆[n]. We note

f ◦ g(k, σ) = (f(g(k, σ), σ), σ),

(yes, we do need all those σs!).

Next we try the formulae with K = ∆[0] and ‘g = pxq’, the ‘naming’ map for an n-simplex,
x, in L. That is not quite right, and to make things ‘crystal clear’, we had better be precise. The
naming map for x has domain ∆[n] and we need the corresponding map, g, defined on ∆[0]×∆[n].
(Here the notation is getting almost ‘silly’, but to track things through it is probably necessary to
do this, at least once! It shows how the details are there and can be taken out from the abstract

packaging if and when we need them. ) This map g is defined by g(s
m)
0 ι0, σ) = pxq(σ), and this is

‘really’ given by g(s
(n)
0 (ι0), ιn) as that special case determines the others by the simplicial identities,

so that, for σ ∈ ∆[n]m, so σ : [m]→ [n], g(s
m)
0 ι0, σ) = Lσg(s

(n)
0 (ι0), ιn). (It may help here to think

of σ as one of the usual face inclusions or degeneracies, at least to start with.) We have not yet
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used what g is, but g(s
(n)
0 (ι0), ιn) = x, that is all! We can now work out (with all the identifications

taken into account),

eval(x, f) = f ◦ g(s
(n)
0 ι0, ιn) = f(x, ιn).

We might have guessed that this was the formula, ... what else could it be? This derivation,
however, obtains it consistently with the natural ‘action’ formula, without having to check any
complicated simplicial identities.

We will use this formula in the next chapter when discussing the structure of fibre bundles in
the simplicial context.

6.4.2 G-principal fibrations

Specialising down to the simplicial case for now, suppose that G is a simplicial group acting on
a simplicial set, E, then we can form a quotient complex, B, by identifying x with g.x, x ∈ Eq,
g ∈ Gq. In other words the q-simplices of B are the orbits of the q-simplices of E, under the action
of Gq. We note that this works (for you to check).

Lemma 33 (i) The graded set, {Bq}q≥0 forms a simplicial set with induced face and degeneracy
maps, so that, if [x]G denotes the orbit of x under the action of Gq, then dBi [x]G = [dEi x]G, and
similarly sBi [x]G = [sEi x]G.

(ii) The graded function, p : E → B, p(x) = [x]G, is a simplicial map. �

Definition: A map of the form p : E → B, as above, is called a principal fibration, or, more
exactly, G-principal fibration if we need to emphasise the simplicial group being used.

A morphism between two such objects will be a simplicial map over B, which is G-equivariant
for the given G-actions.

(Any such morphism will be an isomorphism; for you to check.)

We will denote the set of isomorphism classes of G-principal fibrations on B by PrincG(B).

This definition really only makes sense if such a p is a fibration. Luckily we have:

Proposition 56 Any map p : E → B, as above, is a Kan fibration.

Proof: Suppose p : E → B is a principal fibration. We assume that we have (cf. page 32) a
commutative diagram

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
// B

and will write b = f0(ιn) for the corresponding n-simplex in B, and (x0, . . . , xi−1,−, xi+1, . . . , xn)
a compatible set of (n−1)-simplices up in E, in other words, a (n, i)-horn in E and a filler, b, for
its image down in B.

Pick a x ∈ En such that p(x) = b, then as djp(x) = p(xj), we have there are unique elements
gj ∈ Gn−1 such that djx = gjxj . (‘Uniqueness’ comes from the assumed properties of the action.)
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It is easy to check (again using ‘uniqueness’) that the gjs give a (n, i)-horn in G, which, since G
is a ‘Kan complex’, has a filler (use the algorithm in section 1.3.4). Let g be the filler and set
y = g−1x. It is now easy to check that dky = xk for all k 6= i, i.e., that y is a suitable filler. �

We need to investigate the class of these principal fibrations (for some fixed G). (We will tend
to omit specific mention of the simplicial group G being used if, within a context, it is ‘fixed’, so,
for instance, if we are not concerned with a ‘change of groups’ context.)

Let us suppose that p : E → B is a principal fibration and that f : X → B is any simplicial
map. We can form a pullback fibration

Ef
f ′ //

f∗(p)

��

E

p

��
X

f
// B.

Is this pullback a G-principal fibration? Or to use terminology that we introduced earlier ( section
1.3.4), is the class of principal fibrations pullbacks stable?

There are several proofs of the result that it is, some of which are very neat, but here we will
use the trusted method of ’brute force and ignorance’, using as little extra machinery as possible.
We have a reasonable model for Ef , so we should expect to be able to give it an explicit G-action
in a fairly obvious natural way. We then can see what the orbits look like. That sounds a simple
plan and it in fact works nicely.

We will model Ef as E ×B X. (Previously, we had it around the other way as X ×B E, but
the two are isomorphic and this way is marginally easier notationally.) Recall the n-simplices in
E ×B X are pairs (e, x) with e ∈ En, x ∈ Xn and p(e) = f(x). The G-action is staring at us. It
surely must be

g · (e, x) = (g · e, x),

but does this work? We note p(e) = [e]G, the G-orbit of e, so p(g · e) = p(e) = f(x), so we end
up in the correct object. (You are left to check that this is a G-action and that it is free and
effective.) What are the orbits?

We have (e, x) and (e′, y) will be in the same orbit provided that there is a g such that (g ·e, x) =
(e′, y), but that means that x = y and that e and e′ are in the same G-orbit within E. This has
various consequences, which you are left to explore, but it is clear that, up to isomorphism, the
map f∗(p), which is projection onto the x component, is the quotient by the action. We have
verified (except for the bits left to you:

Proposition 57 If p : E → B is a G-principal fibration, and f : X → B is a simplicial map, then
(Ef , X, f

∗(p)) is a G-principal fibration. �

Of particular interest is the case when X = ∆[n], so that f is a ‘naming’ map, (cf. page 25), pbq,
for some n-simplex, b ∈ Bn. We can, in this case, think of Ef as being the ‘fibre’ over b, although
b is in dimension n.

This is very useful because of the following:

Lemma 34 If p : E → ∆[n] is a G-principal fibration, then E ∼= ∆[n] × G, with p corresponding
to the first projection.
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Before launching into the proof, it should be pointed out that here ∆[n] × G, should really be
written ∆[n]×U(G), where U(G) is the underlying simplicial set of G. Of course there is a natural
free and effective G-action on U(G), with exactly one orbit. We have suppressed the U as this is a
common ‘abuse’ of notation.

Proof: We have a single non-degenerate n-simplex in ∆[n], namely ιn, which corresponds to the
identity map in ∆[n]n = ∆([n], [n]). We pick any en ∈ p−1(ιn) and get a map, penq : ∆[n] → E,
naming en. Of course, the composite, p ◦ penq, is the identity on ∆[n]. (This means that the
fibration is ‘split’, in a sense we will see several times later on.)

Suppose e ∈ Em, then p(e) = µ ∈ ∆[n]m = ∆([m], [n]). We have another possibly different
element in p−1(µ), since µ : [m] → [n] induces E(µ) : En → Em, and so we have an element
E(µ)(en). (You can easily check that, as p is a simplicial map, p(E(µ)(en)) = µ, i.e. E(µ)(en) ∈
p−1(µ), but therefore there is a unique element gm ∈ Gm such that gm · E(µ)(en) = e. Starting
with e, we got a unique pair (µ, gm) ∈ (∆[n] × G)m and, from that pair, we can retrieve e by the
formula. (You are left to check that this yields a simplicial isomorphism over ∆[n].) �

We will see this sort of argument several times later. We have a ‘global section,’ here penq, of
some G-principal ‘thing’ (fibration, bundle, torsor, whatever) and the conclusion is that the ‘thing’
is trivial’ that is, a product thing.

6.4.3 Homotopy and induced fibrations

A key result that we will see later is that, if you use homotopic maps to pullback something like a
fibration, or its more structured version, a fibre bundle, then you get ‘related’ pullbacks. Here we
will look at the simplest, least structured, case, where we are forming pullbacks of fibrations. As
this is a very important result, we will include quite a lot of detail.

As ∆[1]0 = ∆([0], [1]), it has two elements, which we will write as e0 and e1, where ei(0) = i,
for i = 0, 1. (We will use this simplified notation several times later in the notes and should point
out that e0 corresponds to δ1, and so induces d1 if passing to simplicial notation, whilst e1is δ0,
corresponding to d1, which is the ‘face opposite 1’, hence is 0. This is slightly confusing, but the
added intuition of K × ∆[1] being a cylinder with K × pe0q : K ∼= K × ∆[0] → K × ∆[1] being
inclusion at the bottom end is too good to pass by!)

In what follows, we will quietly write ei instead of peiq, as it is a lot more convenient.

Proposition 58 Let p : E → B be a Kan fibration and let f, g : A → B be homotopic simplicial
maps, with F : f ' g, a specific homotopy, then there is a homotopy equivalence over A between
f∗(p) : Ef → A and g∗(p) : Eg → A.

Proof: We first write f = F ◦ (A× e0), then we form Ef in two stages, by forming two pullbacks:

Ef
if //

f∗(p)

��

EF

F ∗(p)
��

// E

p

��
A

A×e0
// A×∆[1]

F
// B

A similar construction works, of course, for Eg using A× e1.
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We have, from Lemma 2, that, as F ∗(p) is a Kan fibration, so is qf := S(Ef , F
∗(p)), and so

also is qg := S(Eg, F
∗(p)). These maps just compose with F ∗(p), so

qf (if ) = f∗(p)× e0.

Next we note that f∗(p)×∆[1] : Ef ×∆[1]→ A×∆[1], so is in S(Ef , A×∆[1])1 and f∗(p)× e0 =
d1(f∗(p) × ∆[1]). We now have a (1,1)0-horn, (−, if ) in S(Ef , EF ), whose image (−, q − f(if ))
in S(Ef , A × ∆[1]) has a filler, namely f∗(p) × ∆[1]. We can thus lift that filler to one yf , say,
in S(Ef , EF )1, with d1(yf ) = if , and, of course, qf (yf ) = f∗(p) × ∆[1]. What is the other end,
d0(yf )?

This is also in S(Ef , EF )0, so is a simplicial map from Ef to EF . This suggests it might be a
map of fibrations. Does

Ef
d0(yf )

//

f∗(p)

��

E
F ∗(p)
F

A
A×e1
// A×∆[1]

commute? We calculate,

F ∗(p)d0(yf ) = qF (d0(yf ))

= d0(qf (yf ))

= d0(f∗(p)×∆[1])

= (A× e1) ◦ f∗(p),

so it is, but this means that, as bottom ‘right-hand corner’ of the square, had Eg as its pullback,
we get a map, α : Ef → Eg, over A, so that f∗(p) = g∗(p)α, and d0(yf ) = igα. This gives us the
first part of our homotopy equivalence.

Reversing the roles of f and g, we get a yg in S(Eg, EF )1 with d0(yg) = ig, then qg(yg) =
g∗(p)×∆[1], and we get a β : Eg → Ef such that f∗(p)β = g∗(p) and ifβ = d1(yg).

We now have to look at the composites αβ and βα, and to show they are homotopic (over A)
to the identities. Of course, we need only produce one of these as the other will follow ’similarly’,
on reversing the roles of f and g.

Considering s0(α) ∈ S(Ef , Eg)1 and yg ∈ S(Eg, EF )1, we have a composite (really a composite
homotopy), that we will denote by ξ ∈ S(Ef , EF )1. We can check (for you to do) that d0(ξ) =
d0(yf ) and d1(ξ) = di(yg)α = ifβα. We thus have a horn

h=

ifβα

ξ

##HHHHHHHHH

if yf
// d0(yf )

in S(Ef , EF ). We look at its image in S(Ef , A×∆[1]), and check it can be filled by s0(f∗(p)×∆[1]),
that means that, as F ∗(p) is a Kan fibration, we can find a filler, z, for h, so set w := d2(z). (This
is a composite homotopy, as if it was topologically ‘yf followed by the reverse of ξ.’) this homotopy,
w, is in S(Ef , EF ), not in S(Ef , Ef ), but otherwise does the right sort of thing.
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To get a homotopy with Ef as codomain, we use the left hand pullback square of the above
double pullback diagram, so have to work out F ∗(p)(w). This is just our qf (w) and that, by the
description of z as a filler is d2s0(f∗(p)×∆[1]) = s0d1(f∗(p)×∆[1]) = f∗(p).prEf .(A× e0), so we
have a map w′ : Ef ×∆[1]→ Ef , as in the diagram

Ef ×∆[1]

f∗(p).prEf

  

w

''
w′

IIII

$$IIII

Ef

f∗(p)

��

if
// EF

F ∗(p)
��

A
A×e0

// A×∆[1],

where prEf : Ef ×∆[1] → Ef is the projection. Note that w′ is a homotopy over A, so is ’in the
fibres’.

This w′ certainly goes between the right objects, but is it the required homotopy. We check

if .w
′.e1 = w.e1 = ifβα,

but if is the induced map from A× e0, which is a (split) monomorphism, so if is itself a monomor-
phism, and so w′.e1 = βα. Similarly w′.e0 = idEf , so w′ does what was hoped for.

We reverse the roles of α and β, and of f and g, to get the last part of the proof. �

6.5 W , W and twisted Cartesian products

Suppose we have simplicial sets, Y , a potential ‘fibre’ and B, a potential ‘base’, which will be
assumed to be pointed by a vertex, ∗. Inspired by the sort of construction that works for the
construction of group extensions, we are going to try to construct a fibration sequence,

Y −→ E −→ B.

Clearly the product E = B×Y will give such a sequence, but can we somehow twist this Cartesian
product to get a more general construction? We will try setting En = Bn × Yn and will change
as little as possible in the data specifying faces and degeneracies. In fact we will take all the
degeneracy maps to be exactly those of the Cartesian product, and all but d0 of the face maps
likewise. This leaves just the zeroth face map.

In, say, a covering space considered as a fibration with discrete fibre, the fundamental group(oid)
of the base acts by automorphisms / permutations on the fibre, and the fundamental group(oid) is
generated by the edges, hence by elements of dimension one greater than that of the fibre, so we
try a formula for d0 of form

d0(b, y) = (d0b, t(b)(d0y)),

where t(b) is an automorphism of Y , determined by b in some way, hence giving a function t :
Bn −→ aut(Y )n−1. Note here Y is an arbitrary simplicial set, not the underlying simplicial set of
a simplicial group as was previously the case when we considered aut, but this makes no difference
to the definition.
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Of course, with these tentative definitions, we must still have that the simplicial identities hold,
but it is easy to check that these will hold exactly if t satisfies the following equations

dit(b) = t(di−1b) for i > 0,

d0t(b) = t(d1b)#0t(d0b)
−1,

sit(b) = t(si+1b) for i ≥ 0,

t(s0b) = ∗.

A function, t, satisfying these equations will be called a twisting function, and the simplicial set E,
thus constructed, will be called a regular twisted Cartesian product or T.C.P. We write E = B×tY .

It is often useful to assume that the twisting function is ‘normalised’ so that t(∗) is the identity
automorphism. We usually will tacitly make this assumption if the base is pointed.

If this construction is to make sense, then we really need also a ‘projection’ from E to B and Y
should be isomorphic to its fibre over the base point, ∗. The obvious simplicial map works, sending
(b, y) to b. It is simplicial and clearly has a copy of Y as its fibre.

Of course, a twisting function is not a simplicial map, but the formulae it satisfies look closely
linked to those of the Dwyer-Kan loop group(oid) construction, given earlier, page 201. In fact:

Proposition 59 A twisting function, t : B −→ aut(Y ), determines a unique homomorphism of
simplicial groupoids t : GB → aut(Y ), and conversely. �

Of course, since G is left adjoint to W , we could equally well note that t gave a simplicial morphism
t : B −→W (aut(Y )), and conversely.

Of course, we could restrict attention to a particular class of simplicially enriched groupoids
such as those coming from groups (constant simplicial groups), or nerves of crossed modules, or of
crossed complexes, etc. We will see some aspects of this in the following chapter, but we will be
generalising it as well.

This adjointness gives us a ‘universal’ twisting function for any simplicial group, H. We have
the general natural isomorphism,

S(B,WH) ∼= Simp.Grpds(G(B), H),

so, as usual in these situations, it is very tempting to look at the special case where B = WH itself
and hence to get the counit of the adjunction from GW (H) to H corresponding to the identity
simplicial map from WH to itself. By the general properties of adjointness, this map ‘generates’
the natural isomorphism in the general case.

From our point of view, the two natural isomorphic sets are much better viewed as being
Tw(B,H), the set of twisting functions τ : B → H, so the key case will be a ‘universal’ twisting
function, τH : WH → H and hence a universal twisted Cartesian product WH×τH H. (Notational
point: the context tells us that the fibre H is the underlying simplicial set of the simplicial group,
H, but no special notation will be used for this here.) This universal twisted Cartesian product
is called the classifying bundle for H and is denoted WH. We can unpack its definition from its
construction, but will not give the detailed derivation (which is suggested as a useful exercise).
Clearly

(WH)n = Hn ×tW (H)n,
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so from our earlier description of W (H), we have

WHn = Hn ×Hn−1 × . . .×H0.

The face maps are given by

di(hn, . . . , h0) = (dihn, . . . , d0hn−i.hn−i−1, hn−i−2, . . . , h0)

for all i, 0 ≤ i ≤ n, whilst

si(hn, . . . , h0) = (sihn, . . . s0hn−i, 1, hn−i−1, . . . , h0).

(It is noteworthy that d0(hn, . . . , h0) = (d0hn.hn−1, hn−2, . . . , h0) so the universal twist, τH , must
somehow be built in to this. In fact τH is an ‘obvious’ map as one would hope. We have W (H)n =
Hn−1 × . . .×H0 and we need (τH)n : W (H)n → Hn−1, since it is to be a twisting map and so has
degree -1. The obvious formula to try is that τH is the projection map - and it works. The details
are left to you. A glance back at the formula for the general d0 in a twisted Cartesian product will
help.)

We start by showing that p : W (H)→W (H) is a principal fibration. This simplicial map just
is the projection onto the second factor in the T.C.P. To prove this is such a principal fibration, we
first examine W (H) more closely and then at an obvious action. The simplicial set, W (H), contains
a copy of (the underlying simplicial set of) H as the fibre over the element (1, 1, . . . , 1) ∈ W (H).
There is then a fairly obvious action of H on W (H), given by, in dimensions n,

h′.(hn, . . . , h0) = (h′hn, . . . , h0).

In other words, just using multiplication on the first factor. As multiplication is a simplicial map,
H ×H → H, or simply glancing at the formulae, we have that this is a simplicial action.

That action is free, since the regular representation is free as an action. (After all, this is just
saying that, if gx = x for some x ∈ H, then g = 1, so is obvious!) The action is also faithful /
effective, for similar reasons. What are the orbits? As the action only changes the first coordinate,
and does that freely and faithfully, the orbits coincide with the fibres of the projection map from
W (H) to W (H), so that p is also the quotient map coming from the action. It follows that

Lemma 35 The simplicial map
W (H)→W (H),

is a principal fibration. �

The following observations now are either corollaries of this, simple to check or should be looked
up in ‘the literature’.

1). The simplicial set, W (H), is a Kan complex.

2). W (H) is contractible, i.e., is homotopy equivalent to ∆[0].

3). The simplicial map,
W (H)→W (H),

is a Kan fibration with fibre the underlying simplicial set of H, (so the long exact sequence of
homotopy groups together with point 2) shows that πn(WH) ∼= πn−1(H)).
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4). If p : E → B is a principal H-bundle, that is, E is H×tB for some twisting function, t : B → H,
then we have a simplicial map

ft : B →W (H)

given by ft(b) = (t(b), t(d0b), . . . , t(d
n−1
0 b)), and we can pull back (W (H)→W (H)) along ft to

get a principal H-bundle over B

E′ //

p′

��

W (H)

��
B

ft
//W (H).

We can, of course, calculate E′ and p′ precisely:

E′ ∼= {((hn, hn−1, . . . , h0), b) | hn−1 = t(b), . . . h0 = t(dn−1
0 b)}

∼= {(hn, b) | hn ∈ Hn, b ∈ Bn}
= Hn ×Bn.

It should come as no surprise to find that E′ ∼= H ×t B, so is E itself up to isomorphism, and
that p′ is p in disguise.

The assignment of ft to t gives a one-one correspondence between the set, PrincH(B), of H-
equivalence classes of principal H-bundles with base B, and the set, [B,W (H)], of homotopy
classes of simplicial maps from B to W (H).

An important thing to remember is that not all T.C.Ps are principal fibrations. To get a T.C.P.,
we just need a fibre Y , a base, B, and a simplicial group, G, acting on Y , together with our twisting
function, t : B → W (G). From B and t, we can build a principal fibration which is, of course, a
T.C.P. but has fibre the underlying simplicial set of G. To build the T.C.P., B ×t Y , we need the
additional information about the representation G→ aut(Y ), that is, the action of G on the fibre,
and, of course, that representation need not be an isomorphism. In general, we have: ’fibre bundle
= principal fibration plus representation’, as a rule of thumb. This is not just in the simplicial
case. (We will consider fibre bundles and similar other structures in a lot more detail in the next
chapter.)

A good introduction to simplicial bundle theory can be found in Curtis’ classical survey article,
[58] section 6, or, for a thorough treatment, May’s book, [127]. For full details, you are invited to
look there, at least to know what is there. We have not gone into all the detail here. We will revisit
the overall theory several times later on, drawing parallels and comparisons that will, it is hoped,
shed light both on it and on geometrically related theories elsewhere in the area.

6.6 More examples of Simplicial Groups

We have already seen several general constructions of simplicial groups, for instance, the simplicial
resolutions of a group, the loop group on a reduced simplicial set, the internal nerve of a crossed
module / cat1-group, and so on. The previous few sections give some ideas for other construction
leading to simplicial groups. We will concentrate on two such.
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Let G be a topological (or Lie) group (so a group internal to ‘the’ category of topological
spaces - whichever one is most appropriate for the situation). The singular complex functor,
Sing : Top→ S, preserves products,

Sing(X × Y ) ∼= Sing(X)× Sing(Y ),

so it follows that, as the multiplication on G is continuous, there is an induced simplicial map,

Sing(G)× Sing(G)→ Sing(G).

With the map induced from the maps that picks out the identity element and that give the inverse,
this makes Sing(G) into a simplicial group. This gives a large number of interesting simplicial
groups, corresponding to general linear, orthogonal, and other topological (or Lie) groups of various
dimension. Of course, the homotopy groups of these simplicial groups correspond to those of the
groups themselves.

A closely related construction involves a similar idea to the aut(K) simplicial group, that we
used when discussing simplicial bundles, twisted Cartesian products, etc., a few sections ago. We
had a simplicial set, K, and hence a simplicial monoid, S(K,K), of endomorphisms of K. The
simplicial group, aut(K), was the corresponding simplicial group of simplicial automorphisms of
K. We had a representation of such an f : K ×∆[k] → K as (f, p) : K ×∆[k] → K ×∆[k] and
this was an automorphism over ∆[k], (look back to page 209).

This sort of construction will work in any situations where the basic category being studied is
‘simplicially enriched’, i.e. the usual hom-sets of the category form the vertices of simplicial hom-
sets and the composition maps between these are simplicial. We will formally introduce this idea
later, (see Chapter 11, and in particular section 11.2, page 421). Here we will give some examples
of this type of idea in situations that are useful in geometric and topological contexts.

We will assume that X is a (locally finite) simplicial complex. In applications X is often Rn,
or Sn or similar. We think of the product, ∆k × X, as a ‘bundle over the k-simplex, ∆k, or, if
working in the piecewise linear (PL) setting, a PL bundle over ∆k. The simplicial group, H(X), is
then the simplicial group having H(X)k being the set of homeomorphisms of ∆k ×X over ∆k, or,
alternatively, the (PL) bundle isomorphisms of ∆k ×X. As a variant, if A ⊂ X is a subcomplex,
one can restrict to those bundle isomorphisms that fix ∆k ×A pointwise.

Various examples of this were used to study the problem of the existence and classification of
triangulations and smoothings for manifolds. The construction occurs, for instance, in Kuiper and
Lashof, [117, 118]. Later on starting in section ??, we will look at another variant of these examples
concerning microbundle theory, (see Buoncristiano, [49, 50]), as it gives a nice interpretation of some
simplicial bundles in a geometric setting.
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Chapter 7

Non-Abelian Cohomology: Torsors,
and Bitorsors

One of the problems to be faced when presenting the applications of crossed modules, etc., is that
such is the breadth of these applications that they may safely be assumed to be potentially of interest
to mathematicians of very differing backgrounds, algebraists of many different hues, geometers both
algebraic and differential, theoretical physicists and, of course, algebraic topologists. To make these
notes as useful as possible, some part of the more basic ‘intuitions’ from the background material
from some of these areas has been included at various points. This cannot be ‘all inclusive’ nor
‘universal’ as different groups of potential readers have different needs. The real problems are those
of transfer of ‘technology’ between the areas and of explanation of the differing terminology used
for the same concept in different contexts. Often, essentially the same idea or result will appear
in several places. This repetition is not just laziness on the authors behalf. The introduction of a
concept bit-by-bit from various angles almost necessitates such a treatment.

For the background on bundle-like constructions (sheaves, torsors, stacks, gerbes, 2-stacks,
etc.), the geometric intuition of ‘things over X’ or X-parametrised ‘things’ of various forms, does
permeate much of the theory, so we will start with some fairly basic ideas, and so will, no doubt, for
some of the time, be ‘preaching to the converted’, however that ‘bundle’ intuition is so important
for this and later sections that something more than a superficial treatment is required.

(In the original lectures at Buenos Aires, I did assume that that intuition was understood, but
in any case concentrated on the ‘group extension’ case rather than on ‘gerbes’ and their kin. By this
means I avoided the need to rely too heavily on material that could not be treated to the required
depth in the time available. However I cannot escape the need to cover some of that material here!)

Initially crossed modules, etc., will not be that much in evidence, but it is important to see how
they do enter in ‘geometrically’ or their later introduction can seem rather artificial.

We start by looking at descent, i.e., the problem of putting ‘local’ bits of structure into a global
whole.

7.1 Descent: Bundles, and Covering Spaces

(Remember, if you have met ‘descent’ or ‘bundles’, then you should ‘skim’ this section only /
anyway.)

We will look at these structures via some ‘case studies’ to start with.

223



224 CHAPTER 7. NON-ABELIAN COHOMOLOGY: TORSORS, AND BITORSORS

7.1.1 Case study 1: Topological Interpretations of Descent.

Suppose A and B are topological spaces and α : A → B a continuous map (sometimes called a
‘space over B’ or loosely speaking a ‘bundle over B’, although that can also have a more specialised
meaning later). The space, B, will usually be called the base, whilst A is the total space of the
bundle, α.

An obvious and important example is a product, A = B × F , with α being the projection. We
call this a trivial bundle on B.

If U ⊂ B is an open set, then we get a restriction αU : α−1(U)→ U . If V ⊂ B is another open
set, we, of course, have αV : α−1(V )→ V and over U ∩ V the two restrictions ‘coincide’, i.e., if we
form the pullbacks

? //

��

α−1(U)

��

? //

��

α−1(V )

��
U ∩ V // U U ∩ V // V

the resulting spaces over U ∩ V are ‘the same’. (We have to be a bit careful since we formed them
by pullbacks so they are determined only ‘up to isomorphism’ and we should take care to interpret
‘the same’ as meaning ‘being isomorphic’ as spaces over U ∩ V . This care will be important later.)
Now assume that for each b ∈ B, we choose an open neighbourhood Ub ⊂ B of b. We then have a
family

αb : Ab → Ub b ∈ B,
where we have written Ab for α−1(Ub), and we know information about the behaviour over inter-
sections.

Can we reverse this process? More precisely, can we start with a family {αb : Ab → Ub : b ∈
B} of maps (with Ab now standing for an arbitrary space) and add in, say, information on the
‘compatibility’ over the intersections of the cover {Ub : b ∈ B} so as to rebuild a space over B,
α : A→ B, which will restrict to the given family.

We will need to be more precise about that ‘compatibility’, but will leave it aside until a bit
later. Clearly, indexing the cover by the elements of B is a bit impractical as usually we just need,
or are given, some (open) cover, U , of B, and then can choose, for each b ∈ B, some set of the
cover containing b. This way we do not repeat sets unless we expressly need to. Thinking like this
we have a cover U and for each U in U , a space over U , αU : AU → U . To encode the condition
on compatibility on intersections, we need some (temporary) notation: If U,U ′ ∈ U , write (AU )U ′

for the restriction of AU over the intersection U ∩ U ′, similarly (αU )U ′ for the restriction of αU to
U ∩U ′. This is given by the further pullback of αU along the inclusion of U ∩U ′ into U , so we also
get a map

(αU )U ′ : (AU )U ′ → U ∩ U ′.
We noted that if the family {αU | U ∈ U} did come from a single α : A→ B, then the αU s agreed
up to isomorphism on the intersections, i.e., we needed homeomorphisms

ξU,U ′ : (AU )U ′
∼=→ (AU ′)U

over U ∩ U ′ if we were going to give an adequate description. (These are sometimes called the
transition functions or gluing cocycles.) This, of course, means that

(αU ′)U ◦ ξU,U ′ = (αU )U ′ .
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Clearly we should require
1. ξU,U = identity,
but also if U ′′ is another set in the cover, we would need
2. ξU ′,U ′′ ◦ ξU,U ′ = ξU,U ′′

over the triple intersection U ∩ U ′ ∩ U ′′.
(This condition 2. is a cocycle condition, similar in many ways to ones we have met earlier in

apparently very different contexts.)
These two conditions are inspired by observation on decomposing an original bundle. They give

us ‘descent data’, but are our ‘descent data’ enough to construct and, in general, to classify such
spaces over B? The obvious way to attempt construction of an α from the data {αU ; ξU,U ′} is to
‘glue’ the spaces AU together using the ξU,U ′ . ‘Gluing’ is almost always a colimiting process, but as
that can be realised using coproducts (disjoint union) and coequalisers (quotients by an equivalence
relation), we will follow a two step construction

Step 1: Let C = tU∈UAU and γ : C → tU∈UU , the induced map. Thus if we consider a
specific U in U , we will have inclusions of AU into C and U into tU and a diagram

AU
� � //

αU

��

C = tAU
γ

��
U

� � // tU

.

Remember that a useful notation for elements in a disjoint union is a pair, (element, index), where
the index is the index of the set in which the element is. We write (a, U) for an element of C, then
γ(a, U) = (αU (a), U), since a ∈ AU .

Step 2: We relate elements of C to each other by the rule:

(a, U) ∼ (a′, U ′)

if and only if
(i) αU (a) = αU ′(a

′),
and
(ii) we want to glue corresponding elements in fibres over the same point of B so need something
like ξU,U ′(a) = a′. Although intuitively correct, as it says that if a and a′ are over the same point
of U ∩U ′ then they are to be ‘related’ or ‘linked’ by the homeomorphism, ξU,U ′ , a close look at the
formula shows it does not quite make sense. Before we can apply ξU,U ′ to a, we have to restrict a
to be in (AU )U ′ and the result will be in (AU ′)U . Perhaps the neatest way to present this is to look
at another disjoint union, this time tU,U ′(AU )U ′ , and to map this to C = tU∈UAU in two ways.
The first of these, a, say, takes the component (AU )U ′ and injects it into C via the injection of AU .
The second map, b, first sends (AU )U ′ to (AU ′)U ) using ξU,U ′ then sends that second component
to (AU ′) and thus into C. We thus get the correct version of the formula for (ii) to be:

there is an x ∈ tU,U ′(AU )U ′ such that a(x) = a and b(x) = a′.
The two conditions on the homeomorphisms ξ readily imply that this is an equivalence relation

and that the αU together define a map

α : A = C/∼ → B

given by
α[(a, U)] = αU (a),
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on the equivalence class, [(a, U)] of (a, U). For this to be the case, we only needed αU (a) = αU ′(a
′)

to hold. Why did we impose the second condition, i.e., the cocycle condition? Simply, if we had
not, we would risked having an equivalence relation that crushed C down to B. Each fibre α−1(b)
might have been a single point since each α−1

U (a) could have been in a single equivalence class.
We now have a space over B, α : A→ B (with A having the quotient topology, which ensures

that α will be continuous).

If we had started with such a space, decomposed over U , then had constructed a ‘new space’ from
that data, would we have got back where we started? Yes, up to isomorphism (i.e., homeomorphism
over B). To discuss this, it helps to introduce the category, Top/B, of spaces over B. This has
continuous maps α : A → B (often written (A,α)) as its objects, whilst a map from (A,α) to
α′ : A′ → B will be a continuous map f : A→ A′ making the diagram

A
f //

α
��@@@@@@@ A′

α′~~}}}}}}}

B

commutative. This, however, raises another question.
If we have such an f and an (open) cover U of B, we restrict f to α−1(U) to get

fU : AU → A′U

which, of course, is in Top/U . If we have data,

{αU : AU → U, {ξU,U ′}}

for (A,α) and similarly for (A′, α′), and morphisms

{fU : AU → A′U},

when can we ‘rebuild’ f : A→ A′? We would expect that we would need a compatibility between
the various fU and the ξU,U ′ and ξ′U,U ′ . The obvious condition would be that whenever we had U ,
U ′ in U , the diagram

(AU )U ′
(fU )U′//

ξU,U′

��

(A′U )U ′

ξ′
U,U′
��

(AU ′)U
(fU′)U // (A′U ′)U

should commute, where we have extended our notation to use (fU )U ′ for the restriction of fU to
α−1(U ∩ U ′). To codify this neatly we can form each category, Top/U , for U ∈ U , then form the
category, D, consisting of families of objects, {αU : U ∈ U}, of

∏
Top/U together with the extra

structure of the ξU,U ′ . Morphisms in D are families {fU} as above, compatible with the structural
isomorphisms ξU,U ′ .

Remark: For any specific pair consisting of a family, A = {(AU , αU ) : U ∈ U} and the
extra ξU,U ′s is a set of descent data for A. We will look at both this construction and its higher
dimensional relatives in quite a lot of detail and generality later on. The category of these things
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and the corresponding morphisms can be called the category of descent data relative to the cover,
U .

The reason for the use of the word ‘descent’ is that, in many geometric situations, structure
is easily encoded on some basic ‘patches’. This structure, that is locally defined, ‘descends’ to
the space giving it a similar structure. In many cases, the AU have the fairly trivial form U × F
for some fibre F . This fibre often has extra structure and the ξU,U ′ have then to be structure
preserving automorphisms of the space, F . The term ‘bundle’ is often used in general, but some
authors restrict its use to this locally trivial case. The classic case of a locally trivial bundle is a
Möbius band as a bundle over the circle. Locally, on the circle, the band is of form U × [−1, 1], but
globally one has a twist. A bit more formally, and for use later, we will define:

Definition: A bundle α : A → B is said to be locally trivial if there is an open cover U of B,
such that, for each U in U , AU is homeomorphic to U × F , for some fibre F , compatibly with the
projections, αU and pU : U × F → U .

We will gradually build up more precise intuitions about what ‘compatibly’ means, and as we
do so, the above definition will gain in precision and strength.

7.1.2 Case Study 2: Covering Spaces

This is a classic case of a class of ‘spaces over’ another space. It is also of central importance for
the development of possible generalisations to higher ‘dimensions’, (cf. Grothendieck’s Pursuit of
Stacks, [89].) We have a continuous map

α : A→ B

and for any point b ∈ B, there is an open neighbourhood U of b such that α−1(U) is the disjoint
union of open subsets of A, each of which is mapped homeomorphically onto U by α. The map α
is then called a covering projection. On such a U , α−1(U) is tUi over some index set which can be
taken to be α−1(b) = Fb, the fibre over b. Then we may identify α−1(U) with U ×Fb for any b ∈ U .
This Fb is ‘the same’ up to isomorphism for all b ∈ U . If B is connected then for any b, b′ ∈ B, we
can link them by a chain of pairwise intersecting open sets of the above form and hence show that
Fb ∼= Fb′ . We can thus take each α−1(U) ∼= U × F and F will be a discrete space provided B is
nice enough. The descent data in this situation will be the local covering projections

αU : U × F → U

together with the homeomorphisms

ξU,U ′ : (U ∩ U ′)× F → (U ∩ U ′)× F

over (U ∩U ′). Provided that (U ∩U ′) is connected, this ξU,U ′ will be determined by a permutation
of F .

We often, however, want to allow for non-connected (U ∩ U ′). For instance, take B to be the
unit circle S1, F = {−1, 1},

U1 = {x ∈ S1 | x = (x, y), x > −0.1}

U2 = {x ∈ S1 | x = (x, y), x < 0.1}.
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The intersection, U1 ∩ U2, is not connected, so we specify ξU1,U2 separately on the two connected
components of U1 ∩ U2. We have

U1 ∩ U2 = {(x, y) ∈ S1 | |x| < 0.1, y > 0} ∪ {(x, y) | |x| < 0.1, y < 0}.

Let ξU1,U2((x, y), t) =

{
((x, y), t) if y > 0
((x, y),−t) if y < 0,

so on the part with negative y, ξ exchanges the two leaves. The resulting glued space is either
viewed as the edge of the Möbius band or as the map,

S1 → S1

eiθ 7→ ei2θ.

Remark: The well known link between covering spaces and actions of the fundamental group
π1(B) on Sets is at the heart of this example.

A neat way to picture the n-fold covering spaces of S1 for n ≥ 2 is to consider a knot on the
surface of a torus, S1×S1, for instance the trefoil. The projection to the first factor of S1×S1 gives
a covering, as does the second projection. It is also instructive to consider the covering space
R2 → S1 × S1, working out what the various transitions are for a cover. We note the way that
quotients of Rn by certain geometrically defined group actions, yields neat examples of coverings
(although some may be ‘ramified’, an area we will not stray into here.)

In general, when we have a local product structure, so α−1(U) ∼= U × F , the homeomorphisms
ξU,U ′ have a nicer description than the general one, since being ‘over’ the intersection, they have
to have the form that interprets at the product levels as being ξU,U ′(x, y) = (x, ξ′U,U ′(x)(y)) where
ξ′U,U ′ : U ∩ U ′ → Aut(F ). In the case of covering spaces F is discrete, so ξ′U,U ′(x) will give a
permutation of F .

7.1.3 Case Study 3: Fibre bundles

The examples here are to introduce / recall how torsors / principal fibre bundles are defined
topologically and also to give some explicit instances of how fibre bundles arise in geometry.

(Often in this context, the terminology ‘total space’ is used for the source of the bundle projec-
tion.)

First some naturally occurring examples.

(i) Let Sn denote the usual n-sphere represented as a subspace of Rn+1,

Sn = {x ∈ Rn+1
∣∣ ‖x‖ = 1},

where ‖x‖ =
√
〈x | x〉 for 〈x | y〉, the usual Euclidean inner product on Rn+1. The tangent bundle

of Sn, τSn is the ‘bundle’ with total space,

TSn = {(b, x)
∣∣ 〈b | x〉 = 0} ⊂ Sn × Rn+1.

We thus have a projection

p : TSn → Sn
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given by p(b, x) = b, as a space over Sn.

Similarly the normal bundle, νSn, of Sn is given with total space,

NSn = {(b, x)
∣∣ x = kb for some k ∈ R} ⊂ Sn × Rn+1.

The projection map q : NSn → Sn gives, as before, a space over Sn, νSn = (NSn, q, Sn).

Another example extends this to a geometric context of great richness.

(ii) First we need to introduce generalisations, the Grassmann varieties, of projective spaces
and in order to see what topology it is to have, we look at a related space first. The Stiefel variety
of k-frames in Rn, denoted Vk(Rn), is the subspace of (Sn−1)k such that (v1, . . . , vk) ∈ Vk(Rn) if
and only if each 〈vi | vj〉 = δi,j , so that it is 1 if i = j and is zero otherwise. Note V1(Rn) = Sn−1.

The Grassmann variety of k-dimensional subspaces of Rn, denoted Gk(Rn), is the set of k-
dimensional subspaces of Rn. There is an obvious function,

α : Vk(Rn)→ Gk(Rn),

mapping (v1, . . . , vk) to spanR〈v1, . . . , vk〉 ⊆ Rn, that is, the subspace with (v1, . . . , vk) as basis. We
give Gk(Rn) the quotient topology defined by α. (For k = 1, we have G1(Rn) is the real projective
space of dimension n− 1.)

This geometric setting also produces further important examples of ‘bundles’, this time on these
Grassmann varieties.

Consider the subspace of Gk(Rn)× Rn given by those (V, x) with x ∈ V . Using the projection
p(V, x) = V gives the bundle,

γnk = (γnk , p,Gk(Rn)).

This is canonical k-dimensional vector bundle on Gk(Rn).

Similarly the orthogonal complement bundle, ∗γnk , has total space consisting of those (V, x) with
〈V | x〉 = 0, i.e., x is orthogonal to V .

All of these ‘bundles’ have vector space structures on their fibres. They are all locally trivial
(so in each case α−1(U) ∼= U × F for suitable open subsets U of the base), and the resulting ξU,U ′

have form

ξU,U ′(x, t) = (x, ξ′U,U ′(x))(t)

where ξ′U,U ′ : U ∩U ′ → G`M (R) for suitable M . (As usual, G`M (R), which may sometimes also be
denoted G`(M,R), is the general linear group of non-singular M ×M matrices over R. Here it is
considered as a topological group. It also has a smooth structure and is an important example of a
Lie group.) Such vector bundles are prime examples of the situation in which the fibres have extra
structure.

We will see, use and study vector bundles in more detail later on, for the moment, we introduce
the example of a trivial vector bundle in addition to those geometrically occurring ones above. We
will work over the real numbers as our basic field, but could equally well use C or more generally.

Definition: A trivial (real) vector bundle of dimension m, on a space B is one of the form
Rm ×B → B, the mapping being, naturally, the projection. We will denote this by εmB .
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Even more structure can be encoded, for instance, by giving each fibre an inner product structure
with the requirement that the ξ′U,U ′ take values in OM (R), or O(M,R), the orthogonal group, hence
that they preserve that extra structure. Abstracting from this we have a group, G, which acts
by automorphisms on the space, F , and have our descent data isomorphisms ξU,U ′ of the form
ξU,U ′(x, t) = (x, ξ′U,U ′(x))(t) for some continuous ξ′U,U ′ : U ∩ U ′ → G.

As usual, if G is a (topological) group, by a G-space, we mean a space X with an action (left
action):

G×X → X,

(g, x)→ g.x.

The action is free if g.x = x implies g = 1. The action is transitive if given any x and y in X there
is a g ∈ G with g.x = y. Let X∗ be the subspace

X∗ = {(x, g.x) : x ∈ X, g ∈ G} ⊆ X ×X,

(cf. our earlier discussion of action groupoids on page 15).
There is a function (called the translation function)

τ : X∗ → G

such that τ(x, x′)x = x′ for all (x, x′) ∈ X∗. We note

(i) τ(x, x) = 1,

(ii) τ(x′, x′′)τ(x, x′) = τ(x, x′′),

(iii) τ(x′, x) = τ(x, x′)−1

for all x, x′, x′′ ∈ X.
A G-space, X, is called principal provided X is a free, transitive G-space with continuous

translation function τ : X∗ → G.

Proposition 60 Suppose X is a principal G-space, then the mapping

G×X → X ×X

(g, x)→ (x, g.x)

is a homeomorphism.

Proof: The mapping is continuous by its construction. Its inverse is (τ, pr1), which is also contin-
uous. �

This is often taken as the definition of a principal G-space, so you could try to prove the
converse. We, in fact, need a fibrewise version of this.

Given any G-space, X, we can form a quotient X/G with a continuous map α : X → X/G. A
bundle X = (X,α,B) is called a G-bundle if X has a G-action, so that B is homeomorphic to X/G
compatibly with the projections from X. The bundle is a principal G-bundle if X is a principal
G-space over B. What does this mean? In a G-bundle, as above, the fibres of α are orbits of the
G-action, so the action is ‘fibrewise’. We can replace G by G = G × B and, thinking of it as a
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space over B, perhaps rather oddly, write the action within the category Top/B. We replace the
product in Top by that in Top/B, which is just the pullback along projections in Top. The action
is thus

G×B X → X

over B, or just G × X → X in the notation valid in Top/B. Now ‘principalness’ will say that the
action is free and transitive, and that the translation function is a continuous map over B. A neater
way to handle this is to use the above proposition and to define X to be a principal G-bundle if the
corresponding morphism over B,

G× X→ X× X

is an isomorphism in Top/B. We will not explore this more here as that is, more or less, the way
we will define G-torsors later on, except that we will be using a bundle or sheaf of groups rather
than simply G.

We note that if ξ = (X, p,B) is a principal G-bundle then the fibre p−1(b) is homeomorphic to
G for any point b ∈ B. It is usual in topological situations to require that the bundle be locally
trivial. For the moment, we can summarise the idea of principal G-bundle as follows:

A principal G-bundle is a fibre bundle p : X → B together with a continuous left action
G × X → X by a topological group G such that G preserves the fibers of p and acts freely and
transitively on them.

Later we will see other more categorical views of principal G-bundles. As we have mentioned,
they will reappear as ‘G-torsors’ in various settings. For the moment we need them to provide the
link to the general notion of fibre bundle.

For F , a (right) G-space with action G × F → F , we can form a quotient, XF , of F × X by
identifying (f, gx) with (fg, x). The composite

F ×X pr2→ X → X/G

factors via XF to give β : XF → X/G, where β(f, x) is the orbit of x, i.e., the image of x in X/G.
The earlier examples of ‘bundles’ were all examples of this construction. The resulting (XF , β, B)
is called a fibre bundle over B (= X/G).

Note: The theory of fibre bundles was developed by Cartan and later by Ehresmann and
others from the 1930s onwards. Their study arose out of questions on the topology and geometry
of manifolds. In 1950, Steenrod’s book, [158], gave what was to become the first reasonably
full treatment of the theory. Atiyah, Hirzebruch and then, in book form, Husemoller, [101] in
1966 linked this theory up with K-theory, which had come from algebraic geometry. The books
contain much of the basic theory including the local coordinate description of fibre bundles which
is most relevant for the understanding of the descent theory aspects of this area (cf. Chapter 5
of Husemoller, [101]). The restriction of looking at the local properties relative to an open cover
makes this treatment slightly too restrictive for our purposes. It is sufficient, it seems, for many
of the applications in algebraic topology, differential geometry and topology and related areas
of mathematical physics, however as Grothendieck points out (SGA1, [90], p.146), in algebraic
geometry localisation of properties, although still linked to certain types of “base change” (as here
with base change along the map

t U → B
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for U an open cover of B), needs to consider other families of base change. These are linked with
some problems of commutative algebra that are interesting in their own right and reveal other
aspects of the descent problem, see [26]. For these geometric applications, we need to replace a
purely topological viewpoint by one in which sheaves take a front seat role.

(The Wikipedia entries for principal G-space, principal bundle and ‘fiber’ bundle are good places
to start seeing how these concepts get applied to problems in geometry. For a picture of how to build
a fibre bundle out of wood, see http://www.popmath.org.uk/sculpmath/pagesm/fibundle.html. )

7.1.4 Change of Base

This is a theme that we will revisit several times. Suppose that we have a good knowledge of
‘bundles’ over some space, B′, but want bundles over another space, B. We have a continuous
map, f : B → B′, and hope to glean information on bundles on B by comparing them with those
on B′, using f in some way. (We could be looking to transfer the information the other way as
well, but this way will suffice for the moment!)

What we have used when restricting to open subsets of a base space was pullback and that works
here as well. Suppose p′ : A′ → B′ is a principal G-bundle over B′, then we form the pullback

A //

��

A′

p′

��
B

f
// B′

Categorically the pullback, as it is characterised by a universal property, is only determined up to
isomorphism, but we can pick a definite model for A in the form

A′ ×B′ B = {(a, b) | p′(a) = f(b)},

with a ∈ A′ and b ∈ B. The projection of A onto B is given by sending (a, b) to b and the map
from A to A′ by the obvious other projection. As we have an action of G on the left of A′ it is
tempting to see if there is one on A and the obvious thing to attempt is g.(a, b) = (g.a, b). Does
this make sense? Yes, because p′(g.a) = p′(a), since B′ is the space of orbits of the action of G on
A′. Is A→ B then a principal G-bundle? Again the answer is yes. To gain some idea why look at
the fibres. We know the fibres of a principal G bundle are copies of the space G, and fibres of the
pullback are the same as fibres of the original. The action is concentrated in the fibres as the orbit
space of the action is the base.

The one question is whether the map

G×B A→ A×B A

is an isomorphism. You can see that it is in two ways. The elements of A are pairs (a, b), as above.
The map is ((g, b), (a, b)) 7→ ((a, b), (g.a, b) and this is clearly in the fibres as the second component
in each pair is the same. It has an inverse surely, (since an element in A × BA, has the form
((a1, b), (a2, b)) and since A′ is a principal bundle we can continuously find g such that a2 = g.a1).
The alternative approach is to note that the map fits into a diagram with lots of pull back squares
and to note that is is induced from the corresponding map for (A′, B′, p′).

We thus have, it would seem, that f : B → B′ induces a ‘functor’ from the category of principal
G-bundles over B′ to the corresponding one over B. (The word ‘functor’ is given between inverted
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commas since we have not discussed morphisms between bundles of this form. That is left to you
both to formulate the notion and to check that the inverted commas can be removed. In any case
we will be considering this in the more general setting of G-torsors slightly later in this chapter.)

We thus have induced bundles, f∗(A′), but different maps, f , can lead to isomorphic bundles.
More precisely, suppose f and g are two maps from B to B′, then if f and g are homotopic (under
mild compactness conditions on the spaces) it is fairly easy to prove that for any (principal) bundle
A′ on B′, the two bundles f∗(A′), and g∗(A′), are isomorphic. We will not give the details here as
they are in most text books on the area, (see, for instance, [101], or [115]), but the idea is that if
H : B × I → B′ is a homotopy between f and g, we get a bundle H∗(A) with base B × I. You
now use local triviality of the bundle to cover B× I by open sets over which this bundle trivialises.
Using compactness of B, we get a sequence of points ti in I and an open cover of B× I made up of
open sets of the form U × (ti, ti+2). Now we work our way up the cylinder showing that the bundle
over each slice B × {ti} is isomorphic to that on the previous slice. (There are lots of details left
vague here and you should look them up if you have not seen the result before.)

This result shows that categories of principal bundles over homotopically equivalent spaces
will be equivalent, and, in particular, that over any contractible space, all principal bundles are
isomorphic to each other and hence are all isomorphic to the product principal bundle. It also
shows that if we can cover B with an open cover made up of contractible open sets that all bundles
trivialise over that cover.

Remarks: In many different theories of bundle-like objects there is an induced bundle con-
struction given by pullback along a continuous map on the ‘bases’. In most of those cases, it seems,
homotopic maps induce isomorphic ‘bundles’, again with possibly a compactness requirement of
some sort on the bases.. This happens with vector bundles, (as follows from the result on principal
bundles mentioned above.) In these cases, the only bundles of that type on a contractible space
will be product bundles. (We will keep this vague directing the reader to the literature as before.)

7.2 Descent: simplicial fibre bundles

To understand topological descent, as in the theory of fibre bundles as sketched out above, it is
useful to see the somewhat simpler simplicial theory. This has aspects that are not so immediately
obvious as in the topological case, yet some of these will be very useful when we get further in our
study handling sheaves and later on stacks.

The basics of simplicial fibre bundle theory were developed in the 1950s and early 1960s, the
start being in a paper by Barratt, Gugenheim and Moore, [18]. We have already discussed several
of the features of this theory. A useful survey is given by Curtis, [58], and a full description of the
theory are available in May’s book, [127], with many aspects also treated in Goerss and Jardine,
[86].

7.2.1 Fibre bundles, the simplicial viewpoint

We earlier saw how, in the simplicial setting, the G-principal fibrations, when pulled back over any
simplex of their base, gave a trivial product fibration. It is this feature that we abstract to get a
working notion of simplicial fibre bundle.
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Definition: A (simplicial) fibre bundle with fibre, Y , over a simplicial set, B, is a simplicial
map, f : E → B such that for any n-simplex, b ∈ Bn, (for any n), the pullback over the representing
(‘naming’) map, pbq : ∆[n] → B, is a trivial bundle, that is, isomorphic to a product of Y with
∆[n] together with its projection onto ∆[n].

We thus have a diagram
Y ×∆[n]

p2
��

// E

f

��
∆[n]

pbq
// B,

which is a pullback.

It is worthwhile just thinking about the comparison between this and what we have been looking
at for topological bundles. The role played there by the open covering is taken by the family of
all simplices of the base. (From this one can build a neat category, and in a very similar way from
a plain classical open cover you can form all finite (non-empty) intersections, add them into the
cover and build a category from these and the inclusions between them. It will pay to retain that
thought for when we launch into discussion of sheaves, and, in particular, stacks, etc.)

It is, thus, important to note that in any simplicial fibre bundle, we have fibres over all simplices,
not just the ‘vertices’. The ‘fibre’ over an n-simplex, b, of the base, is given by the pullback

E ×B ∆[n]

p2
��

// E

f

��
∆[n]

pbq
// B,

The usual notion of ’fibre’ then corresponds to the case where n = 0. We will sometimes write
E(b) = E ×B ∆[n], since E ×B ∆[n] as a notation, does not actually record the b being considered.
For instance, given e ∈ En, we have the fibre through e will be E(p(e)).

Examples of fibre bundles: (i) Trivial product bundles:

Lemma 36 The trivial product bundle, pB : Y ×B → B, is a fibre bundle in this sense.

Proof: To see this, we pick an arbitrary, pbq : ∆[n] → B, and embed it in the commutative
diagram:

Y ×∆[n]

p2
��

Y×pbq// Y ×B
pB

��

// Y

��
∆[n]

pbq
// B // ∆[0],

where the two arrows with codomain ∆[0] are the unique such maps, (since ∆[0] is terminal in S).
This means that both the right-hand square and the outer rectangle are pullbacks, and then it is
an elementary (standard) exercise of category theory to show that the left hand square is also a
pullback, which completes the proof. �
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(ii) Any G-principal fibration is a fibre bundle, since we saw, Lemma 34, that the fibre bundle
condition was satisfied. The fibre in this case is the underlying simplicial set of the simplicial group,
G.

7.2.2 Atlases of a simplicial fibre bundle

The idea of atlases originally emerged in the theory of manifolds. manifolds are specified by local
‘charts’ and, of course, a collection of charts makes, yes you guessed, ... . Here we will see how
that idea can be adapted to a simplicial setting.

Let (E,B, p) be a fibre bundle with fibre, Y , then we see that, for any b ∈ Bn, there is an
isomorphism

α(b) : Y ×∆[n]→ E ×B ∆[n],

given by the diagram:

Y ×∆[n]
α(b)

∼=
//

p2
''NNNNNNNNNNN

E ×B ∆[n]

p2
��

p1 // E

p

��
∆[n]

pbq
// B

using the universal property of pullbacks. Set a(b) : Y ×∆[n]→ E to be the composite p1α(b).

Remark: If we think of b as a ’patch’ over which (E,B, p) trivialises, then α(b) is the trivialising
isomorphism identifying E ’restricted to the patch b’ with a product. A face of b may be shared with
another n-simplex, so we can expect interactions / transitions between the different descriptions /
trivialisations.

Definition: The family α = {α(b) | b ∈ B} (or, equivalently, a = {a(b) | b ∈ B}) will be called
an atlas for (E,B, p).

That α determines a is obvious, but we have also α(b)(y, σ) = (a(b)(y, σ), σ), so a also de-
termines α. We should also point out that in the definition, we are using b ∈ B as a convenient
shorthand for b ∈

⊔
nBn.

It is often useful to think of α(b) as an element of S(Y,E ×B ∆[n])n and a(b) ∈ S(Y,E)n, since
this makes the following idea very clear.

Suppose we consider the automorphism simplicial group, aut(Y ), (cf. page 208) and a subsim-
plicial group, G, of it. Pick a family g = {g(b) | b ∈ B}, of elements of G, where, if b ∈ Bn,
g(b) ∈ Gn. There is a new atlas α ·g = {α(b)g(b) | b ∈ B} obtained by ‘precomposing’ with g. (We
can also use a · g with the obvious definition.)

Definition: Two atlases, α and α′, are said to be G-equivalent is α′ = α ·g for some family, g,
of elements from G.

So far, there has been no requirement on the atlas α to respect faces and degeneracies in any
way. In fact, we do not really want to match faces, since, even in such a simple case as the Möbius
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band, strict preservation of faces (something like a(dib) = di(a(b)), perhaps) would not allow the
’twisting’ that we would need.) On the other hand, if we have a(b) defined for a non-degenerate
simplex, b, then we already have a suitable a(sib) around, namely sia(b), so why not take that!
(You may like to investigate this with regard to theuniversal property that we used to define the
α(b)s.)

Definition: An atlas, a, is normalised if, for each b ∈ B, a(sib) = sia(b) in S(Y,E).

Lemma 37 Given any atlas, a, there is a normalised atlas, a′, that agrees with a on the non-
degenerate simplices of B. �

The proof, which is simply a question of making a definition, then verifying that it works is left
to you.

Turning to the face maps, as we said, we do not necessarily have a(dib) = dia(b), but we might
expect the two sided to be linked by an automorphism of the fibre, of some type. We know

di(α(b)) = (Y ×∆[n− 1]
Y×δi→ Y ×∆[n]

α(b)→ E ×B ∆[n],

is an isomorphism onto its image. The ith face inclusion δ : ∆[n− 1]→ ∆[n] also induces

E × δi : E ×B ∆[n− 1]→ E ×B ∆[n],

which we will call θ, and which element-wise is given by θ(e, σ) = (e, δi ◦ σ), and the image of
θ ◦ α(dib) is the same as that of di(α(b)), namely elements of the form (e, δi ◦ σ). We thus obtain
an automorphism, ti(b), of Y ×∆[n− 1] with

α(dib) ◦ ti(b) = di(α(b)).

(’Corestricting’ α(dib) and di(α(b)) to that image, we have ti(b) = α(dib)
−1 ◦ di(α(b)), so ti(b) is

uniquely determined.)
This ’corestriction’ argument is reasonably clear as an element based level, but it leaves a lot

to check. It is useful to give an equivalent more categorical construction of t, which gets around
the verification, for instance, that ti(b) is a simplicial map - which was ‘swept under the carpet’ in
the above - and is more ’universally valid’ as it shows what categorical and simplicial properties
are being used.

Let us go back a stage, therefore, and take things apart as ‘pullbacks’ and in quite some detail.
This is initially a bit tedious perhaps, but it is worth doing.

• pdibq is the composite

∆[n− 1]
δi→ ∆[n]

pbq→ B,

and so α(dib) fits in a diagram:

Y ×∆[n− 1]
α(dib)

∼=
//

p2 ((QQQQQQQQQQQQQ
E ×B ∆[n− 1]

p2
��

E×Bδi// E ×B ∆[n]

p2
��

p1 // E

p

��
∆[n− 1]

δi
// ∆[n]

pbq
// B
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• We have α(b) : Y ×∆[n]→ E ×B ∆[n] and want to obtain a restriction of it to the ith face,
i.e., to Y ×∆[n−1] along Y × δi, and, at the same time, that ‘corestriction’ to E×B ∆[n−1].
We want to form the square diagram

Y ×∆[n− 1]

Y×δi
��

˜di(α(b))// E ×B ∆[n− 1]

E×Bδi
��

Y ×∆[n]
α(b)

∼=
// E ×B ∆[n],

where the top horizontal arrow, ˜di(α(b)), is ‘induced from’ α(b). We should check how exactly
it is built. As it is goinginto an object specified by a pullback, we need only specify its two
components, that is, the projections onto E and ∆[n−1]. (Of course, this is exactly what we
did in in the element-wise description.) The component going to E is just found by going the
other way around the square and folowing that composite by p1 down to E. The component
to ∆[n− 1] is just the projection, p2. (To see what is going on draw a diagram yourself.)
We have to verify that the square commutes. This uses the pullback ‘uniqueness’ clause for
E ×B ∆[n].

• We note that the corestriction, ˜di(α(b)), is a monomorphism, as its composite with E ×B δi
is one. We claim it is an isomorphism. It remains to show, for instance, that it is a split
epimorphism. (That is relative easy to try, so is a good place to attack what is needed.)

First note that

Y ×∆[n− 1]

��

Y×δi // Y ×∆[n]

��
∆[n− 1]

δi
// ∆[n]

is a pullback, as is also

E ×B ∆[n− 1]

��

E×Bδi// E ×B ∆[n]

��
∆[n− 1]

δi
// ∆[n].

(In each case, you can put an obvious pullback square to the right, so that the composite
’rectangle’ is again a pullback - that same argument again.) We build the inverse to d̃ :=
˜di(α(b)), using the first of these two squares. The component of that inverse going to ∆[n−1]

is the obvious one, whilst to Y ×∆[n], we use α(b). (You are left to check commutativity.)
To check then that this map we have constructed, does split d̃, we use the uniqueness clause
for the second of these pullbacks.

The final step in proving that d̃ is an isomorphism is the ‘usual’ proof that if a morphism is
both a monomorphism and a split epimorphism then the splitting is, in fact, the inverse for
the original monomorphism (which is thus an isomorphism). (If you have not seen this
before, first check the categorical meaning of monomorphism, then work out a proof of
the fact.)
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We, therefore, have

Y ×∆[n− 1]
α(dib)

∼=
// E ×B ∆[n− 1]

and

Y ×∆[n− 1]
d̃
∼=
// E ×B ∆[n− 1] ,

both over ∆[n− 1], as you easily check from the above. We thus get

ti(b) = α(dib)
−1.d̃,

and this is in aut(Y )n−1. We note that these elements are completely determined by the normalised
atlas.

Definition: The automorphisms, ti(b), for b ∈ B are called the transition elements of the atlas,
α.

If the transition elements all lie in a subgroup, G, of aut(Y ), then we say α, (or, equivalently,
a), is a G-atlas.

An atlas, α, is regular if, for i > 0, its transition elements, ti(b), are all identities.

We thus have that, in a regular normalised atlas, we just need to specify the t0(b), as these may
be non-trivial. (To see where this theory is going at this point, you may find it helps to think t =
‘twisting’, as well as, t = ‘transition’, and to look back at our discussion of T.C.P.s (section 6.5,
page 217).)

Lemma 38 Every (normalised) G-atlas is G-equivalent to a (normalised) regular G-atlas.

Proof: We start with a G-atlas, which we will assume normalised. (The unnormalised case is more
or less identical.) We will use it in the form a, rather than α, but, of course, this really makes no
difference. We will build, by induction, a G-equivalent regular one, a′.

On vertices, we take a′(b) = a(b). That gets us going, so we now assume a′(b) is defined for
all simplices of dimension less than n, and that a′ is regular and G-equivalent to a, to the extent
that this makes sense. We next want to define a′(b) for b, a (non-degenerate) n-simplex. (The
degenerate ones are handled by the normalisation condition.)

We look at the (n, 0)-horn in B corresponding to b, i.e., made up of all the dib for i 6= 0. We
have elements gi(b) such that

a′(dib) = a(dib)gi(b),

since a′ is G-equivalent to a in this dimension, then, using

a(dib)ti(b) = di(a(b)),

we get a′(dib) = di(a(b)).ti(b)
−1.gi(b) = di(a(b)).hi, where we have set hi = ti(b)

−1.gi(b). Since a′,
so far defined is regular, we have, for 0 < i ≤ j, after a bit of simplicial identity work (for you),
that

didj(a(b))dihj = didj(a(b))dj−1hi,
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which implies that dihj = dj−1hi, the the hs form a (n, 0)-horn in G. we now wheel out our method
for filling horns in G to get a h ∈ Gn with dih = hi, for i > 0, and we set a′(b) = a(b)h. we heck

dia
′(b) = dia(b))dih

= dia(b)hi

= a′(dib).

The resulting a′, is now defined up to and including dimension n, is normalised and regular, and
G-equivalent to a. We get this in all dimensions by induction. �

7.2.3 Fibre bundles are T.C.P.s

We saw earlier that G-principal fibrations were locally trivial and hence are fibre bundles, and
that twisted Cartesian products (T.C.Ps) are principal fibrations. We now have regular atlases,
yielding structures that look like twisting functions. This suggests that the various ideas are really
‘the same’. We will not comlete all the details that show that they are, since that theory is in
various texts (for instance, May’s book, [127]), but will more-or-less complete our sketch of the
interrelationships.

There remains, for our sketch, an investigation of the transition elements for simplicial fibre
bundles and a ‘sketch proof’ that fibre bundles are just T.C.Ps.

Suppose we have some simplicial fibre bundle and a normalised regular G-atlas, a = {a(b) | b ∈
B}, giving as the only possibly non-trivia transition elements, the t(b) := t0(b). We thus have

d0a(b) = a(d0b).t(b).

(To avoid looking back all the time to the definition of twisting function, we repeat it here for
convenience and also to adjust conventions. We had:

a function, t, satisfying the following equations will be called a twisting function:

dit(b) = t(di−1b) for i > 0,

d0t(b) = t(d0b)
−1t(d1b),

sit(b) = t(si+1b) for i ≥ 0,

t(s0b) = ∗.

(Warning: The version on page 218 corresponded to the ‘algebraic’ diagrammatic composition
order, and here we have used the ‘Leibniz’ composition order so we have adjusted the second
equation accordingly.)

Lemma 39 The transition elements, t(b), above, define a twisting function.

Proof: We use the defining equation (above) for the t(b) and, in particular, the uniqueness of these
elements with this property, (together with the ‘regular’ and ‘normalised’ conditions for a). We
leave the majority of the cases to you, since conce you have seen one or two of these, the others
are easy.

(We wil do a very easy one as a ‘warm up’, then the important, and more tricky, one relating
toe d0 and d1, i.e., the twist.)
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Applying the equation above to s0b, we get

d0a(s0b) = a(d0s0b).t(s0b) = a(b).t(s0b),

but a is normalised, so a(s0b) = s0(b) and the left hand side is thus just a(b). we can thus conclude
that t(s0b) is the identity. (That was easy!)

We now turn to the relation involving t(d0b) and t(d1b), etc.:

d0a(d1b) = a(d0d1b).t(d1b),

but we also have
d0a(d0b) = a(d0d0b).t(d0b),

and, of course, d0d1b) = d0d0b.
We next apply d0 to the ‘master equation’, simply giving

d0d0a(b) = d0a(d0b).d0t(b),

and to d1a(b) = a(d1b) to get
d0d1a(b) = d1a(d1b).

Again using the simplicial identity d0d1 = d0d0, we rearrange terms algebraically to get

d0t(b) = t(d0b)
−1t(d1b),

as expected.
The other equations are left to you. (You just mix applying a di or si to the ‘master equation’

inside (i.e, on b) and outside, then use normalisation, regularity and the simplicial identities.) �

It is thus possible to use E to find a and thus t, and thence to form B ×t Y . We need now to
compare B ×t Y with E.

To start with we will do something that looks as if it is ‘cheating’. We have, for b ∈ Bn that
a(b) ∈ S(Y,E), so do have a graded map

a : B → S(Y,E).

Our assumptions about a being regular, normalised, etc., imply that this is very nearly a simplicial
map. (The only thing that goes wrong is the d0-face compatibility.)

If a was simplicial, we could ‘fli[ it’ through the adjunction to get ξ : B × Y → E. We know
how to do this. We form the composite

B × Y a×Y−→ S(Y,E)× Y eval−→ E,

where eval is the map we met earlier (page 213), and which, as you will recall, we worked hard to
get a complete description of. For y ∈ Yn, and f : Y ×∆[n]→ E ∈ S(Y,E)n, we had that

eval(f, y) = f(y, ιn),

where, as always, ιn is the unique non-degenerate n-simplex in ∆[n], corresponding to the identity
map on [n] in the description ∆[n] = ∆(−, [n]). We can pretend that a is simplicial, see what ξ is
given by and then see how much it is or is not simplicial. We can read off, if y ∈ Yn and b ∈ Bn,

ξ(b, y) = a(b)(y, ιn).
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This map ξ is ‘as simplicial as is a’. We will check this, or part of it, by hand, but although it
follows from generalities on the adjunction process, verifying the conditions needs care.

First we note that if f : Y ×∆[n]→ E, then dif = f ◦ (Y ×∆[δ − i]), where δi : [n− 1]→ [n]
is the ith face inclusion (so we get ∆[δi] : ∆[n − 1] → ∆[n]). We examine the evaluation map in
detail as it is the key to the calculation. By its construction, it is bound to be simplicial, but we
need also to see what that means at this ‘elementary’ level. We have

S(Y,E)n × Yn eval //

di
��

En

di
��

S(Y,E)n−1 × Yn−1
eval // En−1

and, for i > 0,

diξ(b, y) = di(a(b)(y, ιn) = eval(dia(b), diy)

= eval(a(dib), diy) = ξ(dib, diy) = ξdi(b, y).

Similarly, we have, for si that siξ = ξsi. That just leaves d0ξ and, of course

d0ξ(b, y) = eval(a(d0b).t(b), d0y),

by the same sort of argument, and then this is a(d0(b))(t(b)d0y, ιn−1) = ξ(d0b, t(b)d0y). (You may
want to check this last bit for yourself. You need to translate to-and-fro between a G-actions on Y
as being a : G× Y → Y and the adjoint a : G→ aut(Y ), again using eval.)

This gives us that, if we define a new d0 on this product by twisting it using t (and, of course,
this is just giving us B ×t Y as we have already seen it, on page 217) with, explicitly,

d0(b, y) = (d0b, t(b)(d0y)),

then we actually obtain
ξ : B ×t Y → E

as a simplicial map. We note that pξ = pB, the projection onto B of the T.C.P., so ξ is ‘over B’.

Proposition 61 This map ξ is an isomorphism (over B).

Proof: We start by constructing, for each b ∈ Bn, a map ν(b) : E(b) → Y , where, as before,
E(b) = E×B ∆[n], the pullback of E along pbq, so is the ‘fibre over b’. We have α(b) : Y ×∆[n]→
E(b) is an isomorphism, and so we can form ν(b) := prY α(b)−1 : E(b) → Y . Using this we send
and n-simplex e to (p(e), ν(p(e))(e, ιn)), where (e, ιn) ∈ E(p(e)) This gives us something in B×t Y
and ξ is then easily seen to send that n-simplex back to e. That the other composite is the identity
ia also easy (for you to check). �

We thus have a pretty full picture of how principal fibrations are principal fibre bundles, given
by twisted Cartesian products of a particular type, that principal H-fibre bundles are classified
by W (H), since PrincH(B) ∼= [B,W (H)], that general fibre bundles in the simplicial context are
T.C.P.s and so correspond to a principal bundle and a representation of the corresponding group,
and probably some other things as well. As these have been spread over different chapters, since we
wanted to make use of the ideas as we went along, you may find it helpful to now read one of the
texts, such as [127] or the survey, [58], that give the whole theory in one go. We will periodically
be recalling part of this, making comparisons with other ideas and methods, and possibly pushing
this theory on new directions (as this is ‘classical’).
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7.2.4 . . . and descent in all that?

In earlier sections, we looked at descent in a topological context. There we used an open cover, U ,
of the base space and had transitions, ξU,U ′ , on intersections of these open patches, with a condition
on triple intersections. The idea was to take the AU for the various open sets, U , of the cover U ,
and to glue them together, using the ξU,U ′ to get the right amount of ‘twisting’ from patch to patch,
with the cocycle condition to ensure the different gluings are compatible.

That somehow looks initially very different from what we have been doing in our discussion of
simplicial fibre bundles. We would not expect to have ‘open sets’, but what takes their place in
the simplicial context. We will look at this only briefly, but from several directions. The ideas that
we would use for a full treatment will be studied in more depth in the following chapters. This
therefore is a ‘once over lightly’ treatment of just a few of the ideas and insights. The ideas will be
recalled, and treated in some depth in later chapters, but not always from the same perspective.

We start by looking at the open cover from a simplicial viewpoint. We have already seen the
construction as we met it when discussing the nerve of a relation in section 4.3.5, but here we will
be taking it in a different direction and so, for convenience we repeat the definition. In fact we
will need to re-repeat the definition further on in the notes, as we will need to explore some of its
geometric links with triangulations, see page ??.

Definition: The Čech complex, Čech nerve or simply, nerve, of the open covering, U , is the
simplicial complex, N(U), specified by:

• Vertex set : the collection of open sets in U = {Ua | a ∈ A} (alternatively, the set, A, of labels
or indices of U);

• Simplices : the set of vertices, σ = 〈α0, α1, ..., αp〉, belongs to N(U) if and only if the open
sets, Uαj , j = 0, 1, . . . , p, have non-empty common intersection.

As usual, if we choose an order on the indexing set, i.e., the set of vertices of N(U), then we can
construct a neat simplicial set out of this, so the 〈U0, U1〉 ∈ N(U)1 means U0 ∩ U1 6= ∅ and U0

is listed before U1 in the chosen order. (We could, of course, not bother about the order and
just consider all possible simplices. For instance, 〈U0, U0, U1〉 woud be s0〈U0, U1〉, but apparently
the same simplex, 〈U1, U0, U0〉 = s1〈U1, U0〉, will also be there. This gives a larger simplicial set,
but does have the advantage of being constructed without involving an order. You are left to
investigate if this second construction gives something really different from the other. It is larger,
but does it retract to the other form, for instance.)

(For simplicity of exposition, we will assume local triviality, so AU = U × F , for some ‘fibre’
F .) Looking at our transition functions, ξU,U ′ , they assign elements of the group, G, which acts on
F , to these 1-simplices, 〈U,U ′〉. (We assume G is a discrete group, not one of the more complex
topological groups that also occur in this context.) Taking the group, G, we can form the constant
simplicial group K(G, 0), which has G in all dimensions and identity maps for all face and degen-
eracy morphism. This, then, gives a simplicial map from N(U) to WK(G, 0). (You can check this
if you wish, but we will be looking at it in great detail later on anyway.) We thus get a twisted
Cartesian product N(U) ×t K(G, 0). That gives us one way of seeing simplicial fibre bundles as
being generalisations of the topological ones. They replace a very simple constant simplicial group
by an arbitrary one, so have ‘higher order transitions’ acting as well. Untangling the complex intu-
itions and interpretations of this simple idea will be one of the themes from now on, not constantly
‘up front’, but quietly increasing in importance as we go further.
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Another way of thinking of descent data is as ‘building plans’ for the fibre bundle given the
bits, AU ∼= U ×F . We took the disjoint union, tUAU , then ‘quotiented’ by the gluing instructions
encoded in the descent data, (see section 7.1.1). This is a fairly typical simple example of a colimit
construction. We will study the categorical notion of colimit (and limit) later in some detail and
will use it, and generalisations, many times. (These notes are intended to be reasonably accessible
to people who have not had much formal contact with the theory of categories, although some
basic knowledge of terminology is assumed as has been mentioned several times already. If you
have not met ‘colimits’ formally, then do look up the definition. It may initially not ‘mean’ much
to you, but it will help if you have some intuition. Something like: colimits are ‘gluing’ processes.
You form a ‘disjoint union’ (coproduct), putting pieces out ready for use in the construction, then
‘divide out’ by an equivalence relation given, or at least, generated, by some maps between the
different pieces.) We will see, more formally, the way that topological descent fits into this colimit
/ gluing intuition later on, but it is clearly also here in this simplicial context.

We have our basic pieces, Y × ∆[n], and we glue them together using the ‘combinatorial’
information encoded in the simplicial set B. One way to view that is by using a neat construction
of a category from a simplicial set.

Suppose we have a simplicial set, B. then we can form a small category Cat(B) (also denoted
(Y on,B), as it is an example of a comma category). This has as its set of objects the simplices, b, of
B, or, more usefully, their representing maps, such as pbq : ∆[n]→ B. If pbq and pcq : ∆[m]→ B
are two such, not necessarily of the same dimension, then a morphism in Cat(B) from pbq to pcq
‘is’ a diagram:

∆[n]
∆[µ] //

pbq !!CCCCCCCC
∆[m]

pcq||zzzzzzzz

B

i.e., µ : [n] → [m] is a morphism in ∆, so is a ‘monotone map’ which induces ∆[µ] as shown.
Saying that the diagram commutes says, of course, that pbq = pcq ◦∆[µ]. Again, of course, b ∈ Bn
and c ∈ Bm and µ induces a map Bµ : Bm → Bn. The obvious relationship corresponding to
‘commutative’ is that Bµ(c) = b and this holds. (You can take this, in the definition of morphism,
to replace commutativity of the triangle as it is equivalent, then it comes out as saying ‘a morphism
µ : pbq → pcq is a µ : [n] → [m] such that Bµ(c) = b, but it is very worth while checking through
the above at a categorical level as well.)

If now you look back at our discussion of the reconstruction of (E,B, p) from the various
patches, Y ×∆[n], which corresponded to an n-simplex b in B, the process of gluing these together
is completely analogous to our earlier discussion. It is again a ‘colimit’. (You may, quite rightly
ask, ‘how come we get a twisted Cartesian product from a disjoint union type construction?’ This
is neat - and, of course, you may have seen it before. Looking just at sets A and B, if we form
A × B, then A × B =

∐
{{a} × B | a ∈ A}, so we can write a product as a disjoint union of

(identical) labelled copies of the second set, each indexed by an element of the first one. (First
and second here are really interchangeable of course.) We will see this type of construction several
times later on. For instance if G is a simplicial groupoid and K is a simplicial set, we can form a
new simplicial groupoid K ⊗G with (K ⊗G)n being a disjoint union (coproduct) of copies of Gn
indexed by the n-simplices of K. We will see this in detail later on, so this mention is ‘in passing’,
but it is hopefully suggestive as to the sort of viewpoint we can use and adapt later.

The structure of simplicial fibre bundles is thus closely linked to the same intuitions and tech-
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niques used in the topological case. We now turn to sheaves, and will see those same ideas coming
out again, with of course, their own flavour in the new context.

7.3 Descent: Sheaves

(As with previous sections, this should be ‘skimmed’ if you have met the subject matter, here
sheaves, before. A good accessible account and brief introduction to this is Ieke Moerdijk’s Lisbon
notes, [132]. These also are useful for alternative developments of later material and are thoroughly
to be recommended.)

7.3.1 Introduction and definition

Sheaves provide a useful alternative to bundles when handling ‘local-to-global’ constructions. The
intuition is, in many ways, the same as that of bundles. We have a space B and for each b ∈ B, a
‘fibre’ over b, i.e., a set Fb, and we want to have Fb varying in some continuous way as we vary b
continuously. In other words, naively a sheaf is a continuously varying family of ‘sets’.

That is much too informal to use as a definition as it has employed several terms that have not
been defined. Before seeing how that intuition might be encoded more exactly, we will return to
the ‘spaces over B’. Let α : A → B be a space over B as before, and, once again, let U ⊂ B be
an open set. This time we will not consider α−1(U), but will look at local sections of α over U . A
(local) section of α, over U is a continuous map s : U → A such that, for all x ∈ U , αs(x) = x, that
is, s(x) is always in the fibre over x. We write ΓA(U) for the set of such local sections, although
this notation does not record the all important map, α, in it.

If V ⊂ U is another open set of B and s : U → A is a local section of α over U , then the
restriction, s|V , of s to V is a local section of α over V . We thus get, from V ⊂ U , an induced
‘restriction’ map

resUV : ΓA(U)→ ΓA(V ).

Of course, if W ⊂ V is another such

resUV ◦ resVW = resUW .

There is a little teasing problem here. Suppose V is empty. Of course, the empty set is a subset
of all the other open sets, so what should ΓA(∅) be? The empty space is the initial object in the
category of spaces so there is a unique map from it to A and, of course, this is a local section! (You
can either check the condition at all points of the domain or argue that composition of this empty
local section with the projection p yields the unique map from ∅ into B, as required.)

Back to the generalities, there is, again of course, a neat, and well known, categorical description
of this setting.

Let Open(B) denote the partially ordered set of open sets of B with the usual order coming
from inclusion, and consider it as a category in the usual way. The above construction just gave a
functor

ΓA : Open(B)op → Sets,

a presheaf on B. Any functor F : Open(B)op → Sets is called a presheaf, but not all presheaves
come from ‘spaces over B’ by the local sections construction, as it is fairly clear that ΓA has some
special properties, for instance, we saw that such a presheaf must send ∅ to the singleton set, but
we also have the gluing property:
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Suppose s1 ∈ ΓA(U1) and s2 ∈ ΓA(U2) are two local sections and

resU1
U1∩U2

(s1) = resU2
U1∩U2

(s2),

so these local sections agree on the intersection of their domains, then define

s : U1 ∪ U2 → A

by

s(x) =

{
s1(x) if x ∈ U1

s2(x) if x ∈ U2.

It is easy to prove that s is continuous and so gives a local section over U1 ∪U2. We need not stop
with just two local sections. If we have any family of local sections, over a family of open sets, that
coincide on pairwise intersections, then they can be glued together, just as above, to give a unique
local section on the union of those open sets, restricting to the given ones with which we started
on their original domains. This gluing property is the defining property of the sheaves amongst the
presheaves on B:

Definition: A presheaf F : Open(B)op → Sets is a sheaf if given any family U of open sets of B,

say U = {Ui}i∈I , and elements si ∈ F (Ui) for i ∈ I, such that for i, j ∈ I resUiUi∩Uj (si) = res
Uj
Ui∩Uj (sj),

there is a unique s ∈ F (U), for U =
⋃
Uj , such that resUUi(s) = si for all i.

Query: Does this gluing property imply the normalisation condition that F (∅) is a singleton?
For you to investigate!

Example and Definition: Let α : A → B be a ‘bundle’, then, for U open in B, take
Γα(U) = {s : U → A | αs(x) = x for all x ∈ U}, defines a presheaf on B. It is a sheaf. The
functions, s, are called local sections, as before, and Γα is called the sheaf of local sections of α.
(We will sometimes, as above, slightly abuse notation and write ΓA instead of Γα, if the map α is
unambiguous in the context.)

For later purposes and comparisons, we will note that a compatible family si of local elements,
as above, gives an element s in the product set

∏
{F (Ui) : i ∈ I}. Not just any family of elements

however. We also have a product of the parts over the intersections. We write Uij = Ui∩Uj and get
a product

∏
{F (Ui,j) : i, j ∈ I}. There are two functions, which we will call a and b for convenience

only, defined from
∏
{F (Ui) : i ∈ I} to

∏
{F (Uij) : i, j ∈ I}. To specify these we see how they

project onto the factors F (Uij). (Technically, we have maps
∏
F (Uij)

pij→ F (Uij), being the {ij}th
projection of the product.) The specifications are

pija(s) = resUiUij (si),

whilst
pijb(s) = res

Uj
Uij

(si).

We can now give the compatibility condition as s is a compatible family of local elements exactly
if a(s) = b(s):

Eq(a, b) //
∏
F (Uj)

a //

b
//
∏
F (Uij) ,
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i.e., s is in the equaliser Eq(a, b) of a and b. This equaliser is sometimes called the set of descent
data for the presheaf relative to the cover. It may be denoted Des(U , F ).

From this perspective, we note that the restriction maps give a map

c : F (U)→
∏

F (Ui),

with pides(s) = resUUi(s) and we know a.c = b.c. We thus get a function, des, from F (U) to Eq(a, b)
assigning des(s) := c(s) to s. We have F is a sheaf exactly when this map, des, is a bijection; it is
a separated presheaf when this map is one-one, see below.

This scenario is quite useful for sheaves, but it really comes into its own when we look at higher
dimensional analogues such as stacks.

We will note quite a lot of facts about sheaves and presheaves, but will not give a detailed
development, since here is not a suitable place to give a lengthy treatment of sheaf theory.

7.3.2 Presheaves and sheaves

The category, Sh(B), of sheaves on a space, B, is a reflective subcategory of the category, Presh(B) =
[Open(B)op, Sets], of presheaves on B.

We first note a half-way house between general presheaves and sheaves.
The presheaf F is separated if there is at most one s ∈ F (U) such that resUUi(s) = si for all i.

(‘Sheafness’ would also require this, but, in addition, asks for the existence of such an s, not just
uniqueness if it exists.) In fact:

The functors
Sh(B)→ Sep.Presh(B)→ Presh(B)

have left adjoints.
If F is a presheaf, we will write s(F ) for the corresponding separated presheaf and a(F ) for the

associated sheaf. We can give explicit constructions of s(F ) and a(F ).

• Define an equivalence relation ∼U on F (U), where, if a, b ∈ F (U), then a ∼ b if and only if
resUUi(a) = resUUi(b) for all i, then s(F ) given by s(F )(U) = F (U)/ ∼U is a separated presheaf.
(For you to check the presheaf structure.)

• Suppose F is separated (if not replace it by s(F ) and rename!) Form FU , the set of compatible
families (relative to U) of elements in the F (Ui). If V < U is a finer cover of U , (so for each
V ∈ V, there is a U ∈ U with V ⊆ U), then there is a function resUV : FU → FV where

resUV (s)j = resUiVj (si) if Vj ⊆ Ui. (Check it is well defined.)

Varying U , we get a diagram of sets and form

a(F )(U) = colimUFU .

Explicitly we generate an equivalence relation on the union of the FU s by

sU ∼ sV
if V < U and resUV (sU ) = sV , and then form the quotient.

(The details are well known and, if you have not met them before should be checked or looked up,
e.g. in a related context, [26], p.268. The sort of constructions used will be useful throughout this
chapter. It is a good idea to try to rewrite this in terms of the equaliser description given earlier,
to see what is happening there.)
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7.3.3 Sheaves and étale spaces

The category, Sh(B), is equivalent to the category of étale spaces over B.
A continuous map, f : X → Y , between topological spaces is étale if, for every x ∈ X, there

is an open neighbourhood U of x in X and an open neighbourhood, V , of f(x) in Y such that f
restricts to a homeomorphism f : U → V . We also say that X is an étale space over Y .

Given a presheaf, F on B and b ∈ B, let

Fb = colimb∈UF (U).

and germb : F (U) → Fb, be the natural map. The colimit is constructed using a disjoint union
followed by using an equivalence relation. This germ map just send an element to its equivalence
class. More precisely: the set, Fb is the ‘stalk’ of F at b. It is made up of equivalence classes of
‘germs’ of locally defined elements, i.e., (U, b, x), where b is the point at which we are looking, U
is an open set with b ∈ U and x ∈ F (U). If (U, b, xU ) and (V, b, xV ) are two such germs, they are
equivalent if there is a W ⊂ U ∩ V , again open in B, such that

resUW (xU ) = resVW (xV ),

i.e.,xU and xV agree ‘near to b’. Now let E(F ) =
⊔
b∈B Fb be the disjoint union with π : E(F )→ B,

the obvious projection.
The topology on E(F ) is given by basic open sets: if x ∈ F (U), B(x) = {germb(x) | b ∈ U} is

to be open. (The idea is that we make x into a continuous local section of E(F ) over U by this
means.) This makes (E(F ), π) an étale space over B.

We could construct a(F ) in (i) as ΓE(F ), i.e., the sheaf of local sections of E(F ).

7.3.4 Covering spaces and locally constant sheaves

A covering space is an étale space, which is locally trivial, and it then corresponds to a locally
constant sheaf on B.

For any set S, there is a constant sheaf, defined by the presheaf F (U) = S for all U ∈ Open(B).
The corresponding étale space is B×S with its projection onto B and where S is given the discrete
topology. A sheaf is locally constant if for each b ∈ B, there is an open set Ub containing b such
that the restriction of F to Ub is a constant sheaf or, more strictly speaking, is isomorphic to a
constant sheaf.

We can rephrase this in a neat way that introduces viewpoints that will be useful later on. The
open sets Ub give us an open cover of B, so we could pick a subcover with the same trivialising
property. We thus assume that we have a cover U and form a space

⊔
U by taking the disjoint

union of the open sets in U . (Recall that a convenient way of working with
⊔
U is to denote its

elements by pairs (b, U) with b ∈ U and U ∈ U . We then have a copy of each b for each open set
from the cover of which it is an element.) There is an obvious projection map

p :
⊔
U → B,

which is p(b, U) = b, and this is, fairly obviously, an étale map. We pull back F along p to get a
sheaf on

⊔
U and, of course, this pulled back sheaf is constant.
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This trick of turning a (topological) open cover into a map is very important. It forms the
basis of the theory of Grothendieck topologies. In that theory, one replaces Open(B) by a category
C, so a presheaf on C is just a functor F : Cop → Sets. The sheaf condition is adapted to this
setting by specifying what (families of) morphisms in C are to be considered ‘coverings’ with an
axiomatisation of their desired properties. For instance, for an open covering, U of B, if for each
U ∈ U , we pick an open covering of it and then combine these open coverings together we get an
open covering of B. That is mirrored by a condition on the covering families in the Grothendieck
topology.

We will not treat Grothendieck topologies in great detail here as, once again, that might take
us too far away from the ‘crossed menagerie’ and the related issues of cohomology. We will give a
definition shortly. It will be necessary, however, to have such a definition of a Grothendieck topos,
i.e., the category of sheaves for such a Grothendieck topology and we will attempt to show how
it relates to some of the topics we are considering. For greater detail from a very approachable
viewpoint, the approach from Borceux and Janelidze’s book, [26], is suggested, but we warn the
reader that they also avoid very lengthy discussions of the topic, as their aim is not topos theory
per se, but generalised Galois theory.

7.3.5 A siting of Grothendieck toposes

Definition: A Grothendieck topos is a category, E , which is equivalent to a full reflective
subcategory

E // [Cop, Sets]
aoo

of a presheaf category, Presh(C) = [Cop, Sets], where the left adjoint, a, preserves finite limits.

The reflective nature of this category means that when considering morphisms from a (pre)sheaf
to a sheaf, it is enough to give them at the presheaf level, since they will automatically be sheafified.

We had early on in our discussion of sheaves, the statement: The category, Sh(B), of sheaves on
a space, B, is a reflective subcategory of the category, Presh(B) = [Open(B)op, Sets], of presheaves
on B. We can now rephrase this as a proposition:

Proposition 62 The category, Sh(B), of sheaves on a space, B, is a Grothendieck topos. �

In addition to the category of sheaves on a space, B, we also have several other important examples
of the notion.

Example: (i) For any C, the presheaf category, Presh(C), is itself a full reflective subcategory
of itself! It thus is a Grothendieck topos.

In particular, the category, S, of simplicial sets is a Grothendieck topos (by taking C = ∆).
Later we will consider sheaves and bundles of groups, i.e., group objects in the topos of sheaves
on a (base) space B. Equally well, we could look at group objects in presheaf toposes such as
[Cop, Sets], and these are the group valued presheaves, and thus, in particular, Simp.Grps is just
the category of presheaves of groups on ∆.

We can take this ‘analogy’ further. If we have an étale space, α : A → B, over B, then a
local section is a map s : U → A for U ∈ Open(B), such that αs(x) = x for all x ∈ U . A
presheaf, F : Open(B)op → Sets, is thought of as having F (U) as being the local sections over
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U of ‘something’ over B. That does not quite give an idea which is wholly expressed within the
category of (pre)sheaves itself, as we needed to talk about U itself as well, but, from U , we can get
a presheaf, much as above, namely the representable presheaf

Û = Open(B)(−, U).

This presheaf takes value a singleton on V if V ⊆ U and is empty otherwise. The inclusion of U
into B is the étale map that corresponds to this, so our local section s : U → A is the analogue of,
(in fact, corresponds exactly to), a map of presheaves

s : Û → ΓA

and if F : Open(B)op → Sets is arbitrary, F (U) = Presh(B)(Û , F ) by the Yoneda lemma, with
each presheaf morphism ϕ from Û to F yielding an element ϕU (idU ) ∈ F (U). (Remember presheaf
morphisms are merely natural transformations between the corresponding functors.)

Example: (ii) Another very important example of a presheaf topos, as above, comes from any
group, G. We can, as we have done several times already, consider G as a one object groupoid, G[1].
It is then a suitable instance of a small category, which can be fed into the machine of the previous
example. The category, Presh(G[1]), will be a Grothendieck topos, but what is the interpretation of
these objects? From a straightforward perspective, they are set valued functors on G[1]op. Suppose
that X : G[1]op → Sets is one such, then, abusing notation like mad, write X = X(∗) for the image
of the single object ∗ of G[1]op, and if g ∈ G, and x ∈ X, write X(g)(x) = x.g, then (and this is left
to you) we can easily check that X is a right G-set. Conversely any right G-set, gives a presheaf
on G[1] and this sets up an equivalence of categories. (You should also check on morphisms.) If
you prefer left G-sets, replace G by the opposite group, Gop.

This example is important as it provides the bridge between the cohomology of groups and the
cohomology of spaces via a cohomology of toposes. We will see the above argument several times
in what follows. (Following the idea that the reader should be able to ‘dip’ into these notes, we
may repeat the point again and again!)

Example: (iii) Any category with a Grothendieck topology on it leads to a Grothendieck topos.
We need a definition.

Definition: A Grothendieck topology on a category C is an assignment of families of ‘coverings’,
{Uα → U}α for each object U in C such that

• If {Uα → U}α and {Uαβ → Uα}β are coverings, so is {Uαβ → U}αβ, i.e., ‘coverings of
coverings are coverings’;

• If {Uα → U}α is a covering family and V → U is a morphism in C, then the pullback family
{Uα×U → V }α is a covering family for V , i.e., ‘coverings are pullback stable’;

• If {V
∼=→ U} is an isomorphism, then this singleton family is a covering family.

A category together with a Grothendieck topology is called a site.
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Given a site based on C, a presheaf F : Cop → Sets is called a sheaf on the site if for any object
U and covering family {Uα → U}α, the sequence

F (U) //
∏
F (Uα) ////

∏
F (Uα ×U Uβ) ,

is an equaliser. (If the left hand morphism is merely injective then F will be a ‘separated presheaf’
in this context’.) The category of sheaves for a given site gives a Grothendieck topos.

Returning to the general case of [Cop, Sets], the Yoneda lemma shows the importance of the
representable presheaves. In our key example with C = ∆, these representable presheaves are just
the simplices ∆[n] = ∆(−, [n]). Our observations above point out that if K is a simplicial set,
Kn = K[n] ∼= S(∆[n],K) and this is the analogue of F (U), i.e., the analogue of the set of local
sections of F . Of course, there is no notion of topological continuity in the classical sense here, and
as, in the ‘presheaf topos’ S, all presheaves are sheaves, we have that in some sense ‘all sections
are as if they were continuous’. (The topological language is being pushed to breaking point here,
so the corresponding intuitions would need refining if we were to follow them up properly. One can
do this with the language of Grothendieck topologies, but we will not explore that further here. To
some extent this is done in [26] with a different end point in mind. Here our purpose is to explain
loosely why S is a topos, and why that may be useful and, reciprocally, what do the simplicial
ideas, seen from that presheaf / sheaf viewpoint, suggest about general toposes.)

One further fact worth noting is that if E is a topos and B is an object in E , then the ‘slice
category’, E/B, is also a topos. It thus is Cartesian closed, i.e., not only does it have finite limits,
but the functor − × A : E → E , which sends an object X to X × A for some fixed object A, has
a right adjoint (−)A thought of as being the object of maps from A to whatever. General results
can be found in the various books on topos theory, which give very general constructions of these
mapping space objects in settings such as the slice toposes. We will need some elementary ideas
about Cartesian closed categories later.

7.3.6 Hypercoverings and coverings

It is sometimes necessary to mention ‘hypercoverings’, instead of ‘coverings’ when looking at gen-
eralisations of sheaves.

In any topos E , there is a precise sense in which E behaves like a generalisation of the category of
sets, but with a logic that replaces the two truth values {0, 1} of ordinary Boolean logic by a more
general object of truth values. In the topos Sh(B) of sheaves on a space B, this truth value object
is the lattice of open sets, Open(B). This may seem a bit weird, but in fact works beautifully. (The
logic is non-Boolean in general, so occasionally you need to take care with classical arguments.)
This allows one to do things like simplicial homotopy theory within E . This replaces the category,
S, of simplicial sets by Simp(E) and if E = Sh(B), then the objects are just simplicial sheaves on
B, i.e., sheaves of simplicial sets on B.

Any open cover U of a space B yields
⊔
U , as before, and one can take repeated pullbacks

to construct a simplicial sheaf on B from that cover. It is fun to view this in another way as it
illustrates some of the ideas working within the topos E and, in particular, within Sh(B).

Firstly, in Sets, there is a terminal object, 1, ‘the one point set’. In a topos E , there is a
terminal object, 1E , and, for E = Sh(B), this is the constant sheaf with value the one point set.
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Viewed as an étale space, it is just the identity map, B
id→ B. (This multitude of viewpoints may

initially seem to lead to confusion, but it does give a beautifully rich context in which to work,
with different intuitions and analogies interacting and combining.)

Within E , we have a product, so if A1, A2 ∈ E , we can form A1×A2. What does this looks like
for E = Sh(B)? The Ai gives étale spaces αi : Ai → B, i = 1, 2 and A1 × A2 corresponds to the
pullback

A1 ×B A2 → B.

In particular, if U is an open covering of B, write U → 1 for U viewed as a sheaf / étale space,⊔
U → B, within Sh(B), then the product

U × U
//
//
Uoo

makes U into a groupoid / equivalence relation within E = Sh(B). The simplicial object defined
by multiple pullbacks is just the nerve of this groupoid, which will be denoted N(U), or more often
N(U). In low dimensions, this looks like

N(U) : . . .
//... // U × · · · × U

//... // · · ·
d0 //

d2
//// U × U

d0 //
d1
// U

p // 1.

(In the case when B is a manifold and U is an open covering by contractible open sets such that
all the finite intersections of sets from U are also contractible (sometimes called a ‘Leray cover’, cf.
[121]), the groupoid above is called a ‘Leray groupoid’, see the same cited paper.)

(In terms of étale spaces over B, you just replace × by ×B and 1 by B.) In cases where B
is not a ‘locally nice space’, or if we replace Sh(B) by a more general topos, the simplicial sheaf
given by U is too far away from being an internal Kan complex and so we have to replace the nerve
of a cover by a ‘hypercovering’, which is a ‘Kan’ simplicial sheaf, K, with an ‘augmentation map’
K → 1, which is a ‘weak homotopy equivalence’. (Look up papers on hypercoverings for a much
more accurate treatment of them than we have given here.) Of course, this is very like the situation
in group cohomology, where one starts with a ‘resolution’ of G. This is a resolution of B or better
of 1 by a simplicial object.

It will be useful later on to give a ‘down-to-earth’ description of the various levels of N(U). The
zeroth level N(U)0 is just the sheaf U = t{U : U ∈ U}, or rather the local sections of this over
B. A point in this étale space can be represented by a pair (b, U) where b ∈ U , i.e., the point b
of B indexed by U . The projection to B, of course, sends (b, U) to b. This notation is one way of
labelling points in a disjoint union, namely the point and an index labelling in which of the sets of
the collection is it being considered to be for that part of the disjoint union. Now a point of the
pullback over B will be a pair of such points with the same b, so is easily represented as (b, U0, U1)
where (b, U0) and (b, U1) are both points in the above sense. This however implies that b ∈ U0∩U1,
and here, and in higher levels, this idea works: a point in the multiple pullback occurring at level
n is of the form (b, U0, . . . , Un), where b ∈

⋂n
i=0 Ui.

There is yet another useful point to make about this multiple way of considering an open
covering as a sheaf (or a family or a simplicial sheaf or groupoid or étale space). It tells us what
a morphism between open coverings might be and hence what the category of open coverings of a
space B ‘is’.
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We will take a naive viewpoint (as that is often a good place to start), and then may refine it
slightly if we hit problems. An open covering of a space B is a family, U = {Ui | i ∈ I(U)}, of open
sets of B, where we refer to I(U)} as the index set of the family. Of course, we need

⋃
U = B as

well.

If V is another such covering family, then we would expect a map of coverings α : V → U to
be a map of families. Here it will help to have a formal definition of the category of families in an
abstract category, A. (A good reference for this notion is chapter 6 of the book by Borceux and
Janelidze, [26], that we have mentioned several times before.)

Definition: Let A be a category. A family, A of objects of A is a function A : I(A)→ Ob(A),
from the index set I(A) of the family to the collection of objects of the category, A. For a set, I,
we say that A is an I-indexed family if I(A) = I.

A morphism α : A → B of families consists of a map |(α) : I(A) → I(B) and an I(A)-indexed
family of morphism {αi : Ai → BI(α)(i). The category Fam(A) is the category of such families and
the morphisms between them.

An open covering U , of a space B is then a family in the category Open(B) of open sets of B
and inclusions between them satisfying the condition

⋃
U = B. This leads to a category, Cov(B),

of open coverings of B.

Remark: The above definition is very closely related to the idea of refinement of open coverings
that one finds in classical treatments of Čech homology and cohomology, for instance, see Spanier,
[157]. It is notable that to handle the constructions of these well one has to take the relation of
‘finer than’ and chose a ‘refinement map’ which realises the relation in a more ‘constructive’ way.
(The relations says that there is a function ‘doing the job’, the refinement map picks out one of
the possible ones.) This is very like a situation we will meet many times later on. The classical
approach asks for the existence of something, the more modern approach needs that something to
be specified.

We have each open covering, U , of our space B gives a sheaf, namely the sheaf of local sections
of the étale space,

⊔
U → B. We note the following:

Lemma 40 If V and U are open coverings of a space B, then a morphism, α, from V to U , induces
a map of the corresponding étale spaces over the base B:⊔

V α //

!!BBBBBBBB

⊔
U

}}||||||||

B

�

Of course, as you would expect, any such morphism will induce a morphism of the corresponding
groupoids or simplicial sheaves.

We have to be a bit careful here, since if the sets in the coverings are not connected, we could
get maps between these étale spaces that did not correspond to morphisms of the coverings. We
will leave you to explore this, but also suggest looking at [26].
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7.3.7 Base change at the sheaf level

Changing the base induces a pair of adjoint functors.

It is often necessary to examine what happens when we ‘change the base space’ for our sheaves.
Suppose X is a space and Sh(X) the corresponding category of sheaves on X. We might have a
subspace A of X, and ask for the relationship between Sh(X) and Sh(A), for instance: Is there
an induced functor? In which direction? If so, when does it have nice properties? and so on.
More generally, if f : X → Y is a continuous map, then we expect to have some ‘induced functors’
between Sh(X) and Sh(Y ).

First take a look at presheaves, and so naturally we need to look at the behaviour of f on
open sets. The partially ordered sets Open(X) and Open(Y ) can be thought of as categories as we
already have done, and since continuity of f is just : if V is open in Y , then f−1(V ) is open in X,
f corresponds to a functor

f−1 : Open(Y )→ Open(X).

(You should check functoriality. It is routine.)

As a presheaf F on X is just a functor F : Open(X)op → Sets, we can precompose with (f−1)op

to get a presheaf on Y , i.e., we have a presheaf, f∗(F ). This is then given by f∗(F )(V ) = F (f−1(V )).
If V = {Vi} is an open cover of V , then f−1(V) = {f−1(Vi)} is an open cover of f−1(V ), so it is easy
to check that, if F is a sheaf on X, f∗(F ) is a sheaf on Y . (An interesting exercise is to consider
the inclusion, f , of a subspace, A, into Y and a sheaf F on A. What is the value of f∗(F )(V ) if
A ∩ V = ∅ and why?) The sheaf f∗(F ) is often called the direct image of F under f , but this is
not always a good name as it is not really an ‘image’.

The construction gives a functor

f∗ : Sh(X)→ Sh(Y ),

and, clearly, if g : Y → Z as well, then (gf)∗ = g∗f∗, whilst (IdX)∗ = IdSh(X). (Note we are saying
that f∗ is a functor, but also that writing Sh(f) for f∗ would give us a ‘sheaf category functor’.
That is more or less true, but things are, in fact, richer and more complex than just this.) The
richness of the situation is that f also induces a functor going in the other direction, that is from
Sh(Y ) to Sh(X). This is easier to see if we change our view of sheaves back from special presheaves
to étale spaces over the base.

Suppose we have a space over Y , p : A→ Y , then we can form the pullback X ×Y A. This is,
in fact, ’only specified ‘up to isomorphism’ as it is defined by a universal property. (You should
check up on this point if you are unsure, although we will discuss it in some more detail as we go
along.) There is a ‘usual construction’ of it namely as a subspace of the product X ×A:

X ×Y A = {(x, a) | f(x) = p(a)},

but this is not ‘the’ pullback, just a choice of representing object within the class of isomorphic
objects satisfying the specifying universal pullback property - and we also need the structural maps
pX : X ×Y A → X and X ×Y A → A in order to complete the picture. Of course, for instance,
pX(x, a) = x. There is no canonical choice of pullback possible and the resulting coherence situation
is the source of much of the higher dimensional structure that we will be meeting later.

We will find it useful to use the universal property more or less explicitly, so it may be good to
recall it here:
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We have a square

P
f ′ //

pX
��

A

p

��
X

f
// Y

such that (i) it commutes: pf ′ = fpX , and (ii) given any object B and maps q : B → A such that
pg = qf , then there is a unique morphism α : B → P such that pXα = q and f ′α = g.

We repeat that this property determines P , pX and f ′ up to isomorphism only. Our construction
of P as X ×Y A for the situation in the category of spaces shows that such a P exists, but does
not impose any odour of ‘canonisation’ on the object constructed.

We next look at local sections of (P, pX). We have s : U → P such that pXs(x) = x for all
x ∈ U . This means that s determines, and is determined by, a map from U to A, namely f ′s, such
that f(x) = pf ′s(x) for all x ∈ U . This looks a bit like a local section of A

p→ Y over f(U), but we
do not know if f(U) is open in Y . To make things work, we can take f∗(F )(U) = colim{F (V ) :
V open in Y, f(U) ⊆ V }, so we have the elements of f∗(F )(U) are germs of local sections of F ,
whose domain contains f(U). (You should check this works in giving us a sheaf on X, and that it
is functorial, giving us a functor

f∗ : Sh(Y )→ Sh(X).

See why it works yourself, but looks up the details in a sheaf theory textbook.) Of
course, warned by previous comments, you will want to check that if g : Y → Z, (gf)∗ and f∗g∗

will be naturally isomorphic, (but usually not ‘equal’). This will be very important later on.
If F ∈ Sh(X), the sheaf we have just constructed is variously called the pullback of F along f ,

the inverse image sheaf or if f is the inclusion of a subspace into Y , the restriction of F to X. This
construction is also said to lead to induced sheaves or sometimes co-induced sheaves depending on
the style of terminology being used.

Now suppose f : X → Y and so we have

f∗ : Sh(X)→ Sh(Y ),

and
f∗ : Sh(Y )→ Sh(X).

These functors must be related somehow! In fact if F ∈ Sh(Y ) and G ∈ Sh(X), then

Sh(X)(f∗(F ), G) ∼= Sh(Y )(F, f∗(G)).

We sketch a bit of this, leaving the details to be looked for. Suppose ϕ : F → f∗(G) in Sh(Y ), then
for an open set V in Y , we have

ϕV : F (V )→ G(f−1(V )).

Now suppose U is open in X and V ⊇ f(U), then f−1(V ) ⊇ U , so we have

F (V )
ϕ→ G(f−1(V ))→ G(U),

and passing to the colimit we get a map from f∗(F )(U) to G(U). The other way around is similar,
so is left for you to worry out for yourselves.
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Of course, the above natural isomorphism says f∗ is left adjoint to f∗, and this implies a lot of
nice properties that are often used.

This makes for quite a lot of ‘facts’ about sheaves and their uses, but we need one more
observation before passing to other things. Often geometric information is encoded by a sheaf,
sometimes ‘of rings’, sometimes ‘of modules’ or ‘of chain complexes’. For instance, on a differential
manifold, one has a sheaf of differential functions and also the de Rham complex which is a sheaf
of differential graded algebras. In algebraic geometry, the usual basic object is a scheme, which is
a space together with a sheaf of commutative rings on it that is ‘locally’ like the prime spectrum of
a commutative ring. There are many other examples. We will also be looking at sheaves of groups
and sheaves of crossed modules.

It would have been nice to show how a sheaf theoretic viewpoint provides the link between
covering space theory and Galois theory, but again this would take us too far afield so we refer to
Borceux and Janelidze, [26], and the references therein.

7.4 Descent: Torsors

(Some of the best sources for the material in this section are in the various notes and papers of
Breen, [28, 29] and, in particular, his Astérisque monograph, [30] and his Minneapolis notes, [31].)

The demands of algebraic geometry mean that principal G-bundles for G a (topological) group
are not sufficient to handle all that one would like to do with such things. One generalisation is
to vary G over a base. This may be to replace G by a sheaf of groups or by a group object in
Top/B, i.e., a group bundle. (This is the topological analogue of a group scheme.) The situation
that we considered earlier then corresponds to a constant sheaf of groups or the group bundle
GB := (B×G→ B) given by projection from the product. It also includes the vector bundles that
we briefly saw earlier. The more general case, however, does not change things much. We have a
parametrised family of groups Gb, b ∈ B, acting on a parametrised family of spaces, Xb, b ∈ B.
The sheaf of groups viewpoint corresponds to an étale space on B and thus to a group bundle on B
with each Gb discrete as a topological group. We will let, in the following, G be a bundle of groups
on a space B. (We will on occasion abuse notation and write G instead of GB for the ‘constant G’
example.)

Technically we will need to be working in a setting where we can talk of a bundle of locally
defined maps from one bundle to another. This is fine in the sheaf theoretic setting, and will be
assumed to be the case in the general case of a suitable category of bundles within the ambient
category, Top/B. It corresponds to the functor − × A always having a right adjoint (−)A, the
function bundle of locally defined maps from A to whatever. Technically we are assuming that our
category of bundles on B, Bun/B is a Cartesian closed category.

7.4.1 Torsors: definition and elementary properties

Definition: A left G-torsor on B is a space P
π→ B over B together with a left group action

G×B P → P

(g, p) 7−→ g.p
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such that the induced morphism

φ : G×B P → P ×B P

(g, p) 7−→ (g.p, p)

is an isomorphism. In addition we require that there exists a family of local sections, si : Ui → P ,
for some open cover, U = (Ui)i∈I , of B.

A right G-torsor is defined similarly with a right G-action. If P is a left G-torsor, there is an
associated right G-torsor, P o, with action p.g = g−1.p.

When we refer to a G-torsor, without mentioning ‘left’ or ‘right’, we will mean a left G-torsor.

The connection with our earlier definition of principal G-bundle can be made more evident if
we note that, on writing θ = φ−1 : P ×BP → G×BP , then the analogue of the translation function
of page 230, is the translation morphism, τ : P ×B P → G, given by pr1 ◦ θ. The morphism θ then
equals (τ, pr2).

The effect of the requirement that local sections exist is to ensure that the bundle P
π→ B is

locally trivial, i.e., locally like G→ B. This is a consequence of the following lemma.

Lemma 41 Suppose P
π→ B is a G-torsor for which there is a global section

s : B → P

of π, then there is an isomorphism

G
f→ P

of spaces over B.

Proof: Define a function f : G → P by f(g) = (g.s(b)), where g ∈ Gb. As the projection of the
group bundle G is continuous, f is continuous. To get an inverse for f , consider the map

P
π→ B

s→ P.

For any p ∈ P , sπ(p) is in the same fibre as p itself, so we get a continuous map

P
(id,sπ)−→ P ×B P

∼=−→ G×B P

on composing with the inverse of the torsor’s structural isomorphism. Finally projecting on to G
gives a map h : P → G. This is continuous and checking what it does on fibres shows it to be the
required inverse for f . �

This does not, of course, transfer a group structure to P , but says that P is like G with ‘an
identity crisis’. It no longer knows what its identity is!

The group bundle, G→ B, considered as a space over B is naturally a G-torsor with multiplica-
tion on the left giving the G-action. Check the conditions. It has a global section, since we required
it to be a group object in Top/B, so there is a continuous map, e, over B from the terminal object
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of Top/B to G, which plays the role of the identity. As that terminal object is (isomorphic to) the
identity on B, B → B, this splits G→ B,

B
e //

=
  @@@@@@@ G

~~~~~~~~~

B

This trivial G-torsor will be denoted TG.

Applying this to a general G-torsor, the local section si : Ui → P makes PUi = π−1(Ui), the
restricted torsor over the open set Ui, into the trivial GUi-torsor over Ui, so P is locally trivial. It
is important to note again that this means that P looks locally like G, (but if G is not a product
bundle, P will not be locally a product, so need not be locally trivial in the stronger sense used
in topological situations). The way that P differs globally from G is measured by cohomology.
(An important visual example is, once again, the boundary circle of the Möbius band, i.e., the
double cover of the circle, S1, that twists as you go around that base circle. It is locally a product
U × {−1, 1}, but not globally so.)

The next observation is very important for us as it shows how the language of G-torsors starts
to interact with that of groupoids. First an obvious definition.

Definition: If P and Q are two left G-torsors, then a morphism, f : P → Q, of G-torsors
(over B) is a continuous map over B such that f(g.p) = g.f(p) for all g ∈ G, p ∈ P .

Here and elsewhere, it is to be understood that we only write g.p if g ∈ Gb and p ∈ Pb for the
same b. This avoids our constantly repeating mention of the base space and its points. If working
with sheaves on a site, i.e., a category C, with a Grothendieck topology, the g and p correspond
to locally defined ‘elements’ in some G(C) and P (C) respectively, so the same (abusive) notation
suffices.

Lemma 42 Any morphism, f : P → Q, is an isomorphism.

Proof: We have trivialising covers, U for P , and V for Q, on which local sections are known
to exist. By taking intersections, or any other way, we can get a mutual refinement on which both
P and Q trivialise, so we can assume U = V. We thus are looking at a morphism, f , and local
sections, s : U → P , t : U → Q, which (locally) determine isomorphisms to TG over U . We thus
have reduced the problem, at least initially, to showing that f : TG → TG is always an isomorphism,
but

f(1G) = g.1G

for some g ∈ GB, i.e., for some global element of G. Moreover g is uniquely determined by f . Now
it is clear that the morphism sending 1G to g−1.1G is inverse to f . (Although it is probably an
obvious comment, we should point out that saying where a single global element goes determines
the morphism, and, within TG, any (locally defined) element is given by multiplication of the global
section, 1G, by that element, but now regarded as an element of G itself.)

Back to our original f : P → Q, on each U , we have fU : PU → QU , its restriction to the parts
of P and Q over U , is an isomorphism, so we construct the inverse locally and then glue it into a
single f−1. �
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Remark on descent of morphisms: Although we have not yet completed the proof, it is
instructive to go into this in a bit more detail, since it introduces methods and intuitions that here
should be more or less clear, but later, in more ‘lax’ or ‘categorified’ settings will need both good
intuition and the ability to argue in detail with (generalisations of) local sections.

If we use s and t, then with respect to these local sections over U , every local element of PU
has the form gU .sU for some unique locally defined gU : U → G (or in sheaf theoretic notation
gU ∈ G(U)). Similarly in QU , local elements looks like gU .tU , but then

f(gU .sU ) = gU .f(sU ),

so we only need to look at f(sU ). As f(sU ) ∈ QU , it determines some unique local element
hU ∈ G(U) with

f(sU ) = hU .tU ,

and checking for behaviour when composing morphisms, it is then clear that

f−1
U (tU ) = h−1

U .sU

with continuity of f−1 handled by the continuity of inversion, that of t and of multiplication.
As the construction of f−1

U is done using maps defined locally over U , f−1
U is in Top/U (or

alternatively, is a map of sheaves on U). We now have to check that this locally defined morphism
‘descends’ from

⊔
U to B.

Of course, it is ‘clear’ that it must do so! Each hU is uniquely defined so ... . That is true, but
when we go to higher dimensional situations we will often not have uniqueness, merely uniqueness
up to isomorphism, or equivalence, so we will spell things out in all the ‘gory detail’.

We need to check what happens on intersection U1∩U2 of local patches in our trivialising cover,
U . Write fi = fUi , i = 1, 2, etc. for simplicity. The local sections s1 and s2 (resp. t1 and t2) will
not, in general, agree on U1 ∩ U2, so we have

f1(s1) = h1.t1,

f2(s2) = h2.t2,

but the key local elements h1|U1∩U2 and h2|U1∩U2 need not agree. A bit more notation will probably
help. Let us denote by s12 the restriction of s1 : U1 → P to the intersection U1 ∩ U2 and similarly
s21 = s2|U1∩U2 , extending this convention to other maps when needed.

We then have some g12 ∈ GU1∩U2 for which

s21 = g12.s12, (and s12 = g21.s21, so g12 = g−1
21 ),

but then, over U1 ∩ U2,
f(s21) = g12.f(s12).

We thus have
t21 = h−1

21 g12h12t12.

Now turning to f−1, defined locally by f−1
i : QUi → PUi , i = 1, 2 with

f−1
i (ti) = h−1

i .si,
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then over U1 ∩ U2, f−1
ij (tij) = h−1

ij sij , but we also have f−1
j (tji) = h−1

ji sji and we have to check

that on QUi∩Uj , f
−1
ij = f−1

ji . To do this, it is sufficient to calculate f−1
ji (tij) and to compare it

with f−1
ij (tij) as both are defined on the same generating local section and so extend via their

G-equivariant nature. We have

f−1
ji (tij) = f−1

ji (h−1
ij gjihjitji)

= h−1
ij gjihjif

−1
ji (tji)

= h−1
ij gjihjih

−1
ji .sji

= h−1
ij gjigijsij

= h−1
ij sij

= f−1
ij (tij),

so the two restrictions do agree over the intersection and hence do give a morphisms from Q to P
inverse to f . (This last point is easy to check.) �

If we denote the category of left G-torsors on B by Tors(B,G) (or Tors(G) if B is understood),
then we have

Proposition 63 Tors(B,G) is a groupoid. �

7.4.2 Torsors and Cohomology

In the above discussion, we saw how a choice of local sections si : Ui → P gave rise to a map
gij : Uij → G. (Here we will again abbreviate: Ui ∩ Uj = Uij . This notation will be extended to
give Uijk = Ui ∩ Uj ∩ Uk, etc.)

The maps gij are to satisfy

si = gijsj

on Uij and for all indices i, j. The map, gij , gives the translation from the description using si
to that using sj . Of course, as gij is invertible, it can also translate back again. These elements
are uniquely determined by the sections, so over a triple intersection, Uijk, we have the 1-cocycle
equation,

gijgjk = gik.

If we use different local sections, say s′i, assumed to be on the same open cover, there will be local
elements, gi : Ui → G, such that s′i = gi.si for all i ∈ I. The corresponding cocycles gij and g′ij will
be related by a coboundary relation

g′ij = gigijg
−1
j .

These equations will determine an equivalence relation on the set, Z1(U , G), of 1-cocycles for U ,
as before, the (fixed) open cover. The set of equivalence classes will be denoted H1(U , G). To
remove the dependence on the open cover, one passes to the limit on finer covers to get the Čech
non-Abelian cohomology set, Ȟ1(B,G) = colimUH

1(U , G) which, by its construction classifies
isomorphism classes of G-torsors on B. The trivial left G-torsor, TG, gives a natural distinguished
element to Ȟ1(B,G).
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This looks quite good. We have started with a torsor and seem to have classified it, up to
isomorphism, by cocycles. The one deficiency is that we need to know that cocycles give torsors,
i.e., a (re)construction process of P from the cocycle (gij), but without prior knowledge of P itself.

The method we will use will take the basic ingredients of the group bundle, G, and will twist
them using the gij . First if we have γ ∈ Ȟ1(B,G), by the basic construction of colimits, we can
pick an open cover U and a gU = (gij), whose cohomology class represents γ in the colimit. Next
taking this U = {Ui}, and gij , let

P =
⊔
i

G(Ui)/ ∼ .

As we are once again using a disjoint union, we will give our points an index, (g, i), and, of course,

(g, i) ∼ (ggij , j).

We have a projection P → B induced from the bundle projections G(U) → B. (For you to check
that it works.) This is continuous if P is given the quotient topology. Moreover the multiplications

G(U)×G(U)→ G(U)

give a left action

G× P → P

making P into a left G-torsor as hoped for.
To sum up:

Theorem 17 The set, Ȟ1(B,G), is in one-one correspondence with the set of isomorphism classes
of G-torsors on B, that is, with the set π0Tors(B;G) of connected components of the groupoid,
Tors(B;G). �

The relationship for isomorphisms is left for you to check.

7.4.3 Change of base

This link with cohomology suggests that we should see what might happen if we changed the base
space B in the above. As cohomology is about maps out of the space, we should expect that if
f : B → B′ is a continuous map then we would get an induced map going from Ȟ1(B′, G) to
Ȟ1(B, f∗(G)), but what would this look like through the G-torsors perspective? Suppose we have
a G-torsor, Q, over B′, then Q is a sheaf on B′, so we have an induced sheaf f∗(Q) on B given by
pullback, as above, page 254. Strictly speaking as G is a sheaf or bundle of groups on B′, f∗(Q)
cannot be a G-torsor, but might be a f∗(G)-torsor.

We have checked some of what has to be examined before, in the simpler case of principal
G-bundles. We will repeat some of the results, but with slightly more categorical proofs as the
very element based approach we used is fine for that topological setting, but is here beginning to
be less optimal with a sheaf of groups as coefficients. (We will not, however, go to a elegant, fully
categorical proof as we have not treated geometric morphisms of toposes.)

First we need an action of f∗(G) on f∗(Q). We have the action of G on Q. There is a
quick derivation of this which we will sketch. The functor f∗ is a left adjoint and so preserves
colimits ..., which is useless to us in this situation! It is also a right adjoint of another functor
which we have not discussed. It therefore preserves products and thus actions. A way to see that
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f∗(G ×B′ Q) ∼= f∗(G) ×B f∗(Q), without producing the left adjoint of f∗ is via the étale space
description of sheaves. In that description, f∗(G), etc., are all given by pullbacks. We draw a
diagram:

f∗(G×B′ Q)

||zzzzzzzzz ((RRRR
// G×B′ Q

���������� $$IIII

f∗(Q) //

||yyyyyyyyy
Q

���������
f∗(G) //

))RRRRRR G
%%JJJJ

B // B′

Each face of the resulting cube is a pullback, as is the vertical square given by the diagonals of the
two ends plus the top and bottom maps, but the same would be true of the equivalent diagram
with f∗(G×B′ Q) replaced by f∗(G)×B f∗(Q), so these two objects are isomorphic.

If we now look at what happens to the action then the original action of G on Q induces one
of f∗(G) on f∗(Q) as hoped for. (The detailed verification is left to you as usual.) As the first
condition of the definition of torsor again involves pullbacks, it is now fairly routine to check it
for f∗(Q). The other condition is the existence of local sections and we have to use a slightly
different approach for this. We know that there is an open cover U of B′ over which local sections
exist, say, si : Ui → Q, Ui ∈ U . The obvious open cover for B is f−1(U), so we look for sections
f−1(Ui) → f∗(Q). As f∗(Q) is given by a pullback, we will get such a map if we specify maps
f−1(Ui) → Q and f−1(Ui) → B making the obvious square commute. The map f−1(Ui) → B
‘must’ be the inclusion ... what else could it be, so we will try that. Composing that with f gives a
map f−1(Ui)→ B′, which can also be written as the composite of f restricted to f−1(Ui) followed
by the inclusion of Ui into B′, so we can compose that restriction of f with si to get a map to Q.
Since si is a section over Ui of the map Q → B′, it is now easy to check that the ‘obvious square’
commutes. (Left to you.) We have built a local section over f−1(Ui). We thus have

Proposition 64 If Q is a G-torsor over B′, then f∗(Q) is a f∗(G)-torsor over B. �

The new torsor f∗(Q) would here loosely be called the induced torsor of Q along f .

We have a cocycle description of torsors. If we have one for Q, what will be the one for f∗(Q)?
In a sense, we know what the answer is without doing any calculation. The cocycle description
of Q gives a class in H2(B′, G) and the induced map from that to H2(B, f∗(G)) must surely be
given by composition with f . The fact that the coefficients change as well as the space should come
out ‘in the wash’. We would, from this perspective, also expect the maps induced from homotopic
maps to be the same. We know what to expect but what about the details!

Suppose we pick local sections si for Q over the various Ui in a cover U of B′, and we get the
gij ∈ G(Uij) as above. These satisfy

si = gijsj .

We have just seen that suitable local sections over the f−1(Ui) are given by the pairs of maps
(sif, inc) : f−1Ui → Q ×B′ B, but these are determined just be the first component. Likewise
the sections gij over pairwise intersections of G, correspond by composition to the corresponding
elements gijf over the pairwise intersections of f−1(U), and, of course, these are the transition
cocycles for the sif . That they are cocycles follows since the gij satisfy the cocycle condition.

To summarise: the cocycle data for f∗(Q) can be derived from that for Q merely by precom-
posing by the relevant restrictions of f to the sets of the cover f−1(U) and their intersections. Just
as we expected.
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Having seen that homotopic maps induced isomorphic principal bundles in an earlier section, it
is natural to expect the same thing to happen here. It does, but rather than explore that here we
will put it aside for a little while until we have a simplicial description of torsors in sections 7.4.5
and 7.5.5. That will make life a lot easier.

We have changed the base, what about changing the ‘coefficients’?

7.4.4 Contracted Product and ‘Change of Groups’

In Abelian cohomology, one would expect the cohomology ‘set’ (there a group) to vary nicely with
the coefficient sheaf of groups, G. Something like that occurs here as well and determines some
essential structure on the torsors. Suppose ϕ : G → H is a homomorphism of sheaves of groups,
then one expects there to be induced functors between Tors(G) and Tors(H) in one direction or
the other. Thinking of the better known case of a ring homomorphism, ϕ : R → S, and modules
over R or S, then we could, for an S-module, M , form an R-module by restriction along ϕ. The
analogue works for an H-set X as one gets a G-set by defining g.x = ϕ(g).x, but there is no reason
to expect the resulting G-set to be principal, so this does not look so feasible for torsors. There is,
however, another module construction. Suppose that N is a left R-module, and make S into a right
R-module, SR by s.r = sϕ(r), then we can form SR ⊗R N , and the left S-action by multiplication
is nicely behaved. The point is that S is behaving here as a two sided module over itself, and also
as a (S,R)-bimodule. The corresponding idea in torsor theory is that of a bitorsor, explored in
depth by Breen in [28], which we will examine later in this chapter.

Before looking at this in a bit more detail, we will look at the contracted product, which replaces
the tensor product here. Suppose we have a category, C, and an internal group, G, in C. Here we
have various examples in mind. If C = Sh(B), G will be a sheaf of groups; if C is the category
of groupoids, G will be an internal group in that category, i.e., a (strict) gr-groupoid, and will
correspond to a crossed module, and, if we combine the two ideas, C is a category of sheaves of
groupoids, so G is a sheaf of gr-groupoids, corresponding to a sheaf of crossed modules, and so on
in various variants.

A left G-object in C is an object X together with a morphism, (left action),

λ : G×X → X,

satisfying obvious rules. Similarly a right G-object Y comes with a morphism, (right action),

ρ : Y ×G→ Y.

The contracted product of Y and X is, intuitively, formed from Y ×X by dividing by an equivalence
relation

(y.g, g−1.x) ≡ (y, x).

The usual notation is Y ∧G X, but this is often inadequate as it assumes X, (resp. Y ), stands
for the object and the G-object, unambiguously, whilst, of course, X really stands for (X,λ) and
Y for (Y, ρ). It is sometimes useful, therefore, to add the action into the notation, but only when
confusion would occur otherwise, so Yρ ∧GλX is the full notation, but variants such as Yρ ∧G X
would be used if it was clear what λ was, etc.

We gave an element based description of Y ∧G X, but how can we adapt this to work within
our general C? There are obvious maps

Y ×G×X
(ρ,X) //

(Y,λ)
// Y ×X ,
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and we can form their coequaliser. (As usual, we assume that the category C has all limits and
colimits that we need to make constructions, and to enable definitions to make sense, but we do
not constantly remind the reader of these hidden conditions!) Of course, we met this construction
earlier when considering a left principal G-bundle and a right G-space (fibre), F , forming the fibre
bundle XF = F ∧GX; it was also at the heart of the regular twisted Cartesian product construction
from our discussion of simplicial twisting maps.

Example: Suppose ϕ : G → H is a morphism of group bundles on B, then we can give H a
right G-action by

H ×B G
H×ϕ−→ H ×B H → H

where the second map is multiplication. If P is a G-object such as a G-torsor, we have a contracted
product Hϕ ∧G P .

Lemma 43 If P is a G-torsor, then Hϕ ∧G P is an H-torsor.

Proof: Writing Q = Hϕ ∧G P , we check the usual map,

H ×B Q→ Q×B Q,

is an isomorphism. This is merely checking that the ‘obvious’ fibrewise formula is well defined.
This sends a pair ([h, p], [h1, p]) to (hh−1

1 , [h1, p]). That verification is left to the reader. (That
all elements in Q×B Q can be written in this form follows from the fact that P is a G-torsor, and
is again left to the reader.)

Local sections of P immediately yield local sections of Q, so Q is an H-torsor. �

A group homomorphism
ϕ : G→ H

thereby gives us a functor

ϕ∗ : Tors(G)→ Tors(H) ϕ∗(P ) = Hϕ ∧G P.

Of course, there are still some details (for you) to check, namely relating to behaviour on morphisms
of G-torsors. (These are probably ‘clear’, but do need checking.)

Another point from this calculation is that we could work with ‘elements’ as if in a G-set. This
can be thought of either as working, carefully, in each fibre of the torsor or using local sections or
as a heuristic to obtain a formula that is then encoded purely in terms of the structural maps. All
of these viewpoints are valid and all are useful.

Now suppose µ, ν : G→ H are two group homomorphisms, thus giving us two functors,

µ∗, ν∗ : Tors(G)→ Tors(H).

When is there a natural transformation η : µ∗ → ν∗? The answer is neat and very useful.

Lemma 44 (cf. Breen, [30], Lemma 1.5)
A natural transformation η : µ∗ → ν∗ is determined by a choice of a section h of H such that

ν = h−1µh.
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Proof: Suppose that P is a G-torsor, then µ∗(P ) = Hµ ∧G P , similarly for ν∗(P ) and ηP :
Hµ ∧G P → Hν ∧G P .

If we look locally

ηP ([µ(g), p]) = h.[ν(g), p]

for some h, since ηP (µ(g), p) is of form [h1, p] for some h1 and as ν∗(P ) is an H-torsors, etc.

(Unfortunately we need to know h does not depend on g, and is defined globally, so this suggests
looking at the special case where global sections do exist, i.e., P = TG, the trivial G-torsor. There
we can assume g = 1G, so

ηTG([1H , p]) = h.[1H , p],

giving us a possible h. We know that ηP is H-equivariant and natural as well as being ‘well-defined’.
We use these properties as follows:

If g ∈ G,

ηTG [µ(g), p] = ηTG [1H , g.p]

= h[1H , g.p]

= h[ν(g), p]

= h.ν(g)[1H , p],

whilst also

ηTG [µ(g), p] = ηTG(µ(g).[1H , p])

= µ(g)ηTG [1H , p]

= µ(g)h[1H , p],

using that ηTG is H-equivariant. We thus have a globally defined h with

µ(g)h = hν(g)

for all g ∈ G,

or µ = ih ◦ ν or ν = i′h ◦ µ,

where ih is inner automorphism by h and i′h, that by h−1.

Conversely given such an h, we can define η by our earlier formula, extending it by H-
equivariance and naturality. Checking well definition is quite easy, but instructive, and so is left to
you. �

Recall from section 2.3.4 that for any groupoids G, H, the functor category HG has groupoid
morphisms as its objects and that the natural transformations can be seen to be ‘conjugations’. In
particular, if G = H is a group, the full subcategory Aut(G) of GG given by the automorphisms
of G is an internal group object in the category of groupoids, so corresponds to a crossed module.
What crossed module? What else, i : G→ Aut(G).

Two automorphisms µ, ν are related by a natural transformation if and only if there is a g such
the µ = ig ◦ ν, where ig is inner automorphism by g. The similarity with our current setting is not
coincidental and can be exploited!
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Another fairly obvious result is that, if P is a G-torsor, then

G ∧G P ∼= P,

since locally we have each representative (g, p) is equivalent to (1G, g.p). The details are left as
an almost trivial exercise.

This notation is ‘dangerous’ however, as we pointed out earlier. We are using the right multi-
plication of G on itself to give us the contracted product, but we could also make G act on itself
by conjugation on the right : for g ∈ G, x ∈ G, with G being considered as a bundle,

x.g = g−1xg.

We will write this action as i′, for ‘inner’, so have Gi′ ∧G P as well. This is, in fact, a very useful
object. It is related to automorphisms of P in the following way:

Suppose that α : P → P is a locally defined automorphism of G-torsors, i.e., a local section of
AutG(P ). Continuing to work locally, pick a section (local element) p. As α is ‘fibrewise’,

α(p) = gp.p

for some local elements gp of G, and as α is G-equivariant,

α(g.p) = gα(p) = ggp.p.

Assigning, to each pair (g, p) in G× P . the automorphism given by

α(g1, p) = g1g.p

gives a map
λ : G× P → AutG(P ), λ(g, p)(p) = g.p,

and this is an epimorphism by our previous argument. ‘Obviously’

λ(g, p) = λ(gg′, (g′)−1p),

so the map λ passes to the quotient G ∧G P -or does it? We have not actually examined the
definition of λ(g, p) that closely.

Look at this from another direction. Examine λ(g, g′p) as an automorphism of P . To work out
λ(g, g′p)(p), we have first to convert p:

λ(g, g′p)(p) = λ(g, g′p)((g′)−1g′.p),

as λ(g, g′p) is specified by what it does to its basic P -part. Now

λ(g, g′p)((g′)−1g′.p) = (g′)−1λ(g, g′p)(g′.p)

by G-equivariance, and so equals
(g′)−1gg′.p,

which is λ((g′)−1gg′, p)(p).
Thus our initial impulse was hasty. We do have AutG(P ) as a contracted product, G∧G P , but

not with right multiplication as the action of G on itself, rather it uses right conjugation. We have
proved
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Lemma 45 For any G-torsor P , there is an isomorphism

λ : Gi′ ∧G P
∼=→ AutG(P ),

where i′ : G→ Aut(G)o, i′(g)(g′) = g−1g′g, yielding the right conjugation action of G on itself. �

Perhaps something more needs to be said about AutG(P ) here. We are working with sheaves
or bundles and so have an essentially Cartesian closed situation, in other words function objects
exist. For each pair of sheaves, X,Y on B, Hom(X,Y ) is a sheaf. In particular End(X) is a sheaf
and Aut(X) a subsheaf of it. It thus makes basic sense to have that AutG(P ) is a G-torsor. Of
course, it is also a group object, since automorphisms (gauge transformations) of P are invertible.
This group is sometimes written P ad. It is the group (bundle) of G-equivariant fibre preserving
automorphisms of P ; it is also called the gauge group of P . (The precise origin in the thoughts of
Hermann Weyl of the use of ‘Gauge’ are fun to look up, but they make me think that the term is
very much over used in mathematical physics, as Weyl’s use seems to have been beautifully simple
and down to earth, whilst the mystique of the modern use by comparison may be tending to obscure
the simple idea from a simple minded mathematician’s viewpoint.)

In the isomorphic Gi′ ∧G P version, it is instructive to explore the group structure, but this is
left for you to do. This group operates on the right of P , by the rule

p.α = α−1(p),

and makes P into a right P ad-torsor. (Exploration of these statements is well worth while and
is left as an exercise. It, of course, presupposes that P ad is seen as a bundle /sheaf of groups,
which itself needs ‘deconstructing’ before you start. The overall intuition should be fairly clear but
the technicalities, detailed verifications, etc., do need mastering.)

A cohomological perspective on change of groups. We have that Ȟ1(B,G) is the set
of isomorphism classes of G-torsors on B, i.e., π0Tors(G), the set of connected components of the
groupoid Tors(G). We have now seen that if ϕ : G→ H is a homomorphism of group bundles and
P is a G-torsor, then Hϕ ∧G P = ϕ∗(P ) is an H-torsor and that this gives a functor ϕ∗ : G→ H.
This will, of course, induce a function on sets of connected components and hence, as one might
expect, an induced function

ϕ : Ȟ1(B,G)→ Ȟ1(B,H).

There is another obvious way of inducing such a function, as the elements of Ȟ1(B,G) are classes
of cocycles, (gij), and so composing with ϕ sends [(gij)] to [ϕ(gij)]. It is standard to check that
this does induce a function from H1(U , G) to H1(U , H) and, by its independence from U , it is then
routine to check that it induces a corresponding map on Čech non-Abelian cohomology.

It is easy to see that these two induced maps are the same. (It would be surprising if they were
not!) Pick a set of local sections, {si}, for P over a trivialising cover, U , and we get {[1, si]} is a
set of local sections for Hϕ ∧G P . Changing patches, si = gijsj , and so

[1, si] = [1, gijsj] = [ϕ(gij).1, sj ] = ϕ(gij)[1, sj ],

and the transition functions for ϕ∗(P ) are exactly as expected. (The rest of the details are left
as an exercise.) The important thing for later use is the identification of the cocycles for ϕ∗(P ).
This will be especially important when discussing G-bitorsors in the next section.
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7.4.5 Simplicial Description of Torsors

As usual we look at a sheaf or bundle of groups, G, on a space, B, and suppose P is a G-torsor.
We then know there is an open cover, U , of B and trivialising local sections, si : Ui → P , over the
various different open sets Ui of U . We have seen that over the intersections Uij , the restrictions of
the two local sections si and sj must be related and this gives us transition cocycles gij : Uij → G
such that

si = gijsj ,

where, over triple intersections, the 1-cocycle condition

gijgjk = gik

must be satisfied.

The information on intersections in U is neatly organised in the simplicial sheaf, N(U), (cf.
page 251 in section 7.3.6). We also know that from a sheaf of groups we can construct various
simplicial sheaves. Is there a way of viewing the cocycles gij from this simplicial perspective?

From a group, G, (no sheaves for the moment), we earlier saw the uses of models for the
classifying space, BG, of G. We could use the nerve of G as a group or rather its nerve as a
single object groupoid, G[1]. We could alternatively take the constant simplicial group, K(G, 0)
(so K(G, 0)n = G for all n ≥ 0, with all face and degeneracies, being the identity isomorphism of
G). If we then formed W (K(G, 0)), we get Ner(G[1]) back.

These different approaches all yield a simplicial set (and if you really want a space, you just
take its geometric realisation). This simplicial set will be denoted BG, even though that notation
is often restricted to that corresponding space. We have to be a bit careful about the order of
composition in the groupoid, G[1], if it is to be consistent with the construction K, which was the
nerve of an internal groupoid in the category of groups. We also have to be careful about our use of
left actions and the assumption that that makes about the order of composition being ‘functional’
rather than algebraic (which latter order works best with right actions). That being said, we have

• BG0 = a singleton set, {∗};

• BG1 = G, as a set, and in general,

• BGn = G× . . .×G︸ ︷︷ ︸
n

Writing g = (gn, . . . , g1) for an n-simplex of BG, we have

d0g = (gn, . . . , g2),

dig = (gn, . . . , gi+1gi, . . . , g0), 0 < i < n,

dng = (gn−1, . . . , g1),

with the degeneracy maps, sj , given by insertion of 1G in the jth place, shifting later entries one
place to the right. (Warning: multiple use of the label sj here may cause some confusion, but each
use is the natural one in that context!)
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We have already seen this several times (but repetition is useful). The key diagram is usually
that indicating a 2-simplex, g = (g2, g1), namely

∗
g2

��???????

∗

g1
??�������
g2g1

// ∗

Back to G being a sheaf of groups, and we get BG will be a sheaf of simplicial sets. We now have
two simplicial sheaves, N(U) and BG. Curiosity alone should suggest that we compare these via a
simplicial morphism and, for our purposes, it should be a simplicial sheaf map, f : N(U)→ BG.

Looking back at N(U) and its construction (page 251), the zero simplices are formed by the
open sets and as BG0 is trivial, f0 is not much of interest!

At the next level, f1 : N(U)1 → BG1, so consists - yes, of course, - of local sections over the
intersections Uij , hence gij in G(Uij) or Gij . Over triple intersections Uijk, f2 will give a 2-simplex,
as above, so gijgjk = gik, given by f2 : Uijk → G×G, f2 = (gjk, gij).

We thus have our 1-cocycle condition is automatic from the simplicial structure.
What about change of the choice of local sections of P , i.e., si : Ui → P . If we change these,

we get elements gi ∈ Gi such that s′ = gisi and the new g′ij are related to the old by a sort of
conjugacy rule:

g′ij = gigijg
−1
j ,

which can be visualised as a square
gij //

gj

��
gi
��

g′ij

//

This is reminiscent of a homotopy, and, in fact, defines one from our f (relative to the {si}) to
f ′ (relative to the {s′i}). In other words, we are identifying isomorphism classes of G-torsors that
trivialise over U with homotopy classes, i.e., elements of [N(U), BG]. We will return to this later
when we discuss passing to refinements of U to get a homotopy description of all G-torsors, so we
will not give the details here.

Several questions should come to mind at this stage. Given our recent description of ‘change of
groups’, an obvious thing to do is to view that from a simplicial perspective. Suppose ϕ : G→ H is
a homomorphism of sheaves of groups. It is easy to see that ϕ induces a map of simplicial sheaves,
Bϕ : BG→ BH, so we get, for given U , an induced map

[N(U), Bϕ] : [N(U), BG]→ [N(U), BH].

If we start off with a G-torsor, P , and use our change of groups methods above, what is the link
between ϕ∗(P ) and the image of the isomorphisms class of P as represented by some map from
N(U) to BG. Of course, we have just seen that if {gij} represents P then {ϕ(gij)} represents ϕ∗(P )
- but this is exactly the image under [N(U), Bϕ]. There is thus yet another good way of interpreting
the change of groups functor from Tors(G) to Tors(H), namely as a simplicial induced map from
BG to BH. (Later we will see that Tors(G) is the stack completion of BG or equivalently of G[1]
and this yields a variant of this simplicial viewpoint.)

Picking up an earlier problem, what about change of base. If we have the above simplicial
description of isomorphism classes of those G-torsors on a base B that trivialise over some open
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cover U , in terms of homotopy classes of maps from N(U) to BG, and then we change the base
along a continuous map, how does this look from a simplicial viewpoint?

To start with we rename some objects to get things into line with our earlier discussion. We
will consider two spaces B and B′ and a continuous map f : B → B′. We have a sheaf or bundle
of groups G on B′ and hence an induced pullback sheaf f∗(G) on B. We assume given some open
cover U of B′, and hence an open cover f−1(U) of B, and will be interested in those f∗(G)-torsors
that trivialise over f−1(U) and which are induced from G-torsors that trivialise over U .

7.4.6 Torsors and exact sequences

One classical method of analysing the cohomology, and, in so doing, of providing interpretations of
cohomology classes, is to vary the coefficients within an exact sequence. For instance, if

1→ L
u→M

v→ N → 1

is an exact sequence of sheaves of groups, then one might try to relate torsors over L, M and N .
The usual techniques would then be to see what is the likelihood of having something like a long
exact sequence of the cohomology ‘sets’ or groups. Where should it start?

We will, to start with, look at the Abelian case, but will try not to use commutativity so as to
get as general a result as possible. Sheaf cohomology with coefficients in sheaves of Abelian groups,
etc., is considered as measuring the non-exactness of the global sections functor. Given a sheaf,
L, of Abelian groups on B, ΓB(L) is one of several notations used for the Abelian group of global
sections of L. Another is L(B), of course. If the exact sequence above had been of Abelian sheaves,
we would have had a long exact sequence

0→ L(B)→M(B)→ N(B)→ Ȟ1(B,L)→ Ȟ1(B,M)→ Ȟ1(B,N)→ Ȟ2(B,L)→ . . . ,

and so on. It is to be noted that the induced map, v∗ : M(B) → N(B), need not be onto, so
Ȟ1(B,L) picks up the obstruction to ‘lifting’ a global section of N to one of M . This is particularly
interesting to us here since we have linked Ȟ1(B,L) with L-torsors in the general situation - and,
of course, that interpretation is also valid in the Abelian case.

To see how Ȟ1(B,L) arises naturally in this situation, suppose given a global section h of N . As
our exact sequence above was of sheaves, we have to examine what that means. This can be viewed
from several angles. An exact sequence of sheaves may not be exact as a sequence of presheaves.
The functor that forgets that sheaves are sheaves has a left adjoint namely ‘sheafification’, so
will itself be ‘left exact’, e.g., will preserve monomorphisms. (If you do not know of this type
of result, try to prove it yourself.) It need not preserve epimorphisms. Sheafification itself will
preserve epimorphisms, but not all epimorphisms need be the sheafification of an epimorphism
at the presheaf level. An epimorphism of sheaves will give an epimorphism on stalks. (We are
thinking here of sheaves on a space, B, rather than more general topos centred results.) This
means epimorphisms are locally defined. Suppose we have a point b ∈ B, then if x is in the stalk
of N above b, it means that x is representable as a pair (xU , U), where b ∈ U , U is an open set and
xU ∈ N(U), the group of local sections of N over U . (Recall, from page 247, section 7.3.3, that
the stalk of a sheaf N at a point b is a colimit of the N(U) for b ∈ U .) The morphism v being an
epimorphism, there is an element y in the stalk of M at b, say y = [(yV , V )], such that over some
open set W ⊆ U ∩ V , v(yW ) = xW .

Now start, not with an element in a stalk, but rather with a global section x of N . This does
give an element in each stalk and we can find an open cover U such that over each Ui in U , we
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can find a local section, yi, mapping down to the restriction, xi, of x to Ui, (but remember that
different global sections will most likely need different covers, etc.). There is no reason these yi
should be compatible on intersections Uij , so there will be (unique) elements, `ij ∈ Lij = L(Uij),
such that

yi = u(`ij)yj ,

since both yi and yj map to xij over Uij . As u is a monomorphism, these `ij will satisfy the cocycle
condition,

`ij`jk = `ik

and, as you no doubt now expect, if we change the local sections yi within the Li-coset of possible
choices, then y′i = u(`i)yi and the `i define a coboundary.

In other words, there is an L-torsor, P (x), which is constructed from the global section x of
N , and which is trivial exactly when the yi can be chosen compatibly, i.e., when there is a global
section y mapping down to x. We can thus think of P (x) as being the obstruction to lifting x
to a global section of M . (Of course, the choices made have to be checked not to matter, up to
isomorphism of P (x) - but that can be safely ‘left to the reader’.)

There is thus an extension of the earlier sequence to

0→ L(B)→M(B)→ N(B)→ π0(Tors(L)),

where the last term corresponds to Ȟ1(B,L). (The notation π0 is, you may recall, to designate
the set of connected components of a groupoid, simplicial set or space and Tors(L) is a groupoid
as we have seen.)

The next two terms in the long exact sequence, Ȟ1(B,M) and Ȟ1(B,N), are easy to handle
geometrically. They give π0(Tors(M)) and π0(Tors(N)) respectively, and, of course, the induced
maps are those given by the ‘change of groups’ along u and v. Exactness of the result is then
routine to check, but

v∗ : π0(Tors(M))→ π0(Tors(N))

will not, in general, be onto. (You would not expect it to be as the standard homological machinery
gives a Ȟ2(B,L) term.) Of course, none of the above depended on the sheaves involved being
Abelian, but if they are not, Ȟ1(B,L) is not an Abelian group, it is just a pointed set. It is still
given by π0(Tors(L)), and Tors(L) is always a groupoid, so there is a second layer that is hidden
by the homological approach namely the automorphisms of the different objects in this groupoid.

7.5 Bitorsors

The fact that the left G-torsor is also a right P ad-torsor suggests the notion of a bitorsor, the
analogue of a left R-, right S-module for our non-Abelian setting. (Our basic reference for this will
be Breen’s Grothendieck Festschrift paper, [28] and his beautiful ‘Notes on 1- and 2-gerbes’, [31],
based on his Minneapolis lectures.)

7.5.1 Bitorsors: definition and elementary properties

Definition: Let G, H be two bundles of groups on B or more generally two group objects in a
topos, E . A (G,H)-bitorsor on B is a space P over B together with fibre preserving left and right
actions of G and H, respectively, on P , which commute with each other,

(g.p).h = g.(p.h),
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and which define both a left G-torsor and a right H-torsor structure on P . If G = H, we say
G-bitorsor rather than (G,G)-bitorsor.

There is an obvious extension of the notion to that of a (G,H)-bitorsor in a topos. We leave
the exact formulation to you.

A family of local sections si of a (G,H)-bitorsor defines a local identification of P as the trivial
left G-torsor and the trivial right H-torsor. It therefore determines a family of local isomorphisms
ui : HUi → GUi , given by the rule sih = ui(h)si, for h ∈ HUi . It is important to note that this does
not mean that G and H are globally isomorphic.

Examples: a) The trivial (left) G-torsor TG is also a right G-torsor (using right multiplication)
and has a G-bitorsor structure.

b) Any left G-torsor, P , is a (G,P ad)-bitorsor, as above. Any G-torsor, P , is a (G,H)-bitorsor
if and only if H ∼= P ad.

c) Let

1→ G
i→ H

j→ K → 1

be an exact sequence of bundles of groups on B. Form GK = G×B K, which is again a bundle of
groups, then H is a GK-bitorsor over K. This needs a bit of working through. For a start, K is a
bundle of groups so has a (hidden) structural projection, K → B. Thinking of this as a cover as
we have done previously, then GK is the induced bundle of groups on K (as a space), so we have
transferred attention from Top/B to Top/K or from Sh(B) to Sh(K). There are actions of GK
on H,

h ? (g, k) = hi(g),

(but note that requires us to use H
j→ K, as the structural projection of H over K, again, going

to bundles on K,
(g, k).h = i(g).h,

but is only defined if j(h) = k, as we are ‘over K,’ in this equation).
This is somewhat simplified if we have B = 1, when it is simply an exact sequence of groups,

GK is G×K as a group over K, via projection, and so on.

There is an obvious notion of morphism of bitorsors and thus various categories, Bitors(G,H),
Bitors(G) := Bitors(G,G), ... . It should come as no surprise that if P is a (G,H)-bitorsor
and Q is a (H,K)-bitorsor, both on B, then P ∧H Q is a (G,K)-bitorsor. Moreover, P gives a
(H,G)-bitorsor, P o, (o for ‘opposite’) by reversing the two actions. (For you to check out.) We
thus have that a (G,H)-bitorsor will induce a functor

Tors(H)→ Tors(G)

and that, for a given bundle of groups G, the category of G-bitorsors has a monoidal structure
given by P ∧G Q and with TG as unit object. The opposite construction acts like an inverse,

P ∧G P o ∼= TG ∼= P o ∧G P,

but note that these are isomorphisms not equality.
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Lemma 46 The category Bitors(G) with contracted product is a group-like monoidal category,
with the bitorsor TG as unit and P o, an inverse for P .

Proof: This is left as an exercise, but here is a suggestion for the above isomorphisms: use
local sections to send any [p, p′] in P o ∧G P to an element of G, now show independence of that
element on the choice of local section. It is also necessary to check through the group-like monoidal
category axioms, which are left for you to find in detail. �

A group-like monoidal category is often called a gr-category. We have already (essentially
introduced on page 51) seen that strict gr-categories are ‘the same as’ crossed modules, so once
again that crossed structure is lurking around just beneath the surface. It is interesting and useful
(i.e., an exercise left to the reader!) to examine the above structure when G is a sheaf of
Abelian groups, for instance to show that the monoidal structure is symmetric.

A very useful result, akin to Lemma 45 above, gives a similar interpretation of IsomG(P,Q),
where P is a (G,H)-bitorsor and Q a left G-torsor. As P is thus also a left G-torsor and Tors(G)
is a groupoid, IsomG(P,Q) is just the sheaf of G-equivariant torsor maps from P to Q, all of which
are invertible. The following lemma identifies this as a contracted product.

Lemma 47 Let P be a (G,H)-bitorsor and Q a left G-torsor, then there is an isomorphism

IsomG(P,Q)
∼=→ P o ∧G Q.

Proof: We start by noting a morphism in the other direction. Suppose we take a local element in
P o ∧G Q given by (p, q) ∈ P o ×Q, defined over an open set U . We have

(p, q) ≡ (p.g−1, g.q),

but as p ∈ P o, p.g−1 = q.p with the original left G-action on P . We assign to (p, q) the isomorphism,
α(p,q), from P to Q defined over U , which sends p to q. Of course, α(p,q) is to be extended to a
G-equivariant map, α(p,q)(g.p) = g.q, but we effectively knew that fact already since

α(p,q) = α(p.g−1,g.q),

so it sends p.g−1 to g.q. Of course, if β : PU → QU is a local morphism defined over some U ,
then we can assume PU has a local section p and that β(p) = q for some local section q of Q. (If
not, refine U by an open cover on which P trivialises and work on the open sets of that finer open
cover.) However then we can assign [p, q] in P o ∧G Q to the morphism β. The rest of the details
should now be easy to check. �

7.5.2 Bitorsor form of Morita theory (First version):

Within the theory of modules and more generally of Abelian categories, there is a very important
set of results known as Morita theory, describing equivalences between categories of modules. The
idea is that if R and S are rings, then we can use a homomorphism as above to induce a right R,
left S module structure on S itself and this is what induces, via tensor product, a functor from
Mod(S) to Mod(R). We have seen the corresponding idea with torsors above. Not all functors
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between Mod(R) and Mod(S) are induced by morphisms at the ring level in this way however, but
provided we look at equivalences between categories, this bimodule idea allows us to describe the
equivalences precisely - and this does go across to the torsor context.

The first essential is to recall the definition of an equivalence of categories.

Definition: A functor F : C → D between two categories is an equivalence if there is a functor
G : D → C and two natural isomorphisms, η : GF ⇒ IdC and η′ : FG ⇒ IdD. We say G is
(quasi-)inverse to F .

Proposition 65 A (G,H)-bitorsor Q on B induces an equivalence

Tors(H)
ΦQ→ Tors(G)

M 7−→ Q ∧H M

between the corresponding categories of left torsors on B. In addition if P is a (H,K)-bitorsor on
B, then there is a natural isomorphism of functors

ΦQ∧HP
∼= ΦQ ◦ ΦP ,

and, in particular, the equivalence ΦQo is quasi-inverse to ΦQ.

Proof: The last part follows from the statement on composites, which should be clear by con-
struction and, of course, TH ∧H Q ∼= Q, as we saw earlier. This proof is thus just a compilation of
earlier ideas - and so will be left to the reader! �

In fact it is now easy to give a weak version of the torsor Morita theorem.

Proposition 66 If
Φ : Tors(H)→ Tors(G)

is an equivalence of categories, then there is a (G,H)-bitorsor, Q, which itself induces such an
equivalence.

Proof: We will limit ourselves to pointing out that we can take Q = Φ(TH). This inherits its right
H-action from the right action of H on TH . (You should check that it is a right H-torsor for this
action.) �

It is, in fact, the case that Φ is equivalent to the equivalence induced by Q, but this is more
relevant in a later context, so will be revisited then.

7.5.3 Twisted objects:

Continuing our study of torsors and bitorsors, as such, we should mention the analogue of fibre
bundles in this context.

Let P be a left G-torsor on B and E a space over B on which G acts on the right. We can
again use the contracted product construction to form EP := E ∧G P over B. In this context we
call EP the P -twisted form of E.

Choice of a local section s of P over an open set U determines an isomorphism ϕP : EP|U
∼= EU ,

so EP is locally isomorphic to E. (Beware, especially if you are used to the case where E is a
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product space over B, so E = F ×B, say. In that case EP is locally trivial in a very strong sense,
but this need not be so in general).

Suppose E1 is now a space over B and there is an open cover U of B over which E1 is locally
isomorphic to E, then the sheaf or bundle IsomB(E1, E) is a left torsor on B for the action of the
bundle of groups, G := AutB(E). This gives us a G-torsor and a space, E, on which G acts on the
right.

These two constructions are inverse to each other.
In particular, if we are given G and have a second bundle of groups, H, on B, which is locally

isomorphic to G, then P := IsomB(H,G) is a AutB(G)-torsor. It is worth pausing to think out the
components of this fact. The object IsomB(H,G) exists, as before, because of the Cartesian closed
assumption about our categories of bundles over B, (e.g. if we are interpreting bundles as sheaves,
IsomB(H,G) is a subsheaf of the function sheaf, Sh(B)(H,G), but although it would always have
an action of AutB(G), we need the ‘H is locally isomorphic to G’ condition to ensure the existence
of local sections and hence to ensure it is a AutB(G)-torsor).

Look now at G ∧Aut(G) P and the map

G ∧Aut(G) P → H

(g, u) 7→ u−1(g).

(We make AutB(G) act on the right of G, via the obvious left action.) This map is an isomorphism
and so H is the P -twisted form of G for this right AutB(G)-action.

On the other hand, if G is a bundle of groups on B and P is a left G-torsor, H := G∧Aut(G)P is
a bundle of groups on B locally isomorphic to G and this identifies P with the left AutB(G)-torsor,
IsomB(H,G).

This provides a torsor’s-eye-view of our examples on fibre bundles given in section 7.1.3, (Case
study, page 228). We will sketch in a few more details:

A vector bundle, V , of rank n on B is locally isomorphic to RnB := Rn × B. The group
of automorphisms of this is the trivial bundle of groups, G`(n,R)B := Gl(n,R) × B. The left
G`(n,R)B-torsor on B associated to V is Isom(V,RnB) and this is just the frame bundle, PV , of V .
The vector bundle V is a bundle of groups, so the above discussion applies, showing it to be the PV -
twist of RnB. Conversely for any G`(n,R)B-torsor P on B, the twisted object V = RnB ∧G`(n,R)B P
is the rank n vector bundle associated to P and its frame bundle PV is canonically isomorphic to
P . (If you have not explored vector bundles and differential manifolds, a brief excursion into that
area may be well worthwhile, as it reinforces the geometric origins and intuitions behind this area
of cohomology.)

7.5.4 Cohomology and Bitorsors

Earlier, (page 259), we saw how local sections, s, of a torsor, P , over an open cover, U , led to
‘transition maps’, or ‘cocycles’, gij : Uij → G, on the intersections. Changing local sections to
s′i : Ui → P , s′i = gisi, we have that the corresponding cocycles g′ij are related via the coboundary
relation

g′ij = gigijg
−1
j ,

to the earlier ones. This led to the set of equivalence classes, H1(U , G), and eventually to the
cohomology set Ȟ1(B,G), which classified isomorphism classes of G-torsors on B.
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What would be the additional structure available if P was a (G,H)-bitorsor? The family of
local sections si : Ui → P then would also determine a family of local isomorphisms ui : HUi → GUi ,
where

ui(h)si = si.h.

Remark: This formula needs a bit of thought. That ui is a bijection is clear, as it follows from
the fact that P is a G-torsor, but that it is a homomorphism needs a bit more care. The defining
equation is specifically using the local section si so, for instance, on a more general element g.si
we have to extend the formula using G-equivariance, (remember the two actions are independent),
so (g.si).h = g.ui(h).si. In particular, if h1 and h2 are two local section of H over Ui, then
si.(h1h2) = ui(h1).si.h2 = ui(h1)ui(h2).si, so ui(h1h2) does equal ui(h1)ui(h2).

Over an intersection Uij of the cover, si = gijsj , so

ui = igijuj

with as usual, i the inner automorphism homomorphism from G to AutB(G), sending g to ig. The
(ui, gij) therefore satisfy the cocycle conditions

gik = gijgjk

and
ui = igijuj .

Changing the local sections to s′i = gisi in the usual way determines coboundary relations

g′ij = gigijg
−1
j

and
u′i = igiui.

Isomorphism classes of (G,H)-bitorsors on B with given local trivialisation over U , thus are clas-
sified by the set of equivalence classes of such cocycle pairs (gij , ui) modulo coboundaries. In the
most important case of G-bitorsors, the ui are locally defined automorphisms of the GUi and so are
local sections of Aut(G).

We thus have from a G-bitorsor, P , a fairly simple way to get a piece of descent data, {(gij , ui)},
with the right sort of credentials to hope for a ‘reconstruction’ process. We needed P to trivialise
over the open cover U = {Ui} and then to chose local sections, si : Ui → P . This gave {gij : Uij →
G} and {ui : Ui → Aut(G)}, so let us start off with these and see how much of P ’s structure we
can retrieve.

Putting aside the uis for the moment, we have a G-valued cocycle, {gij}, and we already have
seen how to build a G-torsor from that information. Recall we take

P =
⊔
i

G(Ui)/ ∼,

where (g, i) ∼ (ggij , j). (The basic relation is really that (1Ui , i) ∼ (gij , j) with the left translation
G(Uij)-action giving the more general form.) We thus have a lot of the structure already available.
We are left to obtain a right G-action, which has to be ‘independent’ of the left action, i.e., to
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commute with it as in the first definition of this section. (To avoid confusion between the two
actions, we will pass to the (G,H)-bitorsor case so ui : Ui → Isom(H,G), and will denote local
elements that act on the right by hi, whilst any acting on the left by gi.)

In our ‘reconstructed’ P , there is clearly a natural choice for a local section over Ui, namely the
equivalence class of the identity element 1Ui ∈ G(Ui), or, more exactly of (1Ui , i), then we could
define

[g, i].h := [g.ui(h), i].

It is clear that this is a right action, since ui is a homomorphism, and that it does not interfere
with the left G(Ui)-action, which is g′[g, i] = [g′g, i]. Of course, we have to check compatibility
with the equivalence relation, and that is exactly what is needed for checking that it works on
adjacent patches / open sets of the cover. The key case is to work with a local section h of G over
an open set, U , and examine what h does on patches Ui, Uj and their intersection. (Of course, this
presupposes that we are intersecting Ui, etc., with U , i.e., that we are effectively working with an
open cover of U itself.)

We know how the Ui are related over the different patches, namely

ui = igijuj ,

which on our local element, h, gives

ui(h) = gijuj(h)g−1
ij .

As h is defined on U , the restrictions to the various Ui form a compatible family, (i.e., we do not
need to worry about transitions for h in formulae), so

[g, i].h = [gui(h), i] = [g.ui(h)gij , j],

on the one hand, and also

[g.gij , j].h = [ggijuj(h), j].

The earlier identity shows that

ui(h)gij = gijuj(h),

so these are the same local element of P over Uij .

The ui were introduced as the way to link local right and left actions,

ui(h).si = si.h.

They also have an interpretation if we seek to study when a given left G-torsor, P , has an additional
G-bitorsor, or more generally, a (G,H)-bitorsor structure. The cocycle rules linking the ui with the
gij involve the group homomorphism i : G→ Aut(G). The gij part of the cocycle family only uses
the left G-torsor structure on P . It is perhaps only because of ‘natural curiosity’, but it does seem
natural to look at the Aut(G)-torsor, i∗(P ). Our earlier calculations show that suitable cocycles
for this are given by {i(gij)} = {igij}, but the ui now look very like a coboundary! In fact that key
equation, ui = igijuj , can obviously be rewritten as

igij = uiu
−1
j ,
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or

igij = ui.1.u
−1
j ,

so the class of {igij} is ‘cohomologically null’, i.e., equivalent to 1 modulo coboundaries. In other
words, i∗(P ) ∼= TAut(G).

Conversely, if we have P and hence its cocycle representation, and a 0-cocycle trivialising i∗(P ),
so {igij} is a coboundary,

{igij} = αiα
−1
j ,

then taking ui = αi, we have a cocycle pair, (gij , ui), giving P a G-bitorsor structure.

We clearly should look at this from the viewpoint of contracted products as they have a clearer
geometric interpretation. The Aut(G)-torsor, i∗(P ), has a description as Aut(G)i ∧G P , thus, by
quotienting Aut(G)× P by the equivalence relation

(α.g.p) ∼ (α ◦ i(g), p).

The fact that i∗(P ) is locally trivial was given by the local sections induced by those si : Ui → P
for P , namely

[(1, si)] : Ui → Aut(G)i ∧G P.

(Note this formulation is slightly different from that in Breen, [28], as he uses the opposite group
Auto(G) and i′, but we can avoid that extra complication for our purposes here, since we really
only need α = 1 in the above.)

We can compare these local sections on overlaps Uij ,

(1, si) ∼ (1, gijsj) ∼ (igij , sj) ∼ (uiu
−1
j ),

but now our local sections [(1, si)] are equivalent to others ti = [(u−1
i , si)], which agree on overlaps

ti = [(u−1
i , si)] = [(u−1

i uiu
−1
j , si)] = tj

over Uij . These ti thus form a global section for i∗(P ), which is hence the trivial torsor, up to
isomorphism.

Reversing the argument, a global section of i∗(P ), together with the structural cocycle {gij}
for P gives a G-bitorsor structure on P . (We will return to this in more generality a bit later.)

We thus have that a G-bitorsor is a relative Aut(G)-torsor, where Aut(G) = (G,Aut(G), ι). It
corresponds to a G-torsor, P , together with a trivialisation of ι∗(P ). Using the fact that morphisms
from the induced torsor ι∗(P ) to TAut(G) corresponds to morphisms over ι from P to TAut(G), we
get a second description, which is very useful for further generalisation.

7.5.5 Bitorsors, a simplicial view.

Pausing in our development, let us return to the simplicial viewpoint that we adopted earlier. The
cover U gives a sheaf / bundle,

p : E = tU → B

and by repeated pullbacks, we get a simplicial sheaf / bundle,

N(U)→ B.



278 CHAPTER 7. NON-ABELIAN COHOMOLOGY: TORSORS, AND BITORSORS

The cocycle {(ui, gij)} consists of a family {ui} giving a morphism,

g0 : N(U)0 = tU → Aut(G),

together with a second family
g1 : N(U)1 → GoAut(G).

This second piece of data is not quite as obvious as it might seem. The earlier model of the crossed
view of group extensions used the crossed module, Aut(G) = (G,Aut(G), ι) directly. Here we are
using the cat1-group / gr-groupoid / 2-group analogue, which can also be thought of simplicially
as in our discussion of algebraic 2-types, page 89. Recall the face maps

di : GoAut(G)→ Aut(G), i = 0, 1,

are given by

d1(g, α) = α,

d0(g, α) = ig ◦ α

and the degeneracy is
s0(α) = (1G, α).

The maps g0, g1 are to be hoped to be a part of a simplicial map from the simplicial sheaf N(U)
to the sheaf of simplicial groups, K(Aut(G)), and to check that this is indeed the case, we need to
recall that ‘bundle-wise’ the elements of tU = N(U)0 can usefully be thought of as pairs (x, U),
where U ∈ U and x ∈ U . Of course, the projection maps p sends (x, U) to x itself. The 1-simplices
of N(U) therefore are given by triples (x, U0, U1) with x ∈ U0 ∩ U1, so the corresponding face and
degeneracy maps are

d1(x, U0, U1) = (x, U0),

d0(x, U0, U1) = (x, U1),

s0(x, U) = (x, U, U).

We can thus see what this g must satisfy. We write g1 = (g, α) as before, and will try to identify
what g and α must be. We have, then,

• d1g1 = g0d1 means α = u|U0
=: u0;

• d0g1 = g0d0 means igu0 = u|U1
=: u1;

• sog0 = g1s0 is a normalisation condition, which will make more sense when the first two
conditions have been explored in more detail.

The obvious way to build g1, i.e., g itself, is thus to take

g(x, U0, U1) = (g10(x), u0(x)),

and to require that gii is 1G restricted to Uii = Ui ∩ Ui for the normalisation.
To continue our simplicial description, we should look at triple intersections, i.e., N(U)2, and

the corresponding K(Aut(G))2. The points of N(U)2 are, of course, represented by symbols such
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as (x, U0, U1, U2), whilst those of K(Aut(G))2 above the point x, are of form (g2, g1, α)(x). The
face maps of N(U) are the obvious ones, d2(x, U0, U1, U2) = (x, U0, U1), and so on, whilst

d2(g2, g1, α) = (g1, α),

d1(g2, g1, α) = (g2g1, α),

d0(g2, g1, α) = (g2, ig1α),

with the si inserting an identity in the appropriate place. (Of course, all these gi, etc., are ‘local
elements’, so are really local sections, and our formulae would have, over a given x, the values
g2(x), etc., as above.)

We want g to be a simplicial morphism, so on 2-simplices we expect, for (x, U0, U1, U2),

d2g2 = g1d2,

etc., i.e., if g2(x, U0, U1, U2) = (g2, g1, α)(x), the d2-face (g1, α)(x) = (g10(x), u0(x)), so g1,= g10,
α = u0, and then the d0 face gives g2 = g21. Finally the d1-face gives

g2g1 = g20,

so this gives us the cocycle condition
g21g10 = g20

over U012.
The other simplicial morphism rules give compatibility with degeneracies, but using simplicial

identities, these then give that g01 = g−1
10 , i.e., again a normalisation condition.

We thus have

(i) the bundle of crossed modules Aut(G) given by (G,Aut(G), ι);

(ii) the corresponding bundle of simplicial groups, K(Aut(G));

(iii) the bundle / sheaf of simplicial sets, N(U);
and

(iv) our local cocycle description of our bitorsor, P ,

giving, it would seem, a simplicial map

g : N(U)→ K(Aut(G)).

Conversely such a simplicial map gives a cocycle (for you to check).
(Here we are abusing notation slightly, since the domain of g is a bundle of simplicial sets,

whilst the right hand side is the underlying simplicial set bundle of the simplicial group bundle, not
that simplicial group bundle itself, however we have not shown that in the notation. It is, however,
an important point to note.)

Continuing with this quite detailed look at the ‘cocycles for bitorsors’ context, we clearly have
next to look at the ‘change of local sections’ from this simplicial viewpoint.

Suppose we change to local sections, s′i = gisi, so, as before, get

g′ij = gigijg
−1
j
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and
u′i = igiui.

If we are describing cocycles as simplicial maps, then fairly naturally, we might hope that the
equivalence relation coming from coboundaries, as here, was something like homotopy of simplicial
maps. We can see immediately that this looks to be not that stupid an idea, by looking at the base
of the corresponding simplicial objects.

//////// G
(2) oAut(G)

//
//
// GoAut(G) //// Aut(G)

//////// N(U)2

g2

OO
g′2

OO

//
//
// N(U)1

g1

OO

g′1

OO

//// N(U)0

g0

OO

g′0

OO

then we would expect that a homotopy between g and g′ would pick out, for each (x, U0) in
N(U)0, an element (g, α) ∈ G o Aut(G) with g = d1(g, α) = g0, d0(g, α) = g′0, i.e., α = u0 and
g′0 = u′0 = ig0 ◦ u0, exactly as needed. To see if this works in higher dimensions, we need to glance
again at simplicial homotopies. We will take a fairly näıve view of them to start with. We have
already met them in passing in our discussion of simplicial mapping spaces in Chapter 6.3, page
208.

Given f, g : K → L, two morphisms of simplicial sets, a simplicial homotopy from f to g is, of
course, a map

h : K ×∆[1]→ L

such that if e0 : ∆[0]→ ∆[1] is the 0-end of ∆[1], (so is actually represented by the d1 face - beware
of confusion) and e1 : ∆[0]→ ∆[1], gives the 1-end, then

f = h ◦ (K × e0),

g = h ◦ (K × e1).

(More on such cylinder based homotopies in abstract settings can be found in Kamps and Porter,
[111]. In a general context, simplicial homotopy does not give an equivalence relation on the set of
simplicial maps as although it gives a reflexive relation symmetry and transitivity depend on the
existence of fillers in the simplicial set of morphisms.)

This is the neat geometric way of picturing simplicial homotopies. There is an alternative
‘combinatorial’ way that is also very useful (see [111], p.184-186, for a discussion - but not for the
formulae which were left as an exercise!) This gives h being specified by a family of maps,

hni : Kn → Ln+1,

indexed by n = 0, 1, . . . , and i with 0 ≤ i ≤ n, and satisfying some face and degeneracy relations
that we will give later on. For the moment, we will only need to use these in low dimensions, so
imagine the lowest dimension h0

0 : K0 → L1. For each vertex, k0, we get an edge / 1-simplex in L1

joining f0(k0) and g0(k0). Now if k1 ∈ K1, we expect a square in K ×∆[1] looking like

(k1,s01) //

(k1,s00)
//

τ0
τ1

??����������������

(s0d1k1,ι)

OO

(s0d0k1,ι)

OO
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with ι ∈ ∆[1]1, the unique non-degenerate 1-simplex, corresponding to id : [1] → [1]. (Remember
the product of simplicial sets, K and L, has (K × L)q = Kq × Lq.) The homotopy h has to thus
give two 2-simplices of L. These will be h1

0(k1) := h(τ0) and h1
1(k1) := h(τ1) respectively. We first

note that d1τ0 = d1τ1, so
d1h

1
0 = d1h

1
1.

Likewise the geometric picture tells us that d2h
1
1 = f1 and d0h

1
0 = g1 and finally that d0h

1
0 = h0

0d0,
whilst d2h

1
1 = h0

0d1.
In our special case of that general square, k1 = (x, U0, U1) with d0k1 = (x, U1), d1k1 = (x, U0),

thus our earlier choices should mean the horizontal edges are mapped to

h((x, U0, U1), 0) = (g10(x), u0(x)),

h((x, U0, U1), 1) = (g′10(x), u′0(x)),

and the vertical ones,

h((x, U1), ι) = (g1(x), u1(x)),

h((x, U0), ι) = (g0(x), u0(x)).

They match up as required.
We need to work out h1

0 and h1
1. These will map (x, U0, U1) to 2-simplices of K(Aut(G)), i.e.,

to triples (γ2, γ1, α), with γi ∈ G and α ∈ Aut(G). First we look at h1
0(x, U0, U1) and the faces we

know of it.
Let h1

0(x, U0, U1) = (γ2, γ1, α), then the two descriptions of d2h
1
0 give

(g10(x), u0(x)) = (γ1, α),

whilst for d0h
1
0, we have

(g1(x), u1(x)) = (γ2, iγ1 ◦ α).

We thus have γ1 = g10(x), α = u0(x) and γ2 = g1(x) and we can check back that ig10u0 = u1 from
earlier calculations. We have h1

1 completely specified as

h1
1(x, U0, U1) = (g1(x), g10(x), u0(x)).

This gives d1h1
1(x, U0, U1) = (g1(x)g10(x), u0(x)), which we will need shortly.

We next turn to h1
0(x, U0, U1) and reset the meaning of γi and α, so this is (γ2, γ1, α). We do a

similar calculation and this gives

h1
0(x, U0, U1) = (g′10(x), g0(x), u0(x)).

This ‘feels’ right, but we have to check it matches h1
0 on the diagonal:

d1h
1
0(x, U0, U1) = (g′10(x)g0(x), u0(x)),

but g′10(x) = g1(x)g10(x)g0(x)−1, so this equals (g1(x)g10(x), u0(x)), as hoped.

We have laboriously checked through the calculations of (h1
0, h

1
1) to show how well behaved

things really are. It is reasonably easy to extend the calculation to all dimensions. What needs to
be retained is that h was completely specified by the coboundary and cocycle data and, conversely,
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if we were given any homotopy h between g and g′, then g and g′ will be equivalent. This suggests
that the simplicial mapping sheaf or bundle SShB(N(U),K(Aut(G))), is what is really encoding
the data in a neat way. (If you are hazy about simplicial mapping spaces, recall that if K and L
are simplicial sets, S(K,L) is the simplicial set of simplicial maps and (higher) homotopies, so

S(K,L)n = S(K ×∆[n], L).

Using the constant simplicial sheaves, ∆[n]B, to replace the use of the ∆[n] gives a similar simplicial
enrichment for the category of simplicial sheaves / bundles on B, but this can be localised to make
SShB(K,L), a simplicial sheaf as well.)

Earlier we omitted the detailed description of homotopies as families of maps. To complete our
picture here, that description will now be useful. We first give it for simplicial sets, so in the very
classical setting.

Let K and L be simplicial sets, and f, g : K → L two simplicial maps, then a homotopy

h : K × I → L

between f and g can be specified by a family of functions

h, = hni : Kn → Ln+1,

satisfying various relations. To understand how these arise, we use some simple notation extending
that which we used above.

The non-degenerate (n+ 1)-simplices of ∆[n]×∆[1] are of form (sjιn, sĵι1), where ιn ∈ ∆[n]n
is the unique non-degenerate n-dimensional simplex corresponding to id[n] : [n] → [n] in the de-
scription of ∆[n] as ∆(−, [n]), ι1 being similarly specified for n = 1, and where sĵ is the multiple

degeneracy corresponding to ĵ = (0, . . . , ĵ, . . . , n), i.e., sn . . . s0, but without sj . (Any (n + 1)
simplex of ∆[1] is given by an increasing map [n + 1] → [1], so can be represented as a string
(0, . . . , 0, 1, . . . , 1), say with j zeroes. This will be sĵι1, since the first j degeneracies ‘add in’ 0s,

whilst those after the (j+ 1)st, that is, after the break, will add in 1s. The simplicial identities give
sisj = sjsi−1 if i > j, so sĵ has a second useful description as (slast)

n−j(s0)j .)
For an n-simplex k ∈ K, we denote (sjk, sĵι1) by τj , or, more exactly, τj(k) if confusion might

arise. We then encode our h : K × I → L by hnj (k) = h(τj(k)). The homotopy h is, of course, a
simplicial map so, for any 0 ≤ i ≤ n+ 1, we have dih = hdi. These relations translate to give the
following rules:

d0h0 = g, dn+1hn = f,
dihj = hj−1di for i < j,

dj+1hj+1 = dj+1hj ,
dihj = hjdi−1 for i > j + 1,

and the corresponding degeneracy rules are

sihj = hj+1si, i ≤ j,

sihj = hjsi−1, i > j.

Of course, these hjs etc. are further indexed by a dimension hnj , so, for instance, dih
n
j = hn−1

j−1 di is
the full form of the second line of these.
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Aside on Tensors and Cotensors: It is often the case, when considering simplicial objects
in a category, A, that one can form a ‘tensor’, X ⊗ I, using a coproduct in each dimension, then
one defines a homotopy to be a morphism

h : X ⊗ I → Y.

The construction of this ‘tensor’ is : given any simplicial set K, and a simplicial object X in A,
(where A has the coproducts that we will be using below),

(X ⊗K)n =
⊔
k∈Kn

Xn(k) with each Xn(k) = Xn,

i.e., a Kn-indexed copower of Xn. Using an element based notation, the usual way of denoting the
copy of x ∈ Xn, in the k-indexed copy of Xn would be x ⊗ k and then face and degeneracy maps
are given, in X ⊗ K, by di(x ⊗ k) = dix ⊗ dik, etc., i.e.,‘component-wise’. In this setting again
h : X ⊗∆[1] → Y can be decomposed to give a family {hnj : Xn → Yn+1}. The same description
works if instead of a tensor, we have a cotensor.

The setting is that of S-enriched categories having enough (finite) limits. Suppose now C is
S-enriched, so for objects X,Y ∈ C, we can form a simplicial set C(X,Y ) of ‘morphisms’ from X to
Y . A homotopy between f, g ∈ C(X,Y )0 will, of course, be a 1-simplex h ∈ C(X,Y ) with d1h = f ,
d0h = g. If C is cotensored then, for any simplicial set K, there is a cotensor, C(K,Y ), for each Y
in C, such that

S(K, C(X,Y )) ∼= C(X, C(K,Y )).

Of particular use is the case K = ∆[1], as a 1-simplex h ∈ C(X,Y ) can be represented by an element
in S(∆[1], C(X,Y )) and thus by an element of C(X, C(∆[1], Y )). In other words, a homotopy is a
morphism

h : X → C(∆[1], Y ),

so C(∆[1], Y ) behaves like a path-space object or cocylinder on Y . The construction of C(K,Y )) uses
limits and can be ‘deconstructed’ to give a family based description of homotopies, just as before.
The nice thing about that description is, however, that it makes sense whatever category A is as it
is merely governed by some small list of identities between composite maps. (For any A, Simp.A
is S-enriched, so can be taken to be the C above; see Kamps and Porter, [111] for a discussion
of some of these ideas, in particular on cylinders and cocylinders as a basis for ‘doing’ homotopy
theory in some seemingly unlikely places! We will examine simplicially enriched categories more
fully later on, starting on page 421.) A word of caution, however, is in order. As we mentioned
earlier, homotopies are not always composable, nor reversible. If we have a homotopy, in this
abstract setting, between morphisms f0 and f1 and another between f1 and f2, then there may
not be one directly from f0 to f2. This is annoying! It depends on Kan filling conditions in the
simplicial hom-sets. Luckily in many of the cases that we need, the composition of homotopies
does work, however once or twice we will have to be careful in the wording. Of course, we could
generate the equivalence relation defined by ‘direct’ homotopy, but, whilst this is very useful, it
does often require a chain or ‘zig-zag’ of explicit ‘direct’ homotopies if it is to be of maximal use.
Conditions on A can be found that imply that homotopy in Simp(A) is an equivalence relation,
(but I do not know if optimal such conditions are known).
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Remark: We are heading for a fairly simplicial description of cohomology. A very useful
reference at this point is Jack Duskin’s memoir, [65], although that emphasises the Abelian theory
only, and also his outline of a higher dimensional descent theory, [67]. From this simplicially based
theory, it is then a short journey to give a ‘crossed’ description of the bitorsor based, (and then
gerbe based), non-Abelian cohomology.

Pause: At this point, it is a good idea to take stock of what we have shown. We have used
local sections {si} to get cocycles {(gij , ui)} and have constructed the beginnings of a simplicial
morphism g from N(U) to K(Aut(G)). So far we have explicitly given gn for n ≤ 2 only, and so
should check higher dimensions as well. (Intuitively it would be strange if something came adrift in
higher dimensions, since Aut(G) ‘is a 2-type’, but we should make certain!) We also have to check
our interpretation of homotopies in higher dimensions.

Let us see what gn : N(U)→ K(Aut(G)) would have to satisfy. Let

gn(x, U0, . . . , Un) = (gn, . . . , g1, α),

then

dngn(x, U0, . . . , Un) = (gn−1, . . . , g1, α),

d0gn(x, U0, . . . , Un) = (gn, . . . , g2, ig1 ◦ α),

dign(x, U0, . . . , Un) = (gn, . . . , gi+1gi, . . . , g1, α),

for 0 < i < n, so we can thus read off gn from a knowledge of its faces! In other words, our intuition
was right and g0, g1 and g2 determined gn in all dimensions.

A very similar calculation shows that h : N(U)× I → K(Aut(G)) corresponds to the 1-cocycle
{gi} and nothing more.

We thus have established a one-one correspondence between the set of isomorphism classes of
G-bitorsors that trivialise over U and the set [N(U),K(Aut(G))] of homotopy classes of simplicial
sheaf maps from N(U) to the underlying simplicial sheaf of the simplicial group, K(Aut(G)).

We should continue our pause here and make some comments about the overall situation. This
set can be interpreted as a type of zeroth non-Abelian hyper-cohomology of B relative to the cover
U . It is H0(N(U),Aut(G)). But what is hyper-cohomology? We will have a look at its classical
Abelian form below, but note that the coefficients, here, are in a sheaf of crossed modules, so will
also need to look at that in more detail. We saw earlier a related situation (in section 6.1) where we
replaces the crossed module Aut(G) by a general one Q = (K,Q, q), when discussing non-Abelian
extensions of G by K ‘of the type of Q’. We there obtained a cohomology set, there called H2(G,Q),
identifiable as [C(G),Q], and the correspondence was obtained by identifying the cocycles as maps
of crossed complexes and, as C(G) is ‘free’, it sufficed to give them on the generating elements, in
other words on the analogue of N(U).

The reason given for introducing the notion of extension of type Q was to obtain functoriality in
the coefficients. (Recall that if ϕ : G→ H is a homomorphism of groups then it is not clear when
there is a morphism of crossed modules from Aut(G) to Aut(H) which is ϕ on the ‘top group’.)
This also gave a good possibility of a finer classification of all extensions of G by H: some will be
of the type of a particular Q, others not.
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In our bitorsor situation, the functoriality is once again important, but the second aspect gains
an additional geometric significance. A very important part of classical fibre bundle theory relates
to the possibility of ‘reducing the group’. For instance, suppose we have a n-dimensional real
manifold, X, then its tangent bundle is a fibre bundle with each fibre a vector space of dimension n
and with the transition functions taking their values in G`(n,R), i.e., a n-dimensional vector bundle.
(Its associated G`(n,R)X -torsor is, as we saw, the frame bundle.) If X is at all ‘nice’, we can put
a Riemannian metric on it, (i.e., additional structure of considerable geometric importance), and
this corresponds to showing that our transition functions can be replaced by ones taking values in
O(n,R), the corresponding group of orthogonal matrices, as these are the ones that preserve the
metric/inner product. Note that the tangent bundle naturally has an action by Aut(F ), that is the
corresponding automorphism group of the fibre, F . (With our bitorsors, the corresponding acting
object is a strict automorphism gr-groupoid, and we have used the corresponding crossed module,
Aut(G).)

Other examples would correspond to other subgroups of general linear groups. Foliated struc-
tures, systems of partial differential equations, etc., correspond to sub-bundles of bundles of jets
on X. These structures may be on X itself or on some given fibre bundle E → X over X. In each
case, giving a G-structure on E, for a group, G, which is a subgroup of the natural group of auto-
morphisms, corresponds to ‘reducing’ the Aut(F )-torsor to a G-torsor. Another type of structure
corresponds to ‘lifting’ the transition functions from some given H to a G, where ϕ : G → H is a
nice epimorphism. For instance, the special orthogonal group SO(n,R) for n ≥ 2, has a universal
covering group, Spin(n)→ SO(n,R), and extra structure of use for some applications, corresponds
to lifting the uij : Uij → SO(n,R) to take values in Spin(n). Of course, this is not always possible.
Obstructions may exist to doing it, depending in part on the topological structure of X.

All these examples were of Lie groups, i.e., groups in the category of differential manifolds, but
a similar intuition was central to discussions in the 1960s and 1970s of the relationship between
smooth and piecewise linear structures on topological manifolds, in which various simplicial groups
of automorphisms were related and the obstructions to lifting transition functions of certain natural
simplicial bundles were the key to the problem. Again analogous situations exist in algebraic
geometry involving group schemes and their ‘subgroups’. Here, as a group scheme over a fixed base
Spec(K) is in many ways a bundle of groups, the more general theory of group bundles and change
of group bundles, rather than merely change of groups, as such, is what is important here.

It would almost be fair to say that, from a historical perspective, this is one modern interpre-
tation of Klein’s original intuition of what geometry is, i.e., the study of the automorphisms that
preserve some ‘structure’. What seems now to be emerging is the relationship between higher level
‘automorphism gadgets’ such as Aut(G) and classical invariants such as cohomology and conse-
quently, some appreciation of higher level ‘structure’. Many of the ingredients of the theory are
still missing or are merely ‘embryonic’ in the crossed module / 2-group case as yet, but the plan of
action is becoming clearer.

Returning to the detail, we therefore consider a sheaf or bundle of crossed modules, M =
(C,P, ∂), and look at data of the form

g : N(U)→ K(M),

so g0(x, Ui) = pi(x) with pi : Ui → P , a local section of P over Ui and g1(x, Ui, Uj) = (cji(x), pi(x)),
where cji : Uji → C is a local section of C over the intersection Uji. These local sections satisfy

∂(cji)pi = pj and ckjcji = cki
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over the intersections. Corresponding to a change in local sections will be a coboundary rule of the
form:

c′ij = cicijc
−1
j ,

and

p′i = ∂(ci)pi,

i.e., a homotopy between g and g′. The equivalence classes will be in H0(N(U),M) and, both in
this general case and in the particular case of M = Aut(G), it is natural to pass to the limit over
coverings (or if working in a more general Grothendieck topos, over hypercoverings) to get the
zeroth Čech hyper-cohomology set with values in M, denoted Ȟ0(B,M).

We have H0(N(U),M) = [N(U),K(M)], and it is reasonably safe to think of Ȟ0(B,M) in these
terms, but, in fact, one really needs to introduce the category D(E) = Ho(Simp(E)), obtained
by taking the category of simplicial objects in the topos, E , in our simplest case that of simplicial
sheaves on B, and inverting the ‘quasi-isomorphisms’, i.e., those simplicial maps that induce isomor-
phisms on all homotopy groups. There are several detailed treatments of this type of construction
in the literature - not all completely equivalent - so we will not give another one here!

We could, and later on will, go further. We could replace the crossed module M by a crossed
complex, or, in general, could use a simplicial group, H, instead of K(M). We will definitely keep
this in mind, but just because it could be done, does not mean it needs doing now. The problem
is that we, as yet, have only an embryonic understanding of the algebraic and geometric properties
of the situation with M a crossed module or bundle / sheaf of such things. Past experience shows
that the generalisation and abstraction will be worth doing, but we may not yet have the auxiliary
concepts and intuitions to interpret what that theory will tell us, nor what are the significant new
questions to ask and problems to solve. As yet, there are few signposts in that new land!

7.5.6 Cleaning up ‘Change of Base’

Although we have considered change of base several times, we have not had available enough
machinery to handle it really adequately. In particular, we have left the question of homotopic
maps inducing ‘isomorphic torsors’ up in the air. Now we can give a reasonable treatment of that
results and at the same time treat change of base for bitorsors, (and in such a way as to handle
change of base for relative M-torsors as well, and we have not formally defined them yet).

One conceptual difficulty left over from earlier was that if f and f ′ were homotopic maps from
B to B′, and P was a G-torsor on B′, we want to be able to say that somehow f∗(P ) and (f ′)∗(P )
are isomorphic, yet they are ‘over’ different groups bundles. The first is a f∗(G)-torsor, the second
a (f ′)∗(G)-torsor. This problem did not arise with principal G-bundles as there the ‘coefficient
group’ was just that, a group, corresponding to a constant sheaf of groups, so the two coefficient
‘groups’, f∗(G) and (f ′)∗(G) were the same. Both were trivial. Our first task is thus to look at a
simplicial treatment of change of base, and once that is done, a lot of things will simplify!

Suppose that f : B → B′ is a continuous map and g : N(U) → K(M) represents either a
G-torsor, or a G-bitorsor or, looking forward to the next section, a relative M-torsor, for M a sheaf
or bundle of crossed modules on B′ and we assume that that object trivialises over the open cover
U . The continuous function f pulls back that cover to f−1(U). This can either be viewed as the
result of pulling back each open set to get a cover, or, equivalently but perhaps better, by forming
the sheaf / étale space,

⊔
U over B′ and then pulling back that sheaf to f∗(

⊔
U). The result is
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the same. In fact we saw earlier that f∗ preserved pullbacks and so N(f∗(
⊔
U)) is isomorphic to

f∗(N(U)). This isomorphism is given by examining local sections of the two simplicial sheaves, so
local sections of f∗(

⊔
U) are induced by composition of f with a local section of

⊔
U . (A detailed

treatment is not quite that simple. The map can better be examined at the level of germs of local
sections as we did in our discussion of f∗, page 254.)

Remark: In situations where hypercoverings are needed to give an adequate cohomology the-
ory, the functor f∗ still works more or less as above. Of course, the detailed geometric nature of
the construction is a bit different as ideas of germs of local sections, etc., have to be interpreted
slightly differently, say, in a topos, however the intuition is much the same.

Viewed as a pullback construction, there is a canonical map from f∗(N(U)) to N(U), namely
the projection, and this is ‘over’ f itself. At the level of elements, this sends (x, f−1U0, . . . f

−1Un)
to (x, U0, . . . , Un). Abusing notation we will call this f as well. The induced cocycle is then just the
composite, gf : N(f−1U) → K(M), and this gives the induced torsor, but that is a f∗(G)-torsor.
Thus at the level of the simplicial description of the induced torsor, the work is done for us without
too much pain! We just have composition with f , and that, of course, is what we expected.

The next thing to look at is the connection between the induced functors for homotopic maps.
We will restrict to compact spaces to simplify the discussion. If h : f ' f ′ : B → B′, and we are
looking at a torsor on B′ that trivialises over the open cover U , then we can get an open cover
h−1(U) on B× I and a torsor on that space just by thinking of h as a continuous map. Because of
our simplifying assumption of compactness, it is possible to refine h−1(U) to a cover of the form,
{U × V | U ∈ U ′, V ∈ V} for U ′ an open cover of B and V an open cover of the unit interval I. We
will denote this cover by U × V. We can assume that the nerve of I is a simplicial sheaf that is
essentially a subdivision Sd(∆[1]) of the constant simplicial sheaf on I with value ∆[1]. (The cover
V may need further refinement to get it to be of this form, and you should look at this point, but
we also are using that I is contractible to get that we have a trivial sheaf.) The nerve of a product
cover is isomorphic to the product of the nerves as can be seen by inspection. We thus have that
N(U×V) can be replaced by N(U)×Sd(∆[1]). The subdivided ∆[1] is a concatenation of a number
of copies of ∆[1], end to end, so the map induced at the simplicial level from N(U × V) to K(M)
gives us not only the two maps induced by f and f ′, but also a sequence of simplicial homotopies
between intermediate maps. These can be composed to get a simplicial homotopy between the
original induced maps. Notice none of this uses any information about the actual torsor involved
except the initial assumption that it trivialises over U . This does it! We have a description of
isomorphism classes of torsors in terms of homotopic maps, we have homotopic maps so .... .

From this lots of good things flow. Homotopically equivalent spaces, say B and B′, give equiva-
lent categories of torsors over ‘linked’ sheaves of groups, and, in particular, if G is a constant sheaf
of groups, or M a constant sheaf of crossed modules, then over the two spaces the induced sheaves
are also constant, hence we can talk of G-torsors over B or over B′ without fussing too much about
the fact that we really mean GB- and GB′-torsors.

The situation for contractible spaces is then simple. All torsors over GB are trivial, and as a
consequence, if B is a space which has an open covering by contractible open sets, and such that all
finite intersections of the open sets are also contractible, (i.e., a Leray cover), then we automatically
have lots of local sections over that cover. As manifolds are examples of spaces with this property,
this comes in to be very useful in applications of the torsors to geometry.
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7.6 Relative M-torsors

(The basic references are Breen’s paper [29], (but our conventions are different and so some of the
results also look different), and also the papers of Jurčo, in particular, [110].)

7.6.1 Relative M-torsors: what are they?

What are the objects corresponding to a g : N(U) → K(M)? We saw that this consisted of some
local sections

pi : Ui → P

and others

cij : Uij → C

satisfying some evident relations, one of which was the cocycle condition

ckjcji = cki.

These cji will give us a left C-torsor, E, say. We can examine the induced P -torsor, ∂∗(E), and
- surprise, surprise - the pi part of the cocycle pair, {(cij , pi)}, provides a trivialising coboundary,
since

pi = ∂(cij)pj

yields

∂(cij) = pip
−1
j = pi.1.p

−1
j .

Conversely suppose we have a C-torsor, E, and we know that ∂∗(E) is trivial, then we can find pis
satisfying the above equations and making E into an M-torsor. If we look back to our motivating
case with M = Aut(G), then we can adapt the argument given there (page 277) to get an explicit
global section of ∂∗(E) = P∂ ∧C E, namely, for local sections ei of E, define t = {ti} = {[p−1

i , ei]}
to get a compatible family and hence a global section, t, of ∂∗(E). This process can be reversed,
so from t and a choice of ei, one can obtain pi. We will see a neat way of doing this shortly.

What happens if we choose different local sections e′i of E? These e′i will give some cis such
that e′i = ciei, and also p′i = ∂(ci)pi, but then

[(p′i)
−1, e′i] = [p−1

i ∂(ci)
−1, ciei] = [p−1

i , ei],

so the global section does not change.

We saw earlier that contracted product gave the category of G-bitorsors the structure of a
group-like monoidal category with inverses, a gr-groupoid. (If P and Q are in Bitors(G), then
P ∧G Q gave the ‘product’, whilst P o was ‘inverse’ to P . Of course, the trivial bitorsor, TG, was
the identity object.) There is an obvious category of M-torsors, which we will denote by M−Tors,
(so Aut(G)−Tors = Bitors(G)), does this in general have any similar structure?

Before we attempt to answer that, we should give formal definitions of M-torsors, etc, as a base
reference:

Definition: Let M = (C,P, ∂) be a bundle or sheaf of crossed modules over a space B, (or
more generally a crossed module in a topos E). By a (relative) M-torsor, or M-relative torsor we
mean a left C-torsor together with a global section t of ∂∗(E).
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A morphism of M-torsors, f : (E, t)→ (E′, t′), is a C-torsor morphism, f : E → E′, such that

∂∗(E)
∂∗(f) // ∂∗(E

′)

B

t

bbEEEEEEEE t′

<<xxxxxxxx

commutes.
We will denote the category of M-torsors by M−Tors.

Remark on terminology: The idea of a relative M-torsor lies between that of torsors and
global sections and in the long exact sequences, the π0(M−Tors)-term is the transition from global
section terms, P (B), etc. to true torsor terms, π0(Tors(C)). It is a Janus, looking back and
forward. Various names have been applied to this. Breen in [28], following Deligne, used something
of the form (C,P )-torsor, but that does not use the boundary map, ∂ and clearly various different
crossed modules having the same C and P , but perhaps different actions or boundary maps might
give differently behaved (C,P )-torsors. Aldrovandi, in conversation, favours a terminology that
said, what we might write as π0(M−Tors) or Ȟ0(B,K(M)), was a Ȟ0-term so was the group of
global sections of M. That is very good terminological reasoning, but it neglects the fact that the
objects are C-torsors plus extra structure. It looks back in the sequence and neglects the future!
Using the terminology of M-torsor, which I originally favoured, fails to look back and also hits the
problem that the corresponding gr-groupoid M = M− tors is used later on to build M-torsors,
which are stacks with a nice action of M, and these live at the next ‘janus step’ of the exact
sequence. There seems no really good choice here. We have used ‘relative M-torsor’ or ‘M-relative
torsor’ in the definition, but will continue to use ‘M-torsor’ later on as ‘relative M-torsor’ is quite
tedious to type!

At this point, we need to revisit an old intuition that we have used several times before, but
without which ‘life’ will seem unduly complicated! That intuition is that a principal G-set is a copy
of G with an ‘identity crisis’. In more detail, in situations such as that of universal covering spaces,
E over a space B, the fibre is a copy of π1(B), but without a definite element being chosen as the
identity. The natural path lifting property of covering spaces gives that any loop γ at a chosen
base-point b0 in B will lift uniquely to a path in the covering space, once a start point e0 above
b0 has been chosen. If you choose a different start point e′0, you, of course, get a different lifted
path. The end point of the lifted path will give the image of e0 under the action of the path class
[γ] ∈ π1(B). Thus once e0 is chosen p−1(b0) = Eb0 can be mapped bijectively to π1(B). (Remember
we did say E was a universal covering space.) Under this bijection, the identity element of π1(B)
corresponds to e0, but our alternative choice, e′0, will give a bijection with e′0 itself corresponding
to 1π1(B). There is no canonical choice of start point in Eb0 , so no definitive identification of Eb0
with π1(B).

For a G-bitorsor, with a local section ei : Ui → E, we have essentially the same situation. The
left and right G-actions are globally independent and yet are locally linked by the ui : GUi → GUi .
To use these it is necessary to use the ei to temporarily pick a ‘start point’ in each fibre of E. Thus
the equation,

ui(g).ei = ei.g,

interprets as both the definition of ui given the right action and conversely, given the ui, as a
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defining equation of a right action. This does need to be spelt out again: given any local element
x of E over Ui, it has the form x = g′ei for some local element g′ of G. Suppose we now operate
with g on the right of x, then we get

x.g = g′ei.g = g′ui(g)ei.

(This is very analogous to defining a linear transformation between vector spaces by transforming
the elements of a chosen basis and then ‘extending linearly’. Here we extend G-equivariantly for
the left action, having transformed the ‘basic’ element ei to ei.g.)

The key transition equation for the uis was

u′i = igi ◦ ui,

which emphasises this viewpoint. We changed ei to e′i using gi, so e′i = giei, but then, for right
action by g,

e′ig = u′i(g)e′i = u′i(g)giei,

whilst also

e′ig = gieig = giui(g).ei,

giving the transition equation in the form giui(g) = u′i(g)gi.

We now need to translate this into a tool that can be used for M-torsors. The plan of action
is to show that any M-torsor, E, has a natural C-bitorsor structure and for this we have to use
t : B → ∂∗(E) to obtain a right C-action on E. In Lemma 41, (page 256), we saw how to go from
a global section of a torsor to an identification of it as an ‘identity-less’ copy of the group bundle.
We thus have that t allows us to identify ∂∗(E) with TP , i.e., with P itself (as left P -torsor). We
can unpack the recipe in Lemma 41, (but beware the change of notation, P is here the basic group
of our crossed module M, but was the torsor in that earlier discussion). Any local element of ∂∗(E)
over some Ui is of form [p, e], with p a local section of P over Ui and e a local section of E, again over
Ui. We can get from t an expression [p, e] = p′.t for some p′ defined over Ui. Using the structural
map of ∂∗(E) as a P -torsor, we get

∂∗(E)
(tπ,id)→ ∂∗(E)× ∂∗(E)

∼=→ P ×B ∂∗(E)
proj→ P,

which, from [p, e] gives the p′. (Recalling that, given ei, the unadjusted choice of local sections is
[1, ei], then this process picks out the corresponding pi, so that t = [p−1

i , ei].) Thus from t, we get
a map from ∂∗(E) to P .

In this ‘game’, it pays to go back-and-fore between the different descriptions and to revisit the
special case, M = Aut(G), for guidance, and, hopefully, inspiration. Our key equation defining the
ui was ui(g)ei = ei.g. In our general case of M = (C,P, ∂), the rôle of the ui is taken by the local
elements pi, which act on C (since, recall, that action is part of the crossed module structure) and
the corresponding equation would be

pic.ei = ei.c,

but ei.c is not defined, a least not yet! We will take this as its definition (and remember our earlier
discussion of right actions, and what here would be the C-equivariant extension), then see if it
works!
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First let us underline what the equation actually says. An arbitrary local element of EUi
has form e = ci.ei and the expression for e.c will be ci.

pic.ei as the right action has to be left
C-equivariant, now if c1, c2 ∈ CUi , then

(ei.c1).c2 = pic1.ei.c2 = pic1.
pic2.ei = pi(c1c2).ei = ei.(c1.c2),

so it does define an action, at least locally. Next we have to check on intersections. Supposing that
pi on Ui and pj on Uj satisfy pj = ∂(cji)pi, where ej = cjiei, then over Uij ,

ej .c. = cjiei.c = cji
pic.ei = cji

pic−1
ji .ej

and also

ej .c = pjc.ej = ∂(cji)pic.ej ,

and the Peiffer rule for crossed modules gives

∂cc′ = cc′c−1,

so the two local actions patch together neatly. We thus have an action of C on the right of E. Is
it giving us a right C-torsor structure on C? This amounts to asking if locally the equation x = yc
can be solved uniquely for c in (some) terms of x and y over Ui, but x = c′.y for a unique c′, since

E is a left C-torsor. The obvious element to try out as our required solution, c, is p−1
i c′ - try it!

It works. We have proved:

Lemma 48 If (E, t) is a M-torsor, then E is a C-bitensor. �

From another perspective, this is quite clearly due to the natural map from M to Aut(C), given by
the identity on C and the action map

C
= //

��

C

��
P α

// Aut(C)

We would expect an M-torsor to be mapped to a Aut(C)-torsor, that is, a C-torsor, via this
morphism of crossed modules, so from this viewpoint the lemma may not seem surprising.

A few pages ago, we set out to extend the contracted product to M-torsors. Now that we have
this lemma, we can, at least, work with a contracted product of the associated C-bitorsors. In
other words, if (E1, t1), (E2, t2) are M-torsors, then we might tentatively explore a definition of
(E1, t1) ∧M (E2, t2) as being (E1 ∧C E2, t) with t still to be described. Here is a suitable, almost
heuristic, approach that tells us we are going in the right direction.

We have ∂∗(E) = P∂ ∧C E1, where P∂ is the trivial (left) P -torsor with, in addition, a right
C-action given by : if x ∈ P∂ , x = p.t, where t is a global section (fixed for the duration of the
calculation), then, for c ∈ C, x.c = p.∂(c).t. Now if ∂∗(E) is assumed to have a global section, it
is easy to show that it is, itself, isomorphic to P∂ . Next look at (E1, t1), and (E2, t2) and let us
examine ∂∗(E1 ∧C E2). This is P∂ ∧C E1 ∧C E2 = (P∂ ∧C E1) ∧C E2

∼= P∂ ∧C E2 by the above
calculation, using t1 to trivialise (P∂ ∧C E1), and finally this is trivial using t2.
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This argument, although valid, merely shows that t exists. It could be taken apart further to
get an explicit formula, but we will, instead, approach that through cocycles. We pick local sections
of E1 and E2 over the same open cover U . These we will denote by e1

i : Ui → E1, e2
i : Ui → E2.

Given t1 and t1, we get local elements of P , p1
i and p2

i , so that

t1 = [(p1
i )
−1, e1

i ],

and similarly for t2. These p1
i s are those for the local cocycle description of E1 as (c1

ij , p
1
i ), so are

the parts of the contracting homotopy on ∂∗(E1), etc.

Now look at E1 ∧C E2. The obvious local sections of this would be ei = [e1
i , e

2
i ], and using these

we want to work out the corresponding cocycle pair. We need to work out the relationship of ei
with ej = [e1

j , e
2
j ]. We have e1

i = c1
ije

1
j , e

2
i = c2

ije
2
j , so

(e1
i , e

2
i ) = (c1

ije
1
j , c

2
ije

2
j ) ≡ c1

ij(e
1
j , c

2
ije

2
j )

= c1
ij(

p1j c2
ij .e

1
j , e

2
j ) = c1

ij
p1j c2

ij(e
1
j , e

2
j ),

and we have ei = c1
ij
p1j c2

ij .ej . This C-coefficient may look familiar (or not), but before we identify

it, we should look for the pis. The obvious ones to try are pi = p1
i p

2
i , i.e., the product within P of

the two values. We have a cij = c1
ij .
p1j c2

ij , so can see if this works for the equation pi = ∂(cij)pj :

pi = p1
i p

2
i = ∂(c1

ij)p
1
j .∂(c2

ij)p
2
j

= ∂(c1
ij)p

1
j .∂(c2

ij)(p
1
j )
−1p1

jp
2
j = ∂(cij)pj .

The simplicial interpretation of the cocycles gave a map from N(U) to K(M), and in dimension 1,
K(M) is C o P . The multiplication in this semidirect product is

(c1, p1).(c2, p2) = (c1
p1c2, p1p2).

In other words, if (E1, t1) corresponds to a simplicial map g1 : N(U) → K(M) and similarly g2

corresponding (E2, t2), then (E1, t1) ∧M (E2, t2) is associated to the product g1.g2,

N(U)→ K(M)×K(M)→ K(M),

using the multiplication map of the simplicial group K(M) corresponding to the crossed module, M.
Does this give us a gr-groupoid structure on M−Tors? The above description of the multiplication
as corresponding to contracted product tells us that we can use the inverse of that multiplication
to construct an inverse for the contracted product. The detailed formula for the inverse of an
M-torsor, (E, t), is left as an exercise.

Note that we have not checked certain necessary facts about the (cij , pj), namely that cijcjk = cik
and they transform correctly under change of local sections. The details of these are left to the
reader. They use the crossed module axioms several times. We have proved the following:

Proposition 67 Under the identification of π0(M−Tors) and Ȟ0(B,M), the group structure on
the first given by the contracted product coincides with that given on the second under the group
structure of K(M), the associated simplicial group bundle of the bundle of crossed modules, M. �
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7.6.2 An alternative look at Change of Groups and relative M-torsors

When we discussed change of groups, we saw a neat induced torsor construction. Recall we had

ϕ : G→ H,

a morphism of sheaves of groups and a torsor E over G, we obtained ϕ∗(E) by first forming Hϕ,
i.e.,the (H,G)-object with right G-action given via ϕ and then ϕ∗(E) = Hϕ ∧G E.

This construction has various universal properties that we have not yet made explicit nor
exploited, yet which are very useful. We will need to recall that if P and Q are two G-torsors, a
morphism f : P → Q is a map over B such that f(g.p) = g.f(p) for all g ∈ G and p ∈ P . In other
words, it is a sheaf map f : P → Q, which is G-equivariant. We can represent this by a diagram:

G×B P
G×f //

��

G×B Q

��
P

f
// Q

in which the vertical maps give the actions, and which is required to commute.
There is a neat notion from the theory of group actions (on sets), which adapts well to the

torsor context. Suppose that ϕ : G → H is a homomorphism of ordinary groups, and (X, aX)
and (Y, aY ) are a G-set and an H-set respectively, with aX : G × X → X and aY : H × Y → Y
being the actions. A map f : X → Y is said to be over ϕ if for all x ∈ X and g ∈ G, we have
f(g.x) = ϕ(g).f(x). This is, of course easily represented by a similar commutative diagram:

G×X
ϕ×f //

aX
��

H × Y
aY
��

X
f

// Y

It thus follows that a G-map between G-sets is a slightly degenerate form of this notion.
Before we return to the situation of torsors, it will pay to note that ϕ makes H into a right

G-set and that ϕ∗(X) as being Hϕ ∧G X, makes sense here as well. suppose f : X → Y is over
ϕ in the above sense, then we look at f and see if it induces an H-map from ϕ∗(X) to T . The
elements of ϕ∗(X) will be equivalence classes of pairs (h, x), where (h, g.x) ≡ (hϕ(g), x). We write
[(h, x)] for the equivalence class and try to guess what form an map induced from f might take.
The obvious form to try would seem to be to set f̃ [(h, x)] = h.f(x) and to see if this works. Even
though this is easy, let us do it explicitly:

h.f(g.x) = h.ϕ(g)f(x),

since f is over ϕ, but f̃ [(hϕ(g), x)] = h.ϕ(g)f(x) as well, so we are done. We note, however, that
this is really the only sensible way to define such a f̃ . This is thus well defined as an H-map from
ϕ(X) to Y . (The fact that it is an H-map should be clear.)

We now have f : X → Y and f̃ : ϕ∗(X) → Y , so is there a possible factorisation of f as a
composite of some map X → ϕ∗(X) over ϕ followed by f̃? There is an obvious map from X to
ϕ∗(X) namely that which sends x to [(1H , x)]]. This then sends g.x to [(1H , g.x)], which is the
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same as [(ϕ(g), x)], which is ϕ(g)[(1H , x)], by the definition of the left H-action on Hϕ ∧GX. This
is thus a map over ϕ as expected and does not depend on f itself.

Going back to f̃ , we hinted that this might be unique in some sense. What sense? First let us
give a name to the map that we have just examined, say ϕ] : X → ϕ∗(X). We noted that f = f̃ϕ]
- but did not check it. That done, suppose we had some ‘other’ H-map f ′ : ϕ∗(X)→ Y , so that
f = f ′ϕ], then f ′[(1, x)] = f(x), but f ′ is assumed to be an H-map, so f ′[(h, x)] = f ′(h.[(1, x)]) =
h.f(x) and f ′ = f̃ .

If we write Mapsϕ(X,Y ) for the set of maps from X to Y over ϕ, we have shown it to be
isomorphic to H−Sets(ϕ∗(X), Y ). As both are functorial in Y , and (for you to check), the
isomorphism is natural, we have shown that Mapsϕ(X,−) is a representable functor with ϕ∗(X)
as a representing object. There are still more things to work through and question here. What
happens if we change X, for instance? But these can be left to the reader.

We did the above in the easy case of Sets, now transport the idea across to Sh(B), or better
still, to an arbitrary topos, E . We have our original situation of a morphism, ϕ : G→ H, of sheaves
of groups. We suppose E is a G-torsor and E′ an H-torsor.

Definition: A sheaf map f : E → E′ is said to be a morphism of torsors over ϕ if the diagram:

G×E
ϕ×f //

aE

��

H × E′

aE′

��
E

f
// E′

commutes, the vertical arrows representing the actions.

We can equally well state this in terms of ‘local elements’. (The choice of the approach used
is largely a question of taste and is left to you.It is advisable to be able to follow and use any
of the different methods when handling such discussions - although you may prefer one, say the
diagrammatic one, to some other.)

We will write Sh(B)ϕ(E,E′) for the sheaf of morphisms over ϕ from E to E′. (This is sloppy
as E and E′ really have to have the actions included in their labeling, but this is fairly anodyne
sloppiness.) It should now be easy to prove:

Proposition 68 (i) For any E, E′ as above, there is a natural isomorphism of sheaves

Sh(B)ϕ(E,E′) ∼= Tors(H)(ϕ∗(E), E′).

(ii) The functor Sh(B)ϕ(E,−) is representable. �

Although easy, there are quite a lot of things to check here!

We thus have a neat universal property for ϕ∗ as a functor from Tors(G) to Tors(H). We
can now apply it to the case of relative M, where M = (C,P, ∂) is a sheaf of crossed modules. We
had a description of a relative M-torsors as a C-torsor, E, together with a specified trivialisation

t : ∂∗(E)
∼=→ TP .
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Proposition 69 Suppose E is a C-torsor and t : E → TP , a morphism over ∂, then (E, t̃) is an
M-torsor. Conversely f E, f) is a relative M-torsor, then E is a C-torsor and f∂] : E → TP is a
morphism of torsors over ∂.

Proof: this is mostly just a corollary of our earlier result. The one point is that t̃ : ∂∗(E)→ TP is
a morphism of H-torsors, and hence is an isomorphism, hence, also, t̃−1(1P ) is a global section of
∂∗(E). �

We can use this to get a separate description of the category of M-torsors, which incidentally
justifies the choice of name ‘relative M-torsors’ as they are somehow ‘relative to TP in a controlled
way. In this description a morphism of M-torsors is a C-torsor morphism, f , making

E
f //

t   AAAAAAAA E′

t′~~||||||||

TP

commute. (Here f is a C-torsor map, but t and t′ are maps over ϕ. This diagram thus ‘lives’ in
the category of sheaves on B.)

We will categorify this description later replacing M by a lax gr-groupoid, and, in fact, in a
particular case by M−Tors itself, but all that requires stacks for a thorough handling, so must
wait.

7.6.3 Examples and special cases

Right at the start of our discussion of crossed modules, in section 2.1, we gave various different
examples. One was the (G,Aut(G), ∂) case, where ∂ sending g to the inner automorphism deter-
mined by g. Others were normal subgroups and P -modules. We based the definition of (relative)
M-torsor on that of G-bitorsor and thus on the first of these. What about the others?

(i) To take an almost silly example, let M = (1, P, inc), that is, the case C = 1. If C is our
open cover, then the cocycle description of M-torsors gives us a family of local sections of P , say,
ui : Ui → P , satisfying pi = pj on intersections, Ui ∩ Uj , but that means that the family glues
to a global section of P . Conversely any global section of P gives a morphism from N(U) to M.
(We leave to the reader the examination of how this corresponds to a 1-torsor that yields a trivial
P -torsor on application of ∂∗.) Thus in this case, M-torsors are just global sections of P and
Ȟ0(B,M) ∼= Ȟ0(B,P ). (There is no question of coboundaries or equivalent cocycles as there is
nothing above dimension 0 in M.)

(ii) The other extreme case is when C is Abelian and P is trivial. (We will sometimes write
this as C[1] = (C → 1). It is a ‘suspended’ or ‘shifted’ form of C.) Here we just have a C-torsor
E, and, of course ∂∗(E) is a 1-torsor! There is not much choice of trivialisation, so we just have
that C-torsor. In this case, we have Ȟ0(B,M) ∼= Ȟ1(B,C), that is, cohomology in the old sense of
Abelian cohomology.

(iii) The next obvious case is ‘inclusion crossed modules’ or ‘normal subgroup pairs’. In other
words, suppose N is a normal subgroup of P and M is the corresponding crossed module. (We
write ∂ for the inclusion of N into P .) We would expect that, writing G for P/N , an M-torsor
would be more or less the same, up to equivalence perhaps, as a (1 → G)-torsor, i.e., to a global
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section of G. The conditions on the local sections pi over some cover U , and the corresponding nij
are now

pi = nijpj ,

as well as nkjnji = nki.

Remark: There is a morphism of crossed modules with kernel (N,N,=) giving a short exact
sequence,

N //

��

N //

��

1

��
N // P

ϕ // G

we know that this will give a short exact sequence of simplicial groups and that M-torsors correspond
to maps from N(U) to K(M) if they trivialise over the open cover U . Our observation that M-
torsors might lead to global sections of G relates to composition with the quotient map ϕ from M
to (1, G, inc). (This raises the question of maps of crossed modules inducing functors between the
corresponding categories of torsors, in general. We will return to this shortly.)

Looking in more detail, suppose we have a M-torsor specified by a cocycle pair (pi, nij) over
some open cover U , and we write gi for ϕ(pi), then the gis do form a global section of G, since
they are compatible over the intersections. Conversely, given a global section g of G, we know that
ϕ is an epimorphism of sheaves, so would like to lift g to something in P . This situation is one
we have encountered before and will do so again later. An epimorphism of sheaves need not be
an epimorphism of the underlying presheaves. In our spatial context, it will be an epimorphism
on stalks, however. We thus do not know if there is a global section p of P satisfying ϕ(p) = g,
but, thinking about the idea of stalk, for any b ∈ B, and any open set U containing b, there is a
representative (gU , U) of the element gb = g(b), which is in the stalk over b. As ϕ is an epimorphism
on stalks, we can choose U such that there is a pu ∈ P (U) with ϕU (pU ) = gU . This gives us an
open cover U of B and a family of local section of P over U . Next look at the intersections, U ∩V ,
of sets from U . There the restrictions of pU and pV need not agree, but as their images are the
same under ϕ, there is a nU,V in N over U ∩V , which satisfies pU = nU,V pV , and the family of these
ns satisfy the cocycle condition, so from our global section of G, we have constructed a cocycle
pair for an M-torsor. Different liftings of g give local sections that agree up to a coboundary, nu,
(possibly on a joint refinement of the covers), so M-torsors do give global sections of G, and vice
versa.

(iv) The last case is M = (M,G, 0), i.e., M is a sheaf of G-modules. Here we have that cocycle
pairs, (gi,mij), must satisfy

gi = ∂(mij)gj ,

but ∂ is trivial, so the gis give a global section, whilst the mij give a M -torsor in the usual sense.
This example is good because it links M-torsors in this case with M -torsors and global sections,

i.e., some sort of ‘extension’, G(B) → M−Tors → Tors(M), or perhaps in the other order? We
have not analysed the effect of the action of G on M . Does this mean that we have some sort
of ‘G-equivariant’ cohomology, or cohomology of the sheaf of groups G with coefficients in the
G-module M , ... and what about the gr-category structure. The detailed examination of all the
structures involved is interesting and useful to do, so is, once again, left as an exercise.
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This class of examples is also very important as amongst the examples of this type are, of course,
the G-bitorsors with G a sheaf of Abelian groups, since for such a G, we have that Aut(G) is of the
form (G,Aut(G), 0). The best known example is where G is U(1) or, equivalently, G`(1,C), the
group of unit modulus complex numbers. We will return to this later.

The above discussion suggests some interesting areas to explore. Reaction of these M-torsors
to ‘change of M’, short exact sequences of sheaves of crossed modules and their ‘reflection’ in the
behaviour of the M-torsors, etc. One particular short exact sequence is

K //

��

C //

��

N

��
1 // P // P,

where K = Ker ∂ and N = Im∂. It suggests that M−Tors is an extension of G(B) by a category
of K-torsors for an Abelian group sheaf, K, somehow twisted by the G-action. After examining
one or two related subjects, we will be able to give a bit more insight and precision about this idea.

7.6.4 Change of crossed module bundle for ‘bitorsors’.

We now have a very thorough knowledge of G-bitorsors and the more general (relative) M-torsors,
via the link with simplicial maps from N(U) to K(M), but, of course, that link makes change of
‘coefficients’ more or less obvious.

First it should be noted, once again that the identification of Ȟ0(B,Aut(G)) as a second non-
Abelian cohomology group of B with coefficients in G, runs foul of non-functoriality in G, but that
this is not due to some subtle deep property of non-Abelian cohomology, rather it is due to the
banal failure of Aut(G) to be functorial in G, in other words, to a low level group theoretic fact,
low level but in fact fundamental. It is here group theoretic, but generally automorphism groups
do not vary functorially - and that opens the way to crossed modules.

If ϕ : G → H is a morphism of group bundles, then there may, or may not, be a morphism
ϕ′ : Aut(G)→ Aut(H) such that

G
ϕ //

i
��

H

i
��

Aut(G)
ϕ′
// Aut(H)

is a morphism of crossed modules.

There is an induced morphism on Ȟ0(B,Aut(G)) if such a ϕ′ does exist, and, of course, in more
generality, if we have that ϕ : M → N is a morphism of crossed modules, then there is an induced
homomorphism of groups

ϕ∗ : Ȟ0(B,M)→ Ȟ0(B,N).

(It could happen that two crossed modules of the form Aut(G) could be linked by a zig-zag of
other crossed modules so that the morphisms in the reverse direction were weak equivalences /
quasi-isomorphisms in our earlier sense, and then there would be an induced map between the
two Ȟ0(B,Aut(G)) groups. We will explore this more fully later on, using the beautiful theory of
‘butterflies’ as developed by Noohi, [146, 147].)
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Exploring the above at a gr-groupoid level, i.e., on M−Tors with contracted product, rather
than at connected component / cohomology level, we get an induced gr-functor between M−Tors
and N−Tors, since it uses the functor K from crossed modules to simplicial groups. Explicitly
ϕ : M → N induces K(ϕ) : K(M) → K(N), a morphism of simplicial groups, but then our
identification of the contracted product structure on M−Tors as being induced from the simplicial
group structure of K(M) immediately implies that K(ϕ) induces a functor from M−Tors to N−Tors
compatibly with the gr-groupoid structures.

7.6.5 Representations of crossed modules.

In the classical group based case, the naturally occurring vector bundles such as the tangent and
normal bundles had the general linear group of some dimension as the basic G over which one
worked. Extra structure corresponded to restricting to a subgroup or lifting to some ‘covering
group’. We recalled earlier, e.g., page 230, that the fibres of the bundles were vector spaces with
an action of the chosen group, i.e., a matrix representation of that group. What is, or should be,
the representation theory ‘of crossed modules’? There are several tentative answers.

A representation of a (discrete) group G and thus an action of G on some object, can be
thought of in different ways. For instance, as a group homomorphism G → H, where H is some
group of permutations or matrices in which we can use methods from outside group theory, perhaps
combinatorics, perhaps linear algebra, to analyse more deeply the properties of the elements of G.
We could also consider this as a functor from G[1], the corresponding groupoid with one object, to
Sets for the permutation representations, or to some category of vector spaces or modules in the
linear case.

The generalisations are to ‘categorify’ this second description by taking X (M), the 2-groupoid
with one object (i.e., the 2-group) of M, and looking for a nice category of ‘2-vector spaces’ or ‘2-
modules’. (The permutation version has not been that well explored yet, but we will see some ideas
later on.) Some doubt exists as to what is the ‘best’ category of ‘2-vector spaces’ to use, in fact
the discussion is really about what that term should mean. We mention two possibilities here, but
there are others and we will look at them later. The first is due independently to Forrester-Barker,
[79], and to Baez and Crans, [11]. The second is based on an idea of Kapranov and Voevodsky,
[114], using more monoidal category theory than we have been assuming so far.

Here we will adopt the simpler version, more as an illustration then as a claim that this is
the ‘correct’ version. The motivation for the definition, used by Forrester-Barker and by Baez
and Crans, is that, as crossed modules are category objects in the category of groups, for a linear
representation theory of such things, it is natural to try category objects in the category of vector
spaces, but such objects are equivalent to short complexes of vector spaces. The idea is also that
some of the potential applications of the structures that we have been studying use chain complexes
as coefficients. (We will see this more clearly in the later discussion of hyper-cohomology.) Keeping
things simple, we look at chain complexes of vector spaces (or more generally of modules) of length
1. (Warning: for us here ‘length 1’ means one morphism, C1 → C0, not ‘one group’ so our objects
are linear transformation between vector spaces and our morphisms are commutative squares.)
These are highly Abelian versions of crossed modules, so we will use similar notation such as C, D,
etc., for them.)

We recall that chain complexes have a natural ‘internal hom’ construction, well known from
classical homological algebra. (We will see this again in our discussion of hyper-cohomology so
will treat it in more detail there.) The chain complex, Ch(C,D), has graded maps of degree n in
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dimension n, so, for instance, has chain homotopies in dimension 1. Putting D = C and looking at
the invertible maps gives an automorphism group, Aut(C), which is also a chain complex of groups,
i.e.,we get a crossed module. If we have a general (discrete) crossed module M, we can consider a
morphism M → Aut(C) as a representation of M, and can talk of M acting on C by ‘linear maps’.
We will not explore this further here, but note that we are very near the idea of representing a
simplicial group as a simplicial group of simplicial automorphisms, somewhat as in section 6.3. At
present, the available discussions of 2-group representations of this form include the thesis, [79],
and papers, [11]. A more extensive use of monoidal category theory would allow us to consider a
variant that considers 2-vector spaces to mean the 2-categorical version of the monoidal category
of vector spaces. We will return to this later.
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Chapter 8

Hypercohomology and exact
sequences

8.1 Hyper-cohomology

8.1.1 Classical Hyper-cohomology.

We have several times mentioned this subject and so should provide some slight introduction to
the basic ideas. We will go right back to basics, even though we have already used some of the
ideas previously, usually without comment. Most of this first part may be well known to you.

The basic idea is that of a graded, or more precisely Z-graded, group and variants such as
graded vector spaces, or graded modules, or sheaves of such on some space, B or in some topos E .

Definition (First form): A Z-graded vector space (gvs) is vector space together with a direct
sum decomposition, V =

⊕
p∈Z Vp. The elements of Vp are said to be homogeneous of degree p. If

x ∈ Vp, write |x| = p.

A graded vector space could equally well be defined as a family {Vi}i∈Z of vector spaces, since
we could then form their direct sum and obtain the first version.

Definition (Second form): A Z-graded vector space (gvs) is a Z-indexed family, {Vi}i∈Z, of
vector spaces.

(The definitions are, pedantically, not completely equivalent as one can have a constant family
with all Vi equal, but that is really a smokescreen and causes no problem.)

Both versions are useful. For example, if K is a simplicial set, we can define a graded vector
space using the second version by taking Vn to be the vector space with basis indexed by the
elements of Kn if n ≥ 0 and to be the trivial vector space if n < 0. From our treatment of
simplicial sets, it would be somewhat artificial to define V =

⊕
i∈Z Vi. For another example, the

other description fits better. The polynomial ring, R[x], is a graded vector space with Vn having
basis {xn}, i.e., Vn is the subspace of degree n monomials over R. The whole space, R[x], is here
by far the more natural object.

301
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For graded groups, etc., just substitute ‘group’ etc. for ‘vector space’ and correspondingly,
‘direct product’ for ‘direct sum’.

Definition: A morphism f : V → W of graded vector spaces is homogeneous if f(Vp) ⊆ Wp+q

for all p and some common q, called the degree of f . The set of such morphisms of given degree is
Hom(V,W)q =

∏
pHom(Vp,Wp+q).

An endomorphism, d : V→ V, of degree -1 is called a differential or boundary (which depending
largely on the context) if d ◦ d = 0.

A gvs with a differential is really just a chain complex, where dn : Vn → Vn−1 and dn−1dn = 0.

Definition: A graded vector space together with a differential is variously called a differential
graded vector space (dgvs), or a chain complex . Some authors reserve that latter term for a
positively graded differential vector space, or module, or .... . The elements of Vn are called
n-chains, those of Ker dn, n-cycles, and those of Imdn+1, n-boundaries.

A graded vector space V is positively graded if Vi = 0 for all i < 0. It is, on the other hand,
negatively graded if Vi = 0 for i > 0.

The classical convention is to write V −n instead of Vn for all n in the negatively graded case.
This, of course, has the effect that if (V, d) is a differential graded vector space which is negatively
graded, then d has apparent degree + 1, dn : V n → V n+1. In the usual terminology that will
give a cochain complex. For some purposes, it is usual to adapt the terminology somewhat, for
instance to use chain complex as a synonym for dgvs without mention of positive or negative, but
then also to use cochain complex for what is essentially the same type of object, but with ‘upper
index’ notation, so V = (V n, dn) with dn : V n → V n+1. Terms such as ‘bounded above’, ‘bounded
below’ or simply ‘bounded’ are also current where they correspond respectively to Vn = 0 for large
positive n, or large negative n or both. We will make little use, if any, of these in the context of
these notes, but it is a good thing to be aware of the existence of the various conventions and to
check before assuming that a given source uses exactly the same one as that which you are used to!

For simplicity of exposition, we will initially concentrate our attention on general dgvs, which
we will often call chain complexes and will attempt to be reasonably consistent - although that is
virtually impossible! We will extend that terminology to dg-modules and dg-groups if and when
needed.

• The elements of a chain complex are called chains. If c ∈ Cn, it is an n-chain. If dcn = 0,
it is called an n-cycle and, if c ∈ Imdn+1, an n-boundary. If ‘n’ is not important, or is
understood, it may be omitted.

• A chain map f : V → W of chain complexes is a graded map of degree 0, {fn : Vn → Wn}
compatible with the differentials, so, for all n,

dWn fn = fn−1d
V
n ,

and, of course, we will drop the V and W superfixes whenever possible. The category of
differential vector spaces and chain maps will be variously denoted dgvs, or Chk with variants
dgk−mod, dgk−mod≥0, Ch+

k and so on, denoting the k-module version, a positively graded
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variant, and an alternative notation. (These, and other, notations are all used in the literature
with the precise convention usually evident from the context. To some extent the choice, say
of dgvs as against Ch is determined by the use intended, but this is not completely consistent.)

• A chain homotopy between two chain maps f, g : V → W is a graded map of degree 1,
s : V→W such that

fn − gn = dn+1sn + sn−1dn.

• The homology of a chain complex, V = (V, d), is the graded object

Hn(V) =
Ker dn
Imdn+1

.

If we are using upper indices, for whatever reason, the more usual term will be ‘cohomology’,

Hn(V∗) =
Ker(dn : V n → V n+1)

Im(dn−1 : V n−1 → V n)
.

This most often occurs in the situation where C is a chain complex and A is a vector space
/ module or similar, then we form Hom(C, A), by applying the functor Hom(−, A) to C. Of
course, dn : Cn → Cn−1 induces a differential

Hom(Cn−1, A)→ Hom(Cn, A)

and the elements of Hom(Cn, A) are called cochains, with cocycles, and coboundaries as the
corresponding elements of kernels and images. The notation Hom(C, A)n is used for the
object Hom(C−n, A), so this ‘dual’ has negative grading if C has positive grading, and is
given upper indexing. The homology of Hom(C, A) is then called the cohomology of C with
coefficients in A. (We will try to follow usual terminology as given in standard homological
algebra texts, e.g. the classic [122].)

• More generally, if C and D are both chain complexes (of modules), then we can form the
graded Abelian group, Hom(C,D), with Hom(C,D)n being the Abelian group of graded
maps of degree n from C to D. This means, of course,

Hom(C,D)n =
∞∏

p=−∞
Hom(Cp, Dp+n),

as before.

We make this into a chain complex by specifying, for f ∈ Hom(C,D)n, its ‘boundary’ ∂f by,
if c ∈ Cp,

(∂f)pc = ∂D(fpc) + (−1)n+1fp−1(∂Cc).

(In the event that you have not seen this before, check that (i) ∂∂ = 0, (ii) if f is of degree 0,
then it is a chain map if and only if ∂f = 0 and (iii) a chain homotopy, s, between two chain
maps, f, g ∈ Hom(C,D)0, is precisely an s ∈ Hom(C,D)1 with ∂s = f − g.)

The homology of Hom(C,D) is called the hyper-cohomology of C with coefficients in D. The
case where D0 = A and Dn = 0 if n 6= 0 is the cohomology we saw earlier. In general,
H0(Hom(C,D)), i.e., chain maps modulo coboundaries, is just the group of chain homotopy
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classes of chain maps by (ii) and (iii) above. As is usual in homological (and homotopical)
algebra, we usually need good conditions on C and D to get really good invariants from this
construction - typically C needs to be ‘projective’ or D ‘injective’, or C needs to be ‘fibrant’ or
D ‘cofibrant’. Our use of this will be somewhat hidden by the situations we will be considering.

8.1.2 Čech hyper-cohomology

The main type of application for us will be the ‘hyper’-version of Čech cohomology. In this, or at
least in its simplest form, we have a space, X, and we form the colimit over the open covers, U , of
X of the hyper-cohomology groups Hn(C(U),D). In more detail:

The classical Čech cohomology of X with coefficients in a sheaf of R-modules, A, is defined via
open covers U of X. If U is an open cover of X, then we form the chain complex, C(U), by taking
N(U), the nerve of U , and letting C(U)n be the sheaf of free R-modules generated by N(U)n with
∂ =

∑n
k=0(−1)kdk being the differential. This can either be thought of as a complex of (sheaves

of) R-modules or in the straight forward module version. We take coefficients in another sheaf of
R-modules, A, and form Hn(C(U), A).

If V is a finer cover than U , there is a chain map from C(V) to C(U). Recall if V < U , for each
V ∈ V, there is a U ∈ U with V ⊆ U , and (x, V0, . . . , Vn) ∈ N(V)n, we can map it to a corresponding
(x, U0, . . . , Un) ∈ N(U)n with each Vi ⊆ Ui. This is not well defined as several Us might work for a
particular V , so the construction of the chain map involves a choice, however it does induce, firstly,
a chain map from C(V) to C(U), which is determined up to (coherent) homotopy and thus a well
defined map on cohomology, H∗(C(U), A)→ H∗(C(V), A).

The Čech cohomology, Ȟ∗(X,A) = colimUH
∗(C(U), A), was the first, historically, of the sheaf

type cohomologies. Others apply to a topos rather than merely a space. The obvious hyper-variant
of this replaces A by a sheaf of chain complexes (of whatever variety you like, provided they are
‘Abelian’), so Hn(C(U),D) = Hn(Hom(C(U),D)) and then Ȟ∗(X,D) = colimUH

∗(C(U),D).

We should ‘deconstruct’ this a bit to see why it is relevant to us.

To simplify our lives no end, we will assume D is a presheaf of chain complexes of R-modules
which is positive, (Dn = 0 if n < 0). By the method of construction of colimits of modules, etc.,
we can find for any element of Ȟ∗(X,D), an open cover U of X and a representing element in
H∗(C(U),D). We can thus, further, find a representing n-cocycle from C(U) to D, i.e., an element
in
∏
pHom(C(U)p, Dn+p).

To simplify still further, we look at low values of n:

• for n = 0, we have some f = {fp : C(U)p → Dp}, which satisfies ∂f = 0, so f forms a chain
map. In some of our most interesting cases, D is usually very short, e.g. Dn = 0 if n > 1, so
D = (D1 → D0) with zeroes elsewhere in other dimensions. Then the only fps that contribute
to f are f0 and f1. Over an open set, Ui, of the cover, f0 will be a local section, f0,i, of D0,
since 0-simplices of N(U) have form (x, Ui) over x ∈ Ui. Similiarly 1-simplices are, of course,
represented by (x, Ui, Uj) with x ∈ Uij , so f1 corresponds to local sections f1,ij : Uij → D1.
The boundary in C(U) of (x, Ui, Uj) is (x, Uj)− (x, Ui), so

dDf1,ij = f0,j(x)− f0,i(x),

or

f0,j(x) = dDf1,ij + f0,i(x).
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If we look at the non-Abelian analogue of this, it gives

f0,j(x) = dDf1,ij .f0,i(x),

which ‘is’ the equation pj = ∂(cij)pi. (You could explore the cases where D is slightly longer,
or what about a non-Abelian version?)

• for n = 1, we expect to find a formula corresponding to the coboundaries that we met on
‘changing the local sections’ for M-torsors. If h, (yes, ‘h’ as in ‘homotopy’) is a degree 1 map in
Hom(C(U),D) and D has length 1 as above, the only case that contributes is h0 : C(U)0 → D1

and hence h0,i : Ui → D1. You are left to check that this does give (the Abelian version of)
the coboundary / chain homotopy formula.

8.1.3 Non-Abelian Čech hyper-cohomology.

The idea should be fairly obvious in its general form. We replace our overall structural viewpoint of
chain complexes or sheaves of such, by our favorite non-Abelian analogue. For instance, we could
take D to be a sheaf of simplicial groups, or crossed complexes, or n-truncated simplicial groups
or . . . . These would really include sheaves of 2-crossed modules and clearly we might try sheaves
of 2-crossed complexes, and so on. Some of these classes of coefficient are very likely to turn out
to be useful in the future if recent developments in algebraic and differential geometry are any
indication. We cannot consider all of them here. The first is the easiest to deal with and to some
extent includes the others. It is not structurally the neatest, but ... .

If D is a sheaf of simplicial groups, then we might be tempted to replace C(U) by the free
simplicial group sheaf on N(U). It is very important to note that this is not the same as G(N(U))
and we should pause to consider this point.

Let K be a simplicial set and G a simplicial group. The set of simplicial maps from K to
the underlying simplicial set of G is isomorphic to Simp.Grps(FK,G) by the standard adjunction
between the free group functor, F , and the forgetful functor, U from Grps to Sets. Complications
might seem to arise if one tries to work with S(K,UG) and Simp.Grps(FK,G), as initially it needs
to be noted that S(K,UG) = S(K ×∆[n], UG) and one has to think of the relationship between
F (K × ∆[n]) and F (K) ⊗ ∆[n], the latter in the sense of our earlier discussion of tensoring in
simplicially enriched categories, page 283. (This problem is, in fact, not really there, as although
F does not preserve products, the product K ×∆[n] is actually being thought of, and constructed,
as a colimit and F , as a left adjoint, behaves nicely with respect to such.) We will not explore that
further here and will, in fact, stick with S(N(U),D) rather than use F . (Note that by a useful result
of Milnor, FK and GSK are isomorphic for a reduced simplicial set K, where S is the reduced
suspension; see [58] and the paper, [130], which can be found in Adams, [2].) The relationship
between S(K,UG) and other related constructions such as S(K,WG) ∼= S−Grpds(G(K), G), is
given by the induced fibration sequence,

S(K,UG)→ S(K,WG)→ S(K,WG),

coming from the fibration,

UG→WG→WG.

If we work within our favourite topos E , or with bundles over B, this still holds true. It is also the
case that WG is (naturally) contractible.
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Back with hyper-cohomology, let D be a sheaf of simplicial groups and form Simp.E(N(U), U(D)).
We put forward the homotopy groups of this simplicial group as being one analogue of H∗(C(U),D)
in this context. (If D is Abelian, it will be KD for some sheaf of chain complexes, D, and the Dold-
Kan theorem, plus the freeness of C(U), give a correspondence between the elements in the two
cases. Since we have Simp.E(N(U), U(D)) is a simplicial Abelian group in that case, its homotopy
is its homology and the detailed correspondence passes down to homology without any pain. We
thus do have a generalisation of the Abelian situation with our formula.)

We have πn(U ,D) := πn(Simp.E(N(U), U(D)) is thus a candidate for a ‘non-Abelian’ Čech
cohomology relative to U with coefficients in D. (If n > 1, it is an Abelian group, which makes it
suspiciously well behaved - in fact too well behaved! We really need not these πn, but rather the
various algebraic models for the various k-types of the homotopy type Simp.E(N(U), U(D)), i.e., we
could do with examining M(Simp.E(N(U), U(D)), k), the crossed k-cube of that simplicial group.
(For those of you who hanker for the simple life, it should be pointed out that when discussing
extensions, we already had that there was a groupoid of extensions Ext(G,K), and although we
could extract information from that groupoid to get cohomology groups, the natural invariant is
really that groupoid, not the cohomology group as such. We can extract information from such
an invariant, just as we can extract homotopy information from a homotopy type. To keep the
information tractable we often truncate, or kill off, some of the structure to make the extraction
process more amenable to calculation.)

We are, however, running before we can walk here! The case we have met earlier is for n = 0, i.e.,
[N(U),D], and we could pass to the colimit over covers to get Ȟ0(B,D). This is without restriction
on the sheaf of simplicial groups, D. Our earlier example was with D = K(M) for M = (C,P, ∂), a
sheaf of crossed modules. (Breen in [28] calls this the zeroth cohomology of the crossed module, M,
but as it varies covariantly in M perhaps his later terminology, [31], as the zeroth Čech non-Abelian
cohomology of B with coefficients in M, is more appropriate.)

What about Ȟ1(B,M)?

This will be colimUH
1(N(U),M), which is colimUπ1(Simp.E(N(U),K(M)). From the long

exact fibration sequence, this will be isomorphic to colimU [N(U),WK(M)] and so should classify
some sort of simplicial K(M)-bundles on B. It does, but we need to wait until a later chapter for
the details.

The set [N(U),WK(M)] has elements which are homotopy classes of maps from N(U) to
WK(M) and by the properties of the loop groupoid construction, G of section 6.2.1, page 201,
each such is adjoint to a morphism of sheaves of S-groupoids from G(N(U)) to K(M). The cate-
gory of crossed modules is equivalent, via K and M(−, 2), to a full reflective subcategory / variety
of S−Grpds, and this extends to sheaves, so the elements of [N(U),WK(M)] correspond to homo-
topy classes of crossed module morphisms from M(GN(U), 2) to M. In particular, for nice spaces,
B, one would expect there to be ‘nice’ covers U , such that N(U) corresponded, via geometric
realisation, to B itself, then taking M = M(GN(U), 2) itself, one would have a sort of universal
element in Ȟ1(B,M), corresponding in this level, to a universal simplicial sheaf over B, extending
in part the construction and properties of the universal covering space. This argument is one form
of the ‘evidence’ for believing Grothendieck’s intuition in ‘En Poursuite des Champs / Pursuing
Stacks’, [89]. There seems no good reason why, for any nice class of simplicial groups that form a
variety, V, with perhaps having some stability with respect to homotopy types, there should not
be a ‘universal V-stack’ over B. The above corresponds to the case of crossed modules, but crossed
complexes and many of the other types of crossed objects that we have met earlier would seem to
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be relevant here. The main hole in our understanding of this is not really how to do it, rather it
is how to interpret the theory once it is there. This form of crossed homotopical algebra would
extend Galois theory to higher ‘levels’, but what do the invariants tell us algebraically?

That provides some overview of this general case, but in our earlier situation, with extensions
of groups, we used a crossed resolution of a group, G, not a simplicial one. We have also mentioned
once or twice that the category, Crs, of crossed complexes is monoidal closed. This would suggest
(i) that given a topos E , and, in particular, given a space B and E = Sh(B), the category of
crossed complexes in E , denoted CrsE , would be monoidal closed, (ii) there would be a free crossed
complex on a cover / hypercover in E , i.e., if we have a simplicial object K in E , we would get a
crossed complex object, π(K), and if K → 1 is a ‘weak equivalence’ then there would be a local
contracting homotopy on π(K), i.e., π(K) → 1 would be a ‘weak equivalence’ of crossed complex
bundles (recall 1 is the terminal object of E , so in the case of E = Sh(B) is the singleton sheaf),
then (iii) if CrsE denotes the internal ‘hom’ of crossed complex bundles, we would be looking at
the model CrsE(π(K),D) for a crossed complex, D, in E and would want the homotopy colimit of
these over (hyper-)covers, K, so as to get a well-structured model. Of course, if E = Sh(B) and
we have ‘nice’ (hyper-)covers K, then we would expect the homotopy type of this to stabilise, up
to homotopy, so CrsE(π(K),D) would be the same, up to homotopy, as that homotopy colimit.
This plan almost certainly works, but has not been followed through as yet, at least, in all its
gory detail. The first part looks very feasible given the construction of Crs(C,D) for (set based)
crossed complexes, C and D. (A source for this is Brown and Higgins, [38] and it is discussed with
some detail in Kamps and Porter, [111], p. 222-227.) We will not give the details here. The other
parts also look to work as the set based originals are given by explicit constructions, all of which
generalise to Sh(B). If that does all work then one has a Crs-based ‘hyper-cohomology’ crossed
complex, ˇCrs(B,D) = hocolimKCrs(π(K),D), whose homotopy groups represent the analogue of
hyper-cohomology.

If you are wary of not having a group or groupoid as an ‘answer’ for what is this ‘hypercoho-
mology’, think of various analogous situations. For instance, for total derived functor theory, in
homological and homotopical algebra, from a functor you get a complex, but it is the homotopy
type of that complex which is used, not just its homotopy groups. In algebraic K-theory, it is quite
usual to refer to the algebraic K-theory of a ring as being the (homotopy type of) a simplicial set
or space. The algebraic K-groups are then the homotopy invariants of that simplicial set. In other
words, in ‘categorifying’, one naturally ends up with an object whose homotopy type encapsulates
the invariants that you are mostly used to, but that object is the thing to work with, not just the
invariants themselves.

8.2 Mapping cocones and Puppe sequences

Exact sequences in cohomology can be constructed in various ways. One of these is related to the
fibration and cofibration seqences of homotopy theory. If one has a fibration of spaces, then it
leads to a long exact sequence of homotopy groups. Of course, not all maps are fibrations, but any
map, f : X → Y , can be replaced, up to homotopy, by a fibration, and its fibre Γf , then codes up
homotopy information about f . This fibre is usually called the homotopy fibre of f and we have
already met it in our list of common examples leading to crossed modules; see page 43. Later on we
will need to use the construction to extend our simplicial interpretations of non-Abelian cohomology,
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but, by way of introduction, to start with both that construction (mapping cocylinders and mapping
cocones/homotopy fibres) and the resulting homotopy exact sequences (Puppe sequences) will be
looked at in a much simpler setting, namely that of chain complexes. Initially we will concentrate
on the dual situation as that is slightly easier to understand geometrically.

(A very useful concise introduction to this theory can be found in May’s book, [128], starting
about page 55, and, for results on chain complexes, page 90.)

8.2.1 Mapping Cylinders, Mapping Cones, Homotopy Pushouts, Homotopy
Cokernels, and their cousins!

We need various ‘homotopy kernels’, ‘homotopy fibres’ and more general ‘homotopy limits’ for our
discussion. We have also already mentioned ‘homotopy colimits’ in passing several times, and so it
seems a good idea to examine this general area from an elementary point of view.

We will work with a chain map f : C→ D of chain complexes of modules over some ring R. We
will use a cylinder C⊗ I. This is given by tensoring C with the chain complex, I,

0 −→ R
∂−→ R⊕R −→ 0,

∂(e1
1) = e0

1 − e0
0.

There is one generator, e1
1, in dimension 1, and two in dimension zero, corresponding to the interval

I = [0, 1] or ∆[1] having one 1-cell and two 0-cells, e0
1 and e0

1, the superfix denoting the dimension
of that generator . We should give a formal definition of a tensor product of chain complexes, even
though you may have met this before.

Definition: If C and D are chain complexes, their tensor product C⊗ D has

(C⊗ D)n =
⊕
p+q=n

Cp ⊗Dq

and boundary / differential given on generators by

∂(c⊗ d) = (∂c)⊗ d+ (−1)|c|c⊗ (∂′d),

where |c| is the degree of c, (that is, c ∈ C|c|).

We note the connection between ⊗ and Hom, namely that, given chain complexes, C, D, and
E, there are natural isomorphisms

Hom(C⊗ D,E) ∼= Hom(C, Hom(D,E)),

so −⊗ D and Hom(D,−) are adjoint.

Example:

(C⊗ I)n
∼= Cn ⊗ I0 ⊕ Cn−1 ⊕ I1

∼= Cn ⊕ Cn ⊕ Cn−1
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(We will denote elements in this direct sum as column vectors,

(
x
y
z

)
, but will usually write

(x, y, z)t, or even (x, y, z) if we are being lazy!)

The isomorphism matches cn ⊗ e0
0 with (cn, 0, 0)t, cn ⊗ e0

1 with (0, c, 0)t and cn−1 ⊗ e1
1 with

(0, 0, cn−1)t. We can therefore calculate ∂(x, y, z)t explicitly for (x, y, z)t ∈ Cn ⊕ Cn ⊕ Cn−1.

∂(x, 0, 0)t = (∂x, 0, 0)t

∂(0, y, 0)t = (0, ∂y, 0, )t

and, as (0, 0, z)t corresponds to a “cn−1 ⊗ e1
1”, its boundary is

∂(cn−1 ⊗ e1
1) = ∂(cn−1)⊗ e1

1 + (−1)n−1cn−1 ⊗ ∂(e1
1)

= ∂(cn−1)⊗ e1
1 + (−1)n−1cn−1 ⊗ e0

1 + (−1)ncn−1 ⊗ e0
0

i.e. ∂(0, 0, z)t = ((−1)nz, (−1)n+1z, ∂z)t. This allows us to use, if we want to, a matrix representa-
tion of the boundary in C⊗ I as  ∂ 0 (−1)n−1

0 ∂ (−1)n

0 0 ∂


and thus would allow us to use such a description to define a cylinder C⊗ I for C, a chain complex
in a more abstract setting such as that of an arbitrary Abelian category.

There are obvious chain maps,

ei : C→ C⊗ I,

i = 0, 1, corresponding to the ends of the cylinder, and a projection,

σ : C⊗ I→ C,

corresponding to ‘squashing’ the cylinder onto the base.

This, of course, leads to a notion of homotopy between chain maps.

Definition: A (cylindrical) homotopy, h, between two chain maps, f, g : C → D, is a chain
map,

h : C⊗ I→ D,

with he0 = f and he1 = g.

This notion of a ‘cylindrical’ homotopy, h, between two chain maps is easy to analyse. We
have hn : Cn ⊕ Cn ⊕ Cn−1 → Dn and the conditions he0 = f and he1 = g become, in terms of
coordinates, hn(x, 0, 0) = fn(x), and hn(0, y, 0) = gn(y), thus the ‘free’ or ‘unbound’ information
for h is contained in hn(0, 0, z). This map, h , restricted to the Cn−1-summand gives a degree one
map h′ = {h′n−1 : Cn−1 → Dn}. We have assumed that h is a chain map, so with our convention
for the boundary on C⊗ I, we get:

∂h′n−1(z) = ∂hn(0, 0, z) = h∂(0, 0, z)

= h((−1)n−1z, (−1)nz, ∂z)

= (−1)n−1(fn−1(z)− gn−1(z)) + h′(∂z).
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We thus have that, if we put sn = (−1)nh′n, we will get a chain homotopy s : C → D, from f to g.
Conversely any chain homotopy will yield a cylindrical homotopy.

Notational comment: The convention on signs that we have adopted is not the only on
C⊗ I and, as you can easily check, this will determine a different boundary on the chain complex,
although the individual terms of the complex are still isomorphic to Cn ⊕ Cn ⊕ Cn−1.

Later we will consider the suspension C[1] of C and this has C[1]n = Cn−1. Different sources
on differential graded objects may adopt different conventions as to the form of the boundary for

C[1]. Quite often the convention chosen is ∂
C[1]
n = (−1)n∂Cn−1, as this absorption of the (−1)n makes

certain graded maps that naturally occur into chain maps and thus greatly simplifies the formulae
and to some extent the theory.

These sign conventions are extremely useful in the study of differential graded algebras as in
rational homotopy theory, cf. [77]. We are using chain complexes here mainly as an illustrative
example, so will not need to adopt those conventions here. The reader is, however, advised that
if working with differential graded (dg) structures, attention to the compatibility between the
simplicial and ‘dg’ conventions is essential if your calculations are not going to look wrong! There
is no essential difference in the geometric intuitions between the approaches, but confusion can
easily arise if this is not recognised early on in work at this interface.

Given our chain map, f : C→ D, we can form a mapping cylinder on f by the pushout

C
f //

e0
��

D

jf
��

C⊗ I πf
// Mf

and we can set if = πfe1. The fact that the ei are split by s : C⊗ I→ C means that we can form a
commutative square

C
f //

e0
��

D

=

��
C⊗ I

fs
// D

and obtain an induced map pf : Mf → D satisfying pf jf = idD and pfπf = fs. The second equation
then gives pf if = f, as an easy consequence.
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if

f

C

D

f(C)
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In addition, jfpf : Mf → Mf is homotopic to the identity by a homotopy that is constant on
composition with jf , i.e., D is a strong deformation retract of Mf .
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Note that we have not shown this last fact. That is left for you to do. We should also note
that most of this does not use any specific properties of chain complexes nor of the cylinder that
we have been using. The same arguments would work for any ‘reasonable’ cylinder functor on a
category with pushouts. The construction of a homotopy from jfpf to the identity does use a few
more properties. (Try to investigate what is needed. A quite detailed discussion of this from
one point of view can be found in Kamps and Porter, [111], in a form fairly compatible with that
used here.) We will need to use this mapping cylinder construction several times more in different
contexts, so abstraction is useful.

Aside: In [111], you will also find a proof that if satisfies a homotopy extension property, i.e., it
is a cofibration. The description above shows that any f can be factored as a cofibration composed
with a strong deformation retraction.

Before we leave mapping cylinder-type constructions as such, we also need to comment on the
dual situation, as that is really what we need for our immediate task. In many situation we can
form a cocylinder, DI, either instead of, or as well as, a cylinder. For instance, in the setting of
chain complexes, we can set DI = Hom(I,D) and then, as is easily checked, DI

n
∼= Dn⊕Dn⊕Dn+1.

The boundary is left to you to write down. The adjointness isomorphism gives the connection with
the cylinder and also with chain homotopies. We can form a mapping cocylinder by a pullback:

Mf πf
//

jf

��

DI

e0

��
C

f
// D.

There is a morphism pf : C→ Mf splitting jf , so jfpf = id, and also pf jf ' id. Writing if = e1π
f , we

have ifpf = f. This map if is a fibration, even in the abstract case under reasonable conditions on
the context and the properties of the cocylinder functor, and we find, for instance in the topological
setting, the method we used to replace an arbitrary map into a fibration, up to homotopy, (look
back to page 43).

Returning now to mapping cylinders, we have if : C→ Mf inserting C as the ‘top’ of the cylinder
part of Mf . The mapping cone, Cf , (or, sometimes, C(f)) of f is obtained by quotienting out by the
image of if . (This is usually visualised by imagining Cf as a copy of D together with a cone, C(C)
on C glued to it using f.)
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qf

Cf

C(C)
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We note that the map jf : D → Mf composed with the quotient q : Mf → Cf gives a map,
qf : D→ Cf and that the cone structure provides a homotopy between the composite, C→ D→ Cf ,
and the trivial map, C→ Cf . We should look at this more closely.
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If we compose the cylindrical homotopy given by the identity on C⊗ I with πf , we get a homotopy
between πfe0 and πfe1, but πfe0 = jf f and πfe1 = if . Finally composing everything with q : Mf → Cf ,
we have a homotopy between qjf f = qf f and qif , which latter map is trivial.

Dually we can get a homotopy (mapping) cocone: we take the homotopy cocylinder Mf and the
map if : Mf → D and form its fibre over the ‘basepoint’, that is the zero, of D. Of course that ‘fibre’
is just the kernel of if in our chain complex case study.

Aside on homotopy cokernels, etc.

In discussion on kernels and cokernels in Abelian and additive categories, it is quite often noted
that the cokernel of a map, ϕ : A→ B, say in an Abelian category, gives a pushout

A
ϕ //

��

B

��
0 // Coker ϕ

and that the pushout square property is exactly the universal property defining cokernels. The
construction of the mapping cone gives a similar square:

C
f //

��
����|�

D

qf
��

0 // Cf

but it is only homotopy commutative (or rather homotopy coherent as there is the natural explicit
homotopy, hf : qf f ⇒ 0). This homotopy coherent square has a universal property with respect to

homotopy coherent squares based on 0 ← C
f→ D. This makes it reasonable to call the result a

homotopy pushout and then to say that Cf is the homotopy cokernel or sometimes the homotopy
cofibre of f. It is, of course, an example of a homotopy colimit, but note that it is necessary to give
not only Cf plus qf to get the full universal property (as would be the case for an ordinary colimit),
but also hf .

Exercise: The construction of the mapping cylinder is also a homotopy pushout. Try to
formulate a good notion of homotopy pushout and identify that construction as an example of one
such. The main idea is to start with two maps

B
b← A

c→ C

with common domain and to form a homotopy coherent square

A
c //

b
��

����|�

C

b′

��
B

c′
// D,

where h is a homotopy A × I → D between b′c and c′b. For instance, use a repeated pushout
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operation on the diagram

A
c //

e0
��

C

���
�
�
�
�
�
�

A
e1 //

b
��

A× I

B //_________ D

to construct its colimit, which will be a double mapping cylinder. The homotopy h is then clear.
Specialise down to the case of b being the identity to complete. Note that homotopy pushouts are
determined ‘up to homotopy’, not ‘up to isomorphism’, so you may not quite get what you expect
and different construction may give different, but homotopic, models for it!

This discussion of homotopy cokernels is almost ‘general’. It works, more or less, in any setting
where there is a null object, corresponding to 0, having a nice cylinder that preserves pushouts,
and, of course, enough pushouts. In our well behaved case study of chain complexes, we can track
the construction in the direct sum decomposition if we so wish.

Homotopy commutative v. homotopy coherent: It is quite important to note a sort of
theme that occurs both here and earlier in our discussion of bitorsors and M-torsors. An M-torsor
was a C-torsor, E together with a definite choice of global section for ∂∗(E). We did not just say
the ∂∗(E) is trivialisable, we specified a trivialisation as part of the structure.

Here with homotopy pushouts, we do not just have a homotopy commutative square, but specify
a definite choice of homotopy linking the two composite maps around the square, i.e., we give a
‘homotopy coherent square’. This passage from ‘there is a homotopy such that ...’ to specifying
one is of prime importance in interpreting non-Abelian cohomology.

We have concentrated, so far, on the case of chain complexes. We do need to caste a glance
at the topological case. The above description in terms of homotopy cokernels goes through for
pointed spaces.

Suppose f : X → Y is a map of pointed spaces, we can form Mf and factorise f as pf if = f ,
where if is a cofibration and pf is the retraction part of a strong deformation retraction, so in
particular is a homotopy equivalence.

Using the cofibration if : X → Mf , we divide out, identifying its image to a point, to get Cf
as a quotient space, or directly as a homotopy pushout

X
f //

��
����}�

Y

qf
��

∗ // Cf ,

where qf = qjf with q : Mf → Cf the quotient map.

8.2.2 Puppe exact sequences

The map qf is a cofibration, under reasonable conditions on the spaces involved, and we can form
the quotient of Cf by identifying the image of this map to a point: SX ∼= Cf/Y, giving the
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(reduced) suspension, SX, on X. This can be defined directly as (X × I)/(X × {0, 1} ∪ ∗ × I),
where ∗ is the base point of X. It is also the homotopy pushout

X //

��
����}�

∗

��
∗ // SX,

where the homotopy is the quotient map from X × I to SX.
This gives us a sequence of maps

X
f→ Y → Cf → SX

Sf→ SY → SCf → S2X → . . . ,

where we have extended the bit that we have actually constructed by applying S to it and grafting
it to the old part. This sequence is known, variously, as the long cofibre sequence of f , the Puppe
sequence of f or the cofibre Puppe sequence. It is ‘homotopy exact’ - what does that mean?

Recall that in an exact sequence, say, of Abelian groups, the kernel of one map is the image of
the previous one, so in particular, the composition of pairs of maps in the sequence is always trivial.
In the above sequence of pointed spaces, there is an explicit null-homotopy from each composition
of pairs of adjacent maps to the corresponding trivial map that send the domain to the base point

of the codomain. This is clear for the first composable pair X
f→ Y → Cf as that is exactly what

Cf was designed to do! (Some treatments of these sequences in fact construct them by repeating
that basic construction of Cf from f for subsequent maps starting with Y → Cf , and then showing
that the resulting terms match, up to homotopy, with those of the above sequence. We do not
adopt that approach here, although it has some very good points to it.)

The next pair Y → Cf → SX is trivial anyway. The checking that Cf → SX
Sf→ SY is

homotopy exact is omitted. It can be found in the literature or you can attempt it yourself. This
is thus the analogue of the composites being trivial in an exact sequence. The arguments used
for these also show that an analogue of the other part of ‘exactness’ also holds. For this it seems
advisable to indicate a more precise statement. (The temptation to use the words ‘exact statement’
here must be resisted!) That statement is the usual one here, and goes as follows. (It will need a
certain amount of commentary, which will be given shortly.)

For any pointed space, Z, applying the functor [−, Z] to the above sequence yields a long exact
sequence of groups and pointed sets,

. . .→ [S2X,Z]→ [SCf , Z]→ [SY,Z]→ [SX,Z]→ [Cf , Z]→ [Y,Z]→ [X,Z].

We have already recalled the meaning of exactness for sequences of groups. The extension of
that to pointed sets should be clear: we replace ‘kernel’ by ‘preimage of the base point’ whilst
‘image’ has the same meaning. If we examine the exactness at [Y,Z], this says that if g : Y → Z is
such that gf is null homotopic, (that is, there is some h : gf ' ∗), then there is some g : Cf → Z
such that g = gqf , and conversely. But that is just what the construction of Cf does, as the
nullhomotopy extends the map on Y to the cone on the X part of Cf . In fact, of course, different
nullhomotopies will extend to different maps on Cf and you are left to think about the way in
which these different null homotopies are, or are not, ‘observed’ by the sequence. To start you
thinking, if h, h′ : gf ' ∗, then we have a self homotopy of ∗, intuitively, ‘hh′(−1)’. The map
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hh′(−1) : X × I → Z sends both ends of the cylinder to the basepoint and as it is constructed
from pointed homotopies, it also sends ∗ × I there. It thus induces a map from SX to Z, giving a
possible link back to [SX,Z]. Again the theme of homotopy coherence v. homotopy commutativity
is nearby as if we record the possible null homotopies then we get other information cropping up
elsewhere in the sequence.

In this discussion of ‘homotopy exact sequences’, we have still to complete our discussion of the
cofibre sequence of a chain map and also we will have need not so much of this cofibre form of the
Puppe sequence, but rather the Puppe ‘fibre’ long exact sequence of a map. We start with the
chain cofibre sequence.

So far we have
C→ D→ Cf

and, in elementary terms,
(Cf)n ∼= Dn ⊕ Cn−1,

i.e., the pushout of D and a cone on C. (The differential / boundary is left to you.) There is
an inclusion of D into Cf , and, surprise surprise, the quotient is C[1], it has Cn−1 in dimension n,
so is the chain complex analogue of the suspension. (Here we must repeat the warning about sign
conventions. The suspension is often considered to have boundary (−1)n∂n, corresponding to the
needs for the ‘suspension map’ to be a chain map. This is just due to a different convention on the
boundary map of the cylinder. As we need this as a step to understanding the simplicial situation,
our convention is slightly more appropriate.)

Of course, if E is another chain complex, then applying [−,E] should give us a long exact
sequence. (All is not really as simple as that here as it is usually better to work in what is called
the derived category of chain complexes rather than just dividing out by homotopy. Initially you
should try this for chain complexes of free modules as you cannot always create the maps you
want in more general contexts. This general situation is important and will be needed in certain
aspects later on, but we will ignore the complication here. It is a very useful exercise to show the
long exactness for chain complexes of free (or projective) modules, before trying to understand the
complication if the freeness condition is removed.)

Now we turn to ‘fibre Puppe sequences’ in the topological case: we have our f : X → Y and
form the mapping cocylinder, Mf , with if : Mf → Y being a fibration and Mf ' X in a controlled
way, (homotopy coherence again - and, yes, Mf is given by a homotopy pullback.) We form the
fibre of if , and this is Cf = Fh(f), the homotopy fibre of f that we have met before (cf. page 43).
This is also a homotopy pullback:

Cf //

ff

��
����|�

∗

��
X

f
// Y,

wher qf is the composite Cf →Mf → X. We can realise this very neatly by first using the pullback

ΓY //

��

Y I

e0

��
∗ // Y

giving the object of paths that start at ∗. This has a second map to Y induced by e1, giving
ΓY → Y , which is a fibration. This is the dual analogue of the cone on X in this dual context.
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(The notation ΓY is ‘traditional’, but is also traditional for the set of global sections of a bundle!
No confusion should arise!) This space ΓY is contractible in a geometrically pleasing way - the
homotopy reduces the ‘active’ part of each path until it does nothing: if α : I → Y with α(0) = ∗,
then αt(s) = ∗ if s ≤ t and is α(s − t) if t ≤ s ≤ 1. The αt form a homotopy, essentially a path,
from α to the constant path at ∗. We can realise Cf as the pullback:

Cf //

��

ΓY I

��
X

f
// Y.

(A useful observation here is that this pullback absorbs the homotopy of the homotopy pullback by
replacing the ∗ by a contractible space. That is an example of a general process, a ‘rectification’
or ‘rigidification’ process, but this will not be explored until much later in these notes.)

Example 1: The neat example that illustrates the importance of this homotopy fibre construc-
tion is to take Y to be an arcwise connected space, X a proper subspace (so the inclusion f is very
far from being a fibration). The fibre of f over a point y ∈ Y is either a single point, if y ∈ X, or
empty, if it is not. We think of y as being a map y : ∗ → Y , picking out that element, and change
y along a path yt, from being in X, say y0, to not being in X, at y1. That path is a homotopy
between the maps y0 and y1, so although y0 and y1 are homotopic maps, the fibre over yt changes
homotopy type as t varies. On the other hand, the homotopy fibre has the same homotopy type
along the whole of yt. (We saw earlier (page 43) that the fundamental group of Fh(f) was π2(Y,X)
and does not change, up to specified isomorphisms, as one varies t between 0 and 1.)

Example 2: This first example was with f far from being a fibration. What if f is a fibration?
(We, as usual, want to concentrate on the intuitions behind the facts here so will not explore this
in depth, but it will be useful to have some picture of what is happening, leaving details either to
the reader to provide or to find, as the results are fairly easy to find in the literature.)

First note the obvious
f−1(∗) = {x | f(x) = ∗},

whilst
Cf = {(x, λ) | λ ∈ ΓY, λ(0) = ∗, λ(1) = f(x)},

so, in particular, there is a map from f−1(∗) to Cf , mapping x to (x, c), where c is the constant
path at ∗. We would like to see when this map is a homotopy equivalence. We have that underlying
it, in some sense, is the map sending ∗ to c ∈ ΓY , which is a homotopy equivalence, in fact a strong
deformation retraction. If you try to see if this will induce in some way a retraction from Cf to
f−1(∗), then you hit the problem of what path an element (x, λ) should trace out in order to get
to some (x′, c) ∈ f−1(∗). This would have to project down onto a path in X and in general there
will not be one. If we assume that f is a fibration however, we can see more clearly what to do.
(Recall that a fibration has a homotopy lifting property and it is that we will use.)

Examine the following diagram:

Cf //

��

X

f

��
Cf × I // Y.
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The bottom horizontal map here is the composite Cf × I → ΓY → Y . The first of these is the
inclusion, then the second is the homotopy retracting ΓY to a point, composed with the projection
onto Y . The top horizontal map is qf , so the diagram commutes. As f is assumed to be a fibration,
there is a lift of the bottom map to a homotopy Cf × I → X, extending qf on its ‘zero’ end. Its
other end gives a map which has image in the fibre of f , so we have what we want - except for
checking details!

This is very useful as it says: if f is a fibration, we do not need to turn it into one before taking
its fibre! Why is that useful? Look at the fibre Puppe sequence so far

Cf → X → Y.

We said that ΓY is a fibration, so qf : Cf → X is also a fibration. We can take its homotopy fibre,
which will look messy to say the least, or its fibre, which is a lot easier to calculate!

(qf )−1(∗X) = {(λ, x) | λ(0) = ∗Y , λ(1) = f(x), x = ∗X}
= {λ | λ(0) = λ(1) = ∗Y },

so (qf )−1(∗X) ∼= ΩY , the space of loops, at the base point,of Y . (This is neat, of course, as Ω is a
functor, which is adjoint to S, the reduced suspension. Whether it is right or left adjoint is left
to you! Thus we have a linkage between the right and left Puppe sequence constructions.) That
fact gives us the tool to open up the whole of the sequence. It goes

. . .→ Ω2Y → ΩCf → ΩX
Ωf→ ΩY → Cf → X

f→ Y.

Given a pointed space Z, we can apply [Z,−] to this sequence to get our long exact sequence

. . .→ [Z,Ω2Y ]→ [Z,ΩCf ]→ [Z,ΩX]
[Z,Ωf ]→ [Z,ΩY ]→ [Z,Cf ]→ [Z,X]

[Z,f ]→ [Z, Y ],

(and once you have sorted out right or left adjunctions, you will find many terms you recognise
from the other type of Puppe sequence).

Our treatment here has been deliberately informal. The importance of these sequences for
cohomology cannot be over emphasised and we suggest that you look at some formal treatments,
both for the algebraic case (via derived and triangulated categories, e.g. Neeman, [144]) and via
the topological case consulting, say, May, [128] in the first instance before looking into the theory
in other sources. There are abstract versions in homotopical algebra, see, for instance, in Hovey,
[99], and a neat categorical treatment in Gabriel and Zisman, [81].

One final point before passing from descriptions of Puppe sequences to using them is the inter-
pretation of exactness at the various points in the sequence. For instance, at [Z,Cf ], an element
is represented by a map, g say, to Cf , and as Cf is given by a pullback, g decomposes via the two
projections into a pair (gX , gΓ) with gX : Z → X and gΓ : Z → ΓY such that fgX = e1gΓ. Going
one step further, ΓY ⊂ Y I , so gΓ gives a homotopy between ∗, the constant map to the basepoint,
and fgX . Now suppose [Z, f ] : [Z,X] → [Z, Y ] sends a homotopy class [k] to the basepoint, then
fk is homotopic to ∗ and we can build a g : Z → Cf from k and that homotopy. The more difficult
part of the exactness at [Z,X] follows. Back to [Z,Cf ], suppose our g = (gX , gΓ) gets sent to the
‘point’ of [Z,X], then qfgX must be null homotopic. Pick such a null homootpy h : Z×I → X and
use the fact that qf is a fibration to lift h to h : Z × I → Cf . The ‘other end ’ of h, i.e., he1 is such
that qfhe1 is ∗, so he1 is into the fibre of qf , but that is ΩY . It remains to put the various pieces
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together. The details can be found in many sources, but what is important to retain is the way of
constructing a corresponding element in the previous stage. A trivialisation of an element yields
a class in another stage. This should remind you of M-torsors, of categorisation and of homotopy
cohenrence.

8.3 Puppe sequences and classifying spaces

8.3.1 Fibrations and classifying spaces

In his discussion of bitorsors, etc., in [28], Breen makes use of Puppe sequences of maps between
classifying spaces. Suppose v : H → G is a morphism of simplicial groups, then we get an induced
map of classifying spaces Bv : BH → BG. We can take BG to be WG as being the neatest
construction from our simplicial viewpoint. (Detailed calculations with WG, etc., are quite easy
in the simple case that we will need, but do get complicated if G has lots of non-trivial terms
in its Moore complex. Another point worth making is that the detailed formulae for WG given
earlier, page 206, use the algebraic composition order and therefore sometimes seem to reflect ‘right
actions’. This can be got around in either of two ways. The formulae for both W and G, the Dwyer-
Kan S-groupoid functor, can easily be reversed to get equivalent ones using the other composition
order. This may be needed later when considering cocycles, etc., however the second argument uses
that WG determines a Kan complex that is determined up to homotopy type - so either method
will lead to the same [−,WG] and thus most of the time we can ignore the composition order. To
ignore it, or forget it, completely is not a good idea, but we can face the problem, if and when it
is needed.)

We thus are looking at Bv : BH → BG. If v is not surjective, then we can use the mapping
cocylinder construction, suitably adapted, to replace it by a fibration and fibrations of simplicial
groups are exactly the surjective morphisms. We can thus study, without loss of generality, the
surjective case and, of course, that means using the exact sequence

K
u→ H

v→ G

of simplicial groups and studying the effect of the functor B on it.

We ‘clearly’ get a long Puppe sequence, ending with

. . .→ ΩBH → ΩBG→ CBv → BH → BG.

Such a Puppe sequence can be constructed from the ‘obvious’ cocylinder functor, S∗(∆[1],−), but
only works really well if applied to Kan complexes. Luckily these simplicial sets are Kan, so we
can proceed accordingly. We note that as v is a fibration of simplicial groups, Bv is a fibration of
simplicial sets, so we can hope that CBv can be more easily calculated than would be the case in
general.

To see why Bv is a fibration, imagine we have a g ∈ BGn and thus g has the form (gn−1, . . . , g0)
with gi ∈ Gi. We can find h′i ∈ Hi such that v(h′i) = gi, i = 0, . . . , n − 1. If we are given a

(n, k)-horn, h, in BH that maps down to the (n, k)-horn, (dng, . . . , d̂kg, . . . , d0g), of g (using the

traditional ̂ notation for an omitted element), then h−1.h
′
gives a horn over the trivial (n, k)-horn

of BG, that is, we can translate the filling problem to the identity, where it is essentially that of
proving that WG is a Kan complex, which is easier to handle and we will do so in a moment. Note
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this argument uses a transversal in each dimension, although we did not explicitly label it as being
one, namely gi 7→ h′i, which is suggestive of other uses of transversals in these notes.

An indirect, but neat, proof that W preserves fibrations and weak equivalences is to be found
on p. 303 of the book, [86], by Goerss and Jardine. They note that this implies that G preserves
cofibrations and weak equivalences, which is also very useful.

Postponing the proof that classifying spaces are Kan for the moment, the last thing to identify
is the fibre of Bv, but this is easy, since we have an explicit description of Bv. It sends h =
(hn−1, . . . , h0) to (v(hn−1), . . . , v(h0)), so its fibre is exactly the image by Bu of BK. We can
thus use that, for fibrations, the fibre and homotopy fibre coincide up to equivalence, to conclude
CBv ' BK and our Puppe sequence now looks like

. . .→ ΩBH → ΩBG→ BK → BH → BG.

8.3.2 WG is a Kan complex

We have left this aside because we want to examine it in some detail, and those details were not
needed at that point in our discussion. As an example of what might be done, suppose that G
satisfies some extra condition such as the vanishing of its Moore complex in certain dimensions or
that it satisfies the thin filler condition above some dimension, then the constructive description of
WG suggests that it might be feasible to analyse WG to see if it satisfies some similar condition.

We will give the verification for a simplicial group, however, in many of the applications, we
will need the construction for a simplicial group object in a topos, E . This will allow us to talk of
the classifying space of a sheaf of simplicial groups without worrying about the context. All the
structure, however, is specified in a constructive way, and so goes across without any pain to a
general topos. It also goes across without difficulty to an S-groupoid. (I learnt this via Phil Ehlers’
MSc thesis, [72], in which he did all the calculations explicitly.)

For convenience, we repeat the formulae for WG, from page 206, making small adjustments,
since we will not be looking at the groupoid case here, so let G be a simplicial group.

The simplicial set, WG, is described by

• (WG)0 is a single point, so W (G) is a reduced simplicial set;

• (WG)n = Gn−1 × . . . G0, as sets, for n ≥ 1.

The face and degeneracy mappings between W (G)1 and W (G)0 are the source and target maps
and the identity maps of G0, respectively; whilst the face and degeneracy maps at higher levels are
given as follows:

The face and degeneracy maps are given by

• d0(gn−1, . . . , g0) = (gn−2, . . . , g0);

• for 0 < i < n, di(gn−1, . . . , g0) = (di−1gn−1, di−2gn−2, . . . , d0gn−ign−i−1, gn−i−2, . . . , g0);

and

• dn(gn−1, . . . , g0) = (dn−1gn−1, dn−2gn−2, . . . , d1g1),

whilst
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• s0(gn−1, . . . , g0) = (1, gn−1, . . . , g0);

and,

• for 0 < i ≤ n, si(gn−1, . . . , g0) = (si−1gn−1, . . . , s0gn−i, 1, gn−i−1, . . . , g0).

Let us start in a low dimension to see what problems there may be. For n = 2, suppose we
had a (2, 2) box in WG, so we have a pair, (x0, x1), of elements of WG1, which fit together, so
d0x0 = d0x1. (We think of this as (x0, x1,−), a list of possible faces, with a gap in the d2-position.)
We want some y ∈WG2 such that d0y = x0 and d1y = x1.

Expanding things (in fact this is purely formal here, but lays down notation for later), we thus
have x0 = (x0,0), x1 = (x1,0). (The condition on the faces happens to be trivial here since WG0 is
a single point.) These xi,0 are in G0, for i = 0, 1. Similarly y will be of form (y1, y0), and we can
examine what the desired conditions imply

x0,0 = d0y = y0

x1,0 = d1y = d0y1.y0.

We thus already know y0 and need to find a y1 with d0y1 = x1,0x
−1
0,0. Clearly, we can find one, for

instance, s0(x1,0x
−1
0,0) will do and we can even find all such, since any other suitable y1 will have

form ks0(x1,0x
−1
0,0) for some k ∈ Ker do. In other words, we really do know a lot about the possible

fillers for our horn, even being able to count them if G is a finite simplicial group!

Next in line, we suppose that we have (x0,−, x2) and want y such that d0y = x0, d2y = x2.
Expanding these, using the same notation as before, we have, once again, that x0,0 = d0y = y0,
but now

x2,0 = d2y = d1y1.

Again we have y0 and can solve d1y1 = x2,0, using y1 = s0(x2,0), and, to get all fillers, ks0(x2,0)
with k ∈ Ker d1.

That was easy! What about (2, 0)-horns? These are slightly harder, as the other types did give
us d0y and thus handed us y0 ‘on a plate’, but it is only ‘slightly ’.

We have (−, x1, x2), xi = (xi,0) and want y = (y1, y0). We thus know

x1,0 = d1y = d0y1.y0

x2,0 = d2y = d1y1.

We do not know y0, but do know d1y1 and can solve to get y1 = ks0(x2,0) with k ∈ Ker d1 as
before. We then have y0 = (d0(k)x2,0)−1x1,0 for the general filler.

Although that is simple, it is also easy to see that it can be extended, with modifications, to
higher dimensions.

If we have a (n, n)-horn in WG, then we have (x0, . . . , xn−1,−) with xi = (xi,n−2, . . . , xi,0) ∈
WGn−1. for i = 0, 1, . . . , n− 1. The compatibility condition is non-trivial here, so we note that

dixj = dj−1xi

if i < j.
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We need to find all y = (yn−1, . . . , y0) with diy = xi for all i < n. We thus have

x0 = d0y = (yn−2, . . . , y0),

but this means that we know all but the top dimensional element of the string that is y. Next

x1 = d1y = (d0yn−1.yn−2, . . . , y0),

so we glean the information that
d0yn−2 = x1,n−2.x

−1
0,n−2.

Continuing, we get, for k > 1 and in the range k < n, that

xk = dky = (dk−1yn−1, dk−2yn−2, . . . , d0yn−k.yn−k−1, . . . , y0),

and here the only new information is that which we get on dk−1yn−1, which can be read off as being
xk,n−2.

We should note that the compatibility condition tells us that there will be no inconsistencies in
the rest of this string. For instance, we seem to have

xk,n−k−1 = d0yn−k.yn−k−1.

As we know yn−k−1 and yn−k, we can check that we do not have a conflict:

yn−k = x0,n−k

yn−k−1 = x0,n−k−1,

but then xk,n−k−1 needs to be d0x0,n−k.x0,n−k−1, which is the (n− k− 1)-component of dkx0. The
compatibility condition tells us

d0xk = dk−1x0,

and we leave the reader to check that the (n− k − 1)-component of this equation is exactly

xk,n−k−1 = d0x0,n−k.x0,n−k−1,

as hoped for.

Collecting things up, we know d`ym−1 for ` = 0, . . . , n− 2, i.e., we have a (n− 1, n− 1)-horn in
G itself. We know not only that G is a Kan complex, but how to fill horns algorithmically, so can
find a suitable yn−1 and hence a filler, y for the original (n, n)-horn in WG.

The intermediate cases of (n, i)-horns in WG for 0 < i < n are very similar and are left to you.
In each case, as we have d0y = x0, we just have to work on the first element, yn−1 in the string
giving us y. The other parts give us a horn in G, which encodes the available information on the
faces of yn−1. We fill this horn to get yn−1, and hence to fill the original horn in WG. In each case,
we can fill because we know that the underlying simplicial set of G is a Kan complex. We have
the algorithm for fillers and so can analyse the set of fillers for a given horn, the algorithm giving
a definite coset representative. For instance, in the (n, n)-horn, above, we found y exactly except
in the first, highest dimensional position, yn−1. We use the algorithm to find one filler / solution
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for yn−1, then know any other will differ from it by an element of
⋂n−2
i=0 Ker di. This latter group

is essentially a ‘translate’ of NGn−1 using the argument that Carrasco used to simplify Ashley’s
group T -complex condition (see the comment in the discussion of group T -complexes, page 36).

We still have to handle the (n, 0)-horn case, so should not be too pleased with ourselves yet!
That was the slightly awkward case for the n = 2 situation that we studied earlier, as we do not
have yn−2 given us initially.

Suppose (−, x1, . . . , xn) is the horn and we have to find a y ∈ WGn satisfying diy = xi for
i = 1, . . . , n. Using the same notation, we have

x1 = d1y = (d0yn−1.yn−2.yn−3, . . . , y0)

and we get all the yi except yn−1 and yn−2. We then have

xi = diy = (di−1yn−1, . . . , y0)

and so get all the faces of yn−1, except that zeroth one. We can thus fill the resulting (n−1, 0)-box
in G (using the algorithm) to find a suitable yn−1. We still do not have yn−2, but as we now have
yn−1, we can read off d0yn−1 from our solution to get

yn−2 = (d0yn−1)−1.x1,n−1.

We thus do get a filler for our (n, 0)-horn and can analyse the set of fillers / solutions if we need
to.

Theorem 18 For any simplicial group, G, the classifying space, WG, is a Kan complex �

Perhaps it occurs to you that it should be possible to adapt this constructive proof to give a
proof that, if f : G → H is a surjection of simplicial groups, and thus a fibration, then Wf will
be a Kan fibration. We know already that Wf is a fibration, as we saw this earlier, quoting some
results in Goerss and Jardine, [86], but it should not be too difficult to construct a proof which
took transversals in the necessary dimensions and found lifts for horns accordingly. This is left as
a bit of a challenge to the reader. It is not just an exercise for amusement, however, as the
analysis of fillers could give some interesting results in some cases.

We mentioned that most of this went across ‘without pain’ to the case of simplicial objects in
a topos, E , and hence to simplicial sheaves on a space. Perhaps a few words are needed, however,
to show how this can be done. We start by thinking about how to talk about the Kan fibrations in
E , or more generally in any category with finite limits. For any object K in Simp(E), we can form
an object of E corresponding to the ‘set of (n, k)-horns’ in K. To see how to think about this, we
look at (2, 1)-horns. These correspond, in the set based case, to pairs of 1-simplices, (x0, x2), with
d0x2 = d1x0, so are elements of the pull back:

Λ0[2](K) //

��

K1

d1
��

K1 d0
// K0
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More generally, for a simplicial set K, Λk[n](K), the set of (n, k)-horns in K is given by an iterated
pullback or limit of a diagram. (If you have not seen this before, or ever handled it yourself, do try
to formulate the diagram in as neat a way as possible - ‘neat’ is a question of taste! It is technically
quite easy, but gives good practice in converting concepts across to diagrams and hence to finite
limit categories.)

We thus can mimic this to get an object, Λk[n](K), and an induced map, Kn → Λk[n](K),
which maps an n-simplex to the (n, k)-horn of its faces other than the kth one.

Definition: If E is a finite limit category, a morphism, p : E → B, in Simp(E) is a Kan
fibration if the natural maps En → Λk[n](E)×Λk[n](B) Bn are all epimorphisms in E .

We can equally obtain the meaning of a Kan object in Simp(E).

Beke, [23], uses the term local Kan fibration for what has been called a Kan fibration in E above.
That ‘local’ terminology is especially good when talking about the topos case, but with, later on
in these notes, a use of ‘locally Kan’ enriched category, it did seem a bit risky to over use ‘local
Kan’ !

We now return to the case of simplicial groups in the usual sense.

Corollary 10 Suppose that NGn−1 = 1, then, for any i, with 0 ≤ i ≤ n, any (n, i)-horn in WG
has a unique filler.

Proof: We noted that different fillers for an (n, i)-horn differed by elements of NGn−1, or its
translates, thus if that group is trivial, ... . �

Of course, we expect WG to have the same homotopy groups as G, displaced by one dimension,
since there is the fibration sequence

G→WG→WG

with WG contractible, so this corollary comes as no surprise. What is interesting is the detail that
it gives us. If NGk = 1, then clearly πk(G) = 1 and hence πk+1(WG) is trivial as well, but that
there are unique fullers in the structure is perhaps a bit surprising, at least until one sees why.

Suppose that, as usual, G is a simplicial group and D = (Dn)n≥1 is the graded subgroup of
products of degeneracies. Within WGn, let

Tn = Dn−1 ×Gn−2 × . . .×G0,

be the subset of those elements whose first component is a product of degenerate elements, yielding
a graded subset of WG.

Corollary 11 If G is a group T -complex, then (WG,T ) is a simplicial T -complex.

Proof: There is not that much to check. We know, by the proof of the theorem, that every horn has
a filler in T . Uniqueness follows from the fact that G is a group T -complex. The other conditions
are as easy to check as well, so are left to you. �

Corollary 12 If G is thin in dimensions greater than n, then WG has a unique T -filler for all
horns above dimension n+ 1. �
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The property of being a T -complex involves all dimensions and here we are meeting some sort of
weaker ‘filtered’ condition. This condition was studied extensively by Duskin, and used in various
forms in [65, 66] and in later work. It was also used by his students Glenn, [85], and Nan Tie,
[142, 143], who looked at some of the links with T -complexes. They are also used, more recently,
by Beke, [23], and we, in fact, studied his approach earlier when discussing the coskeleton functors,
(in particular, in our brief discussion of exact n-types and n-hypergroupoids, cf. page 155).

8.3.3 Loop spaces and loop groups

We now turn to ΩBG. Although not strictly necessary, it will help to shift our perspective slightly
and talk a bit more on some generalities. Let S0 be the pointed simplicial set with two vertices
and only degenerate simplices in dimensions higher than 1. In other words, it is the 0-sphere.
The reduced suspension SS0 is S1, the circle, which can also be realised as ∆[1]/∂∆[1], the circle
realised as the interval with the ends identified to a single point. The loop space, ΩK, on a pointed
connected simplicial set, K, is then S∗(S1,K), or more briefly, KS1

, the simplicial set of pointed
maps from S1 to K. (It will be a Kan complex if K is one.) As in the topological case, ΩK has
the structure of an ‘H-space’. This refers to a compositional structure up to homotopy, so we have

µ : ΩK × ΩK → ΩK,

given by composition of loops. Topologically this is just that: first do one loop, then the other,
then rescale to get a map from [0, 1] again. The rescaling means that this µ is not associative, but
is associative up to a homotopy. There are also ‘reverses’, which are inverses up to homotopy, and
it all fits together to make ΩK a ‘group up to homotopy’. (Again the homotopies can be linked
together to make a homotopy coherent version of a group.) The same can be done in the simplicial
case provided that K is Kan. (This is a good exercise to attempt, to see once more the use of
‘fillers’ as a form of algebraic structure.)

If K is not reduced, we can replace it by a homotopy equivalent reduced simplicial set. (In fact
we want K = WG and that is reduced.) For such a K, the simplicial group GK is often called the
loop group of K. (Look back to page 201, if you need to review the construction of GK.) What is
the connection between ΩK and GK?

It is clear there should be one as the free group construction involved in the definition of GK
uses concatenation of strings of simplices and that is the algebraic analogue of composition of paths,
however it is associative, has inverses, etc., as it gives a group. It looks like an abstract algebraic
model of ΩK, which replaces the homotopy coherent multiplication by an algebraic one, but, as a
result, gets a much bigger structure. Even in dimension 0, ΩK0

∼= K1, whilst GK0 is the free group
on K1. (This is again a useful place to see what the two structures look like, in low dimensions,
and to see if there is a ‘natural’ map between them.) If we could replace Ω by G, our life would
simplify as G is left adjoint to W and so, for any simplicial group, H, there is a natural map

GWH → H,

which is a weak equivalence, i.e., it induces isomorphisms on all homotopy groups, then we would
be able to identify three more terms of the Puppe sequence. In fact for any reduced K, GK and
ΩK are weakly equivalent. We will not give the proof, referring instead to the discussion in Goerss
and Jardine, [86], in particular the proof on p. 285. (This is very neat for us as it uses both ΓK,
there called PK, and induced fibrations in a very similar way to our earlier treatment of the Puppe
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sequence.) If G is more interesting and is not reduced, then GK is equivalent to a disjoint union,
indexed by π0(G), of simplicial sets that ‘look like’ copies of ΩG, namely loops, not at the identity
element, but at some representative of a connected component of G. This will shortly be linked up
with the décalage construction.

Putting all this together, we get that if

K
u→ H

v→ G

is a short exact sequence of simplicial groups, then the Puppe sequence of Bv ends:

ΩG→ K
u→ H

v→ G→ BK
Bu→ BH

Bv→ BG.

We need to add what might be considered a cautionary note. To emphasise the ideas behind this
sequence, we have handled the case of simplicial groups. For many of the applications, we have to
work with sheaves of simplicial groups or, more generally, simplicial group objects in some topos,
E . In those cases the meaning of such terms as ‘fibration’ or ‘weak equivalence’ needs refining,
much as the notion of ‘equivalence’ between categories needs adjusting before it can be used to its
full potential with the ‘stacks’ that we will meet in the next chapter. The category in which one
‘does’ one’s homotopy is then naturally to be considered with a Quillen model category structure
and [−,−] is replaced by Ho(Simp(E))(−,−), the ‘hom-set’ in the category obtained from that
of simplicial objects in E by inverting the weak equivalences. These technicalities do complicate
things to quite a large amount and are very non-trivial to describe in detail, however the idea is
the same and the technicalities are there just to bring that idea to its most rigorous form. We have
left out these technicalities to concentrate on the intuition, but they cannot be completely ignored.
(Some idea of the possible detailed approaches to this can be found in Illusie’s thesis, [104, 105],
Jardine’s paper, [107] and various more recent works on simplicial sheaves.)

8.3.4 Applications: Extensions of groups

Suppose we have our old situation, namely an extension of groups, or rather of sheaves of groups,

1→ L
u→M

v→ N → 1

(as in section 7.4.6). We can replace each by a constant simplicial group, L by K(L, 0), etc. (To
simplify notation we will, in fact, abbreviate K(L, 0) back to L, whenever this is feasible.) We now
apply the classifying space construction and take the corresponding Puppe sequence. The result
will be

1→ L
u→M

v→ N → BL→BM→BN.

(Here we are abusing notation even more, as the first three terms are the underlying simplicial
sheaves of the corresponding sheaves of simplicial groups, which are, ... and so on, but writing
U(K(L, 0)) seems silly and it would get worse, so ... .)

Note that in this sequence, we have that Ω2BN is equivalent to ΩN , which is contractible, which
explains the 1 on the left hand end.. The classifying spaces are the nerves of the corresponding
groupoids, BL = Ner(L[1]), etc.

All this is happening in Sh(B) (or, more generally, in a topos, E). Given an open cover U of
B, with nerve N(U), we get a long exact sequence of groups and pointed sets:

1→ [N(U), L]→ [N(U),M ]→ [N(U), N ]→ [N(U), BL]→ [N(U), BM ]→ [N(U), BN ],
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and passing to the colimit over coverings, this gives

1→ L(B)→M(B)→ N(B)→ Ȟ1(B,L)→ Ȟ1(B,M)→ Ȟ1(B,N).

This is exactly the exact sequence that we discussed earlier, again in section 7.4.6. Note that we
have not yet got our hands on any substitute for the Ȟ2(B,L), that exists in the Abelian case.

8.3.5 Applications: Crossed modules and bitorsors

Suppose M = (C,P, ∂) is a sheaf of crossed modules. It would be good to examine the simplicial
view of relative M-torsors in a similar way. We have a sheaf of simplicial groups given by K(M)
and have identified colim[N(U),K(M)] = colimH0(N(U),M) with π0(M−Tors), which is a group.
We also showed that any M-torsor, (E, t), had that E is a C-torsor with t a trivialisation of ∂∗(E).
This suggests some sort of exact sequence:

π0(M−Tors)→ π0(Tors(C))
∂∗→ π0(Tors(P )),

i.e., anything in Tors(C) that is sent to the base point (that is, the class of the trivial torsor) in
Tors(P ), comes from an M-torsor. We can see this geometrically as we saw earlier. What is neat is
that if (E, t) and (E′, t′) are M-torsors, with E and E′ equivalent as C-torsors, then we can assume
E = E′ and can use the trivialisations t and t′ to obtain a global section, p, of P such that t′ = p.t.
The implication is that

P (B)→ π0(M−Tors)→ π0(Tors(C))

is also exact. This can also be seen from the Puppe sequence.
First a very useful bit of the simplicial toolkit. We form the décalage of K(M). (Recall K(M)

is the simplicial group associated to M, that is, it is formed as the internal nerve of the internal
category corresponding to M, that it has P in dimension 0, C o P in dimension 1, etc. It also has

a Moore complex which is of length 1 and is exactly C
∂→ P .)

What is the décalage?

Definition: The décalage of an arbitrary simplicial set, Y , is the simplicial set, DecY , defined
by shifting every dimension down by one, ‘forgetting’ the last face and degeneracy of Y in each
dimension. More precisely

• (DecY )n = Yn+1;

• dn,Dec Yk = dn+1,Y
k ;

• sn,Dec Yk = sn+1,Y
k .

This comes with a natural projection, dlast : DecY → Y , given by the ‘left over’ face map.
(Check it is a simplicial map.) We will denote this by p, for ‘projection’. Moreover this map gives
a homotopy equivalence

DecY ' K(Y0, 0),

between DecY and the constant simplicial set on Y0. The homotopy can be constructed from
the ‘left-over’ degeneracy, sYlast. (A full discussion of the décalage can be found in Illusie’s thesis,
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[104, 105] and Duskin’s memoir, [65]. Be aware, however, some sources may use the alternative
form of the construction that forgets the zeroth face rather than the last one. This works just as
well. The translation between the two forms is quite easy, if sometimes a bit time consuming!)

Of course, this same construction works for simplicial objects in any category. We need it mainly
for (sheaves of) simplicial groups and, in particular, as hinted at earlier, we need DecK(M). We
list some properties of this simplicial group:

(i) DecK(M)0
∼= C o P , DecK(M)1

∼= C o C o P , and in general, DecK(M)n ∼= C(n+1) o P .
The face maps are given by

d0(cn, . . . , c0, p) = (cn, . . . , c1, ∂c0.p)

di(cn, . . . , c0, p) = (cn, . . . , cici−1, . . . , c0, p) 0 < i < n

d0(cn, . . . , c0, p) = (cncn−1, . . . , c0, p)

with degeneracies given by suitable insertions of identities.
(ii) DecK(M) has Moore complex isomorphic to one of the form

C → C o P.

Here we clearly have Ker d1 = {(c1, c0, p) | c1 = c−1
0 , p = 1} ∼= C. We also have a boundary,

induced by d0, so the boundary sends (c−1, c, 1) to (c−1, ∂c}. If this looks strange, just check that
(c−1, c, 1)((c′)−1, c′, 1) = ((cc′)−1, cc′, 1). (Don’t forget the Peiffer identity!)

(iii) The boundary is a monomorphism and its image is the kernel of the homomorphism from
C o P to P that sends (c, p) to ∂c.p. (That makes sense as that is the target / codomain map of
the internal category or cat1-group associated to M.)

(iv) DecK(M) is homotopy equivalent to the constant simplicial group on P . (This can be seen
from the Moore complex, but also from the retraction of DecK(M) onto the subsimplicial group
given by all (1, . . . , 1, p). That map is a deformation retraction with the ‘extra degeneracy’, s`ast,
of the décalage construction giving the homotopy, (for you to check). This is neat, because it is
explicit and natural and thus can provide a more geometric picture than merely stating that there
is a weak equivalence of simplicial groups between DecK(M) and K(P, 0).)

(v) The morphism p : DecK(M) → K(M) is an epimorphism, hence is a fibration. (It is,
in fact, split at each level by the last degeneracy map of K(M).) We can give p explicitly by
p(cn, . . . , c0, p) = (cn−1, . . . , c0, p), hence:

(vi) The kernel of p is given by Ker p = {(c, 1, . . . , 1, 1) | c ∈ C} with the face and degeneracy
maps given by the restrictions of the above, so Ker p is isomorphic to K(C, 0).

(vii) Within the context of our much earlier discussion of crossed modules as being given by
fibrations (page 43), we had that if G is a simplicial group and N C G a normal simplicial subgroup,
then applying π0 to the inclusion of N into G gave us a crossed module. The proof that, up to
isomorphism, all crossed modules arise in this way was left to the reader! Here it is:

If we take G = DecK(M), and N = Ker p, then π0(N)→ π0(G) is ∂ : C → P and the actions
agree, (all ‘up to isomorphism’, of course).

This is at the heart of the algebraic proof of Loday’s theorem (see 5.5) that catn-groups /
crossed n-cubes model all connected homotopy (n+1)-types. Its appearance here is not accidental.

We thus have an exact sequence of simplicial groups arising from M:

1→ Ker p→ DecK(M)→ K(M)→ 1
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corresponding to

K(C, 0)→ K(P, 0)→ K(M),

(which is not exact!).

At a crossed module level, we get

1 //

��

1 //

��

C

��
C // P // P

is homotopy exact, or, more exactly (pun intended!) that

1 //

��

C //

��

C

��
C // C o P // P

is exact.

If we pass to the Puppe sequence, it will end

ΩK(M)→ C → P → K(M)→ BC → BP → BK(M).

Going through the usual process of applying [N(U),−] for an open cover U of the base space B,
followed by the colimit over such Us, we get

Proposition 70 For any crossed module, M, there is an exact sequence

1→ Ȟ−1(B,M)→ C(B)→ P (B)→ π0(M−Tors)→ π0(Tors(C))→ π0(Tors(P ))→ Ȟ1(B,M).

�

There are two ‘mysterious’ terms here. The second is the 1st Čech hypercohomology of B with
coefficients in M. We have, sort of, met this earlier. It is

Ȟ1(B,M) = colimU [N(U), BK(M)].

The treatment we have given it here, and the language we have available, is however not yet rich
enough to yield a good geometric interpretation. For that we will need stacks and gerbes, and we
will start on them in the next chapter!

The other strange term is Ȟ−1(B,M), which comes from the various [N(U),ΩK(M)]. We can
calculate ΩK(M) explicitly using its description as the simplicial group of maps from S1

∗ to K(M).

Lemma 49 (i) There are isomorphisms ΩK(M) ∼= K(π1(M), 0), the constant simplicial group on
the kernel π1(M) = Ker(∂ : C → P ) ∼= π1(K(M)).

(ii) There are isomorphisms Ȟ−1(B,M) = Ȟ0(B, π1(M)) ∼= π1(M)(B), the group of global
sections of π1(M).

Proof: This is just a question of calculation so is left to you the reader. �
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8.3.6 Examples and special cases revisited

We can use the analyses of Puppe sequences and their applications to refine a bit more the informa-
tion on relative M-torsors for the ‘examples and special cases’. We first apply our exact sequence
of the previous paragraph.

The first example is when M = (1, P, inc) and the exact sequence confirms the isomorphism
between P (B) and π0(M−Tors). When M is A[1] = (A→ 1) for Abelian A, the sequence gives, as
expected, confirmation that π0(M−Tors) ∼= π0(Tors(A)) and that the latter has a group structure.

For an inclusion crossed module / normal subgroup pair, we can compare the exact sequence
coming from 1 → N → P → G → 1 with that from M = (N,P, ∂), with ∂ the inclusion. The
induced maps give us a map of exact sequences

1 // N(B) //

=

��

P (B) //

=

��

π0(M−Tors) //

��

π0(Tors(N)) //

∼=
��

π0(Tors(P )) //

∼=
��

Ȟ1(B,M)

?
��

1 // N(B) // P (B) // G(B) // Ȟ1(B,N) // Ȟ1(B,P ) // Ȟ1(B,G)

which again gives π0(M−Tors) ∼= G(B), and suggests that the mysterious Ȟ1(B,M), in this special
case, is our better known Ȟ1(B,G), i.e., π0(Tors(G)).

The last case we looked at was M = (M,G, 0). The long exact sequence has the induced map,
∂∗, trivial, so gives us

1→ G(B)→ π0(M−Tors)→ π0(Tors(M))→ 1.

To examine the other situation considered on page 297, we need to apply our analysis of exact
sequences of simplicial groups to another case.

8.3.7 Devissage: analysing M−Tors

We saw that for any (sheaf of) crossed module(s) M, we had a short exact sequence

K //

��

C //

��

N

��
1 // P // P,

or
π1(M)[1]→ M→ π0(M)

if you prefer, (as π0(M) = π0(K(M)) = P/N). (We only saw this for a crossed module, but clearly
the argument goes through with only trivial changes in any topos, given suitable definitions!)
Applying the associated simplicial group functor, K, this gives that

K(π1(M), 1)→ K(M)→ K(π0(M), 0)

is an exact sequence of simplicial groups.

Theorem 19 For any crossed module, M, there is an exact sequence

1→ π0(Tors(π1(M)))→ π0(M−Tors))→ π0(M)(B)→

Ȟ2(B, π1(M))→ Ȟ1(B,M)→ π0(Tors(π0(M))).
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Proof: The proof merely is to identify the various terms from the Puppe sequence. Firstly the
general form of such sequences, seen above, gives

→ Ȟ−1(B, π0(M))→ Ȟ0(B, π1(M)[1])→ Ȟ0(B,K(M))→ Ȟ0(B, π0(M))→ Ȟ1(B, π1(M)[1])→ . . .

The first of these terms is trivial since for a general crossed module, ΩK(N) is K(Ker∂, 0), up to
equivalence, so in our case in which N = (1→ π0(M)), it will be trivial. (Remember Ȟ−1(B,N) =
colimU [N(U),ΩK(N)].)

The next term Ȟ0(B, π1(M)[1]) ∼= Ȟ1(B, π1(M)) ∼= π0(Tors(π1(M))), by our earlier calculations
(case (ii) above). The next two terms are routine to handle, whilst that Ȟ1(B, π1(M)[1]) is iso-
morphic to Ȟ2(B, π1(M)) is a classical result that is easy to check anyhow. Finally the remaining
terms are standard. �

Note that this gives some new information on M−Tors, indicating the difference between this
category for general M and for the particular special cases considered earlier.



Chapter 9

Non-Abelian Cohomology: Stacks

In passing from bundles and sheaves to ‘higher categorified levels’ and hence to higher cohomology,
we need to apply some basic ‘rules of thumb’. We should replace sets by (small) categories or
groupoids, but as a (small) category, C, will have ‘hom-sets’, C(x, y), etc., any category should be
replaced by a 2-category, so that C(x, y) will itself be a category. We then need to replace functors
by . . . . At this point, we need to bring the other main ‘rule of thumb’ into play. In a set,
equality of elements, x = y, seems a reasonable thing to work with, but already in a category,
‘isomorphism’ rather than ‘equality’ of objects is what is the natural idea and in a 2-category,
‘equivalence of objects’ replaces ‘isomorphism’. The apparently natural notion of ‘functor’ (i.e.,
‘2-functor’ between 2-categories) is thus not necessarily right for when we categorify things, rather
a ‘lax’ or ‘pseudo’ functor of some form may be needed. In particular we had that ‘sheaves’ were
special types of ‘presheaves’, quite typically F : Open(B)op → Sets, and corresponded to spaces
over B with ‘discrete fibres’, but if we want or need more categorical structure in the fibres, what
do we do? We will see that there are useful examples of ‘fibred categories’ corresponding to ‘lax
presheaves’, and that there are objects analogous to sheaves, torsors, etc., in this categorified
setting. Most importantly, these objects encode important algebraic and geometric information.

(For this chapter, useful treatments of the material can be found in Moerdijk’s notes, [132],
and also in the notes of Vistoli, [166]. There are many other treatments of fibred categories in the
literature exploring other aspects of their theory. One at a suitable level of generality is Thomas
Streicher’s notes, [159].)

9.1 Fibred Categories

9.1.1 The structure of Sh(B) and Tors(G)

We will start with two ‘case studies’ based on ideas developed in the previous chapter.

We will look at Sh(B), the category of sheaves on B, and how it relates to the Sh(U) for open
subsets, U , of B. After that we will do the analogous thing for Tors(B,G), restricting that to open
sets as well. These will form a sort of lax presheaf of categories. These are the two structures,
Sh(B) and Tors(G), referred to in the title of this section. (Generally in this chapter, we will try to
use a ‘sans serif’ font for such localised objects, with the more usual italic-style font for the mere
category, rather than these ‘fibred categories’.)

Suppose that G is a sheaf or bundle of groups on B (or in a topos, E) and that U is an open
set of B. We can restrict G to U to get a sheaf of groups, GU , on U and hence a groupoid of

331
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GU -torsors, Tors(U ;G). (We have abbreviated the notation Tors(U ;GU ) to Tors(U ;G) here as
the extra mention of U seems unnecessary.)

Next look at V ⊂ U and restrict the GU -torsors to V . This gives a functor

resUV : Tors(U ;G)→ Tors(V ;G).

If W ⊂ V ⊂ U , then there is a natural isomorphism between resUW and the composite resVW ◦resUV :
Tors(U ;G)→ Tors(W ;G).

This looks very like a presheaf of categories (in fact of groupoids as each Tors(U ;G) is a
groupoid as we have seen). Why is it not one? The point is how is resUV defined? The problem is
most immediately seen in the related example of sheaves rather than torsors.

For each open set U in B, we have the category of sheaves on U , denoted Sh(U), and we can
represent the objects as étale spaces over U , so F corresponds to the sheaf of sections of some
EF → U , say. If V ⊂ U , we can restrict the étale space to be over V , but how exactly is that done?
Pullback.

i∗(EF ) //

��

EF

��
V

i // U

with i∗(EF ) = V ×U EF . Now suppose j : W → V , we have

j∗i∗(EF ) = W ×V V ×U EF ,

whilst
(ij)∗(EF ) = W ×U EF .

We are in a classic situation, very like that with a category with tensors, i.e., a monoidal category.
These objects are not equal, but are naturally isomorphic. (In fact you might ask what ‘equality’
really means, and it would be a good question!) A slightly more categorical way of viewing this is
to say i∗ is defined by pullback and pullbacks are only defined ‘up to isomorphism’, so we cannot
guarantee ‘equality’ merely ‘natural isomorphism’. The same is true for our torsors, resUV is really
only specified up to isomorphism. (The first time you meet this it will seem strange since, surely,
restriction is such a well behaved operation, but you have to think how it is done and then . . . .)

(The notation is getting to be a bit heavy so we will sometimes write U1
i→ U0, and similar, to

allow indexation, and will put indices rather than indexing by objects. We will then write i∗ for
resU1

U0
.)

There is a further property of these restriction functors. If we have

U3
k→ U2

j→ U1
i→ U0

within Open(B), then we have natural isomorphisms

τi,j : (ij)∗ → j∗i∗

and similarly for the other possibilities. These give a diagram

(ijk)∗
τij,k //

τi,jk

��

k∗(ij)∗

k∗.τi,j
��

(jk)∗i∗
τj,k.i

∗
// k∗j∗i∗
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and, as usual in these situations, this commutes. (This is another form of cocycle condition as will
become apparent later on.)

We return briefly to i∗ : Tors(G;U) → Tors(G;V ), and how it is formed. If P is a GU -torsor
on U , then we have to first form the sheaf, i∗(P ), over V , then look at the restricted sheaf, i∗(G),
of groups, then check that i∗(P ) is a i∗(G)-torsor.

It pays to verify this cocycle condition in several ways; for instance, using étale spaces and
pullbacks to get explicit representatives for these objects and to use ‘bare hands’ calculations, but
also look at the functorial properties of the functor i∗ : Sh(U)→ Sh(V ) and check it for existence
of adjoints. (Any standard text on sheaf theory will show you how.) With these categorical
properties, you could give a description of i∗ : Tors(G;U) → Tors(G;V ) by showing that i∗ on
sheaves preserves torsors. This second neat method easily extends to the topos case, whilst the
first argument can give a direct geometric ‘hands-on’ feel to what is happening.

9.1.2 Other examples

The situation that we noted for Tors(G) and Sh(B) also works for other situations such as for the
category, V ect(B), of vector bundles on B. We have a lot of locally defined categories, V ect(U),
for U open in B, fitting together neatly - clearly a descent situation. A similar situation occurs
with the category of modules, not modules over a fixed ring, R, but modules. Here a module is a
pair, (R,M), with R, an associative ring, and M , a left R-module, then a morphism of such objects
is also a pair, (ϕ, f), where ϕ : R → S is a ring homomorphism and f : M → N is an Abelian
group morphism such that for all r ∈ R, and m ∈M , f(r.m) = ϕ(r).f(m), in the obvious way, i.e.,
it is a module morphism over ϕ. We have a forgetful functor Mod → Rings and also a ‘functor’

F : Ringsop → Cat, given by F (R) = R−Mod, but it is not quite functorial as, given R
ϕ→ S

θ→ T ,
the resulting triangle of categories and functors only commutes up to natural isomorphism,

F (θϕ) ∼= F (ϕ)F (θ).

not ‘on the nose’ with an equality. We will not examine such ‘pseudo’ functors in full abstract
generality yet, but would note that several of our crossed situations do give exactly this sort of
structure.

9.1.3 Fibred Categories and pseudo-functors

For the moment, restricting our detailed attention to the spatial case, we abstract the structure of
Sh(B) and Tors(G) to get the following:

Definition: (Pseudo-functor version) A fibred category, F, over B consists of

(i) a category, F (U), for each open set U of B;

(ii) a functor, i∗ : F (U)→ F (V ), for each inclusion i : V → U in Open(B);

(iii) a natural isomorphism

τ = τij : (ij)∗ → j∗i∗,

for each pair of inclusions W
j→ V

i→ U .
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This data is to satisfy the 3-cocycle condition that, given inclusions

U3
k→ U2

j→ U1
i→ U0,

the diagram

(ijk)∗
τij,k //

τi,jk

��

k∗(ij)∗

k∗.τi,j
��

(jk)∗i∗
τj,k.i

∗
// k∗j∗i∗

commutes, where the arrows are induced from the τ -transformations.

Remark: A fibred category, in this sense, is ‘exactly’ a ’op-lax’, pseudo functor from Open(B)op

to Cat, the ‘category’ of categories, but note we are really using Cat as a 2-category, hence, we
will try to use the notation, Cat, rather than simply Cat. (We will ignore difficulties of the size of
the F (U) here - they do not often cause any bother.) More generally we may also want to consider
a ‘op-lax pseudo’-functor, F , from a small category, C, to Cat as there are aspects of the situation
which are simpler to describe in this more general setting (due mostly to a cleaner notation).

We have hinted that ‘lax’ or ’op-lax’ functors replace preservation of composition by preservation
up to a 2-cell, i.e., the codomain setting needs to be a 2-category or similar and then such a lax-
functor, F , will send the equality in a composite a ◦ b = c by a 2-arrow F (a) ◦ F (b) ⇒ F (c).
An op-lax functor has the 2-cell going in the opposite direction F (c) ⇒ F (a) ◦ F (b). (Which is
appropriate depends on the context and terminological conventions being employed.) When looked
at in all generality, we also would have a 2-cell measuring the extent that F does / does not preserve
the identity arrows.

By a ‘pseudo-functor’, we mean a lax or op-lax functor in which that 2-cell is always invertible,
so its direction is not that important. We will often say ‘lax pseudo-functor’ or ‘op-lax pseudo-
functor’ meaning a pseudo-functor presented in its lax or op-lax form. It is really just a question
of its ‘presentation’. (Perhaps one should be saying the pseudo-functor is the data (F, τ, τ−1), but
that seems ‘overkill’ !)

If we have a lax pseudo-functor, then just replacing the structural 2-cells by their inverses and
we will have an op-lax pseudo functor. We are often working with higher dimensional analogues
of groupoids and there higher dimensional cells are invertible, so saying ‘lax’ or op-lax would have
sufficed.

A good brief introduction to some aspects of lax ‘pseudo’ functors can be found in Borceux
and Janelidze’s book, [26]. We will look in some more details at lax and pseudo-functors later,
(starting page 446), but, as this will only skate selectively over the surface of the theory, you may
need to look up more details in ‘the literature’ in the mean-time. There is also a notion a pseudo-
natural transformation, and once or twice in what follows, we will use the notion Ps(C,Cat) for the
category of pseudo-functors and pseudo-natural transformation between them, having a category,
C, as domain and the category of categories as codomain. There is even a 2-categorical version
which we will try to consistently denote Ps(C,Cat)

Examples of fibred categories: (i) Any presheaf of categories, F : Open(B)op → Cat, gives
a fibred category in which all the τ are identity transformations. The general case is thus a ‘pseudo
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presheaf’ of categories in a precise sense, or a ‘presheaf up to isomorphisms’. This is a case of the
fact that ‘any functor is a pseudo-functor’.

(ii) The examples of sheaves and G-torsors give fibred categories that will be denoted Sh(B)
and Tors(G), respectively.

(iii) When discussing non-Abelian group extensions, (Chapter 6.1, p. 198), from a general
extension,

E : 1→ K
ι→ E

p→ G→ 1,

we saw that a choice of section, s, does not give an action of G on K, but does give a pseudo
functor from G[1] to Grps. It will be useful to revisit this now. (First remember G[1] is the group
G thought of as a groupoid with a single object ∗.)

Suppose given s : G→ E, a section of p, we try to define

Fs : G[1]→ Grps ↪→ Grpds

by Fs(∗) = K, the ‘kernel’ part of the extension
- for g ∈ G, Fs(g) : K → K is the automorphism of K given by

ι(Fs(g)(k)) = s(g)ι(k)s(g)−1,

but then we note that

ι(Fs(g2g1)(k)) = s(g2g1)ι(k)s(g2g1)−1,

whilst

ι(Fs(g2)Fs(g1)(k)) = s(g2)s(g1)ι(k)s(g1)−1s(g2)−1,

and these need not be equal. They are conjugate, however, and, if we define (cf. page 48), the
factor set,

f : G×G→ E

f(g2, g1) = s(g2)s(g1)s(g2g1)−1,

then conjugating by f(g2, g1) within E gives a 2-cell in the groupoid, Grps(K,K), from Fs(g2g1) to
Fs(g2)Fs(g1), i.e., s gives a pseudo-functor from G[1] to Grpds, here presented in its op-lax form.

We note that there was a neat construction, given Fs, of the centre term, E, of the extension
(up to isomorphism), basically by taking as its underlying set the product set, K×G, and defining
a multiplication using both s and f .

By considering groups as groupoids and thus as small categories, the extension thus gives a
fibred category / pseudo-functor over G[1], the group G considered as a groupoid. The use of
techniques such as that of the crossed resolution, C(G), to encode the ‘laxity’ is typical of the
process of resolving an object to handle choices ‘up to isomorphism’, or ‘up to coherent homotopy’,
(see sections 11.2.3 and 11.5.2), and this shows the link with other cohomological tools.

9.2 The Grothendieck construction

This third example, together with the connection with presheaves, suggests that there should be a
construction of an ‘étale-space’-like category, EF, with a functor p : EF → C. (We treat the more
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general case with a general C not just in the case of Open(B).) In fact, the term ‘fibred category’

would suggest such an interpretation anyway. How could one construct EF
p→ C from F : Cop → Cat?

There is an ‘obvious’ way. (It is known as the Grothendieck construction, but priority in the use of it
is debatable as Ehresmann was using it about the same time that it was first used by Grothendieck,
and both seem to have recognised it as being, to them, a mild generalisation of the construction of
semi-direct products, or, more exactly, of the Schreier construction of an extension from a cocycle.
(It is also not that good a term since the ‘Grothendieck construction’ is also applied to the method
of converting a semi-group into a group by adding inverses, as in Grothendieck’s construction of
the K-theory of vector bundles on a space.) We will now approach the problem without thinking
too much about the group extension case, as it then can be seen to be very natural in general - it
also more clearly relates to twisting a ‘product bundle’.

9.2.1 The basic Grothendieck construction and its variants

If you look for the Grothendieck construction in the literature, initially, you will risk becoming
slightly confused. Sometimes the basic input is a functor F : C → Cat, sometimes F : Cop → Cat,
but then F may be an op-lax or a lax functor, or more often a pseudo functor. The constructions
given are clearly closely related, but they are not ‘the same’. It therefore seems a good idea to
set down a very basic version of the construction and then to look at variations on that. To add
slightly to the confusion, we will sometimes have to convert from ‘op-lax pseudo’ to ‘lax pseudo’ or
vice versa if we are handed a pseudo-functor in slightly the wrong format!

All that being said the basic construction may, or may not, be the one you will need and all
of the possibilities are likely to be called the Grothendieck construction! We will give one form
as basic, with three variants. The first of these variants is as ‘basic’ (and about as common) as
the first one we will handle, so could equally well have been chosen as the basic form. Because of
this, our ‘basic’ one may not be the basic one for someone else, just as semi-direct products are
presented in several different ways.

The basic set up that we will choose will be that of a normalised op-lax functor F : C → Cat.
We thus have F = (F, τ), where, if f : c→ c′, and g : c′ → c′′, τf,g : F (gf)⇒ F (g)F (f) is a natural
transformation, which satisfy a 3-cocycle condition, dual to that given on page 334, for composible
triples of morphisms. (We will not assume that τ is necessarily a natural isomorphism.)

The category, EF, will have

• as objects, pairs (x, c) with c ∈ Ob(C) and x ∈ Ob(F (c));

• as morphisms, pairs (α, f) : (x, c)→ (x′, c′), with f : c→ c′ (and thus F (f) : F (c)→ F (c′)),
and α : F (f)(x)→ x′, a morphism in F (c′);

• as composition: in the situation

(x, c)
(α,f)→ (x′, c′)

(β,g)→ (x′′, c′′),

the composite has gf : c→ c′′ in its C-component, and the composite

F (gf)(x)
τf,g(x)
→ F (g)F (f)(x)

F (g)(α)→ F (g)(x′)
β→ x′′,

in the fibre over c′′;
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• as identities: given (x, c) in EF, (idx, idc) is the identity at this object.

The verification of associativity uses the fact that τ satisfies a 3-cocycle condition, cf. page 334,
and the identity works because F is assumed to be normalised.

We note that there is a projection, p : EF → C, given by p(x, c) = c, p(α, f) = f . We will look
at this in some detail shortly, but will concentrate on one of the variants!

Remarks: (a) If F : C → Cat is simply a functor, then each τf,g is the relevant identity
transformation and the formulas simplify.

(b) If F is a pseudo-functor, (F, τ), but given in ‘lax’ form, so τf,g : F (g)F (f) → F (gf), then
we can replace τ by τ−1 to get F into op-lax form and use the above. It is this situation that occurs
quite often.

(c) We could replace the codomain 2-category Cat by other similar 2-categories, such as Grpd
with virtually no bother, but to go to a general 2-category (which would require a bit of extra
structure to be made explicit, such as existence of colimits), we would need to use slightly more
sophisticated tools, namely tensors / copowers and coends. We will see this in chapter ??, in
discussing homotopy limits and colimits.

First variation: F : Cop → Cat is a lax functor (so τ : F (f)F (g)⇒ F (gf).)
We use a simple trick to see how this might be done. First not that Fop : C → Catop, and

then, without agonising about the multiple types of duals / opposites that Cat has, try the basic
formulas with reverse of the directions. If one does not work, reflect on the problem, check your
working and . . . , try another! The category EF should have for objects, pairs (x, c) with c ∈ Ob(C
and x ∈ Ob(F (c)), as before, whilst a morphism

(α, f) : (x, c)→ (x′, c′),

will have f : c→ c′ (and so fop : c′ → c), and then α : x→ F (f)(x′) in F (c). That looks feasible,
so we now try composition:

(x, c)
(α,f)→ (x′, c′)

(β,g)→ (x′′, c′′).

We have, clearly, gf : c→ c′′ and need an arrow in F (c) from x to F (gf): We have

α : x→ F (f)(x′)

and
β : x′ → F (g)(x′′),

so F (f)(β) : F (f)(x′) → F (f)F (g)(x′′) and we can use τf,g(x
′′) to get from F (f)F (g)(x′′) to

F (gf)(x′′).
We again have to check associativity (which again follows from the cocycle condition of τ) and

the existence of identities. We have a functor p : EFtoC. (If we work with F op more explicitly EFop
will come with a functor to Cop, exactly as in the basic version, but then the construction of EF
that we have given is, more or less, (EFop)op, so we get a functor to C itself.)

It is this version that is useful in many geometric situations, including that of stacks, as a
presheaf of categories gives a functor F : Cop → Cat. In pratice, F is more often a pseudo-functor,
so one uses either τ or τ−1, (depending on the conventions in place!), to get the lax form of ‘pseudo’.
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The other two variants are of less immediate use for us, but we will sketch them anyhow.

2nd variation: F : Cop → Cat is an op-lax functor.

(We can handle the ‘pseudo’ case of this using the first variant.)

As we have ‘op-lax’, we have F (gf)⇒ F (f)(F (g), and, imitating the other version, this suggests
having morphisms α, f) with α : F (f)(x′)→ x. This thus takes a dual in the fibre. The details are
left to you.

3rd variation: F : C → Cat is lax.

Here we use morphisms (α, f) : (x, c)→ (x′, c′) with f : c→ c′ and α : x′ → F (f)(x), so again
dualise in the fibre.

The most useful form for us is when it is assumed that we have a pseudo-functor, (F, τ), with
F : Cop → Cat, (presented in op-lax form, in agreement with the initial definition, although we will
use τ−1 as well). We thus have, explicitly, a morphism in EF from (x, c) to (y, d) is a pair, (α, f),
where f : c→ d in C and α : x→ F (f)(y) is a morphism in the ‘fibre’ over c, i.e., in F (c), and the
composition of such morphisms,

(x, c)
(α,f)−→ (y, d)

(β,g)−→ (z, e),

is

(β, g)]0(α, f) = (τ−1
(g,f)(z) ◦ F (f)(β) ◦ α, gf)

(It is useful to compare this with the formula in section 2.3 for the twisting of the multiplication
in an extension using the ‘factor set’, f(g2, g1).)

Remark: The various forms of the Grothendieck construction are ‘homotopy colimits’, (cf.
[161]), so this relates to the type of construction described, in slightly vague terms, at the end of
the previous chapter. We will revisit it later.

9.2.2 Fibred categories as Grothendieck fibrations

Fibred categories also arise as ‘fibrations of categories’. From a pseudo-functor, F : Cop → Cat,
we constructed a category EF over C. This is not just ‘any old’ functor, but has properties that
resemble those of a fibration of spaces or simplicial sets. These properties correspond to a form of
path lify=ting, but since a path in a category need not be reversible, and a path has two ends, the
notion comes in two main flavours. We will give one. Many sources give the other. Approximately
they correspond to the op-lax and lax forms of pseudo-functor, mixed with using the dual categories.
They more or less coincide when handling pseudo-functors from Cop to the category of groupoids
of ‘fibrations with groupoid fibres’ or ‘categories fibred in groupoids’ or . . . ; the terminology used
is fairly transparent, but is quite varied! We will explore this without immediate reference to the
preceding ideas, making the link later.

A motivating example: One motivating, and quite intuitively simple, example of a category
over C with nice properties is when C has finite limits (so, in particular, pullbacks exist).
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For each object c in C, we have the category C/c of objects over c. (We saw this idea earlier,
(for instance, page 226), with Top/B, in our initial discussion of bundle-like phenomena.) We here
want to look at the pullback operation and its interaction with these ‘objects over’ categories and
to do this in various different ways.

This category C/c is the fibre over c of a functor defined on the category Arr(C) := C[1], of
arrows in C. (The notation C[1] refers ti the identification of Arr(C) as the category of functors
from [1], (yes, the small category corresponding to 0→ 1 or 0 < 1) to C.)The objects are the arrows

c→ d

in C, and these are ‘the same as’ functors from [1] to C, and the morphisms are the commutative
squares: in other words,

(c
ε→ d)

ϕ→ (c′
ε′→ d′)

is ϕ = (ϕ1, ϕ0) : ε→ ε′, and that is,

c
ϕ1 //

ε

��

c′

ε′

��
d

ϕ0 // d

so, interpreted another way, they are ‘natural transformations’.)
The assignment cod : Arr(C) → C, cod(c → d) = d, is clearly a functor and the fibre cod−1(d)

over d is precisely C/d.
The ‘game’ is to identify the pullback squares in Arr(C) by some neat universal property with

regard to this functor, cod. Of course, a pullback square is just a particular type of morphism in
Arr(C). (There are two versions of the property - we will look at the stronger one first.)

Note on origin of terminology: An early used alternative name for ‘pullback square’ was
Cartesian square; see, for instance, Gabriel and Zisman, [81].

Suppose we have a morphism, ϕ : ε′ → ε, in Arr(C),

a′
ϕ1 //

ε′

��

a

ε

��
b′

ϕ0 // b

We will say it is Cartesian if, for any other morphism ψ : ε′′ → ε and g : b′′ → b, such that ψ0 = ϕ0g

a′′
ψ1

""
ε′′

��

a′
ϕ1 //

ε′

��

a

ε

��
b′′

g //

ψ0

77b′
ϕ0 // b

there is a unique g : a′′ → a′ such that γ = (g, g) : ε′′ → ε′ in Arr(C) and ϕ]0γ = ψ.



340 CHAPTER 9. NON-ABELIAN COHOMOLOGY: STACKS

If g was just the identity, this would be the ordinary pullback square property, and, of course,
in this case, the more complex condition is a consequence of that property. We will see why this is
useful later on.

We have:

Lemma 50 For the functor, cod : Arr(C) → C, the Cartesian morphisms are exactly the pullback
squares. �

The importance of such pullback situations in descent theory (of all flavours) led to the ab-
straction of the idea of a fibred category as a type of categorical fibration, (cf. Grothendieck,
[88]).

The initial set up is a category, B, as base. In addition we have another one, denoted E , as the
‘total’ or ‘top’ space of the fibration, together with a functor p : E → B. We first a definition of
Cartesian arrow, generalising and abstracting that above.

Definition: An arrow ϕ : e′ → e in E is said to be Cartesian if, given any other arrow ψ : e′′

in E with the same codomain and a factorisation of p(ψ) through p(e′) and p(ϕ),

p(e′′)

g
##FFFFFFFF
p(ψ)

))RRRRRRRRRRRRRRRRR

p(e′)
p(ϕ)

// p(e)

then g lifts to a unique χ : e′′ → e′ in E such that ψ = ϕ]0χ, and, of course, g = p(χ).

Remark: Thinking in terms of lifts in fibrations in a spatial or simplicial set context, the
apparent extra complication here is due to the fact that the basic path from 0 to 1 in [1] is not
reversible. The above idea thus reads: if you choose p(e) as base point, and p(ϕ) is the image of
a path in the top category ending above p(e), then you can lift factorisations down below to ones
above in a unique way.

Example: Let p : G→ H be an epimorphism of groups, then, of course, for the corresponding
single object groupoids, p[1] : G[1]→ H[1] is a functor.

Lemma 51 For this functor, any arrow in G[1] is Cartesian. �

There is another weaker notion of Cartesian arrow, as follows:

Definition: An arrow ϕ : e′ → e in E is said to be weakly Cartesian if, given any other arrow
ψ : e′′ → e in E with the same codomain such that p(ψ) = p(ϕ), then there is a unique χ : e′′ → e′

in E such that ψ = ϕ]0χ and p(χ) = idp(e′).

In our pullback example, this weaker property would seem to be nearer to the usual universal
property of pullbacks, however, whilst the composite of Cartesian arrows will be Cartesian, (see the
lemma below), the same is not necessarily true for the weaker form. Why is this important? The
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idea of Cartesian arrow is to capture that property of pullbacks for use in the many situations in
which pullback-like constructions are needed (and especially in ‘descent’, where ‘good’ objects over
an object are pulled and pushed around over subobjects, covers, and a mass of other variants).

Recall that if we have a diagram

A
α1 //

f
��

¬

B
β1 //

g

��


C

h
��

A′ α0

// B′
β0
// C ′

in an arbitrary category, and both the small squares ¬ and  are pullbacks, then the big outer
‘square’, ®,

A
β1α1 //

f
��

®

C

h
��

A′
β0α0

// C ′

is also one. You probably have seen this, but it will pay to recall the idea, so we will ‘revise’ it.
You take a commutative square

X
c //

a

��

C

h
��

A′
β0α0

// C ′

and use the universal property of square  to get a unique morphism from X to B factoring c via
β1. Then you check the resulting square

X //

��

B

g

��
A′ α0

// B′

commutes to get a factorisation via α1 ot the top arrow (using the universal property of ¬). Finally
you check that everything fits together as you hoped for.

Lemma 52 Given a functor p : E → B, if ϕ2 : e2 → e1 and ϕ1 : e1 → e are Cartesian arrows, so
is ϕ1ϕ2 : e2 → e. �

No prizes for the proof! You just mimic the proof of ‘pullbacks compose’. Note however that the
proof uses the stronger Cartesian condition in a strong way. (You might with justice say that as
the result was to be ‘strong’, you would expect to use ‘strong’ for the proof, but then a natural
question is: does an analogous result hold for weak Cartesian arrows? There is a blockage. This
is worth investigating.) We thus cannot assume that the composite of weak Cartesian arrows is
weak Cartesian.

Returning to the string case, we make a definition:
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Definition: A functor p : E → B is a Grothendieck fibration (usually abbreviated to fibration)
if, for any object e in E and f : b → p(e) in B, there is a Cartesian arrow ϕ : e′ → e in E with
p(ϕ) = f .

Remark: If a functor p : E → B is a fibration, then weak Cartesian arrows compose. Conversely,
if the fibration condition holds with ‘weak Cartesian’ replacing ‘Cartesian’ and, if in addition, weak
Cartesian arrows compose then p will be a fibration. It was in this form that the definition of
a fibred category as a fibration was given originally; see Grothendieck in [88, 90] and Giraud in
[83, 84].

Examples:

1. If θ : G → H is a group epimorphism, then the corresponding functor, θ[1] : G[1]→ H[1], is
a fibration.

2. If C has pullbacks, then cod : Arr(C)→ C is a fibration.

The proofs of these two are left to you.

It is sometimes useful to use the following loose terminology:
If ϕ : e′ → e is a Cartesian arrow of p : E → B and p(ϕ) : p(e′)→ p(e) is its image in B, we may

say that e′ is a pullback of e over p(ϕ).

In a fibration, p : E → B, there are enough ‘lifts’ of arrows in B. You specify an object e in E
and an arrow ending at p(e), then that arrow is the image of at least one Cartesian arrow back up
in E , ending at e, - so the solution set for the lifting problem is always non-empty.

Definition: Let p : E → B be a fibration. A cleavage of p is a class, K, of Cartesian arrows in
E such that, for each e in E and f : b → p(e), there is a unique arrow, ϕ : e′ → e in K satisfying
p(ϕ) = f .

A way of thinking of a cleavage is that it is a categorification of a transversal in group theory.
If we have a group epimorphism θ : G→ H, then a transversal for H in G can be variously defined
as a section s : H → G, i.e., a function / map on the underlying sets of the two groups, such
that ϕs(h) = h for all h ∈ H. If you prefer to think of θ inducing an isomorphism G/Kerθ ∼= H,
so elements of H ‘are’ cosets, the transversal is a set of coset representatives. Of course, s is
not a splitting. It is not, in general, a homomorphism. Interpreting θ : G → H as a functor,
θ[1] : G[1]→ H[1], we have any cleavage K corresponds exactly to a transversal.

Do they always exist? The axiom of choice tells one that

Proposition 71 (If the Axiom of Choice holds in your context) every fibration has a cleavage. �

Remark: You may think that a strange way to state a proposition, so let us see why it is important.
The axiom of choice states, in categorical language, that any epimorphism between sets if split,
yet in many categories epimorphisms need not be split - that is the whole point of the notion of
cleavage, in fact from some points of view the whole point about cohomology! Many of the ideas of
this chapter so far, such as pseudo-functor, fibred category, fibration, work well (and usefully) for
generalisations of the context. For instance, we might ask for fibrations of internal categories or of
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enriched categories. The ideas and intuitions make sense, although sometimes the definition may
need reformulating to avoid too ‘set biased’ a language. the existence of a cleavage for a fibration,
say, between internal categories will be dependent on where you are. (You may like the following
simple case as (i) it uses ideas we do know well and (ii) it is relevant for later use. Consider a
morphism, p : E → B, between internal categories in the category of groups. When should it be
considered to be a fibration? What should be the definition of a ‘cleavage’ of such a fibration?
Remember you should be doing everything within the category of groups. Do they exist? When?
Again remember epimorphisms rarely split in the category of groups, ... . This is left to you to
worry out.)

Following on from this, there is another obvious definition.

Definition: A cleavage, K, for a fibration, p : E → B, is a splitting if it contains all identities
and is closed under composition.

A fibration, p : E → B, is a split fibration if it has a splitting.

9.2.3 From pseudo-functors to fibrations

We constructed a functor, p : EF → B, from a pseudo-functor, F : Bop → Cat.

Proposition 72 The functor p : EF → B is a fibration with K = {(id, f) | f : b′ → b in B}, being
a cleavage of p.

Proof: The easy way to check a functor is a fibration is to give a cleavage, so here, as we are given
a candidate cleavage, we just check that it is one.

First a bit more precision is needed. Given f : b′ → b in B and an object x in F (b), we have
(idF (f)(x), f) : (F (f)(x), b′) → (x, b) is in K. We must check that this is a Cartesian arrow. (We
bridge the two notations and take e = (x, b), e′ = (F (f)(x), b′), ϕ = (idF (f)(x), f).)

Suppose given ψ : e′′ → e is in EF, with e′′ = (x′′, b′′), and a factorisation p(ψ) = fp(ϕ) = fg,
where g : b′′ → x. We thus have ψ = (β, fg) for some β : x′′ → F (fg)(x). We want χ : e′′ → e′

with ψ = ϕ]0χ and p(χ) = g. We thus know that χ has the form (γ, g) and so γ : x′′ → F (g)(x′),
where x′ = F (f)(x). The condition that ψ = ϕ]0χ translates as the trivial fg = fg together with
that β is the composite

x′′
γ // F (g)F (f)(x)

F (g)(id)// F (g)F (f)(x)
τ−1
(g,f) // F (fg)(x).

We thus have β = τ−1
(g,f)γ, so can read off γ = τ(g,f)β to find the unique χ satisfying the conditions.

�

Corollary 13 The cleaved fibration (EF, pF,K), associated with a pseudo-functor F = (F, τ) is split
if and only if F is a functor and τ is the identity. �

This is just a question of checking that ‘K contains all the identities and is closed under composition’
is equivalent to ‘τ is trivial’. It is left to you.
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9.2.4 . . . and back

Suppose we have a fibration, (E , p), over B and choose a cleavage, K. Is there an associated
pseudo-functor, F = (F, τ), and an isomorphism of fibrations between (E , p) and (EF, pF).

The first thing to note is that we have not yet actually defined what is a morphism between
fibrations. The definition is more or less obvious.

Definition: If (E , p) and (E ′, p′) are two fibrations over B, a morphism of fibrations from (E , p)
to (E ′, p′) is a functor, F : E → E ′, over B (so p′F = p) and such that F preserves Cartesian arrows.

We have an evident category, Fib(B), of fibrations over B, and an equally evident notion of
isomorphism.

(In fact, Fib(B) is better off being given the structure of a 2-category, but we leave that aside
for you to investigate.)

Proposition 73 A cleaved fibration (E , p,K) over B defines a pseudo-functor F : BoptoCat.

Proof: (As you would suspect, the idea is that you ‘unbuild’ or ‘deconstruct’, the fibration,
reversing the process given in previous sections.)

For b and object of B, let F (b) be the subcategory of E , whose objects are the objects, e, of E ,
which map down to b, so p(e) = b, and whose arrows, ϕ : e→ e′ are those of E satisfying p(ϕ) = idb.

Now suppose f : b′ → b is an arrow in B, we define F (f) : F (b)→ F (b′) (and not the change in
direction) by

• if e ∈ F (b), there is a unique Cartesian arrow, ϕ : e′ → e in the given cleavage, K such that
p(ϕ) = f , and we set F (f)(e) = e′;

• if α : e1 → e is an arrow in F (b), then we have a unique Cartesian arrow, ϕ1 : e1 → e ad
F (f)(e1) = e′1. We need F (f)(α) : e′1 → e′, i.e., F (f)(α) : F (f)(e1) → F (f)(e). We have a
diagram

e′1
e1 // e1

α

��
e′ ϕ

// e1

with ϕ Cartesian, so have a unique χ : e′1 → e′ such that ϕχ = αϕ1 and p(χ) = idb′ . We set
F (f)(α) := χ.

We now check what happens if, in addition, we have b : b′′ → b′. We can work out F (fg) and
F (g)F (f) from F (b′) to F (b′′). For each object e in F (b), we have unique Cartesian arrows

ϕ : e′ → e over f,
γ : e′′ → e′ over g,
ψ : e′′1 → e over fg,

all in K, however K was not assumed to be a splitting, so we do not know if ϕγ is in K. It will be
Cartesian however. We now need a ‘useful lemma’:

Lemma 53 In a fibration, (E , p) over B, if ϕ : e′ → e and ψ : e1 : e′1 → e are both Cartesian
arrows over f : b′ → b, then there is a unique isomorphism χ : e′1 → e′ such that ψ = ϕχ and
p(χ) = idb′.



9.2. THE GROTHENDIECK CONSTRUCTION 345

Proof: This is fairly routine. You first find a unique χ using the Cartesian property for ϕ, then
find a χ′ : e′ → e′1 using the Cartesian property of ψ. Next look at χχ′ and χ′χ as lifts of the
identity on b′1 (and b′ respectively), then use uniqueness once more and the fact that the identity
arrows are Cartesian arrows to conclude that χ′ is the inverse of χ. �

Returning to the main proof, we have both ψ and ϕγ are Cartesian arrow over fg, so there is
an arrow χ : e′′1 → e′′, that is, from F (fg)(e) to F (g)F (f)(e). We take this to be out τg,f)(e) and
check that it is an isomorphism (by the lemma) and is natural (by various uniqueness clauses).
Finally we are left with the cocycle condition and that follows from another use of the uniqueness
clause. (It is worthwhile checking this last point in a bit of detail.) �

The following is now fairly obvious:

Corollary 14 The pseudo-functor associated to a cleaved fibration is a functor if and only if the
cleavage is a splitting. �

The proof is left to you.

We also leave you to state and prove hopefully now fairly obvious results linking FibCat(B)
and Ps(Bop,Cat).

You may also want to consider the following:
In the theory of group extensions, there are results comparing different sections of the ‘right

hand’ epimorphism and linking that with the cohomological invariants of the target group. Are
there analogues in the theory of fibrations using different cleavages for some fibration? What sort
of theory might one hope for (i) in general, or (ii) in particular cases such as those we will study
in the next section?

There are many interesting aspects of fibrations that we will not go into here. They are of
considerable use in various logical situations, as well as in the cohomological and geometric ones
that we will be considering here. For a development of this logical side, you can refer to Streicher’s
notes on Bénabou’s ideas, in [159].

9.2.5 Two special cases and a generalisation

There are two special cases that are very interesting for their links with other areas that we have
met.

Categories fibred in groupoids
These can be specified most simply by a pseudo-functor, F : Bop → Grpds, that is,one taking

values in the full 2-subcategory of groupoids. Formally, and for ease of later use:

Definition: A fibred category F = (F, τ) over B is said to be fibred in groupoids if F is a
pseudo-functor from Bop to Cat such that, for each object, c, F (c) is a groupoid.

Suppose we view this from the fibration viewpoint. Clearly we will have a fibration, p : EF → B,
with each p−1(c), a groupoid, but there is a neater way of looking at this.

Proposition 74 A functor p : E → B corresponds to a category fibred in groupoids if, and only if,
the following two conditions are satisfied
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(i) every morphism is Cartsian;
and

(ii) given any object e of E and arrow f : b′ → p(e), there is an arrow ϕ : e′ → e in E with
p(ϕ) = f .

Remark: In the particular case of fibrations of groupoids, that is when the base category B is also
a groupoid, the second condition is known as costar surjectivity. In some wok on groupoids, the
star of an object, x in the groupoid G is the set of g in G whose source is x, whilst the costar of x
is the set of g whose target is x. (Both are particularly well behave instances of comma categories.
or more exactly, sets of generators for the comma categories at x.) A proof that star surjectivity
is equivalent to a fibration condition is given in [111] on page 155, but notice that the version of
fibration being used is more ‘homotopically’ based.)

Proof of proposition: If the two conditions hold for (E , p), then clearly this is a fibration.
Now assume ϕ : e′ → e is an arrow in some fibre, p−1p(e), then using (i), ϕ is Cartesian, so there
is a ψ : e→ e′, also satsifying p(ψ) = idf(e) and ϕψ = ide by uniqueness. (We used this argument
a short while ago.) Thus every arrow has a pre-inverse. The re-inverse ψ also has a pre-inverse,
and, by associativity, this will be ϕ (by the usual argument - think back to the beginning of most
Group Theory courses!) We thus have that p−1(p(e)) is a groupoid.

Now assume (E , p) is fibred in groupoids. Condition (ii) is immediate, so we just have to check
(i). Given ϕ : e′ → e in E , and suppose ψ : e′′ → e in E , g : p(e′′) → p(e). We know that, as (E , p)
is a fibration, there is a Cartesian arrow ϕ′ : e′′′ → e over p(e′) → p(e), and a unique χ : e′′ → e′′′

factorising ψ (as ψ = ϕ′χ), and over g. We also have a unique τ : e′ → e′′ factorising ϕ ( as ϕ = ϕ′τ)
and over the identity on p(e′). The arrow τ−1χ : e′′ → e′, then factorises ψ as ϕ(τ−1χ) and is over
g; uniqueness is easy to check. Thus condition (i) holds: all morphisms in E are Cartesian. �

Of course, this means that, if (E ′, p′) is a fibration and (E , p) is a fibration fibred in groupoids,
both over the base category B, than for any functor f : E ′ → E over B (so p′f = p), will be a
morphism of fibrations.

Discrete fibrations = Categories fibred in sets

A very particular (but also very important) case of the previous situation occurs if the pseudo-
functor F : Bop → Grpds actually takes values in the subcategory of sets, that is, sets considered as
groupoids only having identity arrows.

Definition: A fibration (E , p) over B is said t be discrete or fibred in sets if, for any object b
in B, the only arrows in p−1(b) are identity arrows.

As you might expect, these special discrete fibrations have a special property.

Proposition 75 Let (E , p) be a category over B. It is a fibration fibred in sets if, and only if, for
any object e of E and any arrow f : b→ p(e), there is a unique arrow, ϕ : e′e with p(ϕ) = f .

Proof: For the ‘forward implication’, we know some ϕ exists, but if ψ : e′′ → e was another such
then there would be a χ in the fibre over b, factorising ψ through ϕ. The only such χ is an identity
as those are the only arrows in the fibre, so uniqueness follows.
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The converse is left to you to look at. �

Remark: Thinking of the analogy with topological fibrations, this clearly has close links with
the ‘unique path lifting’ type condition for covering spaces (cf. the discussion of covering spaces in
section 7.1.2, and in many books on elementary homotopy theory.)

If we now look at such a category fibred in sets / discrete fibration, and we consider the
associated pseudo-functor F = (F, τ) : Bop → Sets, then what is τ? That is easy. It is a natural
transformation between the pullback along a composite and the composite of the two pullbacks.
Right, ... , how is that given? By a family of arrows in the fibre F (b) = p−1(b), where b is in
the domain of the composite. However F (c) is a set considered as a discrete category, so the only
arrows there are identity arrows. We can thus derive this from the previous result:

Corollary 15 Any fibration (E , p) over B, which is fibred in sets, corresponds to a functor F :
Bop → Sets, i.e. to a presheaf on B. �

9.2.6 Fibred subcategories

The following is fairly obvious as a definition, but can be very useful as an idea.

Definition: Let (E , p) be a fibration / fibred category over B and suppose D is a subcategory
of E such that, on writing i for the inclusion of D into E

(i) (D, pi) is a fibration over B;

(ii) i : (D, pi)→ (E , p) is a morphism of fibrations.

We say (D, pi) is a fibred subcategory or subfibration of (E , p).

Of course, we will loosely say ‘D is a fibred subcategory of E ’ if no confusion is likely to arise.

Note the second condition of the definition implies that the Cartesian arrows for (D, pi) are also
Cartesian for (E , p).

Suppose p : E → B is a fibration, and consider D a full subcategory of E with the property that
if d is an objects of D and e → d is a Cartesian arrow of E , then e is also in D, then D with the
restriction pi of p is a sub-fibration of (E , p). the Cartesian arrows of D will be those of E , whose
codomains are in D.

Definition: Let (E , p) be a fibration. The fibred sub-category, (ECart, p), of Cartesian arrows
of (E , p) is specified by having the same objects as E , but merely the Cartesian arrows (as in the
discussion above).

From earlier work, we obtain:
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Corollary 16 For any fibration, (E , p), (ECart, p) is the largest sub-fibration of (E , p) that is fibred
in groupoids. �

This is the fibred version of the obvious construction of the maximal groupoid of a category.

As we have hinted earlier, we have only scratched the surface of fibred category theory and have
not touched on the applications. We need the theory for its input into the description of stacks,
but before that we need to start to look at things simplicially and also to introduce an intermediate
notion, prestack.

9.2.7 Fibred categories: a categorification of presheaves and a simplicial view

With the above discussion of fibred categories and fibrations, we can clearly see the ‘categorification’
aspect. With sheaves and étale spaces, the presheaf of sections gave the link between them. The
fibres were sets. With fibred categories, the fibres are categories. For sheaves, the 2-cocycle
condition was an equality, here it becomes an isomorphism and there is a 3-cocycle condition (page
334).

With regard to this 3-cocycle condition, the fact that this is a square is initially a bit confusing,
but first draw the 2-cocycle rule as a triangle:

1
F (g)

��>>>>>>>

0

F (f)
@@�������

F (gf)
//

⇑τf,g

2

now add another basic arrow giving a tetrahedron. We draw two views of this: from the basic

1

g

��+
+++++++++++++

$$IIIIIIIIIII

0

f
CC������

$$IIIIIIIIIII // 3

2

h

CC������

one gets the diagram of the d0 and d2 faces, (even faces),

•

1
F (g) //

F (hg)

��>>>>>>>>>>>>>>>> 2

F (h)

��
0

F (f)

OO

F (hgf)
// 3

plus 2-cells :

• τgf,h : F (hgf)⇒ F (h)F (gf)
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• τf,g : F (gf)⇒ F (g)F (f),

which give a composite 2-cell

(τg,h.F (f))τf,gh : F (hgf)⇒ F (h)F (g)F (f);

then a diagram of odd faces (with d1 and d3)

•
1

F (g) // 2

F (h)

��
0

F (f)

OO

F (hgf)
//

F (gf)

??����������������
3

plus 2-cells :

• τgf,h : F (hgf)⇒ F (h)F (gf)

• τf,g : F (gf)⇒ F (g)F (f)

giving a composite
(F (h).τf,g.F (f))τgf,h : F (hgf)⇒ F (h)F (g)F (f).

the 3-cocycle condition says that these two composite 2-cells are equal, i.e. the square diagram

F (hgf)
τgf,h +3

τf,hg

��

F (h)F (gf)

(F (h).τf,g)

��
F (hg)F (f)

(τg,h.F (f))
+3 F (h)F (g)F (f)

commutes.

A neat quite ‘geometric’ intuition of ‘why’ it must commute is that, with fibred categories, one is
using categories, functors and natural transformations, with nothing corresponding to 3-cells inside
a tetrahedron, or, perhaps more exactly, only identities as 3-cells, so the 3-cell in the tetrahedron
must be specifying equality and the square must commute. This is basically the same point as
when working with hyper-cohomology with coefficients in a short complex in the previous chapter.
Degree n maps eventually become trivial as n increases. We have seen other similar things earlier
in the notes as well.

We had morphisms of fibrations. Here is the corresponding idea from the pseudo-functor view-
point.

Definition: Given two fibred categories, F and G, over B, a morphism ϕ : F → G of fibred
categories consists of:

• a functor ϕU = ϕ(U) : F (U)→ G(U) for each open U in B;
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• for each inclusion i : V → U , a natural isomorphism

αi : ϕV i
∗ ∼=→ i∗ϕU ,

which are to satisfy a compatibility condition with respect to the structural maps, τ , of F and G,

namely given W
j→ V

i→ U , the two composites

ϕW (ij)∗
αij→ (ij)∗ϕU

τϕU→ j∗i∗ϕU ,

and

ϕW (ij)∗
ϕW τ→ ϕW j

∗i∗
(αj)i

∗

→ j∗ϕV i
∗ j∗αi→ j∗i∗ϕU

are equal.

This condition also has a categorical / simplicial interpretation. First write F (i) instead of
i∗ : F (U)→ F (V ), etc., then we have a square

F (U)
ϕU //

F (i)
��

G(U)

G(i)
��

F (V ) ϕV
// G(V ).

The first bit of extra structure corresponds to a 2-cell αi going ‘up-right’ across this square, i.e.,
ϕ is not assumed to be a natural transformation, but is a 2-categorical analogue of one. (As the
αi are natural isomorphisms, this is a special type of 2-natural transformation. There is a wide
range of terminology used in the 2-categorical literature for this. If we need to, we will continue
to use the term ‘pseudo-natural-transformation’ for such a morphism between ‘pseudo functors’, F
and G; again see Borceux and Janelidze, [26], for a discussion of pseudo-functors, etc. at about the
level of these notes.)

Now with W
j→ V

i→ U , we can stack two of these squares, one on top of the other,

F (U)
ϕU //

F (i)
��

G(U)

G(i)
��

F (V ) ϕV
//

F (j)
��

G(V )

G(j)
��

F (W ) ϕW
// G(W )

plus 2-cells.
We can arrange this as a prism with base the αij-square and with two τ -triangles, one for F ,

one for G, on the ends. If we workout how these 2-cells paste together, we find (i) there are 5 faces
to the prism, and (ii) we get two possible composites of ‘whiskered’ 2-cells, namely those in the
compatibility condition. We are working within Cat, as a domain 2-category, for all our F , Gs, etc.,
so there are only identity 3-cells around and our prism must commute. (If we had started with
F : Open(B)op → 2−Cat, then we would ask for an invertible 3-cell within the prism as part of our
data - a 3-cocycle type structure.)
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9.2.8 More structure: 2-cells, equivalences, etc.

There is clearly a category of fibred categories on B with the evident objects and morphisms, but as
the morphisms are themselves (families of) functors, we can almost certainly go one stage further
and get a 2-category of fibred categories on B, or, more generally, on any (small) category, C. Let
us try to see how this would go.

For two fibred categories, F and G, over B a morphism φ : F → G had component functors
φU : F (U)→ G(U) together with for each i : V → U , a natural isomorphism,

αi : φV i
∗ ∼=−→ i∗φU ,

satisfying a coherence condition on composites.

If we have φ, ψ : F → G, two such morphism then we could clearly look for families of natural
transformations

ωU : φU → ψU ,

where clearly we should expect some compatibility with the αi of φ and the corresponding βi of ψ.
The obvious sort of condition is the commutativity of

φV i
∗ αi //

ωV i
∗

��

i∗φU

i∗ωU
��

ψV i
∗

βi
// i∗ψU

There is also the interaction between the ω and the two structural 2-cells τF and τG. (Draw a
few diagrams to see what fits where.) The key condition then looks to be simply

ωW · τF = τG · ωU

for a composition W → V → U , as before.

We thus have a candidate for an analogue of natural transformations between morphisms of
fibred categories. We will simple refer to them as 2-arrows. The following proposition is now fairly
easy to prove:

Proposition 76 Composition of the component natural transformation of 2-arrows is compatible
with the side conditions and gives a 2-category, FibCat(B), of fibred categories on B. �

The detailed checking is left to you. (Explicit lists of axioms for 2-categories can be found in very
many places in the literature, and so we have not given them here.)

We have seen that fibred categories have interpretations both as lax-or pseudo-functors from
some category Cop to Cat, but also as a particular type of ‘fibration of categories’, EF → C. We
have seen that we can ‘change base’ along maps in various contexts, where fibrations, or bundles, or
sheaves, occur, and it will be useful to be able to do this for ‘fibred categories’. Perhaps a pullback
type construction, or, as for sheaves, just composition would give that.
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Let us start with f : C → D, a functor, then there is a corresponding ‘opposite’ fop : Cop → Dop
and so, if F : Dop → Cat is a pseudo-functor / fibred category, the composite Ffop : Cop → Cat will
likewise be a pseudo-functor / fibred category, this time over C rather than D.

In the spatial context, a continuous map, f : B1 → B2, gives a functor in the opposite direction
on the categories of open sets,

f−1 : Open(B2)→ Open(B1),

so we get a way of building a fibred category over B2 given one on B1, completely analogous to
the situation with (pre)sheaves. Of course, that raises the question as to the 2-functoriality of the
induced ‘functor’ between FibCat(B1) and FibCat(B2), and whether or not there are ‘2-adjoints’.
The answers are in ‘the literature’ and are very useful. We, however, will not explore them in any
depth here, leaving that up to you. (One or two particular cases will be used later on, but can
be handled without development of a general theory.)

We will later need to use equivalences of fibred categories and there are two natural types that
present themselves.

Definition: A morphism ϕ : F → G (or, more precisely, (ϕ, α)) is called a strong equivalence
if every ϕU is an equivalence of categories.

It is a weak equivalence if every ϕU is fully faithful and ‘locally surjective on objects’.

By this latter condition, we mean that for every object a ∈ G(U) and x ∈ U , there is a V
i→ U

with x ∈ V , and a b ∈ F (V ) such that ϕU (b) ∼= i∗(a) in G(V ). Thus the morphism is ‘essentially
surjective on objects (eso) after refinement ’.

9.2.9 The Grothendieck construction as a (op-)lax colimit

(In this section, we will collect up some pieces from earlier discussions and look at them from a
different perspective, in preparation for their reuse later one.)

The Grothendieck construction is often used to replaces the colimit in situation in which lax,
op-lax or pseudo-functors are present. For instance, in the process of ‘stackification’ for pre-stacks,
we cannot use an ordinary colimit as the ‘functors’ involved are not realy functors, they are rather
pseudo-functors and are usually definitely not ‘strict’. (We will see later that even an ‘op-lax’
colimit does not quite do the trick and we will need a pseudo-colimit which is slightly different.
However that adapted version will be much easier to understand one the initial step from ‘colimit’
to ‘lax colimit’ has been made.)

The Grothendieck construction has the look of a categorified colimit in many ways, so that
aspect of it needs some light shed on it. It is also a ‘homotopy colimit’ in a certain senes. The
precise formulation is in Thomason’s paper, [161]. We need that aspect as well since it provides
a means of further categorifying stacks and thus of more fully understanding what cohomology
is about. That homotopy colimit aspect, though, will require other tools so will be delayed until
later. Here we will examine the Grothendieck construction as a laxified form of colimit. We will
not always give fully motivated and formal definitions of ideas such as lax cone and cocone, or
op-lax colimits, etc. as firstly these notions are better looked up in the literature devoted to the
2-categoryical context and secondly, we will later on need the homotopy aspect slightly more than
the lax one - so this is a step on the way, rather that an end in itself.
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First it will pay to look at the definition of the colimit of a functor, or diagram. We will assume
that we have a functor F : B → Sets, so as to keep things simple. We have, from standard texts
on category theory, the idea of a cone and a cocone on a functor, F . As we are concentrating on
colimits, we will look at a cocone. There are two equivalent ways of looking at a cocone. The slick
way is to say:

Definition (categorical): A cocone on F with target, Y , is a natural transformation η from
F to the constant functor consY : Bop → Sets.

Later we will take this apart a bit more.

Definition: A colimit for F is a universal cocone for F .

That has also to be taken apart. If C = colimF , it comes with a universal cocone, µ : F →
consC , so that given any other cocone η : F → consY , there is a unique η : C → Y Sets such that
η = consη · µ.

It will be assumed that you are familiar with this idea, so, if you are not that used to colimits,
spend a little time looking at a standard category theory text, concentrating on simple examples
of colimits (coproducts, pushouts and coequalisers, in particular). You do not need to know much
of the resulting theory in detail, but intuition is very important.

We next will do the usual deconstruction of ‘cocones’ as an idea. (The functor, F , was deliber-
ately given with codomain Sets to allow categorification, but also to simplify exposition in certain
places. We could, of course, replace it by any category we needed.) We think of functors fro a small
category as being ‘diagrams’ indexed by the category, in our case, B. Natural transformations are
then ‘maps of diagrams’, but, if a constant functor is the codomain of the natural transformation,
the ‘right hand’ part of the resulting big diagram is really redundant as all the maps in it are
identities:

B F
η // consY η ∈ Cocone(F, Y )

�
�
�
�

�
�
�
� Y

�
�
�

�
�
�
�

// Y

&&NNNNNNNNNNNNNN

��

OO

��

OO

// Y

=

OO

=

��

or simply

��

OO

// Y

// Y

88pppppppppppppp�
�
�
�

�
�
�
�

Y

�
�
�

�
�
�
�

so it is natural to collapse that part of the big diagram to a point.
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Definition (more ‘elementary’): Given a functor, F : B → Sets, a cocone, η : F → Y , on
F is given by a family, {η(b) : F (b) → Y | b ∈ Ob(B)}, of maps such that, if f : b → b′ in B, the
diagram

F (b)

F (f)
��

η(b)

++WWWWWWWWWWWW

Y

F (b′) η(b′)

33gggggggggggg

commutes.
We will write Cocone(F, Y ) for the set of cocones on F with target, Y .
The definition of the colimit then requires there to exist a µ : F → consC (and C will be the

‘colimit’) such that each η ∈ Cocone(F, Y ) corresponds uniquely to some ;ineη:C→Y in Sets, i.e.,
there is a (natural) isomorphism

Cocone(F, Y ) ∼= Sets(C, Y ).

In other terminology, this requires that Cocone(F,−) : B → Sets is a representable functor,
represented by the colimit.

We can try to ‘categorify’ this, but must remember that we are not formalising this to any great
extent. That can wait until we have a little more machinery available.

We can categorify the notion of cocone fairly easily, modelling the generalisation on simple
intuitions. (Beware the intuitions that we will use will not necessarily be ‘optimal’, or general
enough, so may need adjusting later. The main point is to start building those intuitions, so as
to see if they are adequate, or if they require more ‘input’.) Remember in ‘categorifiation’, one
of the things is to replace ‘equality’ by explicit ‘isomorphism’ or, ‘equivalence’ or at very least, an
explicit natural transformation in one or other direction. Also we need to replace Sets by Cat
or, better, by the corresponding 2-category, Cat. We thus expect, in the categorification process
of the above ideas on cocones, etc., to have given a functor, F : B → Cat, or better, an op-lax,
F = (F, τ) : B → Cat, and that is, of course, exactly the situation for the basic Grothendieck
construction. We want an ‘op-lax’ cocone on F with target some small category, Y. For this we
would expect

• for each b ∈ Ob(B), a functor, η(b) : F (b) → Y, (and we can think of η(b) as a ‘1-cell’ or
‘1-arrow’ if that is helpful);

• for each morphism, f : b→ b′, in B, a natural transformation (2-arrow), θf : η(b)⇒ η(b′)F (f),
replacing the old ‘equality’ in our classical cocone,

F (b)

F (f)
��

η(b)

++WWWWWWWWWWWW

�� ���� θf Y

F (b′) η(b′)

33gggggggggggg

and we will need a compatibility (cocycle!) condition for when we have two composible
morphisms in B:

b
f→ b′

g→ b′′
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gives us a triangle

F (b′)
F (g)

##GGGGGGGGG

F (b)

F (f)
;;xxxxxxxx

F (gf)
//

� �� �KS τg,f

F (b′′)

coming from the fact that F is an op-lax functor. We also have three θ-triangles, namely the one
above together with one for g and one for gf . Looking at the corresponding part of the ‘cocone’,
we have

F (b′)
η(b′)

))RRRRRRRRRRRRRRRRRR

��5555555555555555

F (b)

;;xxxxxxxx η(b)

))SSSSSSSSSSSSSSSSS Y

F (b′′)

η(b′′)

=={{{{{{{{{

(plus corresponding 2-cells) which will need to commute. The missing 2-cells give

τg,f : F (gf) ⇒ F (g)F (f),

θf : η(b) ⇒ η(b′)F (f),

θg : η(b′) ⇒ η(b′′)F (g),

θgf : η(b) ⇒ η(b′′)F (gf),

and to say the above tetrahedron ‘commutes’ is to say that the two possible composite 2-cells from
η(b) to η(b′′)F (g)F (f) have to be equal. In other words, the composites,

η(b)⇒ η(b′)F (f)⇒ η(b′′)F (g)F (f)

and

η(b)⇒ η(b′′)F (gf)⇒ η(b′′)F (g)F (f)

are equal (and you are left to check on what the 2-cells are).

For future developments, we note that ‘have to be equal’ is true because we are working with
2-categories and so there are no 3-cells or, if you prefer, ‘only identity 3-cells’.

We now should expect Cocone(F,Y) to be a category if our perhaps naive view of ‘categorifica-
tion’ is correct. The basic structure above involves the η(b) as functors, so Cocone(F,Y) should have
natural transformations µ(b) : η(b)⇒ η′(b) somewhere around. They would need to be compatible
with the θs . . . , and you are left to investigate in the usual way! It does all fit together
beautifully.

Following the categorification ‘mantra’, we have replaced sets by categories, so now need to
define the op-lax colimit of F (if it exists) to be a ‘representing object’ for the ‘functor’ Cocone(F,−).
Of course, we really need to see how Cocone(F,Y) varies with Y is it functorial or merely op-
lax functorial? We note that if this op-lax colimit exists then it will be determined, not up to
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isomorphism as with an ordinary colimit, but up to equivalence (but not just any old one). In fact
the representing object, that we will call C, is to satisfy

Cocone(F,−) ' Cat(C,−),

not ∼=. It may be possible, (and is often useful) to find a construction giving ∼=, but that is not
what exactly what is required. Of course, if we find a C with a ∼= in the above, then it clearly also
satisfies that with '.

This leaves you with lots of details to provide. We will not give them as we will attack
this later by a different route, namely indexed limits and colimit, but it is worth your playing
around with the concepts, possibly looking up some of the details in the 2-categorical literature.

Remark: We fed ‘op-laxness’ into the definition of Cocone(F,Y) by the direction of the 2-
cells θf . If we had had a lax functor, F, to start with, it would be more natural to use the ‘lax’
direction for these θf . In fact, for most of what we will need the θf are invertible and F will be a
pseudo-functor, so we would return to our earlier discussions about the direction of the 2-cell in
the specifications of pseudo-functors. We will meet this several times more!

Starting now with an op-lax functor, F = (F, τ), we can try to see if the basic EF has any of the
characteristics of the op-lax colimit. For this, we will specify an op-lax cocone, (Y, η, θ), adopting
the notation we have used above. We hope to be able to construct a functor, η, from EF to Y using
the cocone data. An object of EF is a pair, (x, b) with b ∈ Ob(B) and x ∈ Ob(F (b)). The only
‘obvious’ way to define η(x, b) is η(b)(x), since η(b) : F (b)→ Y is about the only thing available to
us!

A morphism from (x, b) to (x′, b′) in this basic version of EF will be given by f : x → x′, and
α : F (f)x→ x′ in F (b′), so we need η on such a morphism. This must be some morphism

η(f, α) : η(x, b)→ η(x′, b′)

in Y. (Putting our ‘jigsaw’ pieces on the table, we should have to use θf : η(b)⇒ η(b′)F (f) as well
as something derived from α.) Evaluating θf at the object x of F (b), we get

θf (x) : η(b)(x)⇒ η(b′)F (f)(x)

and now it should be clear. We compose this with η(b′)(α) from η(b′)F (f)(x) to η(b′)(x′). (Pause:
η(b′) : F (b′) → Y is a functor, so η(b′)(α) makes sense and does what is claimed.) We thus take
η(f, α) = η(b′)(α)]0θf (x). It is useful to check this is going to preserve composition. That will use
the cocycle condition of the ηs together with the naturality of θg, the θ 2-cell corresponding to the
second of the morphisms. Again this is routine once you put the pieces together, so is left to you.
That leaves preservation of identities by η, . . . .

Everything works at this level, so now if µ : η ⇒ η′ is a natural transformation between tow
such cocones, then we should get a natural transformation µ : η ⇒ η′. As we left explortion of this
aspect in Cocone(F,Y) to you earlier, we leave this to you to check it all works.

This looks good. The constructions of η from η, etc. have exactly what we expect from universal
constructions, that is great naturality in the non-technical sense as well as the technical one. It
is interesting to check that the resulting η is unique, . . . , but we have not as yet given an op-lax
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cocone from F to EF itself, so should glance at that first. (This was left aside until we had some
experience of handling op-lax cocones, but now ...)

We need a functor, that we will call η(b), for lack of imagination, from F (b) to EF for each b in
B, but sending x to (x, b) and α : x→ x′ to (id, α) clearly gives one. WHat about behaviour with
respect to an f : b→ b′? (This is fun!) We need a θf : η(b)⇒ η(b′)F (f), so will need it evaluated
on x ∈ F (b). It has to be a morphism from (x, b) to x′, F (f)(b)) in EF. No prizes for guessing which
one!

You can now easily verify the uniqueness of the earlier assignment . . . , over to you to finish
things off.

That leaves the other variants of the Grothendieck construction to be looked at, but we will
not do this as those are fairly routine for you to check on, and we will anyway, later on, be looking
at the pseudo-colimit construction, which requires a bit more investigation. Before we do that we
need to get back towards stacks.

9.2.10 Presenting the Grothendieck construction / op-lax colimit

Colimits are often constructed by taking a quotient. You start with a family of ‘things’ corre-
sponding to the objects of your indexing category, then divide out by an equivalence relation or,
more likely, a ‘conguence’, that is an equivalence relation internal to ‘things’. This gives a form of
presentation akin to group presentations and, as we saw earlier, such information can be further
analysed to gain a better understanding of the overall structures involved evenm as was the case
with higher syzygies order relationships between the various ‘elements’ involved.

A similar process of ‘presentation’ can be done for the op-lax colimit. Here there is an intuition,
which is very like that of colimits of groups if the individual groups are given with presentations.
The simplest example of this is in the classical form of van Kampen’s theorem as discussed in
Brown, [36], Crowell and Fox, [57], or, for that matter, Gilbert and Porter, [82]. (The first of these
discusses the groupoid form of the result.) The basic set-up is to get our hands on the pushout of
a diagram

G0
f1 //

f2
��

G1

p1

���
�
�

G2 p2
//___ G

of groups. We assume that presentations, Pi = (Xi : Ri), are given for Gi, i = 0, 1 and 2, and that
for each x in X0, and i = 1, 2 a word in Xi representing fi(x) in Gi is specified. We will denote the
chosen ‘lift’ of fi(x) by fi(x). (‘Lift’ because this lives in F (Xi), the free group on Xi, and there
is, of course, an epimorphism

εi : F (Xi)→ Gi

for i = 1, 2. The meaning of ‘lift’ is thus that ε(fi(x)) = fi(x), as you probably guessed or knew!)
The task is to use this data to give a presentation of G and descriptions of p1 and p2. The solution
is well known, but we need to think of the proof as it will give insight into this ‘presentations of
op-lax colimits’ problem.

The solution is that G has a presentation with set of generators, X = X1 t X2, the disjoint
union of X1 and X2, and with relations of two different forms forming R. The two forms are:
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1. If ri ∈ Ri, we have a relation ri in R (We use the inclusion inci : Xi → X to induce an
‘inclusion’

F (inci) : F (Xi)→ F (X),

then ri ∈ F (Xi) and we really have F (inci)(ri) ∈ F (X), but we usually relabel it ri as
otherwise the notation can get ‘impossible’.) We thus have a subset of our relations ‘equal’
to R1 tR2. (Notice that in this R0 does not apparently play any role.)

2. For each x ∈ X0, we have a relation

f1(x)(f2(x))−1

in R. (Again, this is more accurately the word

(F (inc1)(f1(x)))(F (inc2)(f2(x)))−1,

but the simplified notation is much easier to work with an no confusion should occur.)

The two morphisms p1 and p2 are induced by the two inclusions of generators. They can be factored
via the ‘free product’ of G1 and G2, that is their coproduct, G1 ? G2 corresponding to the case
where X0 is empty, followed by the evident quotient of G1 ? G2 to G (by adding the second type
of generator. (Note that G1 ? G2 is the coproduct in the category of groups, and if we think of the
groups as groupoids this is not the coproduct in that category, which is just disjoint union. This is
useful to note for what follows.)

Remark: (i) What is quite fun is to ask: what are the relations R0 doing? They look to be not
needed. They do influence the fact that f1 and f2 are homomorphisms, but that seems relatively
minor. They do however influence things and we can see how if we try to work with identities
amongst the relations.

What is neat is to calculate the identities for the presentation of G. If you do this you realise
that you will naturally get any identities among the relations for the presentations of G1 and G2

together with, you guessed, new identites coming from R0. This behaviour was examined by Holz
in his thesis, [98] and see also Abels and Holz, [1]. An approach using crossed resolutions was
initiated by Moore, [133], and further informations and examples can be found in Brown, Moore,
Porter and Wensley, [45]. These approaches use homotopy colimits, and that is suggestive given
the links between homotopy colimits and op-lax colimits!

(ii) The direct proof that this is a presentation of G is not hard. You start with a commutative
square

G0
f1 //

f2
��

G1

p1

��
G2 p2

// G

of groups and its data to construct a homomorphism from the group presented by (X : R), first by
defining it on the free group on X and then checking that the relations will be sent to the identity
of H.

This presentation of G is nice, but it is not quite what we want as X0 has taken a very different
rôle to those played by X1 and X2. This is fine for a pushout, but it hides what would happen if we
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had a colimit over a more complicated diagram. There is, however, a variant of this presentation
that makes a lot of sense, both algebraically and ‘geometrically’, and in which X0 has a role which
is easier to generalise to other situations. This second presentation is the following:

• set of generators, X =
∐
Xi, the disjoint union of the generating sets of the various groups;

• set of relations = union of two types of relation:

(i) images in F (X) of any ri ∈ Ri, i = 0, 1, 2,

(ii) for each x ∈ X0 and i = 1, 2, fi(x)x−1, so a relation that identifies x with its image in
F (Xi), but all happening in F (X).

If you know about Tietze transformations, you can very quickly check that this second presentation
is equivalent to the first. If you do not know them, they are four rules that allow transformations
of presentations without changing the group being presented. They are two obvious substitution
rules plus rules on insertion or deletion of redundant relations. Here we can informally manipulate
the presentation: using x ≡ f1(x) we substitute into all other relations that contain x. In par-
ticular we get on substituting f1(x) for x in x ≡ f2(x), that f1(x) ≡ f2(x), i.e. that the relation
f1(x)(f2(x))−1 is a consequence ot the presentation. A bit more subtle is the proof that the rela-
tions in R0 all become redundant in the process. To prove that you need to use a bit more group
presentation theory than we have assumed, but the results needed can either be found in texts on
group presentations (such as Johnson, either [109] or the earlier, [108]) and, in any case, just use
some fairly elementary group theory in their proofs.

The new presentation is now in a much better form that should, with care, generalise first to
arbitrary colimits of groups, and then to op-lax colimits of op-lax functors, F = (F, τ) : B → Cat. A
sneaky way of looking at our pushout example is then as an op-lax pushout of categories. The only
difference is that the result will be a category on three objects and, instead of the ‘free product’ of
the Gis being an intermediate step, it will be the coproduct of the Gis as categories (or, if you do
things carefully, as groupoids), instead of their coproduct as groups. This is still a bit vague, so let
us proceed directly to a more detailed treatment.

We are given F = (F, τ), as above, and first form a directed graph with set of vertices, O, and
set of arrows, A, where

• O =
∐
{ObF (b) : b ∈ Ob(B)} is the set of all the objects in all the categories F (b). We denote

an element of O by a pair, (x, b), with, as before, x ∈ ObF (b);

• A = (
∐
{Arr(F (b)) : b ∈ Ob(B)})t{h((x,b),f) : ((x, b), f) ∈ O×Arr(B)textrmsuchthatdom(f) =

b}, thus A consists of two types of arrow. The first is simply an arrow in some F (b), with
‘domain’ and ‘codomain’ given by the obvious formulae, so, is a : x → x′ within F (b), then
within A there is a corresponding a with dom(a) = (x, b), codom(a) = (x′, b). The second
type of arrow is here represented as an abstract label, h((x,b),f), with (x, b) an ‘object in O,
whilst f : b→ b′ is a morphism in B, starting at the object b. This arrow, h((x,b),f), will have
domain (x, b) and codomain (F (f)(x), b′).

We now form the free category, W , on this directed graph, writing ]W for the composition in W .
The other part of the presentation will be a set, R, of relations. (As we are working within a

category, not a group or groupoid, we write a ≡R b instead of ab−1, which would not make sense.)
The final step will be to form the quotient of W by the smallest congruence containing all the
relations in R. as you would expect the relations in R come in various forms:
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• (internally in the fibres) if a, a′ are in F (b) and a′a is defined, then

a′]Wa ≡R a′a.

This relation thus ensures each of the F (b) is copied into the quotient.

• (induced morphisms between fibres) suppose

b
f→ b′

g→ b′′,

and x ∈ F (b), then we have arrows

h((x,b),f) : (x, b)→ (F (f)(x), b′),

h((F (f)(x),b′),g) : (F (f)(x), b′)→ (F (g)F (f)(x), b′′),

and also

h((x,b),gf) : (x, b)→ (F (gf)(x), b′′).

We also have

τ(f,g)(x) : F (gf)(x)→ F (g)F (f)(x)

in F (b′′). The relation is

τ(f,g)(x)]Wh((x,b),gf) ≡R h((F (f)(x),b′),g)]Wh((x,b),f).

• If x ∈ F (b), then there is an identity idx ∈ Arr(F (b)) ⊆ A, but also we have the ‘formal’
identity on (x, b) within W , namely the empty string from (x, b) to itself:

idx ≡R idW(x,b).

• If f : b → b′ in B, and a : x0 → x1 in F (b), there is a morphism, F (f)(a) : F (f)(x0) →
F (f)(x1), in F (b′) and a subsequent relation:

F (f)(a)]Wh((x0,b),f) ≡R h((x1,b),f)]Wa.

• For b ∈ Ob(B) and x ∈ Ob(F (b)), we have

h((x,b),idb) ≡R id
W
(x,b).

We leave you to worry out the proof that this gives us EF, (up to equivalence).

We will see this sort of presentation again shortly when discussing pseudo-colimits. (The treat-
ment here has been based on that in Fiore’s AMS Memoirs, [78], p. 21-22. That is actually given
for pseudo-colimits, which is, in fact, the context in which we will need it mostly.)
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9.3 Prestacks: sheaves of local morphisms

Let F : Cop → Cat be a fibred category in the wider sense and let C ∈ Ob(C). Suppose a, b ∈
Ob(F (C), then for any f : D → C in C, we have F (D)(f∗(a), f∗(b)), the set of morphisms in F (D)
between the restrictions of a and b along f .

Now suppose we think of f : D → C as an object in C/C and consider a morphism of such

D′
g //

f ′
��1

11111 D

f
��������

C

so f ′ = fg. We get a composite

F (D)(f∗a, f∗b)
g∗→ F (D′)(g∗f∗a, g∗f∗b)

τ∗→ F (D′)((fg)∗a, (fg)∗b),

where, given γ : g∗f∗a→ g∗f∗b, τ∗(γ) = (τf,g)
−1
b γ(τf,g)

−1
a , i.e., ‘conjugation by τ ’:

(fg)∗a
τ∗(γ) //

(τf,g)a
��

(fg)∗b

(τf,g)b
��

(g∗f∗)a γ
// (g∗f∗)b

commutes by definition of τ∗(γ).

Lemma 54 Given F , C, a and b, the above defines a presheaf

HomF (a, b) : (C/C)op → Sets.

Proof: This is left to you as it is quite straightforward. �

Moreover any ϕ : F → G induces a morphism of presheaves on (C/C),

ϕa,b : HomF (a, b)→ HomG(ϕC(a), ϕC(b)).

Back to our case studies:

9.3.1 Sh(B)

To get back to a more concrete example, let us examine this result in the simple case of Sh(B),
i.e., sheaves on B considered as a fibred category. (We will be working with several ‘layers’ of
presheaves on various objects, so need to pay attention to terminology, etc.!)

Translating the above to this case

• C = Open(B);

• C ∈ Ob(Open(B)), so is an open set of B, and we will replace it notationally by U , as being
our usual notation;
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• C/U is the category of morphisms in Open(B) with codomain U , so is precisely Open(U).

Suppose now F = Sh(B), the fibred category of sheaves on B, and a and b are sheaves on U .
For any f : V → U , we have Sh(V )(f∗(a), f∗(b)), i.e., the set of morphisms in Sh(V ) between the
restricted sheaves, f∗(a) and f∗(b). If, further, W ⊂ V , and g : W → V is the inclusion, we really
have W → V → U , but can picture it also as

W
g //

(fg)
��1

11111 V

f
��������

U

that is, in C/U . The obvious type of presheaf on U that we have here is

HomF (a, b)(V ) = Sh(V )(f∗(a), f∗(b))

and, if W → V , the corresponding function,

HomF (a, b)(V )→ HomF (a, b)(W ),

is induced by restriction (but with the subtle point that it is better to assume g∗f∗(a) ∼= (fg)∗(b),
usually not ‘=’, especially in situations such as a more general Grothendieck topos).

There is an obvious question: when is this presheaf a sheaf?
As a start, we had better sort out what we are given or know, and what exactly we need to

investigate further:

• We have an open set U of B and an open cover, U = {Ui} of U ;

• We have inclusion maps αi : Ui → U , αiji : Uij → Ui, so αiαiji = αjαijj = αij : Uij → U . We

have a pair of sheaves, a, b, on U and hence their restrictions (αi)∗(a), etc. Further restriction
to Uij gives the natural isomorphisms,

(αiji )∗(αi)∗(a)→ (αiαiji )∗(a) = (αij)∗(a),

which will be denoted (τ iji )a.

• We have a compatible family indexed by the cover,

ϕi : (αi)∗a→ (αi)∗b.

The restriction of this to Uij is obtained by first applying the functor (αiji )∗ to get

(αiji ) ∗ ϕi : (αiji ) ∗ (αi)∗a→ (αiji ) ∗ (αi)∗b,

then applying τ , i.e., ‘conjugating’ this with (τ iji )a and (τ iji )b, to get

(τ iji )b ◦ (αiji ) ∗ ϕi ◦ (τ iji )−1
a : (αij)∗(a)→ (αij)∗(b),

which morphism we will denote ϕiji . We thus have, for compatibility, that

ϕiji = ϕjij : (αij)∗(a)→ (αij)∗(b).
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(It would be feasible to suppress some of this notation in this fairly elementary case, but taking
care in simple cases often proves to be worth while in the more complex cases, so ... .)

We have to prove that such a compatible family glues to give a morphism ϕ : a→ b. (We will
actually check less than that as we will assume x ∈ a(U) and will define ϕ(x) ∈ b(U). The rest
of the proof is similar, so is left for the reader to think about.) Given x ∈ a(U), we restrict
to Ui to get xi = (αi)∗(x) ∈ (αi)∗a(Ui) (which is really a(Ui)). As ϕi : (αi)∗a → (αi)∗b, we have
ϕi(x) := ϕi((α

i)∗(x)) ∈ (αi)∗b(Ui), with a little sensible (ab)use of notation).

Claim:
The family (ϕi(x)) is a compatible family in the sheaf b, so defines a unique element in b(U),

which we denote ϕ(x).

To prove compatibility, we need to compare

αij∗i ϕi(x) = αij∗i ϕi(xi) = αij∗i ϕiα
i∗(x)

with the corresponding element with the roles of i and j interchanged. That is not quite correct as
this element is in αij∗i αi∗(b)(Uij), not αij∗b(Uij) for which we have to use the τ iji s. We thus actually

look at (τ iji )bα
ij∗
i ϕi(x). We have a commutative square

αij∗i αi∗(a)
αij∗i ϕi //

(τ iji )a
��

αij∗i αi∗(b)

(τ iji )b
��

αij∗a
ϕiji

// αij∗b

and the restriction of ϕi to Uij is ϕiji as defined. We can now complete the calculation:

(τ iji )bα
ij∗
i ϕi(x) = ϕiji (τ iji )a(α

ij
i )∗(xi)

= ϕiji (xij)

= ϕijj (xji)

by compatibility of the family, {ϕi}, and now we unroll the argument going the other way to get
this is equal to (τ ijj )bα

ij∗
j ϕj(x

j) as required. These thus glue to give us our required ϕ(x). �

We have taken a lot of trouble to include ‘detail’, even when perhaps it would have been easy
to cut corners, but, for instance, the role of the τs is crucial and can be obscured unless it is made
explicit.

The situation here warrants a name!

Definition: A fibred category, F over B is called a prestack if, for any objects a, b ∈ F (U), the
presheaf HomF (a, b) is a sheaf.

In the 2-category of fibred categories on a space B, we thus have the full 2-subcategory,
PreStacks(B), determined by the prestacks and the morphisms between prestacks are just the
morphisms of the corresponding fibred categories, similarly for the 2-arrows.

Summarising the above, we have



364 CHAPTER 9. NON-ABELIAN COHOMOLOGY: STACKS

Proposition 77 The fibred category, Sh(B), of sheaves on B is a prestack. �

We can look at special sub-fibred categories of Sh(B) equally easily. For instance, consider sheaves
of groups on B. This gives a fibred category ShGrp(B).

Proposition 78 The fibred category, ShGrp(B), of sheaves of groups on B is a prestack. �

9.3.2 Tor(B;G)

If we turn our attention to our other case study, we can reuse most of our work on Sh(B), then
adapt and add the necessary to prove:

Proposition 79 The fibred category, Tor(B;G), for a sheaf of groups, G, on B is a prestack.

Proof: From the ϕi, which will now be G-torsor maps, we can certainly construct a sheaf map ϕ
by the previous argument. We need to verify that ϕ is a torsor map, i.e., that ϕ commutes with
the action. For this, one compares ϕ(g.x) and g.ϕ(x), both of which ‘glue’ the ϕi(gi.xi), so then
uniqueness of ‘gluing’ gives the result. �

We thus have two families of good examples of prestacks. In fact we have a lot more. Any set
gives a category with only identity morphisms, so any presheaf, F , of sets yields a fibred category.
If that fibred category is a prestack, then F itself would be a separated presheaf and conversely.

As one can ‘sheafify’ a presheaf, can one ‘prestackify’ a fibred category? Yes.

9.3.3 Prestackification!

In fact this is straightforward.

Proposition 80 For any space B, the forgetful functor from the 2-category, PreStacks(B), of
prestacks on B to that of fibred categories on B has a left adjoint.

Proof: The proof just takes each presheaf HomF (a, b), makes it into a sheaf, then checks that the
result works. �

An interesting problem is to investigate what happens to 2-arrows during prestackification.

9.4 From prestacks to stacks

We thus have that in our examples, Sh(B) and Tor(B;G), the presheaf of ‘local morphisms’ between
‘local objects’ was a sheaf. We note, however, that the proof did use the adjustment transformations,
τ , so was not, perhaps, quite so ‘naively’ constructed as one might pretend. Thus ‘morphisms’ glue.
What about objects? Here we need to think again about the ‘categorification’ process.

You will recall that, at certain points, it has been useful to think of ‘going up the dimensions’
as corresponding to replacing sets by categories, categories by 2-categories, or similar, etc., and
as a consequence to replace ‘equality’ by ‘isomorphism’ or better ‘equivalence’, which is usually
‘isomorphism up to an (invertible) 2-cell’, thus ‘fibred category’ = ‘pseudo-presheaf of categories’
and we naturally involved the τ -transformations in the structure. We have asked ‘do compatible
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families of objects glue?’ in the prestacks Sh(B) and Tor(B;G). We first need to see what should
replace ‘compatible family’ under categorification! ‘Compatible families’ are part of the descent
data picture, so we introduce, for a fibred category F , a category of descent data relative to an
open cover U of an open set U . This fits well with the categorification yoga. We had a set of
compatible families, and a fairly simply defined category of descent data back in section 7.1.1, but
here we need a category of descent data with considerably more structure.

9.4.1 The descent category, Des(U , F )

Definition: Let F be a fibred category over B and let U = {Ui : i ∈ I} be an open cover of an
open set U of B. The category Des(U , F ) has

• Objects: systems, (a, θ), where a = {ai : i ∈ I}, ai an object of F (Ui) and θ = {θij : i, j ∈ I}
with θij : αij∗j (aj)

∼=→ αij∗i (ai), an isomorphism in F (Uij), these isomorphisms being required
to satisfy the cocycle conditions

θii = 1

θij ◦ θjk = θik

in F (Uijk);

• Arrows: f : (a, θ) → (b, ρ) is given by a family of arrows, {fi : ai → bi ∈ F (Ui)}, for which
the diagrams

αij∗j (aj)
αij∗j fj

//

θij
��

αij∗j (bj)

ρij

��

αij∗i (ai)
αij∗i fi

// αij∗i (bi)

commutes.

The cocycle condition written
θij ◦ θjk = θik

is shorthand for a more complicated expression, as each term is restricted to Uijk. If we write, for

instance, θij |Uijk = (αijkij )∗(θij), then similarly for the others, the condition is

θij |Uijk ◦ θjk|Uijk = θik|Uijk .

How does Des(U , F ) vary with U?
What happens if we change the covering? Recall that a morphism, α : V → U , between open

coverings of B is a map of the indexing sets, α : I(V) → I(U), such that V ⊆ α(V ) for all V ∈ V.
(It induces a map of the simplicial sheaf nerves of the two covers, N(α) : N(V) → N(U), and we
could work with that directly, but we do not yet have a “coordinate free” or “chart free” description
of Des(U , F ), so will use the slightly stricter notion for the moment.) We would expect α to induce
a function, α∗, from Des(U , F ) to Des(V, F ). (If you asked ‘why in that direction?’, think back to
sheaves. There the compatible families of local sections over U restrict to ones over V. We would
not expect a map in the other direction, which would be extending the families.)
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Suppose we have an object, (a, θ), of Des(U , F ), then we have, for each U ∈ U , aU ∈ Ob(F (U)),
etc., and we need an object α∗(a, θ), consisting of a family α∗(a) of objects in F (V ), V ∈ mathcalV ,
but V ⊆ α(V ) ∈ U , so we can restrict aα(V ) to V , to get the necessary objects. Similarly, we can
restrict the isomorphisms θα(Vi),α(Vj) to Vij := Vi∩Vj and the normalisation and cocycle conditions
will ‘check-out’ automatically.

This construction on objects easily extends to arrows f : (a, θ)→ (b, ρ), as it is just restriction,
so α induces a functor

α∗ : Des(U , F )→ Des(V, F ),

and hence, ..., we get a 2-functor from Cov(B), the category of covers to Cat. No. What goes
wrong is that restriction is specified up to isomorphism, so if α : V → U and β : W → V are
morphisms of coverings, so, if (αβ)∗ need not be the same as β∗α∗. In (αβ)∗, we restrict (a, θ)
to a W via the inclusion of W into αβ(W ), but in β∗α∗, this is done via the chain of inclusions
W → β(W )→ αβ(W ) and so in two stages. The data for the pseudo-functor F (corresponding to
a specification / presentation of the fibred category) is easy to use to get the following:

Proposition 81 Given a fibred category F over B, there is a pseudo-functor

Des(−, F ) : Cov(B)op → Cat

taking the value Des(U , F ) on an open covering U . �

9.4.2 Simplicial interpretations of Des(U , F ): first steps

It will often be useful to have another view of the objects, etc., of Des(U , F ). We will formalise
this later when looking at descent in much more generality and from a simplicial viewpoint, but it
seems a good idea to start this process now.

The objects of Des(U , F ) are ‘systems’, (a, θ). What are these ‘simplicially’?
Recalling, (page 251), that an open covering, U gives us a simplicial sheaf, N(U) on B, (you

guessed!), we can interpret an object (a, θ) in terms of this sheaf. (We have seen this sort of thing
before, for instance, with the simplicial description of torsors, in section 7.4.5.) The basic sheaf /
étale space is

⊔
U → B, but, as that is a bit awkward to write, we will just write p : Y → B for

use during this brief snapshot of where this is going. We have a picture of N(U) as the simplicial
object:

N(U) : . . .
//... // Y ×B · · · ×B Y

//... // · · ·
d0 //

d2
//// Y ×B Y

d0 //
d1
// Y

p //___ B.

The pseudo-functor F gives categories F (Y ), F (Y ×BY ), etc, and induced coface and codegeneracy
functors, d∗i , and s∗i , between them. Remembering what Y , Y ×B Y , etc., are in terms of the open
sets Ui of U , we can interpret an (a, θ) as consisting of an object a of F (Y ) and a morphism
θ : d∗1(a) → d∗0(a) in F (Y ×B Y ). (Hold on, you should say: the pseudo-functor F is only defined
on open sets of B and Y is a disjoint union of such, so is not defined as such. That is correct, so we
have to extend F by defining F (Y ) := F (

⊔
U) =

∏
{F (U) : U ∈ U} and similarly, as Y ×BY can be

identified to be the cover by intersections of sets from U , we have F (Y ×B Y ) :=
∏
i,j F (Uij) and so

on.) The cocycle condition will correspond to there being no non-trivial ‘2-cells’ in F (Y ×BY ×BY ).
As usual, we can think of F (U) not only as a (small) category, but also as that category’s

nerve. We seem then to be looking at F (N(U)) as some cosimplicial simplicial set, or, more exactly
perhaps, as a ‘pseudo’ version of such.
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What about the morphisms / arrows in Des(U , F )? We had f : (a, θ) → (b, ρ) was a family of
arrows, fi ∈ F (Ui), so is in F (Y )1, (using a simplicial / nerve notation), with the commutativity
condition being in F (Y ×B Y )2, i.e., the square lives in there and commutes since all the 2-simplices
there are degenerate.

Remarks: (i) It is sometimes useful to replace the notation Des(U , F ) by one emphasising the
p : Y → B sheaf instead of the cover that gave it. In this case we will write Des(Y → B,F ). This
notation also has the advantage of being transferrable to the situation found in a topos other than
one of the form Sh(B).

(ii) Quite a useful exercise here is to start with an even simpler situation. Take F to be a
presheaf of sets on B, so just a functor F : Open(B)op → Sets. Look at the above description of
Des(U , F ), considering each F (U) as a discrete category. What sort of structure does Des(U , F )
have?

As we said, we will return to this simplicial description again later, to put more flesh on these
‘bare bones’.

9.4.3 Stacks - at last

With sheaves, if F was a presheaf then each x ∈ F (U) gave a compatible family of local sections
over any open cover U of U simply by restricting, xi := resUUi(x). This gave a natural function,
des, from F (U) to the set of compatible families of local sections of F over U and F was a sheaf
exactly when that function was a bijection. Similarly, given a fibred category, F , together with an
open cover U of U , there is a natural descent functor,

des = des(U , F ) : F (U)→ Des(U , F ),

so what is the obvious analogue of the sheaf condition?

Definition: The fibred category F is said to be a stack if each descent functor

des : F (U)→ Des(U , F )

is an equivalence of categories.

It will be important to ‘deconstruct’ this. We first revisit the notion of equivalence of categories:
first : F : C → D is an equivalence if there is a functor G : D → C and two natural isomorphisms

η : FG
∼=→ 1D and ε : 1C

∼=→ GF .
It is often easier (but with attendant disadvantages) to use an alternative formulation in which

G, η and ε are not specified. Strictly this alternative is not completely equivalent, since it depends
on the axiom of choice to rebuild a suitable G, η and ε from the specification and so depends on
the set theory you are using. It thus is perhaps more a useful ‘test’ of equivalence rather than a
completely equivalent formulation.

If F is an equivalence of categories, then F is full, faithful and essentially surjective on objects
(eso).

‘Deconstruction’ is again in order:
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• ‘F is full’ means that, for all x, y objects of C, the induced mapping

Fx,y : C(x, y)→ D(Fx, Fy)

is surjective;

• ‘F is faithful’ means that, for all x, y, Fx,y is injective;
and

• ‘F is essentially surjective on objects’ (often abbreviated to ‘eso’) means that, if d is an object
of D, then there is some c ∈ C such that F (c) ∼= d.

Comment: The problem with taking this as a definition of equivalence is that essential surjectivity
says there is a c, but does not construct one for us! Where possible, it is a good idea, given the d,
to try to construct the c functorially, so that allows one to put Gd = c and the rest usually falls
into place. If one has to ‘choose’ a c, then the lack of naturality of the choice may be a problem,
or rather a bothersome complication.

From this ‘deconstruction’, we can see that
(i) if F is a stack, then it is a prestack, since that corresponds to ‘full and faithful’ and also
(ii) that a stack is a prestack which satisfies: for every cover U of an open set U , any object

(a, θ) of Des(U , F ) is isomorphic to an object of the form des(x), for some x ∈ F (U).

It is worth noting, and will be important later, that if i : V ⊂ U and V = {Ui ∩ V }, then there
is a canonical functor

i∗ : Des(U , F )→ Des(V, F ),

and the diagram

F (U)
des //

i∗

��

Des(U , F )

i∗

��
F (V )

des // Des(V, F )

commutes.

As stacks onB are just special fibred categories, there is no more obvious definition of morphisms
of stacks than morphisms of the basic ‘underlying’ fibred category. The extra ‘descent’ structure
both at the prestack and the stack level is not extra operations merely extra conditions on existing
structure. We thus have a 2-category, Stacks(B), of stacks on B, defined as a full 2-subcategory
of FibCat(B).

The morphisms above are ‘internal’ to the context of a particular B. If one needs to compare
stacks over different bases, then there is a notion of morphism in that case as well, but as with
sheaves, the existence of a change of base construction allows one to push the stacks around moving
them via the induction functors along continuous maps (or their analogues for sites and toposes).
We will need this in certain cases slightly later so will briefly discuss that construction. In fact the
cases we need are usually special so one can side-step the generalities if desired.

Let P be a stack on B and f : A → B be a continuous map, then we can build a new stack
f∗(P) on A in quite an obvious way. We know, from our previous discussions, how to go from
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Stacks(A) to Stacks(B) just by looking at f∗(F)(U) = F(f−1(U)), and as stacks are ‘categorified
sheaves’, we may look at the definition of f∗(F ) for a sheaf F on B, for ‘inspiration’. In that case,
for U open in A,

f∗(F )(U) = colim{F (V ) | V open in B,U ⊆ f−1(V )}.
The categorified version would then replace ‘colim’ by some lax or pseudo-colimit. This works well
as the diagram one gets, consisting of the F (V ), is not commutative - remember, if W → V → U ,
we got a τ and F is a pseudo-functor, not a functor - but the lax or pseudo-colimit can handle
that. If F is a stack of groupoids, then the colimit needs to be constructed with that in mind. We
refer to various categorical papers for more details. In fact, the situation that we need is rather
particular, so we can sidestep the more tricky generalities, for the moment at least!

Suppose f is the inclusion of an open subspace, A, then the index category for the colimit has
an initial object, i.e., A itself. We thus have that if F is a stack on B, f∗(F) will be the stack FA
of A defined by: if U ∈ Open(A), then FA(U) = F(U), which makes sense, since U will also be
open in B. The other structure restricts in the same way. (Note that the universal property of the
pseudo-colimit construction gives an equivalence between f∗(F) and FA, not an isomorphism and
f∗(F) will, in general, ‘look bigger’.)

It is worth noting for later use that this assignment of Stacks(U) to U , for U ∈ Open(B), yields
a ‘pseudo-2-functor’, in some sense, from Open(B)op to 2−Cat, the category of 2-categories.

9.4.4 Back to Sh(B)

In our case study of the properties of Sh(B), we have asked, essentially: Is Sh(B) a stack? We have
that it is a prestack so now we have merely to prove that, when F = Sh(B), then des is locally
eso., i.e., suppose that (a, θ) is in Des(U ,Sh(B)), then there is a sheaf x on U =

⋃
U such that

des(x) ∼= (a, θ).
We will start with an ‘easy’ case, namely we will assume all the θij are identity morphisms. This

is artificial, but gives some idea of how to proceed in general. We thus have a = {ai}, where ai is
a sheaf on Ui and where the restricted sheaves on intersections, Uij , are equal. Since αiji : Uij → Ui
is the inclusion map, this says αij∗i (ai) = αij∗i (aj).

We apparently have a diagram, ∏
i ai

////
∏
ij α

ij∗
i (ai) ,

and would like to take the equaliser of these two maps as this would encode compatibility, cf. section
7.3.1. Unfortunately, we have written down a diagram, but have not asked where it is living! Each
object ai is in the corresponding Sh(Ui), so the left hand ‘object’ is not a valid one. As we need an
object in Sh(U), it would be a good idea to work only in that category. The inclusion αi : Ui → U
induces the functor, αi∗ : Sh(U) → Sh(Ui), given by restriction, but also αi∗ : Sh(Ui) → Sh(U),
and αi∗ is right adjoint to αi∗. The first thing we might do, therefore, is to use

∏
i α

i
∗(ai) for the

domain of our two morphisms. For the codomain, we can try the same trick: αij : Uij → U is equal

to αiαiji , so αi∗α
ij
i∗(α

ij∗
i (ai)) lives in the right place, i.e., in Sh(U). There is a natural morphism,

ai → αiji∗(α
ij∗
i (ai)),

coming from the fact that αiji∗ is right adjoint to αij∗i , and, applying αi∗ to it, gives an ij-component
of one of the two morphisms. We thus can drag our ‘fictional’ diagram into Sh(U) and then form
the equaliser of the two morphisms.
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We explicitly used the adjointness of the two ‘restriction’ functors in order to show how this
may be done in other, non-spatial, general situations. We can again ‘deconstruct the construction’.
We want to construct our sheaf x, so suppose V ⊂ U and will try to construct x(V ). First
look at the result of αi∗(ai)(V ). The lower star version of the induced functor, f∗, is given by
f∗(F )(V ) = F (f−1(V )), so here

αi∗(ai)(V ) = ai(Ui ∩ V ),

and, if Ui ∩ V is empty, this will be a singleton set.
We know the restrictions to Uij of ai and aj are equal, so over V , we have a diagram of sets,∏

i ai(Ui ∩ V ) // //
∏
ij ai(Uij ∩ V )

with the two maps given by restriction. The natural thing to try is to define x(V ) to be the equaliser
of these two maps.. We thus have x(V ) ‘is’ the set of compatible local sections of the ais over V ,
which is a ‘sensible’ construction to make! We should still check x is a sheaf - but that is left as
an exercise.

If we reinstate the θijs, all we need to do is to change one of the maps. We keep

ai → αiji∗(α
ij∗
i (ai)),

but there is also
ai → αiji∗(α

ij∗
j (aj))

obtained by composing with αiji∗(θij). Any apparent preference given to i over j here is an illusion
since elsewhere in the product we have j then i.

We have sketched:

Theorem 20 The fibred category, Sh(B), is a stack. �

We leave to the reader the extension of the above proof needed to show:

Theorem 21 The fibred category, ShGrp(B), of sheaves of groups on B is a stack. �

9.4.5 Stacks of Torsors

There are other fairly obvious examples of stacks. If we denote by V ect(U), the category of vector
bundles on U , for U an open set in B, then F (U) = V ect(U) is part of the specification of a fibred
category, Vect(B), on B, and, of course, it is a stack. More interestingly for us, if G is a sheaf or
bundle of groups, we have:

Theorem 22 The fibred category of G-torsors, Tors(B), on a space B is a stack.

Proof: The earlier calculations that we did showed it was prestack, so we only have to check
‘collatability’, (cf. MacLane and Moerdijk, [125], for this term in their discussion of gluing of
sheaves).

Suppose F (U) = Tors(U,G) is the category of GU -torsors on U . We can form Des(U , F ) for
any open cover, U , of U , and as G-torsors are sheaves, we can build a sheaf, x, from any ‘descent
data’, (a, θ), i.e., forgetting the G-torsor structure, recording only the underlying sheaf. It thus
remains to check that x is a G-torsor. To do this we can work locally - but then it is almost given
to us on a plate! Each ai is a GUi-torsor, so we get local sections for free for x, whilst the local
actions of the GU (on the various ‘local’ torsors) glue to give the structure of a G-torsor on x.
(There are details to check, but they are not that hard.) �
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9.4.6 Strong and weak equivalences: stacks and prestacks

We can now make several observations about strong and weak equivalences of fibred categories,
when applied to stacks and prestacks. Recall ϕ : F → G, a morphism of fibred categories was
called a strong equivalence if for each open set, U , of B, ϕU was an equivalence of categories, whilst
it was a weak equivalence if each ϕU was full, faithful and locally essentially surjective on objects.
This last condition was, ntuitively, that one might have to refine before finding an object locally
isomorphic to the given one. If, however, we can glue objects up to isomorphism, then if we have
ϕ is a weak equivalence, the glued object will be isomorphic to the given one, so ϕU will actually
be ‘eso’, i.e., will be an equivalence. We thus have:

Lemma 55 If ϕ : F → G is a weak equivalence of prestacks over B and F is a stack, then ϕ is
also a strong equivalence. �

We can use gluing of objects to obtain other simple consequences.

Lemma 56 Suppose given prestacks F , G and H, morphisms ϕ : F → G and ψ : F → H, and
suppose (i) ϕ is a weak equivalence and (ii) H is a stack, then there is a morphism, ψ̃ : G → H,
such that ψ̃ϕ ∼= ψ and ψ̃ is unique up to fibred isomorphism among such extensions.

Proof: (Intuition only here - details left to you!) We have to define ψ̃ on some a, so use weak
equivalence to find, locally, objects back in F , which ‘almost’ map to a. This gives descent data
which we send to H via ψ, and which we reassemble there, using gluing, to get the object that we
will take for ψ̃(a). Now see what happens with morphisms. �

Weak equivalence together with ‘(pre-)stackness’ thus behaves well. If ϕ : F → G is a strong
equivalence, however, then F is a (pre)stack if and only if G is, so the ‘object-gluing-up-to-
isomorphism’ condition will be preserved under strong equivalence, but clearly may not be under
weak equivalence.

These last few comments indicate that when trying to stackify, weak equivalences are still very
useful. We want the stack version of ‘associated sheaf’, so we try the following definition:

Definition: Let F be a prestack. An associated stack for F consists of a stack, F̃ , and a weak
equivalence, ϕ : F → F̃ .

We, of course, do not yet know if such things exist, but we do know:

Proposition 82 Given a prestack F , if an associated stack, (F̃ , ϕ), exists for F ,
(i) it is unique up to strong equivalence,
and
(ii) if ψ : F → H is any other morphism into a stack, it factors through φ, ψ ∼= ψ̃.ϕ, i.e., (F̃ , ϕ)
has a ‘universal property up to isomorphism’.

Proof: These are consequences of the lemmas. Suppose θ : F → G is a weak equivalence into a
stack G, then an extension, θ̃, of θ over F̃ exists and is a weak equivalence, but then the earlier
lemma shows it to be a strong equivalence as well. The second statement is attacked similarly. �
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9.4.7 ‘Stack completion’ aka ‘stackification’

This would all be in vain if associated stacks did not exist! Luckily they do.

It pays, yet again, to step back and look at the sheaf case. The associated sheaf of a presheaf is
made up of a colimit of compatible families of local sections. We could attempt a similar approach
here. We could take a ‘colimit’ of the descent categories, Des(U , F ), as U varies over open covers
of U , i.e., something along the lines of

F̂ (U) = colimUDes(U , F ).

The only problem is that an ordinary colimit of categories is not going to do the job, rather we need
the ‘pseudo-colimit’ of these categories, or alternatively some ‘homotopy colimit’ of them in some
sense. That way, we will record more of the data on the interrelationships between the Des(U , F )
as U varies.

We will tend to use the sheaf / topos theoretic notation, Y → U , etc. for covers here. (It is
less encumbered by indices and has the advantage that is only needs a little more work to make
the transition from this to ‘sites’ and ‘Grothendieck toposes’.

Discussion of how to build F̂ : Suppose F is a prestack on B and U is an open set of B.
(The prestack condition will be needed in an essential way later on.)

Define a category, F̂ (U), as follows:
• An object of F̂ (U) consists of data, (π, (a, θ)), where π : Y → U is a cover, and (a, θ) is an object
in Des(π : Y → U,F ). (We may sometimes write (Y, (a, θ)) instead of the better (π, (a, θ)).)
•A morphism from (π, (a, θ)) to (π′, (a′, θ′)) will be an equivalence class of locally defined morphisms
over finer covers. In detail, given π : Y → U and π′ : Y ′ → U , there are covers ρ : Z → U finer
than both, for instance, any cover finer than the pullback cover Y ×U Y ′ → U . (If you prefer to
think in terms of open covers, U and U ′, this pullback cover is {U ∩ U ′ | U ∈ U , U ′ ∈ U ′}.)

We have maps of covers, s : Z → Y , and ′ : z → Y ′, (or better s : ρ → π and s′ : ρ → π′),
and so objects, s∗(a, θ), and s′(a′, θ′) ∈ Des(ρ, F ). A local morphism from (π, (a, θ)) to (π′, (a′, θ′))
will be data (ρ, f), where ρ and f are as above. (Actually this is not quite right because we may
need to register the relationship between ρ and π and π′, i.e., s and s′, as we need to recall that
refinement maps need not be unique between two covers. We will see an occasion later on when we
will find it useful to record the extra data, but the notation will do fine for the present.)

There are at least two difficulties here. Certainly this corresponds to a reasonably good notion
of locally defined morphism between the two objects, but it is very dependent on the choice of
ρ : Z → U . In our topological situation we might be tempted to fix Z = Y ×U Y ′ and try to
work with that, but that seems slightly odd as we might deny ourselves some morphisms which
are more locally defined, that is, on finer covers, so that should be avoided. If we pass to finer
covers than on our defining ρ, then we will get restrictions of any morphisms that we have already
found and hence get, sort of ‘in the limit’, ‘germs’ of locally defined morphisms. In other words,
we should consider some equivalence classes of locally defined morphisms under refinement rather
than the basic morphisms themselves. That seems ‘right’ as it is a similar intuition to the idea
in ‘sheafification’ where local sections are replaced by germs of local sections, and categorically,
that is a colimit. This extra abstraction means that we can handle it in other situations than just
Sh(B), e.g., in the toposes that arise in non-topological contexts.
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In fact, we assumed that F was a prestack, so the presheaf of local morphisms between objects
is a sheaf, which means that our geometrically inspired idea above is very firmly based.

That is the first difficulty overcome. The second difficulty looks, initially, more serious - but, in
fact, vanishes when we examine it closely as it is handled by the passage to ‘germs’ that we have
already mentioned, and thus by the fact that F is assumed to be a prestack. The query is: “how
are we to define composition of morphisms? In other words we claimed the F̂ (U) was a category, so
we need to define its structure and we have not yet done that! We first need to set up the situation
in a bit more detail.

We have three objects (πi, (ai, θi)), i = 0, 1, 2, and morphisms (ρij , fij) : (πi, (ai, θi)) →
(πj , (aj , θj)) for (i, j) = (0, 1) and (1, 2). We need to ‘compose’ f01 and f12, but (oh dear!),
they are in different categories:

• f01 is in Des(ρ01, F );

• f12 is in Des(ρ12, F ),

but this viewpoint does not take account of the more geometric ‘vision’ of these locally defined
morphisms as equivalence classes or ‘germs’, thus each morphism really contains not only the
information that we see ‘on the surface’ notation but also all its restrictions to finer covers.

We can find some Z012 finer than Z12×U Z01 giving a ρ012 : Z012 → U , and can restrict f01 and
f12 to Z012, along those refinements. We thus have representatives, f ′01 and f ′12 of the corresponding
morphisms within Des(ρ012, F ), and, as is easily checked, can compose them. If we replace ρ012 by
some finer cover, everything still works and is compatible with the restriction maps, (left to you
to check), so we do have a well defined composition.

To summarise, the objects of F̂ (U) are locally defined objects, whilst the morphisms are ‘germs’
of locally defined morphisms.

If V ⊂ U , then restriction all round yields a functor from F̂ (U) to F̂ (V ), and, not surprisingly,
if we have W ⊂ V ⊂ U , then we get natural transformations between the various functors yielding
a pseudo-functor, F̂ : Open(B)op → Cat, i.e., a fibred category F̂. There is clearly a morphism

ω : F→ F̂

and the construction of F̂ makes it clear that locally defined objects glue “up to isomorphism”, so
F̂ is a stack, (but again detailed checking is for you to follow up).

We thus have:

Theorem 23 For every prestack F, the above constructed F̂ is an associated stack, (or stack
completion or even stackification) of F. �

If F is an arbitrary fibred category, then we first take its prestackification, as explained earlier,
then stack complete that prestack to get the stack completion of the original fibred category.

9.4.8 Stackification and Pseudo-Colimits

The sheafification of a presheaf can be done using a colimit construction, something like

F̃ (U) = colimUDes(U , F ),
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that is, a colimit of families of local sections, yielding ‘germs’ of local sections, in some sense.

Earlier we suggested (i) that F̂ should be given similarly by some formula such as

F̂(U) = ps−colimUDes(U ,F),

that is, a pseudo-coimit of the descent categories, Des(U ,F), over Cov(U), the category of coverings
of the open set, U , and (ii) pseudo-colimits are a sort of ‘homotopy colimit’, (to be investigated
later) and are given, up to equivalence, by a modification of the Grothendieck construction. We
have examined that construction in quite a lot of detail above, so it seems a good idea to see how
the description as a pseudo-colimit of Des(−,F) tallies with the construction we have given above.
To start with we will work with the Grothendieck construction, which is not quite the right one to
use, and will need to be modified. (This is on the principle that it is a good idea to start where
you are not where you would like to be!) The Grothendieck construction is more exactly an op-lax
colimit as we saw (section 9.2.9). The difference between this and the pseudo-colimit is that there
are certain 2-cells that we would like to be invertible, but are not!

We have our prestack, F, and thus our pseudo-functor, Des(−,F) : Cov(U)op → Cat. For
brevity, let us call this pseudo-functor X : Cov(U)op → Cat, and, for the sake of comparison, keep
to the sheaf theoretic view of coverings as morphisms π : Y → U , with some nice properties such as
stability under pullbacks. (Of course, this is really specifying the Grothendieck topology on Sh(B),
and, as was pointed out earlier, has the additional advantage of being much nearer the notation
and terminology needed to make the transition from Sh(B) to a general topos.)

We need to look at the category that we would have been calling, EX, in our section on fibrations.
We list the structure, transcribing from that earlier description:

• An object of EX is a pair ((a, θ), π), where π : Y → U , and (a, θ) is an object of Des(π,F).
(‘So far so good’, it has the same objects as F̂(U), except for a different convention in the
order of the pair, which should not disturb us unduly.)

• A morphism from ((a, θ), π) to ((a′, θ′), π′) is a pair, (f, s), where s : π → π′ in Cov(U) and
f : (a, θ)→ (a′, θ′) is in X(π).

This description of morphisms somehow looks completely different from that in F̂(U), so what is
going on here. We should examine the morphisms a bit more closely. (Once we have done that, the
relationship is almost self evident and the differences will, it is hoped, look less stark. The analysis
of the morphisms is also of use later on, so is not, in any case, a waste of effort.)

There are two obvious special types of morphism. The first has s the identity and so (f, s) is
a morphism in the fibre, X(π). The second is, sort of, a morphism induced by an s : π → π′, so
there is some (a′, θ′) in X(π′), and hence s∗(a′, θ′) in X(π). Of course, we therefore have (idx, s) is
a morphism, where x = s∗((a′, θ′). (We will usually just write (id, s) for this. We also note it is
Cartesian.)

We look at a composite of the two types of morphism and note that (f, s) = (id, s)]0(f, id), so
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any morphism in EX can be factorised in this way:

(id,s) //

(f,id)

OO

(f,s)

<<xxxxxxxxx

___________

π s // π′

It is quite interesting to see the composite of the other sort, i.e., first an induced map and
then one in the fibre. We will just give the answer, leaving you to check it using the formula for
composition from earlier:

(g, id)]0(id, s) = (s∗(g), s)

This is reminiscent of the semi-direct product formula which is not that surprising.

We now look at the situation of morphisms in F̂(U). We have covers π : Y → U and π′ : Y ′ → U ,
much as before but neither needs to be a refinement of the other. Instead, we have ρ : Z → U , a
joint refinement, so have s : ρ → π and s′ : ρ → π′. Pausing for a moment, that gives us, in EX,
some morphisms:

(id, s) : (s∗(a, θ), ρ)→ ((a, θ), π)

and
(id, s′) : (s∗(a′, θ′), ρ)→ ((a, θ), π).

We also have, in the fibre, X(ρ), a morphism

f : s∗(a, θ)→ s∗(a′, θ′),

and so, again in EX,
(f, id) : (s∗(a, θ), ρ)→ (s∗(a′, θ′), ρ).

This makes it clear that in F̂(U), our typical morphism would be thought of as a composite

(id, s′)]0(f, id)]0(id, s)−1.

The only problem is ... (id, s) is not invertible, as s is not invertible (except in exceptional cases).

As this does not seem to give what might be expected, let us go about it the other way around.
Instead of writing morphisms in F̂(U) in the language of EX, look at the morphisms of EX and see
if they interpret well in terms of F̂(U). (We will have to adjust notation back again, so be careful!)

Suppose we have (f, s) in EX with s : π → π′ in Cov(U) and f : (a, θ)→ s∗(a′, θ′) in X(π). We
do not here need to refine both our covers. Instead of

π

ρ

s
>>~~~~~~~~

s′ ��???????

π′
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in Cov(U), we have ρ = π and the s′ will be our new s. This means that our basic morphism
(f, s) becomes (π, f) in ‘F̂(U)-speak’, and it looks as if there is an ‘inclusion’ or ‘injection’ of
EX(((a, θ), π), ((a′, θ′), π′)) into F̂(U)((π, (a, θ)), (π′, (a′, θ′)).

What about those mysterious inverses? We should look at these more closely perhaps.

9.4.9 Stacks and sheaves

How different is a stack from a sheaf? The answer is ‘very different’. To illustrate this, we will
look at a sheaf of groups, G, on B. We can think of groups as single object groupoids to get a
sheaf of categories, G[1]. Assume U is an open set of B and U is an open cover of U . What does
Des(U , G[1]) look like? As each G[1](U) has a single object, we have not that much choice for the a
part of an object (a, θ), but θij is an arrow in G[1](Uij), i.e., an element of G(Uij) and the cocycle
conditions imply that θ is a cocycle, determining a G-torsor on U , trivialised over U . (This should
make us expect that the morphisms in Des(U , G[1]) will be given by coboundaries!) Suppose θ and
ρ are two objects of this category Des(U , G[1]), then a morphism f : θ → ρ is given, yes, by a
family {fi} of arrows with fi, an arrow in G[1](Ui), hence ‘really’ by an element in G(Ui) and the
condition on these is that

ρij .α
ij
j (fj) = αiji (fi)θij .

The notation for the general case that we have used here is perhaps getting in the way a bit. If we
write gij = θij , g

′
ij = ρij , gi = αiji (fi), etc., then this is just

g′ij = gigijg
−1
j

over Uij , i.e., it is exactly the coboundary relation. We thus have Des(U , G[1]) yields precisely the
part of Tor(U ;G) of those G-torsors trivialised by U and, on forming the corresponding pseudo-
colimit, we get the whole of Tor(U ;G). In other words, not only is G[1] nowhere near being a
stack, we have identified its ‘stackification’:

Theorem 24 For a sheaf of groups, G on B, the associated stack of G[1] is Tors(B;G) �

To help with the deciphering of the general situation, it is worth noting that the natural morphism

G[1]→ Tors(B;G)

sends the single (global) object of G[1] to the trivial G-torsor and similarly over any open set U .
The local triviality condition on torsors then translates to saying that this morphism is a weak
equivalence of fibred categories.

This example leads to the observation that for any prestack, F , on B, the associated stack F̂
is characterised by the property that every object of F̂ is locally contained in the essential image
of F , i.e., is locally isomorphic to an object of F .

9.4.10 What about stacks of bitorsors?

There is a certain implacable logic in the development of non-Abelian cohomology. Certain struc-
tures keep on coming up and then varying along the categorification process. Certain questions
recur, usually in evolving form.
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We have seen Tors(B;G) gave Tors(B;G), the corresponding stack. Moreover this was the
associated stack of the sheaf or bundle of groups, G, itself. Earlier we met bitorsors and relative
M-torsors. It is natural to wonder if (G,H)-bitorsors on B form a stack and, of course they do
as we have seen that left G-torsors form a stack, thus forgetting the right H-action, we can glue
locally defined (G,H)-bitorsors up to isomorphism, then reinstate the H-action. That gives an
idea of how to proceed with the proof of the last part of the verification. That it forms a prestack
is also straightforward. We thus have, for G, H, two sheaves of groups on B, fibred categories,
Bitors(G,H) and Bitors(G). What is more, the pairing structure given by the contracted product
give morphisms of these categories. We have:

Theorem 25 (i) Given sheaves of groups, G, and H, Bitors(G,H) is a stack.

(ii) Given sheaves of groups, G, H and K, there is a morphism of fibred categories

Bitors(G,H)× Bitors(H,K)→ Bitors(G,K)

induced by contracted product.

(iii) For G a sheaf of groups, Bitors(G) is a gr-stack, i.e., each of the fibres Bitors(GU ) is a
gr-category, i.e., a group-like monoidal category, with the restrictions respecting the structure. �

(The second part requires the definition of product of fibred categories, but that is given by fibrewise
product so should cause no technical ‘difficulties to the reader’.)

We take the obvious next step, that is to examine the fibred category M−Tors (or ‘M−Tors(B)’,
if need be). First we note that if ϕ : G→ H is a morphism of sheaves of groups, then the induced
functor, ϕ∗ from Bitors(G) to Bitors(H), ‘localises’ so as to give a morphism of fibred categories,
which is given by ϕ∗(E) = Hϕ ∧ E.

If M = (C,P, ∂) is a sheaf of crossed modules, then any relative M-torsor is a C-torsor, E,
together with a global section, t, of ∂∗(E). Restriction and contracted product work well together.
Contracted product is given by a coequaliser of a pair of morphisms of sheaves, so restricts without
problem from an open set U to an open subset V of U , or to an open cover, U , for that matter.
The prestack condition is thus reasonably easy to check - local compatibility with a given global
section, t, transfers to any glued morphism. More precisely, if a, b are M-torsors over U , a = (E, s),
b = (E′, t), then the restricted bitorsors f∗(a), f∗(b) for f : V → U have the form (f∗(E), t|V )
so, given a family of bitorsor morphisms, ϕi : (αi)∗(a) → (αi)∗(b), over an open cover {Ui}, the
resulting glued morphism from a to b is compatible with s and t, since locally these ϕi were. We
thus have that M−Tors is at least a prestack.

Now assume we glue together any descent data (a, θ) for M-torsors, considering them as C-
torsors, to get, at very least, a C-torsor, E, locally isomorphic to the CUi-torsor, Ei, over the
set Ui of the open cover U . We then get a P -torsor, ∂∗(E), and a family of local isomorphisms,
σi : Ei ∼= E|Ui , and thus

∂∗(σi) : ∂∗(Ei) ∼= ∂∗(E)|Ui = αi∗∂∗(E) = ∂∗α
i∗(E).

Now ai = (Ei, ti), where ti is a global section of ∂∗(Ei) over Ui. We use this local section, ti, to
obtain a local section, t′i = ∂∗(σi)ti, of ∂∗(E)|Ui over Ui. Over Uij , we have an isomorphism of
M-torsors

θij : αij∗j (aj)→ αij∗i (ai),
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so

∂∗α
ij∗
j (aj)

∂∗θij // ∂∗α
ij∗
i (ai)

Uij

tj

aaCCCCCCCC ti

=={{{{{{{{

commutes and the σis are compatible, as sheaf isomorphisms, with these θijs. This implies that
the t′i form a compatible family of local sections of ∂∗(E), which glue to form a global section t of
∂∗(E), i.e., (E, t) ∈ M−Tors(U). We have thus checked:

Theorem 26 If M = (C,P, ∂) is a sheaf of crossed modules over B, then the fibred category
M−Tors(B) is a stack, in fact, a gr-stack. �

The final comment follows from the structure of a gr-groupoid on each ‘fibre’, compatibly with
restriction.

As M defined a sheaf of gr-groupoids, we are led to another query. A single sheaf of groups, G,
led after stackification to a stack which was equivalent to the stack of G-torsors. If we replace G by
M, and think of it as a sheaf of gr-groupoids, we must surely get M−Tors(B) after stackification,
mustn’t we?

To investigate this, learning from the case of G-torsors, we take a direct approach. Let X (M)
denote the sheaf of gr-groupoids associated to M, so X (M) has for its sheaf of objects the sheaf
P and for its sheaf of arrows, C o P . This X (M) will be our F for this example. We explore
what Des(U , F ) looks like for this F and an open cover U of an open set U of B. We translate the
definition of Des(U , F ) to this context. It gives:
• Objects: (a, θ), where a = {ai} with ai ∈ X (M)(Ui) = Pi = P (Ui) and θ = {θij}, where

θij : αij∗j (aj)
∼=→ αij∗i (ai).

Thus ai ∈ Pi and, to make our lives more interesting, we will write pi instead of ai. The θij are
arrows, which are naturally invertible in this context, from pj |Uij to pi|Uij . As such they will be of
the form (cij , pj) ∈ (C o P )(Uij). (For obvious reasons we will, for the moment, throw away the

αij∗i -notation, reverting to our earlier notation of writing ‘pij over Uij ’ or saying that an equation
holds ‘over Uij ’, as here it has no risk attached, unlike in some other contexts.) As (cij , pj) has
target ∂(cij)pj , this gives us pi = ∂(cij)pj over Uij . (We have seen that before!)
• Arrows: f : (a, θ) → (b, ρ), or, changing notation, f : (p, c) → (p′, c′), will be a family of

arrows fi : pi → p′i in X (M)(Ui), but that gives a family {ci} with ci ∈ Ci such that p′i = ∂ci.pi.
These fi have to satisfy the compatibility condition with regard to the θij part of the objects - and,
yes, you guessed, this translates to

c′ij = cicijc
−1
j .

In other words we have exactly the objects and arrows we need to get:

Theorem 27 Given a sheaf of crossed modules, M, the associated stack of the sheaf of gr-groupoids,
X (M), is the gr-stack, M−Tors(B).

Of course, there is a lot still to check, e.g., that this local description of Des(U , F ) does pass to the
colimit, that everything is compatible with the gr-groupoid / contracted product structure, etc.
but this can all be safely left ‘to the reader’.

As a corollary we get
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Corollary 17 The gr-stack, Bitors(G), is the associated gr-stack of the sheaf of crossed modules,
G→ Aut(G), i.e., of Aut(G).

(We should note that the use of the ‘the’ in ‘the associated stack’ in these results is not quite
right, as associated stacks are only defined ‘up to equivalence’.)

We have seen that M−Tors is a gr-category and that the corresponding stack, M− Tors, is
a gr-stack and thus that this is true, in particular, for M = Aut(G). An important case of this
is when G is a sheaf of Abelian groups, then Aut(G) = (G,Aut(G), 0), since G will have no non-
trivial inner automorphisms. This has several implications. Most of these apply in more generality
so we will look at a general crossed module of form M = (C,P, 0), so C is a P -module and the
‘boundary map’, ∂ is the trivial homomorphism. This assumption means that any representing
map g : N(U) → K(M) reduces to an assignment of elements cij to Uij and pi to Ui such that
cijcjk = cik and pj = pi over Uij . We thus have a C-torsor, E, on which P acts and a global section
of P .

For the gr-stack structure, the C-torsor, E, that one gets is both a right and left C-torsor, as we
have seen. The right action need not be the obvious one from symmetry as we have a formula for it
as ei.c = pici.ei (see page 290 and the discussion there). This has to be interpreted with care: ei.c
is the result of acting with c on the right of the local section ei. It is not obtained by multiplication.
The contracted product is symmetric as again we saw earlier (if you did the exercise!) and so,
of course, π0(M− Tors) is an Abelian sheaf.

9.4.11 Stacks of equivalences

What we next look at could have been discussed at any point almost from the first chapter onwards.
We saw there that a group G can be considered as a groupoid with one object, for which we have
often written G[1], indicating a suspended or categorified version of G. Also very early on, we met
the crossed module, Aut(G) = (G,Aut(G), ι), and have used it many times in later chapters. There
is a neat link between them.

Looking at two groups, G, H, we can examine the interpretation of categorical notions and
constructions such as functor, natural transformation, equivalence of categories, etc., for G[1] and
H[1]. For instance, a functor from G[1] to H[1] is clearly just a homomorphism from G to H. A
natural transformation is a little bit more subtle. A natural transformation η : f ⇒ g between two
such functors picks out an arrow, η(a) : f(a) → g(a), in H[1] for each object a of G[1], but there
is but one such object and as arrows in H[1] are just elements of H, η ‘is’ an element h of H such
that h.f(x) = g(x).h for all x ∈ G, i.e., as we saw earlier, g = h.f.h−1 = ih ◦ f .

If we ask for conditions on f : G → H, so that f [1] is an equivalence of groupoids, we will get
a f ′ : H → G and natural isomorphisms, η : ff ′ ⇒ IdH , ε : IdG ⇒ f ′f , so there are elements
g ∈ G and h ∈ H such that for all y ∈ H, ff ′(y) = hyh−1 and for all x ∈ G, gxg−1 = f ′f(x). We
thus have that f almost looks like an isomorphism - is it in fact one? We can try to prove that it
is and see what happens. For instance, f is easily seen to be a monomorphism since if f(x) = 1,
then gxg−1 = 1, i.e., x = 1. Is it an epimorphism? If we have y ∈ H, set y′ = h−1yh to find
f(f ′(y′)) = y, so it is. An equivalence is an isomorphism therefore. (Another amusing way to prove
that fact is to find an inverse isomorphism by manipulating f ′ - this is left to you!)

The most immediately important example of this type is the case when G = H and one is
looking at self equivalences of G[1]. As G[1] is a groupoid, we can form the category of functors
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from G[1] to itself. Of course, this also has a monoid multiplication

Gpd(G[1], G[1])×Gpd(G[1], G[1])→ Gpd(G[1], G[1])

given by composition in the 2-category of groupoids (so this multiplication is a functor). We restrict
to the subcategory Aut(G[1]) ⊆ Gpd(G[1], G[1]), where, of course, this stands for the automorphism
2-category of G[1]; again, of course, this is both a group object and a groupoid, i.e., after a tiny bit
of checking, it is an internal group in Gpd or an internal groupoid in Groups or a strict gr-groupoid.
This means we should be able to identify the associated crossed module - the group of objects is
just the automorphism group of G and as ‘natural transformation are conjugations’, the top group
is isomorphic to G itself with ∂ = i : G → Aut(G), so the associated crossed module of Aut(G[1])
is Aut(G).

Breen, in [30], notes a neat way of looking at Aut(G[1]). We will adopt his notation for the
discussion, writing BG for Ner(G[1]), as we did in our discussion of Puppe sequences. (The
geometric realisation of this is the classifying space of G, which is what is the thing more normally
denoted BG.) Extending this to a sheaf of groups, G, we get a prestack of (local) self equivalences
of BG, denoted Eq(BG). Of course, BG is a simplicial sheaf and the equivalences are equivalences
of the sheaf so do restrict in a reasonable way. An equivalence of BG is just an automorphism of
G, and, again of course, the natural transformations are given by conjugation. It is easy to check
that this identifies Eq(BG) with Aut(G[1]), the gr-prestack that we have considered earlier. One
can trace this phenomenon, that the equivalences of BG are just the automorphisms, as being due
to the fact that the nerve functor from groupoids (or more generally small categories) into S is a
full embedding. Of interest also is to calculate aut(BG) in the sense of section 6.3. Recall that
if Y is a simplicial set, aut(Y )n consisted of morphisms ξn : Y × ∆[n] → Y , that when we form
(ξn, p) : Y ×∆[n]→ Y ×∆[n], we have an automorphism over ∆[n], i.e., the diagram

Y ×∆[n]
(ξn,p) //

p ##FFFFFF
Y ×∆[n]

p{{xxxxxx

∆[n]

is commutative, where the two slanting arrow are the obvious projection, p, to ∆[n],. The face
and degeneracy maps are induced in the obvious way. Examination of this when Y = BG shows
that such a ξ is determined by a sequence, h1, . . . , hn, of elements of G together with a starting
automorphism. If that looks familiar, check up on face and degeneracy maps and you will get an
isomorphism

aut(BG) ∼= K(Aut(G)),

the nerve of the associated groupoid structure of the crossed module Aut(G). (The only annoyance
is with the order of composition that must be handled carefully!) This is natural with respect to
the sheaf structure induced from that on G.

If we replace auto-equivalences by equivalences between G and a second sheaf of groups H,
the same analysis works almost word for word, except of course that Eq(BG,BH) does not have a
compositional monoid structure. What replaces that is an action of Eq(BG) by precomposition and
one by Eq(BH) by postcomposition. (These terms ‘pre-’ and ‘post-composition’ are neutral with
respect to conventions of notation. Functional order makes Eq(BG,BH) a left Eq(BH)-object,
but algebraic order would change ‘left’ for ‘right’. Care does need to be taken here.)

We thus have



9.4. FROM PRESTACKS TO STACKS 381

Lemma 57 (i) For G, a sheaf of groups on B, the gr-prestack Eq(BG) is determined by the sheaf
of crossed modules, Aut(G).

(ii) For G, H, sheaves of groups on B, the pre-stack Eq(BH,BG) of equivalences is the prestack
defined by Isom(H,G).

(iii) The action of Aut(G) on Isom(H,G) extends to one of Eq(BG) on Eq(BH,BG). �

The constructions being natural, we can stack complete, noting that the process of localising over
B changes nothing of the structure. The self equivalences of BG then give us self-equivalences of
Tors(G) and the lemma transforms to give:

Proposition 83 (i) The gr-stack Eq(Tors(G)) of self-equivalences of the stack Tors(G) is the stack
associated to the gr-prestack, Aut(G[1]), i.e., the stack, Bitors(G), of G-bitorsors on B.

(ii) The stack, Eq(Tors(H),Tors(G)), of equivalences between the stacks Tors(H) and Tors(G) is
the stack associated to the prestack, Isom(H,G), of isomorphisms from H to G, and the action of
Eq(Tors(G)) on this stack, by post-composition, is that induced from the action of the gr-prestack
Aut(G). The stack, Eq(Tors(H),Tors(G)), is equivalent to that of (G,H)-bitorsors.

Proof: The argument given earlier, although valid, requires a certain amount of calculation /
verification to be completely ‘water tight’. Here, therefore, is a separate argument.

Let U be an open set of B and u : U → Aut(G[1]) be a local section over U , then u is a (local)
automorphism of GU [1] and we associated to this a G-bitorsor with trivial underlying left G-torsor
structure and, of course, right G-action given via u. More precisely, let Λ(U) be TGU with trivial
section, s : U → TGU , and where

s.g := u(g).s.

(Writing h for another local element of G, remember (h.s).g = hu(g).s, so the actions are indepen-
dent. We saw this before, of course, when discussing cocycles for bitorsors.) This gives a morphism
Λ of fibred categories

Λ : Aut(G[1])→ Bitors(G)

and, of course, it needs to be checked that it works at the level of morphisms - which is ‘left to
the reader’ as it is a repetition of arguments already rehearsed! It is also easily seen that it is
full, faithful and locally ‘eso’, the latter being by using local triviality of bitorsors, so Λ is the
‘stackification’ morphism. �

This whole discussion ‘should’ be reminding you of our brief excursion into Morita theory. It
is time for a revisit, but before we do that note that it is very easy to get various group structures
and group-like structures reversed when discussing bitorsors, etc. Two different sources can adopt
different conventions leading to confusion. (The author of these notes knows this to his cost and
does not guarantee to have always resolved the notational problems consistently! For instance,
a slight change in convention and notation results in there being an opposite group structure in
Breen’s [28]. I think that I have an internally consistent convention, but suggest that the reader
always work with the convention that suits their application and again should always be aware that
different motivations and different intuitions can lead to different sensible conventions - so always
check!)
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9.4.12 Morita theory revisited

We saw earlier, in Proposition 65, page 273, that any (G,H)-bitorsor, Q, on B gave an equivalence
of categories

ΦQ : Tors(H)→ Tors(G)

given by ΦQ(M) = Q ∧H M. This was very well behaved, since we could easily check, from asso-
ciativity, up to isomorphism, of the contracted product, that ΦQo given by Qo, the (H,G)-bitorsor
obtained by reversing the two actions, was an inverse for ΦQ.

Clearly we can obtain a localised stack version of this very easily. In other words, restricting to
open sets U in B, QU determines an equivalence between Tors(U ;H) and Tors(U ;G) and this is
compatible with restriction (up to isomorphism) inducing a strong equivalence of stacks between
Tors(H) and Tors(G) .

Conversely, given any equivalence

Φ : Tors(H)→ Tors(G)

either just at the category level, or of fibred categories, we can find a (G,H)-bitorsor, Q, since
Φ(TH), the image of the trivial H-torsor gives us one. For simplicity, we will assume Φ is an
equivalence of fibred categories, then Q trivialises over some open cover U giving QU ∼= TG,U over
each U in the cover. We then can use the reverse equivalence, ΨU , of ΦU to obtain a (HU , GU )-
bitorsor getting us back to TH,U . Checking over intersections gives that this identifies ΦQ as being
Φ itself, up to isomorphism. We thus have, again, that Eq(Tors(H),Tors(G)) is equivalent to
Bitors(G,H), by a more geometric argument.



Chapter 10

Non-Abelian Cohomology: Gerbes

Stacks and gerbes are very closely related. Stacks are the categorified analogues of sheaves of
groupoids. Gerbes are stacks with some side conditions. Because of their importance for non-
Abelian cohomology, however, they deserve a separate chapter, but to some extent, what goes into
a chapter on gerbes could equally well be in one on stacks!

10.1 Gerbes

Before launching into the subject of gerbes, we need first to revisit the relationship between groups
and groupoids. We have used many times the fact that if G is a group, it can be thought of as
a single object groupoid, usually denoted G[1]. We have discussed at various points the role of
homomorphisms between groups yielding functors of the corresponding categories / groupoids and
conjugations yielding natural transformations. This culminated in our discussion of equivalences
at the end of the last section.

All this traffic of ideas may seem one way, from groups to groupoids, but can we see what
happens in the opposite direction? Another closely related point for consideration is ‘what are the
differences?’

Firstly a difference, we may quite often say ‘a groupoid is a group with many objects’ as a
means of expressing the intuition of the relationship, but a groupoid need not have many objects,
... it need not have any objects! An equivalence relation always yields a groupoid as we saw early
on. In particular, the empty equivalence relation on the empty set yields, yes, the empty groupoid.
This is allowed since the axioms of a (small) category specify a set of objects and a set of arrows,
that for each object there is an identity arrow, etc., but if the set of objects is empty, ... ! A group,
in the usual definition, cannot be empty as there is an unconditional existence statement for the
identity element. Even considering a group as a groupoid, one says it is a groupoid with one object,
so is not empty.

If we take two groups, G and H, say, then their coproduct, G∗H within the category of groups
is what is often called the free product, obtained by freely forming words which alternate between
elements of G and those of H. Composition is by concatenation followed by reduction to that
alternating form. Take now the groupoids G[1] and H[1] and form their coproduct. This is given
by disjoint union, so has 2 objects. It is clearly not (G ∗H)[1], thus the process of categorification
does not preserve coproducts, G[1] t H[1] is not even a connected groupoid, i.e., its π0 is not a
singleton. This distinction between connected and non-connected groupoids is important. If now

383
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G denotes a groupoid and it is connected, this means explicitly that for any two objects x, y of
G, the set G(x, y) of arrows from x to y is non-empty. If we pick an object x0 in a connected
groupoid then for each other object y, we can pick an arrow ey from x0 to y. Consider the inclusion
of G(x0) into G or pedantically of G(x0)[1] into G. This is an equivalence of categories, or, in its
homotopy theoretic form, a homotopy equivalence, even a strong deformation retraction. What

is the retraction? If g ∈ G(y, z), then send g to the composite x0
ey→ y

g→ z
e−1
z→ x0, which is in

G(x0)[1]. (That this is an equivalence is left as an exercise.) (Good references for these sorts of
argument in groupoids can be found in Brown’s book, [36] or Higgins, [93].) We thus have:

any non-empty connected groupoid is homotopy equivalent to any of its vertex groups.

It is useful to note that the actual equivalence depends on the choice of base point, x0 and also
on that of the chosen edges, ey.

10.1.1 Definition and elementary properties of Gerbes

(Throughout the sections on gerbes, as such, we will follow and expand on Breen’s exposition from
[31])

The term ‘gerbe’ refers to a special sort of stack of groupoids. A gerbe is to a general stack
what, up to equivalence, a group is to a general groupoid. (Because of the importance of certain
very special types of gerbe in applications, some authors restrict the term to that subclass, but here
we will adopt the general terminology as originally used by Giraud and Grothendieck. Another
very particular ‘misuse’ of terminology in some sources is to consider only Abelian gerbes, but to
use the term ‘gerbe’ for all the objects. This can be very confusing to the beginning ‘gerbologist’,
so be warned, always check which definition is being used when using an article on gerbes. Some
authors state the assumptions clearly and ‘up front’, others not so clearly.)

Definition: (i) A stack of groupoids, F , on B is locally non-empty if there is an open covering
U of B for which each groupoid F (U) is non-empty, for U ∈ U .

(ii) A stack of groupoids, F , on B is said to be locally connected if there is an open covering U
of B for which each groupoid F (U) is connected, for U ∈ U .

(iii) A gerbe F on B is a locally non-empty, locally connected stack of groupoids on B.

Local connectedness can be well stated by saying that for the various U , if x and y are local
objects defined over U , the set F (U)(x, y) is not empty.

Example: Let G be a sheaf or bundle of groups on B and Tors(G), the stack of G-torsors. If
U is any open set in B, then as Tors(G)(U) = Tors(U ;G), the category of GU -torsors over U , it
has at least the trivial GU -torsor amongst its objects, so Tors(G) is locally non-empty.

Next look at Tors(G)(U) again. Any two GU -torsors are locally isomorphic to each other, since
they are both locally isomorphic to the trivial G-torsor, so, if F and F ′ are two GU -torsors, these is
an open cover such that over that cover F and F ′ are isomorphic, hence Tors(G) is locally connected.
We thus have that Tors(G) is a gerbe.

The point about the example is that Tors(G) has a global object. Given G, we have TG, the
trivial G-torsor over B, i.e., Tors(G)(B) is non-empty. The automorphism group of TG is G itself.
(This requires a bit of thought perhaps. The automorphisms of TG include those that are locally
defined, i.e., that are in Aut(TG)(U) for some open set U of B. As we have noted before, Aut(TG)
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is a sheaf and it is easy to see that an automorphism sends the trivial section to ... something, and
that something is in G and determines the automorphism. We have seen this argument before in
several guises, so details should be ‘left to the reader’.)

We also have looked at the ‘homs’, Tors(G)(Y, TG). This is again a sheaf and it has a left action
by Aut(TG), by composition, and, yes, it is a Aut(TG)-torsor as is easily checked. Identifying
Aut(TG) with G, identifies Tors(Aut(TG)) and Tors(G), and the correspondence is an equivalence
of stacks. In other words, we have retrieved Tors(G) from its internal structure.

We can apply this idea to gerbes in general as follows:

Definition: We say a gerbe, P, is a neutral gerbe or is trivial if P(B) is non-empty.

Proposition 84 If P is trivial and x is an object of P(B), then defining G = AutP(x) to be the
automorphism sheaf at x in P, there is an equivalence of gerbes between P and Tors(G).

Proof: First note that G is a sheaf of groups. Using, it is hoped, an obvious notation, for U
an open set of B, G(U) = AutP(U)(xU ), that is, the vertex group of the object xU in P(U), also
denoted P(U)(xU ). This is a sheaf by virtue of the second axiom of stacks, i.e., morphisms glue.

The rest of the proof follows the discussion above for Tor(G) itself. We note for an object y of
P(U), that P(U)(y, x) is a left G(U)-set, compatibly with the restriction maps to smaller open sets.
The action is just composition: writing P(y, x) instead of P(U)(yU , xU ) for convenience, we have

P(x, x)× P(y, x)→ P(y, x)

(g, h) 7→ g ◦ h

in the functional order. This makes P(y, x) into a G-torsor and the assignment to y of this torsor
defines a morphism of stacks from P to Tor(G). We claim this is an equivalence of stacks.

As P is a stack, we have only to check for each U in B, that the corresponding functor, over U ,
is full, faithful and locally eso.

For U , P(U) is a groupoid as is Tors(GU ). The functor sends y, which is in P(U), to P(U)(y, x).
It sends a morphism k : z → y to the morphism

P(k−1, x) : P(z, x)→ P(y, x),

h 7→ hk−1.

If we consider a morphism, α : P(z, x)→ P(y, x), of P(x, x)-sets, then we have, for each h : z → x,
α(h)−1h ∈ P(z, y). We claim this is independent of the choice of h. To see why, consider another
h1 : z → x, then h1 = h1h

−1h, of course, but h1h
−1 ∈ P(x, x), so h and h1 differ only by the action

of P(x, x). The morphism α preserves the action, so α(h)−1h is the same as α(h1)−1h1 = k, say.
Now k ∈ P(z, y), and we calculate

hk−1 = hh−1α(h) = α(h).

Thus we have that our functor is full and faithful. It remains to show that it is locally eso., but
as P is locally connected, this is almost immediate, since although P(U) may not be connected,
there is an open covering of U such that over each V of that covering P(V ) is connected. Suppose
Q is a GU -torsor, then there is some open cover V of U , which we can assume finer than U , and
isomorphisms QV ∼= TGV for V ∈ V. Over intersections, V1 ∩ V2, of sets of V, we have elements
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of GV1∩V2 , which link the restrictions of the chosen isomorphisms. (We will not give labels and
will do everything informally for the reader to formalise!) Also TGV

∼= P(xV ) as a GV -set.
We form descent data relative to V by picking xV over V , ‘gluing’ via the isomorphisms over the
intersections. As P is a stack, this is going to give an object y over U , which (i) is isomorphic
to xU , since the locally defined isomorphisms glue to give an arrow in P(U), and (ii) its image in
Tors(GU ) is isomorphic to Q. We thus have that the functor from P to Tors(GU ) is locally eso.
and hence is an equivalence. �

There are various points to make here. We started with x, a global object and constructed an
equivalence beteen P and a gerbe of G-torsors. If we change x, we change the equivalence. We thus
may have P equivalent to many different gerbes of G-torsors, for different G. At this point we need
to look back at the Morita theory from the last section and subject the lessons of that theory to
scrutiny from the perspective here. (We leave this to you to do.)

A second point is to note the conceptual similarity between this result and the earlier one
which stated that a torsor with a global section is isomorphic to the trivial torsor. Even the proof
is conceptually similar. It is a categorification of the earlier one. There are differences as well as we
do not have as much structure on Tors(G) as on an individual torsor. It does not, for example, have
the analogue of a multiplication, even though it has a sort of identity object, namely the trivial
torsor. The stack of G-bitorsors does have a ‘categorified multiplication’, but as we will see, is not
a gerbe in general.

The third point is that an arbitrary gerbe, P, has a trivialising cover, i.e., there is an open cover
U such that each P(U) is non-empty, hence PU , the restriction of P to U , is equivalent to Tors(G)
for some sheaf of groups G on U . Beware, however, even though PU and PV for U, V ∈ U , can both
be identified with gerbes of torsors, the corresponding sheaves of groups on U and V are difficult to
link up over the intersection. (By now you should be able to guess the sort of construction needed.
Over U ∩ V , there will be two descriptions of P(U ∩ V ), linked to two restricted gerbes of torsors,
so these restricted gerbes are equivalent, hence we use Morita theory to get a bitorsor over the
intersection.) We will return to this later.

We have described gerbes relative to open covers of a space B. We could equally well describe
them for a general topos, E , using hypercoverings. There are also intermediate positions that are
very useful and that we will visit shortly.

There is the problem that, over two open sets of the cover U , we may get only loosely related
sheaves of groups means that these sheaves of groups may not glue together to form a single
globally defined G that can be restricted to the U and V to give sheaves GU and GV such that
PU ' Tors(GU ) and PV ' Tors(GV ). This problem is one of ‘strictification’ of the data. To simplify
matters, it is useful to assume that there is a global sheaf of groups which does work. Although a
restriction on the generality, this does allow much greater progress in the development of the theory
to be made, setting up some intuition that can be used if this more general situation is required.
This ‘global G’ situation is less general, but as we will see it still includes some very interesting
examples.

10.1.2 G-gerbes and the semi-local description of a gerbe

We examine that point in more detail next.
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Definition: Let G be a sheaf of groups on B and P a gerbe. We say P is a G-gerbe if there
is an open cover U = {Ui : i ∈ I} of B, objects xi in P(Ui) and isomorphisms, over each Ui,
G|Ui ∼= AutPUi (xi).

If P is a G-gerbe on B and we have chosen local objects xi over Ui, an open set in the given
cover U , then there will be a nice local description of P, namely, there are equivalences

Φi : PUi → Tors(G)|Ui

over Ui. If we choose ‘quasi-inverses’ for these Φi, then we can get, over Uij , self-equivalences

Φij := Φi|Uij ◦ Φj |−1
Uij

: Tors(G)|Uij → Tors(G)|Uij ,

but thus we get a family, {Pij}, of G-bitorsors over Uij . These glue on local intersections, Uijk,
since there are natural transformations

Ψijk : ΦijΦjk ⇒ Φik,

which satisfy a cocycle condition over 4-fold intersections.

At the G-bitorsor level, the Ψij define isomorphisms of G-bitorsors

ψijk : Pij ∧G Pjk → Pik,

above Uijk and above Uijk`, we have that

Pij ∧G Pjk ∧G Pk` //

��

Pik ∧G Pk`

��
Pij ∧G Pj` // Pi`

commutes, each arrow being the evident one.

This is called the ‘semi-local description’ of P by Breen, [31].

Any reader who is used to fibre and vector bundles may be feeling that G-gerbes are ‘locally
trivial’ in a very analogous way to, say, a bundle with isomorphisms E|Ui ∼= Ui × F , thus allowing
the use of local coordinates, etc. We have that the ‘fibre’ here is a groupoid, Tors(G), and possible
variation in G over different parts of the cover, (as it need not be a constant sheaf of groups), make
this intuition a good, and very rich, one to explore. (The case of a constant sheaf of groups, G, is
still an important one, although the more natural general case is not that much more work!)

10.1.3 Some examples and non-examples of gerbes

Of course, for any sheaf of groups, G, the stack Tors(B;G) of G-torsors on our space, B, is a
gerbe, but few of our other examples of stacks are gerbes, without some side conditions. Of course,
from our decomposition results just discussed we could construct examples, but that does seem the
wrong way around. We will later produce some good examples of gerbes other than just Tors(B;G),
but it is instructive to examine our other stacks for ‘gerbeness’ as well.
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Clearly the stack, Sh(B), of sheaves on B does not even give us a stack of groupoids, so cannot
be a gerbe. Our other prime example of stacks were the stacks of (G,H)-bitorsors, G-bitorsors, and,
most generally, M-torsors for M a sheaf of crossed modules. For the sake of clarity, let M = (C,P, ∂)
as before, then any M-torsor is a C-torsor (with conditions as we have seen), so every morphism of
M -torsors is a C-torsor morphism and is thus invertible as a C-torsor morphism. It is then easy
to see that the inverse of any such must also be an M-torsor morphism and thus to conclude that
M−Tors is a stack of groupoids. That raises the question as to the local conditions: non-emptiness
(yes) and local connectedness (sometimes).

Proposition 85 The stack M−Tors is a gerbe if and only if π0(M) is a singleton sheaf.

Proof: We need only check local connectedness, so suppose given two M-torsors, (E, t) and (E′, t′).
(Recall that E here is a C-torsor and t is a given trivialisation of ∂∗(E) = P∂∧CE.) We can suppose
both E and E′ are trivialised over some open cover U , and examine M−Tors for when it is (locally)
connected. We investigate the conditions for there to be a morphism ϕ : (E, t) → (E′, t′) (over
some U in U).

Picking local sections s (resp. s′) of E (resp. E′), ϕ(s) = c.s′ for some c in C, of course, over
U .

This uses the fact that ϕ will be a map of C-torsors. We need to check for compatibility with t
and t′. The torsor ∂∗(E) has a local section, induced by s, namely [1, s], (cf. the discussion on page
266). Recall that elements of P∂∧CE are equivalence classes of pairs (p, e), where (p, c.e) ≡ (p.∂c, e).
The global section / trivialisation, t, can be specified by t = [p, s] and similarly t′ = [p′, s′]. The
morphism ∂∗(ϕ) is given by

∂∗(ϕ)[p, s] = [p, c.s],

and this is, of course, [p.∂c, s′]. As ∂∗(t) = t′ for compatibility, we must have the corresponding
local sections of P linked by p′ = p.∂c, i.e., p and p′ determine the same element of π0(M).

Conversely, if (E, t) and (E′, t′) are given and p′ = p.∂c for some c ∈ C, then define ϕ : E → E′

by ϕ(s) = c.s′ to get a morphism of C-torsors over U . (Investigation of descent conditions is left
to you.) This gives a locally defined automorphism ϕ. �

The stack of M-torsors is thus not a gerbe unless M is really a central extension

1→ π1(M)→ C
∂→ P → 1.

If we look at the local sheaves of groups determined by M−Tors in this situation, we have for any
object x = (E, t) over an open set U of B, that Aut(x) can be calculated using a similar analysis to
that above. Picking local sections sV of E over some trivialising open cover V of U , we get that any
automorphism ϕ of (E, t) determines a family {cV } of local elements of C given by ϕ(sV ) = cV .sV ,
as ϕ is an automorphism of the C-torsor structure of E. The compatibility with the trivialisation
t of ∂∗(E) now translates as: t = [pV , sV ] and pV = pV .∂cV , so cV ∈ Ker ∂ (over the open set V ).

We need to see the dependency of the cV on the choice of local sections {sV }. We leave you
to check that this results in a conjugation of cV , and hence that the actual isomorphism between
Aut(x)V and Ker ∂|V is dependent on the choices made. (It may help to recall that, in a connected
groupoid, all the vertex groups are isomorphic, but the actual isomorphisms involved depend, up
to conjugation, on the choice of a maximal tree within the groupoid. We should also recall that
conjugation is the groupoid form of homotopy.)
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This is an important point. A G-gerbe specification (as given above) is an existence condition:
there is a G and an open cover U = {Ui} and a family of objects xi and a family of isomorphisms
ϕi : G|Ui ∼= Aut(xi). There is no statement of uniqueness at any stage and no analysis of the
dependence of this data on choices.

Corollary 18 If M is a connected sheaf of crossed modules, so π0(M) is the terminal singleton
sheaf, then M−Tors is a π1(M)-gerbe. �

Note that for arbitrary M, the above argument shows that the stack M−Tors of relative M-torsors
is such that the local automorphisms of local objects give a family of groups isomorphic to π1(M).

Corollary 19 The stack of G-bitorsors is a gerbe if and only if all automorphisms of G are inner,
i.e., the outer automorphism sheaf of G is trivial. When this occurs, Bitors(G) is a Z(G)-gerbe,
where Z(G) is the centre of G. �

We thus have an important class of stacks that are not gerbes, however there are still many
other important instances of stacks that are gerbes.

Another link with G-bitorsors needs commenting on. We saw earlier, Theorem 25, page 377,
that for G a sheaf of groups, the stack of G-bitorsors has a monoidal structure given by contracted
product, and that this is ‘group-like’, i.e., Bitors(G) is a gr-stack. This means that it is very like a
sheaf of ‘gr-groupoids’, and, of course, we saw that it was the stack completion of the (pre-)sheaf of
the internal categories associated to the sheaf, Aut(G) = (G,Aut(G), ι), of crossed modules. If we
change our viewpoint from that of Bitors(G) being a stack, that is telling us about objects defined
by G, i.e., a ‘large’ object containing the various ‘small’ objects of interest to us, to one where it is
an algebraic object derived from our original object G, then we can view the isomorphisms, Ψijk,
above as defining a 1-cocycle on B with values in this monoidal stack. (Breen, [31], suggests the
term ‘bitorsor cocycle’ for such a family.) This is a useful change to make and is thoroughly in line
with the categorification. We could replace Aut(G) by an arbitrary sheaf of crossed modules, M,
then stack completing it, could define a notion of M-gerbe. Of course, that would end up with the
Ψijks being isomorphisms of M-torsors. This may look like generalisation for the sake of it, but
recall our intuition that structure on a space is given by reduction of the group of transitions to
a subgroup or by lifting them to a ‘supergroup’. This again relates to extensions of non-Abelian
cohomology to higher dimensions. Both directions will be explored more thoroughly later.

Yet another intuition is that these 1-cocycles, thought of as G-bitorsors over the intersections,
Uijk, are cocycles with values themselves determined by cocycles, since the G-bitorsors are them-
selves given by cocycle pairs (gij , ui) with values in ι : G → Aut(G). Is it feasible to work with
some sort of double cocycle? Again we will investigate later.

In the case of a general gerbe, P, there may not be a single G making P into a G-gerbe, but the
‘semi-local’ description adapts quite well. We have an open cover U of B such that for each Ui of
the cover, there is an equivalence

Φi : PUi → Tors(Gi),

where Gi is a sheaf of groups on Ui, namely Aut(xi) for some chosen object xi in P(Ui). These
groups need not form part of a single sheaf of groups on B, but choosing a ‘quasi-inverse’ for each
equivalence, we get

Φij : Tors(Gj)Uij → Tors(Gi)Uij ,
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given by Φi ◦ Φ−1
j , and thus natural transformations

Ψijk : Φij ◦ Φjk ⇒ Φik,

induced by the cancellation transformation : Φ−1
j ◦ Φj ⇒ Id. These Φij correspond to (Gj , Gi)-

bitorsors, Pij , rather than just to G-bitorsors, and these Pij come with natural isomorphisms,

ψijk : Pij ∧Gj Pjk → Pik,

over Uijk and a corresponding coherence square over any Uijk`.

Remark: It is important to note that the second gerbe axiom (local connectedness) will only
tell us that different choices of the local objects xi will be locally isomorphic over Uij , i.e., there
will be an open cover of Uij over which xi|Uij and x′i|Uij will be isomorphic. This is again that
question of coverings versus hypercoverings that we have briefly mentioned earlier. It is usual, and
very useful, to simplify the discussion of gerbes in a first treatment of their properties by assuming
that coverings suffice. In the more usual topological situations, this is completely adequate as if,
for instance, B is paracompact, Čech cohomology and the cohomology defined via hypercoverings
coincide, cf. Spanier, [157] p. 342. In the algebraic geometry context, if B is a scheme which is
quasi-projective over a ring and we use the étale topology, then, by a theorem of M. Artin, [6],
again Čech covers are cofinal amongst the hypercoverings of B, so we can always refine a cover to
avoid the necessity of using hypercoverings.

10.2 Geometric examples of gerbes

Our earlier discussion of examples only turned up one type of example of gerbes, namely Tors(G),
yet we have then called this example trivial! None of the other examples of stacks gave us an
example without at least some additional assumption. We therefore could do with some examples
that are non-trivial, otherwise the theory would not be worth studying! Earlier when discussing
torsors, both geometry / topology and algebra gave examples. A similar thing happens here. We
will start with some background ideas before turning to several special types of gerbe that occur
in areas of geometry and topology.

A word of warning may be in order here. In this geometric setting, gerbes have often been
considered as generalisations (actually ‘categorifications) of line bundles and as such are thought
of as merely a geometric realisation of an integral cohomology class in H3(B,Z). This gives a very
important class of gerbe, but the prevalence of this class in applications leads to some confusion
and to an enormous constriction in the terminology. For us here, as for the original motivation
in the work of Giraud, Grothendieck, etc., gerbes are geometric objects in their own right. They
may be classified by cohomology classes and thus give a representation of the elements of some
cohomology group, but that is not their only raison d’être. The restricted focus of looking just
at H3(B,Z) seems very like saying that, as general real vector spaces are sums of copies of R,
we need only consider one dimensional vector spaces. That there is a beautiful theory for those
gerbes is without doubt (see, for instance, the brief description in Hitchin’s ‘What is’ article, [97]
or his longer article, [96]), but to ignore the other gerbes does seem a very silly restriction. From a
practical point of view, especially for the beginner, this occasional restriction in terminology means
that it is essential to check when consulting an article if the general form or some
restricted form of gerbe is being considered.
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10.2.1 Line bundles

Let us start by examining the sequence of ideas that lead from ordinary cohomology to that class
of gerbes that are thought of as the ‘categorification’ of line bundles. The classical topological
cohomology of a space, X, is given either by a singular or Čech type cochain complex and the
two approaches coincide for ‘nice’ spaces such as manifolds. The cochain complex is given by
Ch(C∗(K),Z), where K is a simplicial set which hopefully approximates X well, e.g. K = Sing(X)
or N(U), for U a ‘good’ open cover of X. In the latter case, we would need to pass to the limit
over refinements of U unless X is a space such as a manifold, where local ‘niceness’ conditions will
ensure that |N(U)| ' X for fine enough covers. The cohomology is then the sequence of groups
Hn(X,Z). The idea is to represent the cohomology classes as more geometric objects than the
cocycles, f : N(U)→ Z.

We know that exact sequences of coefficients for cohomology yield long exact sequences of
cohomology groups. The basic short exact sequence that we will be needing is

0→ Z→ R→ U(1)→ 1,

where U(1) is the unitary group of 1×1 unitary (complex) matrices, and so is just the group of unit
moduli complex numbers. In other words, it is the circle group, S1. There are various viewpoints
that are potentially interacting here. This is a Lie group, but is also the common or garden circle
and the sequence is the fibration sequence coming from the universal cover of S1, as the map from
R to U(1) is the usual exponential map, exp(t) = e2πit. Of course, this Lie group, U(1), is the start
of a family of unitary groups, U(n), where U(n) is the group of unitary n × n complex matrices.
(There is even an infinite dimensional relative, U(H), where H is an infinite dimensional separable
Hilbert space, and the elements of the group are the unitary operators on it.)

From any such exact sequence, given any space, we can get an exact sequence of Lie group
bundles on X: if G is a Lie group, we will write GX := (G × X → X) as a Lie group bundle.
From this, assuming that X is a smooth manifold, we get an exact sequence of sheaves of groups
by taking sheaves of (smooth) local sections, G˜X := ΓX(GX) to get, in our example,

0→ Z˜X → R˜X → U(1)
˜

X → 1.

As Z is a discrete group, Z˜X is the sheaf of locally constant integer valued functions on X; R˜X is
isomorphic to C∞X (R), the sheaf of smooth real valued functions on X and, similarly, U(1)

˜
X is the

sheaf of unit moduli complex (local) functions, σ : U → C, |σ(x)| = 1 for all x ∈ U , an open set of
X. We note that the sheaf cohomology, Hn(X,R˜X), is trivial in positive dimensions as R˜X is what
is called a fine sheaf. (Here is not the place to handle this in detail, see Spanier, [157], Chapter 6,
section 8, or Wikipedia.) Applying this observation to the long exact sequence in cohomology, we
get that Hn(X,Z) ∼= Hn−1(X,U(1)

˜
X), and, in particular, H2(X,Z) ∼= H1(X,U(1)

˜
X).

Next let us return to our description of n-dimensional vector bundles on X. (Here we will
assume that they are complex vector bundles, so locally are isomorphic to U × Cn for some n.)
We thus have an open cover, U , over which our vector bundle, E → X, trivialises and thus gives
a family of transition functions, gij : Uij → G`n(C), which on triple intersections satisfy a cocycle
condition,

gijgjkgki = In,

the identity n × n matrix. (Note that this is another form of the cocycle conditions that we have
seen so often now, as the transition functions can be thought of as forming a map from the simplicial
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sheaf, N(U), to the simplicial sheaf, BG`n(C)X by our earlier discussion of simplicial descriptions
of torsors, etc.) As U(1) is Abelian, in the case n = 1, we can and will sometimes write the cocycle
condition in that case as

gij + gjk − gik = 0.

A cohomology class, γ ∈ H1(X,U(1)
˜

X), will be given by a family of cocycles, gij : Uij → U(1).

Using the canonical action of U(1) on C, we get a line bundle on X, i.e., a 1-dimensional vector bun-
dle. We thus have that a cohomology class in H2(X,Z) can be represented by an isomorphism class
of line bundles (here there are details for you to check about why ‘isomorphism classes’)
and, in fact, vice versa. There is no real difference between line bundles, which have ‘gauge’ group
G`1(C) ∼= C×, the multiplicative group of non-zero complex numbers, and U(1)-bundles. To get
from an ordinary line bundle to a U(1)-bundle, i.e., to reduce the group from G`1(C) to U(1), one
chooses an inner product on the fibres so as to get a Hermitian line bundle. (That any vector bundle
over a paracompact space has a metric / inner product and thus that its structure group restricts
to the group of unit norm matrices is a classical result to be found, for instance, in Husemoller,
[101], Chapter 5, section 7.) Now, in a given Hermitian line bundle take the subspace of unit norm
vectors to get a principal U(1)-bundle / U(1)-torsor.

Remark: If X is a complex manifold then, as above, the sheaf of holomorphic functions on
it is essentially the same as that of holomorphic sections of the bundle, C × X, over X. It is
the structure sheaf, OX , of the manifold, when that manifold is viewed from the point of view of
complex algebraic geometry. This sheaf, OX , is a sheaf of rings and the sheaf, (C×)

˜
X , is isomorphic

to O∗X , the sheaf of units of OX . The analogue of a line bundle in an algebraic geometric context is
thus represented by a cohomology class in H1(X,O∗X), where now X may be a scheme or some other
ringed space (= space with a given sheaf of rings on it). In this context the sheaf of (structure
preserving, i.e., smooth, holomorphic or whatever) sections of a vector bundle on X becomes a
module over the sheaf of rings, so in general in the algebraic geometry context vector bundles are
replaced by (certain types of) modules over the ringed space.

For any two vector bundles, E1 and E2, over X, we can form their (fibrewise) tensor product
E1 ⊗E2. If Ei has dimension ni, then E1 ⊗E2 has dimension n1.n2, so if both E1 and E2 are line
bundles, so is E1⊗E2. If we choose an open cover over which both E1 and E2 trivialise, then there
are transition functions, g1

ij and g2
ij , defined on the intersections Uij , taking values in U(1). There

are isomorphisms,E1|Ui ∼= Ui × C, etc., and, together with the canonical isomorphism, C⊗ C ∼= C,
these give that E1 ⊗ E2 has transition functions given by the products, g1

ij .g
2
ij . This implies, after

checking of ‘well definition’ of everything, compatibility with coboundaries, etc., that if E is a
line bundle, then there is another line bundle, E−1, (whose transition functions are the inverses of
those for E) such that E ⊗ E−1 is a trivial line bundle, i.e., is X × C. (We have essentially seen
this argument before, in fact, in a more general case, namely that of bitorsors. Look back at the
discussion on page 272 as well as later material on this idea. It is left to you to ask what questions
arise via this linkage.)

We could equally well look at the sheaves, L, of local sections of these line bundles. The sheaf
in these cases is, as we said just now, a module over OX , provided the structure mentioned earlier
is present, and the notion of invertible sheaf is used, since L ⊗ L−1 ∼= OX . We thus have that
isomorphism classes of line bundles, or invertible sheaves, or ... form a group. This is called the
Picard group of (X,OX), and we note that it does depend on what sheaf of rings is being thought
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of as the structure sheaf of the context. This applies also in algebraic geometry, where H1(X,O∗X),
the cohomology group of a ‘scheme’ X with coefficients in the sheaf of units of the structure sheaf,
forms exactly the Picard group of this ringed space. (Again to explore this thoroughly would lead
too far away, however see the Wikipedia entry for ‘Picard group’ as a start and do not forget the
link with bitorsors that we hinted at slightly earlier.)

Returning to cohomology, of course the isomorphism, H1(X,U(1)) ∼= H2(X,Z), is just the ‘tip
of the iceberg’. There is an infinite family of such isomorphisms, Hn(X,U(1)) ∼= Hn+1(X,Z) . The
next case to examine is n = 2, of course. Here a cohomology class in H3(X,Z) can be thought
of as being one in H2(X,U(1)). (As U(1) is an Abelian group, the sheaf cohomology here can be
handled using a slightly simpler set of machinery than in the non-Abelian situation, i.e., using chain
complexes as well as simplicial things, and using additive notation if it eases the calculations.)

A cohomology class in H2(X,U(1)
˜

X), (so reverting to the sheaf notation), can be given in terms

of Čech 2-cocycles over some cover, U . The simplicial sheaf, N(U), then interprets as intersections
of the open sets, and so a 2-cocycle will be given by a family of functions,

gijk : Uijk → U(1),

defined on the triple intersections with values in this group and satisfying a cocycle condition over
4-fold intersections. If we write things additively, this would be that, on Uijk`,

gjk` − gik` + gij` − gijk = 0,

i.e., thinking of g as a morphism of simplicial sheaves, for any σ ∈ N(U)3,∑
(−1)igdiσ = 0.

Remarks: (i) First a ‘warning’, this formula is evidently written additively and U(1) is Abelian,
so the order of terms clearly does not matter here, but when working with higher U(n), which are
not Abelian, order would matter and the considerations needed for handling that non-Abelian case
give us the link to our earlier discussions of models for homotopy n-types, crossed complexes, etc.,
as this formula is a form of the homotopy addition lemma.

(ii) Thinking of g as a simplicial map, this cocycle condition has some nice consequences, even
at the elementary level. What is the codomain of g? We can think of U(1) as a groupoid (we will
avoid here the formal notation in which a group, G, corresponds to a groupoid with one object,
G[1], as that gives us U(1)[1], which is a bit much notationally!). The codomain of g, then, is
the nerve of this groupoid, i.e., BU(1). It is then easy to see that if we look at, say, Uiik, this is
degenerate in N(U), so the corresponding giik will be trivial, similarly gijk is trivial if any two of i,
j and k are the same. As a result gijk = −gjik, since we need only look at the cocycle condition in
the case of the index ijik. Of course, permuting the indices of gijk in any way leaves it fixed if the
permutation is even and multiplies it by −1 if it is odd.

The cocycle g will be a coboundary and thus cohomologically trivial if there is a morphism, f ,
from N(U) to U(1), concentrated in dimension 1, (so f is determined by the family, fij : Uij → U(1),
on the 2-fold intersections) such that g = f∂, i.e. gijk = fij + fjk − fik. In this case we also say f
is a trivialisation of g.
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(Again as this is an Abelian situation, the question of functional as against algebraic composi-
tional order is avoided. Our usual ‘conventional’ diagram would be

j
fij

��<<<<<<<<

k

fjk
gijk

@@��������

fik
// i

in functional order.)
Now, if fij and f ′ij are two trivialisations, then fij − f ′ij =: hij satisfies

hij + hjk − hik = 0.

If we write this multiplicatively, this gives hijhjkh
−1
ik = 1, and the family, h, determines a line

bundle, or so it seems, but on what space?
Pick some U0 in U , then g trivialises over the cover U|U0 obtained by intersecting U0 with the

other open sets of U . If, for the moment, we set, for i, j 6= 0, f0
ij = g0ij , then the cocycle condition

for g gives: for index 0ijk, and thus over U0 ∩ Uijk,

gijk = g0jk − g0ik + g0ij = f0
jk − f0

ik = f0
ij .

(Again note that our ‘sloppy’ writing of the cocycle condition earlier means that the order here is
not what we had before. Of course, it does not matter as U(1) is Abelian, but reminds us that
order of composition is more likely to be delicate in non-Abelian contexts.) In any case, this shows
that (fij) forms a trivialisation of g|U0 over this cover U|U0 . We repeat this for all open sets, U , in
U .

We note that f0
ij was studied above with the condition that i, j 6= 0. If we, however, fed

the formula with i = 0, say, we would get f0
0j = 0 (or 1 depending on additive or multiplicative

notation). It is thus convenient to extend the definition and to put f0
0j = 0 for all j and similarly

for f0
i0 = 0 for all i, and this then specifies a trivialisation localised on U0 and, more generally, the

method will lead to trivialisations localised on each Uα ∈ U .
If we look on Uij = Ui ∩Uj , we now have two trivialisations, f i and f j , (both restricted to Uij).

By our previous discussion, we have a family, hij , given by

hijk` = f ik` − f
j
k`

and this family determines a line bundle, Lij , over Uij . We note that hijk` = gik`−gjk`, by definition,
so Lij ∼= L−1

ji .

Lemma 58
LijLjkL

−1
ik
∼= 1,

the trivial line bundle on Uijk.

Proof: We have to calculate the sum

A = hij + hjk − hik

over some Uαβ ∩ Uijk. This gives

Aαβ = gαij − gβjk + gαjk − gβij − gαik + gβik,
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but, on Uαβ ∩ Uijk, we have a local section, gαβij , and ∂gαβij = gβij − gαij + gαβj − gαβi, so
gαij − gβij = gαβj − gαβi + ∂gαβij and consequently Aαβ = ∂(gαβij + gαβjk − gαβik). We thus have
that A is a boundary everywhere on Uijk, so the corresponding product line bundle, LijLjkL

−1
ik , is

trivial as claimed. �

Note that not only does show that LijLjkL
−1
ik is trivial, but, starting with g, it gives a specific

trivialisation of that bundle, determined explicitly by the simplicial map, g, corresponding to the
original cocycle, or, if you are not yet needing the non-Abelian (and thus simplicial) viewpoint,
the map of chain complexes from C(U) to U(1), with an adjustment of dimensions to get the
grading right. (The argument is, however, essentially simplicial even in the Abelian case, and that
viewpoint is very useful.)

We write θαβijk = gαβij + gαβjk − gαβik.
We thus have that a cohomology class in H2(X,U(1)

˜
X), which is defined over a cover, U ,

determines

• a line bundle, Lij , over each Ui ∩ Uj such that

• Lij ∼= L−1
ji ,

together with

• a trivialisation, θijk, of LijLjkL
−1
ik , where θijk : Uijk → U(1) is a 2-cocycle.

(We leave the checking that θijk is a 2-cocycle on Uijk to you. It is just a simple verification of
the equations.)

Given our earlier simplicial descriptions of torsors, etc., it is perhaps quite natural to rework
the above, replacing the open cover, U , by the corresponding sheaf / étale space over X, U → X,
where U =

⊔
U . (We can also think of this as U → 1 in Sh(X), as the identity function on X

considered as ‘X over itself’, is the terminal object, 1, of Sh(X).) The intersections, as you will
probably recall, correspond to U ×X U , which we will denote by U [2], (and will extend the notation
in the obvious way), so the above data corresponds to a line bundle L over U [2] with a trivialisation
(= global section) over U [3] of d∗0(L)d∗2(L)d∗1(L)−1. (Here we are, of course, using the simplicial
structure of N(U), see page 251.) This, in part, gives a geometric candidate for a type of object
representing the cohomology classes in H3(X,Z), thus generalising line bundles. In [135], Murray
put forward a generalisation of this, which gives an even more geometric flavour to the objects.

10.2.2 Line bundle gerbes

There are various generalisations of the above situation. Just as, for a differential geometric context,
bundles of groups can be more useful than sheaves of groups as the concept more easily allows non-
trivial topologies on the groups (e.g. with bundles of Lie groups), so gerbes as defined above
sometimes need a more ‘bundle-like’ version. This leads to various forms of ‘bundle gerbe’, a
concept developed by Murray, [135]. There are various extensions of his initial definition which we
will look at later. Bundle gerbes generalise line bundles to the next dimension using some neat
extensions of the ideas we have just seen. The simplest of these is to replace U → X by a suitable
locally split map. This allows one to introduce more structured fibres for the covering (and, to
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some extent, looks at a Grothendieck topology as well as the standard topology). This can also be
thought of as a step in the direction of hypercoverings.

Definition: A continuous (or smooth or ...) map π : Y → X is said to be locally split if it
admits enough local sections, more precisely, for each x ∈ X, there is an open neighbourhood U of
x and a section s : U → Y , so πs = idU .

Examples: Locally trivial fibrations are locally split and étale maps arising from an open cover
U of X (as above), or from an étale space corresponding to a sheaf, are as well. If we are considering
smooth manifolds and smooth maps between them any surjective submersion, f : N →M , is locally
split. (Recall that a submersion is a smooth map for which the induced map on tangent spaces
Dfp : TNp → TMf(p) is a surjective linear map for all p ∈ N . In local coordinates such a submersion
looks like the standard projection of Rn onto Rm.)

The following is, essentially, taken from [27] with minor modifications.

Definition: A (Hermitian) line bundle gerbe on a space X is a pair, (L, π : Y → X), where
π : Y → X is a locally split map (sometimes called the ‘fibering’ of the line bundle gerbe) and L is
a (Hermitian) line bundle L→ Y [2], on the pullback, Y [2] = Y ×X Y , together with an associative
‘product’

L(y1,y2) ⊗ L(y2,y3)

∼=→ L(y1,y3)

for every (y1, y2) and (y2, y3) in Y [2], which is an isomorphism.

We think of L(y1,y2) as the ‘space’ of arrows from y2 to y1 in accordance with our functional
composition convention. The multiplication is the composition of a category structure as we will
see.

If X is a smooth manifold, then we require the product to be smooth in y1, y2 and y3, and in
any case, the product is to be a (Hermitian) isomorphism. (Recall all these fibres, L(y1,y2), etc.,
are copies of C.) The product is associative whenever the triple product is defined. (Note that the
coherence of the isomorphisms giving the monoidal category structure on complex vector spaces
is underlying this to a small extent, but no more than if we were asking that a vector space, A,
have an algebra structure. In both cases we need to be conscious of the slight difficulties that arise
from the lack of associativity of the tensor product construction, but we know it causes no lasting
problem so can safely set it aside.)

Proposition 86 (i) For any y ∈ Y , L(y,y)
∼= C, so that 1 ∈ C corresponds to an identity for the

composition.

(ii) For any (y1, y2) ∈ Y [2], there is a natural isomorphism

L(y1,y2)
∼= L∗(y2,y1),

where ∗ indicates the dual space.

Proof: (The ideas are ones that we have seen many times now and are worth looking at from our
general perspective. They are simple, but are worth giving explicitly for that reason.) It is simpler
to work with C× bundles rather than the corresponding line bundles.
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There is the multiplication isomorphism,

L(y1,y2) ⊗ L(y2,y2)

∼=→ L(y1,y2),

which we will write as concatenation, with a dot when it is needed to avoid ambiguity, and our
assumption that we are working with the principal C× bundles means that if p ∈ L(y1,y2) and
q ∈ L(y2,y2), there is some non-zero complex number z such that p.q = zp. Set e = z−1q, so p.e = p.
(Where necessary we will write ey2 for this element of L(y2,y2).)

Suppose we had used wp instead of p in the above for some w ∈ C×, then (wp).e = w(p.e) = wp,
and we have that p′.e = p′ for all p′ ∈ L(y1,y2), so e is an identity for pre-composition.

If now we take r ∈ L(y2,y3) for some (y2, y3) ∈ Y [2], then we consider e.r ∈ L(y2,y3). This is rz
for some probably different z ∈ C×. The composition is associative, so

(p.r)z = p.(rz) = p.(e.r) = (p.e).r = p.r.

(We must keep awake here! p and r are elements in fibres of L, z is not. It is just a non-zero
complex number.) As the action is effective, we must have z = 1, i.e., e.r = r and e is also an
identity for post-composition. We thus have an identity ey at each diagonal element (y, y) in Y [2].
(Check it is unique!)

Finally, in this preparatory phrase, as composition is an isomorphism, we can note that there
is a unique p−1 ∈ L(y2,y1) such that p−1.p = ey2 and will leave you to give the obvious argument
that pp−1 = ey1 .

Turning to (i) L(y,y)
∼= C, since if q ∈ L(y,y), there is a unique z ∈ C such that q = zey,

compatibly with the action of C on both sides of the isomorphism. (Details again left to you.)
For (ii), we have that composition gives a linear isomorphism (using (i))

L(y1,y2) ⊗ L(y2,y1)

∼=→ L(y1,y1)
∼= C,

and flipping this through the adjointness isomorphism for tensors and ‘homs’, we get

L(y1,y2)
∼= Hom(L(y2,y1),C) = L∗(y2,y1).

(If you prefer, for p ∈ L(y1,y2), define the linear form, p∗ : L(y2,y1) → C, by

p∗(q)ey1 = p.q,

and check that p 7→ p∗ is an isomorphism.) �

A bundle gerbe thus consists of a map π : Y → X and a line bundle on Y [2], so it is clear what a
morphism of bundle gerbes should be. It should have three interconnected parts: a (smooth) map
γ : X → X ′ of the bases, a map β : Y → Y ′ for the top spaces and a map α of the line bundles. Of
course, we want β to be a map ‘over γ’, that is, that γπ = π′β. This will imply that there will be
an induced map on the pullbacks β[2] : Y [2] → (Y ′)[2]. The final condition will be that α is a map
of line bundles covering β[2], and that it preserves the product (and hence both the identities and
the inverses).

We can analyse this data somewhat differently, reducing its complexity a bit. The simplest
case would be with β and γ both the identity maps, and α a line bundle morphism preserving the
composition. The next level would be with just γ the identity, so one would have morphism of
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bundle gerbes ‘over X’. The third level is the general one. Going through this backwards, given
γ : X → X ′ and π′ : Y ′ → X ′, we can pull back to get γ∗(Y ′)→ X. This is locally split (for you to
check) and β will induce a map β′ : Y → γ∗(Y ′) over X. Since the pullback γ∗(Y ′)[2] is a multiple
pullback / limit of a particular diagram, it is easy to check that it is, up to isomorphism, the same
as γ∗((Y ′)[2]), (if in doubt try to draw the diagrams involved). The map β[2] : Y [2] → (Y ′)[2] allows
us to pull back L′ to a line bundle over Y [2] and so to factor α into a composite in which one part
is over Y [2] and the other part is independent of α, being from (β[2])∗(L′) → L′. We thus can
decompose the original map into a composite of maps of the special types.

These same ideas and constructions allow us to pullback a bundle gerbe on X ′, say, along any
smooth map, f : X → X ′, giving an induced bundle gerbe over X and a morphism of bundle gerbes
from the induced one to the original one. Similarly we can form a ‘product’ of two bundle gerbes over
X. The product of (L, π : Y → X) and (L′, π′ : Y ′ → X) would be denoted (L⊗L′, Y ×X Y ′ → X).
To see what this must be note first that Y ×X Y ′ consists of pairs, (y, y′), such that π(y) = π′(y′),
so we have to describe the line bundle fibre over some (y1, y

′
1), (y2, y

′
2) ∈ (Y ×X Y ′)[2]. Of course

(again!), the only candidate staring us in the face is L(y1,y2) ⊗ L(y′1,y
′
2), which is what L ⊗ L′ is.

(The details are now quite easy to check.)

There is thus quite a lot of interesting structure on the category of bundle gerbes on a fixed X
and given a bundle gerbe, we can generate others - but so far we have not produced a single one!

Examples: (i) First a ‘trivial’ example. Let Q→ Y be a C×-torsor on Y , then set

P(y1,y2) = AutC×(Qy1 , Qy2) ∼= Q∗y1 ⊗Qy2 .

The multiplication is given by

P(y1,y2) ⊗ P(y2,y3)
∼= Q∗y1 ⊗Qy2 ⊗Q

∗
y2 ⊗Qy3 → Q∗y1 ⊗ C⊗Qy3

can∼= Q∗y1 ⊗Qy3 ,

induced by the canonical pairing between Qy2 and its dual. We can also write

P = AutC×(π−1
1 Q, π−1

2 Q)
∼= π−1

1 Q∗ ⊗ π−1
2 Q,

where π1 and π2 are the two projections from Y ×X Y to Y .

(ii) We next consider an ‘obstruction problem’, i.e., determining if a change of structure group
is possible for torsors, in this case a lifting to an ‘overgroup’.

Consider a Lie group, G, and a central extension

C× ι→ G̃
p→ G.

We have seen that there is an induced sequence,

. . .→ Tors(C×)→ Tors(G̃)→ Tors(G),

and as C× is Abelian, we would expect to be able to continue this with H2(X,C×), Of course, from
our build up, we expect elements of H2(X,C×) to ‘be’ isomorphism classes of line bundles. The
group makes sense anyway as C× is Abelian and we know it is isomorphic to H3(X,Z) as we saw
earlier.
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Suppose we have a G-torsor, Y → X, and we want to ask if it is induced from some G̃-torsor,
E → X, i.e., is p∗(E) ∼= Y . (We recall that p∗(E) = G ∧G̃ E, and the cocycles for E give those
for p∗(E) on composition with p.) We have already used this sort of construction before. Let U
be a trivialising cover for Y and gij : Uij → G be a family of transition functions / cocycles for Y .
Pick g̃ij : Uij → G̃, (although we may need to refine U before this works), so that p(g̃ij) = gij . Of
course, g̃ij may not satisfy the cocycle condition, although

p(g̃ij g̃jkg̃ki) = 1

since (gij) is a cocycle. Hence g̃ij g̃jkg̃ki = ι(cijk) for some cijk : Uijk → C×. Is cijk a 2-cocycle?

We have more or less seen this situation before when examining the ‘long exact’ sequences and
Puppe sequences of a short exact sequence of simplicial groups in a previous chapter. Here we have
less generality as we are in an Abelian setting, so will ‘cheat’ and make life easier for ourselves by
writing things additively. We will look at non-Abelian analogues later so cannot escape!

Additively we have

ι(cijk) = g̃ij + g̃jk − g̃ik,

since we can assume g̃ki = −g̃ik, and

ι(cjk` − cik` + cij` − cijk) = 0,

as on expanding out, the terms cancel in pairs. (Note this uses that C× is Abelian, not that the
extension is central. In fact with more care even Abelianess is not needed.) Now we invoke that ι
is a monomorphism so the cijk satisfy the cocycle condition.

The (cijk) thus define a cohomology class in H2(X, C×) and thus one in H3(X,Z). If the G-
torsor, Y , is an image of a G̃-torsor, E, then the transition functions for E give, after composition
with p, equivalent ones for Y , so we can pick the cover U and gij such that there is some lift, g̃ij ,
which is a cocycle (just take the ones for E!), and thus the cijk will be trivial in this case.

There is quite a lot of (useful) checking to be done here. What happens to (cijk) if we change
gij by a coboundary? If (cijk) is itself a coboundary, what are the implications? We would expect
that the formula for cijk as coboundary would give some elements that would allow us to deform
our choices g̃ij , so that they themselves give a cocycle and thus a G̃-torsor. Does this happen? This
is left ‘to you the reader’. Of course, c = (cijk) is a coboundary exactly when Y is isomorphic
to an image, p∗(E), of a G̃-torsor, i.e., [c] ∈ H2(X,C×) is the obstruction to lifting the G-torsor
structure.

This calculation is very instructive and can be ‘geometrised’ to give a bundle gerbe as follows.
We start as before with a G-torsor, π : Y → X, and use this as the ‘fibering’ / covering for a bundle
gerbe. Let (y1, y2) ∈ Y [2] and set

P(y1,y2) = {g̃ ∈ G̃ | p(g̃)y2 = y1}.

This is the set of lifts of the g, which gives g.y2 = y1. (Warning: we are writing this in left torsor,
functional order notation, not as in Murray’s paper, [135], which has right torsors and uses the
algebraic / concatenation composition.)

Given y1, y2, y3, in the same fibre of π and element g̃12, g̃23 such that

p(g̃12).y2 = y1
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and
p(g̃23).y3 = y2,

then g̃23.g̃12 ∈ P(y1,y3), so multiplication in G̃ provides the multiplication / composition within the
line bundle. ‘Line bundle’? Yes, as π : Y → X is a G-torsor, there is a unique g12 such that
g12.y2 = y1, hence P(y1,y2) is a copy of C×. Of course, the composition is associative, since it is got

from the multiplication of G̃. This simply defined bundle gives a cohomology class in H2(X,C×),
which should be the obstruction class. To see that it is, we look at when it vanishes.

Suppose E → X is a G̃-torsor on X that maps to Y → X, i.e., p∗(E) ∼= Y , then there is a
projection map, q from E to Y (over X) corresponding to the epimorphism p : G̃→ G. We identify
Y with p∗(E) to make the discussion easier. To see what we must do, pick an element e in E (really
a local element or local section of E, but think of it as an element), so in the fibre over π′(e), and
a y ∈ π−1(π′(e)), and define q(e) = y. This extends to a map on fibres using p, so if e′ is another
element of that fibre in E, then e′ = g̃.e for some g̃ and we set q(e′) = p(g̃)y. Now we take a bit
more care and, choose a local section e of E and a local section y of E over the same open set
U , and define q via local sections. As we are considering locally split maps, and G-bundles, etc.,
are such, this works well, but the details do need chcking up on; they are often neglected in
treatments of this! What conditions are needed for q to be continuous? ... smooth? Does q depend
on the choices made and if it so, does it matter to the end result? and so on.

We will see other examples later.
We are still giving a development of these ideas that is largely independent or our early sections,

so to start the process of comparison, we will describe the cohomology class corresponding to a
line bundle gerbe. This is very near to the semi-local description of a gerbe as a stack with
special properties. We will then take this one step nearer to gerbes but the more detailed actual
comparison will come slightly later. This also introduces the important idea of the characteristic
class of a bundle gerbe.

The characteristic class of a line bundle, L, is the cohomology class in H2(X,Z) which it deter-
mines. In other words it is central to the classification of line bundles, or inversely is at the heart
of the representation theory of cohomology classes by line bundles. The theory of characteristic
classes in general, and how they relate to differential forms and the geometry of the manifold, is
enormous, so cannot be handled here.

Definition: The characteristic class of a line bundle gerbe, (L, π), is the class in H3(X,Z)
that it determines. (This is called the Dixmier-Douady class of (L, π).)

How should we think of this?
We start with a line bundle gerbe, (L, π : Y → X) and so L→ Y [2] is the line bundle part of it.

As π is locally split, we can choose an open cover U of X such that there are sections, si : Ui → Y ,
over each Ui ∈ U . On double intersections, we have

(si, sj) : Uij → Y [2],

defined by (si, sj)(x) = (si(x), sj(x)), and we pull L back along this map to get a line bundle
Lij on Uij . (We note that although Uij and Uji are the same open set, here they are considered
twice, corresponding to the construction of the simplicial sheaf from the open cover that we used
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earlier. We think of Uij as ‘going from i to j’ and Uji going in the other direction.) We have that
Lij ⊗ Ljk ∼= Lik over Uijk by the composition isomorphism.

If we assume that U is a Leray cover, (so all the Ui and all the finite intersections, Uα, are
contractible), then Lij will have a (non-zero) section σij , as it will be isomorphic to a product line
bundle, Uij × C. Moreover we can define a C× valued function,

gijk : Uijk → C×,

which measures the failure of the σij to define a 1-cocycle, i.e. ,

gijk = σijσjkσ
−1
ik ,

and, as we have already calculated above, it is clear that the gijk satisfy the 2-cocycle condition over
Uijk` and so gives a class in H2(X,C×). Using the isomorphism between this group and H3(X,Z)
gives the Dixmier-Douady class, d(L, π), of the bundle gerbe.

(You will, no doubt, have noticed the number of choices of sections, etc., involved here, so will
need to see what happens when these choices are changed.)

Proposition 87 A line bundle gerbe (L, π : Y → X) has zero Dixmier-Douady class precisely
when it is trivial.

Proof: Suppose Q→ Y is a line bundle on Y and we write P = δ(Q) := π−1
1 Q∗ ⊗ π−1

2 Q and will
examine its Dixmier-Douady class. We use the si : Ui → Y that locally split π : Y → X and set
Qi = s∗i (Q), the pullback of Q over Ui. There are natural isomorphisms

Pij ∼= Q∗i ⊗Qj .

Each Ui is contractible, as the open cover can be assumed to be a Leray cover, so there is a section
qi : Ui → Qi, (non-zero), and we can choose σij = q−1

i ⊗ qj over Uij , since the transition functions
of Q∗i can be chosen to be the inverses of those for Qi. (Remember, Q∗ = Q−1 as a line bundle!)
Now working out gijk, we find

gijk = q−1
i ⊗ qj ⊗ q

−1
j ⊗ qk ⊗ q

−1
k ⊗ qi,

so it is trivial when composed, giving the trivial element in H2(X,C×). The Dixmier-Douady class
is thus trivial.

Now suppose that we are given (L, π) such that d(L, π) = 0. We pick a Leray open cover, etc.,
of X as before, and get our cocycle gijk. This is assumed to be a trivial cocycle, so must be a
coboundary. It itself is a family, g, of maps, gijk : Uijk → C× (or into U(1) if you prefer as it
makes no difference), and to say that it is a coboundary is to say that there is a family of functions,
f = {fij : Uij → C×} such that g = f∂. In other words, gijk = fijfjkf

−1
ik . We can adjust the σij ,

multiplying each by the corresponding f−1
ij yet not changing the line bundle, so we can assume that

gijk is always equal to 1.
Restrict Y to Ui, writing Yi = π−1(Ui) and define Qi over Yi by setting its fibre over y to be

(Qi)y = P(y,si(π(y))).

The σij live in

P(si(π(y)),sj(π(y))
∼= P ∗(si(π(y)),y) ⊗ P

∗
(sj(π(y)),y)

= (Q∗i )y ⊗ (Qj)y.
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In other words, you compare the fibres by referring always to the chosen y. (We have given this as
‘in the fibre’, but it can also be done, more correctly, using local sections.) This is easily seen to
give a line bundle over Yi - but do check that it is.

It is clear that the σij thus define isomorphisms between Qi and Qj over Yi ∩ Yj and so, by
‘descent’, give a line bundle Q over Y itself. By construction, P ∼= δ(Q), as hoped for. �

Several remarks are in order here. We have deliberately confused line bundles, C×-torsors and
to some extent U(1)-torsors. Geometrically it seems that line bundles ‘feel’ nicest as they seem
least abstract! Any line bundle has a trivial zero section, however, so if one sticks with them one
really needs to be tagging all sections with the label ‘non-zero’, i.e., corresponding to a section of
the corresponding C×-torsor. This gets annoying! It is thus useful to refer to line bundles, but to
think C×-bundles or C×-torsors!

The Dixmier-Douady class behaves naturally with respect to the operations of inversion, pull-
back, tensor product, etc. (This should remind you of the way in which natural constructions
on bitorsors (contracted product, etc.) corresponded to multiplication, inversions, etc., in the
cohomology group.)

Proposition 88 (i) Suppose given a map, φ = (φ0, φ1), of ‘fibre maps’

Y ′
φ1 //

π′

��

Y

π

��
X ′

φ0
// X

and (L, π) a bundle gerbe on X. The induced homomorphism satisfies

d(φ∗1(L), π′) = φ∗0d(L, π).

(ii) If (L, π) is a bundle gerbe on X, then so is (L∗, π) and

d(L∗, π) = −d(L, π).

(iii) If (L, π) and (L′, π′) are bundle gerbes on X, then, writing π′′ : Y ×X Y ′ → X for the
natural diagonal composite map in the pullback square,

d(L⊗ L′, π′′) = d(L, π) + d(L′, π′).

Proof: These are proved using the cocycle description and are left as an exercise. (There may
be some intermediate results that will be needed - the proof is not a ‘one-liner’ !) �

A particular case of part (i) of this result is very useful. If the map on the bases. φ : X ′ → X
is the identity map on X, then φ∗ is, of course, the identity on H3(X,Z). Part (i) then gives:

Corollary 20 If φ1 : (Y ′, π′) → (Y, π) is a map of locally split fiberings over X, then for any
bundle gerbe, (L, π) on X,

d(φ∗1(L), π′) = d(L, π).

�
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This means that d cannot tell the difference between (L, π) and its pullback to Y ′. (We can
think of (Y ′, π′) as perhaps being a ‘refinement’ of (Y, π) - thinking of ‘hypercoverings’ which are
not that far away here - and this then says that if we have a representative of a class in H2(X,U(1))
‘defined over’ (Y, π), then it is defined over any finer (Y ′, π′).) What it tells us is that there are
potentially many representatives of a given class in H3(X,Z) (or H2(X,U(1))) amongst the line
bundle gerbes and they need not be ‘isomorphic’ as φ1 may not be a homeomorphism over X.

We can squeeze a bit more out of this result and its corollary:

Proposition 89 If (L, π) and (L′, π′) are two line bundle gerbes, having the same Dixmier-Douady
class in H3(X,Z), then (L∗ ⊗ L′) is trivial, and conversely.

Proof: Calculate d(L∗⊗L′). It is d(L∗)+d(L′) by (iii) of the previous result. This is −d(L)+d(L′)
by (ii) and this is zero if the two classes coincide. Thus, if d(L) = d(L′), then (L∗ ⊗ L′) is a trivial
bundle gerbe. For the converse, ... run the argument backwards! �

Definition: Two line bundle gerbes, (L, π) and (L′, π′), are said to be stably isomorphic if
(L∗ ⊗ L′) is trivial. In this case a trivialisation of (L∗ ⊗ L′) is called a stable isomorphism from
(L, π) to (L′, π′).

If two line bundles p : L→ X and p′ : L′ → X are isomorphic, then there is a global section of
IsoX(p, p′), the sheaf of local isomorphisms of the two bundles, and hence a global section of the
bundle, L∗ ⊗ L′ → X, and that gives a trivialisation of that line bundle, thus stable isomorphism
as above seems a neat generalisation of the lower dimensional case. (It would be useful here to look
back at the material on automorphisms of G-torsors, contracted product etc. from the early parts
of the previous chapter. Contracted product is the analogue for G-bitorsors of the tensor products
used here for line bundles.)

The notion of stable isomorphism was introduced by Murray and Stevenson, [136], but is clearly
also the bundle analogue of ideas on gerbes, in general, that date back further. We should make
this more transparent by solidifying the connections between these bundle gerbes and gerbes per
se.

10.2.3 From bundles gerbes to gerbes

Let us start with a line bundle gerbe, (L → Y [2], π : Y → X), on X and with composition
isomorphisms

L(y1,y2) ⊗ L(y2,y3)

∼=→ L(y1,y3).

We have already looked at such an object locally, so let us briefly rerun the analysis. We know that
π is locally split, so can find a cover U of X such that over each Ui, there is a section of π, thus on
the overlap Uij , there are sections

(si, sj) : Uij → Y [2],

and we set Lij to be the pullback of L over Uij along this section. The composition gives an
isomorphism

Lij ⊗ Ljk
∼=→ Lik

over Uijk. When defining d(L, π), we looked at (local) sections σij of Lij and found a 2-cocycle,
gijk = σijσjkσ

−1
ik : Uijk → C×.
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To get the σij , we may need to refine the cover to ensure that global sections exist over Uij .
(We know that local sections exist since Lij is a line bundle on Uij , so we take a cover U ′ finer
than U , if necessary, to ensure that, for the corresponding U ′αβ, global sections exist. This type of
argument needs examining in detail as it is at the heart of the matter - but that is left to you to
do.) We assume therefore that U is fine enough for the σij and thus that the gijk exist. Now with
this line bundle gerbe, (L, π), we define a sheaf of groupoids, G = G(L,π), on X as follows:

• The sheaf of objects G0 is the sheaf of sections of π : Y → X;

• The sheaf of arrows G1 is defined by:

if a, b : U → Y are local sections of π over an open set U in X, then an arrow g : a→ b is a
section of the pullback of L→ Y [2] along (a, b) : U → Y [2].

As π is locally split, the stalk of G at any x ∈ X is non-empty, and we have seen that L→ Y [2] is
locally split as well, so G is locally connected. It follows that the associate stack of G is a gerbe.
Of course, our transition from line-bundle gerbes to gerbes is functorial.

Later we will see more fully how certain gerbes give line bundle gerbes, but before that we
should note that as Y was not necessarily the étale space of a sheaf on X, it seems highly unlikely
that, in general, we could start with a gerbe and retrieve some (L, π). The fibres of étale spaces
are discrete but in general the fibres of locally split maps need not be.

Before we continue this investigation we will look at other aspects of what we have done so far.
We would expect that the gerbe given by the above process would be a “C×-gerbe”, i.e., its

sheaf of local automorphisms should be the constant sheaf on X with “value” C× or, if looking at
the Hermitian flavoured case, U(1). How can we verify this? We can find an open cover U given
by those U over which local sections of π exist, thus over such a U there is a global section, a, of
G0 and hence of the object part of the stack completion of G. The automorphism sheaf of a is the
group of sections of the pullback of L along (a, a) : U → Y [2], but that is C× or U(1), depending
on the viewpoint taken. This is a constant sheaf and so G is a C×-gerbe.

10.2.4 Bundle gerbes and groupoids

As we saw at the beginning of these notes, an equivalence relation, R, on a set, Y , gives a groupoid.
As any (surjective) function, π : Y → X, yields the standard equivalence relation: y1Ry2 if and
only if π(y1) = π(y2), for which X can be identified with the set of equivalence classes (which is
why we added ‘surjective’ above), any such function yields a groupoid, and of course, viewed as a
small category, this is

Y [2]
s //
t
// Y ,

where Y [2] is, as before, the pullback, Y ×X Y , and s and t are the projections. The map, i, which
picks out ‘identity arrows’ for each object, is the diagonal, of course, the composition is

((y1, y2), (y2, y3)) 7→ (y1, y3),

in algebraic order.
We have used this many times now and have also met it in other contexts, such as internally

to some category such as groups. In our current context of line bundle gerbes, we have used this
structure in indexing the multiplication of L

L(y1,y2) ⊗ L(y2,y3)

∼=→ L(y1,y3).
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The line bundle L→ Y [2] can also be interpreted as

L
// // Y [2]

by composing the projection of the line bundle with the two projections and the subsequent inter-
pretation of our earlier results (page 396) is that this is a groupoid as well.

If we are working with smooth manifolds and maps then not only is

Y [2]
s //
t
// Y

a topological groupoid (i.e., there is a space of objects and a space of arrows, and all the structure
maps are continuous), but, under reasonable extra conditions, it is a Lie groupoid as all the structure
maps s, t, i and the composition and inversion maps are all smooth. The one problem that can
occur is that Y ×X Y is not in general a smooth manifold. It is, however, if π : Y → X is a
submersion and that is why all through the discussion of smooth line bundle gerbes, the fibering π
was required to be a submersion. This, for instance, occurs if Y = tU , the étale space associated
to an open cover of X.

A Lie groupoid is, of course, the multi-object analogue of a Lie group. Another example of a Lie
groupoid on X comes from any Lie group, G. We then get a bundle of Lie groups, G = G×X → X.
The source and target maps are both the projection onto X.

Now assume we have that (L, π) is a line bundle gerbe, then we have a smooth surjective
morphism of Lie groupoids

L→ Y [2]

and hence, intuitively, an extension

?→ L→ Y [2]

of such objects. Thinking of L as a C×-bundle on Y [2] or, in the Hermitian flavoured version, a
principal U(1)-bundle / U(1)-torsor on Y [2], we get that the left hand term is C× or U(1).

This gives an equivalent definition of a line bundle gerbe that can be found, for instance, in
Moerdijk’s notes, [132]. In fact, as is pointed out there, it gives a neat way to generalise line bundle
gerbes.

First we define:

Definition: An extension of Lie groupoids over Y is a sequence of Lie groupoids over Y

K
j→ G

ϕ→ H,

where ϕ is a surjective submersion and j is an embedding onto a submanifold, Ker ϕ = {g ∈ G |
ϕ(g) is a unit of H}.

We note that maps of ‘groupoids over Y ’ means that both j and ϕ are the identity map on
objects, so K satisfies sj(k) = tj(k) and so K is a bundle of groups.

Now let G be a fixed Lie group.
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Definition: A G-bundle gerbe over a manifold X is a pair (β, π), where π : Y → X is a
surjective submersion and β is an extension

β = (G→ L
ϕ→ Y [2])

of Lie groupoids.

Our previous discussion implies the following result:

Proposition 90 (i) A line bundle gerbe (L, π) is equivalent to a C×-bundle gerbe, (β, π), with
extension,

β = (C× → L→ Y [2]),

(in the same notation as before).
(ii) A Hermitian line bundle gerbe (L, π) is equivalent to a U(1)-bundle gerbe, (β, π), with ex-

tension

β = (U(1)→ L→ Y [2]).

�

Suppose we have a Lie groupoid G
s //
t
//M together with a submersion π : M → Y for which

πs = πt, then we will call this a family of groupoids on X. For each such family and each point
x ∈ X, the fibre Gx

////Mx is a Lie groupoid.
A family of groupoids on X is almost the same as a sheaf of groupoids on X except that, for

the latter, one would have that the maps and the composites πs (= πt) would be ètale (in this
case, local diffeomorphisms, cf. page 247, as the map is smooth). This condition would then imply
that s and t, i and the composition and inversion maps were all étale maps as well, so the basic
Lie groupoid (G,M, s, t, i, . . .) would be an étale groupoid.

Proposition 91 Suppose that G is a Lie group and (β, π) is a G-bundle gerbe, in the above sense,

then L
s //
t
// Y is a family of groupoids on X, where s = π1ϕ, t = π2ϕ for πi : Y [2] → Y , the two

projections. Moreover
(i) ϕ = (s, t) : L→ Y [2] is a surjective submersion,

and
(ii) there is an isomorphism of Lie groupoids

jm : G→ AutL(m),

which identifies each vertex group in L with G, this isomorphism varying smoothly in the local
object, m. Conversely given a family of groupoids satisfying these conditions, (β, π) is a G-bundle
gerbe. �

The proof is just: reformulate the definition and check! As Moerdijk comments in [132], the first
condition states strongly that each fibre is non-empty, whilst it also says that that fibre groupoid
is connected. This reformulation shows very neatly the way that G-bundle gerbes are a neat
extension of the idea of gerbe, which allows non-trivial topology in the fibres, just like bundles of
groups generalise sheaves of groups.
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In the above theory, the generalisation from the groupoid corresponding to an open cover U of
X to a submersion π : Y → X and the groupoid

Y [2] // // Y

was important. Further generalisations are possible and important. We can replace the manifold X
by an orbifold. (As usual Wikipedia is a good place to start for these.) An orbifold is approximately
the quotient of an n-manifold, M , by the action of a finite group, or more exactly a space which has
local patches given by quotienting Rn by the action of a finite group. There has to be compatibility
conditions on double overlaps and, surprise, a cocycle condition on triple ones. It is not surprising
that as a group action gives rise to a groupoid (as in our very first section), so an orbifold gives rise
to an étale Lie groupoid by putting together the action groupoids of the ‘local actions’. The notion
of bundle gerbes over manifolds then gives a rich theory for describing the geometry of classes in
H3(X), and more generally. The basic reference for this is the paper by Lupercio and Uribe, [121].
We will not describe more of that theory here as it would take us too far away from the development
of our main themes.

10.3 Cocycle description of gerbes

For the moment we will leave aside the bundle version of gerbes and also the geometric constructions
related to bundle gerbes. We will revisit these later.

When we last looked at gerbes as such, we had the semi-local description of a gerbe, P; see page
387. We assume, for simplicity as there, that P is a G-gerbe for some sheaf of groups, G. With the
insights of the bundle gerbe theory, at least its elementary parts, we can glance at that from the
‘semi-local’ perspective.

For the semi-local description, we had an open cover U and over each U , an equivalence

P(U)
'→ Tor(G,U)

obtained by choosing an object in P(U). We thus had G-bitorsors, Pij , over Uij , which gave the
transition from Tor(G,Uj) to Tor(G,Ui) over the intersection. Now assume we have a Grothendieck
topology of some sort, and replace U by a single covering morphism Y → X. We can rerun the
description with

⊔
U replaced by Y . An object x in PY gives a sheaf of groups, G = AutPY (x) over

Y together with a (p∗2G, p
∗
1G)-bitorsor on Y [2] satisfying a coherence condition on Y [3]. Of course,

if the Y is really the Y0 of a hypercovering then in the above we should replace Y n] by Yn−1. In
other words, although initially bundle gerbes look very different to standard gerbes, they are, in
fact, very closely related.

We will see the usefulness of the covering idea again shortly. The point that is important is that
a gerbe is locally non-empty and locally connected. The first condition gives an open covering, U ,
or covering family if working with a topos, such that the gerbe pulled back that cover is non-empty,
but it is still only locally connected, i.e., we may still have to find a finer cover than U before
getting to a connected situation. After the first step, we have {Ui}, after the second {Ui,α}. If
handling a topological situation, i.e., working with Sh(B), and provided B is paracompact, we can
assume that we can refine the first situation so that each groupoid P(U) is both non-empty and
connected. In other word, repeating what has been mentioned before, if B is paracompact then we
can use coverings rather than hypercoverings. This avoids multiple indices! Once we understand
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the situation simplicially, then we can replace N(U) by a hypercovering without added pain! There
is a downside, however, as there is some loss or mutation of the geometric intuition, which can be
awkward to the beginner in the subject. Because of this we will usually work with coverings.

10.3.1 The local description

(We will continue to follow and to expand on Breen’s exposition from [31].)

Let P be a G-gerbe, then there is an open covering U for which each PU is non-empty. Pick an
object xi in PUi . On Uij , we will assume PUij is connected. (In general we might have to cover Uij
more finely before getting connectedness.) We pick an arrow

φij : xj → xi

in PUij . (Note the abuse of notation, writing xj for xj |Uij .) We have, as in the semilocal description
(page 387), an identification of Gi := G|Ui with AutP(xi) and over Uij , the arrow ϕij induces an
isomorphism

λij : Gj |Uij →: Gi|Uij

given by conjugation: λij(γ) = ϕijγϕ
−1
ij within the groupoid G|Uij .

xj
γ //

ϕij

��

xj

ϕij

��
xi

λij(γ)
// xi

Remark: The point is here that λij induces the equivalence

Φij : Tors(G)|Uij → Tors(G)|Uij ,

of the semi-local description

Φij = λij∗,

and the (Gj , Gi)-bitorsor, Pij is (TGi)λij , that is, the ‘group’ Gi considered as a trivial left Gi-torsor
with right Gj-action induced by λij :

gi.gj := giλij(gj),

all of this happening over Uij . It is also worth noting that, although we have assumed that P is
a G-gerbe, to examine the above point it becomes clearer if the various Gi are kept notationally
apart! The group Gj has to act on the right of Gi via λij .

The description of the isomorphisms, λij , relates well to behaviour over triple intersections Uijk.
There we have three locally chosen objects xi, xj , xk and a diagram

xk

ϕik

��

ϕjk // xj

ϕij

��
xi

? //___ xi
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As the ϕs were merely ‘chosen’, we do not know that they satisfy any nice cocycle condition, but
we will have a gijk ∈ Gi|Uijk completing the square. We combine the two types of square as follows:

xi
λij(γ) //

gijk

��

xi

gijk

��

xk

ϕik
aaBBBBBBBB

γ //

ϕjk
��

xk

ϕik
==||||||||

ϕjk
��

xj

ϕij~~||||||||

λjk(γ)
// xj

ϕij   BBBBBBBB

xi
λijλjk(γ)

// xi

i.e., λijλjk(γ) = gijkλik(γ)g−1
ijk within GUijk , but this means that

λijλjk = ιgijkλik,

where ι is, here as usual, the natural (left) conjugation morphism from GUijk to Aut(GUijk).
For comparison, both forwards and backwards in this discussion, it may help to think of the

square that defines gijk as a 2-simplex

ϕij

��???????
ϕjk

gijk

??�������
ϕik

//

with the gijk the obstruction to the cocycle condition being satisfied, but even more striking is the
corresponding diagram coming from the λijs,

j
λij

��<<<<<<<<

k

λjk
gijk

@@��������

λik
// i

which is reminiscent of the diagrams for maps from N(U) into K(Aut(G)). Keeping that in mind,
we look at a 4-fold intersection, Uijk`. We have a tetrahedron:

k

λjk

��*
*************
λik

##HHHHHHHHHHH

`

λk`

DD						

λj` ##HHHHHHHHHHH // i

j

λij

DD







with λi` on the level map at the back, and with the corresponding gijk etc. in the faces. The faces
fit together giving a square

xi
gij` //

gik`
��

xi

λij(gjk`)

��
xi gijk

// xi
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and so we will get an equation
gijkgik` = λij(gjk`)gij`.

The only mysterious thing here is the λij(gjk`) term. Why is it there? The three other faces
correspond to d0, d1 and d2 of the tetrahedron and so end up at i. This term tries to end up at j,
so we drag it through to xi using λij . That hopefully gives some intuition as to what it does, but
to see why it has exactly the form it has, we need to go back from the λijs to the ϕij .

The gijks, etc., all came from filling a square and so we try to fit these squares together into a
cube. We have

x`
ϕi`

~~||||||||

ϕj` // xj

ϕij~~}}}}}}}}

gjk`

��

xi

gik`

��

gij` //

ϕk`
��

xi

��

xk
ϕik

~~||||||||
// xj

ϕij~~}}}}}}}}

xi gijk
// xi

All but the right side face and the front face have the form defining a ‘g-term’. The right face (if
we rotate it anticlockwise) looks like

xj
gjk` //

ϕij

��

xj

ϕij

��
xi

?
// xi

and so the missing edge will be λij(gjk`). As each face so far considered is commutative and all the
arrows are invertible, the final face, i.e., the front one, is also commutative, so we get

Lemma 59 The elements λij and gijk satisfy the equations λijλjk = igijkλik, on the Uijk and
gijkgik` = λij(gjk`)gij` on Uijk`. �

We clearly have here the beginnings of a simplicial description of G-gerbes. Not only does it
involve several ‘simplicial’ diagrams, but the interpretation is clearly related to our earlier simplicial
descriptions. We earlier had the end term of our exact sequence, left without a neat interpretation.
The above looks as if it might be the start of such an interpretation, but it is just a start and we
need to look at coboundaries, choices, etc., before being sure.

Our initial step was to pick the xis then the φij : xj → xi, so we should examine what happens
if we pick other objects and / or arrows.

If {x′i} is another family of objects in the PUij relative to an open cover U , then, refining the
cover if necessary, we can find arrows

χi : xi → x′i

in these groupoids, linking the old and new choices. Likewise we choose

φ′ij : x′j → x′i,
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(although this may again require further refinement of the cover). We have a diagram

xj
ϕij //

χj

��

xi
χi��

x′i

���
�

x′j
ϕ′ij

// x′i

and we obtain an arrow θij : x′i → x′i in PUij that measures the lack of coherence of the χi with
respect to previous choices. We have

θij = ϕ′ijχjϕ
−1
ij χ

−1
i

(An important special case of this is when the xis are left as they were but another ϕ′ij : xj → xi

is chosen. In that case θij is just ϕ′ijϕ
−1
ij .)

If we have G-gerbes, each object xi or x′i determines a copy of GUi , but we need to keep track
of ‘which copy’ so will write Gi for AutP(xi) and similarly G′i for AutP(x′i). These two sheaves of
groups are isomorphic since the objects xi and x′i are linked via χi. We denote by ri : Gi → G′i,
the isomorphism that results by conjugation. If u : xi → xi is in Gi, then we have a diagram

xi
u //

χi
��

xi

χi
��

x′i ri(u)
// x′i

How does this change, of the local objects and the morphisms between them, change the λijs? As
the ri are isomorphisms, the easier thing is to calculate λ′ij(rj(γ)) for γ, as before, from xj to itself.
An easy calculation shows that the corresponding diagram to the above one defining θij is

Gj

rj

��

λij // Gi
ri��

G′i
iθij��

G′j
λ′ij

// G′i

(This is a good point to check. The necessary diagram is quite easy to construct. Start with γ
and transform it in the two ways given by the two paths in the above. Each arrow in this diagram
will give you a square in the required diagram. This shows immediately the links between an edge
in the groupoid and the conjugation that it gives, but is best done by the reader!) We thus have
λ′ijrj = ιθijriλij . We have seen that conjugation in the context of groupoids is closely linked to
homotopies of groupoid morphisms and one way to express this was simplicially. Here a simplical
view looks very neat. It gives

GjOO

rj =
��

λij //

θij

��@@@@@@@@
Gi

ri
��

G′j
λ′ij

// G′i
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In other words, a homotopy from λij to λ′ij . The θij labelling the top right 2-simplex has boundary
given in the diagram with the diagonal being the morphism ιθijriλij . This begs for some simpli-
fication, and this will be done shortly. It clearly also could be simplified somewhat by replacing
ι : G→ Aut(G) by an arbitrary sheaf of crossed modules, but we must wait to do this until we have
looked at the effect of the changes of the choices of objects, etc., on other parts of the structure.

The cocycle pair describing P consists of two families, one {λij} of pairwise transitions, the
other the family {gijk} of local sections of G over triple intersections. These satisfy a linking
cocycle condition on the triple intersections and a cocycle condition on the 4-fold intersections as
in Lemma 59. Our recent discussion suggested a boundary relation for the λijs namely the existence
of θijs and ris satisfying

λ′ijrj = ιθijriλij ,

or, alternatively, λ′ij = ιθijriλijr
−1
j , and this does look right as it does seem to correspond to

some sort of simplicial homotopy relation, but we would expect a second compatibility condition
involving the gijks and the corresponding g′ijks. (If you want to see why such a second condition
should be there, look at the Abelian case and ideas of classical hypercohomology, and there replace
the crossed module ι : G→ Aut(G) by a two term chain complex concentrated in dimensions 1 and
2. The cocycle pairs give chain maps from N(U) to the coefficients and the relation above describes
the first part of a chain homotopy condition, but we also need a map from N(U)2 to dimension 3
of the coefficients. What that map is is no problem as that position is trivial, but this does impose
a condition on the two level two maps which are given by the gijks.)

The g′ijks are, of course, defined by the analogous square to those used for the gijks, with ϕ′s

replacing ϕs, so g′ijk = ϕ′ijϕ
′
jkϕ
′
ik
−1. We draw a cube with this at the base and with expressions

for ϕ′ij , etc. giving the three corresponding vertical faces with the gijk square at the top. (There is
one subtlety. The neat diagrammatic representation we will give is due to Breen in his notes, [31].)

xk
ϕik //

ϕjk

zzttttttttt
xi

χi
��

gijk

zzuuuuuuuuu

xj

χj

��

ϕij
//

χk

xi

χi
��

x′i

ri(gijk){{vvvvvvvvv

θjk

��

x′i

θij
��

x′j

θjk

��

ϕ′ij //

��

x′i

λ′ij(θjk)

��

x′i
ϕ′jk

{{vvvvvvvvvv
// x′i

g′ijk{{wwwwwwwww

x′j
ϕ′ij

// x′i

The subtlety is the need for the ‘induction square’ giving λ′ij(θjk). (If you draw the gijk and g′ijk
as filling the 2-simplices coming from the λs, then it is easy to construct a prism with these on
the ends, the ris as the joining edges and with θs filling the faces. This prism then shows the
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induced term once again, as it has two terms ending at the i-vertex whilst the θjk does not fit there
unless dragged there by λ′ij . A filling scheme in the simplicial set WK(Aut(G)) will give another
derivation of this result.)

We can read off from the above diagram that

g′ijk = λ′ij(θjk)θijri(gijk)θ
−1
ik ,

which is the second coboundary relation that we were seeking.

Definition: Two cocycle pairs, (λij , gijk) and (λ′ij , g
′
ijk), are cohomologous if there are isomor-

phisms ri ∈ Isom(Gi, G
′
i) and sections θij ∈ G′i|Uij satisfying{

λ′ij = iθijriλijr
−1
j ,

g′ijk = λ′ij(θjk)θijri(gijk)θ
−1
ik .

This is valid even for a general gerbe, but when we assume that P is a G-gerbe, then we get
ri ∈ Aut(G), and the θij are in G|Uij .

We take the set of equivalence classes of cocycle pairs modulo this relation of ‘cohomologous’
to be the definition of H1(U ,Aut(G)). Clearly it needs to be generalised to take coefficients in a
general sheaf of crossed modules, M = (C,P, ∂), and to then pass to the colimit over refinements
of the covers. To spell this out a bit more, we take

• a cocycle pair, (pij , cijk), over U with values in M, to consist of a family of local sections
pij ∈ P (Uij), and a family cijk ∈ C(Uijk) such that for all i, j, k, (as usual),

• pijpjk = ∂cijk.pik,
and

• cijkcik` = pijcjk`.cij`.

The ‘picture’ is

pij

��???????
pjk

cijk

??�������
pik

//

for the first of these, with an obvious tetrahedron for the second.

This is a good place to refer back to two earlier discussions. On page 204, we looked at the
formulae and diagrams for the classifying space of a crossed complex. At that point, we were still
using the algebraic composition convention, so the reader will need to take some care and work
through with that in mind, but the diagrams indicate the close connection with what we have
here. The other discussion is in section 7.6 on M -torsors. The cocycle pairs there gave pis and
cijs and corresponded to simplicial maps g : N(U) → K(M). Here we have a cocycle pair that
corresponds to a simplicial map from N(U) to BK(M), i.e., to WK(M) - and we are approaching
an interpretation of our mysterious Ȟ1(B,M) term from the last chapter, (pages 328 and 329).

Back to our definition, two cocycle pairs, (pij , cijk) and (p′ij , c
′
ijk), are cohomologous if there are

families of local sections, ri ∈ P (Ui) and tij ∈ C(Uij), satisfying, for all i, j, k,
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• p′ij = ∂(tij)ripijr
−1
j over Uij ;

• c′ijk = pij tjk.tijri(cijk)t
−1
ik over Uijk.

We saw that such a pair (ri, tij), in fact, corresponds to a homotopy between the simplicial
maps from N(U) to BK(M) given by the cocycle pairs. In fact, given the filling properties of
BK(M), which not only is a Kan complex, but in which the fillers can be algebraically derived as
we have seen, the correspondence is reversible, so given an arbitrary homotopy between two maps
g,g′ : N(U)→ BK(M), corresponding to the cocycle pairs as above, we can solve to get the rs and
ts as above. (This is ‘fairly obvious’ given our earlier discussion, but still needs some work. The rs
correspond to the edges of the squares in the homotopy:

.
pij //

a

b
  @@@@@@@@@@@

rj

��

.

ri

��.
p′ij

// .

but, in general, the bottom left corner, below the diagonal, will not be an identity. It is then
necessary to replace the given homotopy by one in which these elements are identities. This is
done by solving the relevant simplicial identities referring back to the structure of BK(M), - and
then the relevant equations need checking.)

Remark: The algebraic form of the cohomology relations here is beginning to be near the
limit of what we can handle using cocycle type descriptions. The formulae also are beginning to
be ‘obscure’ geometrically. Because of this, this cocycle description tends to be surplanted by the
simplicial description in much of the work on this topic.

10.3.2 From local to semi-local

In the local description of a gerbe, we have cocycle pairs, (λij , gijk), or, more generally, (pij , cijk),
but in the semi-local description that linked so well with bundle gerbes, we had G-bitorsors over the
intersections. We know bitorsors have themselves a cocycle description, so what is the translation
between these different formulations?

The translation proceeds by a careful look at the two constructions involved:

• In both descriptions, we have an open cover U and over the open set Ui, we choose an object
xi in P(Ui). We have a sheaf of groups Gi := AutP(xi). (We will be concentrating on G-
gerbes, but for the ‘book-keeping’, it is advantageous to denote G!Ui by Gi, which means the
extension to general gerbes is then easy.)

• For the semi-local description, we have a (Gi, Gj)-bitorsor, Pij over Uij , which gives the
equivalence between Tors(Gj)|Uij and Tors(Gi)|Uij ;

• For the local description, we choose an arrow from xj to xi over the intersection, Uij and, by
conjugation, we get an isomorphism λij : (Gj)|Uij → (Gi)|Uij .
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To get the bitorsor Pij , one uses the equivalence Φij = Φi ◦ Φ−1
j for some choice of quasi-inverse

Φ−1
j for Φj : PUj → Tors(Gj), restricted to Uij . The morphism λij induces an equivalence and

corresponds to such a choice of quasi-inverse. (Note that as Φj is an equivalence and not an
isomorphism, there may be many such quasi-inverses.) The description of Φij means that we have
to run the construction in the proof of Proposition 83, page 381, that proves that Φij is essentially
surjective on objects, only now just with target torsor Q = TGj . In this case, referring back to
that proof, Q is already trivialised over the cover and one just needs to pick the y isomorphic to
xj over Uj . On restricting to Uij , this amounts to picking an object over Uij and an isomorphism
from the restriction of xj to Uij to that object. Of course, xi|Uij is such an object and φij is
such an isomorphism, inducing λij on the vertex groups. This gives an explicit description of Pij
given a choice of φij , namely as (TGi)λij , the (Gi, Gj)-bitorsors that is the trivial left Gi-torsors
with right Gj-action given by λij , (see the discussion of contracted product and change of groups,
in section 7.4.4, starting on page 262. We think of this as being defined via the natural global
section, !i, of TGi . Any ‘local element’ of TGi is of form x = g.1i, so given gj , a local element of Gj ,
x.gj = g.1i.λij(gj) = g.λij(gj).1i, but this then hands us ‘on a plate’ the beginnings of the cocycle
description of Pij

The left Gi-torsor, Pij , is already trivial on Uij by the above, so there are no transition cocycles
needed if we stick with the cover {Uij}! (The reader may want to think about this again when we
are in a context where hypercoverings are needed instead of covers. There is also some advantage
in using the cover {Uijk}k, i.e., the triple intersections with ij fixed and k varying, but at least, for
the moment, let us explore this ultra simple choice with a single open set in the cover!) So what
are the isomorphisms u in this context. The description as ui(h)si = si.h from page 275, indicates
clearly that it is λij . (Beware Pij is a bitorsor on Uij with cocycle (1, λij) - but i and j are fixed
here, not variable as in the earlier discussion of bitorsors in general. For instance, the equation
‘ui = ιgijuj ’ is trivial here, since there is only one open set in the cover being considered.)

Our local description is governed by cocycle pairs, (λij , gijk), and we have identified the meaning
of the λijs in the semi-local description. What are the gijk in this context? We had, in our semi-local
description, that on triple intersections, there were isomorphisms,

ψijk : Pij ∧G Pjk → Pik.

The left hand side of this is the bitorsor corresponding to ΦijΦjk, or, from our discussion above,
(λijλjk)∗, whilst the right hand one to Φik and thus to λik∗. By Lemma 44, page 263, the natural
transformation will be determined by a section of Gi and, of course, this is the gijk of the other
description, and satisfies

λijλjk = ιgijkλik.

The ψijk must satisfy an associativity coherence condition over 4-fold intersections and that trans-
lates to

gijk.gik` = λijgjk`.gij`.

Thus the translation between semi-local and local descriptions is fairly straightforward once the
indices are sorted out.

In the above, we were able to simplify the discussion no end since Pij was trivial over Uij . In the
more general situation, one starts with an open cover U = {Ui} over which P is non-empty allowing
the choice of local objects xi, then over Uij , we would need a cover over which PUij was locally
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connected, so the λijs are only locally defined and need additional indices, (see Breen’s treatment
of this in [30], section 2.4).

We have not actually shown that such a cocycle decomposition of a gerbe, in either form, can be
reversed, i.e., given a collection (λij , gijk) or more generally.(pij , cijk), satisfying the various cocycle
conditions, one can construct a gerbe with that description. Breen discusses this in detail in the
monograph [30], section 2.6, using 2-descent data and a 2-stack. As we have not met these so far in
these notes, we cannot treat that yet, however we will start preparing the ground so as to discuss
such ideas shortly.



Chapter 11

Homotopy Coherence and Enriched
Categories.

We are getting to a point where we need some more powerful insights on homotopy coherence and
descent, so in the next few chapters we will examine these topics in some detail. This will give us
some useful tools for later use. (These chapters are quite long can be skimmed at first reading, but
as the tools will be used later, the material is important for later sections.)

At several points in earlier chapters, we have had to replace colimits by ‘pseudo’ or ‘lax’ colimits.
We have, especially when ‘categorifying’, had to replace equality or commutativity in some context,
by ‘equivalence’ or ‘coherence’. We have now some experience in handling such ideas and hopefully
have built up some intuition, gaining a ‘feel’ for the general method. It is time now to devote some
space to solidifying that intuition a bit further as we will be needing to go in more deeply in future
sections.

We will not give a full treatment however as that would take up a lot of space and also would
detract from the development of gerbes as such. We will discuss various aspects of the problem
and various approaches. Some will involve homotopy theoretic viewpoints, others multiple category
theoretic ones. The point is that each approach models certain aspects more transparently than
others, so it helps to have a ‘multiple model’ view. There are possible ‘unified models’, but they
tend to be better handled once the partial approaches - simplicial, homotopy theoretic, n-categorical
ones - have been at least met and partially mastered.

11.1 Case study: examples of homotopy coherent diagrams

(Before we get into some examples, it is useful to introduce a bit of terminology that we will use
from time to time. If we have a ‘diagram’ in a category A, then we have, more exactly, some
functor, F : J → A. We will refer to J as the ‘template’ of the diagram, as it gives us the shape
of the diagram, that is, what the diagram ‘looks like’. We may sometimes give just a graph or
more likely a directed graph as a ‘template’ in which case the corresponding free category on that
directed graph will be the domain of the functor. We will also extend the use of ‘template’ to other
similar situations in particular to homotopy coherent diagrams.)

417
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The situation we will start with is a triangular diagram

K1

k12

!!CCCCCCCC

K0

k01
=={{{{{{{{

k02
// K2

of three spaces or, preferably, simplicial sets, and three maps such that, for the moment, k12 ◦k01 =
k02. We can, and will, consider this as a functor

K : [2]→ S,

where, as always, [2] is the ordinal {0 < 1 < 2}, considered as a small category. (It is the ‘template’
for this type of diagram.)

Suppose now that we want to change each Ki to a corresponding object, Li, which is homotopy
equivalent to it. This often occurs when, for instance, the Kis are K(G, 1)s, and so have only
their fundamental groups non-trivial amongst their homotopy groups. It may be thought useful to
replace the Kis by smaller or simpler models that reflect the structure of the π1(Ki)s. Suppose,
therefore, that we have specified maps

fi : Ki → Li
gi : Li → Ki

}
i = 0, 1, 2,

and homotopies

Hi : IdKi ' gifi
Ki : IdLi ' figi

}
i = 0, 1, 2.

We had a commutative diagram linking the Kis. Can we construct some similar diagram from the
Lis? The answer is ‘yes, but . . . ’.

We, of course, need some maps `ij : Li → Lj , and there seems only one possible way of obtaining
them in a sensible way, namely, use g to get back to K, go around the K-diagram and then pop

back to L using f , i.e., define `ij : Li → Lj by `ij := (Li
gi→ Ki

kij→ Kj
fj→ Lj). This seems the only

way - yet it will not work in general. Yes, these `ijs will exist, but

L1

`12

  AAAAAAAA

L0

`01
>>}}}}}}}}

`02
// L2

will not commute in general. In fact,

`12 ◦ `01 = f2k12g1f1k01g0.

whilst

`02 = f2k02g0 = f2k12k01g0,
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so we have g1f1 blocking the way! As IdK1 ' g1f1, `02 ' `12 ◦ `01, and so the triangle is homotopy
commutative, but it is more than that since we were told a homotopy K1 : IdK1 ' g1f1, and so
have a specific homotopy that does the job, namely L012 := f2k12K1(k01g0 × I).

L1

`12

  AAAAAAAA

L0

`01
>>}}}}}}}}

`02
//

� �� �KS

L2

Remark: The homotopies we used above went from the identity maps to the composites. We
could equally well have written them around the other way. The only difference would be that
the arrow in the above diagram would go down instead of up. The conventions here vary from
source to source. The above is useful here because it will reflect the cocycle formulae that we have
already used, but at other points in our discussion, it will not necessarily be the optimal choice.
As homotopies are reversible, it essentially makes no difference here, but it can lead to different
formulae and some confusion if this is forgotten.

Now we try to do a slightly harder example. The input this time will be

K : [3]→ S,

together with fi : Ki → Li, gi : Li → Ki, Hi, and Ki, for i = 0, . . . , 3. We have maps `ij as before,
but also homotopies Lijk : `ik ' `jk◦`ij for i < j < k within [3], given by Lijk := fkkjkKj(kijgi×I).

(Any doubts as to why we are going on this excursion into homotopy coherence should be
beginning to dissipate by now!) We thus have a tetrahedral diagram

L1

`12

��-
-------------
`13

&&LLLLLLLLLLLL

L0
`03

`01
AA�������

`02 &&LLLLLLLLLLLL
// L3

L2

`23

AA�������

with homotopies, as above, in each face.
We saw this sort of diagram when we were discussing fibred categories and, in particular, the

3-cocycle condition which mysteriously came out to be written as a square (cf. page 348). Here also
we can analyse our tetrahedral diagram as a square with vertices corresponding to paths through
the diagram from L0 to L3 and with edges corresponding to the homotopies in the faces. Of course,
for instance, L123 : `13 ' `23 ◦ `12, so it contributes a ‘whiskered homotopy’ L123 ◦ `01 : `13 ◦ `01 '
`23 ◦ `12 ◦ `01. (Note we are here being lazy, using the convenient notation L123 ◦ `01 instead of the
more exact L123 ◦ (`01 × I), which, however, is sometimes essential!)

`03
L023 +3

L013

��

`23`02

`23◦L012

��
`13`01 L123◦`01

+3 `23`12`01
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We can compose these homotopies to get two, in general distinct, homotopies from `03 to `23`12`01,
explicitly calculable in terms of K1 and K2. (A useful observation here is that the indices 1 and 2 are
in the middle of all the homotopies’ indices, never 0 or 3, as should be clear from the constructions,
so our homotopies use K1 and K2, not the others.)

Remark: These can be viewed as defined from L0 × I to L3. This is most easily seen in the
topological case as we have an obvious homeomorphism, [0, 1] ∼= [0, 1

2 ] ∪ [1
2 , 1], which allows a neat

concatenation of homotopies. It also works well in the simplicial case provided we have the our
objects satisfy the Kan condition, i.e., are Kan complexes.

Simplicially the composition of homotopies is done via a choice of filler. We have two maps

L0 ×∆[1]→ L3

i.e., two 1-simplices in S(L0, L3), which as we saw earlier (cf. page 208) is the simplicial set of
maps of various ‘degrees’ from L0 to L3, given precisely by

S(K,L)n = S(K ×∆[n], L),

in general. From the two composable homotopies, we obtain a map

L0 × Λ1[2]→ L3

or equivalently a (2,1)-horn
Λ1[2]→ S(L0, L3).

If L3 is a Kan complex, then so is S(L0, L3). (If you have not met the proof, it is worth looking up.
You should find it in more or less any text with a section on simplicial homotopy theory.) From
our (2, 1)-horn, we will get a filler:

∆[2]→ S(L0, L3),

and the di-face of this is a composite homotopy.) Note it is a, not the, composite homotopy, as we
obtained a filler by the Kan condition and could not demand it had any special properties such
as ‘uniqueness’. This point is also valid working with topological homotopies. We conveniently
compose homotopies by gluing one copy of a cylinder X × I to a second one and rescaling. The
usual formula looks like

H ∗K(t) =

{
H(2t) 0 ≤ t ≤ 1

2
K(2t− 1) 1

2 ≤ t ≤ 1,
,

but this is just one very convenient composite and we could have used many other conventions, for
instance, H(3t) for 0 ≤ t ≤ 1

3 , and K(3t− 2) for 1
3 ≤ t ≤ 1. Any homeomorphism h : [0, 1]→ [0, 2]

such that h(0) = 0 and h(1) = 2 will give another composite homotopy.)
That being said, the really neat way to treat this square is ... as a square! We need to specify

a 2-fold homotopy, so want a map θ : L0 × I2 → L3, which fills the square, i.e., θ(x, s, t) ∈ L3 for
(s, t) ∈ I2 and for x ∈ L0, with

θ(x, s, 0) = L023(x, s),

θ(x, s, 1) = L123(`01(x), s),

θ(x, 0, t) = L013(x, t),

θ(x, 1, t) = `23L012(x, t).
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In the topological case, such a θ would need, of course, to be continuous, but would then be a
suitable level 2 homotopy, L0123, completing our solution. We have not said how to construct this
θ, but you have all the necessary machinery to do so. It only uses the elements of the data that
have already been given. Its construction is quite useful to do yourselves, as it shows you how
the low dimensional homotopies combine quite simply to give the level 2 homotopy that is needed.
It uses a bit of topology, but only in a minimal way.

If we need a simplicial analogue of this, then we would need L0123 ∈ S(L0 × ∆[1]2, L3). Our
simplicial mapping space, S(L0, L3), initially looks slightly wrong for this since we need two 2-
simplices with one matching common d1-face to get ∆[1]2 and all the simplices in S(L0, L3) have
form L0×∆[n]→ L3. In fact this is easy to get around. The category of simplicial sets is Cartesian
closed with its internal mapping object given exactly by this S(K,L) construction, so we have, for
each triple, K, L, M , of simplicial sets;

S(K × L,M) ∼= S(K,S(L,M)).

(If you are not familiar with Cartesian closed categories, then do glance at a suitable survey article
or category theory textbook, e.g. [? ]. The Wikipedia article on the subject will also give you some
basic facts and ideas about the concept. You should also consult the n-Lab.)

We can use this isomorphism to convert our desired level 2 homotopy into a simplicial map

∆[1]2 → S(L0, L3).

(For formalities sake, it may be better to think of L0123 as being

∆[1]2 × L0 → L3

instead of as having domain L0 ×∆[1]2.)
This is using the simplicially enriched category structure of S, and allows us to produce and

interpret a similar construction in many other simplicially enriched contexts. To do this we will
need some more elements of the notions of simplicially enriched categories, also called S-categories.
These are just one of the ways of encoding homotopy coherence, but they fit neatly into our general
approach. Other related concepts would include dg-categories that is, differential graded categories,
which are categories enriched over the category of chain complexes. We will have a look at these
later.

11.2 Simplicially enriched categories

These are, intuitively, just categories with simplicial ‘hom-sets’. We will also call them S-categories.

11.2.1 Categories with simplicial ‘hom-sets’

We assume we have a category, A, whose objects will often be denoted by lower case letter, x, y, z,
. . . , at least in the generic case, and for each pair of such objects, (x, y), a simplicial set, A(x, y),
is given. For each triple x, y, z of objects of A, we have a simplicial map, called composition,

A(x, y)×A(y, z) −→ A(x, z);

and for each object x, a map,
∆[0]→ A(x, x),
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that ‘names’ or ‘picks out’ the ‘identity arrow’ in the set of 0-simplices of A(x, x). This data is to
satisfy the obvious axioms, associativity and identity, suitably adapted to this situation.

Definition: Such a set-up, as detailed above, will be called a simplicially enriched category or,
more simply, an S-category.

Enriched category theory is a well established branch of category theory. It has many useful
tools and not all of them have yet been explored for the particular case of S-categories and its
applications in homotopy theory.

Warning: As we have mentioned before, some authors use the term ‘simplicial category’
for what we have termed a simplicially enriched category. There is a close link with the notion
of simplicial category that is consistent with usage in simplicial theory per se, since any (small)
simplicially enriched category can be thought of as a simplicial object in the ‘category of categories’,
but a simplicially enriched category is not just a simplicial object in the ‘category of categories’
and not all such simplicial objects correspond to such enriched categories. That being said, that
usage need not cause problems provided you are aware of the usage in the paper to which reference
is being made.

11.2.2 Examples of S-categories

We have seen the first example several times before, but will repeat it for convenience:

(i) S, the category of simplicial sets:
here

S(K,L)n := S(∆[n]×K,L);

Composition : for f ∈ S(K,L)n, g ∈ S(L,M)n, so f : ∆[n]×K → L, g : ∆[n]× L→M ,

g ◦ f := (∆[n]×K diag×K−→ ∆[n]×∆[n]×K ∆[n]×f−→ ∆[n]× L g→M);

Identity : idK : ∆[0]×K
∼=→ K.

Notational remark: Perhaps a word on notation is needed here. Above we have used
S(∆[n] × K,L), but as the product is symmetric, we could equally well have used S(K ×
∆[n], L), and although in writing these notes I have tried to be consistent for the first of
these, there will certainly be instances of the second convention that have crept in as both are
used in the source material that I have used! It makes no real difference to the theory, but
can make a difference to the formulae. Similar notational conventions, and similar probable
errors in the notation, apply to the other examples below.

(ii) Top, ‘the’ category of spaces (of course, there are numerous variants but you can almost pick
whichever one you like as long as the constructions work):

Top(X,Y )n := Top(∆n ×X,Y ).

Composition and identities are defined more or less as in (i).
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If our favourite category, Top, of topological spaces has mapping spaces, Y X , so is itself
Cartesian closed, then Top(X,Y ) can be identified with Sing(Y X), and this is also true if

Y X exists in Top for some pair of spaces X and Y , even if not all such pairs may have this
property.

(iii) For each X, Y ∈ Cat, the category of small categories, then we similarly get Cat(X,Y ),

Cat(X,Y )n = Cat([n]×X,Y ).

We leave the other structure up to the reader.

Of course, Cat is Cartesian closed and Cat(X,Y ) = Ner(Y X), up to isomorphism.

(iv) Crs, the category of crossed complexes: see section 3.1, for the definitions and additional
references, [111] for some introductory background, and Tonks, [165] for a more detailed
treatment of the simplicially enriched category structure;

Crs(A,B) := Crs(π(n)⊗ C,D).

Composition has to be defined using an approximation to the identity, again see [165]. (As
mentioned before, the forthcoming book by Brown, Higgins and Sivera, [41] contains a coher-
ent exposition of most of the theory of crossed complexes.)

(v) Ch+
K or, more expansively, Ch+(K−Mod), the category of positive chain complexes of modules

over a (commutative) ring K. Details are left to the reader, or follow from the Dold-Kan
theorem and example (vi) below. We will examine this in more detail later on, but will also
look at a different enrichment for this category.

(vi) Simp.K-Mod, the category of simplicial K-modules. The structure uses tensor product with
the free simplicial K-module on ∆[n] to define the ‘hom’ and the composition, so is very
much like (i). It is better viewed as being enriched over itself and we will examine it from
that viewpoint slightly later.

(vii) Any simplicial monoid is a simplicially enriched category, so also any simplicial group is one.
Of course, they only have a single object. Conversely an S-category that has a single object
only is a simplicial monoid. The multiplication in the simplicial monoid is the composition in
the category etc.

(viii) Any category, C, will give us a S-category, namely the corresponding trivially enriched or
locally discrete S-category. This leads to:

Definition: A S-category, B, is locally discrete or, equivalently, trivially enriched if each
B(x, y) is a discrete simplicial set.

(ix) Any 2-category, C, will give us an S-category. In fact, a 2-category is precisely a Cat-enriched
category, so each ‘hom’ is a small category. In more detail, suppose C is a 2-category and x,
y and z are objects, then the composition

cx,y,z : C(x, y)× C(y, z)→ C(x, z)
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is a functor. The obvious way to get a simplicial set from C(x, y) is to apply the nerve functor.
We let C∆(x, y) = Ner(C(x, y)) and we use the fact that we have already noted, that the
nerve functor preserves products, then we define the S-category, C∆, by the above simplicial
‘homs’ with composition

C∆(x, y)× C∆(y, z) ∼= Ner(C(x, y)× C(y, z))
Ner(cx,y,z)−→ Ner(C(x, z)) ∼= C∆(x, z).

The identities look after themselves; associativity and unit axioms are then easily checked. In
fact, as the nerve functor embeds Cat as a subcategory of S, the resulting S-category is really
just the original 2-category in disguise.

(x) We saw in section 6.2.1 how to construct a simplicially enriched groupoid, GK, from a sim-
plicial set, K. The terminology is consistent. Recall that the set of objects of GK was the
set of vertices of K itself and that there were two maps, source and target, given by iterated
face maps to K0, (cf. page 201). To rewrite GK as a simplicially enriched category, we just
take, for objects, x and y of GK, GK(x, y)n to be the set of arrows in GKn that start at x
and have target y. The composition in GKn works by construction and all this is compatible
with face and degeneracy maps. (The details should be looked at a bit as it is very often
useful to be able to swap between the two ways of viewing GK. Thinking of the Dwyer-Kan
loop groupoid as a simplicially enriched category is akin to thinking of a group G as a small
category, so this is central to the ‘categorification’ story. )

(xi) An important set of examples of nice small S-categories is given by the simplicially enriched
category versions of the simplices. These are built from the ordered sets [n] = {0 < 1 < . . . <
n} and will be denoted S[n]. We will give two equivalent definitions of them, one simple one
here, another shortly using a comonadic resolution. The latter is very useful for linking the
construction with the cohomology of categories, but the first is very pretty and simple and is
easier to understand.

First note that if i and j are in [n], then there are no paths from i to j if i > j, but if i ≤ j,
there are 2j−i such paths. (Experiment a bit with simple examples if you do not see this.)
More precisely, a path in a category C from an object, x, to an object, y, is a sequence of
arrows in C joining the two objects:

x = c0
a1→ c1

a2→ . . .
ak→ ck = y.

It thus determines a functor a : [k] → C and, at this stage incidently, a simplex of Ner(C).
As [n] is a totally ordered set, each (non-degenerate) such path from i to j is specified just
by the set of intermediate objects, (as there are unique arrows between them so there is no
choice of the ams). It is now clear that there are j − i − 1 intermediate elements, between
i and j, and so 2j−i−1 such paths including the direct path that corresponds to the empty
set of intermediate objects. The combinatorial structure of the partially ordered set of such
paths is clearly that of {0 < 1}j−i−1, as each path corresponds to a subset of the intermediate
objects of [n]. The nerve of this partially ordered set is ∆[1]j−i. If i ≤ j ≤ k, we can define a
composition pairing

∆[1]j−i−1 ×∆[1]k−j−1 → ∆[1]k−i−1

given by sending a pair consisting of a subset A of {i, . . . , j} and a subset B of {j, . . . , k} to
A ∪ {j} ∪ B. Note the inclusion of {j}. It will always be there in that composite. (Here we



11.2. SIMPLICIALLY ENRICHED CATEGORIES 425

are working in several contexts at once, paths, subsets of sets of intermediate elements, and
simplicial mappings, so it may pay to pause and check details such as compatibility with face
and degeneracy maps etc., just to make sure your intuition on what is happening here, and
why it works, is up to speed.)

Definition: Let S[n] be the S-category having the same objects as the category [n], with
S[n](i, j) empty if j < i and isomorphic to ∆[1]j−i−1 if not, and with the above composition
pairing as the composition. We will call S[n] the Scategorical@S-categorical n-simplex .

(xii) In general any category of simplicial objects in a ‘nice enough’ category has a simplicial
enrichment, although the general argument that gives the construction does not always make
the structure as transparent as it might be.

Proposition 92 If A is any category, Simp(A) = A∆op
is an S-category.

Proof: Let K to be any simplicial set, then ∆/K is the comma category with objects ([n], x)
with x ∈ Kn and morphisms µ : ([n], x) → ([m], y) being those µ : [n] → [m] in ∆ such that
K(µ)(y) = x. There is a forgetful functor

δK : ∆/K → ∆, δK([n], x) = x.

Now given X,Y ∈ Simp(A), define

Simp(A)(X,Y )n = NatTrans(Xδop∆[n], Y δ
op
∆[n])

�

Several times above we have use a notational convention that can be very useful. If a category,
A, is to be regarded both as an ordinary category and a simplicially enriched one, there arises a
problem of what notation to use for the two types of hom-object. One simple and quite effective
solution is to use A(A,B) if thinking of the set of morphisms and an underlined version A(A,B)
if it is the simplicial set of morphisms that we mean. Then it is also natural to refer to the basic
category as A and the S-enriched version as A. We probably have not been consistent about this,
but will try!

There is an evident notion of S-enriched functor, so we get a category of ‘small’ S-categories,
denoted S−Cat. Of course, some of the above examples are not ‘small’. (With regard to ‘smallness’,
although sometimes a smallness condition is essential, one can often ignore questions of smallness
and, for instance, consider simplicial ‘sets’ where actually the collections of simplices are not truly
‘sets’ (depending on your choice of methods for handling such foundational questions).)

11.2.3 From simplicial resolutions to S-categories

The construction of S[n] from [n] is an example of a general construction for any small category. One
can approach it via paths as we did above or via a free category construction. This latter approach
has the advantage that it emphasises the link between the constructions of the categorical approach
to homotopy coherence and the constructions of categorical cohomology theory, as exemplified by



426 CHAPTER 11. HOMOTOPY COHERENCE AND ENRICHED CATEGORIES.

the comonadic resolution construction that we used earlier in a particular case, cf. section 3.5.3,
page 82. It is therefore useful to present both approaches.

The forgetful functor, U : Cat → DGrph0, has a left adjoint, F . Here DGrph0 denotes the
category of directed graphs with ‘identity loops’, so U forgets just the composition within each
small category, but remembers that certain loops are special ‘identity loops’. The free category
functor here takes, between any two objects, all strings of composable non-identity arrows that
start at the first object and end at the second. One can think of F identifying the old identity
arrow at an object x with the empty string at x.

This adjoint pair gives a comonad on Cat in the usual way, and hence a functorial simplicial
resolution, as we saw on page 82. Here we will use the alternative form of the construction.
This takes the face and degeneracy maps in the opposite direction, but is otherwise more or less
completely equivalent. We will denote this, for a small category A, by S(A) → A. In more
detail, we write L = FU for the functor part of the comonad, the unit of the adjunction, η :
IdDGrph0 → UF , gives the comultiplication, FηU : L→ L2, and the counit of the adjunction gives
ε : FU → IdCat, that is, ε : L→ Id. Now, for A a small category, set S(A)n = Ln+1(A) with face
maps di : Ln+1(A) → Ln(A) given by di = LiεLn−i, and similarly for the degeneracies, which use
the comultiplication in an analogous formula. (Note that there are two conventions possible here.
The other will use di = Ln−iεLi. The only effect of such a change is to reverse the direction of
certain ‘arrows’ in diagrams. The two simplicial structures are ‘dual’ to each other. The difference
is exactly that which we noted when we first wrote the homotopy coherent triangle in our first
example.)

This S(A) is a simplicial object in Cat, S(A) : ∆op → Cat, so does not immediately gives us
a simplicially enriched category, however its simplicial set of objects is constant because U and F
took note of the identity loops.

In more detail, let ob : Cat → Sets be the functor that picks out the set of objects of a small
category, then ob(S(A)) : ∆op → Sets is a constant functor with value the set ob(A) of objects of
A. More exactly, it is a discrete simplicial set, since all its face and degeneracy maps are bijections.
Using those bijections to identify the possible different sets of objects, yields a constant simplicial
set where all the face and degeneracy maps are identity maps, i.e., we do now have a constant
simplicial set of objects.

Lemma 60 Let B : ∆op → Cat be a simplicial object in Cat such that ob(B) is a constant simplicial
set with value B0, say. For each pair (x, y) ∈ B0, let

B(x, y)n = {σ ∈ Bn | dom(σ) = x, codom(σ) = y},

where, of course, dom refers to the domain function in Bn, similarly for codom.

(i) The collection {B(x, y)n| n ∈ N} has the structure of a simplicial set, B(x, y), with face and
degeneracies induced from those of B.

(ii) The composition in each level of B induces

B(x, y)× B(y, z)→ B(x, z).

Similarly the identity map in B(x, x) is defined as idx, the identity at x in the category B0.

(iii) The resulting structure is an S-enriched category, that will also be denoted B. �

The proof is just a matter of checking formulae, and is left to the reader.
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In particular, this shows that S(A) is a simplicially enriched category. The augmentation of
the comonadic resolution yields an S-functor, denoted d0 = η := ηA : S(A)→ A, from S(A) to the
locally discrete S-category corresponding to A. (The d0 notation is useful if considering the whole
structure as enriched over augmented simplicial sets, .)

Definition: For a small category A, the S-category S(A) is the free S-category resolving A
The S-functor η := ηA : S(A)→ A is the augmentation of this resolution.

The description of the simplices in each dimension of S(A) that start at a and end at b is
intuitively quite simple. The arrows in the category, L(A), correspond to strings of symbols repre-
senting non-identity arrows in A itself, those strings being ‘composable’ in as much as the domain
of the ith arrow must be the codomain of the (i− 1)th one, and so on. Because of this we have:

• S(A)0 consists exactly of such composable chains of maps in A, none of which is the identity;

• S(A)1 consists of such composable chains of maps in A, none of which is the identity, together
with a choice of bracketting;

• S(A)2 consists of such composable chains of maps in A, none of which is the identity, together
with a choice of two levels of bracketting;

• ... and so on.

Face and degeneracy maps remove or insert brackets, but care must be taken when removing
innermost brackets as the compositions that can then take place can result in chains with identities,
which then need removing, see [? ], that is why the comonadic description is so much simpler, as
it manages all that itself.

To understand S(A) in general, it pays to examine the simplest few cases. The key cases are
when A = [n], the ordinal {0 < . . . < n} considered as a category as before. We gave these earlier
from the other viewpoint, so how do they look from the comonadic one? This sheds light on the
links between the two approaches.

The cases n = 0 and n = 1 give no surprises:

• S[0] has one object 0 and S[0](0, 0) is isomorphic to ∆[0], as the only simplices are degenerate
copies of the identity.

• S[1] likewise has a trivial simplicial structure, being just the category [1] considered as an
S-category.

• Things do get more interesting at n = 2. The key here is the identification of S[2](0, 2).
There are two non-degenerate strings or paths that lead from 0 to 2, so S[2](0, 2) will have
two vertices. The bracketted string ((01)(12)) on removing inner brackets gives (02) and
outer brackets, (01)(12), so represents a 1-simplex,

(02)
((01)(12)) // (01)(12),
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Other simplicial homs are all ∆[0] or empty. It thus is possible to visualise S[2] as a copy of
[2] with a 2-cell going towards the top:

1
(12)

��>>>>>>>

0
(02)

//

(01)
@@�������

� �� �KS

2

• The next case n = 3 is even more interesting: S[3](i, j) will be (i) empty if j < i, (ii)
isomorphic to ∆[0] if i = j or i = j − 1, (iii) isomorphic to ∆[1], by the same reasoning as we
just used, for j = i+ 2 and that leaves S[3](0, 3). This is a square, ∆[1]2, as follows:

(03)
((02)(23)) //

diag

&&MMMMMMMMMMMMMMMMMMMMM

((01)(13)) a

��

(02)(23)

((01)(12))((23))b

��
(01)(13)

((01))((12)(23))
// (01)(12)(23)

where the diagonal diag = ((01)(12)(23)), a = (((01))((12)(23))) and b = (((01)(12))((23))).
(It is instructive to check that this is correct, firstly because I may have slipped up (!) as well
as seeing the mechanism in action. Removing the outermost brackets is d0, and so on.)

• The case of S[4] is worth doing. (Yes, that means it is suggested as an exercise. As might
be expected, S[4](0, 4) is a cube.)

The simplicial resolution construction of S(A) from A was cross referenced to our earlier use of
comonadic simplicial resolutions for groups and the link of that with cohomology, see page 82. So
as to investigate the link between the two instances of this that we have seen, it is useful to look
at a special case of the S-construction, namely when the given small category is a monoid and, in
particular, when it is a group.

Let A be a monoid, thought of as a small category with a single object. The adjoint pair of
functors,

U : Cat
// DGrph0 : Foo ,

restricts to the category of monoids on the one hand and to that, Sets0, of pointed sets on the
other:

U : Mon
// Sets0 : Foo .

The basic step in the construction is that of forming the free monoid on the set of the non-identity
elements of a monoid, and so the bracketing terminology works well still in this particular situation.

We thus have that S(A) is a simplicial monoid in the ordinary sense of the term. If A is actually
a group rather than ‘merely’ a monoid, then S(A) is still only a simplicial monoid, but for any
g ∈ A, there are ‘generators’ 〈g〉 and 〈g−1〉 in S(A)0 and a 1-simplex, (〈g〉, 〈g−1〉) in S(A)1. We can
calculate the vertices on the two ends of this: as d0 = εT and d1 = Tε,

d0(〈g〉, 〈g−1〉) = 〈g〉〈g−1〉,
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and
d0(〈g〉, 〈g−1〉) = 1,

since ε(〈g〉, 〈g−1〉) = 1A). The 1-simplex thus looks like

1→ 〈g〉〈g−1〉.

Of course, there is another one from 1 to 〈g〉〈g−1〉. As S(A)0 is a free monoid, we do not have
elements such as 〈g〉−1 around and so do not get a corresponding 1-simplex ending at 1.

Remark: The history of this S-construction is interesting. A variant of it, but with topolog-
ically enriched categories as the end result, is in the work of Boardman and Vogt, [? ], and also
in Vogt’s paper, [? ]. Segal’s student Leitch used a similar construction to describe a homotopy
commutative cube (actually a homotopy coherent cube), cf. [? ], and this was used by Segal in his
famous paper, [? ], under the name of the ‘explosion’ of A. All this was still in the topological
framework and the link with the comonad resolution was still not in evidence.

Although it seems likely that Kan knew of this link between homotopy coherence and the
comonadic resolutions by at least 1980, (cf. [? ]), the construction does not seem to appear in his
work with Dwyer as being linked with coherence until much later. Cordier made the link explicit
in [? ] and showed how Leitch and Segal’s work fitted in to the pattern. His motivation was for the
description of homotopy coherent diagrams of topological spaces. Other variants were also apparent
in the early work of May on operads, and linked in with Stasheff’s work on higher associativity and
commutativity ‘up to homotopy’, and it would be possible to write a whole course on those and
not to stray too far from our theme of non-abelian cohomology either.

Cordier and Porter, [? ], used an analysis of a locally Kan simplicially enriched category
involving this construction to prove a generalisation of Vogt’s theorem on categories of homotopy
coherent diagrams of a given type. (We will return to this aspect a bit later in these notes, but
an elementary introduction to this theory can be found in [111].) Finally Bill Dwyer, Dan Kan
and Jeffrey Smith, [? ], introduced a similar construction for an A which is an S-category to
start with, and motivated it by saying that S-functors with domain this S-category corresponded
to ∞-homotopy commutative A-diagrams, yet they do not seem to be aware of the history of the
construction, and do not really justify the claim that it does what they say. Their viewpoint is
however very important as, basically, within the setting of Quillen model category structures, this
provides a cofibrant replacement construction. We will look at cofibrant replacements in another
context later on in this chapter. (If you want to check up on this idea now, a good source is Hovey’s
book, [99].) Of course, any other cofibrant replacement could be substituted for it and so would still
allow for a description of homotopy coherent diagrams in that context. This important viewpoint
can also be traced to Grothendieck’s Pursuing Stacks, [89].

The extension of the construction in [? ], although simple to do, is often useful and so will be
outlined next.

If A is already a S-category, think of it as a simplicial category, then applying the S-construction
to each An will give a bisimplicial category, i.e., a functor S(A) : ∆op ×∆op → Cat. Of this we
take the diagonal, so the collection of n-simplices is S(A)n,n, and, by noticing that the result has
a constant simplicial set of objects, then apply the lemma.

Before leaving this construction, let us just comment that if we had used the other formulae for
the simplicial resolution, the only difference would be that the higher dimensional arrows would be
reversed in direction, so that, for instance, in S[2], we would have had the arrow going from the
composite of the d2 and the d0 to the d1-face, not the other way around.
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11.3 Structure

As one can ‘do’ homotopy theory with simplicial sets, one can adapt that theory to give a basic
homotopy theory in any S-category. Of course, some of these homotopy theories will be richer than
others.

11.3.1 The ‘homotopy’ category

If C is an S-category, we can form a category π0C with the same objects and having

(π0C)(X,Y ) = π0(C(X,Y )).

This is known as the homotopy category of the S-category. For instance, if C = CW, the category of
CW-complexes, then π0CW = Ho(CW ), the corresponding homotopy category. Similarly we could
obtain a groupoid enriched category using the fundamental groupoid (cf. Gabriel and Zisman,
[81]), that is, by applying the fundamental groupoid functor, Π1, to each ‘hom’

(Π1C)(X,Y ) = Π1(C(X,Y )).

This works because Π1 preserves products. (We will see many similar results later, in which the
type of enriched structure is transformed using a ‘monoidal functor’, i.e., one that is compatible
with the monoidal category structures being used. All will be revealed later, in Chapter ??.)

Remarks: This notion of a groupoid enriched category has been called a track category by
Baues; see [20], for instance. The terminology is not quite precise enough for our uses as we will have
track n-categories to handle later on, so we will call this 2-dimensional version a track 2-category.
Formally we have:

Definition: A 2-category, C, is a track 2-category or a groupoid enriched category if each
C(x, y) is a groupoid.

These track 2-categories / groupoid enriched categories have a reasonably rich ‘abstract’ homo-
topy theory, as is shown by the book by Gabriel and Zisman, [81], or the article by Fantham and
Moore, [? ]. More recently they have been used extensively by Baues, [20].

One can ‘do’ some elementary homotopy theory in any S-category, C, by saying that two maps
f0, f1 : X → Y in C are homotopic if there is an H ∈ C(X,Y )1 with d0H = f1, d1H = f0.

This theory will not be very rich, however, unless at least some low dimensional Kan conditions
are satisfied.

Definition: The S-category, C, is called locally Kan if each C(X,Y ) is a Kan complex; locally
weakly Kan if . . . , etc.

(If you have not met ‘weak Kan complexes’, you will soon meet them in earnest! We will define
them properly before using them, so don’t worry.)

The theory is ‘geometrically’ nicer to work with if C is tensored or cotensored.
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11.3.2 Tensoring and Cotensoring

We have already met the idea of tensoring and cotensoring briefly when discussing simplicial homo-
topies, (page 283 in section 7.5.5). The notions of tensors and cotensors make sense in any enriched
category setting, but here we will just handle the case of simplicially enriched category.

Definition: If for all K ∈ S, X,Y,∈ C, there is an object K⊗̄X in C such that

C(K⊗̄X,Y ) ∼= S(K, C(X,Y )

naturally in K, X and Y , then C is said to be tensored over S.

Definition: Dually, if we require objects C̄(K,Y ) such that

C(X, C̄(K,Y )) ∼= S(K, C(X,Y )

then we say C is cotensored over S.

Remark on terminology: In many ways this terminology is not a good one. Usually ‘tensors’
are given by colimit type constructions, whilst cotensors are limit-type constructions. A cotensor
is interpreted as if it was a function or mapping ‘space’, and in the simple case of a Set-enriched
setting, (i.e., standard category theory) is a power operation. If X,Y are objects in a category C
and K is just a set, C̄(K,Y ) is Y K , the K-fold power of Y , that is, the product of K-many copies
of the object, Y . Dually K⊗̄X will be the K-fold copower of X, that is, the coproduct of K-many
copies of the object X. Because of this, an alternative terminology to the above has been suggested:

‘standard’ alternative

tensored copowered
cotensored powered

(see the discussion of this in the nLab, [145].) (This terminology is probably still unstable but
should stabilise soon.)

The example that we have seen most of this type of structure is in S, where, for K in S,
and, this time, also X in S, K⊗̄X is just K × X and, dually, for Y in S, C̄(K,Y ) is S(K,Y ),
the simplicial function space of maps from K to Y . To gain some intuitive feeling for these two
concepts in general, we can think of K⊗̄X as being ‘K product with X’, and C̄(K,Y ) as the object
of functions from K to Y . These words do not, as such, make sense in all generality, but do tell
one the sort of tasks these constructions will be set to do. They will not be much used explicitly
here, however, their application to constructing homotopy limits and colimits will be looked at in
detail later on.

The following also gives an indication of other uses. Some of the terminology has not been
explicitly explained, but the results do give an idea of the structure available.

Proposition 93 (cf. Kamps and Porter, [111]) If C is a locally Kan S-category tensored over S,
then, taking I×X := ∆[1]⊗̄X, we get a good cylinder functor such that for the cofibrations relative
to I and weak equivalences taken to be homotopy equivalences, the category C has a cofibration
category structure. �
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A cofibration category structure is just one of many variants of the abstract homotopy theory
structure introduced to be able to push through homotopy type arguments in particular settings.
There are variants of this result, due to Kamps, see references in [111], where C is both tensored
and cotensored over S and the conclusion is that C has a Quillen model category structure. The
examples of locally Kan S-categories include Top, and Kan, that is the full subcategory of S given
by the Kan complexes, also Grpd and Crs, but not Cat or S itself.

11.4 Nerves and Homotopy Coherent Nerves

Before we get going on this section, it will be a good idea to bring to the fore, as promised, the
definitions of weak Kan complex (or quasi-category). We first recall and repeat from the first
chapter, the notions of Kan fibration and Kan complex, as these are central to what follows and it
is convenient not to have to be flipping back and fore to the earlier discussion.

11.4.1 Kan and weak Kan complexes

As usual, we set ∆[n] = ∆(−, [n]) ∈ S, then for each i, 0 ≤ i ≤ n, we can form a subsimplicial set,
Λi[n], of ∆[n] by discarding the top dimensional n-simplex (given by the identity map on [n]) and
its ith face. We must also discard all the degeneracies of these simplices. This informal definition
does not give a ‘picture’ of what we have, so we will list the various cases for n = 2.

Λ0[2] = 1
←0th face missing

0

@@�������
// 2

Λ1[2] = 1

��>>>>>>>

0

@@�������
2

Λ2[2] = 1

��>>>>>>>

0 // 2

A map p : E → B is a Kan fibration if given any n, i, as above, and any (n, i)-horn in E, i.e., any
map f1 : Λi[n]→ E, and n-simplex, f0 : ∆[n]→ B, such that

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
// B

commutes, then there is an f : ∆[n] → E such that pf = f0 and f.inc = f1, i.e., f lifts f0 and
extends f1.

A simplicial set, K, is a Kan complex if the unique map K → ∆[0] is a Kan fibration. This
is equivalent to saying that every horn in K has a filler, i.e., any f1 : Λi[n] → K extends to an
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f : ∆[n]→ K. This condition looks to be purely of a geometric nature but in fact has an important
algebraic flavour; for instance, if f1 : Λ1[2]→ K is a horn, it consists of a diagram

b

��???????
a
??�������

of ‘composable’ arrows in K. If f is a filler, it looks like

b

��???????

c
//

a

f

??�������

and one can think of the third face c as a composite of a and b. This ‘composite’ c is not usually
uniquely defined by a and b, but is determined ‘up to homotopy’. If we write c = ab as a shorthand
then if g1 : Λ0[2]→ K is a horn, we think of g1 as being

d
??�������
e

//

and to find a filler is to find a diagram

x

?
?

?
?

d
??�������
e

//

and thus to ‘solve’ the equation dx = e for x in terms of d and e. It thus requires, in general,
some approximate inverse for d, in fact, taking e to be a degenerate 1-simplex puts one in exactly
such a position. Thus Kan complexes have a very weak ‘algebraic’ structure. There is a sort of
composition, up to homotopy, which is sort of associative, up to homotopy, and has sort of inverses,
yes, you guessed, up to homotopy.

In many useful cases, we do not always have inverses and so want to discard any requirement
that would imply they always exist. This leads to the weaker form of the Kan condition in which
in each dimension no requirement is made for the existence of fillers on horns that miss out the
zeroth or last faces. More exactly:

Definition: A simplicial set K is a weak Kan complex or quasi-category if for any n and
0 < k < n, any (n, k)-horn in K has a filler.

Remark: Joyal, [? ], uses the term inner horn for any (n, k)-horn in K with 0 < k < n. The
two remaining cases are then conveniently called outer horns.

11.4.2 Categorical nerves

As we saw in section 1.3.1, the categorical analogue of the singular complex is the nerve: if C is
a category, its nerve, Ner(C), is the simplicial set with Ner(C)n = Cat([n],C), where [n] is the
category associated to the finite ordinal [n] = {0 < 1 < . . . < n}. The face and degeneracy maps
are the obvious ones using the composition and identities in C.

The following is well known and easy to prove (i.e., left to you).
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Lemma 61 (i) Ner(C) is always weakly Kan.
(ii) Ner(C) is Kan if and only if C is a groupoid. �

Of course more is true. Not only does any inner horn in Ner(C) have a filler, it has exactly one
filler. To express this with maximum force, the following idea, often attributed to Graeme Segal or
to Grothendieck, is very useful.

Let p > 0, and consider the increasing maps, ei : [1]→ [p], given by ei(0) = i and ei(1) = i+ 1.
For any simplicial set, A, considered as a functor A : ∆op → Sets, we can evaluate A on these ei
and, noting that ei(1) = ei+1(0), we get a family of functions Ap → A1, which yield a cone diagram,
for instance, for p = 3:

A3

A(e1)

**UUUUUUUUUUUUUUUUUUUUUUUU

A(e2)

  BBBBBBBBBBBBBBBBBBB

A(e3)

��+
+++++++++++++++++++++

A1

d0
��

A1
d1 //

d0
��

A0

A1 d1
// A0

and in general, thus yield a map

δ[p] : Ap → A1 ×A0 A1 ×A0 . . .×A0 A1.

The maps, δ[p], have been called the Segal maps.

Lemma 62 If A = Ner(C) for some small category C, then for A, the Segal maps are bijections.

Proof: A simplex σ ∈ Ner(C)p corresponds uniquely to a composable p-chain of arrows in C, and
hence exactly to its image under the relevant Segal map. �

Better than this is true:

Proposition 94 If A is a simplicial set such that the Segal maps are bijections, then there is a
category structure on the directed graph,

A1
// // A0oo ,

making it a category whose nerve is isomorphic to the given A.

Proof: To get composition you use

A1 ×A0 A1
∼=→ A2

d1→ A1.

Associativity is given by A3. The other laws are easy, and illuminating, to check. �

The condition ‘Segal maps are a bijection’ is closely related to notions of ‘thinness’ as used
by Brown and Higgins in the study of crossed complexes and their relationship to ω-groupoids,
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(see, for instance, [41], and here in our discussion of T -complexes, starting on page 34), and it also
relates to Duskin’s ‘hypergroupoid’ condition, [65].

Another result that is sometimes useful is a refinement of the ‘groupoids give Kan complexes’
lemma, Lemma 1 on page 33. The proof is ‘the same’ and is equally left to the reader.

Lemma 63 Let A = Ner(C), the nerve of a category C.

(i) Any (n, 0)-horn

f : Λ0[n]→ A

for which f(01) is an isomorphism has a filler. Similarly any (n, n)-horn g : Λn[n]→ A for which
g(n− 1 n) is an isomorphism, has a filler.

(ii) Suppose f is a morphism in C with the property that, for any n, any (n, 0)-horn ϕ :
Λ0[n] → A having f in the (0, 1) position, has a filler, then f is an isomorphism. (Similarly with
(n, 0) replaced by (n, n) with the obvious changes.) �

Again the proof is not hard and reveals some neat arguments, so ... .

Remark: Joyal in [? ] suggested that the name ‘weak Kan complex’, as introduced by
Boardman and Vogt, [? ], could be changed to that of ‘quasi-category’ to stress the analogy
with categories per se as ‘Most concepts and results of category theory can be extended to quasi-
categories’, [? ].

It would have been nice to have explored Joyal’s work on quasi-categories more fully, e.g. [? ],
but that would take us too far from our central themes. The following few sections just skate the
surface of that theory.

11.4.3 Quasi-categories

Categories yield quasi-categories via the nerve construction as we have seen. Quasi-categories yield
categories by a ‘fundamental category’ construction that is left adjoint to nerve. This can be
constructed using the free category generated by the 1-skeleton of A, and then factoring out by a
congruence generated by the basic relations : gf ≡ h, one for each commuting 1-sphere (g, h, f)
in A. By a 1-sphere is meant a map a : ∂∆[2] → A, thus giving three faces, (a0, a1, a2), linked in
the obvious way. The 1-sphere is said to be commuting if there is a 2-simplex, b ∈ A2, such that
ai = dib for i = 0, 1, 2.

Definition: The fundamental category of a quasi-category, A, is the category with presentation:

• generators = the 1-skeleton of A,
and

• relations gf ≡ h as above.

This ‘fundamental category’ functor also has a very neat description due to Boardman and
Vogt. (The treatment here is, again, adapted from [? ].)

We assume given a quasi-category, A. Write gf ∼ h if (g, h, f) is a commuting 1-sphere. Let
x, y ∈ A0 and let A1(x, y) = {f ∈ A1 | x = d1f, y = d0f}. If f, g ∈ A1(x, y), then, suggestively
writing s0x = 1x,

Lemma 64 The four relations f1x ∼ g, g1x ∼ f , 1yf ∼ g and 1yg ∼ f are equivalent. �
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The proof is easy and is left as an exercise.

We will say f ' g if any of these is satisfied and call ', the homotopy relation. It is an
equivalence relation on A1(x, y). Set hoA1(x, y) = A1(x, y)/ '.

If f ∈ A1(x, y), g ∈ A1(y, z) and h ∈ A1(x, z), then the relation gf ∼ h induces a map:

hoA1(x, y)× hoA1(y, z)→ hoA1(x, z).

Proposition 95 The maps

hoA1(x, y)× hoA1(y, z)→ hoA1(x, z)

give a composition law for a category, hoA, the homotopy category of A. �

Definition: This category, hoA, is called the homotopy category of A.

Of course, hoA is the fundamental category of A up to natural isomorphism. From previous
comments we have:

Corollary 21 A quasi-category A is a Kan complex if and only if hoA is a groupoid. �

11.4.4 Homotopy coherent diagrams and homotopy coherent nerves

(The notion was explicitly introduced by Cordier, [? ], adapting ideas from Boardman and Vogt, [?
]. There is an overview of this theory in [? ] and a thorough introduction in [111]. The construction
of the homotopy coherent nerve is also used, extensively, by Lurie in [? ], and by Hinich, [? ].)

Before handling this topic, we quickly recall some of the intuition behind homotopy coherent
(h. c.) diagrams, as we saw a few pages back.

A diagram indexed by the small category, [2],

X(1)
X(12)

##GGGGGGGG

X(0)
X(02)

//

X(01)
;;wwwwwwww

X(2)

is h. c. if there is specified a homotopy

X(012) : I ×X(0)→ X(2),

X(012) : X(02) ' X(12)X(01).

For a diagram indexed by [3]: Draw a 3-simplex, marking the vertices X(0), . . . , X(3), the
edges X(ij), etc., the faces X(ijk), etc. The homotopies X(ijk) fit together to make the sides of
a square

X(13)X(01)
X(123)X(01)// X(23)X(12)X(01)

X(03)

X(013)

OO

X(023)
// X(23)X(02)

X(23)X(012)

OO
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and the diagram is made h. c. by specifying a second level homotopy

X(0123) : I2 ×X(0)→ X(3)

filling this square.

These can be continued for larger [n], as we have hinted.

We have seen that the ‘same’ diagrams occur when we draw what seems to be a reasonable
example of the intuitive form of homotopy coherent diagram in Top and in the S-categories, S(A).
This suggests the definition of a homotopy coherent diagram in an arbitrary S-category. This form
is due to Cordier, [? ], extending the earlier work of Boardman and Vogt.

Definition: Let A be a small category and B, an S-category.

(i) A homotopy coherent diagram of type A in B is a S-functor F : S(A)→ B.

(ii) If F0, F1 : S(A) → B are two such diagrams, a homotopy coherent map between them is a
diagram of type A× [1] agreeing with F0 on A× {0} and with F1 on A× {1}.

Of course, we refer to A as the template of the h.c. diagram, F .

We should pause to examine this notion of homotopy coherent map in more detail, via our low
dimensional examples, i.e., with A = [n] for small values of n.

For n = 0, this is unenlightening: F0, F1 : S[0] → B, so they are really just two objects of B,
and a h.c. map between them in then just a map between F0(0) and F1(0) in B.

For n = 1, it is already a much richer picture. This time, F0 and F1 pick out two maps in B,

namely Fi(0)
Fi(01)→ Fi(1) for i = 0, 1. A homotopy coherent map η : F0 → F1 is a h.c. diagram of

type [1]× [1], so is a square of form

F1(0) // F1(1)

F0(0)

OO 7777W_ ;;wwwwwwwww
7777 ��
// F0(1)

OO

and will specify η(i) : F0(i) → F1(i) for i = 0, 1, but also a diagonal map, which we will write
η1

0 : F0(0) → F1(1), then also we will have homotopies as shown from η1
0 to F1(01)η(0) and to

η(1)F0(01), respectively.

It is worthwhile pausing to note that, in this simplicial approach, there is an avoidance of
questions of directions of 2-cells (and higher order ones). Often when looking at diagrams showing
lax or pseudo morphisms between lax or pseudo functors, one or other of the directions is chosen,
e.g., here it might typically be η : η(1)F0(01) ⇒ F1(01)η(0). If we are in a ‘pseudo’ context, this
choice, although arbitrary, is somewhat immaterial as η will be invertible, but this need not be
the case for a lax morphism. Nothing dictates which direction is ‘better’ and both are present
in this simplicial approach. If someone gives you η : η(1)F0(01) ⇒ F1(01)η(0), you can take
η1

0 = η(1)F0(01) and set the bottom right homotopy to be the identity. Likewise if η is presented
in the reverse direction, just set the top left cell to be the identity two cell and use the given η in
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the bottom right. Some people do not like this as they prefer one choice or other, usually for a
good reason from the situation being handled, yet, simplicially, it is more or less required to have
the diagonal and the two 2-cells.

For n = 2, we have a prism, [2] × [1], and you have to specify η on three tetrahedra in this,
agreeing on the overlaps. Here is a possible notation and the beginnings of a detailed discussion
which can be extended to higher dimensions. (The rest is not hard, but does really involve
reader participation!)

(1, 0)

��2
222222222

))TTTTTTTTTTTTTTTTTTTTTTTTTTTT
// (1, 1)

��2
222222222

(0, 0)

<<yyyy

((RRRRRRRRR
// (0, 1)

<<yyyy

((RRRRRRRRR

(2, 0) // (2, 1)

We suggest a matrix notation. For this the use of column ‘vectors’ is preferable to rows, so (1,0)

becomes
(

1
0

)
as a vertex label; the edge from

(
1
0

)
to
(

1
1

)
is then clearly

(
1 1
0 1

)
; the shown

diagonal is
(

1 2
0 1

)
. (Two diagonals have been left out of the diagram.)

We mentioned three tetrahedra. These are

σ0 =
(

0 1 2 2
0 0 0 1

)
, σ1 =

(
0 1 1 2
0 0 1 1

)
, σ2 =

(
0 0 1 2
0 1 1 1

)
.

The first and second share a d2-face, namely
(

0 1 2
0 0 1

)
, whilst the second and third share a

d1-face, i.e.,
(

0 1 2
0 1 1

)
.

The comments above about ‘orientation’ or ‘direction’ are even more pertinent here. For each
tetrahedron, we have a copy of S[3], so in particular S[3](0, 3) is there 3 times. As S[3](0, 3) is a
square, ∆[1]2, we have 6 two simplices in S([2]× [1])((0, 0), (2, 1)). They fit together to give half a
hexagon:

//

���������
oo

��???????

??�������oo

ggOOOOOOOOOOOOO

WW/////////////

OO GG�������������

77ooooooooooooo //

__???????

Each subdivided segment is a square in disguise! (You get half a hexagon because the prism is
half of the cube [1]3, and S([1]3) is a barycentrically subdivided hexagon.) Of the six 2-simplices,
if you check their orientation half go anticlockwise, half go clockwise. Later in our discussion of
2-dimensional descent data, we will have a prismical diagram. In each rectangular side face, we
choose the convention as above, putting the ‘active’ face in one of the two 2-simplices. This means
three of the boundary arrows in the above will be set to be equalities. The diagram we will use
there is a commuting pentagon of 2-cells in a 2-category, and, of course, this can be derived from
the above by noting that in 2-categories, there are no 3-cells, so S([2] × [1])((0, 0), (2, 1)) will be
mapped to a category, something like B(F0(0), F1(2)), but that has no non-identity 2-cells, so the
2-simplices will be sent to identity homotopies. The other input is that 5 = 8− 3 (proof left to the
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reader - no calculators permitted - other than your fingers!!!) We will refer back to this when we
are looking at 2-dimensional descent. It permits us to see the phenomena there as being very much
akin to those with homotopy coherence.

This type of combinatorial analysis can be very useful when handling maps of homotopy coherent
diagrams and relating them to other descriptions (lax, pseudo , etc.) of the same situations. It
is not the only way of handling these ideas however, and the simplicial set of maps between two
S-functors, F,G : S(A)→ B, can be handled categorically as well. The basic intuition is, however,
very much the same, and the resulting problems are there, whichever way you approach this. Use of
more high powered categorical machinery, quasi-categories, etc. can make the theory much easier to
apply, but also then you need to keep in sight the basic intuitions and to see how the combinatorics
related to that is encoded in the machine you are using.

We mentioned ‘problems’ ... what are they?

In general, homotopy coherent maps, as defined here, need not compose, even when they might
be expected to. The problem is analogous to that of composing homotopies between simplicial
maps, that we met a short while ago. Unless the codomains are Kan complexes, there is no
guarantee that such homotopies can be composed. Even when they compose, of course, there will,
in general, be many composites. Those composites will be themselves homotopic and so on. Here
with homotopy coherent maps, provided that the ambient category, B, is locally weakly Kan, (i.e.,
is ‘quasi-category’-enriched), then they do compose, up to homotopy. The result is a sort of ‘A∞-
category’ structure, (see Batanin’s paper, [? ]), but also has a quasi-categorical description, which
we will meet shortly. One can also use Verity’s theory of complicial sets, [? ] and their weakened
form, [? ? ? ]. These are closely related to the simplicial T -complexes we saw in section 1.3.6.

The theory of homotopy coherence was initially developed explicitly by Vogt, [? ], following
methods introduced with Boardman, [? ], (see also the references in that source for other earlier
papers on the area), then Cordier, [? ], provided the simple S-category theory way of working with
h. c. diagrams and hence released an ‘arsenal’ of categorical tools for working with h. c. diagrams.
Some of that is worked out in the papers, [? ? ? ? ]. We illustrate this with some results taken
from those sources.

(i) If X : A → Top is a commutative diagram and we replace some of the X(a) by homotopy
equivalent Y (a) with specified homotopy equivalence data:

f(a) : X(a)→ Y (a), g(a) : Y (a)→ X(a)

H(a) : g(a)f(a) ' Id, K(a) : f(a)g(a) ' Id,

then we can combine these data into the construction of a h. c. diagram Y based on the objects
Y (a) and homotopy coherent maps

f : X → Y, g : Y → X, etc.,

making X and Y homotopy equivalent as h. c. diagrams. In other words, our earlier simple
examples can be handled for any indexing category. (This is ‘really’ a result about quasi-categories,
see [? ].)
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(ii) Vogt, [? ]. If A is a small category, there is a category Coh(A, T op) of h. c. diagrams and
homotopy classes of h. c. maps between them. Moreover there is an equivalence of categories

Coh(A, T op) '→ Ho(TopA)

where Ho(TopA) is obtained from the category of functors from A to Top bu inverting objectwise
homotopy equivalences.

This was extended replacing Top by a general locally Kan simplicially enriched complete cate-
gory, B, in [? ].

(iii) Cordier (1980), [? ]. Given A, a small category, then the S-category S(A) is such that a h.
c. diagram of type A in Top is given precisely by an S-functor

F : S(A)→ Top

This suggested the extension of h. c. diagrams to other contexts such as a general locally Kan
S-category, B, and suggests the definition of homotopy coherent diagram in a S-category and thus
a h. c. nerve of an S-category.

Definition: (Cordier (1980), [? ]) Given a simplicially enriched category B, the homotopy
coherent nerve of B, denoted Nerh.c.(B), is the simplicial ‘set’ with

Nerh.c.(B)n = S−Cat(S[n],B),

and with the induced face and degeneracy maps.

Remark on terminology: Cordier, [? ], initially used the term ‘homotopy coherent nerve’ for
the above as he was primarily interested in its use in that area although in his subsequent work with
Porter, [? ? ? ? ], the quasi-categorical and ∞-categorical aspects were often a priority. Lurie, [?
], has called this the simplicial nerve functor as his applications are not explicitly concerned with
homotopy coherence.

To understand simple h. c. diagrams and thus Nerh.c.(B), we will unpack the definition of
homotopy coherence.

The first thing to note is that, as we saw, for any n and 0 ≤ i < j ≤ n, S[n](i, j) ∼= ∆[1]j−i−1,
the (j− i− 1)-cube given by the product of j− i− 1 copies of ∆[1]. Thus we can reduce the higher
homotopy data to being just that, maps from higher dimensional cubes.

Next some notation:
Given simplicial maps

f1 : K1 → B(x, y),

f2 : K2 → B(y, z),

we will denote the composite

K1 ×K2 → B(x, y)× B(y, z)
c→ B(x, z)

just by f2.f1 or f2f1. (We already have seen this in the h. c. diagram above for A = [3].
X(123)X(01) is actually X(123)(I ×X(01)), whilst X(23)X(012) is exactly what it states.)

Suppose now that we have the h. c. diagram, F : S(A)→ B. This is an S-functor and so:
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• to each object a of A, it assigns an object F (a) of B;

• to each string of composable maps in A,

σ = (f0, . . . , fn)

starting at a and ending at b, it assigns a simplicial map

F (σ) : S(A)(0, n+ 1)→ B(F (a), F (b)),

that is, a higher homotopy

F (σ) : ∆[1]n → B(F (a), F (b)),

such that

• if f0 = id, F (σ) = F (∂0σ)(proj ×∆[1]n−1);

• if fi = id, 0 < i < n,

F (σ) = F (∂iσ).(Ii ×m× In−i),

where m : I2 → I is the multiplicative structure on I = ∆[1] induced by the ‘max’ function
on {0, 1};

• if fn = id, F (σ) = F (∂nσ);

• i F (σ)|(Ii−1 × {0} × In−i) = F (∂iσ), 1 ≤ i ≤ n− 1;

• i F (σ)|(Ii−1 × {1} × In−i) = F (σ′i).F (σi), where σi = (f0, . . . , fi−1) and σ′ = (fi, . . . , fn).

We have used ∂i here for the face operators in the nerve of A.

The specification of such a homotopy coherent diagram can be split into two parts:

(a) specification of certain homotopy coherent simplices, i.e., elements in Nerh.c.(B);
and

(b) specification, via a simplicial mapping from Ner(A) to Nerh.c.(B), of how these individual
parts (from (a)) of the diagram are glued together.

The second part of this is easy as it amounts to a simplicial map Ner(A)→ Nerh.c.(B), and so
we are left with the first part. The following theorem was proved by Cordier and Porter, [? ], but
many of the ideas for the proof were already in Boardman and Vogt’s lecture notes, like so much
else!

Theorem 28 ([? ]) If B is a locally Kan S-category, then Nerh.c.(B) is a quasi-category. �

It is not clear what happens if B is only locally weakly Kan, is Nerh.c.(B) then a quasi-category?
It is probably a known result, maybe even clear, but may not be in published form.
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The proof of the theorem is in the paper, [? ], and is not too complex. The essential feature
is that the very definition (unpacked version) of homotopy coherent diagram makes it clear that
parts of the data have to be composed together, (recall the composition of simplicial maps

f1 : K1 → B(x, y),

f2 : K2 → B(y, z),

above and how important that was in the unpacked definition).

We thus have that a homotopy coherent diagram ‘is’ a simplicial map, F : Ner(A)→ Nerh.c.(B),
and that Nerh.c.(B) is a quasi-category. Of course, the usual proof that, if X and Y are simplicial
sets, and Y is Kan, then S(X,Y ) is Kan as well, extends to having Y a quasi-category and the
result being a quasi-category. Earlier we referred to Coh(A,B) in connection with Vogt’s theorem.
The neat way of introducing this is as hoS(Ner(A), Nerh.c.(B)), the fundamental category of the
function quasi-category. In fact, this is essentially the way that Vogt first described it.

If A and B are both S-categories, and F : A → B is an S-functor, then clearly F induces a
simplicial map

Nerh.c.(F ) : Nerh.c.(A)→ Nerh.c.(B).

In other words Nerh.c. is a functor from S−Cat to S, ignoring any problems due to ‘size’ of the
categories involved. We will see later (Proposition 99 and the discussion around that result) that
there may be simplicial maps between Nerh.c.(A) and Nerh.c.(B) that do not come from S-functors.

As the category, S−Cat, of (small) S-categories and S-functors between them is cocomplete,
there is a left adjoint to this nerve functor in the usual way. The general picture of such adjoint
pairs induced by some ‘models’ here looks like this: we have S : ∆ → S−Cat and ∆ : ∆ → S,
the Yoneda embedding, and these induce the nerve and ‘realisation’ adjoint pair. (If you replace
S−Cat by Top you get the singular complex / geometric realisation adjoint pair, that you have
met earlier.) As the nerve functor has a left adjoint, it preserves limits and, in particular, products.

11.4.5 Simplicial coherence and models for homotopy types

Before we look at more direct applications of simplicially based homotopy coherence, there is a point
that is worth noting for the links with algebraic and categorical models for homotopy types. The
S-categories, S[n], contain a lot of the information needed for the construction of such models. A
good example of this is the interchange law and its links with Gray categories and Gray groupoids.

Consider S[4]. The important information is in the simplicial set S[4](0, 4). This is a 3-cube,
so is still reasonably easy to visualise. Here it is. The notation is not intended to be completely
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consistent with earlier uses, but is meant to be more or less self explanatory.

(01)(13)(34) // (01)(12)(23)(34)

(01)(14) //

77ppppppppppp
(01)(12)(24)

55kkkkkkkkkkkkkk

(03)(34) //

OO

(02)(23)(34)

OO

(04) //

77pppppppppppp

OO

(02)(24)

55kkkkkkkkkkkkkk

OO

This looks mysterious! A 4-simplex has 5 vertices, and hence 5 tetrahedral faces. Each of the 5
tetrahedral faces will contribute a square to the above diagram, yet a cube has 6 square faces!
Where does the ‘extra’ face come from? (Things get ‘worse’ in S[5](0, 5), which is a 4-cube, so has
8 cubes as its faces, but ∆[5] has only 6 faces.) Back to the ‘extra’ face, this is

(01)(12)(24)
(01)(12)(234)// (01)(12)(23)(34)

(02)(24)
(02)(234)

//

(012)(24)

OO

(012)(234)

(02)(23)(34).

(012)(23)(34)

OO

The arrow (012) : (02) → (01)(12) will, in a homotopy coherent diagram, make its appearence as
the homotopy,

X(012) : I ×X(0)→ X(2),

X(012) : X(02) ' X(12)X(01),

thus this square implies that the homotopies X(012) and X(234) interact minimally. Drawing
homotopies as 2-cells in the usual way, the square we have above is the interchange square and the
interchange law will hold in this system provided this square is, in some sense, commutative. In
models for homotopy n-types for n ≥ 3, these interchange squares give part of the pairing structure
between different levels of the model. They are there in, say, the Conduché model (2-crossed
modules, cf. Conduché, [54] and here, section 5.3.4) as the Peiffer lifting, and in the Loday model,
(crossed squares, cf. [120]), as the h-map. In a general dimension, n, there will be pairings like this
for any splitting of {0, 1, . . . , n} of the form {0.1. . . . , k} and {k, . . . , n}. These are related to the
Peiffer pairings that we have mentioned several times.

11.5 Useful examples

By the main title of this section, we intend to concentrate attention on the ways in which homotopy
coherence techniques clarify what is going on at certain points of the development of cohomology
and related areas. Mostly these are instances of more general results listed or mentioned earlier in
this chapter.
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11.5.1 G-spaces: discrete case

The first example concerns a G-space for G a discrete group. (For G a topological group, more
subtle arguments are needed although, as we will see later, the basic idea is the same.) We therefore
have a space, X, and an action

a : G×X → X, a(g, x) = g · x,

being a continuous map from the product to X satisfying some rules. We have considered such a
G-object in several different ways, and settings, not all of them ‘spatial’. One was to consider the
group, G, as a groupoid with a single object. This groupoid has usually been written G[1], with
the single object denoted by ∗ or similar. We then built a functor, X : G[1]→ Top, as follows:

• X(∗) = X;

• if g : ∗ → ∗ in G[1] and x ∈ X, then X(g) : X(∗) → X(∗) is simply X(g)(x) = g · x, and, of
course, X(g1g2) = X(g1)X(g2).

If we need another description of functors than merely elementwise, (which can be awkward for
categorification), it may help to replace the second part of the above by

X : G[1](∗, ∗)→ Top(X(∗),X(∗)),

as being the analogue of the usual : if F : A→ B, then, for any objects a1, a2 in A, there is a map

F : A(a1, a2)→ B(F (a1), F (a2)),

which has to satisfy some composition preservation rules (and some tightening up on notation,
since this F is really something like Fa1,a2 , and so on).

The point of this second description is two fold. We have, once unpacked from its notation, just
a function

G→ Top(X,X),

(and the codomain here is a monoid under composition of functions), which preserves multiplication
and identity. The image of this function is thus within Aut(X) ⊆ Top(X,X), the group of self
homeomorphisms of X, and so we get back to the other description of an action as a homomorphism,

G→ Aut(X).

(If G is a topological group and Top is Cartesian closed, then Aut(X) will be a topological group,
and a continuous action will correspond to a continuous homomorphism of the same form. If G is
a simplicial group and X is a simplicial set, we get back simplicial automorphisms and simplicial
actions as we looked at earlier (in section 6.3, starting on page 208, and the section following
that). Here, of course, G[1] is a simplicially enriched groupoid and the action yields an S-functor,
X : G[1]→ S, and so on. (You should play around with the different types of contexts to see what
works well and what less well.))

Each of these descriptions of G-actions is useful. Here we will take the description of a G-space
as

X : G[1]→ Top.
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(From now on, we drop the ‘blackboard’ font, X, for this and merely write X.) Now suppose
that we replace our space X by a homotopy equivalent one, Y , (along a homotopy equivalence,
(f : X → Y , f ′ : Y → X, H and K)), then we do not usually get a G-action on Y . (The situation
is, of course, essentially that which we examined in section 11.1, and it is worthwhile to see what
a ‘bare hands’ approach gives in this situation.)

The theoretical, general, results that we have quoted give us a homotopy coherent diagram

Y : S(G[1])→ Top,

where Top is the simplicial enrichment of Top.

Of course, there is nothing magical about Top here and we could have equally well have used
S or a general simplicially enriched category, B. (Of course, for some purposes, we would need for
B to be ‘locally Kan’ and / or for certain limits or colimits to exit, in order to get a neat theory
here.)

The points to retain from this are that S(G[1]) is almost the ‘free-group’ comonadic simplicial
resolution of G. It is a simplicial monoid, not a simplicial group however. We have deformed the
group action to a homotopy coherent action and this is done by replacing G by a free simplicial
resolution of G. (This is another instance of ‘cofibrant replacement’.)The role of Aut(X) is no
longer viable. We cannot use Aut(Y ) in its place because, if we have g ∈ G, then we have a
diagram

X
f //

X(g)
��

Y

Y (〈g〉)
���
�
�

X
f
// Y

and Y (〈g〉) = fX(g)f ′, at least according to the recipe that we found in our earlier analysis. We
cannot guarantee that Y (〈g〉) will be an ‘automorphism’ of Y . We do have X(g−1) : X → X,
but then our algorithm for constructing Y gives Y (〈g−1〉) = fX(g−1)f ′, so Y (〈g−1〉)Y (〈g〉) '
Y (〈1G〉) ' 1Y . We thus do have Y (〈g〉) is a self equivalence (auto-equivalence) of Y , in our case,
a self homotopy equivalence, but we could be in another context, e.g. Cat, and the same basic
argument would work.

This is not the end of the example. We have

Y : S(G[1])→ B,

but therefore we have a simplicial description of Y as

Y : Ner(G[1])→ Nerh.c.(B).

We know what Ner(G[1]) is. It is what we have denoted BG, the classifying space of G. (Unlike the
other contextfs where we have met it, however, it is the domain not the codomain of the relevant
map.)

That gives us an additional intuition on several themes that we have met earlier, but there are
others that are closely related where it is not so clear how it might help.
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11.5.2 Lax and Op-lax functors and nerves for 2-categories

As we have mentioned lax functors several times informally, we should probably give a more formal
definition, especially as the basic idea is clearly closely related to homotopy coherence in some
‘intuitive’ way.

Our earlier discussion, for instance in section 9.1.3, related to a ‘functor-like’ mapping from a
category, A, into a 2-category, usually the 2-category Cat. We will give, below, a more general
definition for when we have a 2-category, A, as domain and a general 2-category, B, as codomain
for our generalised functor. To be able to relate back to the earlier case, it is useful to have some
terminology to handle that situation.

Definition: Suppose A is a 2-category. We say that it is a locally discrete 2-category or is
locally 2-discrete if, for each pair of objects, A0, A1 in A, the category A(A0, A1) is a discrete
category, (i.e., really just a set, so A has no non-identity 2-cells).

This will, thus, allow us to think of an ordinary category as being a 2-category, and it gives an
embedding of Cat into 2−Cat. We will shortly be considering a 2-category as an S-category (as on
page 424). We also will use such phrases as ‘since A has no non-identity 2-cells’ to indicate that
we are considering A as a locally discrete 2-category, without making a fuss about it or denoting
that version of A by some changed symbol. The natural tendency is then to extend this to saying
that a 2-category, A, ‘has no non-identity 3-cells’, although we have not considered 3-categories at
all as yet.

If the 2-category is a locally discrete one, then, naturally, the resulting S-category is a locally
discrete S-category, as well.

Suppose now that A and B are both 2-categories.

Definition: A lax functor, F = (F, c) : A → B, assigns

• to each object A of A, an object, F (A), of B;

• to each pair of objects, A0, A1, of A, a functor,

F : A(A0, A1)→ B(FA0, FA1);

• to each composable pair of 1-cells / morphisms, (f, g) of A, a 2-cell,

cf,g : F (g)F (f)⇒ F (gf),

depending naturally on f and g, and to each object A of A, a 2-cell, cA : idFA ⇒ F (idA),

such that the coherence conditions, below, are satisfied:

• for any composable triple, (f, g, h), of 1-cells / morphisms of A, the diagram

F (hg)F (f)
cf,hg +3 F (hgf)

F (h)F (g)F (f)

cg,h◦F (f)

KS

F (h)◦cf,g
+3 F (h)F (gf)

cgf,h

KS

commutes;
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• for any 1-cell, f ∈ A(A0, A1), the diagrams

F (f)F (idA0)
cf,idA0 +3 F (f ◦ idA0) = F (f)

F (f) = F (f) ◦ idF (A0)

F (f)cA0

KS iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii

and similarly for idA1 on the other side, commute.

Remarks: (i) Of course, any 2-functor corresponds to a set of data as here, but with each
F (g)F (f) = F (gf) and all the cf,gs being the relevant identities.

(ii) In some case, for each A, cA is the identity map, i.e., the lax functor F preserves identities.
In this case the terminology ‘normal lax functor is often used. This is consistent with the use of
‘normalised’ when referring to constructions such as the bar resolution. Most of the lax functors
that we will meet will be ‘normal’.

(iii) A quick look forward a few pages to page ?? and the definition of (lax) monoidal functor
should convince you that the two ideas are closely related. Any 2-category is a ‘strict’ bicategory
and any monoidal category ‘is’ a bicategory having just a single object, so bicategories (also called
weak 2-categories) are a common generalisation of both 2-categories and monoidal categories. That
being the case, there is a generalisation of lax functor, as defined above, to one, F : A → B, in
which A and B can be bicategories. (The formulation is left to you for later, when you have seen
the definition of lax monoidal functor. It needs some more precision on the notion of bicategory so
as to introduce notation for the ‘associator’ 2-cell, and the left and right unit 2-cells, and then a
little thought on how to adapt ‘lax monoidal functor’ to ‘lax functor’ in that more general sense.)

(iv) The notion of pseudo-functor between 2-categories or, more generally, between bicategories
is, as was said earlier, the special case of a lax functor in which the two types of 2-cell, both the
cf,g and the cA, are invertible.

(v) Of importance below will be the notion of an ‘op-lax functor’, F : A → B, in which the
arrow of the 2-cells is reversed, so cf,g : F (gf)⇒ F (g)F (f), etc. This can be accommodated within
the system of theory of lax functors by the simple device of forming, from a 2-category, B (or more
generally), a new 2-category, B(2op), with each B(2op)(A,B) = B(A,B)op, so reversing the direction
of the 2-cells (and hence the notation: ‘(2op)’ = ‘opposite on 2-cells’). With this, an op-lax functor,
F : A → B, is just a lax functor F (2op) : A(2op) → B(2op). Of course, if A is locally discrete, and,
thus, has no non-identity 2-cells, then . . . , enough said (provided that F is normal)! Similarly, if
F is a pseudo-functor, then it is both lax and op-lax, or, more precisely, it determines both a lax
and an op-lax functor.

Examples: We have already seen some examples of lax, op-lax or pseudo functors, so will not
give more here, except, of course the following. We cannot resist it.

Any crossed module gives rise to a 2-category, in fact a 2-group(oid), so it is natural, in the
context of our discussion, to look at pseudo-functors between these 2-categories. (Why not ‘lax’ or
‘op-lax’, ..., simply that all 2-cells in these 2-categories will be invertible, so the other notions all
essentially reduce to ‘pseudo’, with adjustment being made for the order of composition, etc.) We
will examine in some detail what the resulting ‘weak morphisms’ of crossed modules look like a bit
later, but would suggest that examination of the idea now and by you would at the same time
prepare the way for that later discussion and give you some experience of handling these ideas if
you have not met them in detail before.



448 CHAPTER 11. HOMOTOPY COHERENCE AND ENRICHED CATEGORIES.

Given all this about lax/op-lax and pseudo-functors, how does this relate to homotopy coher-
ence? To examine this, let us look at homotopy coherent diagrams in a 2-category. We noted
earlier (page 424) that any 2-category, C, could be considered as an S-category, C∆. (We should
note in passing that, as each C(A,B) is a category, C∆(A,B), which is just the nerve of C(A,B),
will not usually be a Kan complex, but will always be a weak Kan complex / quasi-category.)

Suppose A is a category and B a 2-category (which we will consider as an S-category, B∆, in
the above way, but will not write the suffix most of the time). Let F : S(A)→ B∆ be a S-functor,
and thus a homotopy coherent diagram of type A in B. We have F gives:

• to each object A of A, an object F (A) of B;

• to each pair of objects, A0, A1, and each f : A) → A1, a morphism / 1-cell, F (f) : F (A0)→
F (A1);

• to each composable pair (f, g) in A, . . . , what?

A composable pair like this corresponds to a 2-simplex

g

��???????
f
??�������
gf

//

in the nerve of A, so to a functor, p(f, g)q : [2]→ A, which will induce S(p(f, g)q) : S[2]→ S(A),
and, composing that with F gives

F (g)

��???????
F (f)

??�������
F (gf)

//

with a 2-cell, cf,g : F (gf) ⇒ F (g)F (f). This looks like it is the data for an op-lax functor.
We need to check dimension 3, and a composable triple, (f, g, h), gives a diagram [3] → A,
and hence a tetrahedral diagram in B, when mapped by F :

S[3]→ S(A)→ B.

This diagram ‘really lives’ in the category B(F (A0), F (A3)), where A0
f→ A1

g→ A2
h→ A3,

and is a square
F (h)F (gf) +3 F (h)F (g)F (f)

F (hgf)

KS 2:mmmmmmmmmmmm

mmmmmmmmmmmm
+3 F (hg)F (f)

KS

with a diagonal, and, as there are no non-trivial 3-cells in B, there are no non-trivial 2-
simplices in B(F (A0), F (A3)) (either thought of as a category or as the associated simplicial
set). As a result, we can conclude that the square commutes.
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We thus have that a h. c. functor, F : A→ B∆, reverting to the full notation, is exactly the same
as a normal op-lax functor from A, considered as a locally discrete 2-category, to B.

We can note also that this gives a way of defining a nerve for a 2-category.

Definition: If B is a 2-category, we define its nerve to be Nerh.c.(B∆). We will write it Ner(B).

This nerve functor has been studied by Blanco, Bullejos, and Faro, [? ] and by Bullejos and
Cegarra, [? ] and is a specialisation of Duskin’s nerve of a bi-category, [68]. Other work on this
includes Gurski, [? ], who links the construction with Verity’s complicial sets, which we mentioned
earlier. Here we will explore its properties and applications a bit more. This nerve, and also that
extension of it to bicategories, is sometimes called the Duskin nerve of the 2-category or sometimes
its geometric nerve.

Of course, if B is locally discrete, i.e., is a category masquerading as a 2-category, then Ner(B)
is just the nerve of that category.

In general, the vertices of Ner(B) are the objects of B, whilst the 1-simplices are the morphisms.
The two simplices are diagrams of the form

.

  AAAAAAA

. //

>>}}}}}}}
� �� �KS

.

and the 3-simplices correspond to tetrahedra with one of these 2-simplices in each face, hence
together satisfying a cocycle condition. Above that dimension, as we will see, things are determined
by their 3-skeletons.

Remarks: We could derive at least two other nerves from this construction, both of which give
useful information on B.

(i) We could define a nerve using lax rather than op-lax functors from the various [n] to B. In
this case, the basic 2-simplex would look like

.

  AAAAAAA

. //

>>}}}}}}}

�� ��
��

.

This variant does need mentioning, but its detailed treatment will not differ greatly from that of
the geometric nerve, since it is Ner(B(2op)). If we need it, we can write it in that form or introduce
as a shorthand, Nerlax(B).

(ii) We could also restrict attention to a ‘pseudo’-version of this geometric nerve, in which the
2-cell is specified to be invertible:

.

  AAAAAAA

. //

>>}}}}}}}
� �� �KS ∼=

.

This is related to the 2-nerve of a bicategory as considered by Lack and Paoli, [? ]. We will not need
to use this explicitly as the nearest we get to it has B a 2-groupoid - so all its 2-cells are invertible.
It is important, however, to note that passing between Nerlax(B) and Nerlax(B), one does not get
an isomorphic simplicial set. This pheomenon can already be seen for nerves of groupoids. If you
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take, say, a 2-simplex in the nerve of a groupoid and then form the corresponding 2-simplex with
the inverses you get the conjugate 2-simplex and this is not giving an automorphism of the nerve
as it is incompatible with the face maps.

What sort of properties does this geometric nerve functor have? What should we intuitively
expect, so some idea could guide our investigations?

For a small category C, Ner(C) has some very interesting and useful properties, (see the
discussion around about page 433). We pick out that, if we have a k-simplex, σ in Ner(C) with
k > 1, then σ is completely determined by its 1-skeleton. Its 1-skeleton encodes not only that
the various edges fit together, but each triangular face of σ records the fact that the d1-face is the
composite of the other two. We saw this in section 11.4.2. We can formalise this in other terms
using the terminology of an earlier section, 5.1.2 (especially page 156). For any k > 2, and in any
diagram

∂∆[k] //

��

Ner(C)

∆[k]

::t
t

t
t

t

there is a unique choice of dotted arrow. Remember that this is referred to as follows:

Lemma 65 For any small category, C, Ner(C) is a 2-coskeletal simplicial set.

Proof: Suppose that we have the shell, x = (x0, x1, x2, x3) of a possible 3-simplex, i.e.,

x : ∂∆[3]→ Ner(C),

then we have the individual ‘faces’, xi that fit together correctly. For instance, x3 is the ‘face
missing out 3’, i.e.,

x(1)
x(12)

""EEEEEEEE

x(0)

x(01)
<<yyyyyyyy

x(02)
// x(2)

and, as this is in Ner(C), this means x(02) = x(12)x(01), and so on. We thus have

x(03) = x(23)x(02) = x(23)x(12)x(01).

The only 3-simplex that will work is, of course, σ := (x(01), x(12), x(23)) and so, in the diagram

∂∆[3]
x //

��

Ner(C)

∆[3]

σ

::t
t

t
t

t

this σ works and is the only choice. Of course, the same is true in higher dimension replacing 3 by
k. (You are left to prove the general form of this, e.g. by induction or directly.) �

What about Ner(C), when C is a 2-category? We might guess the following:
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Proposition 96 For any (small) 2-category, C, Ner(C) is a 3-coskeletal simplicial set.

Proof: We assume given x = (x0, x1, x2, x3, x4), the shell of a potential 4-simplex, and hence

∂∆[4]
x //

��

Ner(C)

∆[4]

?σ

::t
t

t
t

t

and try to see how to build the dotted arrow, σ, so xi = diσ for each of the indices, i. The simplest
way to do this is to see what makes up such a σ. It is a h.c. diagram of type [4] in C corresponding,
therefore, to an S-functor,

σ : S[4]→ C,

and we discussed S[4] in section 11.4.5. The key diagram is a cube in the category, C(x(0), x(4)).
That cube needs to commute as there are no non-identity 2-cells in C(x(0), x(4)). We saw (again
in section 11.4.5) that, of the 6 faces of this cube, 5 come from the 5 faces of the 4-simplex, hence,
if σ is to complete the diagram, these 5 faces must coincide with those specified by the xi for
i = 0, 1, . . . , 4. In other words, we have, within x, the information on all but one face of that cube.
Each of those faces is commutative as it comes from a xi : S[3]→ C. What about the ‘extra face’?
This is (using the same sort of notation as before):

x(34)x(23)x(02)
x(34)x(23)x(012)+3 x(34)x(23)x(12)x(01)

x(24)x(02)

x(234)x(02)

KS

x(24)x(012)
+3 x(24)x(12)x(01)

x(234)x(12)x(01)

KS

but the commutativity of such a diagram, in general, is equivalent to the interchange law holding
in C:

.

x(02)

##

x(12)x(01)

;;
�� ��
�� x(012) .

x(24)

##

x(34)x(23)

;;
�� ��
�� x(234) . ,

which, of course, it does.

It follows that, given x, we already have all the information needed to specify a unique σ, which
completes the proof. �

The following could have been mentioned much earlier, but was not needed until now:

Proposition 97 The nerve functor,

Ner : Cat→ S,

is full and faithful.
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Proof: The ‘reason’ for this result is that all the information on a (small) category, C, is contained
in the first few levels of its nerve, Ner(C). The objects are the vertices and thus form Ner(C)0;
the 1-simplices are simply the arrows, so levels 0 and 1 give, together with the face maps and
degeneracies, the basic combinatorial structure of C. For the composition, one uses Ner(C)2, of
course, and the fact the Ner(C) is 2-coskeletal.

That is the ‘reason’, now for the proof!
We have to examine the function

Ner(C)C,D : Cat(C,D)→ S(Ner(C), Ner(D)),

for C, D arbitrary small categories. (Check back for ‘full’ and ‘faithful’ on page 367 if you have
forgotten their meanings.)

This is largely a question of routine checking. If f : Ner(C) → Ner(D) is a simplicial map,
then f0 is an assignment

f0 : Ob(C)→ Ob(D)

and
f1 : Arr(C)→ Arr(D)

compatibly with source and target maps, so f has the combinatorial structure necessary for a
functor. Compatibility with composition is a consequence of f2 and its compatibility with the face
maps. Preservation of identities is obvious, and f defines a functor from

F : C→ D

from which, on applying Ner, we get back f itself. We thus have that Ner(C)C,D is surjective. In
fact, better than that, we have constructed an inverse for it, so it is bijective. (Of course, there are
some minor checks to do, but these are straight forward.) �

This says that, in many ways, Cat behaves like a subcategory of S and this is one of the intuitions
that fit well with our categorification process. It motivates quasi-categories and complicial sets,
both models for certain classes of weak infinity categories and weak infinity categories are one way
of trying to understand cohomology in the general non-Abelian setting.

What about 2-categories? Is the nerve from 2−Cat to S full and faithful? In some ways, we
should not expect it to be. It is defined using lax / homotopy coherent functors, so we should expect
it to reflect that somewhere. There is also a less explicit reason for suspecting that it would not be
full and faithful. It ‘feels’ as if 2−Cat is not a complete ‘categorification’ of Cat. Categorification’
certainly involves replacing sets by categories, functions by functors, etc., as in the passage from
Cat to 2−Cat, but also involves weakening ‘equality’ to ‘equivalence’. Composition and identities
should become weakened, so bicategories form a fuller categorification of Cat than do 2-categories.
Duskin, [68], has given a generalisation of the nerve to bicategories, and this has been pushed
further by Lack and Paoli, [? ]. We will not go that far. (Further material can be found in the
articles [25? ? ].)

This suggests, perhaps, that we look at Ner from the point of view of lax / op-lax / pseudo
functors.

First recall that a normal op-lax functor, F : A → B is an op-lax functor that preserves the
identities.
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Lemma 66 A normal op-lax functor, F : A → B, between 2-categories, induces a simplicial
mapping, Ner(F) : Ner(A)→ Ner(B).

Proof: We will give this ‘as is’, i.e., without that much reflection on what makes it work. That we
will return to afterwards.

We write F = (F, c), as above, where F is the assignment on objects, and also denotes, some-
times with suffices, as in FA0,A1 , the functor between the relevant hom-categories, whilst c assigns
2-cells to composable pairs.

As a lax functor is neatly defined on objects and arrows, there is no problem in defining Ner(F)i
for i = 0 and 1. Moreover, as Ner(A) and Ner(B) are 3-coskeletal, if we can define Ner(F) in
dimension 2, then it can be automatically generated in higher dimensions, since, for k ≥ 3, any
k-simplex in Ner(B) is determined by its 2-skeleton. We thus have to concentrate on dimension 2.

A 2-simplex, σ, in Ner(A) consists of a 4-tuple σ = (σ(12), σ(02), σ(01);σ(012)), that is, of
three arrows in C fitting together in a triangle, together with a 2-cell filling that triangle:

A1

σ(12)

  BBBBBBBB

A0
σ(02)

//

σ(01)
>>||||||||

� �� �KS

A2

with σ(012) : σ(02) ⇒ σ(12)σ(01) in A(A0, A2). The op-lax functor F assigns to the composable
pair, (σ(01), σ(12)), a 2-cell

cσ(01),σ(12) : F (σ(01)σ(12))⇒ F (σ(01))F (σ(12)),

and also a functor,
F02 : A(A0, A2)→ B(F (A0), F (A2)),

which, consequently, gives

F (σ(012)) : F (σ(02))⇒ F (σ(12)σ(01))

These fit together as follows:

F (A1)
F (σ(12))

$$IIIIIIIII

F (A0)

F (σ(01))
::uuuuuuuuu ++

F (σ(02))

33

� �� �KS

� �� �KS F (A2)

We look at the composite 2-cell and, of course, it forms, with the other data, a 2-simplex that we
take as Ner(F)(σ). More formally

Ner(F)(σ) = (F (σ(12)), F (σ(02)), F (σ(01));α),

where α = cσ(01),σ(12)]1F (σ(012)).
It is clear that this satisfies the requirements for the face maps of the nerves and the degeneracy

maps work as well, since F is assumed to be a normal op-lax functor. �
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Because of this, it is clear that, considered as a functor defined on the category, 2−Cat, of
2-categories and (strict) 2-functors, Ner cannot be full, but suppose we define a new category
2−Catop−lax with the same objects, but with the normal op-lax functors as the morphisms between
them. The above lemma shows that Ner extends to a functor, Ner : 2−Catop−lax → S. Is this
full and faithful?

Let us examine a simplicial map f : Ner(A) → Ner(B). Can we construct an op-lax func-
tor from it? We certainly have an assignment, F , on objects and on 1-cells, given by f0 and
f1 respectively. For any pair, x(01) : A0 → A1, x(12) : A1 → A2, we have a composite
x(02) := x(12)x(01) and the identity 2-cell, id : x(02) ⇒ x(12)x(01), written in that way for
convenience. This gives a 2-simplex, (x(12), x(02), x(01); id) ∈ Ner(A)2 and hence a 2-simplex,
f2(x(12), x(02), x(01); id) ∈ Ner(B)2. We know, since f2 is compatible with face maps, that this
2-simplex has the form (f1x(12), f1x(02), f1x(01); y) ∈ Ner(A)2, where y is some 2-cell,

y : f1x(02)⇒ f1x(12)f1x(01),

and so it is sensible to take F = (F, c), as suggested above, where, abusing notation slightly,
F (A) = f0(A),

FA0,A1 : A(A0, A1)→ B(FA0, FA1)

is defined on objects by f1, i.e., F (x) = f1(A0
x→ A1), (but we still need F on 2-cells or, if you

prefer, on the arrows in the A(A0, A1)), and

cx(01),x(12) = y,

as in the 2-simplex above.
We are, thus, left to define the FA0,A1 on the 2-cells and to check that they give a functor, etc.
Suppose

A0

t(α)

((

s(α)

66� �� �KS
α A1 ,

is a 2-cell of A, then

A1

BBBBBBBB

BBBBBBBB

A0
s(α)

//

t(α)
>>||||||||

� �� �KS
α

A1

is a 2-simplex, σ = (id, s(α), t(α);α), of Ner(A) and we get f2(σ) = (id, f1s(α), f1t(α);F (α)),
defining F (α). (Note we are using that f is compatible with degeneracies here, and can deduce the
resulting op-lax functor is going to be a normal one, i.e., identity preserving.)

We have to check that, thus defined, FA0,A1 : A(A0, A1) → B(FA0, FA1) is a functor. We
suppose that we have composable two cells

A0
//
$$� �� �KS

β

::� �� �KS
α

A1 ,
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and have to compare F (βα) with F (β)F (α). To do this, we construct a 3-simplex in Ner(A) that
we will call τ , with faces:

d0τ = (idA1 , idA1 , idA1 ; id)

d1τ = (idA1 , s(α), t(α);α)

d2τ = (idA1 , s(α), t(β);βα)

d3τ = (idA1 , s(β), t(β);β)

which, thus, fit together, diagrammatically, as:

odd numbered faces

1
= // 2

=

��
0

t(β)

OO ??����������������

s(α)
//

@@@@\d
β

� �� �KS
α

3

even numbered faces:

1

=

��>>>>>>>>>>>>>>>>
= // 2

=

��
0

t(β)

OO

s(α)
//

� �� �KS
βα

3

As Ner(A) is 3-coskeletal, (or, alternatively, because A has no non-trivial 3-cells!), this determines
a 3-simplex, τ , as promised. Now we map this across to Ner(B) and we get

F (βα) = F (β)F (α),

as expected. In other words, FA0,A1 is a functor.

The obvious question to ask now is whether or not Ner(F) gives us back f . The way F was
constructed on objects and at the object level of each FA0,A1 gives back f0 and f1 fairly obviously,
so the crucial examination will be in dimension 2, ‘3-coskeletal-ness’ handling higher dimensions.

Suppose σ = (σ(12), σ(02), σ(01);α) is in Ner(A). Consider the 3-simplex, that we will denote
by τ , having faces

d0τ = (σ(12), σ(12)σ(01), σ(01); id)

d1τ = (id, σ(02), σ(12)σ(01);α)

d2τ = s1d0σ = (σ(12), σ(12), id; id)

d3τ = (σ(12), σ(02), σ(01);α) = σ,

(do check that this is a 3-simplex of Ner(A)). Map it over to Ner(B) using f . The resulting
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f(τ) has

d0fτ = (f1(σ(12)), f1(σ(12)σ(01)), f1(σ(01)); c)

d1fτ = (id, f1(σ(02)), f1(σ(12)σ(01));F (α))

d2fτ = s1d0f(σ) = (f1(σ(12)), f1(σ(12)), id; id)

d3fτ = (f1(σ(12)), f1(σ(02)), f1(σ(01));F (α))α) = f2(σ).

Here the first use of F (α), as the 2-cell of d1f(τ), is ‘by definition’, whilst its occurrence as the
2-cell of d3fτ is deduction from the fact that f(τ) is a 3-simplex of Ner(B). We have proved (bar
invoking the 3-skeletal nature of the nerves, so as to complete the final check) that

Proposition 98 Given any simplicial map f : Ner(A)→ Ner(B), there is a normal op-lax functor
F : A → B for which Ner(F) = f . �

In fact, as the data for F is uniquely determined by that for f , and conversely, we have the
more detailed statement:

Proposition 99 The nerve construction gives a full and faithful functor

Ner : 2−Catop−lax → S.

�

This only addresses the basic level of information. In S, we have a lot of extra ‘layers’ of
structure, homotopies, homotopies between homotopies, etc., as S is an S-enriched category. The
category 2−Cat is also S-enriched, as we have been using for some pages now, so what about
2−Catop−lax? Are there analogues of natural transformations here, as there certainly are in 2−Cat
itself? What are those analogues in this op-lax context? Do they behave nicely with respect to
this nerve construction? (Recall that with Cat, natural transformations correspond to homotopies
under Ner, so that seems a good question to ask in this wider context.) We need a definition of
a (normal) lax transformation suitable for this setting. (We adapt this from Blanco, Bullejos and
Faro, [25], as their treatment is explicitly linked to cohomological applications.)

Definition: Given two normal op-lax functors, F1,F2 : A → B, with Fi = (Fi, ci) for i = 1, 2,
a (op)-lax transformation, or (op)-lax natural transformation, from F1 to F2 is a pair, α = (α, τ),
where

(i) α assigns to each object A of A, an arrow

αA : F1A→ F2A

in B;
and

(ii) τ assigns to each pair of objects, (A0, A1) of A, a natural transformation between functors
from A(A0, A1) to B(F1A0, F2A1), whose value at a 1-cell, f : A0 → A1, (which is, thus, an object
of the category A(A0, A1)), is a 2-cell, τf , in B,

τf : αA1F1(f)⇒ F2(f)αA0 ,
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(so the diagram

F1(A0)
αA0 //

F1(f)
��






AIτf

F2(A0)

F2(f)

��
F1(A1) αA1

// F2(A1)

is filled by τf ) such that, if η : f ⇒ g is an arrow in A(A0, A1),

(F2(η)]0αA0)]1τf = τg]1(αA1]0F1(η)),

(corresponding to a diagram of the form

αA0

��

$$::� �� �KS
F1(η)

αA1

��$$::� �� �KS
F2(η)

the two sides of the equation being the base and the front sides, and the top and the back, respec-
tively).

These data are to satisfy:
1. τ1A = idαA (a normalisation condition);
and
2. coherence with the structure maps, ci, of Fi, for i = 1, 2. (This is specified by a prismatic

diagram: for given A0
f→ A1

g→ A2, we get something like

��)
)))))) //

��)
))))))EE���

""DDDDD //

EE���

""DDDDD

//

with c1;f,g and c2;f,g on th left and right ends respectively and τf , τg and τgf on the three rectangular
faces. You are left to label the diagram yourself and thus to represent this equationally
if you wish, or need, to.)

It is often convenient, since ‘op-lax natural transformation’ is a bit of a mouthful, to called such
a thing simply a deformation, (see the use in [? ], for instance).

These lax natural transformations compose in a fairly obvious way, using a simple composition
on the αA-parts, and a composition of the τf -parts obtained by juxtaposing the resulting squares
and 2-cells. This leads to a category, OpLax(A,B), of normal op-lax functors from A to B, and
normal lax transformations between them. This leads to:

Proposition 100 From the category 2−Catop−lax, and on further enriching with lax transforma-
tions, we get a 2-category. �
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The details should be more or less clear to you, so are left to you to complete.

Remarks about ‘pseudo’ and the direction of τ : (i) There is a choice that is made when
defining lax natural transformation above. The natural transformation τf ‘measues’ the extent
to which the naturality square, determined by the αs, F1(f) and F2(f), does not commute, but
why did it go from αA1F1(f) to F2(f)αA2 , and not the other way around. The direction is a
‘convention’. It is the ‘default choice’ and why that choice was made is probably ‘lost in time’ !
The opposite choice works just as well, but often in the sort of examples we consider, the choice is
almost completely immaterial as the τf are all invertible. This happens when B is a 2-groupoid,
rather than just a 2-category, and we will see examples in which that is the case shortly.

(ii) If one takes the definition and strengthens it by requiring that each τf be invertible, then
we get a version of the definition of a normalised pseudo-natural transformation. The case of this
where A is locally discrete (i.e., is just a category) is considered in Borceux and Janelidze, [26]. Of
course, if B is a 2-groupoid, every deformation will be a pseudo-natural transformation, however it
is still important to have a direction on the 2-cells, even though they are all invertible.

As we have said earlier, functors, which have a natural transformation between them, induce
homotopic simplicial maps under the nerve functor. The natural transformation data gives the
data for the homotopy. We want to see if anything similar happens with op-lax functors and
deformations.

By way of a ‘warm-up’, we will first look at the 1-categorical case. Suppose α : F0 ⇒ F1 :
A → B is a natural transformation between functors from A to B, then we have simplicial maps,
fi = Ner(Fi) : Ner(A)→ Ner(B), and want to construct a homotopy,

h : Ner(A)×∆[1]→ Ner(B) h : f0 ' f1,

(using α). Of course, α gives us a family {αA} of 1-simplices of Ner(B), so we can use that to
define the map, h, that we want on 〈a1〉 ×∆[1], for a 1-simplex (a1 : A0 → A1) of Ner(A), by the
diagram:

f1(a1) //

αA0

OO ??����������������
f0(a1)

//

αA1

OO

which commutes (since α is natural), so causes no difficulty on defining the diagonal. For an n-

simplex, σ = (A0
a1→ A1 → . . .

an→ An) in Ner(A)n, we just repeat that recipe on each edge, getting
a commutative prism, and defining h on σ × ∆[1]. Clearly this works, although we have left out
the detailed formulae.

Now replace A and B by two 2-categories, F0 and F1 by op-lax functors, and α by an op-lax
natural transformation. Much of the construction looks as if it works, with some modification. If
we write α = (α, τ) : F0 = (F0, c0) ⇒ F1 = (F1, c1) : A → B, and then put fi = Ner(Fi), we can
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adapt the diagram for h on 〈a1〉 ×∆[1] (with the same notation as above) to be

f1(a1) //

αA0

OO ??����������������
f0(α1)

//

????[c
τa1

??????

αA1

OO

With that basic change, it is reasonably routine (i.e., a bit of intuition, plus a lot of checking!) to
construct h as a homotopy defined on the 1-skeleton of Ner(A). Given the coskeletal propertes of
Ner(B), we have to work out how to give h on Ner(A)2, i.e., on the ‘cylindrical’ prisms of form
(σ(12), σ(02), σ(01);σ(12)) × ∆[1]. (This is left to you, but first glance - in fact, stare, - at the
diagram for naturality with respect to 2-cells and the coherence diagram for condition 2 of the
definition of op-lax natural transformation.) Once you have done the work, you will have a proof
of the following:

Proposition 101 (see Blanco, Bullejos, Faro, [? ]) Let F0,F1 : A → B be two normal op-lax
functors between 2-categories. Every deformation, α : F0 ⇒ F1, induces a homotopy, h = Ner(α) :
Ner(F0)⇒ Ner(F1). �

Note: due to a difference in conventions, the above reference states the direction of h to be
reversed.

It is clear that, as the construction of h leads to one of the two 2-cells in each of the above
diagrams being an equality, and as not every simplicial homotopy between maps from Ner(A) to
Ner(B) would have that form, not all such homotopies can be realised by deformations. However, if
we are working with ‘pseudo’ rather than merely ‘lax’ situations, for instance, if B is a 2-groupoid,
then, in any such square,

f1(a1) //

αA0

OO ??����������������
f0(α1)

//

????[c
τ1

???? �#
τ2

αA1

OO

we have that τ2 is an invertible 2-cell, so we can build a new square replacing τ2 by an identity
2-cell and τ1 by τ1τ

−1
2 , and still giving a homotopy as needed. This suggests the following result

(which we leave to you to prove more formally).

Proposition 102 Suppose Fi : A → B, i = 0, 1, are two normal op-lax functors with B a 2-
groupoid, then, if there is a homotopy h : f0 ' f1, where fi = Ner(F)i, then there is a deformation,
α, from F0 to F1, and the resulting homotopy, Ner(α), is homotopic to the given h. �
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11.5.3 Weak actions of groups

This example is mostly a continuation of the previous one, but, as it is one we have considered
before, and is very central to our cohomological theme, it seems a good thing to start a new section
for it.

Earlier, in section 6.1, we looked at the way that, in an extension of groups,

E : 1→ K → E
p→ G→ 1,

a section of p gave a ‘lax’ action’ of G on K. At that point in these notes, we had not a suffi-
cient knowledge of ‘lax’ or ‘pseudo’ ideas, nor the concepts and terminology necessary for a fuller
treatment. We have now!

We start by recalling (see page 14 for starters) a little of the terminology and notation and the
fundamental ideas of actions in the algebraic context. We have a group, G, and so a single object
groupoid, G[1]. If we have a functor, K, from G[1] to Grps, then the functor picks out a group,
K = K(∗), where ObG[1] = {∗}, and a mapping

K∗,∗ : G[1](∗, ∗)→ Grps(K,K) = End(K),

where End(K) is the monoid of endomorphisms of K. The domain here is, of course, just G and the
image will be within the submonoid of invertible endomorphisms, i.e., within Aut(K), the group
of automorphisms of K, so we get one of the usual formulations of an action of G on K, namely as
a homomorphism from the group G to Aut(K).

Remark: If we start with G a groupoid, then it already has a set, G0, of objects, (and we
do not need to make G into a groupoid!), then a functor K : G → Grps will pick out a family
{K(x) | x ∈ G0} of groups, and, if G(x, y) is non-empty, morphisms between K(x) and K(y).
(Remember G is not necessarily a connected groupoid.) Our discussion for groups extends without
problem to groupoids. (A good reference for this is Blanco, Bullejos and Faro, [? ], and that has
been used as one source for the treatment here.)

We have seen, page 379, that natural transformations between such functors correspond to
conjugation by elements of K.

Given our interest in lax and pseudo functors and natural transformations, it is natural to look
at such things in this ‘action’ context and to see if they correspond to anything ‘well known’.

We will do this somewhat pedantically, also repeating ideas that were met earlier. We treat G,
firstly, as the groupoid, G[1], as before, and then as a (2-)discrete 2-category, which will also be
written G[1]. We look at Grps as a subcategory of Grpds and then enrich Grpds using the functor
category construction, so

Grpds(G,H) = HG = Func(G,H),

so making Grpds into a 2-category, denoted Grpds. We also will need it as an S-category via the
nerves, Ner(HG).

All 2-cells in Grpds are invertible, so ‘lax’, ‘op-lax’ and ‘pseudo’ more or less coincide. Now for
the ‘deconstruction’ of a lax functor, K = (K,σ),

K : G[1]→ Grpds.

This will correspond, according to the above definition to assignments:
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• As G[1] has just one object, we get a group (or more generally a groupoid), K = K(∗), as
with an action;

• For any two objects of G[1] (well that is easy, both must be ∗!), a functor

K∗,∗ : G[1](∗, ∗)→ Grpds(K,K),

where G[1](∗, ∗) = G, but take care, here. Since the 2-category G[1] is a locally discrete
2-category, G is also being thought of as a discrete category, that is a set ; the vertical
composition in the 2-category, i.e., of 2-cells, is necessarily trivial, the horizontal composition
is the multiplication of the group. This just gives a family, {K(g) | g ∈ G}, of endomorphisms
of K. For convenience, if g ∈ G, K(g) is an endomorphism of K and we may write gk for
K(g)(k).

• For any three objects of G[1] (no comment this time!), a natural transformation, σ, between
‘functors’ from G[1](∗, ∗) ×G[1](∗, ∗) to Grpds(K,K), whose component on a pair (g2, g1) is
a 2-cell

σ(g2,g1) : K(g2g1)⇒ K(g2)K(g1).

Note that (g2, g1) is a composable pair of morphisms in G[1]! (As usual we will want K(1G) to
be the identity endomorphism of K, i.e., for K to be normal and also for σ(1,g) = σ(g,1) = 1K .
As we saw when considering ‘auto-equivalences’, back in section 9.4.11, such a set-up gives
that each K(g) is an automorphism of K, not just an endomorphism.)

The pair, K = (K,σ), must satisfy the coherence rule with the associative law, i.e., if g3, g2, g1 ∈ G
(thus are composable maps in G[1]!), the diagram

K(g3g2g1)
σ(g3g2),g1 +3

σg3,(g2g1)

��

K(g3g2)K(g1)

σg3,g2K(g1)

��
K(g3)K(g2g1)

K(g3)σg2,g1

+3 K(g3)K(g2)K(g1)

commutes.
We could take thus apart further, ..., but will leave that for you to check up on, as we have

done this all before in various forms and guises. Natural transformations correspond to conjugation
(page 379) in this context. Autoequivalences are automorphisms (same page) and so on. The
coherence rule is a cocycle condition, of course.

This gives us the data for an op-lax functor,

K : G[1]→ Grpds,

but, of course, only uses a tiny part of Grpds as it only involves one object, namely K. We have a
sub 2-category, determined by K, that we will write End(K) as it is all the endofunctors of K and
the natural transformations between them, with composition as the ‘horizontal’ operation. Within
End(K), we have Aut(K) (and, yes, this is essentially the same notation as what we saw earlier,
in our initial discussion of lax actions in section 6.1, and even earlier, way back in section 2.1.1,
except that here Aut(K) is the 2-group, whilst earlier we used the notation for the corresponding
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crossed module). This is the sub 2-category of End(K) whose 1-cells are the automorphisms of K.
It is, as we just said, a 2-group.

We thus have that our op-lax functor, K, is ‘really’ an op-lax functor

K : G[1]→ Aut(K),

and is also a pseudo-functor, as all 2-cells involved are invertible. (We have that last statement
was true throughout our recent discussion, of course, as Grpds has all 2-cells invertible.)

Definition: Given groups, G and K, a lax action or weak action of G on K is an op-lax functor

K : G[1]→ Aut(K).

We can rewrite the above discussion to get more convenient forms of this.

Proposition 103 (i) A weak action of G on K assigns, to each g ∈ G, an automorphism g(−) :
K → K, and to each pair (g1, g2) in G × G, an element k = k(g1, g2) in K such that, for any
x ∈ K,

k.(g2,g1)x = g2(g1x).k,

(i.e., the inner automorphism by k is the difference between operation with g2g1 on the one hand,
and with first g1 and then g2 on the other);
and satisfying : for all x ∈ K and triples (g3, g2, g1) of elements of G

a) 1x = x;
b) k(1, 1) = 1;
c) (cocycle condition)

k(g3, g2)k((g3g2), g1) = g3k(g2, g1)k(g3, g2g1).

Conversely any such assignment determines a weak action.
(ii) A weak action of G on K determines, and is determined by, a simplicial mapping

k : Ner(G[1])→ Ner(Aut(K)).

Proof: (i) is just the result of taking apart the definition, and then interpreting the terms in more
elementary language, so ... .

(ii) is just a corollary of our earlier result that Ner is full and faithful. �

This second part deserves some more comment. The domain of k is the classifying simplicial
set of G, that which has been written BG in earlier chapters. (As an aside, we should note that
often in earlier chapters, G was a sheaf of groups on some space, or, more generally, a group object
in some topos. The corresponding theory of lax and pseudo-functors, lax natural transformations,
etc., also applies there with minimal disruption / adaptation. Adapting it to the situation in which
G and K are bundles of groups, i.e., bringing in a topology on them is somewhat harder, but can
be done, as can a smooth ‘Lie’ theory of these.)

Beware: in our earlier discussion, composition order may have been reversed.
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The codomain of k is interesting and raises a question. That nerve is of Aut(K), the 2-group
of automorphisms of K, but that is, of course, the 2-group associated to the crossed module,
also denoted Aut(K) = (K,Aut(K), ι), that we have used so many times. Replacing Aut(K) by
an arbitrary 2-group, X (C), corresponding to a crossed module, C = (C,P, ∂), we now have two
different classifying space objects associated to it, the nerve of the associated 2-group in this ‘lax’
interpretation and our earlier one going via the nerve of the simplicial group (so the nerve of one
of the structures, the internal groupoid one), followed by using W̄ , (recall this from sections 6.2.3
and 8.3.2). We will return to a more detailed examination of this very shortly.

Another question that was left over from an earlier chapter, (page 198), was of the details of
the statement that a section, s, of the epimorphism

p : E → G

in our extension

E : 1→ K → E
p→ G→ 1,

gave a lax action of G on K. (Another useful link at this point is to our discussion of fibred
categories, for instance, in section 9.1.3. The themes there interact with some of what we will be
seeing here.) This is quite well known and is not that hard to provide in detail, so we will leave
you to do this, but the above discussion should ease the formalisation process. Given a section
s : G → E, you should construct a lax action in detail either as an explicit op-lax functor,
or as a simplicial map, perhaps by adapting earlier discussions and using the monadic resolution
approach from section 11.2.3, mixed with more recent comments about the relationship between
2-categories and S-categorical methods. The choice is yours and as usual, approaching it in at
least two ways can clarify relationships between the approaches. (The reference mentioned above
to Blanco, Bullejos, and Faro, [25], may once again help in this.)

This quite naturally, raises other questions - and again investigation is well worth it, and is left
to you. If we change from the section, s, to another, we clearly should get a lax natural trans-
formation between the weak actions and hence a homotopy between the corresponding simplicial
maps. (Again you are left to search for, and give, explicit expressions for these and to link them
all together into a description in terms of lax / pseudo functors, etc., the cohomology groupoid that
they give, and of the equivalence classes of non-Abelian extensions that we looked at in section
6.1.)

The important thing to note is how the different approaches interact and, in fact, intermesh,
as this is very useful when generalising and extending things to higher dimensions and to further
‘categorification’.

The end result of this investigation would be a version of the results on extensions of G by
K, in terms of the set, [Ner(G[1]), Ner(Aut(K))]∗, of (normalised) homotopy classes of pointed
simplicial maps. An interesting idea to follow up is to link this all up with observations on
‘extensions as bitorsors’ (page 271, but take care as the extension there uses different notation),
the use of classifying spaces in classifying bitorsors and in particular nerves of Aut(K), then back
to the first discussion of ‘lax actions’ in section 6.1.
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11.6 Two nerves for 2-groups

We suggested in the previous section that we have more or less ‘by chance’ now got two different
ways of defining a nerve-like simplicial set for a 2-group, X (C), associated to a crossed module, C,
and hence of assigning a ‘nerve’ to a crossed module. Discussion of this will take us right back to
the basics of crossed modules and so it warrants a section by itself. This will also allow more easy
reference to be made to the key ideas here.

We met, back in section 6.2.3, the classifying ‘space’ construction, and revisited it in section
8.3.2, which took a crossed module or its associated 2-group, thought of it as an internal category
within the category of groups, constructed the (internal) nerve of that (internal) category internally
within Grps, so getting a simplicial group, the simplicial group nerve, K(C), of C. This was then
processed further using W , to get W (K(C)). This was analysed (on page 206) in the slightly more
general case when C is a reduced crossed complex. (Take care when reviewing those pages as the
S-groupoids are given for the algebraic composition convention.)

We also have the following chain of ideas. A 2-group, X (C), is a special type of 2-category and
any 2-category, as we have just seen, gives an S-category by taking the nerve of each ‘hom’. Of
course, then the natural thing to do, if we want a nerve, is to take the (homotopy coherent) nerve
of that S-category and, again of course, this is the geometric nerve of the 2-group. What does it
look like?

Before we do investigate this more fully, let us see, briefly, why it is important to do so.

The route to a nerve via W has important links to simplicial fibre bundle theory; W has the
Dwyer-Kan ‘loop groupoid’, (glance back at page 201 if need be), as a left adjoint and all the
mechanisms of twisted Cartesian products, twisting functions, etc., that we looked at in section 6.5
are there for use. The homotopy coherent nerve, on the other hand, opens the way to interpretations
of maps as homotopy coherent actions, to links with lax / op-lax / pseudo-category theory, and
thus quite directly into the methods of low dimensional non-Abelian cohomology.

We will see that the two nerves are very similar; in fact, they are isomorphic. This suggests
many lines of enquiry. Both constructions work for a general S-category, so there are possibilities
of links between their extensions to general S-groupoids, or to strict monoidal categories, since
they are one object 2-categories. These links have been, in part, investigated in papers by various
authors, in particular, Bullejos and Cegarra, [? ] and [? ], Blanco, Bullejos and Faro, [? ] and
[25]. Some of these use, instead of W , a combination of the nerve on the group structure to get a
bisimplicial set, followed by using the diagonal of that ‘binerve’, a method related to what we saw in
section 5.5.1. The W -construction corresponds to taking the nerve in the ‘group direction’ followed
by using the Artin-Mazur codiagonal, ∇. We will look at this in some detail shortly (starting on
page ??). That the resulting constructions are weakly homotopically equivalent follows from the
results of Cegarra and Remedios, [53], who prove several results generalising some unpublished
work of Zisman.

Back to a detailed look at Ner(X (C)), we can, of course, just read its details off from our earlier
look at Ner(C) for C, a 2-category, together with the description of X (C) as a 2-category. Because
in this sort of calculation, it helps to have each facet ‘face-up on the table’, we will recall X (C)
first, although we have met it many times. (This is mostly important because of the risk of a mix
of conventions, for instance, on composition order.)
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11.6.1 The 2-category, X (C)

• The 2-category, X (C), has a single object denoted ∗;

• The set of 1-arrows, X (C)(∗, ∗)0, is the group, P with p1]0p2 = p1p2 as composition and we
picture it as

∗ p2→ ∗ p1→ ∗,

so will use functional composition order.

• the set of 2-arrows, X (C)(∗, ∗)1, is the group C o P . We have that, if (c, p) ∈ C o P , its
source is p and its target is ∂c.p. We picture it, in 2-category ‘imagery’, as

∗

p

$$

∂c.p

::
�� ��
�� (c,p) ∗ ,

and have a composition, ]1, within the category X (C)(∗, ∗), given by

(c′, ∂c.p)]1(c, p) = (c′c, p).

The other composition ]0, a ‘horizontal’ composition, is, as we know, the group multiplication
of C o P :

(c2, p2)]0(c1, p1) = (c2.
p2c1, p2p1),

(and the interchange law holds, being equivalent to the Peiffer identity).

11.6.2 The geometric nerve, Ner(X (C))

• The set of 0-simplices, Ner(X (C))0, is the set of objects, so is {∗}. (This nerve will, here, be
a reduced simplicial set. Of course, if C was a crossed module of groupoids, then Ner(X (C))0

would possibly have more elements.)

• The set of 1-simplices will be the set of arrows of X (C) and thus is P , as a set ;

• The 2-simplices of Ner(X (C)) consist of 4-tuples, x = (x(12), x(02), x(01);x(012)), as before,
where the x(ij) ∈ P and x(012) : x(02)⇒ x(12)x(01) is a 2-cell.

The faces of x are d0x = x(12), etc, as we saw before, so we will abbreviate x(12) to x0 ∈ P ,
etc. Writing x := x(012), we then have x is a 2-cell, x : x1 ⇒ x0]0x2, the codomain being
just x0.x2 in different notation, hence x has form (c, x1) with ∂c.x1 = x0.x2,

.
x0

  AAAAAAA

.
x1

//

x2
>>}}}}}}}

� �� �KS
x

.

and hence ∂c = x0x2x
−1
1 , which is clearly closely related to the form given, page 206, for the

W -based version of the classifying space, but we must check how good that similarity is in
detail and with consistent conventions).
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• The 3-simplices of Ner(X (C)) consist of sets of arrows,

{x(ij) | 0 ≤ i < j ≤ 3},

and 2-cells,

x(ijk) | 0 ≤ i < j < k ≤ 3},

with x(ijk) : x(ik)⇒ x(jk)x(ij), and satisfying a cocycle condition:

x(13)x(01)
x(123)]0x(01)+3 x(23)x(12)x(01)

x(03)

x(013)

KS

x(023)
+3 x(23)x(02)

x(23)]0x(012)

KS

commutes.

We again rethink this in terms of C and P , using the fact that d0x = (x(23), x(13), x(12);x(123) :
x(13)⇒ x(23)x(12)), and so on. The ith face is the term that omits i, as usual in these situ-
ations.

It is important to note at this point that between them the four faces contain all the x(ij)
and x(ijk), so completely determine x itself. This is, of course, related to the condition
that Ner(X (C)) is 3-coskeletal, but that condition just gives the similar result in higher
dimension. (Check back on the properties of that notion as given by Proposition 38.) This
observation says that there is a unique 3-simplex with these faces, not that if you start with
four 2-simplices seemingly of the right form then there will automatically exist a 3-simplex
with those 2-simplices as its faces, because the 3-cocycle condition intervenes.

Write the four 2-cells as c0, c1, c2, and c3, corresponding to d0x, etc., respectively, so that

– face (123): ∂c0 = x(23)x(12)x(13)−1;

– face (023): ∂c1 = x(23)x(02)x(03)−1;

– face (013): ∂c2 = x(13)x(01)x(03)−1;

– face (012): ∂c3 = x(12)x(01)x(02)−1.

To analyse the commutativity of the square above will require us to look first at the two
‘whiskered’ terms:

x(123)]0x(01) = (c0, x(13))]0(1, x(01)) = (c0, x(13)x(01)),

whilst

x(23)]0x(012) = (1, x(23))]0(c3, x(02)) = (x(23)c3, x(23)x(02)).

The ]1-compositions of 2-cells correspond to multiplication in C, so the two routes around
the square give

(x(123)]0x(01))]1x(013) = (c0, x(13)x(01))1(c2, x(03))

= (c0c2, x(03))
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and

(x(23)]0x(012))]1x(023) = (x(23)c3, x(23)x(02))]1(c1, x(03))

= (x(23)c3c1, x(03)).

We thus have a cocycle condition:

c0c2 = x(23)c3c1.

• Above dimension 3, everything is determined by dimension 3, as we saw that Ner(X (C)) is
3-coskeletal.

We next turn towards the construction going via the ‘internal nerve’ or ‘simplicial group nerve’.
By this route, we first construct a simplicial group, K(C), from C. As above we will repeat that
construction in great detail, so as to check consistency of conventions. The simplicial group, K(C),
is the internal nerve of the internal groupoid, X (C), and is constructed within the category of
groups. (The relevant earlier discussions are in sections 6.2.2 and 6.2.3.)

The simplicial group, K(C), has:

• group of 0-simplices, K(C)0 = P ;

• group of 1-simplices, K(C)1 = C o P , with, for (c1, p), a 1-simplex, d0(c1, p) = ∂c1.p,
d1(c1, p) = p and s0(p) = (1, p), for p ∈ P ;

• group of 2-simplices, K(C)2 = C o (C o P ), with, for (c2, c1, p), a 2-simplex

d0(c2, c1, p) = (c2, ∂c1.p),

d1(c2, c1, p) = (c2.c1, p),

d2(c2, c1, p) = (c1, p),

and degeneracies, s0(c1, p) = (1, c1, p), s1(c1, p) = (c1, 1, p).

It is useful to repeat the diagram for (c2, c1, p):

∂c1.p
(c2,∂c1.p)

%%KKKKKKKKK

p

(c1,p)
==|||||||||

(c2c1,p)
// ∂(c2c1).p

• for n ≥ 3, K(C)n = C o K(C)n−1, with action via the projection to P , and, if (c, p) :=
(cn, . . . , c1, p) is an n-simplex, the face morphisms are given by

d0(c, p) = (cn, . . . , c2, ∂c1.p),

di(c, p) = (cn, . . . , ci+1.ci, . . . , p) for 0 < i < n,

dn(c, p) = (cn−1, . . . , c1, p),

whilst the degeneracy maps insert an identity.
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11.6.3 W (H) in functional composition notation

We have been operating under the assumption that to hope to obtain fairly simple formulae in
cocycles, nerves, etc., it may be a good idea to stick with consistent conventions, so using left
actions, function composition order, and so on. This has sometimes worked! It does mean checking
through to see that a given formula is consistent with the convention and that can be tedious!
Does it matter? The answer is ‘sometimes’. The mathematical essence of the argument is fully
independent of the notation, but that means that a twisted arcane obscure formula may really
represent something simple, and be equivalent to a much simpler transparent one, or it may really
reflect some great twisted arcane mathematical form that is impossible to unravel further.

For the W -construction, we have two or three levels of structure and the order of ‘composition’
being used is not always in evidence, so giving a consistent convention is quite tricky.

The classifying space of a group is given by the nerve of the corresponding groupoid or, if you
prefer, the geometric realisation of that simplicial set. The W -construction gives a classifying space
for a simplicial group (or, more generally, any S-groupoid or small S-category). It is a generalisation
of the nerve construction. It can also be derived from the nerve, since, applying the nerve functor to
each dimension of a simplicial group gives a bisimplicial set and, as we have mentioned earlier, one
can process such an object either using the diagonal functor (as we did in section 5.5.1, page 186)
or, using the Artin-Mazur codiagonal that we will meet more formally in the near future (section
??, page ??).

If G is a groupoid, we can represent an n-simplex of Ner(G) by a diagram

x0
g1→ x1

g2→ . . .
gn→ xn,

where t(gi) = s(gi+1), and, in ‘functional’ order, by an n-tuple g = (gn, . . . , g1) with d0g =

(gn, . . . , g2), etc. In the W -construction, we look at an S-groupoid, H, and take ‘composable’
strings, h = (hn, . . . , h1), in a similar way, but with hi ∈ Hi−1.

In case you think that we need hi ∈ Hi, it is worth pausing to discuss the indexing. In a group,
G, thought of as the groupoid, G[1], the nerve is a reduced simplicial set, i.e., Ner(G)0 has just
one element, and Ner(G)1 is G itself, but the arrows in G[1], as a simplicially enriched groupoid,
are thought of as being in dimension 0, so the dimension drops by 1. This sort of conflict of ‘rival’
indexation ideas is quite usual, quite confusing and quite irritating, but it is also quite easy to
accept and to work with. Remember that W behaves as if it were a ‘suspension’ operation, whilst
its left adjoint, G, behaves like a ‘loops on -’ construction, so we should expect shifts in ‘geometric’
dimension.

The problem is ‘what should the face convention be?’ If we look at d0 and define it just to
delete the h1 position, then we get an invalid string, as the dimensions are wrong. The nth face
would work alright as that would delete hn and the resulting string would still be valid. To get
around the d0 problem, we will adopt a definition that (i) is simple, (ii) works and, in fact, (iii)
has a neat interpretation, when applied to objects such as K(C). In addition, it seems to be the
codiagonal of the bisimplicial nerve construction, but we cannot look at that aspect in detail at the
moment, as we do not yet have enough detailed information on the codiagonal.

What is this marvellous convention, ...?

We take H to be an S-groupoid, as usual, with object set, O, say:

• W (H)0 is the set, O, of objects of H;
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• W (H)1 is the set of arrows of the groupoid, H0;
and, in general,

• W (H)n is the set of all ‘composable’ strings, h = (hn, . . . , h1), with hi ∈ Hi−1, and (for
‘composable’) t(hi) = s(hi+1) for 0 < i < n.

The face maps are given by:

• d0(h) = (d0hn, . . . , d0h2);

• di(h) = (dihn, . . . , dihi+1.hi, . . . , h1) for 0 < i < n;

• dn(h) = (hn−1, . . . , h1).

The degeneracy maps are given by inserting an identity in the appropriate place and using the
degeneracies of H to push earlier elements of the string up one dimensions:

• si(h) = (si(hn), . . . , si(hi+1), idxi , hi, . . . , h1).

(Of course, you are left to check that this works and gives a simplicial set, etc.)

There are some obvious questions to ask:

• Does this given an isomorphic version of W (H)? Possibly not, as it looks more like a conjugate
version of the more standard form. It clearly has the same sort of properties, e.g., being a classifying
space for H, classifying principal H-bundles if H is a simplicial group, etc., and has a geometric
realisation that is homeomorphic to the standard form.

• Is it easy to visualise the n-simplices? Yes, at least in the case H = K(C), and more generally
for any 2-groupoid considered as a S-groupoid. In fact, it works for a 2-category as well:

11.6.4 Visualising W (K(C))

First let us see what the ‘bottom end’ of W (K(C)) looks like.

• W (K(C))0 is a point (as we have C is a crossed module of groups);

• W (K(C))1 is isomorphic to the set, P , as a 1-simplex in W (K(C)) is an ‘arrow’, i.e., an
element in K(C))0, which is the group P ;

• A 2-simplex of W (K(C)) consists of a pair (h2, h1) with hi ∈ K(C)i−1, so h2 ∈ CoP , h1 ∈ P .

In 2-categorical from, this can be thought of as h being

h1 // ##;;� �� �KS
h2

and then d0(h) deletes h1, as we want, and takes d0(h2) as data from h2; at the other ‘extreme’,
d2(h) just gives us

h1 //

and, in between, d1(h) takes the start of the 2-cell and composes it with h1 to get d1(h2).h1.
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It is sometimes useful to draw this as a ‘staircase’ diagram:

d0h2 //
=

OO

h1
//
d1h2

//
=

OO

h2 =

OO

and we will see this ‘come into its own’ importance later when looking at codiagonals.
• The 3-simplices, h = (h3, h2, h1) with, again, hi ∈ K(C)i−1, have similar pictures. Remember

h3 is a composable pair of 2-cells, as on the right hand end:

h1 // ##;;� �� �KS
a

��
� �� �KS
c

@@
� �� �KS
b

//

and the staircase, obtained by expanding out the 2-cells:

//
=

OO

// //
=

OO
=

OO

// //
=

OO

//
=

OO
=

OO

The staircase shows more clearly the face maps. The d0 deletes the bottom row completely; d1

removes the 1st row and 1st column of vertices and composes, where possible, to give

//
=

OO

d1a]0h1
// //

=

OO

c]1b =

OO

d2 removes the 2nd row and column and composes:

//
=

OO

h1
// //

=

OO

b]0a =

OO

and d3 deletes the right hand column (and thus the top row as well).
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If we go one step further down in the notation, i.e., back to the elements of C and P , then we
have h ∈W (K(C))2 has form

h = ((c2,1, p2), p1)

with h2 = (c2,1, p2) ∈ C o P , and so on. The picture of h is then

d0(h) = ∂c2,1.p2

d1(h) = p2.p1

d2(h) = p1

giving
.

∂c2,1.p2

  AAAAAAA

.
p2.p1

(h2,h1)
//

p1
>>}}}}}}} .

If we match that picture with the earlier one (page 465), then

x0 ↔ ∂c2,1.p2

x1 ↔ p2.p1

x2 ↔ p1

and, given h, we get the geometric nerve 2-simplex,

(p1, p2.p1, ∂c2,1.p2; (c2,1, p2.p1)).

Working the other way around, given (x2, x1, x0; (c, x1)), gives a W -based 2-simplex

((c, x1x
−1
2 ), x2),

and the faces match up. (Check this all works - both ways - and do not forget the ‘cocycle’
conditions relating the xis.) This looks good. On to dimension 3, . . ..

If we start with h = (h3, h2, h1), where

h1 = p1

h2 = (c2,1, p2)

h3 = (c3,2, c3,1, p3),

we get

d0(h) = ((c3,2, ∂c3,1.p3), (∂c2,1.p2)),

d1(h) = ((c3,2.c3,1, p3), p2.p1),

d2(h) = ((c3,1.
p3c2,1, p3p2), p1),

d3(h) = ((c2,1, p2), p1),

and now note that given these four faces, we can reconstruct h completely, since d3(h) gives us h2

and h1, and we can use projections onto semi-direct factors of C o (C o P ) to retrieve h3 with no
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bother. This means that there is a unique h with this shell - the same phenomenon that we saw
with Ner(X (C)). The isomorphism that we found in levels 0, 1 and 2 can therefore be extended
to dimension 3 . . . , and above by the fact that we have 3-coskeletal simplicial sets here. (We have
not actually explicitly checked that W (K(C)) is 3-coskeletal, but the above calculation linked in
with our earlier work (page 155) should enable you to prove this.) We have

Proposition 104 The two classifying spaces, Ner(X (C)) and W (K(C)), are naturally isomorphic.
�

This result suggests several questions, some of which we will look at shortly, others are left to
you.

• If C and D are two crossed modules, can we interpret, algebraically, an op-lax morphism
between the corresponding 2-groups, since we know that these correspond to simplicial morphisms
between the corresponding nerves? This would give a sort of ‘weak’ morphism between the crossed
modules.

• Can we extend the above isomorphism to the case where we have 2-categories rather than
2-groupoids? This would look unlikely, since we had to use inverses to check the isomorphism,
but perhaps some weaker relationship is possible, cf., for instance, Bullejos and Cegarra, [? ].
One important consequence of this is a way of comparing the two obvious ways of assigning a
classifying space to a strict monoidal category. A monoidal category ‘is’ a one object bicategory,
and a strict one thus corresponds to a one object 2-category. (We will look at monoidal categories
is slightly more detail in a coming chapter.) The classical classifying space construction, used by
Segal, [? ? ], corresponds to taking the nerve of the category structure and then that of the monoid
structure and forming a simplicial set from the resulting bicomplex. The resulting space has a lot
of beautiful properties, but we will not go into them here. The relevant papers directly on the
comparison between this classical nerve and classifying space and that defined using the homotopy
coherent nerve are by Bullejos and Cegarra, [? ? ]. One important point to note is that the Duskin
geometric nerve construction which they use is also applicable to bicategories, so some of their
results apply also to non-strict monoidal categories.

• Can we find a way of adapting the above proposition to handle some sort of 3-category or
3-groupoid? Perhaps starting with a 2-crossed module, we could form W of the corresponding
simplicial group, since that is easy, but can we construct the h.c. nerve of such a simplicial group?

More generally:

• If we think of an S-groupoid, G, as an S-category, what is the geometric (h.c.) nerve of that
S-category?

11.7 Pseudo-functors between 2-groups

We will look in some detail at the first of these questions.

As crossed modules give rise to 2-groups (or, more generally, 2-groupoids) and these are 2-
categories, it is natural to ask what the lax or op-lax functors between two such 2-groups look
like. This can be considered both as a good illustrative example of (op-)lax functors and thus
of homotopy coherence, and also as an important part of the theory of crossed modules that we
have yet to explore. We will start with a basic observation and that is that, as 2-groupoids have
invertible 1 and 2 arrows, there is no essential difference between lax and op-lax functors and they
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are both ‘the same as’ pseudo-functors. Of course, one has to choose a direction for the 2-cells and
we will consider ’pseudo = op-lax + invertible’, i.e., the structural 2-cells of a pseudo-functor will
go from F (ab) to F (a)F (b). These pseudo-functors will be normal ones as usual.

To start with, our study will look at pseudo-functors between two 2-groups, X (C) and X (C′),
where C = (C,P, ∂) and C′ = (C ′, P ′, ∂′), and by analysing them at the level of the groups and
actions involved. Later we will examine them at the level of simplicial groups. (As usual the
extension to S-groupoids is reasonable easy to do, so will be left to you.)

(The material in this section is treated, in part, by Noohi in [146, 147] (and the correction
avaialable as [? ]) and with Aldrovandi, [? ], for a sheafified version with applications to stacks.
There is also a strong link with the Moerdijk-Svensson model category structure on 2-groups, for
which see [? ] as well as with the papers referred to in the previous section.)

11.7.1 Weak maps between crossed modules

Effectively a weak map between crossed modules is what is ’seen’, at the level of crossed modules, of
a pseudo-functor between the corresponding 2-groups. The abstract definition as given by Noohi,
[146] is:

Definition: Let C and C′ be crossed modules, as above. A weak map, f : C → C′, is a
pseudo-functor from X (C) to X (C′).

That probably does not say that much to you about what such a thing looks lie, so we are going
to take the definition apart in various ways so as to get some feel for them.

We first use a direct attack. Consider a normal pseudo-functor:

F : X (C)→ X (C′),

then this consists of

• a set map, F0, on objects (this is ’no big deal’ as both X (C) and X (C′) have exactly one
object);

• a set map, F1, sending arrows to arrows, so giving a function,

f0 : P → P ′,

which is not necessarily a homomorphism of groups. The obstruction to it being one is given
by

• a set map, ϕ : P × P → C ′ o P ′, so, if p2, p1 ∈ P , ϕ(p2, p1) is a 2-cell from f0(p2p1) to
f0(p2)f0(p1);

• a functor
F2 : C o P

�� ��

// C ′ o P ′

�� ��
P

OO

// P ′

OO

between the underlying categories, with f0 at the level of objects. (Importantly, note that this
does not mean that this functor preserves horizontal composition, i.e., group multiplication,
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in either the top or the object levels. This is just F2 = F∗,∗ : X (C)(∗, ∗) → X (C′)(∗, ∗), as a
functor between the corresponding ‘hom-categories’.)

Of course, we will have to give some equations and conditions on these, but will explore this
little-by-little before giving a résumé of the resulting structure.

First we note that, as we have a normalised pseudo-functor, f0(1) = 1 and ϕ(1, 1) = 1. As F2

is a functor, we have, for (c, p) ∈ C o P ,

F2(c, p) : f0(p)→ f0(∂c.p),

but this means that F2(c, p) has the form,

F2(c, p) = (F ′2(c, p), f0(p)),

for some function F ′2 : C o P → C ′. We will set f1(c) = F ′2(c, 1) and note that ∂f1(c) = f0(∂c).

It will eventually turn out that f1 is almost a group homomorphism and that from f1 and ϕ,
we will be able to calculate F ′2(c, p) for a general p ∈ P , that is to say, the information needed for
F2 reduces to that for f1 and ϕ and, from them, we can reconstruct F2 itself.

We also have that ϕ(p2, p1) is a 2-cell from f0(p2p1) to f0(p2)f0(p1). It therefore has the form

ϕ(p2, p1) = (〈p2, p1〉, f0(p2p1))

for some ‘pairing function’,

〈 , 〉ϕ : P × P → C ′.

(We will usually write 〈 , 〉 instead 〈 , 〉ϕ if no confusion is likely.) We need ϕ to be ‘natural’
with respect to pre- and post- whiskering and so will have corresponding conditions on 〈 , 〉.
We first note that, since the target of ϕ(p2, p1) is f0(p2)f0(p1), we have

Lemma 67 (Target condition) For any p1, p2 ∈ P ,

∂〈p2, p1〉 = f0(p2)f0(p1)f0(p2p1)−1.

�

The ‘associativity’ axiom for ϕ gives a cocycle condition:

for p1, p2, p3 ∈ P , the diagram, in X (C′)

f0(p3p2p1)
ϕ(p3p2,p1) //

ϕ(p3,p2p1)
��

f0(p3p2)f0(p1)

ϕ(p2,p1)]0f0(p1)
��

f0(p3)f0(p2p1)
f0(p3)]0ϕ(p2,p1)

// f0(p3)f0(p2)f0(p1)

is commutative.

Interpreting this at the crossed module level:



11.7. PSEUDO-FUNCTORS BETWEEN 2-GROUPS 475

Lemma 68 (Cocycle condition) For any p1, p2, p3 ∈ P ,

〈p3, p2〉〈p3p2, p1〉 = f0(p3)〈p2, p1〉〈p3, p2p1〉.

�

The proof is straightforward. We note that we really do use the formulae for pre- and post-
whiskering in terms of the group multiplication. This is just the multiplication on the right or left
of (c, p) by some (1, p′):

Pre-whisker: (c, p)]0(1, p′) = (c, pp′);
Post-whisker: (1, p′)]0(c, p) = (p

′
c, p′p).

As we are considering normalised op-lax and pseudo- functors, we have ϕ(1, 1) = 1, so 〈1, 1〉 = 1
as well, but we can use this together with the cocycle condition to get:

Corollary 22 For any p ∈ P , 〈1, p〉 and 〈p, 1〉 are both 1C′.

Proof: Taking p2 = p, p3 = 1 and p1 = p−1 gives

〈1, p〉〈p, p−1〉 = f0(1)〈p, p−1〉〈1, 1〉,

so, as f0(1) = 1 and 〈1, 1〉 = 1, we have 〈1, p〉 = 1.
Similarly, try p1 = 1, p2 = p and p3 = p−1. �

Remark: It will probably not have escaped your notice that what we have here is very closely
related to a weak action of P on C ′. This will become more apparent slightly later on.

We next look at the naturality of ϕ.
If we fix p ∈ P , we get the pre-whiskering

−]0p : X (C)(∗, ∗)→ X (C)(∗, ∗),

and the corresponding post-whiskering

p]0− : X (C)(∗, ∗)→ X (C)(∗, ∗).

Naturality of ϕ means that pre- (resp. post-) whiskering in X (C) is translated into the similar
operation in X (C′).

Pre-whiskering naturality: For any p1, p2 ∈ P and c ∈ C, the diagram

f0(p2p1)
ϕp2,p1//

F2(c,p2p1)
��

f0(p2)f0(p1)

F2(c,p2)]0f0(p1)
��

f0(p′2p1) ϕp′2,p1

// f0(p′2)f0(p1)

in X (C′) commutes, where p′2 = ∂c.p2.
Using F ′2 and 〈−,−〉, this translates as
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Lemma 69 (Primitive pre-whiskering condition.) For p1, p2 ∈ P and c ∈ C,

〈∂c.p2, p1〉.F ′2(c, p2p1) = F ′2(c, p2).〈p2, p1〉.

�

We call it ‘primitive’ as we really want it in terms of f1 not of F ′2.

Post-whiskering naturality: For any p2, p3 ∈ P and c ∈ C, the diagram

f0(p3p2)
ϕp3,p2//

F2(p3c,p3p2)
��

f0(p3)f0(p2)

f0(p3)]0F2(c,p2)
��

f0(p′3p2) ϕp3,p′2

// f0(p3)f0(p′2)

in X (C′) commutes, where p′2 = ∂c.p2.

Using F ′2 and 〈−,−〉, this translates as

Lemma 70 (Primitive post-whiskering condition.) For p2, p3 ∈ P and c ∈ C,

〈p3, ∂c.p2〉.F ′2(p3c, p3p2) = f(p3)F ′2(c, p2).〈p3, p2〉.

�

Recall that we wrote f1(c) for F ′2(c, 1). Using naturality, and from the fact that an arbitrary (c, p)
can be written as (c, 1)]0(1, p), we can derive a rule expressing F ′2(c, p) in terms of f1(c) and 〈−,−〉:

Lemma 71 For any c, p, as above,

F ′2(c, p) = 〈∂c, p〉−1f1(c).

Proof: Pre-whiskering naturality gives

〈∂c, p〉.F ′2(c, p) = F ′2(c, 1).〈1, p〉,

but we showed that 〈1, p〉 is the identity, so the result follows. �

Of course, as F2 is a functor, we also know that f1(1) = 1.

It is thus possible to define F2(c, p) in terms of the pairing function 〈−,−〉 together with f0 and
f1. Of course, we need to be sure that F2, thus (re-)constructed, has the right properties, mainly as
a check that the whole framework holds together, and that we have successfully reduced the data
specifying F to a usefully presented description. For instance, F2(c, p) is to be a 2-cell from f0(p)
to f0(∂c.p), i.e., we must have:

Lemma 72 Thus defined, F ′2(c, p) satisfies f0(∂c.p) = ∂F ′2(c, p).f0(p).
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Proof: (Included really only because it is quite neat. It could have been left to you.)

∂F ′2(c, p) = ∂〈∂c, p〉−1∂f1(c),

but we know ∂f1(c) = f0(∂c). We obtain

∂〈∂c, p〉 = f0(∂c)f0(p)f0(∂c.p)−1,

and hence
∂〈∂c, p〉−1 = f0(∂c.p)f0(p)−1f0(∂c)−1,

so
∂F ′2(c, p) = f0(∂c.p)f0(p)−1,

or
f0(∂c.p) = ∂F ′2(c, p).f0(p),

as required. �

Proposition 105 Pre-whiskering naturality: For p1, p2 ∈ P and c ∈ C,

f0(∂c)〈p2, p1〉.f1(c) = f1(c).〈p2, p1〉.

Proof: By calculation after substituting: on substituting 〈∂c, p〉−1f1(c) for F ′2(c, p), etc., the
primitive version gives

〈∂c.p2, p1〉.〈∂c, p2.p1〉−1f1(c) = 〈∂c, p2〉−1f1(c)〈p2, p1〉.

By the associativity cocycle condition,

〈∂c.p2, p1〉.〈∂c, p2.p1〉−1 = 〈∂c, p2〉−1f0(∂c)〈p2, p1〉.

Cancellation of 〈c, p2〉−1 in the combined expression gives the result. �

Remark: Rearranging the above equation gives

∂f1(c)〈p2, p1〉 = f1(c)〈p2, p1〉f1(c)−1,

which is related to the Peiffer identity,

∂cc′ = c.c′c−1,

within C ′ and could have been deduced directly from it.

Back again, this time to Post-Whiskering Naturality, we had

〈p3, ∂c.p2〉.F ′2(p3c, p3p2) = f(p3)F ′2(c, p2).〈p3, p2〉,

and hence

〈p3, ∂c.p2〉.〈p3∂c.p
−1
3 , p3p2〉−1f1(p3c) = f0(p3)〈∂c, p2〉−1f0(p3)f1(c).〈p3, p2〉.

Using the ‘associativity’ cocycle condition gives an expression for the first part of the right hand
side as

f0(p3)〈∂c, p2〉 = 〈p3, ∂c〉〈p3.∂c, p2〉〈p3, ∂c.p2〉−1,

so we get, after an easy rearrangement:



478 CHAPTER 11. HOMOTOPY COHERENCE AND ENRICHED CATEGORIES.

Proposition 106 Post-whiskering naturality: For p2, p3 ∈ P and c ∈ C,

〈p3.∂c.p
−1
3 , p3p2〉−1f1(p3c) = 〈p3.∂c, p2〉−1〈p3, ∂c〉−1f0(p3)f1(c).〈p3, p2〉.

�

Remarks: (i) This formula, or rather the right action / algebraic composition order form of it,
is ascribed to Ettore Aldrovandi in the corrected version of Noohi’s notes, [? ]. It is worth noting
that Noohi uses right actions and a lax functor formulation, so, for instance,

ϕ : F (b)F (a)⇒ F (ba).

This results in there being no inverse on the pairing brackets, amongst other things.
(ii) If we consider the case p3 = p−1

2 = p, say, then we get

f1(pc) = 〈p.∂c, p−1〉−1〈p, ∂c〉−1f0(p)f1(c)〈p, p−1〉,

which is a form of Noohi’s ‘equivariance condition’, cf. [? ].

We can use similar arguments to these above to investigate f1 further.

Proposition 107 The map f1 : C → C ′ satisfies: for all c2, c1 ∈ C,

f1(c2c1) = 〈∂c2, ∂c1〉−1f1(c2)f1(c1).

Proof: Using the definition of f1,

(f1(c2c1), 1) = (F2(c2c1, 1)

= F2(c2, ∂c1)F2(c1, 1)

= (〈∂c2, ∂c1〉−1f1(c2), ∂c1)]1(f1(c1), 1)

= (〈∂c2, ∂c1〉−1f1(c2)f1(c1), 1)

as required. �

We thus have that f1 is almost a homomorphism. It is ‘deformed’ by the term 〈∂c2, ∂c1〉.

We could, as might be expected, derive this also from a combination of pre- and post-whiskering
and the interchange law. As the interchange law holds in both X (C) and X (C′), and as F2 is a
functor, it must relate these two, preserving ‘interchange’.

Suppose we have
α : p1 ⇒ p′1,

β : p2 ⇒ p′2,

then we have a diagram,

f0(p2p1))
F (β]0α) +3

ϕp2,p1
��

f0(p′2p
′
1)

ϕp′2,p
′
1

��
f0(p2)f0(p1)

F (β)]0F (α)
+3 f0(p′2)f0(p′1)

which will commute in X (C′).
We can translate this, as before, in terms of 〈−,−〉, f0 and f1.
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Proposition 108 For α = (c1, p1) and β = (c2, p2),

〈∂c2.p2, ∂c1〉〈∂c2.p2∂c1p
−1
2 , p2p1〉−1f1(c2

p2c1) = 〈∂c2, p2〉−1f1(c2)f0(p1)〈∂c1, p1〉−1.f0(p1)f1(c1)〈p2, p1〉.

�

We leave the proof to you. The resulting formula reduces to the pre- and post- forms for
suitable choices of the variables. In turn, it can be derived by algebraic manipulation from those
forms together with the formula for f1(c2c1) in terms of f1(c2) and f1(c1). The added complexity
of the interchange form makes its use less attractive than that of the reduced forms.

Analysing pseudo-functors between 2-groups has thus led us to a list of structure and related
properties that we can extract to get the following algebraic form of the definition. As usual, C
and C′ are two crossed modules.

Definition: Weak map, algebraic form: A weak map, f : C→ C′, is given by the following
structure:

• a function, f0 : P → P ′;

• a function, f1 : C → C ′;

• a pairing, 〈 , 〉 : P × P → C ′.

These are to satisfy:

W1 (Normalisation): f0(1) = 1 and 〈1, 1〉 = 1;

W2 (‘Almost a homomorphism’ for f1): for c2, c1 ∈ C,

f1(c2c1) = 〈∂c2, ∂c1〉−1f1(c2)f1(c1);

W3 (‘Almost a homomorphism’ for f0): for p1, p2 ∈ P ,

f0(p2p1) = ∂〈p2, p1〉−1f0(p2)f0(p1);

W4 (Cocycle): for p1, p2, p3 ∈ P ,

〈p3, p2〉.〈p3p2, p1〉 = f0(p3)〈p2, p1〉.〈p3, p2p1〉;

W5 (Whiskering conditions):

Pre: for p1, p2 ∈ P and c ∈ C,

f0(∂c)〈p2, p1〉.f1(c) = f1(c).〈p2, p1〉;

Post: for p2, p3 ∈ P and c ∈ C,

〈p3.∂c.p
−1
3 , p3p2〉−1f1(p3c) = 〈p3.∂c, p2〉−1〈p3, ∂c〉−1f0(p3)f1(c).〈p3, p2〉.

We then have:
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Theorem 29 (Noohi, [? ]) The two definitions of weak map, pseudo-functorial and algebraic, are
equivalent. �

Remarks: (i) The proof in one direction has been sketched out above, and some indication
has been given as to how to go in the other direction. The details of that direction are a ‘good
exercise for the reader’.

(ii) In the published form (that is in [147]), the additional assumption that f1 was a homomor-
phism was made. This is not a consequence of the pseudo-functorial definition of a weak map. A
correction was made available by Noohi, in [? ], where the axioms are given in more or less the
above form with, however, right actions, etc.

(iii) It should be noted that we have not encoded weak / pseudo- natural transformations in the
above. In [? ], there is a description of such things within the context of the algebraic definition of
weak maps as above. The task of translating that to the notational conventions used here is left
to you.

(iv) Any morphism of crossed modules gives a weak map between them, with a trivial pairing
function, and any weak map with trivial pairing likewise is a morphism of crossed modules. With
morphisms of crossed modules composition is very easy to do, so what about composition of weak
maps? This is again left as an exercise for you to investigate. We will shortly see the simplicial
description of weak maps and in that description composition is just composition of simplicial
maps, so is easy. As a consequence, as yet, no use for a composition formula in the algebraic form
of the definition seems to have been found and we will not discuss it further, except to point out
that to investigate it yourself can be a useful exercise in linking the 2-group(oid) way of thinking
to the crossed module way.

(v) The above algebraic definition is not intended to be in a neatest form. Some of the conditions
may be redundant, for instance. The list is inspired both by Noohi’s notes, and the form given
there, but also by the interpretation of each condition in terms of the pseudo-functorial one.

We observed earlier the similarity between the rules for a weak map, f : C→ C′, and those for a
weak action. To clarify this a bit further, note that if C = (1, P, 1) is ‘really a group’, then a weak
map, f : C → C′, consists just of f0 and ϕ, as the only value f1(c) can take is 1 corresponding to
c = 1! It is a normalised pseudo-functor from P [1] to X (C′).

A weak action of P on P ′ would be a pseudo-functor from P [1] to Aut(P ′). The only difference
between the two notions is to replace the automorphism 2-group, Aut(P ′) by the general 2-group,
X (C′). A weak action of P on P ′ can thus be thought of as a weak map from P to Aut(P ′), (with
allowance being made for a deliberate confusion between the 2-group of automorphisms of P ′ and
the corresponding crossed module).

A natural generalisation of weak action of a group is thus a weak action of a crossed module, C,
which can be defined to be an op-lax functor from X (C) to whatever 2-category you like. Equally
well, you can make C act weakly on some object in a simplicially enriched setting by using an
S-functor from the corresponding simplicial group.

Finally we note the following very interesting and useful result.

Weak maps induce morphisms on homotopy groups.

More precisely,
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Proposition 109 Suppose that f : C → D is a weak map of crossed modules, then f induces
morphisms

πi(f) : πi(C)→ πi(D)

for i = 0, 1.

Proof: There are several different proofs of this. Starting from the algebraic description, we
have that f0 induces a homomorphism from P/∂C to P ′/∂C ′. (This looks to be ‘immediate’ from
condition W3, but, of course, you do have to check that the apparently induced morphism is
‘well-defined’. This is easy since f0(∂c) = ∂f1(c).) That handles the i = 0 case.

Suppose next that c ∈ Ker ∂, then clearly f1(c) ∈ Ker ∂′. Is the resulting induced mapping a
homomorphism? Of course, this follows from W2, and we are finished. �

There are also easy proofs of this coming from the simplicial description, as we will see.

We have already commented on the link between weak actions and maps between nerves /
classifying spaces, and also on the links between extensions, sections and weak actions. We will
shortly explore the extension of these links to give us more insight into weak maps.

11.7.2 The simplicial description

Suppose C and D are two crossed modules and f : C → D a weak map between them in the sense
of the definition on page 473. We will rewrite this in a more ‘pseudo-functorial’ form as a pseudo-
functor, F = (F, γ) : X (C) → X (D), between the corresponding 2-groupoids. By the properties
of the nerve construction that we saw earlier in Proposition 101, there is equivalently a simplicial
map,

f : Ner(X (C))→ Ner(X (D)).

In this description, composition of weak maps is no problem, just compose the corresponding
simplicial maps. Using the natural isomorphism from Proposition 104, from such an f , we get a
corresponding morphism of (reduced) simplicial sets,

f : W (K(C))→W (K(D)),

and, by the adjunction between W and the loop groupoid functor, G, (mentioned back in section
6.2.1, page 201), we get a morphism of simplicial groups,

f : GW (K(C))→ K(D).

The simplicial group, K(D), has a Moore complex of length 1, so f factors via a quotient of
G := GW (K(C)), giving K of the crossed module M(G, 1), i.e., the Moore complex of this quotient
will be the crossed module:

∂ :
NG1

d0(NG2)
→ G0.

As G is a free simplicial group, this will have G0 a free group.
There is a morphism, G → K(C), corresponding to the identity morphism from W (K(C)) to

itself, so this is the counit of the adjunction and is a weak equivalence of simplicial groups, i.e., it
induces isomorphisms on all homotopy groups. We thus get a span

K(C)
εK(C)←− G −→ K(D),
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or, passing to crossed modules,
C←M(G, 1)→ D.

We know that the left hand part of the span is a weak equivalence of crossed modules in the
sense of section 3.1 (or of simplicial groups, if we go back a line or two), so what really is this G?
It was formed from W (K(C)) by applying the loop groupoid functor, G, which is left adjoint to W
and, as we said above, the natural map, GW → Id is the counit of that adjunction. The results that
we mentioned earlier (due to Dwyer and Kan, [69], or originally, as we really are only looking at
the reduced case, to Kan, [? ]) include that this is a weak equivalence, i.e., it induces isomorphisms
on all homotopy groups. (Look up the theory in Goerss and Jardine, [86], for example, if you need
more detail.)

This observation gives us a second proof of the result from page 481.

Proposition 110 (Simplicial version of Proposition 109) Suppose that f : C → D is a weak map
of crossed modules, then f induces morphisms,

πi(f) : πi(C)→ πi(D),

for i = 0, 1.

Simplicial Proof: We consider f as the span,

C←M(G, 1)→ D.

Now applying πi, we get

πi(C)
∼=← πi(M(G, 1))→ πi(D),

but the left hand side is a natural isomorphism, and the induced morphism is the composite of
that isomorphism’s inverse followed by the induced morphism coming from the right hand branch
of the span. �

We still need to describe G in any detail, and to do this we need to revisit the loop groupoid
functor, G(−), and, as we have used the conjugate W , we must take its conjugate, i.e., the functional
composition order version of that construction.

11.7.3 The conjugate loop groupoid

It will be convenient to present the conjugate version of the Dwyer-Kan loop groupoid, that is the
one that corresponds to the functional composition order and to the form of W that we have just
seen, above page 468. The precise description, once we have it, will have an obvious relation with
the more standard form that we have seen earlier (page 206), but we will take the opportunity to
explore a little why this works and so will pretend to forget that we have seen the other form.

We suppose given a simplicial map, f : K → WH for H an S-groupoid, where we take W in
the ‘functional’ form above, (page 468). We want to construct an ‘adjoint map’, f : G(K) → H,
but as yet do not have an explicit description of G.

We have G(K) will be some S-groupoid on the object set, K0, and f on objects will just be
f0 (on vertices). We know G(K)0 will be some groupoid and f , on an arrow g : x → y, must be
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determined by f1 on K1, so the obvious solution is that G(K)0 will be the free groupoid on the
non-degenerate 1-simplices. (We must put s0(x) = idx, for x ∈ K0. That is needed to get identities
to work correctly - for you to investigate.) We will use functional composition order in G(K)0,
of course.

Defining, for x ∈ K0, x to denote the corresponding object of G(K), then, for k ∈ K1, we will
extend the overline notation and write k : d1k → d0k for the corresponding generator of G(K)0

and then f(k)0 : f0d1(k) → f0d0(k) in H0, will be given by f1(k). (Freeness of G(K)0 guarantees
that this f0 exists and is unique with the correct universal property.)

The fun starts in dimension 1. Suppose now k ∈ K1, then

f2(k) = (h2, h1) ∈W (H)2,

and we will write h2 = h2(k), h1 = h1(k), as these simplices clearly depend on the input k. We
have hi(k) ∈ Hi−1 and s(h2(k)) = t(h1(k)).

We need a groupoid, G(K)1 with K0 as its set of objects, and a map f1 : G(K)1 → H1. (We
expect ‘freeness’ as we have a left adjoint - but free on what? There are several choices to try
and several of them work, since we are in a groupoid and, to some extent, we are making a choice
of generators, so conjugate generators might also give a valid choice and an isomorphic G(K)1.)
Writing k for the generator corresponding to k ∈ K2, we do not know what the source and target
of k should be. Clearly they have to be amongst its vertices! Which ones? There are three of them!

Rather than choose the obvious one with source being the vertex of k corresponding to 0 (i.e.,
d1d2(k)) and target being that corresponding to 2 (so d0d0(k)), we will look at f and see if there
are advantages with any other choice. Looking at f(k)1, it has to be in H1 and we already have an
element of that groupoid namely h2(k). This suggests that we try defining f(k)1 to be h2(k) and
see what that implies for k itself.

We have

f(d0(k)) = d0(f(k)) = (d0h2(k)),

f(d1(k)) = d1(f(k)) = (d1h2(k).h1(k)),

f(d2(k)) = d2(f(k)) = (h1(k)),

and, if we take
f1(k) = h2(k),

then

d0f1(k) = d0h2(k) = f(d0(k)),

d1f1(k) = d1h2(k) = f(d1(k)).f(d2(k))−1,

so as to cancel the h1(k) term. This suggests that we define d0(k) = d0(k), but d1(k) = d1(k)(d2(k))−1.
This corresponds to the source of k being the target of d2(k), that is the object d0d2(k) = d1d0(k),
whilst the target of k would be the same as that of d0(k), namely the object d0d0(k).

Those are the natural choices for that choice of f1. To summarise

• if k ∈ K2, s(k) = d1d0(k), t(k) = d
(2)
0 (k), whilst

– d0(k) = d0(k),

– d1(k) = d1(k)(d2(k))−1,
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and it works.

We define si(k) = si(k) for 0 ≤ i ≤ n − 1 and set sn(k) = identity, and do this for all n,
although we have not yet looked at k ∈ Kn for n > 2, to which we turn next:

• For k ∈ Kn, in general, we take k ∈ G(K)n−1 with

– s(k) = d1d
(n−1)
0 (k),

– t(k) = d
(n)
0 (k)

with G(K)n−1 free on the graph,

Kn
s //
t
// K0 ,

excepting the edges sn(x) for x ∈ Kn−1.

The face maps are given by

– di(k) = di(k) for 0 ≤ i < n− 1,

– dn−1(k) = dn−1(k)(dn(k))−1.

It is easy to check that these satisfy the simplicial identities with the degeneracies as given earlier.

We have chosen this source and target, based on a reasonable choice for f , but there are other
choices that could perhaps have been made. For instance, for (h2, h1) ∈W (H)2 with s(h2) = t(h1),
but that, perhaps, suggests forming h2 · s1(h1), or similar, and this might give another way of
defining generators for G(K)n−1 and hence a different expression for the elements. We would
expect that the result is isomorphic to the G that we have written down, as both should be adjoint
to W . The inconvenience of the definition that we have given is that the source and target of k seem
very strange. It would be nice to have, for instance, for k ∈ K2, s(k) = d1d2(k) and t(k) = d0d0(k)
as these, naively, look to be where the simplex starts and ends. Such a choice would make it easier
to link it with the left adjoint of the homotopy coherent nerve functor. On the ‘plus side’, for the
G that we have written down (and also for the Dwyer - Kan original version), is that it has an easy
unit and counit for the adjunction and a clear link with the twisting function (cf. page 218) for
the reduced case. (The other choices suggested may also work and the links with twisting function
formulations of twisted cartesian products may be as clear in that revised form. (I have never seen
it explored. Such an exploration would be a good exercise to do. If it works well, it could be
useful; if it does not work out, why not? Perhaps some reader will attempt this. I do not
know the answer.)

We have stated that this form of G is left adjoint to the ‘functional form’ of W and we launched
into this to examine what the idea of ‘weak morphism’ would give at the ‘elementwise’ level. Re-
member, a weak morphism from C to D corresponded to a map of simplicial groups from GW (K(C))
to K(D). The counit of the adjunction goes from GW to Id and one way to get some data that
correspond to a weak morphism is to find some neat way of describing a section of this from K(C)
to GW (K(C)). That would, we may suppose, correspond to a weak morphism from C to M(G, 1),
where G = GW (K(C)).)

For this to be feasible, we need to know more about the counit, ε : GW (H) → H, in general,
and so may as well look at the unit, η : K → WG(K), as well, so as to indicate the structures
behind this adjunction.
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The unit, ηK : K → WG(K): Remember what ηK is. It corresponds, in the adjunction, to
the identity on G(K), so one way to derive the following formulae is to work out f : K → W (H),
when starting with f : G(K)→ H.

We have that if k ∈ Kn, then f
n
(k) will be of the form (hn, . . . , h1) with hi ∈ Hi−1, as before.

Looking at dn(f
n
(k) = f

n−1
(dn(k)) gives us (hn−1, . . . , h1) and allows us to use induction to get

all but hn ∈ Hn−1, but we also have that fn−1(k) ∈ Hn−1, so we have an obvious candidate for
that missing element.

You can easily follow through this process, either for a general f : G(K) → H, or just for
f : G(K)→ G(K) being the identity morphism, and this gives ηK .

To write ηK down neatly, it is useful to introduce an abbreviation. If k ∈ Kn, its last listed face
is dnk and we will need to iterate this last face construction, dn−1dn(k) and so on. Rather than
have long strings di . . . dn−1dn(k), we will write ‘L′ for ‘last’ and so define

d
(m)
L = dn−m+1 . . . dn−1dn

as the m-iterated last face operator. With this notation, for k ∈ Kn,

ηKk = (k, dn(k), . . . , d
(n−1)
L (k)).

(You are left to check the detail.)

The counit, εH : GW (H) → H: We have already seen how to build f : G(K) → H if we
start with f : K → W (H), as that was how we sorted out the structure in this version of G(K).
Given such an f , where fn(k) = (hn(k), . . . , h1(k)), we had that

fn−1(k) = hn(k).

We thus get, in particular, that if we have h = (hn, . . . , h1) in W (H), then

εH(h) = hn,

so is almost a ‘projection’ defined on the generators. (Of course, it resembles even more the counit
of the free group(oid) monad which evaluates a word in the elements of a group.)

11.7.4 Identifying M(G, 1)

It is not difficult to start identifying the Moore complex, N(GW (H)), in terms of free groups on
Moore complex terms from H itself. You can do this with ‘bare hands’ and it is quite instructive.
A complete verification of what you might suspect the terms to be is quite tricky, however, so we
will limit ourselves to the case H = K(C) for C, our ‘usual’ crossed module, C = (C,P, ∂), as, there,
N(K(C))n is trivial for n ≥ 2, and we will even avoid calculating N(GW (K(C)))1, as we really
need its quotient M(GW (K(C)), 1). (We will, as before, write G for GW (K(C)), for convenience.)

We will use a neat argument to identify the crossed module, M(GW (K(C)), 1), via another
route. Before that we will look at the bottom terms of the Moore complex of this G.

We write h = (hn, . . . , h1), so this defines a generator h in Gn−1. We thus have G0 is freely
generated by the elements of P , i.e., G0

∼= FU(P ), where F is the free group functor and U the
underlying set functor.
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We can examine a generator, h, for n = 2, i.e., in G1, and

d1(h) = d1(h).d2(h)
−1

= (d1(h2).h1).(h1)
−1
.

We immediately can see that such a term will vanish if d1(h2) is trivial and with a little more work
can show that a word in such terms and their inverses vanishes if d1 of the h2-parts of it vanishes.
(We will leave this slightly vague as the calculation is worth doing and this is worth pursuing
on your own, so as to get a better ‘elementary’ understanding of G1 - and, in fact, of higher Gn
in more generality.) This suggests that N(G)1 may be the free group on the underlying set of
NK(C)1, but does not by itself prove this (and as we will side-step this calculation shortly, we do
not need to do it now).

Of course, M(G, 1) has ‘top term’ NG1/d0(NG2), so attacking at the elementwise level, the
next step would seem to be to work out NG2 or rather d0(NG2) as that is all we need for the
moment. We will not, in fact, do this, although, we repeat, it is worthwhile doing so, instead
we will backtrack a little and review the problem from another direction, one that we visited a few
pages back.

We have the counit of the adjunction, giving

ε : G→ K(C),

and, by the construction of the associated crossed complex, C(G), of the simplicial group G, an
adjoint induced map,

C(G)→ C.

This factorises via the map
M(G, 1)→ C,

that we are seeking to understand. For this last step, we are using that M(G, 1) is left adjoint to
the natural inclusion of the category of crossed modules into that of crossed complexes (both can
be ‘reduced’ or unreduced, it makes no difference).

We also had that C(−) was left adjoint to the ‘inclusion’ of crossed complexes (disguised, via
K and the Dold-Kan theorem, as group (or groupoid) T -complexes) into all simplicial groups (or
S-groupoids). This chain of left adjoints translates into a single universal property, one which is
very useful.

If we have any crossed module E having FU(P ) at its base, and any morphism

f : E→ C,

having that f0 : E0 → P is εP : FU(P ) → P , the counit of the free group monad, then we can
factor f through the pullback crossed module, ε∗P (C):

E1

  BBBBBBBB
// E1 ×P C

zzuuuuuuuuu

E0

(see page 41 and note that here ε∗P (C)1
∼= E1 ×P C). We will generalise this slightly in a moment,

but first we introduce some terminology. As before, C = (C,P, ∂C) and D = (D,Q, ∂D) are crossed
modules:
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Definition: (i) A map, f : C → D, of crossed modules is a fibration if f1 : C → D and
f0 : P → Q are both epimorphisms of groups.

(ii) A map, f, as above, is a trivial fibration if it is a fibration and the induced map,

C → D ×Q P,

is an isomorphism.

Remarks: (i) If f : C → D is a fibration, it should be obvious that K(f) : K(C) → K(D) is
a dimensionwise epimorphism of simplicial groups and hence is a fibration of such (in the sense
we discussed in section 1.3.5, page 34). We therefore get a fibration exact sequence of homotopy
groups. We set B = Ker(f), that is, (Ker(f1),Ker(f0), ∂) for the restricted ∂ = ∂C|Ker(f1), and
then obtain

1→ π1(B)→ π1(C)→ π1(D)→ π0(B)→ π0(C)→ π0(D)→ 1.

This is just the usual Ker−Coker 6-term exact sequence of homological algebra, but in a slightly
non-Abelian context.

(Remember that in our notation π1(C) = Ker ∂C and π0(C) = Coker ∂C ∼= P/∂CC. This is
a shift of index from the notation used in some sources, where our π1(C) would be their π2(C),
because it is the π2 of the classifying space of C. Likewise our π0 is their π1, so always check
when comparing results.)

(ii) Suppose now that

C
f1 //

∂C
��

D

∂D
��

P
f0
// Q

is a pullback square (which is just saying that C → D ×Q P is an isomorphism). It is well known
that that implies that the kernels of ∂C and ∂D are isomorphic (via the restricted f1). That fact is
general and has a useful, easy categorical proof, but, none-the-less, we will give an ‘element-wise’
one, since it shows different aspects that can also be useful. It is equally easy, but slightly less
general.

We replace C by D ×Q P , so an element of this is a pair, (d, p), such that ∂Dd = f0p. The
description of ∂C is then ∂C(d, p) = p, the second projection morphism. If (d, p) ∈ Ker ∂C, then p =
1P and ∂Dd = f01P = 1Q, so the isomorphism claimed associates (d, 1) and d, where d ∈ Ker ∂D.

Going back to the exact sequence, we have that the induced map from π1(C) to π1(D) is an
isomorphism in this case (as π1(B) is trivial). We can calculate B explicitly, of course. Identifying
C with D ×Q P once again, f1(d, p) = d, so (d, p) ∈ Ker f1 if d = 1D, and then, of course,
f0(p) = 1Q, so p ∈ Ker f0. The crossed module, B, is thus isomorphic to the crossed module,
(Ker f0,Ker f0, id), so, again of course, π1(B) is trivial! It is then clear that π0(B) is also trivial.
In other words,

Lemma 73 A trivial fibration of crossed modules is a weak equivalence. �

The particularly useful case of this is the following: Given a crossed module, C = (C,P, ∂C),
pick a free group F together with an epimorphism,

ε : F → P,
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(for instance, if given a presentation of P , use the free group on the given set of generators). Form
ε∗(C) = (C×P F, F, ∂′), which will be, as we know, a crossed module. There is an induced fibration,

f : ε∗(C)→ C,

and this will be, by construction, a trivial fibration.

Example: We could take F = FU(P ), the free group on the underlying set of P with the
counit, εP , as the epimorphism. Our earlier discussion suggested that ε∗P (C) looks somewhat like
our G from there.

This example is what we will need, but it is not the only one around, of course. (That ‘looks
somewhat like’ is vague and we need to do better than that! Here is that in detail.)

Proposition 111 For C = (C,P, ∂C), G = GW (K(C)), and εP : FU(P ) → P , as before, there is
an isomorphism,

M(G, 1) ∼= ε∗P (C).

Proof: We know the base groups are both isomorphic to FU(P ), and so have to produce an
isomorphism,

M(G, 1)1
∼= FU(P )×P C,

over P , compatibly with the actions.
We certainly have the counit morphism,

M(G, 1)1

∂
��

// C

∂C

��
FU(P ) εP

// P

which we will call f, for convenience. We know it is a weak equivalence, since GW (K(C))→ K(C)
is a weak equivalence of simplicial groups, so Ker f has trivial homotopy.

We get f : M(G, 1)1 → FU(P )×P C by the universal property of pullbacks. Explicitly

f(h) = (∂h, f1(h)).

This map, f , is a morphism of crossed modules by simple general arguments, (i.e., nothing to do
with our particular situation here). We thus want to prove f is an isomorphism.

We note that Ker f ⊆ Ker f1 ∩Ker ∂, but Ker f has trivial π1, so Ker f must be trivial and
f is a monomorphism.

Is f an epimorphism? If (h0, c1) ∈ FU(P )×P C, so f0(h0) = ∂c1, then pick h1 ∈M(G, 1)1 such
that f1(h1) = c1, (check that f1 is onto). We have

f0(h0) = f0(∂h1),

so h0 = ∂h1.k0 for some k0 ∈ Ker f0. We also have π0(Ker f) is trivial, so there is some k1 ∈ Ker f1

with ∂k1 = k0, but then h′ = h1k1 satisfies

∂h′ = h0, f1(h′) = f1(h1) = c1,

so f is onto. �
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11.7.5 Cofibrant replacements for crossed modules

In other words, we have identified M(G, 1) completely and it has an easy description.

What about the properties of other ε∗(C) for ε : F → P , with F free? For the moment, this is
prompted by curiosity, but it does provide some useful insights later on.

Our present situation is that a weak map from C to D is given by an actual map of crossed
modules,

ε∗P (C)→ D,

and we also know that the map, ε∗P (C)
'→ C, is ‘really’ a counit or ‘augmentation’ of a resolution.

We get a span

C
'← ε∗P (C)→ D.

What about other similar spans,

C
'← ε∗(C)→ D,

with ε, an epimorphism, ε : F → P , and F a free group? Do they also give weak maps in some
way? Of course, this is almost the same question as the previous one.

Before looking at this, we note a nice result:

Proposition 112 For C = (C,P, ∂C), with P a free group, the natural morphism ε∗P (C)
'→ C is a

split epimorphism.

Proof: Of course, ε : FU(P ) → P is split, since P is free. Let σ0 : P → FU(P ) be a splitting.
From σ0, we can construct

σ1 : C → FU(P )×P C,

by

σ1(c) = (σ0∂C(c), c),

as being the unique group homomorphism given by the pullback property. It is easy to check that
(σ1, σ0) defines a crossed module morphism splitting the epimorphism induced by ε∗P . �

In fact, this split epimorphism is a trivial fibration, but we will not need this.

We next introduce a bit more of the homotopical terminology as applied to crossed modules,
or equivalently to 2-group(oid)s. The ideas are derived from the paper, [? ], by Moerdijk and
Svensson. We first extend ‘fibration’ and ‘trivial fibration’ from crossed modules to 2-group(oid)s
via the usual equivalence of categories. We give this in two forms, the first is from Noohi’s paper,
[? ], the second from [? ].

Definition: A morphism, ψ : A → B, of 2-groupoids is called a Grothendieck fibration (or
more simply a fibration) if it satisfies the following properties:

Fib. 1: for every arrow b : B0 → B1 in B and every object, A1, in A over B1, (so ψ(A1) = B1),
there is a lift a : A0 → A1 with codomain, a1;

Fib. 2: for every 2-arrow, β : b0 ⇒ b1 in B, and every arrow a1 in A such that ψ(a1) = b1, there is
an arrow a0 and a 2-arrow α : a0 ⇒ a1 such that ψ(α) = β.
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The fibration is trivial if it is also a weak equivalence, i.e., inducing isomorphisms on π0, π1 and
π2.

Remark: This is nice as the first condition is a lifting condition for 1-arrows, whilst the second
is one for 2-arrows. It is worth noting a slight more or less inconsequential choice is being made
here. In covering space theory, it is usual to mention ‘unique path lifting’. Recall that this relates
to a continuous map of spaces, say p : Y → X, and it requires that if λ : I → X is a path in X and
we specify a point y0 over x0 = λ(0), the starting point of λ, then there is a (unique) lift, λ̃, of λ
starting at y0.

In the above definition of fibration for 2-groupoids, no uniqueness is required, but also the
specified point is the codomain of the 1-arrow, which intuitively corresponds to the end of the
path rather than the start. This does not matter here as in a 2-groupoid both 1- and 2-arrows are
invertible, but it is another instance of the lax / op-lax / pseudo ‘conflict’, so is worth noting that
a choice has been made here.

Warning about the notation in ‘trivial fibration’: At the risk of repeating this too often,
it should be noted that, if thinking of crossed modules rather than 2-groupoids, the above π1 is the
cokernel of the structure map and π2 is its kernel. The set of connected components for a 2-group
will be a singleton. The π1 of the 2-group is the π0, in our notation, of the corresponding crossed
module or simplicial group, and so on.

The alternative definition combines the two conditions in one. It occurs in Moerdijk and
Svensson’s paper, [? ], so will be referred to as the M-S form of the definition.

Definition (alternative M-S form): A morphism, ψ : A → B, of 2-groupoids is called a
Grothendieck fibration (or more simply a fibration) if it satisfies the following condition:

for any arrow, a : A1 → A2, in A and any arrows, b1 : B0 → ψ(A1) and b2 : B0 → ψ(A2), then
any 2-arrow, α : b2 ⇒ ψ(a) ◦ b1, can be lifted to a 2-arrow, α̃ : b̃2 ⇒ a ◦ b̃1, (so ψ(α̃) = α, etc.).

Proposition 113 The two forms of the definition are equivalent.

Proof: We limit ourselves to a sketch, as the proof is quite easy, once you see that doing a fairly
obvious thing is exactly what is needed. (Of course, the details are the left to you as an exercise.)

First assume we have a morphism satisfying the alternative (M-S) form of the definition. We
must show it to have a lifting property for both 1- and 2-arrows.

Suppose we have b : B0 → B1 in B and an object, A1, in A over B1, (so ψ(A1) = B1), then, in
the alternative form, take b1 = b2 = b with β : b1 ⇒ b1 the identity 2-arrow. The lift given by the
M-S condition gives us a b̃ : A0 → A1 (and a β̃ that we do not actually need or use).

We thus have: ‘M-S’ ⇒ ‘1-arrow lifting’.

To derive ‘2-arrow lifting’ from ‘M-S’, we start with β : b0 ⇒ b1 and a1 such that ψ(a1) = b1,
and need to get some β̃ : b̃0 ⇒ a1 over β. This time we choose, in the input to the M-S condition,
a := a1, b1 := id, b2 := b0, so β : b2 ⇒ ψ(a) ◦ b1, as required, and can read off the lift accordingly.
(Beware, you will get an extra lift, say x, of b1 in your expression that you do not want, and cannot
guarantee that it is the identity, however it is invertible, so you can adjust things to fit.)

Given that sketch, the other direction of the equivalence is easy. Assuming 1- and 2-arrow
lifting, start with the M-S situation, lift b1 using 1-arrow lifting, then b1 ◦ ψ(a) = ψ(b̃1 ◦ a), so we
can apply 2-arrow lifting to β. �
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The advantage in having these two forms of the definition is that the M-S form is very neat
from the categorical context, but the arrow lifting version is more easily seen to be the 2-groupoid
version of the definition of fibration of crossed modules that we gave on page 487 and of the
‘classical’ epimorphism-condition for a ‘fibration of simplicial groups’.

Moerdijk and Svensson, [? ], also consider cofibrations. For the moment, we just need the
corresponding condition for an object to be cofibrant.

Definitions: (i) A 2-group, G, is cofibrant in the Moerdijk-Svensson structure, (we will say M-S
cofibrant) if every trivial fibration H → G, where H is a 2-groupoid, admits a section.

(ii) A crossed module, C, is cofibrant if the corresponding 2-group, X (C), is M-S cofibrant.

Proposition 114 (Noohi, [146]) A crossed module C = (C,P, ∂), is cofibrant if and only if P is a
free group. �

The proof, which is given by Noohi, [146], is similar to that given above for Proposition 112. It
can be safely left to the reader, except to note that it does require the use of the result that
subgroups of free groups are free. (Analogues of this result in other categories than that of groups,
would need reformulation to avoid the use of the analogous statement which may or may not be
true in such settings.)

Example: For any crossed module, C, the pullback crossed module, ε∗P (C), or, equivalently
M(GW (K(C)), 1), is cofibrant. We note also that it depends functorially on C and that there is a
natural trivial fibration, ε∗P (C)→ C.

Definition: (i) For C, a crossed module, a cofibrant replacement for C is cofibrant crossed
module QC, together with a trivial fibration, q : QC→ C.

(ii) A cofibrant replacement functor (for crossed modules) consists of a functor, Q : CMod →
CMod, together with a natural transformation, q : Q→ Id, such that for each crossed module, C,
qC : QC→ C is a cofibrant replacement for C.

The idea of cofibrant replacement given here is just the particular case for the context of crossed
modules of a general notion from homotopical algebra. (We suggest that you look at a standard
text on model categories and other ideas of homotopical algebra for further details. One such is
Hovey’s [99].) In a model category, as considered there, there are notions of weak equivalence,
fibration and cofibration and thus of fibrant and cofibrant objects. For example, in the category of
simplicial sets, considered with its usual model category structure, weak equivalences are what we
would expect, that is, simplicial maps inducing isomorphisms of π0 and all higher homotopy groups
for all possible choices of base points. Fibrations are Kan fibrations and cofibrations are simplicial
inclusions. All objects are cofibrant, but only the Kan complexes are fibrant. For simplicial groups,
fibrations are the morphisms that are epimorphisms in each dimension, and the cofibrant objects
are the simplicial groups that are free in each dimension.

For any model category, one can define cofibrant replacements as above, and, dually, fibrant
replacements, and can prove that they always exist. They are the model categoric analogues of the
projective and injective resolutions of more classical homological algebra and are similarly used to
define derived functors. These, of course, are intimately related to cohomology theory, but we will
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not follow that link very far here, as our main use for this here is as an illustration and example of
homotopy coherence.

For some of the theory of cofibrant replacements and total derived functors, look at the book
by Hovey, [99], which is also an excellent introduction to the wider theory of model categories. (It
is also useful to glance back at the original sources on homotopical algebra, in particular Quillen’s
orginal [152] and the related [153].)

If C is a model category and Q is a cofibrant replacement functor, the idea is that the value
of the derived functor of some functor, F : C → D, at an object, C, is obtained by looking at
F (QC) ‘up to homotopy’. That is vague, but, in our context of weak maps, we have, for any given
crossed module, D, a functor CMod(−,D) from CModop to . . . , where? Actually ‘to the category
of groupoids’ would be a suitable choice, as we have not only morphisms between crossed modules,
but homotopies between them. There is also a groupoid of weak maps from C to D with weak
natural transformations as the arrows. (This is left to you to look up in Noohi’s papers, [146? ]
or to investigate yourselves.) As our functorial Q, given explicitly by M(GW (K(−), 1)), naturally
gives weak maps, we come back to our question from earlier, which we can now ask with more
exact terminology:

Suppose q : QC → C is a cofibrant replacement for C, and ψ : QC → D is a map of crossed
modules, does ψ induce a weak map from C to D?

We write QC = (QC1, F, ∂Q), and find that, as q : QC → C is a trivial fibration, QC1
∼=

F ×P C = q∗0(C)1. We thus have a lot of information about QC.
Next, apply the functorial construction to q : QC→ C to get

ε∗F (QC) //

��

ε∗P (C)

��
QC q

// C

as the two vertical morphisms and the bottom one are weak equivalences, so is the top. It is also
a fibration. (In fact, it is the induced map which at level 1 is the obvious map,

FU(F )×F (F ×P C)→ FU(P )×P C,

so is easily checked to be one.) It is thus a trivial fibration with cofibrant codomain. It is therefore
split by some section,

σ : ε∗P (C)→ ε∗F (QC).

We can compose this with the natural morphism, qQC : ε∗F (QC)→ QC.
Now suppose ψ : QC→ D is a morphism of crossed modules, then it gives a composite,

ε∗P (C)
σ→ ε∗F (QC)

qQC→ QC
ψ→ D.

Clearly, there may be many sections of the map from ε∗F (QC) to ε∗P (C), so many different ‘weak
maps’ would seem to correspond to a single ψ : QC → D, but these weak maps only depend on ψ
in the ‘last composition’. If we look slightly more deeply, it becomes clear that they correspond
to sections of FU(F ) → FU(P ), i.e., to choices of transversals for FU(F ) → P . This is known,
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‘standard’, even ‘classical’ territory, and will be left to you to explore. The point is that two
weak maps coming from different sections σ and σ′ are likely to be ‘homotopic’ in some sense.
(This is explored in the work of Noohi that we referred to earlier.) We summarise the above in the
following:

Proposition 115 If q : QC → C is any cofibrant replacement for a crossed module, any crossed
module morphism, ψ : QC→ D, induces a (usually non-unique) weak map of crossed modules from
C to D. �

11.7.6 Weak maps: from cofibrant replacements to the algebraic form

It is not hard to start with a weak map, f : C → D, described as a pseudo-functor from X (C)
to X (D), and to convert that description, via the nerves, to the algebraic description of f. (For
instance, as the nerve of X (C) has P in one dimension and C × P × P in the next, the values of
f on these should give the f0, f1, and the pairing without too much bother.) Leaving you to
investigate that later by yourself, let us pass further into the simplicial description and use the
functorial cosimplicial replacement, ε∗P (C), so that we specify f by a crossed module morphism,

f : ε∗P (C)→ D.

(We will write D = (D1, D0∂D).) This gives us a square

F ×P C
f1 //

∂

��

D1

∂D
��

F
f0

// D0

where we have written F for FU(P ). The elements of F ×P C are pairs (ω, c), where εP (ω) = ∂Cc,
thus ω is a word in generators corresponding to elements of P . We will write (p) for the generator
coming from p ∈ P .

Surprisingly enough the f0 in this corresponds almost exactly to the f0 in the usual algebraic
description. There is a small difference, f0(p) in the latter description is f0((p)) in the former
one, so is the composite of the cofibrant replacement’s f0 with the set theoretic section, ηP , of the
epimorphism, εP : F → P , given by ‘p goes to (p)’, in other words, with the unit of the free-forget
adjunction.

Notationally we need to distinguish the two, so will write f cri for the different levels of the
crossed module morphism, f : ε∗P (C)→ D, the superfix ‘cr’ standing for ‘cofibrant replacement’, of
course. This notation will be a temporary one. We thus have

f0(p) = f cr0 ((p)).

We need to obtain 〈−,−〉 : P ×P → D1, and f1 : C → D1 and these must satisfy certain rules; see
the definition on page 479. The basic ones are ∂Df1 = f0∂C, and the two ‘almost a homomorphism’
conditions. The one for f0 gives

f0(p2p1) = ∂〈p2, p1〉−1f0(p2)f0(p1).

This gives us a lever to get at 〈p2, p1〉. For any pair of elements, p2, p1 in P , we have a cocycle

(p2)(p1)(p2p1)−1 ∈ FU(P ) = F
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and this is in the kernel of εP . As a result, there is an element

{p2, p1} = ((p2)(p1)(p2p1)−1, 1) ∈ F ×P C.

We look at

f cr1 {p2, p1} ∈ D1.

We have

∂Df
cr
1 {p2, p1} = f cr0 ∂{p2, p1} = f0(p2)f0(p1)f0(p2p1)−1,

so if we take 〈p2, p1〉 := f cr1 {p2, p1}, we get the ‘almost a homomorphism’ condition for f0.

What about that for f1? Well, we have yet to write down some f1 in terms, perhaps, of f cr1 ,
but if we have c ∈ C, then we clearly have an element ((∂Cc), c) ∈ F ×P C, so it is a fairly safe bet
that f1(c) will be f cr1 ((∂Cc), c), (or possibly its inverse, since directions can easily get reversed with
the different conventions, and it does not pay to be too sure in advance of detailed checking!) The
obvious thing to do is to try it in the W2 ‘almost a homomorphism’ condition for f1, again see the
discussion around page 479. In fact, we note

((∂Cc2), c2).((∂Cc1), c1) = ((∂Cc2)(∂Cc1), c2c1)

= ((∂Cc2)(∂Cc1)(∂C(c2c1))−1, 1)((∂C(c2c1), c2c1),

so, mapping this via f cr1 gives

f1(c2)f1(c1) = 〈∂c2, ∂c1〉.f1(c2c1),

as required.

Of course, we will need to check the other two conditions, but that is left to you. (The cocycle
condition is easy to check, the whiskering conditions do require some work. You might start by
checking what the action of F on F ×P C is.) We have proved (modulo your checking):

Proposition 116 Given a morphism f cr : ε∗P (C)→ D, the structure

• f0 : P → D0 given by f0(p) = f cr0 ((p));

• f1 : C → D1 given by f cr1 (∂Cc), c);

• 〈−,−〉 : P × P → D1 given by 〈p2, p1〉 := f cr1 {p2, p1}, where {p2, p1} = ((p2)(p1)(p2p1)−1, 1),

specifies a weak map, f : C→ D, (in the algebraic description format). �

11.7.7 Butterflies

We have, when discussing the algebraic definition of a weak map, pointed out the similarities of
certain structure with the cocycle description of group extensions and, thus, of group cohomology.
For instance, f0 and 〈−,−〉 together yield something very like a weak action of P (on D). The
cocycle condition, also, is very reminiscent of the conditions on the factor set, f : G×G→ K, that
ensure associativity of the multiplication if reconstructing the middle term of the extension from
the two ends, together with the weak action and the factor set. This suggests that there should be
an extension associated with a weak map.
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Collecting up evidence, we have our ‘factor set’-like pairing, 〈−,−〉, going, in our typical situa-
tion, from P × P to D1. This would correspond to a group extension

D1
ι→ E

ρ→ P,

and the cocycle condition suggests that we use f0 : P → D1 to get a weak action of P on D1, that
is, looking at the cocycle condition and comparing it with the factor set condition (page 48), we
need to get P to ‘act’ on D1, and we can use f0 to get from P to D0 and then use the action of
D0 on D1 to get something that might work. In other words, we will interpret f0(p)x for p ∈ P and
x ∈ D1 as the analogue of the weak action in the extension.

To construct the middle term, E, (as in section 2.3.1), we take the set D1 × P and give it a
multiplication

(x1, p1)(x2, p2) = (x1.
f0(p1)x2.〈p1, p2〉, p1p2).

The checking that this is associative, etc., is quite easy, but we will give it in some detail as it is
neat and shows how the properties of the pseudo-functor defining the weak map are transformed
into quite usual properties of the object, E. This checking is, of course, quite standard in the
theory of group extensions.

Lemma 74 The above multiplication is associative.

Proof: We calculate

(x1, p1)((x2, p2)(x3, p3)) = (x1, p1)(x2.
f0(p2)x3〈p2, p3〉, p2p3)

= (x1.
f0(p1)x2.

f0(p1)f0(p2)x3.
f0(p1)〈p2, p3〉〈p1, p2p3〉, p1p2p3).

(It is worth noting that terms that exist in the cocycle condition for 〈−,−〉 are occurring naturally
here.) The ‘other side’ gives

((x1, p1)(x2, p2))(x3, p3)) = (x1.
f0(p1)x2〈p1, p2〉, p1p2)(x3, p3)

= (x1.
f0(p1).〈p1, p2〉.f0(p1p2)x3〈p1p2, p3〉, p1p2p3).

Comparing the two expressions, we can match up corresponding parts leaving, in the first expres-
sion,

f0(p1)f0(p2)x3.
f0(p1)〈p2, p3〉〈p1, p2p3〉,

which rewrites, using ‘cocycle’, to

f0(p1)f0(p2)x3.〈p1, p2〉〈p1p2, p3〉.

The last term matches with one in the equivalent position in the second expression. We then attack
f0(p1)f0(p2), using ‘almost a homomorphism’, giving ∂〈p1, p2〉f0(p1, p2). We finally use the Peiffer
identity, so

f0(p1)f0(p2)x3.〈p1, p2 = ∂〈p1,p2〉f0(p1,p2)x3.〈p1, p2〉
= 〈p1, p2〉.f0(p1p2)x3.〈p1, p2〉−1.〈p1, p2〉
= 〈p1, p2〉.f0(p1p2)x3,

as hoped. �
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The identity for the multiplication is clearly (1, 1), so we certainly have a monoid. What about
inverses? We are given (x, p), and so need to solve

(y, q).(x, p) = 1.

This gives q = p−1 and
y = 〈p−1, p〉f0(p−1)x−1

and so
(x, p)−1 = (〈p−1, p〉f0(p−1)x−1, p−1).

Remark: Of course, we know by standard elementary arguments that this ‘left inverse’ is also
a ‘right inverse’, but it is quite interesting to calculate the product, showing

(x, p)(〈p−1, p〉f0(p−1)x−1, p−1) = (1, 1)

directly. ‘Interesting’? Yes, because it presents some useful calculations that otherwise would not
come to the surface this early in an investigation. For instance, we have both 〈p−1, p〉 and 〈p, p−1〉,
occurring in the formulae. What is their relationship?

Lemma 75
〈p, p−1〉 = f0(p)〈p−1, p〉.

�

The proof follows from the cocycle condition using p1 = p3 = p and p2 = p−1.
Another such result is

Lemma 76
f0(p)f0(p−1) = ∂〈p, p−1〉.

�

This is, of course, an immediate consequence of ‘almost a homomorphism’ and ‘normalization’, but,
for calculations, is very useful to have explicitly stated.

We have now verified that E is a group - which was obvious from the classical theory of factor
sets and has nothing specific to do with weak maps or crossed modules. We record the structural
maps for convenience:

in D1
ι→ E

ρ→ P, the maps are given by ι(x) = (x, 1), ρ(x, p) = p.
These are easily seen to be homomorphisms.
All that is standard Schreier theory of factor sets and extensions and gives us a diagram, (a

‘partial butterfly’),

C

∂

��

D1

∂D

��

ι

~~}}}}}}}}

E

ρ
����������

P D0
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In Noohi’s theory of papillons (butterflies), (cf. [146] and [? ]), we have the following definition:

Definition: Let C = (C,P, ∂) and C′ = (C ′, P ′, ∂′) be two crossed modules. By a papillon, or
butterfly, from C to C′, we mean a commutative diagram of groups

C
κ

��@@@@@@@

∂

��

C ′

∂C′

��

ι

~~}}}}}}}

E

λ   AAAAAAA

ρ
��~~~~~~~

P P ′

in which the diagonals are complexes of groups (so λκ and ρι are trivial homomorphisms), the
NE-SW sequence,

C ′
ι→ E

ρ→ P,

is short exact (hence is a group extension), Ker ρ = Im ι, and, moreover, for all e ∈ E, c ∈ C and
c′ ∈ C ′, we have

ι(λ(e)c′) = eι(c′)e−1,

and
κ(ρ(e)c) = eκ(c′)e−1.

As ‘papillons’ are introduced, in [146] and [? ], as a way to handle weak maps, we should be
able to complete our partial butterfly to a full one by defining a NW-SE complex. The first map,
κ : C → E, must be something like κ(c) = (f1(c), ∂c), as the usual rule in these situations is ‘build
it simply from the parts that you have’. That, however, does not quite work. (This may be due to
a question of conventions when representing elements of E in the form (x, p), and some different
choice might result in the ‘fault’ disappearing, however I doubt it, but have no evidence ‘one way
or t’other’, - it is left as a challenge to the reader to shed some light on this!) Surprisingly
enough, what happens with that attempt gives us the clue to resolving the problem.

(To simplify notation slightly, we will usually write ∂ for the boundary in all the crossed modules
involved. Context in each case diminishes the risk of confusion.)

Define κ(c) = (f1(c)−1, ∂c).

Proposition 117 Defined by this, κ : C → E is a homomorphism satisfying

κ(ρ(e)c) = eκ(c)e−1.

Proof: (This is another of the calculatory verification proofs that could be very safely left to the
reader - but, because of strange inversion in the first factor of κ, it is interesting to see how this
works.)

We take c1, c2 ∈ C,

κ(c2c1) = (f1(c2c1)−1, ∂c2c1)

= ((〈∂c2, ∂c1〉−1f1(c2)f1(c1))−1, ∂c2∂c1)

= (f1(c1)−1f1(c2)−1〈∂c2, ∂c1〉, ∂c2∂c1),
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whilst

κ(c2)κ(c1) = (f1(c2)−1, ∂c2)(f1(c1)−1, ∂c1)

= (f1(c2)−1.f0(∂c2)f1(c1)−1〈∂c2, ∂c1〉, ∂c2∂c1).

Using that f0∂ = ∂f1, and the Peiffer identity completes the proof that these are equal.

To prove the second condition, it helps to note the following lemma.

Lemma 77 For any c ∈ C, c′ ∈ C ′, [ι(c′), κ(c)] = 1.

Proof: We note ι(c′) = (c′, 1), whilst κ(c) = (f1(c)−1, ∂c). Now

(c′, 1)(f1(c)−1, ∂c) = (c′f1(c)−1, ∂c),

since 〈1, ∂c〉 = 1 and f0(1) = 1. On the other hand,

(f1(c)−1, ∂c)(c′, 1) = (f1(c)−1.f0(∂c)c′, ∂c),

but, as we have used so many times f0∂ = ∂f1, so the Peiffer identity gives f0(∂c)c′ = f1(c)c′f1(c)−1

and the lemma follows. �

Because of this and the fact that any (x, p) ∈ E can be decomposed as (x, 1)(1, p), it suffices to
prove the result for e = (1, p). This is quite easy and goes as follows:

We first work out κ(pc). This is (f1(pc)−1, p.∂c.p−1), so we first need f1(pc), but the formula
from earlier gave

f1(pc) = 〈p.∂c, p−1〉−1〈p, ∂c〉−1f1(c)〈p, p−1〉,

so our ‘target formula’ should be

κ(pc) = (f1(pc)−1, p∂cp−1) = (〈p, p−1〉−1f1(c)−1〈p, ∂c〉〈p.∂c, p−1〉, p.∂c.p−1).

We thus have to show that this is the result of conjugating κ(c) by (1, p). Now

(1, p)(f1(c)−1, ∂c)(1, p)−1 = (1, p)(f1(c)−1, ∂c)(〈p−1, p〉−1, p−1)

= (1, p)(f1(c)−1.f0(∂c)〈p−1, p〉−1〈∂c, p−1〉, ∂c.p−1)

= (1, p)(f1(c)−1.∂f1(c)〈p−1, p〉−1〈∂c, p−1〉, ∂c.p−1)

= (1, p)(f1(c)−1.f1(c)〈p−1, p〉−1f1(c)−1〈∂c, p−1〉, ∂c.p−1) by Peiffer

= (1, p)(〈p−1, p〉−1f1(c)−1〈∂c, p−1〉, ∂c.p−1)

= (f0(p)〈p−1, p〉−1.f0(p)f1(c)−1.f0(p)〈∂c, p−1〉〈p, ∂c.p−1〉, p.∂c.p−1),

but f0(p)〈p−1, p〉−1 = 〈p, p−1〉−1, as we saw earlier, and the cocycle rule tells us that

〈p, ∂c〉〈p.∂c, p−1〉 = f0(p)〈∂c, p−1〉〈p, ∂c.p−1〉,

so the verification is complete. �

We next need λ : E → P ′. If e = (x, p) ∈ E, both x and p map easily into P ′ and, as there is
nothing to choose between them, ..., we use them both and try λ(x, p) = ∂x.f0(p).
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Lemma 78 Thus defined, λ : E → P ′ is a homomorphism, and λκ is the trivial homomorphism,
(so NW-SE is a group complex).

Proof: Left to you. �

We must also check the validity of ι’s credentials!

Proposition 118 Defining ι : C ′ → E by ι(x) = (x, 1), ι is a homomorphism, satisfying:
for all e ∈ E, and c′ ∈ C ′

ι(λ(e)c′) = eι(c′)e−1,

Proof: The first part is easy, since ι(x2x1) = (x2x1, 1), whilst the multiplication fromula in E gives
the same thing for ι(x2)ι(x1).

We next note that, if e = (x, p), then λ(e) = ∂x.f0(p), so

ι(λ(e)c′) = (∂x.f0(p)c′, 1) = (x.f0(p)c′.x−1, 1),

whilst

(x, p)(c′, 1)(x, p)−1 = (x.f0(p)c′, p)(〈p−1, p〉−1.f0(p−1)x−1, p−1)

= (x.f0(p)c′.f0(p)〈p−1, p〉−1.f0(p)f0(p−1)x−1〈p, p−1〉, 1).

We have f0(p)f0(p−1) = ∂〈p, p−1〉−1, so this simplifies to

(x.f0(p)c′.f0(p)〈p−1, p〉−1〈p, p−1〉x−1〈p, p−1〉−1〈p, p−1〉, 1),

and using that f0(p)〈p−1, p〉 = 〈p, p−1〉 gives the result. �

We summarise:

Proposition 119 From a weak map, f : C→ C′, the above construction gives a papillon, f,

C
κ

��@@@@@@@

∂

��

C ′

∂C′

��

ι

~~}}}}}}}

E

λ   AAAAAAA

ρ
��~~~~~~~

P P ′

from C to C′. �

What about a converse to this? Does a papillon yield a weak map in some nice way? Recalling
that the NE-SW sequence is a group extension, if we pick a section for ρ and compose it with λ,
we should get a possible f0 : P → P ′, and a ‘factor set’ pairing 〈−, 〉 : P × P → C ′. We will also
obtain a decomposition of E as a product of P and C ′ at the underlying set level, and hence can
use κ and the set theoretic projection to C ′ to obtain a suitable f1. we will leave the investigation
of this as an extended exercise for you.
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Of course, different sections of ρ may yield different f0s, so we need a notion of morphisms of
papillons and there is an obvious candidate.

Definition: If C, and C′ are two crossed modules and f and f
′ are two papillons from C to C′

(with central group E′ in f
′, and with ‘primes’ on the morphisms, κ′, etc.), then a morphism from

f to f
′ is a homomorphism, ϕ : E → E′, such that κ′ = ϕκ, etc., thus making the evident diagram

commute.

Such diagrams compose in the obvious way. This gives a category, in fact, a groupoid because
of the following:

Lemma 79 Any morphism ϕ : f → f
′ between two papillons,f to f

′, as above, is an isomorphism.

Proof: This is clear from the fact that ϕ yields a map of extensions

1 // C ′ // E //

ϕ

��

P // 1

1 // C ′ // E′ // P // 1

and any such ϕ must be an isomorphism by the usual 5-lemma argument on short exact sequences.
(Really you should check that the inverse of ϕ (as a group homomorphism) gives a
morphism of papillons inverse to ϕ itself, but that is more or less obvious.) �

The category of papillons from C to C′ is thus a groupoid, but so is the category of weak
maps and ‘weak natural transformations’ between them. It may be useful to investigate the
relationships between them. This is one of the themes of Noohi’s work, [? ]. His joint work
with Aldrovandi, [? ], further explores this in the context of stacks (of groupoids) and so is also
highly relevant to our overall themes.

11.7.8 . . . and the strict morphisms in all that?

As we noted much earlier, any morphism of crossed modules gives a 2-functor of the corresponding
2-groups, that is, a strict, rather than an op-lax, ‘2-functor’. It would be very bizarre if the fact
that a given ‘weak morphism’ was actually a ‘strict’ one was not evident in the descriptions. That
is not to claim that we should be necessarily able to glance at some weak map and decide quickly if
it is actually a strict one. No, we should perhaps expect to have to do a little work, to test ‘things’
somewhat. What ‘things’ however?

We start with the description via nerves. Any strict f : C→ D induces a simplicial map,

Ner(f) : Ner(C)→ Ner(D),

both for Ner(C) interpreted as Nerh.c.(X (C)) and as W (K(C)). Does Ner(f) have any identifiable
property over arbitrary simplicial maps between two nerves (and thus over weak maps)?

The secret identifier is ‘preservation of thinness’. We have had several definitions of the nerve of
a crossed module. We had W (K(C)), Nerh.c.(X (C)), but also Crs(π(−),C), that is, the simplicial
set of crossed complex maps from the various π(n) to C, where this π(n) is the free crossed complex
on the n-simplex, ∆[n], as was briefly discussed on page 208. That ‘singular complex ’ version is
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very useful, and we have not yet exhausted its possibilities, far from it, but neither have we really
done it justice, yet!

These various nerves are isomorphic, and so are all T -complexes. The thin elements in the
last description are those τ : π(n) → C, which map the generator corresponding to ιn, the top
level non-degenerate n-simplex of ∆[n], to an identity element. The elements of each Ner(C)n for
n > 2 are all thin since, as a crossed complex, C is trivial in dimensions greater than 2. (Beware of
indexing conventions! Yes, we do need 2, here not 1.)

If we use the h. c. / geometric nerve form, a general 2-simplex, τ in Ner(C) has form,

τ = (x0, x1, x2;x(012) : x1 ⇒ x0x2),

where, thus, x(012) = (c, x1) with ∂c.x1 = x0x2. The interpretation of the condition that τ(ι2) be
the identity is that c is the identity of C, i.e., the 2-simplex is ‘really’ in Ner(P ), in other words,
it commutes, x1 = x0x2.

The thin 1-simplices will be the degenerate ones. What about thin 3-simplices? We know
Ner(C) is 3-coskeletal, and this came out to be because there were no non-identity 3-cells in the 2-
groupoid, X (C), and, yes, that means that any τ : π(3)→ C must send the generator corresponding
to ι3 to the identity element, ‘there ain’t nothing else there to map it to!’. We thus have all 3-
simplices are thin, as are all higher dimensional simplices.

Remark: It is a good exercise to define thinness for these simplices in this way (i.e., without
explicit reference to crossed complexes or to π(n)), and then to check directly that the result is a
T -complex (definition and discussion starting on page 34 if you need it). Another useful exercise
is to write down what π(n) is in ‘gory’ detail and to explore the isomorphisms that we mentioned
above between the descriptions of Ner(C) given here and the crossed complex based one as a
‘singular complex’.

To continue this exploration of ‘strictness’ of morphisms, we probably need a definition:

Definition: A simplicial map, f : Ner(C) → Ner(D), between the geometric nerves of two
crossed modules, preserves thin elements or, more simply, preserves thinness if, for each n, and
each thin n-simplex, t ∈ Ner(C)n, fn(t) is thin in Ner(D).

Remark: We should comment that preservation of thinness really devolves down to checking
that a map preserves thin 2-simplices. The thin 1-simplices are just the degenerate ones, so they
will be preserved by any simplicial map, whilst, above dimension 2, all simplices are thin, so
preservation is automatic!

We showed (Proposition 456) how a simplicial map, f : Ner(C) → Ner(D), induced the data
for a pseudo-functor,

F = (F,ϕ) : X (C)→ X (D).

(We will not need to use the detailed notation from there for the limited discussion that we will give
here, so will abuse notation enormously!) Translating that data, in the algebraic / combinatorial
format, we look at (p0, p0p2, p2; id) ∈ Ner(C) and obtain

f2(p0, p0p2, p2; id) = (f0(p0), f0(p0p2), f0(p2); (〈p2, p0〉, f0(p0p2)))
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with ∂〈p2, p0〉f0(p0p2) = f0(p0)f0(p2).

If f preserves thinness, then 〈p2, p0〉 is trivial, i.e., the identity in D, so f0 is a homomorphism,
as is f1, and, by the post-whiskering axiom, f1(pc) = f0(p)f1(c), so f is a (strict) morphism of
crossed modules, as required. �

Clearly, if f : C→ D is a crossed module morphism, then it preserves thinness (in all dimensions).
(Just check it.)

This raises an interesting question. Is there a simple example of a weak (and not strict)
morphism of crossed modules, having both f0 and f1 group homomorphisms? In such a case, all
the ∂〈p1, p2〉 and 〈∂c1, ∂c2〉 would be trivial, but would it be possible to have some 〈p1, p2〉 non-
trivial? The obvious place to look first would be with modules thought of as crossed modules, so
the various ∂ would be trivial.

The above more or less indicates what a strict morphism has that a weak one does not, from
the point of view of nerves. What about defining weak maps via cofibrant replacements? If we
start with a strict morphism, f : C → D, and a cofibrant replacement, q : Q → C, then there is
clearly a morphism,

fq : Q→ D,

which will be a weak map from C to D, or, more exactly, will be one if Q is the natural functorial
cofibrant replacement, and, more generally, will give a weak map, determined up to equivalence.
Conversely, given some g : Q → D, it will correspond to a strict map if g factors through q giving
a ‘complementary’ morphism, f : C → D, . . . . Uniqueness, etc, of the factorisation is left to you
to analyse.

Finally, what sort of papillon / butterfly corresponds to a strict morphism, f : C → C′? We
know that f corresponds to a pairing, 〈−,−〉 : P × P → C ′, which, here, is trivial. It follows that
the NE-SW extension of the papillon will be split, with, as a result, E ∼= C ′ o P , since 〈−,−〉 was
a factor set for it.

This gives a papillon:

C
κ

##GGGGGGGGG

∂

��

C ′

∂C′

��

ι

{{wwwwwwwww

C ′ o P

λ ##GGGGGGGGG

ρ
{{wwwwwwwww

P P ′

in which ρ is a split epimorphism.

Now we can go back. First the obvious definition:

Definition: A papillon, as above, in which the NE-SW extension is split (with given splitting)
will be called a split papillon.
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Suppose we have such a split papillon, with s : P → C ′ o P , the chosen splitting. (Of course,
as soon as we choose a splitting, we are choosing an isomorphism of the central object, E, of the
papillon and a semidirect product representation of it. Consequently, if we write C ′ o P for the
centre term of a papillon, we are not only identifying that group, but are specifying the splitting
(namely s(p) = (1, p)) and a host of other information. This does lead to a certain redundancy of
notation and, perhaps, of terminology, but, hopefully, is clearer in terms of the exposition.) The
decomposition as C ′ o P also gives us a set theoretic projection from C ′ o P to C ′, which we will
denote by d. (This satisfies

d((c′1, p1)(c′2, p2)) = c′1.
p1c′2,

whilst, of course, d(c′1, p1)d(c′2, p2) = c′1.c
′
2, so d is not a homomorphism. It is a derivation.) We

want to construct a morphism of crossed modules,

f : C→ C′.

There is an obvious f0 : P → P ′, given by λs, but what about an f1 : C → C ′?
There seem to be only a few possibilities handed to us if we are to use just the ‘building blocks’

provided. We know that the left ‘wing’ of the papillon commutes, so κ(c) = (k(c), ∂c) and perhaps
this mapping, k : C → C ′, is what we need.

Before we go further, however, we should look back at how we went from weak maps to ‘papil-
lons’. We took κ(c) = (f1(c)−1, ∂c), so that suggests that k(c) is not exactly what we want, rather
k(c)−1 should be the thing we look at.

(If we look at the fact that κ itself is a homomorphism, then k satisfies a derivation type
formula,

k(c2c1) = k(c2).∂c2k(c1),

rather than being a homomorphism. We are in the context of crossed modules, so action by a
boundary element, such as ∂c2, easily converts to conjugation, but the above seems to then end up
with the wrong order for things to cancel as we might hope. This again suggests that the idea of
the ‘inverse of k’ is a good one to follow up.)

Given this, we will bravely set f1(c) := k(c)−1 and charge into the attack! First, however, let
us make a cunning observation. The above choice looks good, as we said, since then

κ(c) = (f1(c)−1, ∂c)

as before, so
κ(c) = (f1(c)−1, 1)(1, ∂c) = ι(f1(c))−1.s(∂c).

Rearranging this gives
ι(f1(c)) = s(∂c)κ(c)−1,

we further note that (i) ι is a monomorphism, and (ii), and, in all generality, [ι(c′), κ(c)] = 1, since
ρι(c′) = 1 implies that

ι(c′)κ(c)ι(c′)−1 = κ(ρι(c
′)c) = κ(c).

(In case you are wondering, it should be noted, that we had previously checked this only for a
papillon coming from a weak map, so we did need to check it independently!)

Proposition 120 Given a split papillon, as above, defining f0 = λs and f1 given by ιf1(c) =
s(∂c)κ(c)−1, then (f1, f0) gives a morphism, f : C→ C′.
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Proof: We have to check three things:

(a) ∂f1 = f0∂;

(b) f1 is a homomorphism (as we have already checked that f0 is one);

(c) for all c ∈ C and p ∈ P ,
f1(pc) = f0(p)f1(c).

Starting with (a), we have
∂f1(c) = λιf1(c) = λs(∂c),

since λκ is trivial, hence ∂f1(c) = f0∂(c).
Now (b), let c1, c2 ∈ C,

ιf1(c2c1) = s∂(c2c1).κ(c2c1)−1

= s∂(c2)s∂(c1)κ(c1)−1κ(c2)−1.

(We know what we want this to be, so force it into the right shape with a rewrite.) It equals

s∂(c2)κ(c2)−1(κ(c2)s∂(c1).κ(c1)−1κ(c2)−1) = s∂(c2)κ(c2)−1.κ(c2).ιf1(c1).κ(c2)−1,

but κ and ι “commute”, as we saw, so this is ιf1(c2)ιf1(c1), as hoped for.
Finally (c), we take p ∈ P , c ∈ C

ιf1(pc) = s∂(pc).κ(pc)−1

= s(p∂c.p−1).κ(ρs(p)c)−1,

since p = ρs(p). We use the condition on κ relative to the action of the ρ(e)s to get that this is

s(ps(∂c)s(p)−1.(s(p)κ(c)−1s(p)−1) = s(p)(s(∂c).κ(c)−1)s(p)−1

= s(p)ιf1(c)s(p)−1.

We now invoke the condition on ι relative to the action of the λ(e)s. This becomes ι(λs(p)f1(c)),
i.e., ι(f0(p)f1(c)). Using that ι is a monomorphism, we get

f1(pc) = f0(p)f1(c),

as required. �

We thus have strict morphisms correspond to split papillons. To be complete in this, we must
note that a split papillon may have different splittings, so does a split papillon correspond to several
different weak morphisms? Clearly, if it does, then these should be equivalent / homotopic. This
is left to you to check up on and to investigate further. The papers, [146? ] and [? ], will give
some ideas about what to expect, but do not expect them to provide all the answers!

It should also be clear that a weak equivalence of crossed modules should correspond to a
papillon in which the NW-SE sequence is also exact. Noohi’s discussion in [? ] goes into this,
and this is suggested as another investigation. His treatment does not take quite the same
route through the ideas as we have, so there are quite a few details to supply . . . over to you.
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(n, i)-horn in a simplicial set K, 32

G-torsor, 256

M-torsor, 288

k-skeleton of a resolution, 85

n-coskeletal, 156

n-equivalence, 31

n-truncation, 151

1-sphere in a quasi-category, 435

commuting, 435

2-arrows between morphisms of fibred categories,
351

2-category of prestacks on a space, 363

action

groupoid, associated to a G-set, 15

lax, 198

lax or weak, 462

of a group, 14

of a simplicial group on a simplicial set, 211

acyclic

augmented simplicial group, 32

augmented simplicial object, 32

arrow

1- and 2-, 50

associated 2-group of a crossed module, 50

associated module sequences, 68

associated stack, 371, 373

atlas

G-, 238

for a simplicial fibre bundle, 235

normalised, 236

regular, 238

augmentation

ideal, 64

of group ring, 64

of the S-resolution of a small category, 427

augmentation map, 32

augmented

simplicial object, 32

G-augmented crossed complexes, 62

augmented simplicial group, 31

auto-equivalences, 380

automorphism 2-group

of a group or groupoid, 55

automorphism crossed module

of a group, 40

of an algebra, 40

automorphism simplicial group, 208

bar resolution, 23

normalised, 103

barycentric subdivision

as composite of the flag functor and the poset
of simplices, 126

of a simplicial complex, 123

base

of a bundle, 224

base change for sheaves, 253

bicategory = weak 2-category, 447

bisimplicial set, 28

bitorsor

for a sheaf of groups, 271

(G.H)-bitorsor, 270

G-bitorsor, 271

boundary, 302

(n, i)-box, 32, 154

braid groups, 74

Brown-Loday lemma, 168

Brown-Spencer theorem, 50

bundle

base of, 224

fibre, 231

gerbe, 396

line, 391

over B, 224

principal G-, 230
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simplicial, 233

total space of, 224

G-bundle gerbe, 406

bundle gerbes

and groupoids, 404

bundle of Lie groups, 405

G-bundle, 230

butterfly, see papillon

canonical n-dimensional vector bundle , 229

Cartesian arrow

in (Grothendieck) fibration, 340

Cartesian closed category, 210

Cartesian square, 339

cat1-group, 177

cat2-group, 177

catn-group, 182

categorical group, 51

category

Cartesian closed, 210

fibred in groupoids, 345

fibred in sets, 346

of 2-crossed complexes, 176

of 2-crossed modules, 171

of catn-groups, 183

of crossed complexes, 59

of crossed squares, 165

of groupoids, 15

category of descent data

relative to a covering, 365

2-category

locally discrete, 446

ccc, 210

Čech complex, 123, 242

Čech nerve, 123, 242

Čech hyper-cohomology, 304

Čech non-Abelian cohomology of B with coef-
ficients in a sheaf of simplicial groups,
306

cell

1- and 2-, 50

central extension

universal, 111

weakly universal, 110

central extension as crossed module, 41

chain, 302

chain complex
homology of, 22
introduction to, 22
more formal definition, 302
of groups, normal, 166

chain homotopy, 303
chain map, 302
change of base

for crossed modules, 44
characteristic class, 400
classifying bundle for a simplicial group, 218
classifying space, 26

discussion, 200
of a ‘simplicial groupoid’ (conjugate form),

468
of a crossed complex, 207
of a crossed module, 56
of the crossed n-cube/catn-group, 186
simplicial, 206, 319

cleavage
in a fibration, 342

cocone (category theoretic), 353
cocycle condition

for 1-dimensional descent data, 225
for weak morphism pairing functions, 475
from a group extension, 48

cofibrant replacement
for a crossed module, 491

cofibrant replacement functor
for crossed modules, 491

cofibre Puppe sequence of a map, 314
cohomologous cocycle pairs for gerbes, 413
cohomologous cocycle pairs with coefficients in

M, 413
colimit

categorical form of definition, 353
comma category

example: the category associated to a sim-
plicial set, 243

commuting 1-sphere in a quasi-category, 435
comonad, 82
comonadic resolution

free simplicial, of a group, 83
compatible family of local elements, 245
complete set of homotopical 2-syzygies, 101
complete set of syzygies, 102
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Conduché’s decomposition lemma, 203
conjugate

nerve of a category, 30
of a simplicial object, 30

conjugate group homomorphisms, 53
connected component

of a groupoid, 15
consequences, 45
contiguous

simplicial maps, 124
contracted product, 262

and bitorsors, 272
of G-objects, 262

copower
by a simplicial object= tensor, 431

copowered
category = tensored category, 431

coproduct amalgamated along the intersections
of a family of subgroups, 134

cosimplicial objects in a category, 29
cosimplicial set, 29
coskeletal, 156
coskeleton functor, 167

on truncated simplicial objects, 152
n-coskeleton

(composite) coskn, 154
costar surjective, 346
cotensor

of simplicial objects, 283, 431
cotensored S-category, 283, 431
covering

family, 248, 250
open, 247

covering projection, 227
covering spaces, 227
crossed

N-cube, 190
n-cube, 182
module, 39
square (first version), 164

crossed complex, 59
G-augmented, 62
as 2-crossed complex, 176
from simplicial group, 80
nerve, 207
of a filtered space, 61

2-crossed complex, 175

from simplicial group, 176

crossed module, 39

nerve of, 464, 500

of automorphisms, 40

pullback of, 41

2-crossed module, 170

crossed resolution

from a presentation of a group, 60

of a group, 60

standard, 61

cycle, 302

cylinder on a chain complex, 308

décalage

of a simplicial object, 326

deformation

between op-lax functors, 457

deformation retraction

strong, 310

degree

of a homogeneous morphism of gvs, 302

of an element in a gvs, 301

derivation

ϕ-, from a group to a module, 64

universal, 64

derived module, 64

descent data

category of, 365

category of all, relative to a given cover, 227

for a presheaf relative to a cover, 246

set of (topological case), 226

dgvs, 302

dgvs = chain complex, 302

diagonal

of a bisimplicial object, 186

differential graded vector space, 302

differential on a gvs, 302

differential vector space

negatively graded, 302

positively graded, 302

dimension

of CW-complex, 144

direct image sheaf, 253

discrete fibration, 346

discrete simplicial set, 26
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Dixmier-Douady class of a line bundle gerbe, 400

Dold-Kan Theorem

Classical Abelian case, 204

for crossed complexes, 203, 206

double mapping cylinder, 313

Duskin nerve, 449

Dwyer-Kan loop groupoid

conjugate form, 482

Dwyer-Kan loop groupoid functor, 201

Eckmann-Hilton argument, 51

edge-path groupoid, 133

effective group actions, 211

Eilenberg-MacLane crossed complex of a mod-
ule, 86

elementary contraction, 107

elementary expansion, 107

elementary matrix, 108, 119

elementary subgroup

of G`n(R), 108

epimorphisms of simplicial groups are fibrations,
34

equivalence

of categories, 273, 367

strong, of fibred categories, 352

weak, of fibred categories, 352

n-equivalence

of simplicial groups or groupoids, 88

n-equivalence

of topological spaces, 143

2-equivalence, 88

equivalences

strong and weak, of stacks and prestacks,
371

eso = essentially surjective on objects, 367

essentially surjective on objects, 367

étale groupoid, 406

étale map, 247

étale space over . . . , 247

evaluation map, 212

exact n-type, 155

in Simp(E), 155

exact Kan fibration in dimension n

in a finite limit category, 155

exact Kan lifting condition

in dimension n, 155

exponential, 210

extension

of groups, 16, 47, 197

extension of Lie groupoids over a space, 405

factor set, 48, 335

faithful functor, 368

faithful group action, 211

family

of objects in a category, 252

of open sets, 252

family of groupoids on a space, 406

fibrant Postnikov tower, 158

fibration

discrete, 346

exact sequence, 316

Grothendieck, 342, 489

of 2-groupoids, 489, 490

of crossed modules, 487

of simplicial groups, 34

principal (simplicial), 213

trivial, of crossed modules, 487

fibre bundle, 231

simplicial, 233

fibred categories

2-category of, 351

morphism of, 349

strong equivalence of, 352

weak equivalence of, 352

fibred category

as pseudo-functor, 333

fibred in groupoids, 345

fibred in sets, 346

introduction and examples, 331

fibred sub-category of Cartesian arrows, 347

fibred subcategory, 347

filling algorithm for simplicial groups, 34

flag

in a poset, 126

flag complex of a poset, 126

formal conjugate, 46

formal consequences, 46

Fox derivative with respect to a generator, x, 72

Fox derivatives, 71

frame bundle

of a vector bundle, 274
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free action, 211

free crossed module, 46

free crossed module on a presentation, 46

free simplicial resolution, 83

full functor, 368

fundamental category of a quasi-category, 435

fundamental crossed complex

of a filtered space, 61

fundamental groupoid

edge path construction, 133

of a S-groupoid, 202

of a simplicial set, 202

G-atlas, 238

G-bundle gerbe, 406

G-equivalent atlases, 235

G-gerbe, 387

semi-local description, 387

gauge group, 266

general linear group

of non-singular n×nmatrices overR, G`n(R),
108

over R, G`M (R), 229

stable, over R, 108

n-generating

family of subgroups, 117

generators, 44

geometric nerve, 449

geometric realisation

of a simplicial complex, 19

gerbe, 384

bundle-, 396

germ

of a locally defined element, 247

gr-category, 272

gr-groupoid, 51

gr-stack, 377

example

Bitors(G), 377

M− Tors(B), 378

graded differential vector space, 302

graded vector space = gvs, 301

Grassmann variety, 229

Grothendieck construction, 336, 374

Grothendieck fibration

of 2-groupoids, 489

of 2-groupoids (alternative form), 490

of categories, 342

Grothendieck topology, 249

Grothendieck topos, 248

group

2-, 50

group T -complex, 35

as reflective subcategory, 81

from simplicial group, 80

group extension, 16, 47, 197

group ring, 64

group-like monoidal category, 272

groupoid, 13

2-, 50

action, associated to a G-set, 15

edge path, 133

fundamental, of simplicial set, 202

groupoids

category of, 15

h.c. = homotopy coherence, 436

Hermitian line bundle gerbe, 396

holomorph, 55

homogeneous element in a gvs, 301

homogeneous morphism of gvs, 302

homological 2-syzygy, 74

homology

of a chain complex, 22

of chain complex, 303

singular, 25

homology group of a (reduced) crossed complex,
60

homology groups

of a simplicial complex, 22

homotopic maps in an S-category, 430

homotopical n-syzygy, 102

homotopical 2-syzygy, 101

homotopy

cofibre, 312

cokernel, 312

cylindrical between chain maps, 309

pullback, 315

pushout, 312

simplicial, 280, 282

homotopy n-type, 31, 88

algebraic models, 89
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homotopy (mapping) cocone of a chain map, 312
homotopy 1-types

classification, 89
homotopy 2-type, 88
homotopy category

of a quasi-category, 436
of an S-category, 430

homotopy coherent diagram
in a simplicially enriched category, 437

homotopy coherent map, 437
homotopy coherent nerve of a simplicially en-

riched category, 440
homotopy colimit

of categories, 338
homotopy exact sequence, 314
homotopy fibre, 43, 162, 307

of chain map, 315
homotopy groups of a simplicial group, 30
horn, 32, 154
(n, i)-horn, 32, 154
hyper-cohomology

Čech, 304
Čech, non-Abelian, 305
of C with coefficients in D, 303

hypercrossed complex, 168
hypergroupoid, 155

in Simp(E), 155

inclusion crossed square, 164
induced

bundle, 232
sheaf, 254
torsor, 261

initial object, 210
interchange law, 50, 54
internal

category, 27
nerve, 27

invariant submodule
of G-module, 17

inverse image sheaf, 254
invertible sheaf, 392
isotopy, 209

Jacobian matrix of a group presentation, 74

K-groups

first, of a ring, 108

zeroth, of a ring, 105

K0 of a ring, 105

K1 of a ring, 108

Kan complex, 32

Kan fibration, 32

in a finite limit category, 323

in dimension n, 155

local, 323

Kan lifting condition, 32

exact, in dimension n, 155

in dimension n, 155

Kan simplicial object

in a finite limit category, 323

killing homotopy groups, 146

lax

action of one group on another, 198, 462

functor, 334, 446

functor, normal, 447

transformation, 456

Leray cover, 251

Leray groupoid, 251

Lie groupoids

extension of, 405

line bundle, 392

line bundle gerbe, 396

local Kan fibration, 323

local morphisms

in the construction of the stack completion,
372

local section, 244

local sections, 245

locally

Kan S-category, 430

trivial bundle, 227

weakly Kan S-category, 430

locally connected stack, 384

locally defined elements, 247

locally discrete

2-category, 446

S-category, 423

locally non-empty stack, 384

locally split, 396

Loday’s Theorem, 183

long cofibre sequence of a map, 314
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loop groupoid

conjugate form, 482

loop groupoid functor, 201

mapping

cocone, 312

mapping cocone, 162

mapping cocylinder

of a chain map, 315

mapping cocylinder of a chain map, 311

mapping cone

of a chain map, 311

of a crossed square, 173

mapping cylinder of a chain map, 310

Milnor’s isomorphism, 305

module of identities of a presentation, 47

module of invariants, 17

monoidal category, 51

group-like, 272

Moore complex, 30

of an S-groupoid, 202

morphism

1- and 2-, 50

of G-augmented crossed complexes, 62

of G-torsors, 257

of (Grothendieck)fibrations, 344

of 2-crossed complexes, 176

of 2-crossed modules, 171

of bisimplicial sets, 28

of cat2-groups, 177

of catn-groups, 183

of crossed complexes, 59

of crossed modules, 39

of crossed squares, 165

of fibred categories, 349

of prestacks, 363

of squared complexes, 189

of stacks, 368

of torsors over a group homomorphism, 294

multiplication

twisted by a factor set , 48

n-equivalence

of S-groupoids, 150

of complexes, using 'n, 144

of simplicial groups or groupoids, 88

of topological spaces, 143

n-homotopic, 144

n-type

as n-homotopy equivalence class of (n + 1)-
dimensional CW-complexes, 144

as space with pii = 0, i > n, 145

of S-groupoids, 150

name of a simplex, 25

natural transformation

lax version, 456

pseudo form, 458

negatively graded differential vector space, 302

nerve

of group, and classifying spaces, 200

for a 2-category, 449

geometric, 449

homotopy coherent, 440

of a category, 26, 433

of a family of subgroups, 116

of a group= classifying space, 26

of a groupoid, 26

of an open cover, 123, 242

of crossed complex, 202, 206, 207

of crossed complex (singular complex ver-
sion), 208

of crossed module, 464, 500

of internal categories, 27

of monoidal category, 472

of open covering, as simplicial sheaf, 251

simplicial group nerve, of crossed module, 56

neutral gerbe, 385

no empty simplices condition, 127

no triangles condition, 127

normal chain complex of groups, 166

normal lax functor, 447

normal subgroup pair, 39

normalised

atlas, 236

normalised bar resolution, 103

obstruction to lifting a G-torsor: central exten-
sion, 399

op-lax

functor, 334, 447

transformation, 456

open covering
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as ‘map over’ the space, 247

as simplicial sheaf, 250

morphism of, 252

open coverings

category of, 252

opposite bitorsor, 271

orbit, 211

order complex of a poset, 126

orthogonal complement bundle, 229

orthogonal group,OM (R), 230

p-simplex

standard abstract, 18

standard topological, 19

papillon, 497

split, 502

Peiffer identity, 39

Peiffer lifting, 171

trivial, 172

Peiffer pairing, 168

perfect group, 111

Picard group, 392

Pn-equivalence, 147

polyhedron

of a simplicial complex, 19

positively graded differential vector space, 302

post-whiskering

in a 2-category, 54

in a 2-group, 475

Postnikov

section, of a Kan complex, 160

functor, 146

section, of a space, 147

Postnikov tower

definition, 147

fibrant, 158

more detailed discussion, 157

power

by a simplicial object=cotensor, 431

powered

category = cotensored category, 431

pre-whiskering

in a 2-group, 475

in a 2-category, 55

presentation

of a group, 44

presheaf

of local sections, 245

on a small category, 248

on a space, 244

prestack, 363

prestackification, 364

prestacks, 2-category of, 363

principal G-bundle, 230

principal action, 211

principal fibration, 213

projective module, 96

proper power, 45

pseudo-functor, 334, 447

between 2-groups, 472

pseudo-natural transformation, 458

pullback

in a fibration / fibred category, 342

of a crossed module along a homomorphism,
41

pullback sheaf, 254

pullback stable, 33

Puppe sequences, 313

and classifying spaces, 318

quasi-category, 433

homotopy category of, 436

quasi-inverse, 273

quasi-isomorphism

of crossed n-cubes, 187

regular atlas, 238

regular representation of a simplicial group, 209

regular twisted Cartesian product, 218

Reidemeister-Fox derivatives, 71

relative M-torsor, 288

relators, 44

representation of simplicial group

permutation, 210

regular, 209

representations of crossed modules

initial thoughts, 298

representing map of a simplex, 25

resolution

bar, 23

comonadic simplicial, 82

crossed, 60
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free simplicial, 82

of a small category by a free S-category, 427

standard crossed, 61

restriction

of a crossed module along a homomorphism,
44

restriction along a homomorphism, 44

restriction of a sheaf to a subspace, 254

root of a proper power, 45

S[n], 425

S-category, 422

cotensored, 431

locally Kan, 430

locally weakly Kan, 430

resolving [n], S[n], 425

resolving a small category, S(A), 427

structure for Cat, 423

structure for Ch+
K , 423

structure for Crs, 423

structure for S, 422

structure for Simp.K-Mod, 423

structure for Top, 422

structure for a 2-category, 424

tensored , 431

S-categorical n-simplex, 425

Schur multiplier

and universal central extensions, 112

Segal maps, 434

self-equivalences, 380

semi-local description

of a G-gerbe, 387

separated presheaf

on a site, 250

on a space, 246

S-groupoids, 27

sheaf

of local sections, 245

on a site, 250

on a space, 245

simplex

in a simplicial complex, 18

simplicial

fibre bundle, 233

simplicial n-truncation, 151

simplicial T -complex, 35

simplicial Abelian groups, 27
simplicial action, 211
simplicial automorphism group of a simplicial

set, 208
simplicial classifying space, 206
simplicial complex, 18

determined by its 1-skeleton, 127
simplicial endomorphism monoid of a simplicial

set, 208
simplicial group, 27

1-truncated, 168, 169
2-truncated, 169

simplicial group nerve of a crossed module, 56
simplicial homotopy, 280

combinatorial formulae, 282
simplicial kernel, 152
simplicial map

between simplicial complexes, 20
simplicial mapping space, 208
simplicial nerve of an S-category, 440
simplicial objects in a category, 27
simplicial resolution

comonadic, 82
step-by-step construction, 84

simplicial set, 25
discrete, 26

simplicially enriched category, 422
singular complex

of a topological space, 24
singular homology

of a space, 25
site, 249
n-skeleton

(composite) skn, 154
of a truncated simplicial object, 151

n-skeleton
of CW complex, 144

G-space, 230
split

fibration, 343
locally, 396

split papillon, 502
splitting

for a Grothendieck fibration, 343
of an epimorphism, 79

squared complex, 188
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stable elementary linear group, 108

stable general linear group over R, 108

stable isomorphism of line bundle gerbes, 403

stably isomorphic line bundle gerbes, 403

stack, 367

completion, 372, 373

example

Bitors(G), 377

ShGrp(B), 370

Sh(B), 370

Bitors(G,H), 377

M− Tors(B), 378

Tor(G), 370

locally connected, 384

locally non-empty, 384

stackification, 372, 373

stacks on B

2-category of, 368

stalk, 247

standard crossed resolution of a group, 61

standard presentation of a group, 45, 102

Steinberg group

stable version, 109

unstable version, 103

step-by-step constructions, 84

Stiefel variety, 229

string, 163

strong deformation retract, 310

strong equivalence

of (pre)stacks discussion, 371

strong equivalence of fibred categories, 352

subfibration, 347

submersion, 396

syzygy

complete set of, 102

homological, 2-, 74

homotopical n-, 102

syzygy-2

complete set of, homotopy 2-, 101

2-syzygy

homotopical, 101

3-syzygy

homotopical, 102

n-syzygy

homotopical, 102

T -complex, 34

group, 35, 57, 80

group, and W , 323

group, and crossed complexes, 81

group, from simplicial group, 80

nerve of crossed complex, 208

T -complex

groupoid, 205

T -condition

in dimension n, 36

T -filler condition, 36

template

of a commutative diagram, 417

of a homotopy coherent diagram, 437

tensor

of simplicial objects, 283, 430, 431

tensor product

of chain complexes, 308

tensored S-category, 431

tensoring

in a simplicially enriched category, 283, 430

terminal object, 210

thin element, 35

in the nerve of a crossed complex, 208

in the nerve of a crossed module, 501

preservation of, 501

thin filler condition, 36

in dimension n, 36

Tietze transformations, 106

topos

Grothendieck, 248

of G-sets, 249

of presheaves, 248

of sheaves on a site, 250

of sheaves on a space, 248

torsor

for a sheaf of crossed modules, 288

for a sheaf of groups, 256

total space, 224

track 2-category = ‘track category’ = groupoid
enriched category, 430

transition elements

for an atlas, 238

translation function for a continuous action, 230

translation morphism for a torsor, 256
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triangular matrix with respect to an order, σ,
135

trivial
G-torsor, 257

trivial bundle, 224
trivial epimorphism

of crossed n-cubes, 187
trivial fibration

of crossed modules, 487
trivial gerbe, 385
trivial product bundle

simplicial case, 234
trivial vector bundle, 229
trivialisation, 393
trivially enriched S-category, 423
truncated simplicial group, 167
n-truncated simplicial object, 151
n-truncated simplicial set, 151
truncation, 165

of a chain complex, 165
of a simplicial group, 166

twisted
Cartesian product, 217
Cartesian product, regular , 218
Cartesian product, universal, 218
form of a torsor, 273

twisted multiplication, 48
twisting function, 218

universal, 218

universal central extension, 111
construction for a perfect group, 112

universal twisted Cartesian product, 218
universal twisting function for a simplicial group,

218

van Kampen’s theorem, 139
vector bundle, 229, 274

trivial, 229
vertex

in a simplicial complex, 18
Vietoris complex, 123
Volodin model of higher algebraic K-theory, 135
Volodin space of a family of subgroups, 122

W-bar construction, 206, 319, 464
weak 2-category = bicategory, 447

weak action of one group on another, 462
weak equivalence

of (pre)stacks, discussion, 371
of crossed complexes, 60
of crossed modules, 60, 187
of fibred categories, 352

weak Kan complex, 433
weak map

algebraic form, 479
of crossed modules, 473
papillon, 497
pseudo-functorial form, 473

weakly Cartesian arrow
in (Grothendieck) fibration, 340

weakly globular catn-groups, 188
weakly universal central extension, 110
whiskering, 54, 475
Whitehead lemma, 109
Whitehead tower, 161

of a pointed simplicial set, 163
of a pointed space, 162
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