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CW complexes

For algebraic topology, even spheres are hard.

So algebraic topologists focus their
attention on CW complexes: spaces built up by gluing on Euclidean discs of
higher and higher dimension.

For n ∈ ω, let

Dn denote the closed ball of radius 1 about the origin in Rn (the n-disc),
◦
Dn its interior (the open ball of radius 1 about the origin), and

Sn−1 its boundary (the n − 1-sphere).
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CW complexes

Definition
A Hausdorff space X is a CW complex if there exists a set of functions
ϕn
α : Dn → X (characteristic maps), for α in an arbitrary index set and n ∈ ω a

function of α, such that:

1 ϕn
α �

◦
Dn is a homeomorphism to its image, and X is the disjoint union as α

varies of these homeomorphic images ϕn
α[
◦
Dn].

2 For each ϕn
α, ϕn

α[Sn−1] is contained in finitely many cells all of dimension less
than n.

3 The topology on X is the weak topology: a set is closed if and only if its
intersection with each closed cell ϕn

α[Dn] is closed.

We denote ϕn
α[
◦
Dn] by enα and refer to it as an n-dimensional cell.
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Trouble in paradise

Flaw:
The Cartesian product of two CW complexes X and Y , with the product
topology, need not be a CW complex.

Since Dm × Dn ∼= Dm+n, there is a natural cell structure on X × Y , but the
product topology is generally not as fine as the weak topology.

Convention
In this talk, X × Y is always taken to have the product topology, so “X × Y is a
CW complex” means “the product topology on X × Y is the same as the weak
topology”.
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Example (Dowker, 1952)

Let X be the “star” with a central vertex e0X and countably many edges e1X ,n
(n ∈ ω) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex e0Y and continuum many edges e1Y ,f
(f ∈ ωω) emanating from it (and the other ends).

Consider the subset of X × Y

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ ω, f ∈ ωω

}
where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X × Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ ω, f ∈ ωω

}

Let U × V be a member of the product open neighbourhood base about (e0X , e
0
Y )

in X × Y — so e0X ∈ U an open subset of X , and e0Y ∈ V an open subset of Y .

Let g : ω → ω r {0} be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U
for every n ∈ ω.

Let k ∈ ω be sufficiently large that 1
g(k)+1 ∈ e1Y ,g ∩ V .

Then
(

1
g(k)+1 ,

1
g(k)+1

)
∈ U × V ∩ H. So overall, we have that in the product

topology, (e0X , e
0
Y ) ∈ H̄.
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Improving Dowker’s example

The unbounding number b

For f , g ∈ ωω, write f ≤∗ g if for all but finitely many n ∈ ω, f (n) ≤ g(n).

Then
b is the least size of a set of functions such that no one g is ≥∗ them all, ie,

b = min{|F| : F ⊆ ωω ∧ ∀g ∈ ωω∃f ∈ F(f �∗ g)}.

ℵ1 ≤ b ≤ 2ℵ0 , and each of

ℵ1 = b < 2ℵ0 ,

ℵ1 < b = 2ℵ0 ,

ℵ1 < b < 2ℵ0 , and of course

ℵ1 = b = 2ℵ0 (CH)

is consistent.
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Improving Dowker’s example

For Dowker’s example, it suffices for the bigger star to have only b many edges,
indexed by an unbounded set of functions F .
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Example (Folklore based on Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ ω, f ∈ F

}

Let U × V be a member of the product open neighbourhood base about (e0X , e
0
Y )

in X × Y — so e0X ∈ U an open subset of X , and e0Y ∈ V an open subset of Y .

Let g : ω → ω r {0} be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U

for every n ∈ ω. Take f ∈ F such that f �∗ g.

Let k ∈ ω be such that 1
f (k)+1 ∈ e1Y ,f ∩ V and f (k) > g(k).

Then
(

1
f (k)+1 ,

1
f (k)+1

)
∈ U × V ∩ H. So overall, we have that in the product

topology, (e0X , e
0
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X ,
such that if enα ⊆ A then its closure ēnα = ϕn

α[Dn] is in A.

Eg

For any CW complex X and n ∈ ω, X n is the subcomplex of X which is the union
of all cells of X of dimension at most n.

Note that by part (2) of the definition of a CW complex, every x in a CW complex
X lies in a finite subcomplex. Also, every subcomplex A of X is closed in X .

Definition
Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x
in X there is a subcomplex A of X with fewer than κ many cells such that x is in
the interior of A. We write locally finite for locally less than ℵ0, and locally
countable for locally less than ℵ1.
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What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then X × Y is a CW complex.

Theorem (J. Milnor, 1956)

If X and Y are both locally countable, the X × Y is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then X × Y is not a CW complex.
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What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming CH, X × Y is a CW complex if and only if one of them is locally finite,
or both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming b = ℵ1, X × Y is a CW complex if and only if one of them is locally
finite, or both are locally countable.
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A complete characterisation

Theorem (B.-T.)

Let X and Y be CW complexes. Then X × Y is a CW complex if and only if one
of the following holds:

1 X or Y is locally finite.

2 One of X and Y is locally countable, and the other is locally less than b.
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Proof
Most cases are dealt with by following result of Tanaka.

Theorem (Tanaka)

The following are equivalent.

1 κ ≥ b

2 If X × Y is a CW complex, then either

A X or Y is locally finite, or

B X or Y is locally countable and the other is locally less than κ.

So taking κ = b, it suffices to show that (A)∨(B) implies X × Y is a CW
complex. We know that (A) implies X × Y is a CW complex, so it suffices to
show that (B) implies X × Y is a CW complex.
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So suppose X is locally countable and Y is locally less than b. We shall show that
X × Y is a CW complex, ie, that the product topology on it is the same as the
weak topology.
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Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and
each closed cell ēnα is compact. So requiring X to have the weak topology is
equivalent to requiring that the topology be compactly generated: a set is closed
if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of ω + 1:

Definition
A topological space Z is sequential if for subset C of Z , C is closed if and only if
C contains the limit of every convergent (countable) sequence from C .

Any sequential space is compactly generated. Since Dn is sequential for every n,
we have that CW complexes are sequential.
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On with the proof

We shall show that our X × Y is sequential. So suppose H ⊂ X × Y is
sequentially closed, and (x0, y0) ∈ X × Y r H; we shall find open neighbourhoods
U of x0 in X and V of y0 in Y such that U × V ∩ H = ∅.

By moving if necessary to subcomplexes with x0 and y0 in their respective
interiors, we may assume that X has countably many cells and Y has fewer than b

many. Enumerate the cells of X as e
m(i)
X ,i for i ∈ ω, and the cells of Y as e

n(α)
Y ,α for

ordinals α ∈ µ for some µ < b.
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many. Enumerate the cells of X as e
m(i)
X ,i for i ∈ ω, and the cells of Y as e

n(α)
Y ,α for

ordinals α ∈ µ for some µ < b.
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A neighbourhood base for x0

Neighbourhoods in a single cell

Suppose n ∈ ω and w is in a cell ed with characteristic map ϕ of a CW complex
W . Let ~z = ϕ−1(w) ∈ Dd ⊂ Rd . We define Bϕn (w) to be the image under ϕ of
the open ball Br (~z) in Rd , where r is the minimum of 1/(n + 1) and half the
distance from ~z to the boundary of Dd .
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Let e
m(i0)
X ,i0

be the open cell of X containing x0.

Given f : ω → ω, we define a neighbourhood Uf of x0 in X as follows:

For all cells e of X of dimension ≤ m(i0) other than e
m(i0)
X ,i0

, let Uf ∩ e = ∅.

As Uf ∩ e
m(i0)
X ,i0

, we take B
ϕ

m(i0)

X,i0

f (i0)
(x0).

For cells of dimension ≥ m(i0) we proceed by induction on dimension:
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A neighbourhood base for x0

Suppose Uf ∩ Xm has been defined and em+1
i is an m + 1-cell of X . Let

Vi = (ϕm+1
i )−1[Uf ∩ Xm] ⊆ Sm ⊂ Dm+1 ⊂ Rm+1. Then let

Wi = {t · ~z ∈ Dm+1 : t ∈ (1− 1

f (i) + 1
, 1] ∧ ~z ∈ Vi}

(where the multiplication · is scalar multiplication in the real vector space Rm+1),
and take Uf ∩ ēm+1

i = ϕm+1
i [Wi ].

Since this defines an open set in every cell of X , it defines an open set Uf in X .
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A neighbourhood base for x0

These neighbourhoods do define a neighbourhood base: given x ∈ U ⊆ X , we
may inductively (on dimension m) choose values of f (i) such that Uf ∩ Xm has
closure contained in U ∩ Xm, and then local compactness ensures the process can
continue.
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Back to the proof

Recall H sequentially closed, (x0, y0) /∈ H, x0 ∈ e
m(i0)
X ,i0

. Say y0 ∈ e
n(α0)
Y ,α0

.

We shall actually construct a g : ω → ω and an open V in Y such that
(x0, y0) ∈ Ug × V ⊂ X × Y and Ūg × V̄ ∩ H = ∅.

The construction is by induction on dimension.
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The base case

e
m(i0)
X ,i0

and e
n(α0)
Y ,α0

lie in finite subcomplexes X0 and Y0 of X and Y respectively.

Since X0 × Y0 is a CW complex, it is sequential, so H ∩ X0 × Y0 is closed in

X0 × Y0. So there is an f (i0) ∈ ω and a Vα0 ⊂ e
n(α0)
Y ,α0

open in e
n(α0)
Y ,α0

such that

(x0, y0) ∈ B
ϕ

m(i0)

X,i0

f (i0)
(x0)× V ⊂ e

m(i0)
X ,i0

× e
n(α0)
Y ,α0

and

H ∩ B̄
ϕ

m(i0)

X,i0

f (i0)
(x0)× V̄ = ∅.
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The inductive step

Suppose Uf ∩ Xm(i0)+k and V ∩ Y n(α0)+k have been defined such that

¯(Uf ∩ Xm(i0)+k)× ¯(V ∩ Y n(α0)+k) ∩ H = ∅.

Consider those (m(i0) + k + 1)-cells of X whose boundaries intersect
Uf ∩ Xm(i0)+k — there are countably many of them.
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Young Set Theory 2017

Registration is now open (until March 31) for Young Set Theory 2017!

New directions in the higher infinite, ICMS Edingburgh, 10–14 July 2017

http://www.icms.org.uk/workshop.php?id=415
(Google “higher infinite ICMS”)
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