
COHOMOLOGY IN TENSORED CATEGORIES
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1. Introduction

Both [Mac Lane 1965, Beck 1967] have recently defined cohomology theories for algebras
in abstract categorial setting. Mac Lane’s theory is an abstract formaization of the (nor-
malised) bar construction (see [Mac Lane 1963, p. 144] for example). Since, however,
his proof of the normalization theorem (p. 236) remains perfectly valid, the normalized
bar construction can be replaced by the un-normalized one. It is the purpose of this pa-
per to show that under reasonable conditions Beck’s cohomology is naturally equivalent
to a slight modification of Mac Lane’s. All notation not explicitly defined is taken from
[Mac Lane 1963].

The proof given here is mainly just a modification of that of [Barr & Beck 1966].
However sections 2, 3, and 4 are devoted to showing that the techniques used there can
all be applied to the general categorical situation.

2. Algebras

If D is a tensored category, Alg(D) denotes the category of D-algebras as described in
[Mac Lane 1963, p. 79]. The purpose of this section is to show:

2.1. Theorem. Suppose D has countable coproducts which commute with the ⊗. Then
there is a triple T = (T, η,mu) on D such that Alg(D) ∼= DT.

Proof. We will first show that the underlying functor U : Alg(D) //D has a left adjoint
F . Then if η : 1 //UF and ε : FU //1 and the adjointness morphisms, it is known that
that T = (UF, η, UεF ) is a triple [Barr & Beck 1966, Beck 1967]. Then we complete the
proof by exhibiting a natural equivalence Alg(D) ∼= DT.

2.2. Definition. Let A1, . . . , An be objects of D. We define A1 ⊗ · · · ⊗ An inductively
to be K if n = 0 and (A1⊗· · ·⊗An1)⊗An for n > 0. If each Ai = A, we will also denote
this by A(n). It follows from the defintion of a tensored category that there is a unique
ismorphism which we denote by σ(m,n) : A(m) ⊗ A(n) // A(m+n).

We now let F (A) =
∑

n≥0A
(n). To describe an algebra structure on F (A), let αn :

A(n) // F (A) be the inclusion. Since tensor commutes with this coproduct, a map πA :
F (A)⊗F (A) ∼=

∑
n,m≥0A

(n)⊗A(m) //F (A) is determined by requiring that π(αn⊗αm) =
αn+mσ(n,m). Then I claim that F (A), π, α0 (as unit) form an object of Alg(D). We must
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show three identities [Mac Lane 1965, p. 79]. The first is that if eF (A) : K⊗F (A) //F (A)
is the Mac Lane isomorphism, then π(α0 ⊗ 1) = eF (A). But σ(0, n) = eA(n), and, by the
naturality of e we have

π(α0 ⊗ 1)(1⊗ αm) = π(α0 ⊗ αm) = αmσ(0,m) = eF (A)(1⊗ αm)

Since the 1⊗αm are inclusions to a direct sum, this gives the result. The second is derived
similarly. The third is that

π(1⊗ π) = π(π ⊗ 1) : F (A)⊗ F (A)⊗ F (A) // F (A)

But F (A)⊗ F (A)⊗ F (A) is a direct sum∑
m,n,p≥0

A(m)A(n) ⊗ A(p)

We have

π(1⊗ π)(αm ⊗ αn ⊗ αp) = π(αm ⊗ π(αnαp))

= π(αm ⊗ αn+pσ(n, p)) = π(αm ⊗ αn+p)(1⊗ σ(n, p))

= αm+n+pσ(m,n+ p)(1⊗ σ(n, p))

But

σ(m,n+ p)(1⊗ σ(n, p)) : A(m) ⊗ A(n)⊗ A(p) // A(m+n+p)

is a Mac Lane isomorphism, which by uniqueness must equal

σ(m+ n, p)(σ(m,n)⊗ 1)

Then we get

αm+n+pσ(m+ n, p)(σ(m,n)⊗ 1) = π(αm+n ⊗ αp)(σ(m,n)⊗ 1) = π(αm+nσ(m,n)⊗ αp)

= π(π(αm ⊗ αn)⊗ αp) = π(π ⊗ 1)(alpham ⊗ αn ⊗ αp)

Since the αn ⊗ αn ⊗ αp are a direct family of inclusions, the result follows.

Now suppose (Λ, pΛ, uΛ) is in Alg(D) and f : A //Λ is in D. We prove adjointness by
showing that there is a unique map f ∗ : F (A) // Λ in Alg(D) such that f ∗α1 = f . (At
least this proves adjointness with α1 : FA //UF (A) as one of the adjointness morphisms
cf. [Mac Lane 1965, p. 3].) We define f ∗ by requiring that f ∗α0 = uΛ, f ∗α1 = f , and
f ∗αi = pΛ(f ∗αi−1 ⊗ f) for i > 1. To show this in Alg(D) we must show that it preserves
the unit which follows from the definition of f ∗α0 and that f ∗π = pΛ(f ∗ ⊗ f ∗). By
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induction on m+ n,

f ∗π(αm ⊗ αn) = f ∗αm+nσ(m,n) = pΛ(f ∗αn+m−1 ⊗ f)σ(m,n)

= pΛ(f ∗αn+m−1 ⊗ f)(σ(m,n− 1)⊗ 1) = pΛ(f ∗αm+n−1σ(m,n− 1)⊗ f)

= pΛ(f ∗π(αm ⊗ αn−1)⊗ f) = pΛ(pΛ(f ∗ ⊗ f ∗)(αmαn−1)⊗ f)

= pΛ(pΛ(f ∗αm ⊗ f ∗αn−1)⊗ f) = pΛ(pΛ ⊗ 1)(f ∗alpham ⊗ f ∗αn−1 ⊗ f)

= pΛ(1⊗ pΛ)(f ∗αm ⊗ f ∗αn−1 ⊗ f) = pΛ(f ∗αm ⊗ pΛ(f ∗αn−1f))

= pΛ(f ∗αm ⊗ f ∗αn) = pΛ(f ∗ ⊗ f ∗)(αm ⊗ αn)

Again, this implies that f ∗π = pΛ(f ∗ ⊗ f ∗). Suppose g is another map with gα1 = f .
Then gα0 = uΛ = f ∗α0 by the unitary condition, fα1 = f = f ∗α1 by assumption, and if
we assume gαi−1 = f ∗αi−1, then

f ∗αi = pΛ(f ∗αi−1 ⊗ f) = pΛ(gαi−1 ⊗ gα1) = pΛ(g ⊗ g)(αi−1 ⊗ α1)

= gπ(αi−1 ⊗ α1) = gσ(i− 1, 1)αi = gαi

(since σ(i− 1, 1) is the identity isomorphism.) Hence f ∗αi = gαi for each i. so f ∗ = g.

This shows adjointness, and therefore gives rise to a triple as noted about. Moreover,
we have from [Barr & Beck 1966] a natural functor Ψ : Alg(D) // DT which takes
(Λ, pΛ, uΛ) to (Λ, λ) where λ : F (Λ) //Λ is the unique algebra map extending the identity
map of Λ. Specifically, if βi : Λ(i) // Λ are the direct system, then λβ0 = uΛ, λβ1 = 1Λ

and λβi = pΛ(λβi−1⊗1Λ). Notice that λβ2 = pλ. This tells us how to construct an inverse
functor. In particular, if (X, ξ) is a T-algebra we let uX = ξγ0 and pX = ξγ2 where
γi : X(i) // F (X) are the inclusions. If these give X the structure of a D-algebra, then
they clearly define a functor Φ which is a right inverse to Ψ. Let φi : F (X)(i) //F (F (X))
be the inclusion. Then we know that ξγ1 = 1X by definition of a T-algebra. The other
condition says that ξ · Fξ = ξ · UεF (X). But UεF (A) : F (F (A)) // F (A) is just
the map coming out of the algebra structure on F (A). Hence UεF (X) · i2 = πX :
F (X) ⊗ F (X) // F (X). On the other hand, Fξ · φ2 : F (X) ⊗ F (X) // F (X) is just
γ2(ξ ⊗ ξ). Hence ξγ2(ξ ⊗ ξ) = ξπX : F (X)⊗ F (X) //X.

ξγ2(1⊗ ξγ2) = ξγ2(ξγ1 ⊗ ξγ2) = ξγ1(ξ ⊗ ξ)(γ1 ⊗ γ2)

= ξπX(γ1 ⊗ γ2) = ξγ2σ(1, 2) = ξγ3σ(2, 1)σ(1, 2)

= ξπX(γ2 ⊗ γ1)σ(1, 2) = ξγ2(ξ ⊗ ξ)(γ2 ⊗ gamma1)σ(1, 2)

= ξγ2(ξγ2 ⊗ ξγ1)σ(1, 2) = ξγ2(ξγ2 ⊗ 1)σ(1, 2)

which, strictly speaking, is the precise statement that ξγ2 is an associative law of compo-
sition. The unitary laws are left to the reader. Now we must show that Φ is a left inverse
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to Ψ as well. To do this we start with (X, ξ) in DT and make it into an algebra using
ξγ2 : X ⊗X // F (X) //X as the rule of composition and ξγ0 as unit. We now a new
map ζ : F (X) // X by setting ζγ0 = ξγ0, ζγ1 = 1 = ζγ1, and ζγi = ξγ2(ζγi−1 ⊗ 1) for
i > 1. Assuming, however, that ζγi−1 = ξγi−1, we have

ζγi = ξγ2(ζγi−1) = ξγ2(ξγi−1 ⊗ 1) = ξγ2(ξγi−1 ⊗ ξγ1)

= ξγ2(ξ ⊗ ξ)(γi−1 ⊗ γ1) = ξπX(γi−1 ⊗ γ1) = ξγiσ(i− 1.1) = ξγi

Hence ζ = ξ. This completes the proof of 2.1.

3. Derivations

Let Λ be in Alg(D) and let M be a Λ-Λop bimodule. This means that there are morphisms
pM : Λ⊗M //M and qM : M ⊗Λ //M satisfying the rules for right and left modules;
and that pM(1⊗ qM) = qM(pM ⊗ 1).

3.1. Definition. A derivation of Λ to M is a morphism d : Λ //M such that dpΛ =
pM(1⊗ d) + qM(d⊗ 1) : Λ⊗ Λ //M . It is clear that the set of derivations of Λ to M is
a subgroup of HomD(Λ,M). We denote this abelian group by Der(Λ,M).

3.2. Proposition. Let CΛ = {CnΛ}, n ≥ 0, be the complex in D such that CnΛ =
Λ(n+2), and boundary operator δ =

∑
(−1)i(1⊗ 1⊗ · · · ⊗ pΛ ⊗ 1⊗ · · · ⊗ 1). Then C is an

acyclic complex over Λ, i.e.

· · · // Cn // · · · pΛ // C0

is exact.

Proof. For let sn : CnΛ // Cn+1Λ by sn = ((u ⊗ 1)e−1
Λ ) ⊗ 1 ⊗ · · · ⊗ 1 for n ≥ 0, and

s−1 : Λ //C0 by (u⊗ 1)e−1
Λ . Then in the usual way it is easily shown that pΛs−1 = 1 and

sn−1δn + δn+1sn = 1 for n ≥ 0.

3.3. Definition. JΛ = ker pΛ
∼= coker δ2. Since by [Mac Lane 1965, p. 81], the category

of Λ-bimodules is abelian, JΛ is a Λ-bimodule as well. If ψ : Λ(3) // JΛ is the cokernel
of δ2, then Hom(ψ,−) : HomΛe(JΛ,−) // HomΛe(Λ(3),−) is a monomorphism onto the
subgroup of that latter consisting of those maps whose composition with δ2 is 0. We can
map

φ : Der(Λ,−) // HomΛe(Λ(3),−)

by restriction of the isomorphism HomD(Λ,−) ∼= HomΛe(Λ(3),−), whence φ is a monomor-
phism also.

3.4. Proposition. Imφ = Im Hom(ε,−) and establishes a natural equivalence between
Der(Λ,−) and HomΛe(JΛ,−).
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Proof. After sorting through all the identifications made, it is easily seen that what I
claim amounts to showing that d : Λ //M is a derivation if and only if pM(1⊗ qM)(1⊗
d ⊗ 1)δ2 = 0. If we recall the defining identities of bimodules, it is a straightforward
computation that

pM(1⊗ qM)(1⊗ d⊗ 1)δ2 = pM(1⊗ qM)(1⊗ pM)(1⊗ d− dpΛ + qM(d⊗ 1)]⊗ 1)

This gives one implication immediately. On the other hand, for any f : Λ //M ,

pM(1⊗ qM)(1⊗ f ⊗ 1)(uΛ ⊗ 1⊗ uΛ) = pM(1⊗ qM)(uΛ ⊗ f ⊗ uΛ) = pM(uΛ ⊗ qM(f ⊗ uΛ))

= pM(uΛ ⊗ qM(1⊗ uΛ)(f ⊗ 1)) = pM(uΛ ⊗ eM(f ⊗ 1))

= pM(uΛ ⊗ feΛ) = pM(uΛ ⊗ 1)(1⊗ feΛ)

= eM(1⊗ feΛ) = feΛeΛ⊗K

Since these e are isomorphisms, the other implication follows.

3.5. Definition. Let M be a Λ-bimodule as before. We let M+ denote the algebra whose
underlying D object is Λ +M and whose multiplication is that map from

(Λ +M)⊗ (Λ +M) ∼= Λ⊗ Λ + Λ⊗M +M ⊗ Λ

whose matrix is ∣∣∣∣∣∣∣∣ pΛ 0 0 0
0 pM qM 0

∣∣∣∣∣∣∣∣
Let π1 : M+ //Λ and π2 : M+ //M be the coordinate projections. It is easily seen that
π1 is a surjection of algebras.

3.6. Proposition. The mapping f // π2f establishes an equivalence between {f ∈
HomAlg(D)(Λ,M

+) | π1f = 1} and Der(Λ,M).

Proof. Let f be such a mapping. Then f has a matrix || f1 f2 ||, where f1 = π1f = 1
and f2 = π2f . Hence there is a one to one correspondence between such f and maps

f2 : Λ //M such that

∣∣∣∣∣∣∣∣ 1
f2

∣∣∣∣∣∣∣∣ is an algebra homomorphism. This condition becomes

∣∣∣∣∣∣∣∣ pΛ 0 0 0
0 pM qM 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1⊗ 1
1⊗ f2

f2 ⊗ 1
f2 ⊗ f2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1
f2

∣∣∣∣∣∣∣∣ pΛ

which reduces to pΛ(1 ⊗ 1) = pΛ, which is clear; and pM(1 ⊗ f2) + qM(f2 ⊗ 1) = f2pΛ,
which is the defining equation of a derivation.
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3.7. Definition. Let (D,Λ) denote the category whose objects are Alg(D) morphisms
γ : Γ // Λ and whose morphisms are commutative triangles

Γ

Λ

γ

��?
??

??
??

??
??

??
Γ Γ′α // Γ′

Λ

γ′

����
��
��
��
��
��
�

where α is a morphism in Alg(D). We may always consider π1 : M+ // Λ as such an
object. In that case, Proposition 3.6 becomes

3.8. Proposition. If M+ // Λ is as above, then

Hom(Alg(D),Λ)(1Λ, π1) ∼= Der(Λ,M)

4. Modules

Suppose that γ : Γ // Λ is in Alg(D). We define functors

P = Pγ : Λ- Mod(D) // Γ- Mod(D)

Q = Qγ : Γ- Mod(D) // Λ- Mod(D)

by setting, for a Λ-module (M, pM) and a Γ-module (N, pN), P (M, pM) = (M, pM ⊗ 1)
and Q(N, pN) = (P op(Λ)⊗Γ N,P

op(pΛ)⊗Γ pN), where P op is the functor analogous to P
for right Λ-modules.

4.1. Theorem. Q is left adjoint to P .

Proof. First we define a morphism η : 1 //PQ. By abuse of notation, ηN : N //A⊗ΓN
is defined by te t(uΛ⊗ 1)e−1

N where t : Λ⊗N //Λ⊗Γ N is as defined in [Mac Lane 1965,
p. 82]. We must show that

ηNpN = pPQ(N)(1⊗ ηN) : Γ⊗N // Λ⊗Γ N
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In the diagram

Γ⊗K ⊗N N

Γ⊗K ⊗N K ⊗ Γ⊗N K ⊗N

Λ⊗ Γ⊗N Λ⊗N

Γ⊗ Λ⊗N Λ⊗ Λ⊗N Λ⊗N

Γ⊗ Λ⊗Γ N Λ⊗ Λ⊗γ N Λ⊗Γ N

pN //

e−1⊗1

��

e−1

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWW

��
c⊗1 //

1⊗uΛ⊗1

��

1⊗pN //

uΛ⊗1⊗1

��

uΛ⊗1

��1⊗pN //

qΛ⊗1

��
t

��

γ⊗1⊗1 //

1⊗t

��

pΛ⊗1 //

1⊗t

��

t

''OO
OOO

OOO
OOO

OOO
OOO

OOO

γ⊗1⊗1 // pΛ⊗Γ1 //

II

I

every subdiagram except those labeled I and II commutes either by a coherence or natu-
rality. The equation qΛ = pΛ(1 ⊗ γ) : Λ ⊗ Γ // Λ is just the operation of Γ on Λ and I
commutes by definition of ⊗Γ.

As for II, in the diagram

Γ⊗K K ⊗ Γ

Γ⊗ Γ Γ Γ⊗ Γ Λ⊗ Γ

Λ⊗ Λ

Γ⊗ Λ Λ⊗ Λ Λ

e //

1⊗uΛ

��

1⊗uΓ

$$H
HH

HH
HH

HH
HH

HH
HH

H

e′

))TTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTT

e

uujjjj
jjjj

jjjj
jjjj

jjjj
jjjj

jjjj
jj

uΛ⊗1

��

1⊗γ

}}zz
zz
zz
zz
zz
zz
zz
zz
z

pΓ //

γ⊗γ

!!D
DD

DD
DD

DD
DD

DD
DD

DD

γ

((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
Q

pΓoo γ⊗1 //
γ⊗γ

!!D
DD

DD
DD

qΛ

��
pΛ

DDD

!!DD
D

γ⊗1 // pΛ //

every subdiagram is commutative either because if coherence, naturality, or because γ is
a morphism of algebras. Tensoring the outer square with N gives the desired result. To
complete the proof we must show that, given a Γ-linear map α : N //PM , we can find a
unique Λ-linear map β : QN //M such that Pβ · ηN = α. Since Λ⊗Γ N us the cokernel
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of qΛ ⊗ 1− 1⊗ pN : Λ⊗ Γ⊗N // Λ⊗N , we have

pM(1⊗ α)(qΛ ⊗ 1) = pM(pΛ ⊗ 1)(1⊗ γ ⊗ 1)(1⊗ 1⊗ α)

= pM(1⊗ pM)(1⊗ γ ⊗ 1)(1⊗ 1⊗ α)

= pM(1⊗ pM(γ ⊗ 1)(1⊗ α))

= pM(1⊗ αpM) = pM(1⊗ α)(1⊗ pN)

Hence pM(1⊗α) induces a map β : Λ⊗ΓN //M . To show this is Λ-linear we must show
that pM(1⊗ β) = β(pΛ ⊗Γ 1). But since these are cokernels it reduces to showing that

[1⊗ pM(1⊗ α)] = pM(1⊗ pM)(1⊗ 1⊗ α)

= pM(pΛ ⊗ 1)(1⊗ 1⊗ α) = pM(1⊗ α)(pΛ ⊗ 1)

The fact that Pβ · ηN = α follows from the commutativity of

M K ⊗M//

N

M

α

��

N K ⊗N// K ⊗N

K ⊗M

1⊗α

��

K ⊗N Λ⊗N//

K ⊗M Λ⊗M// Λ⊗M MpΛ

//

Λ⊗N

Λ⊗M

1⊗α

��

Λ⊗N Λ⊗Γ N
t // Λ⊗Γ N

M

β

��

together with the fact that the bottom row is just the identity. Now suppose that β′ :
Λ⊗ΓN //M is another Λ-linear map with Pβ′ · ηN = α. Then β′t : Λ : Λ⊗N //M is a
Λ-linear map such that α = β′t(uΛ⊗1)e−1

N . Since β′t is Λ-linear, β′t(pΛ⊗1) = pM(1⊗β′t).
From the former, we get

1⊗ α = (1⊗ β′t)(1⊗ uΛ ⊗ 1)(1⊗ e−1
N )

and then
pM(1⊗ α) = pM(1⊗ β′t)(1⊗ uΛ ⊗ 1)(1⊗ e−1

N )

= β′t(pΛ ⊗ 1)(1⊗ uΛ ⊗ e−1
N )

= β′t(e′Λ ⊗ e−1
N )

But by coherence, e′Λ ⊗ e−1
N : Λ ⊗ N // Λ ⊗K ⊗ N // Λ ⊗ N must be the identity, so

β′t = pM(1⊗ alpha) = βt. Since t is an epimorphism, the result follows.

Henceforth, we will not distinguish between M and P (M). We have already noted
that if M is a Λ-module, then

HomAlg(D),Λ(IΛ, π1) ∼= Der(Λ,M)

Now if γ : Γ // Λ is in (Alg(D),Λ), the fact that

Der(Γ,M) ∼= Hom(Alg(D),Λ)

can be proved in exactly the same way. Thus I have shown half of the following:
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4.2. Theorem. π1 : M+ // Λ is an abelian object of (Alg(D),Λ). If γ : Γ // Λ is an
abelian object of that category and N = ker γ, then N = P (M) for suitable M and γ ∼= π1.

Proof. If γ : Γ // Λ is an abelian object, then Hom(1, γ) is also an abelian group. If i
denotes its identity, then i : Γ // Λ is a right inverse to γ so that γ is an epimorphism.
It is easily seen that ker γ = N is a Γ-bimodule (for γ : Γ // Λ is also a morphism of of
Γ-bimodules) and so M = Pi(N) is a Λ-module. Essentially, i induces a Λ-structure on
N . Now, considered as objects of D, γ has a right inverse so that Γ ∼= Λ +M and pΓ has
a representation as a matrix ∣∣∣∣∣∣∣∣α11 α12 α13 α14

α21 α22 α23 α24

∣∣∣∣∣∣∣∣
with respect to the basis indicated in the expansion

(Λ +M)⊗ (Λ +M) = Λ⊗ Λ + Λ⊗M +M ⊗ Λ +M ⊗M

The fact that with repect to these bases, i has matrix

∣∣∣∣∣∣∣∣ 10
∣∣∣∣∣∣∣∣ and is a morphism in

(Alg(D),Λ) shows that α21 = 0 and is in (Alg(D),Λ), a similar computation shows
that α12 = α13 = α14 = 0. We will be finished if we show that α = α24 = 0. Since
γ : Γ // Λ is an abelian object there is a map of γ × γ // γ where the product is in
(Alg(D),Λ). It is easily checked that γ × γ has the underlying object Σ = Λ + M + M ′

where M = M ′ is given a different name for the purpose of keeping track of an ordered
basis. This algebra has multiplication map

pΣ : Σ⊗ Σ ∼= Λ⊗ Λ + Λ⊗M + Λ⊗M ′ +M ⊗ Λ +M ⊗M

+M ⊗M ′ +M ′ ⊗ Λ +M ′ ⊗M +M ′ ⊗M ′

// Σ

whose matrix is ∣∣∣∣∣∣
∣∣∣∣∣∣
pΛ 0 0 0 0 0 0 0 0
0 pM 0 qM α 0 0 0 0
0 0 pM 0 0 0 qM 0 α

∣∣∣∣∣∣
∣∣∣∣∣∣

If i1 : Γ // Σ and i2 : Γ // Σ are the injections (with matrices∣∣∣∣∣∣
∣∣∣∣∣∣
1 0
0 1
0 0

∣∣∣∣∣∣
∣∣∣∣∣∣ and

∣∣∣∣∣∣
∣∣∣∣∣∣
1 0
0 0
0 1

∣∣∣∣∣∣
∣∣∣∣∣∣

respectively), then a group law on Γ would be a map θ : Σ //Γ in (Alg(D),Λ) satisfying
(among other conditions) θi1 = θi2 = 1. Writing out θ in matrix form, these conditions
imply that α = 0.
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4.3. Remark. The meaning of this theorem is that the categories of Λ-modules for the
D-algebra Λ, [Mac Lane 1965, p. 81], and Λ-modules for the T-algebras Λ [Barr & Beck
1966, Beck 1967] are isomorphic.

5. Cohomology

5.1. Theorem. If γ : Γ // Λ is in (Alg(D),Λ), φ = γ ⊗ γop : Γe // Λe and M+ is an
abelian object in that category, then there is an isomorphism

Hn(Γ,M+)Λ
//

{
Der(Γ, Pφ(M)), if n = 0
Hn+1(Γ, Pφ(M)), if n > 0

where the left hand side refers to the triple cohomology and the right hand side is the
cohomology of Mac Lane’s bar construction.

Proof. We use the method of acyclic models as explained in detail in [Barr & Beck 1966].
We define standard cochain complexes L, S : (Alg(D),Λ) //Ab , the category of abelian
groups. Let Ln(Γ,M) = HomΓe(Γn+3,M), where again, we are letting M stand for some
P (M) and

Sn(Γ,M) = Hom(Alg(D),Λ)(GΓn+1,M+)

The boundary operator in L takes f to

pM(1⊗ f) +
∑

(−1)i(1⊗ · · · ⊗ pΓ ⊗ · · · ⊗ 1) + (−1)n+1qM(f ⊗ 1)

where pΓ is its multiplication map and pM and qM are the bimodule operations on M .
The coboundary in S takes f to

∑
(−1)i Hom(f ·GiεGn−i,M). Then it is clear that L and

S are standard complexes for the modified Mac Lane cohomology appearing on the right
of Theorem 4.1 and the triple cohomomogy, respectively. Using η we may show, exactly
as in [Barr & Beck 1966], that S is G-representable and G-acyclic on models. If we can
show the same for L and that L−1 ∼= S−1, we will be through. If ζ = ηΓ : Γ //GΓ is the
adjointness morphism (in D), it induces a map ζ(n+1) : Γ(n+1) //GΓ(n+1). We have

Ln(Γ,M) = HomΓe(Γ(n+3),M) ∼= Hom(Γ(n+1),M)

Hom(ζn+1,M) // Hom(GΓ(n+1),M) ∼= HomGΓe(GΓ(n+3),M)

= Ln(GΓ,M)

a G-representation of L. To show that L is G-acyclic, we choose f ∈ Ln(GΓ,M) and
define sf ∈ Ln−1(GΓ,M) as follows. Let

α(i0, . . . , in+1) : Γ(i0) ⊗ . . .⊗ Γ(in+1) //GΓ(n+2)

Denote the inclusion and define sf by

sf · α(i0, 0, in, . . . , in+1) = f · α(i0, 0, 0, in, . . . , in+1)× (1⊗ e−1
K 1⊗ · · · ⊗ 1)
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for i1 = 0 and inductively, for i1 > 0

sf · α(i0, i1, . . . , in+1)

= sf · α(i0 + 1, i1 − 1, i2, . . . , in)[(σ(i0, 1)⊗ 1)(1⊗ σ(1, i1 − 1)−1)⊗ 1⊗ · · · ⊗ 1]

− f · α(i0, 1, i1 − 1, i2, . . . , in)(1⊗ σ(1, i1 − 1)−1 ⊗ 1⊗ · · · ⊗ 1)

Then, just as in [Barr & Beck 1966], s may be shown to be a contraction in L(GΓ,M).

L−1(Γ,M) ∼= HomΓe(JΓ,M) ∼= Der(Γ,M) ∼= Hom(Alg(D),Λ)(Γ,M
+)

by the results of Section 3, and it is shown in [Beck 1967] that the latter is

H0(S(γ,M)) ∼= S−1(Γ,M)

. This completes the proof.
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