MULTIPLICATION OF DISTRIBUTIONS

Christian Brouder

Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie UPMC, Paris

Feynman diagram

Feynman amplitude

$$G(x_1, x_2)\Delta(x_2, x_3)^2G(x_3, x_4)\Delta(x_1, x_4)\Delta(x_4, x_5)\Delta(x_5, x_6)\Delta(x_6, x_7)G(x_5, x_7)$$

Feynman diagram

Feynman amplitude

$$G(x_1, x_2) \Delta(x_2, x_3)^2 G(x_3, x_4) \Delta(x_1, x_4) \Delta(x_4, x_5) \Delta(x_5, x_6) \Delta(x_6, x_7) G(x_5, x_7)$$

Feynman diagram

Feynman amplitude

 $\underline{G(x_1, x_2)\Delta(x_2, x_3)^2G(x_3, x_4)\Delta(x_1, x_4)}\Delta(x_1, x_4)\Delta(x_4, x_5)\Delta(x_5, x_6)\Delta(x_6, x_7)G(x_5, x_7)$

Feynman diagram

Feynman amplitude

$$G(x_1, x_2)\Delta(x_2, x_3)^2G(x_3, x_4)\Delta(x_1, x_4)\Delta(x_4, x_5)\underline{\Delta}(x_5, x_6)\Delta(x_6, x_7)G(x_5, x_7)$$

Feynman diagram

Feynman amplitude

$$G(x_1, x_2)\Delta(x_2, x_3)^2G(x_3, x_4)\Delta(x_1, x_4)\Delta(x_4, x_5)\Delta(x_5, x_6)\Delta(x_6, x_7)G(x_5, x_7)$$

- Multiply distributions on the largest domain where this is well defined $\mathcal{D}(\mathbb{R}^{7d} \setminus \{x_i = x_j\})$
- Renormalization: extend the result to $\mathcal{D}(\mathbb{R}^{7d})$

ALGEBRAIC QUANTUM FIELD THEORY

- Multiplication of distributions
 - Motivation
 - The wave front set of a distribution
 - Application and topology
- Extension of distributions (Viet)
 - · Renormalization as the solution of a functional equation
 - The scaling of a distribution
 - Extension theorem
- Renormalization on curved spacetimes (Kasia)
 - Epstein-Glaser renormalization
 - Algebraic structures (Batalin-Vilkovisky, Hopf algebra)
 - Functional analytic aspects

 Joint work with Yoann Dabrowski, Nguyen Viet Dang and Frédéric Hélein

OUTLINE

- Trying to multiply distributions
 - Singular support
 - Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theory
- Topology

MULTIPLY DISTRIBUTIONS

Heaviside step function

$$\theta(x) = 0$$
 for $x < 0$,
 $\theta(x) = 1$ for $x \ge 0$.

- As a function $\theta^n = \theta$
- Heaviside distribution

$$\langle \theta, f \rangle = \int_{-\infty}^{\infty} \theta(x) f(x) dx = \int_{0}^{\infty} f(x) dx$$

• If $\theta^n = \theta$ then $n\theta^{n-1}\delta = \delta$ and $n\theta\delta = \delta$ for $n \geqslant 2$

REGULARIZATION

- Mollifier φ such that $\int \varphi(x) dx = 1$
- Distributions are mollified by convolution with $\delta_{\epsilon}(x) = \frac{1}{\epsilon^d} \varphi\left(\frac{x}{\epsilon}\right)$
- Mollified Heaviside distribution

$$\theta_{\epsilon}(x) = \int_{-\infty}^{x} \delta_{\epsilon}(y) dy$$

• Then,

$$\theta \delta = \lim_{\epsilon \to 0} \theta_{\epsilon} \delta_{\epsilon} = \frac{1}{2} \delta$$

- But $\delta^2 = \lim_{\epsilon \to 0} \delta^2_{\epsilon}$ diverges
- Very heavy calculations (Colombeau generalized functions)

SINGULAR SUPPORT

• How detect a singular point in a distribution u?

• Multiply by a smooth function $g \in \mathcal{D}(M)$ around $x \in M$

• Look whether gu is smooth or not

SINGULAR SUPPORT

• Let u be a distribution on $M=\mathbb{R}^d$ and $g\in\mathcal{D}(M)$ such that gu is a smooth function. For $e_\xi(x)=e^{i\xi\cdot x}$

$$g(x)u(x) = \langle gu, \delta_x \rangle = \int \frac{d\xi}{(2\pi)^d} \langle gu, e_\xi \rangle e^{-i\xi \cdot x}$$

• All the derivatives of gu exist:

$$\forall N, \exists C_N, s.t. \forall \xi, \quad |\langle gu, e_{\xi} \rangle| \leqslant \boxed{C_N (1 + |\xi|)^{-N}}$$

• The **singular support** of u is the complement of the set of points $x \in M$ such that there is a $g \in \mathcal{D}(M)$ with gu a smooth function and $g(x) \neq 0$

EASY PRODUCTS

• You can multiply a distribution u and a smooth function f

$$\langle fu,g\rangle = \langle u,fg\rangle$$

• You can multiply two distributions u and v with disjoint singular supports

$$\langle uv, g \rangle = \langle u, vfg \rangle + \langle v, u(1-f)g \rangle$$

where

- f=0 on a neighborhood of the singular support of v
- f=1 on a neighborhood of the singular support of u

HARD PRODUCTS

- Product of distributions with common singular support
- Consider

$$u_{+}(x) = \frac{1}{x - i0^{+}} = i \int_{0}^{\infty} e^{-ik\xi} d\xi$$

More precisely

$$\langle u_+, g \rangle = i \int_0^\infty \hat{g}(-\xi) d\xi$$

• Its singular support is $\Sigma(u_+) = \{0\}$

HARD PRODUCTS

- Product of distributions with common singular support
- Consider also

$$u_{-}(x) = \frac{1}{x+i0^{+}} = -i\int_{0}^{\infty} e^{ik\xi}d\xi$$

More precisely

$$\langle u_{-}, g \rangle = -i \int_{0}^{\infty} \hat{g}(\xi) d\xi$$

• Its singular support is $\Sigma(u_{-}) = \{0\}$

- Convolution theorem $\widehat{uv} = \widehat{u} \star \widehat{v}$
- Define the product by $uv = \mathcal{F}^{-1}(\widehat{u} \star \widehat{v})$
- Example

$$u_{+}(x) = \frac{1}{x - i0^{+}}$$
 $\widehat{u_{+}}(\xi) = 2i\pi\theta(\xi)$

• Square of u_+

$$\widehat{u_{+}^{2}}(\xi) = -2\pi \int_{\mathbb{T}} \theta(\eta)\theta(\xi - \eta)d\eta = -2\pi \xi \theta(\xi)$$

Example

$$u_{+}(x) = \frac{1}{x - i0^{+}} \qquad \widehat{u_{+}}(\xi) = 2i\pi\theta(\xi)$$

$$u_{-}(x) = \frac{1}{x + i0^{+}} \qquad \widehat{u_{-}}(\xi) = -2i\pi\theta(-\xi)$$

• Product u_+u_-

$$\widehat{u_+u_-}(\xi) = 2\pi \int_{\mathbb{R}} \theta(\eta)\theta(\eta-\xi)d\eta$$
 diverges

Interpretation

$$\widehat{u_+}(\eta)$$

$$\widehat{u_+}(\xi - \eta)$$

$$\widehat{u_{-}}(\xi-\eta)$$

- $\widehat{u}(\eta)$ can be integrable in **some** direction
- The non-integrable directions of $\widehat{u}(\eta)$ can be compensated for by the integrable directions of $\widehat{v}(\xi \eta)$

Interpretation

$$\widehat{u_+}(\eta)$$

$$\widehat{u_+}(\xi - \eta)$$

• Integrable: u_+^2 is well-defined

Interpretation

$$\widehat{u_+}(\eta)$$

$$\widehat{u_{-}}(\xi-\eta)$$

$$\widehat{u_{+}}(\eta)\widehat{u_{-}}(\xi-\eta)$$

• Not integrable : u_+u_- is not well-defined

- Define the product by $uv = \mathcal{F}^{-1}(\widehat{u} \star \widehat{v})$
- What if the distributions have no Fourier transform?
- The product of distributions is local: w = uv near x if $\widehat{f^2w} = \widehat{fu} \star \widehat{fv}$ for f = 1 in a neighborhood of x
- How should the integral converge?

$$\widehat{f^2uv}(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{fu}(\eta) \widehat{fv}(\xi - \eta) d\eta$$

 Absolute convergence is not enough if we want the Leibniz rule to hold

• How can the integral converge?

$$\widehat{f^2uv}(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{fu}(\eta) \widehat{fv}(\xi - \eta) d\eta$$

- The order of fu is finite: $|\widehat{fu}(\eta)| \le C(1+|\eta|)^m$
- If $\widehat{fu}(\eta)$ does not decrease along direction η , then $\widehat{fv}(\xi-\eta)$ must decrease **faster than any inverse** polynomial
- Conversely, $\widehat{fu}(\eta)$ must compensate for the directions along which $\widehat{fv}(\xi-\eta)$ does not decrease fast

OUTLINE

- Trying to multiply distributions
 - Singular support
 - Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theory
- Topology

THE WAVE FRONT SET

Mikio Sato 1928-

Lars Valter Hörmander 1931-2012

WAVE FRONT SET

• A point $(x_0, \xi_0) \in T^*\mathbb{R}^d$ does not belong to the wave front set of a distribution u if there is a test function f with $f(x_0) \neq 0$ and a conical neighborhood $V \subset \mathbb{R}^d$ of ξ_0 such that, for every integer N there is a constant C_N for which

$$|\widehat{fu}(\xi)| \le C_N (1 + |\xi|)^{-N}$$

for every $\xi \in V$

 ξ_0 •

WAVE FRONT SET

- The wave front set is a cone: if $(x, \xi) \in WF(u)$, then $(x, \lambda \xi) \in WF(u)$ for every $\lambda > 0$
- The wave front set is closed
- $WF(u+v) \subset WF(u) \cup WF(v)$
- The singular support of u is the projection of WF(u) on the first variable

EXAMPLES

- The wavefront set describes in which direction the distribution is singular above each point of the singular support
- The Dirac δ function is singular at x=0 and its Fourier transform is $\widehat{\delta}(\xi)=1$
- Its wave front set is $WF(\delta) = \{(0, \xi); \xi \neq 0\}$
- The distribution $u_+(x) = (x i0^+)^{-1}$ is also singular at x = 0 but its Fourier transform is $\widehat{u_+}(\xi) = 2i\pi\theta(\xi)$
- Its wave front set is $WF(u_+) = \{(0, \xi); \xi > 0\}$

CHARACTERISTIC FUNCTION

• Relation to the Radon transform

CHARACTERISTIC FUNCTION

 Characteristic function of a disk: the wave front set is perpendicular to the edge

 The wave front set is used in edge detection for machine vision and image processing

CHARACTERISTIC FUNCTION

• Shape and wave front set detection by counting intersections

DISTRIBUTION PRODUCT

Product of distributions

$$\widehat{f^2uv}(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{fu}(\eta) \widehat{fv}(\xi - \eta) d\eta$$

- Hörmander thm: The product of two distributions u and v is well defined if there is not point $(x, \xi) \in \mathrm{WF}(u)$ such that $(x, -\xi) \in \mathrm{WF}(v)$
- The wave front set of the product is

$$WF(uv) \subset WF(u) \oplus WF(v) \cup WF(u) \cup WF(v)$$

$$WF(u) \oplus WF(v) = \{(x, \xi + \eta); (x, \xi) \in WF(u) \text{ and } (x, \eta) \in WF(v)\}$$

OUTLINE

- Trying to multiply distributions
 - Singular support
 - Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theory
- Topology

QFT: THE CAUSAL APPROACH

Stueckelberg

Klaus Fredenhagen

Bogoliubov

Radzikowski

Romeo Brunetti

Stefan Hollands

Robert Wald

Katarzyna Rejzner

PROPAGATOR

Product of fields

$$\Delta_{+}(x) = \langle 0 | \varphi(x) \varphi(0) | 0 \rangle$$

Singular support

$$\{(x, y, t); t^2 - x^2 - y^2 = 0\}$$

- Wavefront set
- Powers Δ^n_+ are allowed
- Quantization does not need renormalization

Wightman propagator

PROPAGATOR

Feynman propagator

Time-ordered product of fields

$$\Delta_F(x) = \langle 0 | T(\varphi(x)\varphi(0)) | 0 \rangle$$

- Singular support $\{(x, y, t); t^2 x^2 y^2 = 0\}$
- **Wavefront set**
 - Powers Δ_F^n are allowed away from x = 0
 - Powers Δ_F^n are forbidden at x = 0
 - Renormalize only at x = 0

WAVE FRONT SET

- Let $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ be open sets and $f: U \to V$ a smooth map.
- The pull-back of a distribution $v \in \mathcal{D}'(V)$ by f is determined by the wave front set
- The dual space of a distribution is determined by its wave front set
- The restriction of a distribution to a submanifold is determined by the wave front set

EXAMPLES

- The true propagator is $G(x,y) = \Delta_F(x-y)$
- By pull-back by f(x,y)=x-y, its wave front set is $WF(G)=\{\big((x,y),(\xi,-\xi)\big);(x-y,\xi)\in WF(\Delta_F)\}$
- In curved space time, the wave front set of the propagator is obtained by pull-back:
 - either $((x, x), (\xi, -\xi))$ for arbitrary $\xi \neq 0$
 - or $((x,y),(\xi,-\eta))$ such that there is a null geodesic between x and y, and η is obtained by parallel transporting ξ along the geodesic

Feynman diagram

Feynman amplitude

$$G(x_1, x_2)\Delta(x_2, x_3)^2G(x_3, x_4)\Delta(x_1, x_4)\Delta(x_4, x_5)\Delta(x_5, x_6)\Delta(x_6, x_7)G(x_5, x_7)$$

- The wave front set of the amplitude is obtained by a recursive construction
- The amplitude is well defined, except on the diagonals
- It remains to renormalize to define the product on the diagonals

OUTLINE

- Trying to multiply distributions
 - Singular support
 - Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theory
- Topology

• For a closed cone $\Gamma \subset T^*M$ we define

$$\mathcal{D}'_{\Gamma}(U) = \{ u \in \mathcal{D}'(U); \mathrm{WF}(u) \subset \Gamma \}$$

- We furnish $\mathcal{D}'_{\Gamma}(U)$ with a locally convex topology
- Let E be a vector space over \mathbb{C} . A *semi-norm* on E is a map $p: E \to \mathbb{R}$ such that
 - $p(\lambda x) = |\lambda| p(x)$ for all $\lambda \in \mathbb{C}$ and $x \in E$
 - $p(x+y) \le p(x) + p(y)$ for all $x, y \in E$
- A locally convex space is a vector space E equipped with a family $(p_i)_{i \in I}$ of semi-norms on E
- The sets $V_{i,\epsilon} = \{x \in E; p_i(x) < \epsilon\}$ form a sub-base of the topology generated by the semi-norms

- The seminorms of $\mathcal{D}'_{\Gamma}(U)$ are:
 - $p_B(u) = \sup_{f \in B} |\langle u, f \rangle|$ where B is bounded in $\mathcal{D}(U)$ are the seminorms of the strong topology of $\mathcal{D}'(U)$
 - $||u||_{N,V,\chi} = \sup_{k \in V} (1+|k|)^N |\widehat{u\chi}(k)|$ for all integers N, closed cones V and functions $\chi \in \mathcal{D}(U)$ s.t. $\sup_{k \in V} \chi \times V \cap \Gamma = \emptyset$
- The second set of seminorms is used to ensure that the Fourier transform of $u \in \mathcal{D}'_{\Gamma}(U)$ around $x \in \operatorname{supp}(\chi)$ decreases faster than any inverse polynomial: the wave front set of $u \in \mathcal{D}'_{\Gamma}(U)$ is in Γ

Thm.

- $\mathcal{D}'_{\Gamma}(U)$ is complete
- $\mathcal{D}'_{\Gamma}(U)$ is semi-Montel (its closed and bounded subsets are compact)
- $\mathcal{D}'_{\Gamma}(U)$ is semi-reflexive
- $\mathcal{D}'_{\Gamma}(U)$ is nuclear
- $\mathcal{D}'_{\Gamma}(U)$ is a normal space of distributions

Thm. With the topology of $\mathcal{D}'_{\Gamma}(U)$

- The pull-back is continuous
- The push-forward is continuous
- The multiplication of distributions is hypocontinuous
- The tensor product of distributions is hypocontinuous
- The duality pairing is hypocontinuous

FOR YOUR ATTENTION

