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Duality notes

The goal of these notes is to explain the notion of a fully dualizable object
in a symmetric monoidal (co,n)-category. Along the way, we will review
dualizability as it appears in various settings, including monoidal categories,
adjoint functors, and bicategories. Our approach follows closely the approach
of [4], but we also take ideas from [3].
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1 Dualizability in monoidal categories

In this section, we review the notion of a dualizable object in a monoidal
category, and we recall some basic facts concerning such objects.

1.1 Monoidal categories

A monoidal category is a category equipped with an additional structure
called the monoidal product, which is a structure that generalizes the ten-
sor product in the category of vector spaces. More precisely, we have the
following definition.

Definition 1.1. A monoidal category (C,®,e) consists of
e a category C,

e a bifunctor ® : C x C — C, plus a family of isomorphisms

Mryz: (XQY)®z S x® (YyR2)



called the associators, which are natural in x, y, z, and

¢ a distinguished object ¢, plus two families of isomorphisms
Ayie®@x —x and py:x®e—x
called the left unitors and right unitors, which are natural in x.

Moreover, these natural isomorphisms are required to satisfy certain coher-
ence conditions, which can be stated in terms of commutative diagrams, namely,
the pentagon identity and the triangle identities, which are pictured below.
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Remark 1.2. The existence of the associators ensures that the tensor product @
is associative up to natural isomorphism. The existence of the unitors ensures
that e serves as a unit for ®, up to natural isomorphism.

As examples, we have the following monoidal categories.

Example 1.3. The usual tensor product ® endows the category Vect; of k-
vector spaces with the structure of a monoidal category, where the monoidal
unit is taken to be the ground field k.

Example 1.4. For a commutative ring R, the tensor product @ endows the
category Modpg of (left) R-modules with the structure of a monoidal category,
where the monoidal unit is taken to be the ring R, viewed as a (left) R-module.

Example 1.5. More generally, for a commutative ring R, the category Chaing
of chain complexes of R-modules can be equipped with the structure of a
monoidal category by taking the monoidal product to be the graded tensor
product ® and the monoidal unit to be the module R, viewed as a chain
complex with non-trivial degree only in degree 0.



Example 1.6. The smash product A endows the category Sp of spectra with
a monoidal structure, where the unit can be taken to be the sphere spectrum
8§ = x®50,

Example 1.7. The disjoint union LI endows the n-dimensional bordism cate-
gory Bord,, with a monoidal product, and a unit for this product is @, viewed
as an (n — 1)-dimensional manifold.

Example 1.8. For a category C, the endomorphism category End(C) of func-
tors on C can be equipped with a monoidal product given by functor compo-
sition o. In this case, a monoidal unit is the identity functor 1¢.

Note that Examples 1.3 to 1.7 come equipped with a family of isomor-
phisms
Bry: XY = yRx,

which are natural in x and y. If a monoidal category is equipped with such
a family of isomorphisms and these isomorphisms play well with the associa-
tors, in the sense that certain hexagon diagrams commute (pictured below), then
such a monoidal category is called a braided monoidal category, and the B, , are
called the braiding.
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We remark that the monoidal category (End(C), o, 1¢) has no natural choice
of braiding, since this would require natural isomorphisms r ¢ : FG = GF.

In addition, note that the braidings of the braided monoidal categories in
Examples 1.3 through 1.7 are involutions in the sense that By, o By x = lyax.
If the braidings in a monoidal category satisfy this property, then we call the
braided monoidal category a symmetric monoidal category.

1.2 Dualizable objects in monoidal categories

Definition 1.9. Let (C, ®, e) be a monoidal category with associator &, and let
x and y be objects in C. We say x has a left dual y (or y has a right dual x) if there
is

e a morphism ev : y ® x — e (called evaluation), and

e a morphism coev : e = x ® y (called coevaluation)

such that the compositions
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are both the identity. If x has a left dual, we say that x is left dualizable.

Example 1.10. We can ask which objects in the monoidal category (Vecty, ®, k)
are left dualizable. The claim is that the set of left dualizable objects is the set
of finite-dimensional vector spaces. Indeed, if V is a finite-dimensional vector
space, then the space W = Hom(V, k) is a left dual for V, since we may define
evaluation and coevaluation in the following manner. We let ev denote the
linear map induced by the bilinear map

WxV —k
(f,0) — f(v)

and, upon choosing a basis {v;} for V, we let coev : k — V ® W denote the
linear map determined by the assignment

1'—)22&@0?
i

where {v}} denotes the basis dual to {v;}. One can show that the necessary
compositions are the identity with these definitions. On the other hand, it is
not too difficult to show that if V has a left dual W, then V must be finite-
dimensional, since the image of the coevaluation map will be spanned by a



single vector, which is a finite sum of simple tensors, and hence factoring the
identity on V by the composite will show that V is spanned by a finite set of
vectors.

Example 1.11. More generally, one can show that in the monoidal category
(Modg, ®, R), the dualizable objects are the finitely-generated projective mod-
ules.

Example 1.12. Even more generally, an object in Chaing is dualizable if and
only if it is a bounded chain complex of finitely-generated projective modules.

Example 1.13. In (Bord,, LI, @), every object M is dualizable. If M denotes
M equipped with the opposite orientation, we let the evaluation map be the
bordism M x [0,1] viewed as a bordism from M LI M into @ as below.

MUM
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The coevaluation map is defined similarly. Checking that the necessary com-
posites are the identity amounts to checking that a “snake-like tube” is diffeo-
morphic to the identity bordism on M. We encourage the reader to work out
these compositions, if s/he has never done so before.

Example 1.14. In the monoidal category (End(C),o,1¢), an object (that is, a
functor) has a left dual if and only if it has a left adjoint (see Section 2 for more
information about adjoint functors). The evaluation and the co-evaluation
maps are given by the co-unit and unit, respectively.

Example 1.15. In the homotopy category of spectra with the smash product, a
spectrum is dualizable if and only if it is a finite spectrum, that is, a spectrum
presented by sequences of finite CW complexes.

A left dualizable object gives rise to a certain adjunction, as we show now.

Lemma 1.16. Suppose x is left dualizable with left dual y. Let F(—) = — ® x and
G(—) = — ®y be the functors which tensor on the right by x and y respectively.
Then F is a left adjoint for G, that is, there is a family of isomorphisms of the form

¢ap: Cla® x,b) = C(a,b®y)
which is natural in a and b.

Proof. Let ¢, ; denote the map described by

—1 _
(a®xi>b)n—>(ap“—>a®eﬂ>a®(x®y)Q(a@x)@y&b@y).

Then we claim that it is easy to construct an inverse for ¢, ; and that ¢, ; can
easily be shown to be natural in 2 and b. O



As a consequence, the Yoneda Lemma implies that left duals are unique
up to isomorphism. Let us first recall the Yoneda embedding.

The Yoneda embedding is an embedding of any category C into its cate-
gory of presheaves [C°P,Set]. More precisely, the Yoneda embedding is the
functor C — [C°P, Set] described on objects by y — C(—,y). As a consequence
of the Yoneda Lemma, this functor is fully faithful, meaning that for each pair
of objects x,y, the map on morphisms C(y,y’') — Nat(C(—,y),C(—,¥’)) is an
isomorphism of sets. In particular, this implies that if there is a natural iso-
morphism from C(—,y) into C(—,y’), then the objects y and y’ are isomorphic.

Lemma 1.17. Let y and y' be two left duals for x. Then y and y' are isomorphic
objects.

Proof. The previous lemma implies that we get natural isomorphisms of the
form

Cla®x,b) ~C(a,b®y) and Cla®x,b)~Cla,bxy).
Taking b to be the monoidal unit e, we get a natural isomorphism of the form

Cla,y) ~C(ay"),

which, by the Yoneda Lemma, implies that y and i’ are isomorphic, as desired.
O

We finally remark that in the setting of symmetric monoidal categories, it
is not too difficult to show that any left dual is also a right dual. Indeed, if
y is a left dual for x, then we may define new (right) evaluation and (right)
co-evaluation maps by

ev  =evofigy i XxQYy —e
coev’ = Bygyocoev:e — Y@ X.
Hence we are justified in speaking about a dual xV to an object x. By the

previous lemma, this object is unique up to isomorphism, and so we can
speak about the dual to an object.

2 Adjoint functors

In this section, we review the notion of a pair of adjoint functors. We refer the
reader to [1] for a more complete discussion.
We begin with a standard definition in terms of hom-sets.

Definition 2.1. Let C and D be categories and let F : C < D : G be functors.
We say that G has a left adjoint F (or F has a right adjoint G) if there is a family
of isomorphisms of the form

Pxy D(Fx,y) = C(x, Gy) 1)



which is natural in x (in C) and y (in D).

Example 2.2. Let C = D = Vect; the category of vectors spaces over a field k.
Let F be the functor — ® W for a fixed space W. Let G be the hom functor
homy (W, —). Then we have the familiar adjunction

hom (V ® W, U) =~ homy(V,hom, (W, U))
obtained by thinking of a bilinear map V® W — U as amap V — hom (W, U).

We now interpret this natural family of isomorphisms in a different man-
ner. In particular, we will look at what this isomorphism gives for a fixed x
and for a fixed y. We will use the Yoneda Lemma, which we recall now.

Lemma 2.3 (Yoneda). Let D be a category, d an object of D, and K : D — Set a
functor. Then the following map is a bijection of sets
Nat(D(d, —),K) — K(d)
¢ = ¢a(lq).

We use the Yoneda Lemma to interpret the family of isomorphisms in (1)
in two different manners.

e For a fixed x, we get an isomorphism of functors
¢x : D(Fx,—) = C(x,G—).

Note that the left-hand functor is a co-representable functor with co-
representing object Fx. By Yoneda’s Lemma, the isomorphism ¢, corre-
sponds to a unique element 7, := ¢x(1ry) of C(x, GFx). One can show
that the assignment x > 7, defines a natural transformation from 1¢ to
GF.

e On the other hand, for a fixed y, one can similarly obtain a unique ele-
ment €, of D(FGy,y). The assignment y + ¢, defines a natural trans-
formation from FG into 1p.

The natural transformation # is called the unit of the adjunction and € is
called the co-unit. It is not difficult to show that the definitions of 7 and €
imply that the compositions

FEL rGE 5 F

and c
¢ % crc &5 G

are both the identity. These are called the triangle identities.



Conversely, given two natural transformations 77 : 1c = GF and € : FG =
1p satisfying the triangle identities, one might expect that we can construct a
family of isomorphisms of the form

¢ry : D(Fx,y) = C(x,Gy)

which is natural in x (in C) and y (in D). Indeed, this is the case, as the
following theorem asserts.

Theorem 2.4. Let C and D be categories and let F : C < D : G be functors. If
7 :1c = GF and € : FG = 1p are natural transformations satisfying the triangle
identities, then the functor G has a left adjoint F.

Proof. From 1 and € we define natural maps
¢ : D(Fx,y) — C(x,Gy)
fr= Gfox
and
¥ : C(x,Gy) = D(Fx,y)
g+ eyoFg.
Then ¢ and ¥ are invertible. Indeed, we have

PP(g) = G(¢g) onx = Gey o GFgony = Geyong, 08 =g

where the third equality follows from naturality of # and the last equality
from the triangle identities. Similarly we can prove p¢(f) = f. O

3 Dualizability in bicategories

We now discuss a setting of dualizability which is more general and which
contains both of the examples above (duals in monoidal categories and adjoint
functors) as particular examples. This setting is bicategories.

3.1 Bicategories

The notion of a bicategory extends the notion of a category in the sense that
composition of morphisms in a bicategory is not required to be strictly asso-
ciative, but rather associative up to higher isomorphism.

A prototypical example is the category Cat of small categories. Here the
objects are categories, the morphisms are functors, and the 2-morphisms are
natural transformations. Observe that for two categories C and D, the hom-set
Cat(C,D) is just the functor category Fun(C,D). In particular Cat(C,D) is an
ordinary category.

Another structure which we would like to be a bicategory is the following.



Example 3.1. Consider I1<;X for a topological space X. The objects are points
of X, the 1-morphisms are paths in X, and the 2-morphisms are homotopy
classes of homotopies between paths. The composition of paths is concatena-
tion. But then in this structure, composition of paths is not strictly associative,
it is only associative up to homotopy. Observe that

<2 X(p,q) = P(X;p,q)
where P(X;p,q) denotes the paths in X starting at p and ending at 4.

Thus we should not ask that composition of 1-morphisms is strictly asso-
ciative, but only associative up to a natural 2-isomoprhism. Somewhat more
precisely, a bicategory is a category weakly enriched over the monoidal category
Cat, meaning that the hom-objects of a bicategory form categories, but the
associativity and identity axioms for an enriched category hold only up to co-
herent natural isomorphisms (called associators and unitors respectively). This
means that a bicategory B has the following data

o A set of objects x,y,z, ...

e For each pair of objects x and y, a category B(x,y), whose objects are
called 1-morphisms and whose morphisms are called 2-morphisms.

e For each triple of objects x,y,z in B, a composition functor
Cryz: B(y,z) x B(x,y) — B(x,2)
which is associative up to natural isomorphism (called the associator ).

e For each object x, an identity functor 1 : {x} — B(x,x) which is a left
and right unit for composition cy,y,; up to natural isomorphisms (called
the left unitor A and right unitor p repsectively).

Moreover, all of this data is required to satisfy certain coherence conditions
analogous to those of a monoidal category.

Remark 3.2. Note that in a bicategory, the 2-morphisms come equipped with
two different types of compositions, namely, the usual composition inherited
from the category B(x,y) which we call vertical composition and the composi-
tion coming from the functor cy ., which we call horizontal composition and
which we denote by *. The names of these different compositions are moti-
vated by the following schematics.

Suppose that we have two 2-morphisms « and f pictured as

f h
/\ /—\
x  la Y and y p z
" ~—_
8 k



Then the horizontal composition allows us to obtain a new 2-morphism  * «
from ho f to k o g, pictured as

f sy h
i

The pictures suggest that we are indeed composing horizontally, and hence
the name horizontal composition.

On the other hand, suppose that we have 2-morphisms with compatible
source and target

f 4
N TN
x Ja Y and x 4B Y
~ ~ A
8 k

Then we should be able to compose these 2-morphisms vertically as pictured
below

f

a0
X —Y
s

k

Example 3.3. Any monoidal category (X, ®, e) gives rise to a bicategory B(X, ®, e),
often referred to as the delooping of X, defined in the following way. The bi-
category B(X, ®, ) has only a single object *. The 1-morphisms are defined

to be the objects of X, while the 2-morphisms are the morphisms of X. The
composition functor is defined by the monoidal structure ®. The resulting
bicategory B(X, ®, e) is sometimes called the delooping of (X, ®,e).

Example 3.4. We can form the bicategory of categories, functors, and natural
transformations. The associators and unitors in this case can be taken to be
the identity.

Example 3.5. (The bicategory of algebras) Fix a ground ring R. The objects of
this bicategory are the R-algebras, the 1-morphisms are the bimodules, and
the 2-morphisms are given by maps of bimodules. The vertical composition
in this bicategory is the composition of maps of bimodules. The horizontal
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composition is given by the tensor product, i.e. given an (A, B)-bimodule M
and a (B, C)-bimodule N, we have

MxN:=M®gN

viewed as an (A, C)-bimodule. The identity bimodule of an algebra A is
simply A viewed as an (A, A)-bimodule.

3.2 Dualizable 1-morphisms in bicategories

The example of delooping a monoidal category suggests that we should ex-
tend the notion of dualizable to 1-morphisms in a bicategory. We can do so in
the following manner.

Let B be a bicategory with associator #, and let f : x = y and g: y — x be
1-morphisms. We say that f has a left dual g (or g has a right dual f) if there is

e a 2-morphism ev : go f — 1y (called evaluation), and

e a 2-morphism coev : 1, — f o g (called coevaluation)

such that the compositions

/\;1 coevlf af,‘z,f 1fEV pf
f—=lyof —= (fog)of == fo(gof) == folx = f

and
! 1 a t 1 A
g5 goly =5 go(fog) 5 (gof)og “H1iog g
are both the identity. If f has a left dual, we say that f is left-dualizable. The
notion of a right dualizable 1-morphism is formulated in an analogous manner.

Example 3.6. In the delooping B(X,®,¢e) of a monoidal category (X, ®,e),
the left dualizable 1-morphisms coincide with the left dualizable objects of
(X, ®,e).

Example 3.7. We may view the strict 2-category Cat of categories, functors,
and natural transformations as a bicategory. In this bicategory, a functor F :
C — D has a left dual if and only if it has a left adjoint G : D — C, and the
2-morphisms ev : GF — 1¢ and coev : 1p — FG are the counit and unit
respectively.

4 Dualizability in (oo, n1)-categories

We conclude by exploring dualizability in higher categories. We will discuss
heuristically what we mean by an (oo, 11)-category through sketching a defi-
nition and some examples. Following [4], we use the notion of dualizability
in bicategories to introduce a notion of dualizability for k-morphisms in an
(00, n)-category. Finally, we will discuss what it means for an object in a sym-
metric monoidal (oo, n1)-category to be fully dualizable.

11



4.1 (oo, n)-categories

Roughly, an co-category is an extension of a category where we have objects,
1-morphisms, 2-morphisms, ad infinitum. Moreover, just as we saw with
bicategories that we have 2 types of composition for 2-morphisms, in an co-
category, we will have k types of composition of k-morphisms.

Example 4.1. The co-groupoid of a topological space X, denoted II<.X has
e Objects: points of X
e 1-morphisms: paths in X
e 2-morphisms: homotopies of paths

e 3-morphism: homotopies of homotopies

This is called a groupoid because all morphisms are invertible.

It is a requirement of higher categories that the category of co-groupoids
should come from topological spaces as I1<wX, or at least this should be
morally true. This is called the homotopy hypothesis.

By an (oo, 1)-category, we mean an oo-category in which all k-morphisms
for k > n are invertible. There are various more precise formulations of this
notion (see [2,4] for formulations involving Segal spaces), but we will content
ourselves with this “loose” formulation for now.

Just as in a bicategory C, for two objects a,b € C, we can form the hom-
category C(a,b). However, in an co-category D, we should be able to form an
co-category D(a,b) for any two objects a and b of D (and more generally for
any two k-morphisms a and b). In particular, if we have an (oo, 1)-category
D and two objects a,b, then D(a,b) should be an (oo,0)-category. But an
(00,0)-category is one in which all morphisms are invertible, and so it is an
co-groupoid. Therefore, D(a,b) is, as we noted earlier, the same thing as a
topological space. Thus there is a close connection between higher categories
and categories enriched in topological spaces.

Example 4.2. The co-groupoid 1< X is an (oo, 0)-category.
Example 4.3. The (oo, n)-category Bord, has
e Objects: 0-manifolds with orientation (oriented points)
¢ 1-morphisms: oriented 1-bordisms (1-manifolds with boundary)

e 2-morphisms: oriented bordisms of 1-bordisms (2-manifolds with cor-
ners)
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e n-morphisms: oriented bordisms of ... of bordisms (n-manifolds with
corners)

e (n+1)-morphisms: diffeomorphisms of n-manifolds

e (1 + 2)-morphisms: isotopies of diffeommorphisms of n-manifolds

Example 4.4. Any category C can be regarded as an (oo, 1)-category. Given
objects a,b € C, we regard C(a,b) as a topological space with the discrete
topology. Equivalently, we could add in higher morphisms by only adding in
higher identity morphisms.

Finally, to any higher category C we can associate a regular category, called
the homotopy category and denoted as hC. The objects of hC are the objects of
C, and the morphisms are the 1-morphisms of C up to isomorphism.

Example 4.5. The homotopy category of [T« X is IT<1 X.

4.2 Dualizability in (co, n)-categories

To introduce a notion of dualizability for k-morphisms in an (oo, 11)-category,
we restrict ourselves to a certain bicategory at the k-th level, and ask whether
the 1-morphisms in this bicategory are dualizable. More precisely, we do the
following.

Definition 4.6. Let C be an (co, n)-category. For 1 < k < n — 1, the k-th level
homotopy bicategory, denoted h*C, has

e Objects: (k — 1)-morphisms of C
e 1-morphisms: k-morphisms of C
e 2-morphisms: isomorphism classes of (k + 1)-morphisms of C.

We say that a k-morphism f has a left dual g if f has a left dual ¢ when these
are regarded as 1-morphisms in the k-th level homotopy bicategory h*C.

What does this mean in concrete terms? A k-morphism f : a — b in C
is left dualizable if there is a k-morphism g : b — a so that we have (k + 1)-
morphisms ev : go f — 1 and coev : 1 — f o g such that the usual com-
posites are related to the identity (k 4 1)-morphisms by an invertible (k + 2)-
morphisms.

To proceed we need to give a description of what a symmetric monoidal
(00, n)-category is. We offer only one approach, and note that there are at least
three different approaches in the literature [4].

13



Recall that a monoidal category is the same thing as a bicategory with
a single object. Said in another way, a monoidal category may be delooped
to get a bicategory, where the new “higher” composition that is introduced
can be taken to be the monoidal product. This process demonstrates that we
should think of a monoidal structure on a category C not merely as a type of
product functor, but rather as a way of endowing the delooped category BC
with a higher composition.

If a bicategory with a single object in addition has only one 1-morphism
f, then the Eckmann-Hilton argument shows that the hom-set Hom(f, f) car-
ries the structure of a commutative monoid. In other words, a commutative
monoid may be delooped twice to form a bicategory, where the composition
structure is taken to be the monoidal structure from the monoid.

Similarly, one can show that a 3-category C with a single object and single
1-morphism is the same as a braided monoidal category. To see this, note that
if pt denotes the single object, then we have that C(pt, pt) is a bicategory. Then
composition yields a weak 2-functor

* : C(pt, pt) x C(pt, pt) = C(pt, pt)

So if f, g, h, k are 2-morphisms of C, i.e. morphisms in C(pt, pt), then we have
an isomorphism

(fog)x(hok) = (fxh)o(g+k)
and then the Eckmann-Hilton argument yields for us a braiding (just replace
= with ~ in the proof of Eckmann-Hilton).

Similarly, it can be shown that a 4-category with a single object, 1-morphism,
and 2-morphism is a symmetric monoidal category. So it seems that given
some n-category, the more it can be delooped the more symmetric is the com-
position in the higher morphisms.

Therefore, in the co-categorical context, a symmetric monoidal co-category
should be one which we can deloop any number of times and still get out an
oo-category. More precisely, we have the following definition.

Definition 4.7. An (oo, n)-category C is symmetric monoidal if for any k > 0,
there is an (oo, nn 4 k)-category Cy with the first k layers trivial (that is, consist-
ing of a single object, a single 1-morphism, ..., and a single (k — 1)-morphism)
so that C is equivalent to the hom-category Homc, (*, *), where * denotes the
unique (k — 1)-morphism.

Example 4.8. We now argue that Bord,, carries a symmetric monoidal struc-
ture. First, suppose that we deloop Bord,, once, so that we have an (co,n + 1)
category with a single object, and the layers of Bord,, have been shifted up and
make up the rest of the morphisms in the category. We need a way to compose
1-morphisms (that is, objects of Bord,;), so we take this to be the disjoint union.
Similarly, we need a way to compose k-morphisms (that is, (k — 1)-morphisms
of Bord,), so we take this to be the disjoint union as well. In this way, we get

14



an (oo, n + 1)-category which is the delooped version of Bord,. In a similar
fashion, we may deloop Bord, k times, and endow this new set of data with
the structure of an (oo, n + k)-category by taking composition to be disjoint
union. Therefore, Bord, is a symmetric monoidal (oo, )-category.

Definition 4.9. Let C be a symmetric monoidal (oo, n)-category. Because C
is symmetric monoidal, the homotopy category is an ordinary symmetric
monoidal category. We say that an object x in C has a left dual y if x has
a left dual y when regarded as objects in the ordinary symmetric monoidal
category hC.

Definition 4.10. A symmetric monoidal (co, nn)-category is fully dualizable if all
k morphisms are left dualizable for 0 < k <7 —1 (in the case k = 0, we mean
that the objects of C are left dualizable).

Example 4.11. We finish by arguing that Bord, is a fully dualizable (oo, )-
category. Recall that each object in the ordinary category Bord, is left dual-
izable, and essentially the same argument shows that every k-morphism in
Bord, is left dualizable: I take a bordism, multiply it by the unit interval I,
and splice and bend this new bordism to get a snake!
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