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What is the ‘geometric’ information that can be gleaned from a
data cloud?
Some ideas either already tried or ‘under study’:

determining suspect patterns in medical scans, e.g. for the
detection of possible cancers;

finding significant geometric patterns within geological data;

finding the type of microfossils in rock samples;

determining flow patterns of pollutants in rivers, lakes and
estuaries and comparing them, in detail, with theoretical
predictions;
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finding active sites and voids in molecules for ‘designer drugs’;

finding the size, shape and position of floes and leads in pack
ice.
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Learning to Crawl

Before attempting any of these deep scientific applications, we
would need to learn how difficult it is to even crawl, let alone walk!
We will only crawl in this lecture!

The following is a noisy sample from a circle.

Problem: develop automated methods to analyse the HOLE in
the sample!
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Spaces and Information.

Data is often looked at ‘spatially’, i.e. modelled by ‘spaces’ and
spaces are made up of ‘points’.
Points about ‘points’:

Do ‘spaces’ really have ‘points’ or is that just a useful device
for handling something else? What is the point of ‘points’?

‘Spaces’ may correspond to some geometric object, but may
also be used just to organise data which may not be spatial in
essence. They may contain other measurements such as
temperature, or discrete, perhaps ‘yes/no’, information, (see
next frame!)

In Physics, some of the problems of Quantum Relativity may
be avoided by throwing out points and having a ‘pointless
model’ !
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Objects and attributes, Chu spaces, and Formal Context
Analysis

Example of data organisation: From any set of observed
attributes, build ‘spatial’ objects that indicate the interrelationships
and any hidden ’concepts’.
A Chu space, C, is given as C = (O, |=,A), where O and A are
sets, called the sets of objects and of attributes and |=⊆ O × A is
a relation: o |= a reads ‘object o has attribute a’.
The information in such a context has its own internal logical
structure, from which some ’inferences’ can be extracted. This is
used in AI, in ontology and in natural language processing.
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Example

Four objects and three attributes. The table says if an object xi

has attribute aj or not. Of course, if it does, we put a 1 in the
(i , j) position, and if not, we put 0.

C a1 a2 a3

x1 1 0 0
x2 0 1 0
x3 0 0 1
x4 1 1 1
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We can represent this by a graphical diagram, in this case the
Hasse graph of the partially ordered set:

x4

x1

||||||||
x2 x3

BBBBBBBB

The relation is the partial order as shown. It is also the dual of the
lattice of non-empty open sets of a three point discrete space, so is
also spatial.
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Graphs, Simplicial Complexes, Triangulations, etc.

Graphs, or ‘networks’, are 1-dimensional diagrams extensively
used to represent information.

Graphs are specified by giving a set of vertices V (K ) and a
set of edges E (K ) with incidence information.
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Example of a graph

V (K ) = {0, 1, 2, 3, 4}
E (K ) =
{{0}, {1}, {2}, {3}, {4}, {0, 1}, {0, 2}, {1, 2}, {2, 3}, {3, 4}}
It looks like:
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Simplicial Complexes

Graphs are not adequate to represent the multifaceted higher
dimensional relations in data. A better combinatorial gadget for
that is the simplicial complex:
A simplicial complex K is a set of objects, V (K ), called vertices
and a set, S(K ), of finite non-empty subsets of V (K ), called
simplices such that if σ ⊆ V (K ) forms a simplex, then any
non-empty subset of σ does as well.
(So not just edges, possibly higher dimensional things as well.)
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Example of a simplicial complex

V (K ) = {0, 1, 2, 3, 4}
S(K ) =
{{0}, {1}, {2}, {3}, {4}, {0, 1}, {0, 2}, {1, 2}, {2, 3}, {3, 4}, {0, 1, 2}}
It looks like:
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BUT THIS TIME the triangle is meant to be filled in!

In other words, a graph is a one dimensional simplicial complex.Timothy Porter Observing Information: Applied Computational Topology.
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Triangulation.

A triangulation (K , f ) of a space X consists of a simplicial
complex K and an identification of it as a realisation of a
simplicial complex: f : |K | → X .
(We will usually confuse the geometric model |K | with X and
so will call X , itself, a polyhedron in this case. )

We use triangulations to ‘control’ spaces, but are they
something ‘imposed on the space’ or should be think of them
as ‘built’ from the ‘observations’ of the ‘space’? In other
word, make the data ‘king’ not the space!

Any sample of data points will give a polyhedron in various
ways, but that polyhedron may be strongly dependent on the
sample. That dependency needs more study.
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Homology

By using some algebra, taking formal sums of simplices in a
complex, one can get some computable algebraic and numerical
invariants of the complex, for instance, homology groups, Hi (K ).
These are typically vector spaces or similar structures, and their
dimension tells one the number of holes of different dimension in
the space.

e.g. dim H0(K ) is the number of components of K ; dim H1(K ) is
the number of 1-dimensional holes, so dim H1(circle) is 1, whilst
dim H1(figure eight) is 2, and so on.

These dimensions are called the Betti numbers of K .
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Čech and Vietoris: the observational solution from the
1920s and 1930s

Instead of a triangulation,

Assume we are given an (open) cover U of our ‘space’ X , so
U is a family of (open) sets, U, of X and for any x ∈ X there
is some U ∈ U that contains it.

The ‘observational’ idea is that we probe X and each probe
can measure things in a small patch. ‘Physically, the idea is
that what we actually observe are interactions between
bounded regions of space-time.’(Christensen-Crane,’04)

To each such (open) covering we can attach two simplicial
complexes one due to Vietoris (1927) the other to Čech (early
1930’s).
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Čech: the nerve of X

Denoted N(X ,U) or N(U) if no confusion will arise.

vertices, the open sets in U ,
and

simplices, those finite families of (open) sets in U whose
intersection is non-empty:

i.e. {U0, . . . ,Un} ⊂ U is a simplex of N(U) if and only if

n⋂
i=0

Ui 6= ∅.

WE NEED A PICTURE so draw one on the board!
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Vietoris complex of X

Denoted V (X ,U) or simply V (U), the Vietoris complex reverses
the roles of points and open sets:

vertices are the points of X itself
and

simplices : 〈x0, . . . , xn〉 is an n simplex of V (U) if there is a
U ∈ U containing all the vertices xi , i = 0, . . . , n.
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Dowker (1952)

Let R ⊂ X × Y be a relation. (In our topological case, X = X ,
Y = U and xRU = x ∈ U.) Any such relation determines two
simplicial complexes:

1 K = KR : - the set of vertices is the set, Y ;
p-simplex of K is a set {y0, . . . , yp} ⊆ Y such that there is
some x ∈ X with xRyj for j = 0, 1, . . . , p.

2 L = LR : - the set of vertices is the set X ;
- a p-simplex of K is a set {x0, . . . , xp} ⊆ X such that there is
some y ∈ Y with xiRy for i = 0, 1, . . . , p.
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In general, no ‘spatial’ context is needed (cf. extensive applications
in AI) and any metric data is not used. We have:

Theorem: The homology of the two complexes is the same.

so we can use either.
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Computational substitutes in the metric case.

For the last part of the talk, we will concentrate on the metric case
and Topological Data Analysis.
We had these two complexes from ‘classical algebraic topology’.
They are usually not computationally feasible as such. Various
replacements are used. They exploit the metric structure of much
data.
Usual assumption: The data is sampled from some ‘idealised’
subspace X of some Rn, (but both the ambient and intrinsic
metrics may be used).
We need to recall Voronoi diagrams and the related Delaunay
triangulations given by the sample.
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Voronoi diagrams. Let P be a set of data points in Rn. The
Voronoi diagram of P denoted VP is a collection of Voronoi cells
Vp, one for each point p ∈ P, where Vp is the set of all points in
Rn that are closer or at least equidistant to p than to any other
point in P. 1

r

p q

u

v

1Play the Voronoi game at
http://www.voronoigame.com/VoronoiGameApplet.html
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Delaunay triangulation. There is an associated dual structure to
Voronoi diagram VP , called the Delaunay triangulation denoted
DP . Formally, we define DP as a simplicial complex where

DP = {σ |
⋂

Vp 6= ∅ where p is any vertex of σ}.

r

p q

u

v

Timothy Porter Observing Information: Applied Computational Topology.



Introduction
Spaces and Information

Graphs, Simplicial Complexes, and Homology
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Simplicial Complex Approximations:

X ⊂ Rn , a subspace; Z ⊂ X a finite set of sample points. Need:

1 A construction S = S(Z ) of a simplicial complex depending
on Z and possibly on additional parameters, but not
depending on X itself;

2 A similarity result comparing X with S(Z ) under reasonable
conditions on Z as a sample of X , and for some choice of
values for the additional parameters.
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A typical additional parameter might be some notion of sampling
scale R ≥ 0. This can sometimes be interpreted as an amount of
blurring or ‘fuzziness’ applied to Z . Varying R and / or the sample
Z , we hope to capture ‘qualitative’ information on the idealised X .
Often for two values R ≤ R ′, the constructions will give nested
simplicial complexes,

S(Z ,R) ⊆ S(Z ,R ′).

We will quickly look at some examples.
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The Čech complex.

This replaces the arbitrary open cover of the nerve construction, by
little open balls around data points. The radius used gives a
nesting parameter, R:

Vertex set : all data points in Z ;

Parameter: R > 0, nested;

Definition: the p-simplex σ = [z0, z1, ..., zp] belongs to
Čech(Z ,R) if and only if the closed Euclidean balls
B(zj ,R/2), j = 0, 1, . . . , p have non-empty common
intersection.
(so we are using classical Čech with nice round open discs as
the open sets.)
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The Rips complex.

This is a variant of the Čech complex which is easier to calculate.

Vertex set : all data points in Z ;

Parameter: R > 0, nested;

Definition: the p-simplex σ = [z0, z1, ..., zp] belongs to
Rips(Z ,R) if and only if for every edge [zj , zk ], 0 ≤ j < k ≤ p,
we have ||zj − zk || ≤ R.
(so each ‘edge’ is of length less than R.)
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The α-shape complex, A(Z ,R): (Edelsbrunner)

Vertex set : all data points in Z ;

Parameter: R > 0, nested;

If Vz is the closed Voronoi cell of z , then define the α-cell for
z to be the convex set α(z ,R) = B(z ,R) ∩ Vz ;

the p-simplex σ = [z0, z1, ..., zp] belongs to A(Z ,R) if and
only if the α-cells, α(zj ,R/2), j = 0, 1, . . . , p have non-empty
common intersection.

Timothy Porter Observing Information: Applied Computational Topology.
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α-complex shape technology (developed by Geomagic), was used
in the examination of the damaged re-entry shield tiles of the
space shuttle, Endeavour. They allowed accurate 3-D
reconstruction of the damaged tiles from scanned data and so
helped to assess the extent of the damage prior to re-entry.
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Persistent homology

Any of these approximations can give a homology and Betti
numbers (for that construction and that value of R):
βi (Z ,R) = rankHi (S(Z ,R)).
If the construction is a ‘nested’ one then if R ≤ R ′, we have
complexes,

S(Z ,R) ⊆ S(Z ,R ′)

and induced maps

Hi (S(Z ,R))→ Hi (S(Z ,R ′)).

Algebraically we can compute persistent Betti numbers βi (R,R ′)
for every pair R ≤ R ′.
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Interpretation

Intuitively βi (R,R ′) counts the number of i-dimensional holes in
S(Z ,R) which remain open when we thicken the complex to
S(Z ,R ′).
Produce bar codes or interval graphs.
For each dimension i get a set of closed intervals above an axis
parametrised by R.
Long intervals correspond to large holes and thus to genuine
features. Small intervals are usually regarded as ‘noise’.
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Where to now?

Experiments and theory so far (mostly by the Stanford and Duke
research teams) have looked at feature detection and topological
invariants from very large data sets, both artificial and ‘real’, but
always with the assumption that a polyhedron underlies the data.
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Plans
1: to see if it is possible to detect non-polyhedral behaviour in
artificial data generated, initially, from fractal spaces such as the
dyadic solenoid and the Menger cube.
2. Another area is that of data evolving in time. This should be
modelled by ‘spaces evolving through time’ ! The algebra needed is
harder and may be a stiff challenge, but the resulting problem is
potentially very useful and interesting. It relates to many areas of
Theoretical Computer Science and Physics.
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The End

T.P., Galway, April 2008
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