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quantum field theory 

§  Feynman diagram 

 

 

§  Feynman amplitude 
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quantum field theory 

§  Feynman diagram 

 

 

§  Feynman amplitude 

§  Multiply distributions on the largest domain where this is 
well defined 

§  Renormalization: extend the result to  
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Algebraic quantum field theory 

§  Multiplication of  distributions 
•  Motivation 
•  The wave front set of  a distribution 

•  Application and topology 

§  Extension of  distributions (Viet) 
•  Renormalization as the solution of  a functional equation 

•  The scaling of  a distribution 

•  Extension theorem 

§  Renormalization on curved spacetimes (Kasia) 
•  Epstein-Glaser renormalization 
•  Algebraic structures (Batalin-Vilkovisky, Hopf  algebra) 

•  Functional analytic aspects 



  

§  Joint work with Yoann Dabrowski, Nguyen Viet Dang 
and Frédéric Hélein 



outline 

§  Trying to multiply distributions 
•  Singular support 

•  Fourier transfom 

§  The wave front set 
•  Examples 

•  Characteristic functions 

•  Hörmander’s theorem for distribution products 

§  Examples in quantum field theory 

§  Topology 



Multiply Distributions 
 

§  Heaviside step function  

§   As a function 

§  Heaviside distribution  

§  If                then                        and                for  

✓(x) = 0 for x < 0,

✓(x) = 1 for x � 0.
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regularization 
 

§  Mollifier     such that  

§  Distributions are mollified by 

        convolution with  

§  Mollified Heaviside distribution  

 

§  Then,  

§  But                         diverges 

§  Very heavy calculations (Colombeau generalized functions) 
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Singular support 
 

§  How detect a singular point in a distribution     ? 

 

    

§  Multiply by a smooth function                     around  

§  Look whether       is smooth or not  
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§  Let     be a distribution on                   and                      

       such that        is a smooth function. For  

    

 

§  All the derivatives of         exist: 

  

§  The singular support of      is the complement of  the set 

of  points              such that there is a                     with        

a smooth function and    
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Easy products 

 

§  You can multiply a distribution     and a smooth 

function   

                      

§  You can multiply two distributions    and    with disjoint 
singular supports  

       where 

•               on a neighborhood of  the singular support of   

•               on a neighborhood of  the singular support of   
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Hard products 

 

§  Product of  distributions with common singular support 

§  Consider 

§  More precisely 
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Hard products 

 

§  Product of  distributions with common singular support 

§  Consider also 

§  More precisely 

  

§  Its singular support is  
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Fourier transform 

 

§  Convolution theorem 

§  Define the product by  

§  Example  

§  Square of  
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Fourier transform 

§  Example  

§  Product 

                                                                        diverges 
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Fourier transform 

§  Interpretation  

§           can be integrable in some direction 

§  The non-integrable directions of            can be compensated 

for by the integrable directions of   
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Fourier transform 

§  Interpretation  

§  Integrable :          is well-defined 
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Fourier transform 

§  Interpretation  

§  Not integrable :               is not well-defined 
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Fourier transform 

 

§  Define the product by  

§  What if  the distributions have no Fourier transform? 

§  The product of  distributions is local:                near     if  

                                     for             in a neighborhood of  

§  How should the integral converge? 

§  Absolute convergence is not enough if  we want the 
Leibniz rule to hold 
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Fourier transform 
 

§  How can the integral converge?  

§  The order of         is finite: 

§  If             does not decrease along direction    , then  

                           must decrease faster than any inverse  

          polynomial 

§  Conversely,             must compensate for the directions 
along which                  does not decrease fast 
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§  Trying to multiply distributions 
•  Singular support 

•  Fourier transfom 

§  The wave front set 
•  Examples 

•  Characteristic functions 

•  Hörmander’s theorem for distribution products 
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§  Topology 



The wave front set 
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Wave front set 
 

§  A point                            does not belong to the 

wave front set of  a distribution    if  there is a test 

function    with                   and a conical 

neighborhood                of        such that, for every 

integer     there is a constant        for which 
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Wave front set 

 

§  The wave front set is a cone: if                           ,     

then                             for every  

§  The wave front set is closed 

§    

§  The singular support of      is the projection of            

on the first variable 

(x, ⇠) 2 WF(u)

(x,�⇠) 2 WF(u) � > 0

WF(u+ v) ⇢ WF(u) [WF(v)

u WF(u)



examples 

§  The wavefront set describes in which direction the 

distribution is singular above each point of  the singular 

support 

§  The Dirac    function is singular at            and its 

Fourier transform is 

§  Its  wave front set is 

§  The distribution                                       is also singular 
at             but its Fourier transform is  

§  Its wave front set is  

� x = 0

u+(x) = (x� i0+)�1

x = 0 cu+(⇠) = 2i⇡✓(⇠)

WF(u+) = {(0, ⇠); ⇠ > 0}

WF(�) = {(0, ⇠); ⇠ 6= 0}

b�(⇠) = 1



Characteristic function 

•  Relation to the Radon transform  



Characteristic function 
 

•  Characteristic function of  a disk: the wave front set is 

perpendicular to the edge 

•  The wave front set is used in edge detection for 

machine vision and image processing 



Characteristic function 
 

•  Shape and wave front set detection by counting 

intersections 
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Distribution product 
 

§  Product of  distributions 

§  Hörmander thm: The product of  two distributions     

and     is well defined if  there is not point                       

such that  

§  The wave front set of  the product is 
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QFT: the causal approach 
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propagator 

 

 

 

 

 

 

 

 

    

 

       

 

   

 

    Wightman propagator 

§  Product of  fields 

§  Singular support 

§  Wavefront set 

§  Powers         are allowed 

§  Quantization does not need 

renormalization 
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propagator 

 

 

 

 

 

 

 

 

    

 

       

 

   

 

    Feynman propagator 

§  Time-ordered product of  

fields 

§  Singular support 

 

§  Wavefront set 

§  Powers         are allowed 

away from 

§  Powers         are forbidden 

at  

§  Renormalize only at 
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Wave front set 

§  Let                  and                 be open sets and                 
a smooth map.  

§  The pull-back of  a distribution                   by     is 

determined by the wave front set 

§  The dual space of  a distribution is determined by its 

wave front set 

§  The restriction of  a distribution to a submanifold is 

determined by the wave front set 

U ⇢ Rm V ⇢ Rn f : U ! V

fv 2 D0(V )



examples 

§  The true propagator is 

§  By pull-back by                           , its wave front set is 

§  In curved space time, the wave front set of  the 

propagator is obtained by pull-back: 

•   either                                for arbitrary 

•   or                                 such that there is a null geodesic 

between     and    , and     is obtained by parallel transporting      

along the geodesic  
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quantum field theory 

§  Feynman diagram 

 
 
§  Feynman amplitude 

§  The wave front set of  the amplitude is obtained by a recursive 
construction 

§  The amplitude is well defined, except on the diagonals 

§  It remains to renormalize to define the product on the 
diagonals 
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Topology 
 

§  For a closed cone                     we define 

§   We furnish              with a locally convex topology 

§  Let     be a vector space over    . A semi-norm on     is a 
map                     such that 
•                                for all              and     
•                                                for all  

§   A locally convex space is a vector space     equipped 

with a family             of  semi-norms on    

§  The sets                                            form a sub-base of  

the topology generated by the semi-norms 

� ⇢ T ⇤M

E
p : E ! R

p(�x) = |�|p(x)

E

x 2 E

p(x+ y)  p(x) + p(y)
x, y 2 E

C

� 2 C

E
(pi)i2I E

Vi,✏ = {x 2 E; pi(x) < ✏}

D0
�(U)

D0
�(U) = {u 2 D0(U);WF(u) ⇢ �}



topology 

 

§  The seminorms of               are: 

•                                       where       is bounded in              are the 

seminorms of  the strong topology of   

•                                                               for all integers     , closed 

cones     and functions                     s.t.    

§  The second set of  seminorms is used to ensure that the 
Fourier transform of                      around                       

decreases faster than any inverse polynomial: the wave 

front set of                     is in  
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Topology 

Thm. 

•             is complete 

•             is semi-Montel (its closed and bounded subsets 

are compact) 

•             is semi-reflexive 

•             is nuclear 

•             is a normal space of  distributions 

D0
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D0
�(U)

D0
�(U)

D0
�(U)

D0
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Topology 

Thm. With the topology of   

•  The pull-back is continuous 

•  The push-forward is continuous 

•  The multiplication of  distributions is hypocontinuous 

•  The tensor product of  distributions is 

hypocontinuous 

•  The duality pairing is hypocontinuous 

D0
�(U)
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