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Abstract
From their semantic origins to their use in structuring effectful
computations, monads are now also used as a programming pat-
tern to structure code in a number of important scenarios, includ-
ing functional reactivity, information flow tracking and probabilis-
tic computation. However, whilst these examples are inspired by
monads they are not strictly speaking monadic but rather something
more general. The first contribution of this paper is the definition
of a new structure, the polymonad, which subsumes monads and
encompasses the monad-like programming patterns that we have
observed. A concern is that given such a general setting, a program
would quickly become polluted with polymonadic coercions, mak-
ing it hard to read and maintain. The second contribution of this
paper is to build on previous work to define a polymorphic type
inference algorithm that supports programming with polymonads
using a direct style, e.g., as if computations of type M τ were ex-
pressions of type τ . During type inference the program is rewritten
to insert the necessary polymonadic coercions, a process that we
prove is coherent—all sound rewritings produce programs with the
same semantics. The resulting programming style is powerful and
lightweight.

1. Monads and more
For most programmers, a monad is an abstract datatype represented
by a unary type constructor m and two operations, bind and unit
(a.k.a., return), with the following signature:

bind : ∀α, β. m α→ (α→ m β)→ m β
unit : ∀α. α→ m α

Implementations of these operations are expected to obey the
monad laws, which enable reasoning about transformations of
monadic programs, both by programmers and by tools such as
optimizing compilers [19].

Since the time that Moggi first connected monads to effectful
computation [18], monads have proven to be a surprisingly versatile
computational structure. Perhaps best known as the foundation of
Haskell’s support for state, I/O, and other effects, monads have also
been used to structure APIs for libraries that implement a wide
range of programming tasks, including parsers [13], probabilistic
computations [22], functional reactivity [8, 4], and information
flow tracking [23].

While conceptually simple, programming directly against a
monadic API is impractical. Programmers must insert calls to bind
and unit pervasively, and when composing multiple monads, mor-
phisms between the monads must also be inserted. However, ef-
fective type inference algorithms have been devised to reduce this
burden. In the context of Haskell, monadic type inference relies
on the mechanisms of typeclasses and a specialized syntax (the do
notation) to infer the placement of binds and units. For ML, our

own prior work [24] has shown that the existing let-structure of a
call-by-value program can be used to infer the placement of the
morphisms in addition to the binds and units.

The monadic programming pattern is sufficiently appealing that
many researchers have developed subtle variations to adapt and ap-
ply monads to new problem domains. Examples include Wadler
and Thiemann’s [27] indexed monad for typing effectful compu-
tations; Atkey’s parameterized monad [2], which has been used to
encode disciplines like regions [15] and session types [21]; De-
vriese and Piessens’ [7] monad-like encodings for information flow
controls; Danielsson’s [6] counting monad for computational com-
plexity; and many others. Oftentimes these extensions are used to
prove stronger properties about computations than would be possi-
ble with monads, or to prevent undesirable behavior (such as illegal
information flows, memory errors, etc.).

We observe that in each of these cases a family of abstract
datatypes {m1, . . . ,mn} with bind and unit-like operations is
provided. But, unlike for traditional monads, the binds have sig-
natures of the form

∀α, β.m1 α→ (α→ m2 β)→ m3 β

We call binds of this form non-uniform binds and refer to the
collection of mi and the binds among them as a polymonad.

This paper explores the idea of polymonads, a generalization of
monads and monad morphisms. Section 2 defines polymonads pre-
cisely, including laws that are analogs of the monad and morphism
laws. While the notion of a non-uniform bind has been considered
previously [16], the laws underlying the behavior of polymonads
have never been articulated. As with monads, these laws are im-
portant for reasoning about intuitive program transformations. The
laws are also important for type inference, as we explain shortly.
We show that every set of monads and monad morphisms can be
encoded using polymonads while obeying the polymonad laws.

Next, in Section 3, we present a variety of examples and show
them to be polymonads. Our examples include several from the
literature mentioned previously, as well as two new polymonadic
constructions. The first is an encoding of information flow controls
in the presence of side effects, and the second is an encoding of
contextual effects [20]. We show that each of our examples obey
the polymonad laws.

To make polymonads easier to program with, in Section 4 we
develop a novel type inference and rewriting algorithm for an ML-
like, call-by-value programming language. Rather than write non-
uniform binds in programs directly, the programmer can use ex-
pressions of type mτ as if they were of type τ , thus programming
in a direct style. Our algorithm will automatically infer which non-
uniform binds are needed and where they should be placed. While
in Haskell the do notation must be used to identify where binds and
units should be placed (and type class inference determines which
binds/units to insert), for ML no special syntax is needed. General-
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constructors M ::= Id |M,M
signature ΣM ::= bId,Id,Id | b:s,ΣM
bind type s ::= ∀αβ.m1α→ (α→ m2β)→ m3β

Figure 1. Syntax of a polymonadic signature

izing our prior work [24], normal let bindings and applications nat-
urally identify where binds should be placed when programming
with (poly)monadic computations, thanks to ML’s call-by-value,
fixed evaluation order. We prove that our algorithm enjoys princi-
pal types.

One might wonder why a special algorithm is needed: could not
a standard type inference algorithm based on OML [14], the frame-
work of qualified types on which Haskell’s typeclass inference al-
gorithm is based, be applied to polymonads? Indeed, this has been
done for the typeclass-based encoding of polymonads in Kmett’s
Control.Monad.Parameterized package for Haskell [16]. But
this approach has two important problems.

First, because vanilla type class inference is unaware of the
polymonadic laws many simple programs are rejected. For exam-
ple, we cannot use Control.Monad.Parameterized to check
that the program \x. id (id x) has the type α → m α for
some polymonad m. Haskell infers type class constraints for this
program that could allow ambiguous instantiations: different in-
stantiations of certain type variables could result in different pro-
gram semantics. In Section 5, we prove a coherence result for our
type inference algorithm for polymonadic programs, extending our
prior result for monadic programs. We show that by appealing to
the polymonad laws, instantiations that OML would conservatively
deem as ambiguous can in fact be accepted, as there is no possi-
bility for ambiguity of a program’s semantics. Thus our algorithm
permits many useful functions that would otherwise be rejected.

Second, principal types turn out to be exceedingly hard to read.
Even simple terms have a large number of quantified variables and
constraints. However, as we show in Section 6, by applying con-
straint simplifications justified by the polymonad laws we can im-
prove types to make them much simpler without negatively impact-
ing their generality.

Section 7 describes a simple prototype implementation we have
built to check the examples in the paper.

Concurrently with our work, Tate [25] developed a semantic
construction he calls productors. After some interaction, we dis-
covered that polymonads match a specialization of productors ap-
plied to what Tate calls semi-strict effect systems. Tate proves that
such effect systems are quite general, and thus polymonads are
equally general. As polymonads are focused on practical program-
ming, while productors are focused on semantics, our two papers
provide complementary views of an exciting, underlying general-
ization of monads. We discuss more related work in Section 8.

2. Polymonads
We begin by defining polymonads from the perspective of a pro-
grammer, who may think of them as a set of abstract types with a
collection of operations which, when taken together, must respect a
specific set of equations. To help provide intuition as to the impli-
cations of these equations, we prove that every collection of monad
and monad morphisms also induces a polymonad. The increased
expressive power of polymonads is put on display in the next sec-
tion, which incorporates them into a simple programming language
and presents a series of examples.

2.1 Syntax
Figure 1 defines the signature ΣM of a set M of polymonadic
abstract types. The set M contains unary type constructors M ,
including a distinguished type constructor Id . We expect all the
type constructors occurring in ΣM to be in M. We write m as a
metavariable ranging over monadic type constructors. When the set
of constructors is irrelevant or clear from the context, we refer to
the signature as Σ, rather than ΣM.

The signature represents a map from names b to types s where
each type has the shape ∀αβ.m1α → (α → m2β) → m3β.
We refer to each b as a bind, for its relation to the monadic bind
operation [26], although, unlike a monadic bind, a polymonadic
bind involves three abstract types. We also refer to the signature Σ
as the bind set. Syntactically, we require the bind set Σ to contain an
element bId,Id,Id which implicitly has the type ∀αβ.Idα→ (α→
Idβ)→ Idβ. One may think of Idτ as a synonym for τ , in which
case (adhering to the laws below) bId,Id,Id is reverse apply.

We use the following shorthands:

• (m1,m2) �m is the type ∀αβ.m1α→ (α→ m2β)→ mβ.
• (m1,m2) � m ∈ Σ means ∃b.b:(m1,m2) � m ∈ Σ. This

notation is unambiguous as we assume that binds b with the
same type s have the same semantics.
• We write bm1,m2,m ∈ Σ to mean b:(m1,m2) �m ∈ Σ.
• We define unitm, with type ∀α.α→ mα, to be
λx.bId,Id,m x (λz.z), and write unitm ∈ Σ to mean (Id , Id)�
m ∈ Σ.
• We writem1 � m2 to mean (m1, Id)�m2 or (Id ,m1)�m2.

2.2 Polymonad laws
We impose several requirements on Σ for it to define a valid
polymonad. First, we require each bind operation to be given an
interpretation in an underlying typed lambda calculus. We choose
System F [11] as the underlying calculus in this paper, although
for clarity, we omit explicit type abstraction and application in
System F terms. Thus, we write bm1,m2,m3 e1 e2 to mean the
application in System F of the interpretation of bm1,m2,m3 to two
terms e1 : m1 τ and e2 : τ → m2τ

′. Equivalent formulations in
other calculi are also feasible.

Any valid interpretation of a bind set Σ is expected to respect
certain equations between well-typed terms, where we interpret
equality as β, η-equivalence. We also require a bind set to be
closed, in the sense that the presence of certain binds in Σ mandate
the existence in Σ of other, related binds. These requirements are
expressed by the six polymonad laws below (which we explain in
detail shortly); we write |= Σ when a signature satisfies these laws.

Functorial law: For all m ∈ M, we require (m, Id) �m ∈ Σ.
That is, every m comes equipped with a map function.

Left identity: For all m1,m2, e, k, if bm1,m2,m2 ∈ Σ and
unitm1 ∈ Σ, then bm1,m2,m2 (unitm1 e) k = k e.

Right identity: For all m1,m2, e, if bm1,m2,m1 ∈ Σ and
unitm2 ∈ Σ, then bm1,m2,m1 e unitm2 = e.

Associativity:
(1) For all m1,m2,m3,m123,

∃m12.{bm1,m2,m12 ,bm12,m3,m123} ⊆ Σ
if and only if
∃m23.{bm1,m23,m123 , bm2,m3,m23} ⊆ Σ.

(2) For all m1,m2,m3,m12,m23,m123, e1, k2, k3,
if {bm1,m2,m12 ,bm12,m3,m123 ,

bm1,m23,m123 , bm2,m3,m23} ⊆ Σ,
then bm12,m3,m123 (bm1,m2,m12 e1 k2) k3 =

bm1,m23,m123 e1 (λx. bm2,m3,m23 (k2 x) k3).
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monad sig. S ::= (DId , D1, ..., Dn, fM1,M
′
1
, ..., fMk,M

′
k
)

monad D ::= (M,unitM , bindM ), fM,M
morphism fM,N : M �N

M ∈ S
S |= M �M

M ∈ S
S |= Id �M

f : M1 �M2 ∈ S
S |= M1 �M2

S |= M1 �M2 S |= M2 �M3

S |= M1 �M3

bindM (unitM e) k = k e (i)
bindM e unitM = e (ii)
bindM (bindM e k1) k2 =

bindM e (λx. bindM (k1 x) k2) (iii)
fM1,M2(unitM1 e) = unitM2 e (iv)
fM1,M2 (bindM1 e k) =

sbindM2 (fM1,M2 e) (fM1,M2 ◦ k) (v)
fM2,M3 ◦ fM1,M2 = fM1,M3 (vi)
fM,M e = e (vii)

Figure 2. Monads

Paired morphisms law: For all m1,m2 ∈ M, if (m1, Id) �

m2 ∈ Σ then (Id ,m1) �m2 ∈ Σ, and vice versa.

Composition closure law: For all m1,m2,m3,m
′
1,m

′
2,m

′
3, if

(m1,m2)�m3 ∈ Σ and if {m′1 � m1,m
′
2 � m2,m3 � m′3} ⊆

Σ, then (m′1,m
′
2) �m′3 ∈ Σ.

We choose these laws for two reasons. First, we aim for poly-
monads to be a generalization of monads, yielding reasoning prin-
ciples with which programmers are already familiar, e.g., associa-
tivity of bind operations, which provides justification for many sim-
ple program transformations. This motivates our choice of the first
four laws.

Second, we aim to exploit the polymonad laws to devise an
coherent constraint solving procedure for type inference. Thus,
when certain binds can be defined unambiguously in terms of other
binds, we require these to be present in the bind set. This is the
motivation behind the last two laws.

For example, consider the paired morphism law. We think of
both (m1, Id) � m2 and (Id ,m1) � m2 as morphisms between
m1 and m2 and write m1 � m2 for a morphism between m1 and
m2. Given a bm1,Id,m2 ∈ Σ one can easily define bId,m1,m2 as
λx.λf.bm1,Id,m2(fx)(λx.x). It is easy to check that this is the
only interpretation of bId,m1,m2 consistent with the other laws. A
similar construction yields bm1,Id,m2 from bId,m1,m2 .

The composition closure law allows morphisms to be composed
with binds. For example, given b1:m

′
1 � m1, b2:m

′
2 � m2,

b3:m3 � m′3, and b:(m1,m2) �m3, one can define bm′1,m′2,m′3
as λx.λf.b3 (b (b1 x (λy.y))(λx.b2 (fx) (λy.y))) (λy.y), where
we apply b1 and b2 contravariantly, and b3 covariantly. As with
the paired morphism law, it is easy to check that this construction
is the only way to compose the binds and morphisms in a manner
compatible with the rest of the laws, so we simply require these
binds to be present.

2.3 Comparison to conventional monads
Here we formalize the relationship between conventional monads
and polymonads.

Monad families. We define a family of monads using a monadic
signature S, defined in Figure 2. A signature consists of a series
of monad definitions D and a series of morphisms fM,N between

monadsM andN . The relation S |= M�N indicates that accord-
ing to signature S we can convert a monad M into a monad N , ei-
ther reflexively, via a morphism, or via morphism composition. We
also assume the existence of a monad Id whose semantics is the
identity for unitId and reverse apply for bindId ; as such unitM
for all M can be viewed as a morphism from Id to M .

A monadic signature is well-formed, denoted |= S, if mor-
phisms in S only refer to monads also defined in S, and if the mor-
phisms and monadic operators satisfy the laws given at the bottom
fo Figure 2. Observe that the polymonad laws are structurally sim-
ilar the conventional monad laws. In particular, making all indices
m1, ...m6 equal to a single M maps the polymonad laws left iden-
tity, right identity, and associativity to the monad laws (i)—(iii),
respectively. In fact, we can prove that all monads are polymonads.

Translating signatures. We write 〈S〉 to denote the polymonad
M,ΣM equivalent to monadic signature S, where M = {M |
(M,unitM , bindM ) ∈ S} and ΣM = Clos(S), defined as
follows:

Clos(S) ={bM1M2M : (M1,M2) �M |
S |= M1 �M ∧ S |= M2 �M}

Given the definitions of its binds and morphisms, we can define
each of the polymonadic binds bM1M2M ∈ Clos(S) as follows:

bM1M2M x g = bindM (fM1,M x) (λy. fM2,M (g y))

That the morphisms fM1,M and fM2,M are present in S follows
directly from the definition of Clos(S).

We can prove that polymonad and monad laws coincide for
polymonadic representation of monads.

Lemma 1. |= S iff |= 〈S〉 for all S.

Proof. See Appendix A.

Example As an example of this translation, consider the signa-
ture S = (DId , (M, bindM , unitM ), fM,M ). The corresponding
polymonad isM = M, Id and

ΣM = bMMM : (M,M) �M, bId,Id,M : (Id , Id) �M,
bId,M,M : (Id ,M) �M, bM,Id,M : (M, Id) �M,
bId,Id,Id : (Id , Id) � Id

We can define the polymonad binds using bindM and unitM as
follows (after simplifying terms produced by the definition above):

bM,M,M = bindM
bId,Id,M x f = unitM (f x)
bId,M,M x f = bindM (unitM x) f = f x
bM,Id,M x f = bindM x (λy.unitM (f y))

2.4 Categorical foundations
Whilst the focus of our work is on the programmatic aspects of
polymonads, we have developed some categorical analysis of poly-
monads. Our categorical model consists of a collection of functors
(modeling the type constructors) and over this a collection of nat-
ural transformations of the form T1(T2(A)) → T3(A) where the
Ti are taken from the collection of functors. The collection of nat-
ural transformations must satisfy a number of conditions that are
the categorical analogs of the polymonad laws from Section 2.2.
Some details of our categorical model appear in Appendix D. In-
terestingly, almost identical categorical constructions have been in-
dependently proposed by Tate as models of his generalized effects
framework [25]. (Indeed we are grateful to Tate for spotting some
shortcomings in our initial model.)
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3. Programming with polymonads
The previous section defines a core, abstract definition for poly-
monads. In this section, we define λPM, a lambda calculus with
support for polymonadic programming. λPM integrates polymon-
ads with constructs familiar from the polymorphic lambda calculus.
Notably, rather than insisting on having only unary type constants
in M, we will permit polymonadic type constructors to have ad-
ditional parameters, and to carry constraints on these parameters
within types.

We develop a series of λPM examples demonstrating the useful-
ness of polymonads. With our type inference algorithm, detailed
in the next section, programmers write λPM programs in direct
style, our algorithm infers polymonadic types and then elaborates
the typed source programs into System F with explicit applications
of the polymonadic bind operations.

3.1 λPM: A language for polymonadic programming
Figure 3 presents the syntax of λPM, a call-by-value, polymorphic
lambda calculus. Its term language is standard—we have variables
x, constants c, undecorated λ-abstractions, function application and
let-bindings. We expect λPM programs to be written in direct style,
as computations of type mτ are simply expressions of type τ . We
then infer where and which bind operations must be inserted to
typecheck a λPM program against a polymonadic interface.

To make inference feasible, we rely crucially on λPM’s call-
by-value structure. Following our prior work on monadic program-
ming for ML, we restrict the shape of types assignable to a λPM
program by separating value types τ from the types of polymonadic
computations m τ . The co-domain of every function is required to
be a computation type m τ , although pure functions can be typed
τ → τ ′, which is a synonym for τ → Id τ ′. We also include types
T τ̄ for fully applied type constructors, e.g., list int .

Programs can also be given type schemes σ that are polymor-
phic in their polymonads, e.g., ∀αµβ.(α → µβ) → α → µβ.
Here, the variable α ranges over all value types τ , while µ ranges
over computation types m. Type schemes may also be qualified by
a set of bind constraints, P . For example, ∀αµ.(µ, Id) � M ⇒
(int → µ int) → M int is the type of a function that abstracts
over a morphism µ �M .
λPM is parameterized by a set of polymonad type constructors

M, where each constructor M/k ∈ M is a (k + 1)-ary type
constructor (unlike in Section 2 where we only considered unary
constructors). For example, we may write polymonadic types like
ST h int , indexing the state monad ST/1 with a phantom type h
for a heap variable, as is common in a language like Haskell. We
often omit the arity k for brevity. Note, our metavariable m for
polymonadic types now includes both polymonad variables µ, as
well as polymonadic constants Mτ̄ applied to a sequence of type
indices. Our intention is that type indices are phantom, meaning
that they are used as a type-level representation of some property
of the polymonad’s current state, but a polymonadic bind’s imple-
mentation does not depend on them. For example, we would expect
that binds would treat objects of type STh τ uniformly, for all h;
different values of h would be used to statically prevent unsafe op-
erations like double-frees or dangling pointer dereferences. If an
object has different states that would affect the semantics of binds,
the programmer can use different constructors M for each state
(rather than different type indices and the same constructor).

As before, a bind set ΣM is a map from bind names b to their
types s. However, unlike in Section 2, where we required Σ to
be specified intensionally as a set, here, we allow an extensional
definition of Σ using a language of theory constraints Φ. λPM’s
type system is parametric in the choice of theory constraints Φ.
This generality allows us to encode a variety of prior monad-like
systems with λPM.

values v ::= x | c | λx.e
expressions e ::= v | e1 e2 | let x=e1 in e2

types τ ::= () | α | T τ | τ1 → m τ2
type schemes σ ::= ∀ν̄.P ⇒ τ
monadic types m ::= M | µ
ground monads M ::= M τ
type variables ν ::= α | µ
bind constraint π ::= (m1,m2) �m
bind constraints P ::= · | π, P
substitutions θ ::= · | µ 7→ m | α 7→ τ | θ, θ
environment Γ ::= · | Γ, c:σ | Γ, x:σ

Parameterized by:
k-ary constructors M ::= Id/0 |M/k,M
bind set ΣM ::= bId,Id,Id | b:s,ΣM
bind types s ::= ∀ᾱ.Φ⇒ (M1,M2) � M3

theory constraints Φ

theory entailment �: 2Σ×P×θ×b̄

Figure 3. Syntax of λPM

For example, to model Wadler and Thiemann’s [27] indexed
monad, which represents a type and effect system, we can intro-
duce a polymonadic constructor W/1, and use W ε τ to repre-
sent a computation that produces a τ -result after exhibiting effects
contained within the set ε. To specify a polymonadic bind for W ,
we can use λPM’s bind type ∀α, β, ε1, ε2, ε3.(ε3 = ε1 ∪ ε2) ⇒
(W ε1,W ε2) � W ε3. Here, we have instantiated the theory Φ
to include equality and set operators like ∪, and the bind type in-
dicates (informally) that when composing two computations, the
effects are additive.

To interpret the theory constraints, λPM requires a theory en-
tailment relation �, where elements of this relation are written
Σ � θP ; b̄. This states that for each πi ∈ P , the bind bi:θπi
is provided by Σ, for some substitution θ of the free variables of
P . We write Σ � θP when we do not care about the elaborated
binds. The solving of inferred bind constraints in λPM is complete
modulo the completeness of a decision procedure for the entail-
ment relation �. Note, however, that the type schemes σ for a λPM
program are entirely independent of the choice of the theory—Φ
constraints never appear in a type scheme σ.

Of course, we require the entailment relation to still define a
polymonad, i.e., � is admissible if and only if the set {bm1,m2,m |
Σ � ·(m1,m2) �m; b} satisfies the polymonad laws.

3.2 Parameterized monads
Our first example shows that Atkey’s parameterized monad [2] is
a polymonad and illustrates how it can be used to program safe
communication protocols. Atkey proposes an abstract data type A,
a ternary type constructor with two operations, unitA and bindA,
with the signature shown below.
unitA : ∀αφ. α→ Aφφ α
bindA : ∀αβφγψ. Aφ γ α→ (α→ Aγ ψ β)→ Aφψ β

The type constructor A p q τ can be thought of (informally)
as the type of a computation producing a τ -typed result, with
a pre-condition p and a post-condition q. The bindA operator
matches the post-condition parameter of the first computation with
the pre-condition parameter of the composing function, producing
a computation having the pre-condition of the former and the post-
condition of the latter. The unitA operator lifts a pure computation
into a parameterized monad with the same pre- and post-condition.

Notice that A p q is not a monad, for all indexes p and q—a
unit is only available when the indexes are the same, and the type
indices vary in the bind operator. However, Atkey’s construction
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can be seen as a polymonad with the signature given below.

M = Id , A/2
Σ = bId,Id,Id ,

mapA : ∀φ, ψ. (A φ ψ, Id) �A φ ψ,
appA : ∀φ, ψ. (Id , A φ ψ) �A φ ψ,
unitA : ∀φ. (Id , Id) �A φ φ,
bindA : ∀φγψ. (Aφγ, Aγ ψ) �Aφψ

The bind set Σ includes mapA, the functorial map over A (as
required by the functorial law). The paired morphism law requires
us to include appA (since it is dual to mapA). We include unitA,
the analog of Atkey’s unitA—note that the polymonad laws do
not require us to provide a unit for every instance of A. Finally,
we have bindA, the analog of bindA—of course, the varying type
constructors are natural with polymonads.

The composition closure law requires us to close the bind set Σ
under the composition of a morphism and a bind. Here, we have one
non-trivial morphism, i.e., unitA : ∀φ.Id � A φ φ. Composing
unitA with bindA we get binds of the form ∀φψ. (Aφψ, Id) �
Aφψ and ∀φψ. (Id , A φψ) � Aφψ. These have exactly the
same form as mapA and appA, so Σ is already closed. Note,
by instantiating the indexes, one can see Σ as an infinite set of
binds. Also, observe that in this example the theory constraints
Φ are empty; however, as we will see shortly, we still require an
entailment relation for bind constraints over the empty theory.
Session types. To check the remaining polymonad laws, we need
to instantiate the abstract type A, provide interpretations for each
bind, and check that they satisfy the necessary equations. As an ex-
ample, we choose Pucella and Tov’s encoding of session types [21].
This provides a way to safely program two-party communication
protocols. In what follows, we write Sess as a synonym for A, to
emphasize the connection to session types.

The type Sess φγ α represents a computation involved in a two-
party session which starts in protocol state φ and completes in
state γ, returning a value of type α. We begin by instantiating the
language of phantom type indices to describe protocol states and
transitions. Concretely, we use the type index send γ α to denote
a protocol state that requires a message of type α to be sent, and
then transitions to γ. Similarly, the type index recv ψ β denotes the
protocol state in which once a message of type β is received, the
protocol transitions to ψ. We also use the index end to denote the
protocol end state. The signatures of two primitive operations for
sending and receiving messages captures this behavior.

send : ∀αγ. α −→ Sess (send γ α) γ ()
recv : ∀αγ. () −→ Sess (recv γ α) γ α

The concrete representation of the abstract type Sess φ γ α is
simple. Assuming that the underlying language provides support
for primitive effects like I/O, Sess φ γ α is just a synonym for
α. Under this interpretation, all five bind operations correspond to
reverse function application—it is easy to check that this interpreta-
tion satisfies the left- and right-identities and the associativity law.

Using these definitions, consider the following λPM program
that implements one side of a simple protocol that sends a message
x, waits for an integer reply y, and returns y+1.

let go = λx. let = send x in incr (recv ())

Type inference in λPM is closely related to the algorithm of Jones’
OML [14], a variant of which is also implemented by Haskell. In
Section 4, we show how λPM programs can be embedded in OML,
and how, based on OML’s principal types property, we can compute
a principal type of λPM programs. Using this strategy, we compute
the following principal type for go:

∀α, β, γ, µ10, µ2, µ8, µ9, µ5, µ3, µ6, µ7, µ6, µ11,
(µ2, µ8)� µ10,

(µ5, Id)� µ9,
(Id ,Sess (send αβ)α)� µ3,
(Id , µ9)� µ8),
(Id , µ3)� µ2),
(Id ,Sess (recv γ int) γ)� µ6),
(Id , µ6)� µ5),
⇒ (β → µ10 int)

Inference also produces a rewritten term that contains, or ab-
stracts, the needed binds. For this example, the term starts with a
sequence of λ abstractions, one for each of the seven bind con-
straints. If we imagine these are numbered b1 ... b7 then the main
body looks as follows

λx. b1 (b5 send (λ y. b3 x y))
(λ . b4 incr

(λ z. b2 (b7 recv (λ w. b6 () w)) z))

While maximally general, the principal type of go is also un-
readable! Worse yet, OML (and Haskell) reject this type as ambigu-
ous. The reason is that the constraint set contains many variables
that do not appear in the final type β → µ10 int . A general-purpose
solver for such constraints (not being aware of the polymonad laws)
assumes that the particular instantiation of these variables could in-
fluence the semantics of the program, and so requires a programmer
to explicitly instantiate each of these variables.

Thankfully, by exploiting the polymonad laws, λPM can do
much better. In Section 5, we show that for a given result type, all
possible solutions to a set of polymonad constraints are coherent,
i.e., they have the same semantics. Next, in Section 6, we show
how the polymonad laws allow us to aggresively improve types,
eliminating constraints that we show cannot affect typability. Using
our improvement procedure, the type of go becomes slightly more
readable (as does the rewritten term, which we elide):

∀α, β, γ, µ10.
(Sess (send αβ)α,Sess (recv γ int) γ)� µ10,
(Sess (recv γ int) γ, Id)� Sess (recv γ int) γ,
(Id ,Sess (recv γ int) γ)� Sess (recv γ int) γ,
(Id ,Sess (send αβ)α)� Sess (send αβ)α
⇒ (β → µ10 int)

This type is still rather unwieldy. But, note that all but the first
constraint are tautologies. By the functorial and paired morphism
laws, we know that for every instantiation of α, β, γ, there is guar-
anteed to be a bind in Σ of the form (m, Id)�m and (Id ,m)�m.
Thus, we can further simplify the type to the one shown below.

∀α, β, γ, µ10.
(Sess (send αβ)α), (Sess (recv γ int) γ))� µ10

⇒ (β → µ10 int)

Finally, when at the top-level a programmer calls go 0, and
instantiates the result type, say, to Sess end end , we obtain a
constraint π = (Sess (send αβ)α), (Sess (recv γ int) γ)) �

Sess end end . To complete typing go 0, we make use of the
decision procedure � to solve this constraint. For this particular
example, without any theory constraints, the relation � is a simple
unification-based procedure that can compute the substitution θ =
α 7→ (recv end int), γ 7→ end , such that bindA ∈ Σ can be
instantiated to θπ.

3.3 Polymonadic information flow controls
Several researchers have proposed type systems or libraries with
a monad-like structure to implement information flow controls [7,
23, 17, 5, 1]. These controls allow a programmer to indicate that
some program inputs are secrets, and that some outputs are public.
The goal is to ensure that the public outputs are independent of
the secret inputs—a property called noninterference [12]. In this
section, we develop a polymonad, IST , suitable for enforcing
information flow controls in stateful programs.
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Our encoding has several elements. First, as usual, we introduce
a lattice of security labels l ∈ {L,H}, each a nullary type con-
structor. We assume L < H in a lattice ordering, indicating that
data labeled H is more secret than data labeled L.

Next, we introduce a type of integer references,1 intref l, a
reference to an integer value labeled l. Finally, we have a poly-
monadic type constructor IST which takes two phantom type in-
dices. In particular, IST pc l τ classifies a computation that poten-
tially writes to references labeled l and returns a τ -result that is
labeled l. For instance, IST H L is the type of a computation that
may write to secret storage cells while computing a public value.

To make this notion precise, we introduce a lattice theory Φ and
use it in the definition of the bind set below.

M = IST/2
Φ ::= τ ≤ τ | Φ,Φ
Σ = bId,Id,Id ,

appIST : ∀pc, l.(Id , IST pc l) � IST pc l,
mapIST : ∀pc, l.(IST pc l, Id) � IST pc l,
bIST :∀pc1, l1, pc2, l2, pc3, l3.

l1 ≤ pc2, l1 ≤ l3, l2 ≤ l3, pc3 ≤ pc1, pc3 ≤ pc2
⇒ (IST pc1 l1, IST pc2 l2) � IST pc3 l3

When composing a computation IST pc1 l1 α with a function
α → IST pc2 l2 β, the type of bIST requires l1 ≤ pc2 to
prevent the second computation from leaking information about its
l1-secure α-typed argument into a reference cell that is less that l1-
secure. Dually, the next two constraints ensures that the β-typed
result of the composed computation is at least as secure as the
results of each component. The last two constraints ensure that the
effect lower bound of the composed computation is a lower bound
of the effects of each component.

To interpret the theory constraints, we instantiate � to a standard
theory of lattice contraints. Specifying this decision procedure is
orthogonal to the purposes of this paper. However, for a finite
lattice of labels, an easy decision procedure simply constructs the
finite enumeration of binds obtained by instantiating bIST in all
ways consistent with the lattice constraints Φ. Deciding whether
a particular bind constraint π is derivable then simply amounts to
testing the membership of π in the finite enumeration, for some
substitution θ of the free variables in π.

To implement IST , we must give it a representation in System
F and provide an interpretation for bIST and check that it satisfies
the polymonad laws. One choice is for IST to be the state monad
augmented with phantom label indexes, as shown below.

heap = list (int ∗ int) (∗ an assoc. list for a heap ∗)
intref l = int (∗ intref l is a synonym of int ∗)
IST αβγ= heap→ (γ ∗ heap) (∗ state monad with phantom indexes ∗)
bIST = λc f h = let (x,h) = c h in f x h

We can then give polymonadic signatures to functions for allo-
cating, reading, and writing references, as shown below.

alloc : ∀pc. int → IST pc pc (intref pc)
read : ∀l. intref l→ IST H l int
write : ∀l intref l→ int → IST l L ()

With these definitions in hand, we can write the following λPM
program, infer a principal type for it (very verbose, as with ses-
sions), and improve its type using the polymonad laws to the one

1 A generalization to polymorphic references is feasible, but we use integer
references here to keep our heap model simple.

shown below.

λPM source let add interest = λsavings. λinterest.
let current = read savings in
write savings (current + interest)

improved type ∀l, µ.(IST H l, IST l L) � µ
⇒ intref l→ int → µ ()

Consider applying add interest secret ac 100, where secret ac :
intref l is a reference to a bank account at a secrecy level l, for
some l. We now have a constraint (IST H l, IST l L) � µ
to solve. If we instantiate the variable µ to IST l l which pro-
duces type ∀l.intref l → int → IST l l (), we must check that
(IST H l, IST l L) � IST l l exists, and it does: the theory con-
straints on bIST are satisfied since the resulting pc label l ≤ l and
l ≤ H; and, likewise, the resulting confidentiality label l ≥ L and
l ≥ l. Intuitively, the type of add interest tells us that it is a func-
tion that writes to its argument reference and returns a value that
is at least as secret as the contents of that reference. This type is
precise as far as its effect lower bound goes, but it is a little impre-
cise in that its result value is (), hence uninformative, and so could
be given the label L. Overall, polymonadic information flow track-
ing provides a convenient syntactic way of eliminating information
leaks in a program, but, being syntactic, it is necessarily imprecise.

3.4 Contextual type and effect systems
We have already sketched an encoding of Wadler and Thie-
mann’s [27] type and effect systems as polymonad. As our final
example, we show that a recent type and effect system for contex-
tual effects [20] (which subsumes traditional type and effects) is a
polymonad. We define a polymonad CE α ε ω τ , for the type of a
computation which itself has effect ε and produces a value of type
τ , and appears in a context in which the prior computations have
effect α and whose subsequent computations have effect ω.

As with our information flow encoding, we start by describing
a language of type indices to describe effect sets. Indices are sets
of atomic effects a1 . . . an, with ∅ the empty effect, > the effect
set that includes all other effects, and ∪ the union of two effects.
We also introduce theory constraints for subset relations and exten-
sional equality on sets, with the obvious interpretation.

types τ ::= · · · | a1 . . . an | ∅ | > | τ1 ∪ τ2
theory constraints Φ ::= τ ⊆ τ ′ | τ = τ ′ | Φ,Φ

The following binds capture the tracking of contextual effects:
M = Id ,CE/3
Σ = bId,Id,Id ,

unitce : (Id , Id) � CE>∅>
bindceId : ∀α1, α2, ε1, ε2, ω1, ω2.

(α2 ⊆ α1, ε1 ⊆ ε2, ω2 ⊆ ω1)⇒
(Id , CE α1 ε1 ω1) � CE α2 ε2 ω2

bindce : ∀α1, ε1, ω1, α2ε2, ω2, ε3.
(ε2 ∪ ω2 = ω1, ε1 ∪ α1 = α2, ε1 ∪ ε2 = ε3)⇒

(CE α1 ε1 ω1, CE α2 ε2 ω2) � CE α1 ε3 ω2

The bind unitce lifts a computation into a contextual effect
monad with empty effect and any prior or future effects. The bind
bindceId expresses that it is safe to consider an additional effect
for the current computation (the εs are covariant), and fewer effects
for the prior and future computations (αs and ωs are contravari-
ant). Finally, bindce composes two computations such that the fu-
ture effect of the first computation includes the effect of the second
one, provided that the prior effect of the second computation in-
cludes the first computation; the effect of the composition includes
both effects, while the prior effect is the same as before the first
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computation, and the future effect is the same as after the second
computation.

As with Atkey’s monad, it is easy to check that Σ is closed un-
der the composition with the single non-trivial morphism bindceId .
However, unlike our other examples, we do not provide an example
of programming with contextual effects. Typing any non-trivial ex-
ample requires an implementation of a decision procedure for the
set theory we have introduced—something that our current proto-
type lacks. In the future, we aim to extend our work to the setting
of an SMT-based dependently typed programming language, where
we hope to make use of the theory support of the underlying solver
to efficiently decide polymonadic theory constraints.

4. Type inference for λPM
This section presents a formalization of type inference for λPM.
We defer to the next section how type inference is (also) drives the
conversion of the direct-style source program to an elaborated pro-
gram containing the needed polymonadic binds. We prove that our
type system enjoys principal types via a sound and complete trans-
lation to Jones’ OML [14] (the theoretical foundation of Haskell
type classes), that type inference produces principal types. How-
ever, this is not the end of the story—the next two sections show
that appealing to the polymonadic laws makes it possible to safely
accept what might otherwise be deemed ambiguous programs, and
to simplify principal types without reducing their generality.

4.1 Type rules
Figure 4 gives the syntax-directed type rules of our language. As
shown in earlier work [24] it is straightforward to give declarative
rules too. There are two forms of rules, one for values, P |Γ `
v : τ and one for expressions P |Γ ` e : m τ (which have a
polymonadic type). The rules state that under an environment Γ,
and predicates P , the value v or expression e have type τ or m τ
respectively.

The rules are all straightforward: Rules (TS-Var) and (TS-
Const) look up a variable or constant in the environment and return
an instantiated type scheme. Note how the rule (TS-Inst) ensures
that the constraints in the type scheme are entailed by the assumed
predicates P . The entailment relation is defined as:

π ∈ P
P |= π

Σ � ·π
P |= π

P |= π1 ... P |= πn

P |= π1, ..., πn

Basically, a predicate π must be implied either by the bind set Σ,
or be an element of the assumed predicates P .

The rule (TS-Lam) types lambda abstractions while (TS-Id) lifts
a value into the identity monad. Rule (TS-Let) generalizes over
values in the usual way.

Rule (TS-App) ensures that there exists a bind expression that
can apply the function (with monadic type m3) to the argument
(m2) taking it to some monadic typem4, and that there exist a bind
that can combine the evaluation of the function (of type m1) with
that result monad (m4) into a final monadic type m5. Rule (TS-
Do) is similar, but requires only the existence of a bind between the
bound expression and the body of the let.

4.2 Principal types
The type rules admit principal types, and there exists an efficient
type inference algorithm that finds such types. The way we show
this is by a translation of polymonadic terms (and types) to terms
(and types) in OML [14] and prove this translation is sound and
complete: a polymonadic term is well-typed if and only if its trans-
lated OML term has an equivalent type.

We encode terms in our language into OML as shown in Fig-
ure 5. We rely on three primitive OML terms that force the typing

id : ∀α. α→ Id α
do : ∀αβµ1µ2µ. ((µ1, µ2) � µ)

⇒ µ1 α→ (α→ µ2 β)→ µ β
app : ∀αβµ1µ2µ3µ4µ. ((µ1, µ4) � µ, (µ2, µ3) � µ4)

⇒ µ1 (α→ µ3 β)→ µ2 α→ µ β

JxK? = x
JcK? = c
Jλx.eK? = λx.JeK

JvK = id JvK?
Je1 e2K = app Je1K Je2K
Jlet x=v in eK = let x=JvK? in JeK
Jlet x=e1 in e2K = do Je1K Jλx.e2K? (with e1 6= v)

Figure 5. Translation of λPM to OML

of the terms to generate the same constraints as our type system
does: id for lifting a pure term, do for typing a do-binding, and app
for typing an application. Using these primitives, we encode values
and expressions of our system into OML.

We write P |Γ `OML e : τ for a derivation in the syntax directed
inference system of OML (cf. Jones [14], Fig. 4).

Theorem 2 (Elaboration to OML is sound and complete).
Soundness: Whenever P |Γ ` v : σ we can also derive P |Γ `OML

JvK? : σ in OML. Similarly, when P |Γ ` e : m τ we have
P |Γ `OML JeK : m τ .
Completeness: If we can derive P |Γ `OML JvK? : σ, there also ex-
ists a derivation P |Γ ` v : σ, and similarly, whenever P |Γ `OML

JeK : m τ , we also have P |Γ ` e : m τ .

The proof is by straightforward induction on the typing deriva-
tion of the term. It is important to note that our system uses the
same instantiation and generalization relations as OML which is
required for the induction argument. Moreover, the constraint en-
tailment over bind constraints, also satisfies the monotonicity, tran-
sitivity and closure under substitution properties required by OML.

As a corollary of the above properties, we have that our system
admits principal types via the general-purpose OML type inference
algorithm.

5. Coherence
By the result in the previous section, we could perform type in-
ference and rewriting for polymonads by using OML’s algorithm,
which is essentially the Haskell type class inference algorithm. Un-
fortunately, this algorithm is not satisfactory, as it would reject
many useful programs. Translated to our setting, the limitation of
this algorithm is that it rejects any term whose type ∀ν̄.P ⇒ τ
binds a variable µ ∈ ν̄ such that µ appears in a constraint π ∈ P but
does not appear in the final type τ . We call such variables open vari-
ables and such constraints open constraints. Many polymonadic
terms have open constraints; one example was given in Section 3.2.

The reason such terms are rejected in OML is that instantia-
tions of open variables have operational effect—the instantiations
determine which evidence will be used when evaluating a term (in
our setting, the evidence is the binds), and different evidence could
have different operational effect.

However, it turns out for polymonads we do not have the same
problem: all possible solutions to open constraints will produce
terms having the same semantics; i.e., the solutions are coherent.
To show coherence, we have to show that the programs result-
ing from evidence translation (i.e. how we insert binds) are oper-
ationally equivalent no matter which solution we choose for open
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P |Γ ` v : τ P |Γ ` e : m τ

Γ(x) = σ P |= σ > τ

P |Γ ` x : τ
(TS-Var)

Γ(c) = σ P |= σ > τ

P |Γ ` c : τ
(TS-Const)

θ = [m̄/µ̄][τ̄ /ᾱ] P |= θP1

P |= ∀µ̄ᾱ. P1 ⇒ τ > θτ
(TS-Inst)

P |Γ, x:τ1 ` e : m τ2

P |Γ ` λx.e : τ1 → m τ2
(TS-Lam)

P |Γ ` e1 : m1 (τ2 → m3 τ) P |Γ ` e2 : m2 τ2
P |= (m1,m4) �m5 P |= (m2,m3) �m4

P |Γ ` e1 e2 : m5 τ
(TS-App)

P |Γ ` v : τ

P |Γ ` v : Id τ
(TS-Id)

P |Γ ` e1 : m1 τ1 P |Γ, x:τ1 ` e2 : m2 τ2
e1 6= v P |= (m1,m2) �m3

P |Γ ` let x=e1 in e2 : m3 τ2
(TS-Do)

P ′ |Γ ` v : τ ′

σ = Gen(Γ, P ′ ⇒ τ ′)
P |Γ, x:σ ` e : m τ

P |Γ ` let x=v in e : m τ
(TS-Let)

Figure 4. Syntax-directed type rules for λPM. The generalization function is defined as: Gen(Γ, σ) = ∀(ftv(σ) \ ftv(Γ)).σ

constraints. Unfortunately, doing such a proof directly on the evi-
dence translation for the syntax directed system is difficult: since
the rules allow arbitrary instantiations for monadic constraints it is
hard to relate the resulting evidence terms semantically. Instead we
define a more algorithmic version of the type rules that let us reason
about coherence in a more structural and syntactic way.

The remainder of this section presents our proof. First we
present a more algorithmic treatment of type inference that shows
how source terms are elaborated to target terms containing binds.
Next, we define two additional properties needed for coherence,
and argue why they are easy to satisfy. We conclude with the pre-
sentation of the actual proof.

5.1 Type inference with elaboration
Figure 6 defines a more algorithmic version of the syntax directed
type rules of Figure 4. The inference rules are P | Γ ` e : τ ; e
and P | Γ ` e : mτ ; e where the constraints P , type τ (or
m τ ) and target term e are synthesized. This definition combines
a syntax-directed presentation of Hindley-Milner type inference,
where the details of unification are elided, with an algorithmic
presentation of polymonadic constraint generation and solving.

In particular, in rule (TA-Var) and (TA-Const), the substitu-
tions for the type variables are still chosen arbitrarily as in any
standard presentation of Hindley-Milner style type rules. However,
the monadic variables are explicitly substituted with fresh monadic
variables where the constraints of the type scheme are returned in
the predicates P . Similarly, in rule (TA-App) and (TA-Do), the in-
termediate monadic types are now represented by fresh monadic
type variables. Effectively, this ensures that the evidence for each
bind is always inserted and solved at specific syntactical locations
which is essential to doing the coherence proof. Finally, (TA-Let)

performs generalization. It uses a relation P
simplify(µ̄)−−−−−→ P ′; θ to

optionally simplify constraints P by using substitution θ to solve
(some) monad variables µ̄with any remaining, unsolved constraints
in P ′. Solved variables are no longer generalized. We present our
particular simplification algorithm in Section 6.

We have not done a full proof yet, but we conjecture that the
algorithmic rules of Figure 6 are sound and complete with respect
to the syntax directed rules of Figure 4.

The following lemma establishes that our algorithm produces
well-typed System F terms. By {[Γ]} we mean the (straightforward)
translation of a source typing context to a System F context.

Lemma 3 (Well-typed elaborations). Given e, τ,m, e, Γ such that
if either P | Γ ` e : τ ; e or P | Γ ` e : mτ ; e then there
exists t such that {[Γ]} `F abs(P, e) : t.

Proof. See Appendix B.

Once we prove P |Γ ` e : m τ ; e and instantiate the
final type mτ , we must solve the constraints P to produce bind
terms b̄ that we use to execute e. We can do this using the given
polymonadic entailment relation Σ � θP ; b̄ based on Σ’s theory
Φ. Then we simply execute e b̄. We discuss our implementation of
solving in Section 7.

5.2 Additional properties
With the evidence translation in place, we can now precisely
state what we mean by coherence: suppose we have P |Γ ` e :
m τ ; e. Then if θ and θ′ are both solutions to the constraints P ,
where a solution is a mapping of constraints π to particular binds
bm1,m2,m3 ∈ Σ, then both solutions, applied to e, will yield terms
with an identical operational effect. Our proof of coherence works
by starting with θ and showing how we can iteratively transform it
into θ′, all the while proving that each intermediate step does not
affect the semantics of the rewritten term. For this proof to work
we rely on polymonads satisfying two additional properties.

First, the semantics of a particular bind in Σ must be indepen-
dent of any type indexes in m; i.e., type indices are operationally
irrelevant. That is, as mentioned in Section 3.1, for computations
M τ̄ the type indices τ̄ are meant to be phantom, and thus not in-
fluence a bind’s semantics. To express this idea formally, let (|e|)
represent the type erasure of a System F term, so that all type anno-
tations, type abstractions, and type applications are dropped. Then
we expect polymonads to satisfy the following property

Param: For all M1,M2,M3, τ̄1, τ̄2, τ̄3, τ̄
′
1, τ̄
′
2, τ̄
′
3,

(|bindM1 τ̄1,M2 τ̄2,M3 τ̄3 e k|) ∼= (|bindM1 τ̄
′
1,M2 τ̄

′
2,M3 τ̄

′
3
e k|)

Here, we write ∼= to mean β/η equality for the untyped lambda
calculus (which should match the semantics of the original System
F terms). The (Param) property is useful for establishing that in-
termediate solutions will not change a term’s semantics when only
the type indices are changing. All of our examples from Section 3
satisfy this property.

Second, we require that the polymonad be smooth in that for
each pair of constructors M1,M2 ∈ M, we can compute M =
smooth(M1,M2) where there exist binds involving M for those
binds involving M1 and/or M2:

Definition 4 (Smooth polymonad). A smooth polymonad ΣM is
one for which we can define a function smooth on polymonad
constructors M ∈ M, written smooth(M,M ′) = M?. This
function has the following properties.
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P |Γ ` e : m τ ; e P |Γ ` v : τ ; v

Γ(x) = ∀µ̄, ᾱ.P ⇒ τ θ = [µ̄′/µ̄][τ̄ /ᾱ] µ̄′ fresh
θP | Γ ` x : θτ ; app(x, θP )

(TA-Var)
Γ(c) = ∀µ̄, ᾱ.P ⇒ τ θ = [µ̄′/µ̄][τ̄ /ᾱ] µ̄′ fresh

θP | Γ ` c : θτ ; app(c, θP )
(TA-Const)

P |Γ, x:τ1 ` e : m τ2 ; e

P |Γ ` λx.e : τ1 → m τ2 ; λx:τ1.e
(TA-Lam)

P1 |Γ ` e1 : m1 (τ2 → m3 τ) ; e1 P2 |Γ ` e2 : m2 τ2 ; e2

µ4, µ5 fresh P = P1, P2, (m1, µ4) � µ5, (m2,m3) � µ4

P |Γ ` e1 e2 : µ5 τ ; bm1,µ4,µ5 e1 (λx: . bm2,m3,µ5 e2 x)
(TA-App)

P |Γ ` v : τ ; v

P |Γ ` v : Id τ ; (unitId v)
(TA-Id)

e1 6= v P1 |Γ ` e1 : m1 τ1 ; e1 P2 |Γ, x:τ1 ` e2 : m2 τ2 ; e2

µ3 fresh P = P1, P2, (m1,m2) � µ3

P |Γ ` let x=e1 in e2 : µ3 τ2 ; bm1,m2,µ3 e1 (λx: . e2)
(TA-Do)

P ′ |Γ ` v : τ ′ ; v µ̄, ᾱ = ν̄ = ftv(P ′ ⇒ τ ′) \ ftv(Γ)

P ′
simplify(µ̄\ftv(τ ′))−−−−−−−−−−→ P ′′; θ ν̄′ = ν̄ \ dom(θ)

σ = ∀ν̄′.P ′′ ⇒ τ ′ P |Γ, x:σ ` e : m τ ; e

P |Γ ` let x=v in e : m τ ; (λx: . e) abs(P ′′, θv)
(TA-Let)

where
app(e, (P, (m1,m2)�m3)) = app(e, P ) bm1,m2,m3

app(e, ·) = e
abs(((m1,m2)�m,P ), e) = λbm1,m2,m: . abs(P, e)
abs(·, e) = e

Figure 6. Algorithmic syntax-directed type rules with evidence translation

1. GivenM?
1 = smooth(M1,M

′
1) andM?

2 = smooth(M2,M
′
2).

if Σ |= (M1 ,M2 ) �M3 and
Σ |= (M ′1 ,M ′2 ) �M3

then there exist type indices τ̄1, τ̄2, τ̄3, τ̄ ′1, τ̄
′
2, τ̄
′
3 such that

Σ |= (M?
1 τ̄1,M

?
2 τ̄2) �M3 τ̄3 and

Σ |= (M?
1 τ̄
′
1,M

?
2 τ̄
′
2) �M ′3 τ̄

′
3

2. Given M? = smooth(M,M ′).
If Σ |= (M1 ,M2 ) �M or
Σ |= (M1 ,M2 ) �M ′

then there exist type indices τ̄1, τ̄2, τ̄ ′ such that
Σ |= (M1 τ̄1,M2 τ̄2) �M? τ̄ ′.

3. smooth(M,M) = M .

Intuitively, smooth(M1,M2) is like the least upper bound of
M1 and M2. This property is useful for generating small modifi-
cations to a solution θ to bring it closer, in a coherent fashion, to
solution θ′.

We believe that requiring smooth places little practical lim-
itation on polymonads. In particular, when writing programs
with just one polymonadic constructor M , the function is trivial:
smooth(M,M) = M , smooth(Id ,M) = M , smooth(M, Id) =
M , and smooth(Id , Id) = Id . When using multiple constructors
M1 and M2, we must already define how computations interact.
For example, suppose we were programming with sessions and
state, with constructors Sess/2 and ST/0. We would probably de-
fine a third constructor SessST/2 that represents a communicating
computation that also modifies the heap, and we would define a
bind for lifting Sess αβ τ computations into SessST αβ τ com-
putations, and one for lifting ST τ computations into SessST αβ τ
computations. By the (Param) property, these liftings will not de-
pend on type indices, and so they are morally monad-style mor-
phisms Sess � SessST and ST � SessST . Such morphisms,
when arranged to form a lattice, easily satisfy the requirements of
smooth .

5.3 Proof of coherence
Now we present the final formal details of the proof of coherence.
First, some notation: We view constraints P as a directed graph.
Nodes are polymonads m, i.e., either monad type constants M τ̄

up-bnd((·, ·)�m) = m
up-bnds(P ) =

⋃
π∈P {up-bnd(π)}

lo-bnd((m1,m2)�·) = (m1,m2)
lo-bnds(P ) =

⋃
π∈P {lo-bnd(π)}

flowsToP µ = {π | π ∈ P ∧ µ = up-bnd(π)}
flowsFromP µ = {π | π ∈ P ∧

∃m′. lo-bnd(π) = (µ,m′)
∨ lo-bnd(π) = (m′, mu)}

Figure 7. Constraints P as graphs

(where the τ̄ could contain type variables), or monad variables µ.
Each bind constraint (m1,m2) �m induces two edges, a left edge
m1 −→ m and a right edgem2 −→ m. We say the upper bound of
such a constraint is m, and the lower bound is the pair of monads
(m1,m2); we can think of the former as the constraint’s output
and the latter as its input. These notions are defined formally in
Figure 7, along with their obvious liftings to constraint sets P .
The figure also defines flowsToP µ—the set of constraints in P
that have µ as an upper bound—and flowsFromP µ—the set of
constraints that have µ as a lower bound.

For a given constructor M/k ∈ M not all instantiations of
M ’s type indices may be legal in a given bind. For example,
for session types we could not legally define a bind with type
(Aφγ, Aφψ) � Aφψ if φ and γ were different. However,
because of (Param), we view the semantics of any bind as due
to the default “operational” bind for every triple of polymonad
constructors, irrespective of their parameters.

For the sole purpose of coherence proof, which is concerned
only with run-time semantics, it is safe to assume the existence
of more binds, which only differ in polymonad parameters from
the existing binds. We thus saturate the initial signature with more
binds, provided that they never appear in actual solutions but only
used to establish congruence of the actual solutions by transitivity.
Saturation is defined formally as follows:
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Definition 5 (Saturated signature). Given a bindset Σ, its saturated
signature Σsat = 〈|Σ|〉, is defined as follows:

〈|bId,Id,Id |〉 = bId,Id,Id
〈|b : ∀ᾱ.Φ⇒ (M1 τ̄1,M2 τ̄2) �M3 τ̄3,Σ|〉 =

b : ∀β̄1β̄2β̄3.(M1 β̄1,M2 β̄2) �M3 β̄3, 〈|Σ|〉
Finally, following two more definitions, here is our general

coherence result for polymonads.

Definition 6 (Well-formedness of a signature). A well-formed sig-
nature Σ is one that satisfies the polymonad laws, the (Param)
property, and is smooth.

Definition 7 (Ground solution). A solution θ to constraints P is
ground for Σ if and only if co-domain(θ) contains only ground
polymonads M or ground types τ , and Σ � θπ for all π ∈ P .

Theorem 8 (Coherence).
Given Σ,Γ, P, e,m, τ, θ1, θ2, e, µ̄, ᾱ, such that

1. Σ is well-formed and P is cycle-free.
2. P | Γ ` e : τ ; e or P | Γ ` e : mτ ; e.
3. There exist open variables µ̄, ᾱ = ftv(P )\ftv(τ) (or µ̄, ᾱ =
ftv(P )\ftv(mτ)) such that for all µ ∈ µ̄, the sets flowsToP µ
and flowsFromP µ are non-empty, i.e., each µ ∈ µ̄ has a lower
and an upper bound.

4. θ1 and θ2 are ground solutions for P such that θ1(ν) = θ2(ν)
for all ν 6∈ ᾱ, µ̄.

Then, θ1e = θ2e.

Proof. The full proof is shown in Appendix C. Because θ1 and θ2

are ground solutions for P under Σ, they are also ground under
the saturated signature Σsat . The proof first constructs a solution
θ3 by combining monad variable substitutions from θ2 and type
variable substitutions from θ1; this is a ground solution under Σsat .
By repeated appeal to the (Param) property for every subterm that
differs between θ2e and θ3e we get that θ2e = θ3e.

The rest of the proof proceeds by iterating over the con-
straints solved differently by θ1 and θ3. Because P is cycle-free
we can consider each π ∈ P in reverse topological order. We
maintain an invariant that each π considered has a (ground) up-
per bound. At each step we construct two new ground solutions
θ′1 and θ′3 that only differ from θ1 and θ3 in the substitution
of the lower bounds for the current constraint π. We assign by
smooth(lo-bnds(θ1π), lo-bnds(θ3π)) to these bounds in both θ′1
and θ′3. We prove these are ground solutions due to the properties
of smooth , and they must have the same semantics as the terms
with θ1 and θ3 applied, which follows from a corollary of the poly-
monadic associativity property. We set θ1 = θ′1 and θ3 = θ′3 and
continue. At the last step the solutions are exactly the same, so
θ1e = θ3e follows.

The statement of Theorem 8 requires that there are no cycles in
P . It is easy to show the type inference system presented in Fig-
ure 6 satisfies this requirement, provided that no type scheme con-
straints in the typing environment have cycles in them. However cy-
cles would arise if we extended our language to support recursion.
Our preliminary investigations suggest we can deal with cycles by
annotating recursive definitions with ground types (thus ensuring
the upper bound requirement of the proof). Reasoning about coher-
ence of programs with arbitrary recursion is future work.

6. Simplification
In this section we present our simplification algorithm which allows
to simplify types prior to generalizing them in (TA-Let) (Figure 6)

P
simplify(µ̄)−−−−−→ P ; ·

π, P
simplify(µ̄)−−−−−→ P ′; θ

π, π, P
simplify(µ̄)−−−−−→ P ′; θ

P2, P1
simplify(µ̄)−−−−−→ P ′; θ

P1, P2
simplify(µ̄)−−−−−→ P ′; θ

S-⇑

up-bnd(π) = µ µ̄ = µ, µ̄′

lo-bnd(π) = (Id ,m) ∨ lo-bnd(π) = (m, Id)
flowsFromP µ 6= {} flowsToP µ = {}

θ = (µ 7→ m) θP
simplify(µ̄′)−−−−−−→ P ′; θ′

π, P
simplify(µ̄)−−−−−→ θπ, P ′; θ, θ′

S-⇓

µ̄ = µ, µ̄′

lo-bnd(π) = (Id , µ) ∨ lo-bnd(π) = (µ, Id)
flowsFromP µ = {} flowsToP µ 6= {}

θ = (µ 7→ up-bnd(π)) θP
simplify(µ̄′)−−−−−−→ P ′; θ′

π, P
simplify(µ̄)−−−−−→ θπ, P ′; θ, θ′

Figure 8. Constraint simplification

μ

Id m

P

m

Id m

P

simplify

π

μ

m

Id

P

m

m

P

Id
simplify

π

(a) Rule S-⇑ (b) Rule S-⇓

Figure 9. Visual depiction of simplification (Fig. 8)

while eliminating open variables. Simplification makes types easier
to read while not reducing their generality.

Figure 8 presents inference rules for the judgment P
simplify(µ̄)−−−−−→

P ′; θ, which states that constraints P can be simplified to con-
straints P ′ (of the same cardinality) according to substitution θ
which has a domain that is subset of monad variables µ̄. When
referenced in (TA-Let), µ̄ is the list of open variables which appear
in constraints P but not the let-bound term’s final type. The goal
here is to eliminate as many of these variables as possible.

The first rule is the identity rule, performing no solving. The
second rule drops duplicate constraints. The third rule permits
constraints to be reordered. The last two perform the real work.

Rule S-⇑ solves monad variable µ with monad m for the sit-
uation depicted in Figure 9(a). Here, we have a single constraint
π whose upper bound is an open variable µ, and whose lower
bounds are some monad m and Id ; it has no other lower bounds
in P . If µ also has an upper bound in P then we may substitute
µ with its lower bound. This rule is justified by appealing to the
polymonad laws. First, the substitution will convert (Id ,m) � µ
into (Id ,m) � m but this creates no additional burden on typ-
ing since this identity morphism is always guaranteed to exist by
the Functorial Law and the Paired Morphisms law. Second, the
substitution will convert all constraints (µ,m1) � m2 in P to
(m,m1) �m2. Any context that could have satisfied the original
constraints can also satisfy these new constraints by the composi-
tion closure law: since m � µ and (µ,m1)�m2 then Σ must also
contain (m,m1) �m2. Note that this reasoning, and the rule, ap-
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S-Const
Σ � ·P P ′

simplify(µ̄)−−−−−→ P ′′; θ′

P, P ′
simplify(µ̄)−−−−−→ P ′′; θ, θ′

S-Meta

π = (m, Id) �m ∨ π = (Id ,m) �m

P
simplify(µ̄)−−−−−→ P ′; θ

π, P
simplify(µ̄)−−−−−→ P ′; θ

Figure 10. Constraint hiding

plies whether we start with π = (Id ,m) � µ or π = (m, Id) � µ
(we have depicted only the first of these).

Rule S-⇓ follows similar reasoning, but in the reverse direction.
The solution µ 7→ m again produces an identity morphism, which
always exists, and alters existing constraints (m1,m2) � µ to
be (m1,m2) � m. The latter constraints are again justified by
composition closure; i.e., since µ � m and (m1,m2) � µ then
Σ must also contain (m1,m2) �m.

Example. Recall the session types example we gave in Sec-
tion 3.2. We apply (S-⇑) several times to simplify the principal
type to the more readable one. For example, we apply it to the sixth
constraint (Id ,Sess (recv γ int) γ) � µ6) and induce the substi-
tution µ6 7→ Sess (recv γ int) γ) which is applied to the seventh
constraint, making it eligible for simplification with (S-⇑) too (sub-
stituting for µ5). The process continues to the second constraint and
the fourth, and then stops after substituting Sess (recv γ int) γ)
for µ8 in the first constraint. We can also apply (S-⇑) to the third
constraint, which has a different session type, which then propa-
gates to the fifth constraint and the first. At this point we have the
following set of constraints:

(Sess (send αβ)α,Sess (recv γ int) γ) � µ10,
(Sess (recv γ int) γ), Id) � Sess (recv γ int) γ),
(Id ,Sess (send αβ)α) � Sess (send αβ)α,
(Id ,Sess (recv γ int) γ) � Sess (recv γ int) γ)),
(Id ,Sess (send αβ)α) � Sess (send αβ)α),
(Id ,Sess (recv γ int) γ) � Sess (recv γ int) γ)),
(Id ,Sess (recv γ int) γ)) � Sess (recv γ int) γ)),

Three of these constraints are duplicates so we can drop them,
leaving us with the simpler type given in Section 3.2. We can
further improve this type, as we show shortly.

Pleasingly, this process yields a simpler type that can be used
in the same contexts as the original principal type, so we are not
compromising the generality of the code by simplifying its type.

Lemma 9 (Simplification improves types).
Given σ and σ′ where σ is ∀ν̄.P ⇒ τ and σ′ is an improvement

of σ′, having form ∀ν̄′.P ′ ⇒ τ where P
simplify(µ̄)−−−−−→ P ′; θ and

ν̄′ = ν̄ − dom(θ). Then for all P ′′,Γ, x, e,m, τ , if P ′′ |Γ, x :
σ ` e : mτ such that Σ � P ′′ then there exists some P ′′′ such that
P ′′′ |Γ, x : σ′ ` e : mτ and Σ � P ′′′.

Proof. The proof is by induction on the derivation P ′′ |Γ, x : σ `
e : mτ . Most cases are by assumption or induction, with the
interesting one being (TA-Var) where the variable in question is
x, and we know that all of the constraints are solvable according to
the reasoning we used to justify the simplifications, above.

6.1 Hiding variables and constraints
While constraint simplification is effective, it can leave behind un-
interesting constraints. Along with the first and third rules from
Figure 8, we can apply the rules in Figure 10 to hide uninterest-
ing constraints (along with their type variables, if they only appear

in these constraints). Rule (S-Const) allows us to drop constraints
that refer only to constant binds, i.e., those proved with an empty
substitution. The intuition is that constant binds could just be in-
lined in the function that requires them, so they do not communi-
cate any useful information. Rule (S-Meta) drops constraints of the
form (m, Id)�m and (Id ,m)�m because, by the Functorial and
Paired Morphism laws, they must exist for all polymonads m. The
constraints are thus not communicating useful information.

Applying these rules to our session types example, we can drop
all but the first constraint resulting in a far simpler final type.

∀α, β, γ, µ10.
(Sess (send αβ)α), (Sess (recv γ int) γ)) � µ10 ⇒

(β → µ10 int)

Lemma 9 still holds even when adding in these rules. The structure
of the proof is unchanged, and the (TA-Var) case will be augmented
to justify the additional simplifications. Note that if we were to
include these rules in Simplification directly, the elaborated terms
would no longer be type correct (we would break Lemma 3) since
placeholders for binds inserted in the elaborated term v in the
(TA-Let) rule would no longer be abstracted. Therefore we simply
imagine these extra constraints being hidden by the IDE.

7. Implementation
We have implemented our type inference algorithm for the simple
language given in Figure 3. Our prototype implementation uses the
empty theory Φ, and thus constraints must be encoded by enumer-
ation. For example, for the IST polymonad from Section 3.3 we
define several binds instead of the single bIST. In addition to IST ,
we have implemented all of the monad examples from our prior
paper [24], the session types example from Section 3.2 and an ex-
ample of Danielsson’s [6] computational complexity monad. We
would require non-empty theories for the remaining examples.

Because we have no separate theory, we implement entailment
Σ |= θπ ; b̄ by unifying π with some b:s ∈ Σ but with its quanti-
fied type variables replaced with fresh (unification) variables. Since
there may be many b:s against which we can unify π (producing
substitution θ), we may need to consider each possibility. Thus,
to solve a set of constraints P = π, P ′, we consider each possi-
ble substitution θ for π, then attempt to solve the constraints θP ′,
composing the result with θ until we find one that works (or fail).

The worst-case complexity of the algorithm is

O(

|P |∑
k=1

(|Σ|k))

The number of substitutions considered at each step is |Σ| when
all bind types b:s can be unified with π. (This will happen, for
example, when π = (µ1, µ2) � µ3.) Thus the performance of the
algorithm crucially depends on the number of the monad variables
in π, so the order in which the constraints is handled is important.
Our prototype employs topological sort for cycle-free subsets of
constraints. In this case both lower bounds of a constraint are
ground and we only have to solve its upper bound.

When polymonads form a join lattice (as was true of monads in
our prior work [24]) we can use a simpler algorithm that performs
linearly in the number of constraints, in the absence of cycles in
the constraint graph. Because lubs exist for any set of polymonad
instances, instead of computing all sound solutions θ we can solve
every monad variable to the lub of the lower bounds of constraints
that flow to this variable.

8. Related work
A variety of past work has aimed to refine the conventional no-
tion of monads. Several examples, including Atkey’s parameterized
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monads [2], Wadler and Thiemann’s indexed monads [27], and ap-
plications thereof, were cited in the introduction and given in Sec-
tion 3. Each of these constructions can be viewed as an instance of a
polymonad. Filliâtre [10] proposed generalized monads as a means
to more carefully reason about effects in a monadic style, and his
work bears a close resemblance to Wadler and Thiemann’s. Gener-
alized monads can also be seen as instances of polymonads—it is
easy to show that the polymonad laws imply Filliâtre’s six required
identities. Conversely, it is clear that some useful examples cannot
be expressed using any of these prior refinements to monads; for
example, our IST polymonad cannot be expressed due to its ex-
clusion of certain (information-flow-violating) compositions. Thus
polymonads provide greater expressive power.

Kmett’s Control.Monad.ParameterizedHaskell package [16]
provides a typeclass for non-uniform binds, with the goal of gener-
alizing monadic programming. One key limitation is that Kmett’s
bind (m1,m2)�m3 must be functionally dependent; i.e.,m3 must
be a function of m1 and m2. As such, it is not possible to program
morphisms between different monadic constructors, i.e., the pair of
binds (m1, Id) �m2 and (m1, Id) �m3 would be forbidden, so
there would be no way to convert from m1 to m2 and from m1 to
m3 in the same program. Polymonads do not have this limitation.
Kmett does not discuss laws that should govern the proper use of
non-uniform binds.

Another line of past work has focused on making monadic
programming easier. Haskell’s do notation exposes the structure
of a monadic computation, and typeclass inference can determine
which binds and units should be used, but the placement of mor-
phisms is left to the programmer. The problem is that the use of
morphisms (e.g., if defined as a typeclass) would frequently lead
to open type variables, which Haskell’s typeclass inference deems
ambiguous. Inference with Kmett’s class has the same problems.

For ML, our own prior work [24] showed that no additional no-
tation is needed: left-to-right, call-by-value evaluation order makes
the order of operations well-defined, so the syntactic structure of
the program indicates where binds, units, and even morphisms
should be placed. Moreover, we proved that the monad laws en-
sured that open variables could solved arbitrarily without affect-
ing semantics, and so there was no need to reject programs with
open types. Our present paper generalizes the approach of this prior
paper in two ways, first by applying it to the more general poly-
monadic construction, and second by showing more rigorously how
to reason about two arbitrary, different solutions. Interestingly, the
present work arose when we discovered we could not write IST as
a monad, since a monad would require the existence of binds that
could violate an information flow property.

As mentioned in the introduction and Section 2, concurrently
with our work Tate developed a general semantic framework called
productors for describing producer effect systems [25]. This frame-
work turns out to match our definition of polymonads in many
important cases. Our work is complementary to Tate’s in that
we consider practical programming concerns (i.e., type inference
and rewriting) in a higher-order functional programming language,
whereas he focuses on semantic foundations.

9. Conclusions
We have presented polymonads, a generalization of prior monad-
like programming idioms. We have shown polymonads to be use-
ful, using them to encode a variety of prior programming construc-
tions. We have also shown how to facilitate programming with them
in a direct style—the programmer can use a polymonadic compu-
tation m τ as if it were of type τ and our novel type inference and
rewriting algorithm will insert the necessary coercions. Rewritten
programs are coherent: all solutions to variables not present in the

final type will induce the same semantics. Pleasingly, our algorithm
produces general types that are nevertheless simple.
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I, 1972.

[12] J. Goguen and J. Meseguer. Security policy and security models. In
Symposium on Security and Privacy, pages 11–20, 1982.

[13] G. Hutton and E. Meijer. Monadic Parsing in Haskell. JFP, 8(4),
1998.

[14] M. P. Jones. A theory of qualified types. In ESOP, 1992.

[15] O. Kiselyov and C. Shan. Lightweight monadic regions. In ACM
SIGPLAN Notices, volume 44, pages 1–12. ACM, 2008.

[16] E. Kmett. Control.Monad.Parameterized package. http:
//hackage.haskell.org/packages/archive/monad-param/
0.0.4/doc/html/Control-Monad-Parameterized.html, 2012.

[17] P. Li and S. Zdancewic. Encoding information flow in Haskell. In
CSFW, pages 16–27, 2006.

[18] E. Moggi. Computational lambda-calculus and monads. In LICS,
1989.

[19] Monad laws. http://www.haskell.org/haskellwiki/Monad_
Laws, 2012.

[20] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contextual effects
for version-consistent dynamic software updating and safe concurrent
programming. In POPL, 2008.

[21] R. Pucella and J. Tov. Haskell session types with (almost) no class. In
ACM SIGPLAN Notices, volume 44, pages 25–36. ACM, 2008.

[22] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, pages 154–165, 2002.

[23] A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in haskell. In Haskell, 2008.

[24] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In ICFP, 2011.

[25] R. Tate. The sequential semantics of producer effect systems, 2012.

[26] P. Wadler. The essence of functional programming. In POPL, 1992.

[27] P. Wadler and P. Thiemann. The marriage of effects and monads.
ACM Trans. Comput. Logic, 4:1–32, January 2003.

12 2012/7/14



A. Proof of Lemma 1
We separately prove the two directions of the implication. First we
show that for all S such that 〈S〉 = M,ΣM, if |= S then |= 〈S〉.
(Note that bindId,Id,Id ∈ ΣM as required since S |= Id � Id .)

Proof. Let S be a monadic signature. Suppose that |= S. To show
|= ΣM we prove the six polymonad laws hold for all the binds
defined by ΣM = Clos(S).

Functorial law: For all M ∈M, we have that S |= Id �M and
S |= M �M so by Clos(S) we must have that (M, Id) �M ∈
ΣM.

Left identity: Suppose that for some Mi,Mj ∈M, we have

{bindMi,Mj ,Mj , unitMi} ∈ ΣM

bindMi,Mj ,Mj (unitMi e) k
= bindMj (fMi,Mj (unitMi e)) (λx. fMj ,Mj (k x)) def
= bindMj (fMi,Mj (unitMi e)) x (vii)
= bindMj (unitMj e) k (iv)
= k e (i)

Right identity: Suppose that we have

{bindMi,Mj ,Mi , unitMj} ∈ ΣM

bindMi,Mj ,Mi e unitMj

= bindMi (fMi,Mi e) (λx. fMj ,Mi (unitMj x)) def
= bindMi e (λx. fMj ,Mi (unitMj x)) (vii)
= bindMi e unitMi (iv)
= e (ii)

Associativity: (1) (⇒) direction. Suppose that we have

bindM1,M2,M12 ∈ ΣS and bindM12,M3,M123 ∈ ΣS

FroM the definition of closure, we have M1 �M12 ∈ S, M2 �

M12 ∈ S, M12 � M123 ∈ S, and M3 � M123 ∈ S. Then we
can choose M23 = M123, and easily show bindM2,M3,M23 ∈
ΣS and bindM1,M23,M123 ∈ ΣS . Indeed, M1 � M123 ∈ S and
M2 � M123 ∈ S follow by transitivity, M3 � M123 ∈ S is an
assumption, and M123 � M123 ∈ S is an axioM. The direction
(⇐) is analogous.

(2) We want to show that

bindM12,M3,M123 (bindM1,2,M12 e1 k2) kM3

= bindM1,Mj ,M123 e1 (λz. bind2,M3,Mj (k2 e1) kM3)

provided that all the mentioned binds exist. We are going to show
that both the left and the right sides of this equality are equivalent
to the same expression, as shown in Figure 11.

Paired morphisms: Suppose (M1, Id)�M2 ∈ ΣM, then by def.
of Clos(S) we must have that S |= M1 �M2 and S |= Id �M2

which, by def. of Clos(S) implies (Id ,M1) �M2 ∈ ΣM. Same
argument goes in the reverse direction.

Composition closure: Suppose (M1,M2) � M3 ∈ ΣM. By
def of closure, we know S |= M1 � M3 and S |= M2 � M3.
Suppose M ′2 � M2, M ′1 � M1, and M3 � M ′3; this implies that
(M ′2, Id)�M2 ∈ ΣM and thus that S |= M ′2 �M2; we similarly
know that S |= M ′1 �M1 and S |= M3 �M ′3. But since S |=
is transitive, we have S |= M ′2 �M ′3 and S |= M ′1 �M ′3 which
implies (M ′1,M

′
2) �M ′3 ∈ Clos(S).

Now we show that for all S such that 〈S〉 = M,ΣM then
|= 〈S〉 implies |= S.

Proof. To show |= S we prove that monad laws (i-vi) hold for all
the binds in S such that Clos(S) = ΣM. For each law, we start by
assuming the given binds/units/morphisms are defined in S, which
implies the corresponding existence of binds in ΣM. Existence of
other binds used in proofs of laws (iv)–(vi) is justified at the end.

(i)
bindM (unitM e) k

= bindM,M,M (unitM e) k def
= k e left id

(ii)
bindM e unitM

= bindM,M,M e unitM def
= e right id

(iii)
bindM (bindM e k1) k2

= bindM,M,M (bindM,M,M e k1) k2 def
= bindM,M,M e (λx. bindM,M,M (k1 x) k2) Assoc
= bindM e (λx. bindM (k1 x) k2) def

(iv)
fM1,M2 (unitM1 e)

= bindM1,Id,M2 (bindId,Id,M1 e unitId) unitId def
= bindId,Id,M2 e (λx. bindId,Id,Id (unitId x) unitId) Assoc
= bindId,Id,M2 e unitId left id
= unitM2 e def

(v)
bindM2 (fM1,M2 e) (fM1,M2 ◦ k)

= bindM2,M2,M2 (bindM1,Id,M2 e unitId)
(fM1,M2 ◦ k) def

= bindM1,M2,M2 e (λx.
bindId,M2,M2 (unitId x) (fM1,M2 ◦ k)) Assoc

= bindM1,M2,M2 e (fM1,M2 ◦ k) left id
= bindM1,M2,M2 e (λx.bindM1,Id,M2 (k x) unitId) def
= bindM1,Id,M2 (bindM1,M1,M1 e k) unitId Assoc
= fM1,M2 (bindM1 e k) def

(vi)
fM2,M3 ◦ fM1,M2

= λx.bindM2,Id,M3 (bindM1,Id,M2 x unitId) unitId def
= λx.bindM1,Id,M3 x (λy.

bindId,Id,Id (unitId y) unitId) Assoc
= λx.bindM1,Id,M3 x unitId left id
= fM1,M3 def

(vii)
fM,Id,M e unitId def

= e right id

For (iv) and (v), we know that S |= Id �M2 and S |= M2 �M2

and S |= M1 �M2, and thus

{bindId,Id,M2 , bindId,M2,M2 , bindM1,M2,M2} ⊆ Clos(S)

For (vi), we have S |= Id �M3 and S |= M1 �M3 which implies
bind1,Id,3 ∈ Clos(S).

B. Well-typed elaborations
This section includes the full definitions and proof of Lemma 3.
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bindM12,M3,M123 (bindM1,M2,M12 e1 k2) k3

= bindM123 (fM12,M123 (bindM12 (fM1,M12 e1) (λx. fM2,M12 (k2 x))) (λy.fM3,M123 (k3 y)) def of Clos
= bindM123 (bindM123 (fM12,M123 (fM1,M12 e1)) (λx. fM12,M123 (fM2,M12 (k2 x)))) (λy.fM3,M123 (k3 y)) (v)
= bindM123 (bindM123 (fM1,M123 e1) (λx. (fM2,M123 (k2 x)))) (λy.fM3,M123 (k3 y)) (vi)
= bindM123 (fM1,M123 e1) (λz. bindM123 (fM2,M123 (k2 z)) (λy.fM3,M123 (k3 y))) (vi)

bindM1,Mj ,M123 e1 (λz. bindM2,M3,Mj (k2 e1) k3)
= bindM123 (fM1,M123 e1) (λz. fMj ,M123 (bindMj (fM2,Mj (k2 z)) (λy. fM3,Mj (k3 y)))) def of Clos
= bindM123 (fM1,M123 e1) (λz. (bindM123 (fMj ,M123 (fM2,Mj (k2 z))) (λy. fMj ,M123 (fM3,Mj (k3 y))))) by (v)
= bindM123 (fM1,M123 e1) (λz. (bindM123 ((fM2,M123 (k2 z)) (λy. (fM3,M123 (k3 y)))) by (v)

Figure 11. Associativity case for proof in Lemma 1

Notations and auxliary results
{[·]} = · =
{[Γ, x : ∀ν̄.P ⇒ τ ]} = {[Γ]}, x : ∀ν̄.abstyp(P, τ)
abstyp(., τ) = τ
abstyp((π, P ), τ) = π → abstyp(P, τ)
Abs((m1,m2) �m,P ) = bm1,m2,m : (m1,m2) �m,Abs(P )
Abs(·) = ·

We assume the following property about simplification:

Definition 10 (Type-preserving simplification). Constraint simpli-
fication is type-preserving when for all P, P ′, µ̄, θ,

if P
simplify(µ̄)−−−−−→ P ′; θ then dom(θ) ⊆ µ̄ and ∀π. π ∈ P ⇔ θπ ∈

P ′.

The following lemma says that if two multisets of constraints corre-
spond to the same set, then their corresponding typing environment
are equivalent:

Lemma 11. For all Γ, P, P ′, e, t, if {[Γ]},Abs(P ) ` e : t and
∀π. π ∈ P ⇔ π ∈ P ′, then {[Γ]},Abs(P ′) ` e : t

The proof is straightforward by induction on the derivation.
We also use this auxiliary lemma to relate different functions of P :

Lemma 12 (Abstraction and application of evidence). For all Γ,
P , e, t, we have

1. {[Γ]} `F abs(P, e) : abstyp(P, t) iff {[Γ]},Abs(P ) `F e : t
2. {[Γ]},Abs(P ) `F app(P, e) : t iff {[Γ]} `F e : abstyp(P, t)

The proof is straightforward by induction on the derivation.

Proof of Lemma 3

Proof. Suppose that there are e, τ,m, e, Γ such that either P | Γ `
e : τ ; e or P | Γ ` e : mτ ; e. We want to show that
{[Γ]},Abs(P ) `F e : τ , or {[Γ]},Abs(P ) `F e : mτ .

The proof is by induction on the derivation P | Γ ` e : τ ; e
( or P | Γ ` e : mτ ; e).

Sub-case TA-Var: We want to show that

{[Γ]},Abs(θP ) `F app(x, θP ) : θτ µ̄′ τ̄

From the hypothesis of (TA-Var) we know that Γ(x) = ∀µ̄, ᾱ.P ⇒
τ , and there is θ = [µ̄′/µ̄][τ̄ /ᾱ], and µ̄′ fresh. So in the translated
environment we get {[Γ]}(x) = ∀µ̄, ᾱ.abstyp(P, τ). We can in-
stantiate this type with θ and get {[Γ]} `F x : abstyp(θ P, θτ µ̄′ τ̄),
and then conclude using Lemma 12.2.

Sub-case TA-Lam and TA-Val: By induction.
Sub-case TA-Do: We need to show that

{[Γ]},Abs(P ) `F bm1,m2,µ3 τ1 τ2 τ1(λx : t1.e2) : mτ2

when by induction hypothesis we have

P = P1, P2, (m1,m2) � µ3

{[Γ]},Abs(P1) `F e1 : m1 τ1

{[Γ]}, x : τ1,Abs(P2) ` e2 : m2 τ2

Since (m1,m2) � µ3 ∈ P , by definition Abs(P ) contains the
binding bm1,m2,µ3 : (m1,m2) � µ3. We can type the goal using
instantiation and application rules of `F .

Sub-case TA-Let: We want to show that

{[Γ]},Abs(P ) `F (λx:∀ν̄′.abstyp(P ′′, τ ′). e) abs(P ′′, θv) : mτ

By induction hypothesis we know

(IH1) {[Γ]},Abs(P ′) `F v : τ ′

(IH2) {[Γ, x:∀ν̄′.abstyp(P ′′, τ ′)]},Abs(P ) `F e : m τ

when
µ̄, ᾱ = ν̄ = ftv(P ′ ⇒ τ ′) \ ftv(Γ)

P ′
simplify(µ̄\ftv(τ ′))−−−−−−−−−−→ P ′′; θ

ν̄′ = ν̄ \ dom(θ)

Using (IH2) we type the function:

{[Γ]},Abs(P ) `F (λx:∀ν̄′.abstyp(P ′′, τ ′). e) :
(∀ν̄′.abstyp(P ′′, τ ′))→ mτ

We apply θ to (IH1) and note that dom(θ)∩(ftv(τ ′)∪ftv(Γ)) =
∅) by Definition 10. So we get

{[Γ]}, θAbs(P ′) `F θv : τ ′

Since ∀π. π ∈ P ′′ ⇔ θP ′, we apply Lemma 11, and get
{[Γ]},Abs(P ′′) `F θv : τ ′ We can weaken the typing environ-
ment with Abs(P ) and get

{[Γ]},Abs(P ),Abs(P ′′) `F θv : τ ′

So we can type the argument of the application in the goal:

{[Γ]},Abs(P ) `F abs(P ′′, θv) : abstyp(P ′′, τ ′)

So the function application in the goal can be given type mτ .

C. Definitions and proofs for Section 5
The statement of Theorem 8 assumes that the constraints generated
by our type inference algorithm are cycle-free. We show that this
property always holds under some restrictions on the shape of type
schemes in the typing environment. Intuitively, this holds because
our language does not include recursion.

Definition 13 (Cycle-free type environment). We say that there is
a path from m to m′ in P when there exist m1, m2 such that

(m,m1) �m2 ∈ P or (m1,m) �m2 ∈ P
and either m2 = m′ or there is a path from m2 to m′. We say that
there is a cycle in P when there exists m, and a path from m to m.
Γ is cycle-free when for all x : ∀ν̄.P ⇒ τ , P is cycle free.
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Lemma 14 (Type inference produces cycle-free constraints). For
all Γ, P, e,m, τ, e, if Γ is cycle-free and Γ|P ` e : τ ; e (or
Γ|P ` e : mτ ; e), then P is cycle-free.

Proof. By induction on the typing derivation Γ|P ` e : τ ; e (or
Γ|P ` e : mτ ; e).
Case TA-Var and TA-Const: Γ must contain the scheme ∀µ̄, ᾱ.P ′ ⇒
τ and the resulting constraints are P = [µ̄′/µ̄][τ̄ /ᾱ]P ′ for some
fresh µ̄′. By assumption. P ′ has no cycles and the substitution only
introduces fresh variables, so P has no cycles.

Sub-case TA-Lam and TA-ID: Induction hypothesis applies.
Sub-case TA-App and TA-Do: The resulting substitution com-

bines constraints from subterms, which are cycle-free by the induc-
tion hypothesis, with new constraints that only add edges to fresh
variables, so no cycles are created.

Sub-case TA-Let: The final constraints are the same as in the
second inductive hypothesis. We can apply the induction hypothe-
sis, because the type environment extended with the type scheme
for the let bound term is still cycle free. The derivation of the bound
term produces cycle free constraints P ′ which then get simplified,
and simplification does not introduce new constraints, so no cy-
cles.

Coherence for local modifications We show coherence by iter-
atively constructing ground solutions that have fewer differences
and preserve semantics of the elaboration. We rely on a coherence
of local modifications, to show that at every step of our construc-
tion we can smoothly modify the lower bounds of a constraint, and
preserve groundness of the solution.

The proof of local coherence relies on the following lemma:

Lemma 15. For all polymonad instances m1...m7, and m′3, m′6,
{bindm3m6m7 , bindm1m2m3 , bindm4m5m6

bindm′3m′6m7
, bindm1m2m

′
3
, bindm4m5m

′
6
} ∈ Σ

implies
bindm3m6m7 (bindm1m2m3 e1 k2)(λx.bindm4m5m6 e4 k5) =
bindm′3m′6m7

(bindm1m2m
′
3
e1 k2)(λx.bindm4m5m

′
6
e4 k5)

Proof. From the Associativity(1) polymonad law we know that
there exist monads m8,m9 such that

{bindm1m8m7 , bindm9m5m8 , bindm2m4m9} ∈ Σ

Applying Associativity(2) to the lhs of the goal we get

bindm3m6m7 (bindm1m2m3 e1 k2)(λx.bindm4m5m6 e4 k5) =

bindm1m8m7 e1

(λy.bindm9m5m8 (bindm2m4m9 (k2 y) (λz.e4)) k5)

Applying Associativity(2) to the rhs of the goal we also get

bindm′3m′6m7
(bindm1m2m

′
3
e1 k2)(λx.bindm4m5m

′
6
e4 k5) =

bindm1m8m7 e1

(λy.bindm9m5m8 (bindm2m4m9 (k2 y) (λz.e4)) k5)

The goal follows by transitivity of =.

Next, we formalize the notion of a local modification θ2 of a
ground solution θ1 to constraint set.

Definition 16 (Local modification of a solution). Given a ground
solution θ1 to a constraint set (π, P ) a local modification to θ1 is
a ground solution θ2 for which the following conditions are true:

1. θ1lo-bnd(π) 6= θ2lo-bnd(π);
2. θ1P = θ2P and θ1up-bnd(π) = θ2up-bnd(π);
3. for all µ ∈ lo-bnd(π), if θ1µ 6= θ2µ then flowsToP µ 6= {}.

Conditions (1) and (2) establish that the substitutions differ for
the variables that occur in lo-bnd(π), and coincide on all other
variables. Condition (3) states that the variables whose values differ
in θ1 and θ2 must have incoming edges in P .

We suppose that the constraints generated at type inference are
labeled with the name of the typing rule where they have been
introduced, for example (m1,m2)

Do
�m3 denotes a bind introduced

by the rule (TA-Do).

Theorem 17 (Local coherence).
Given Σ0,Γ, P, e,m, τ, θ1, θ2, e, such that

1. Signature Σ is well-formed.
2. P | Γ ` e : τ ; e or P | Γ ` e : mτ ; e.
3. θ1 is a ground solution for P , and
θ2 is a local modification of θ1.

4. dom(θ1) ⊆ (ftv(P ) \ (ftv(τ))
(or dom(θ1) ⊆ (ftv(P ) \ (ftv(mτ)))

Then, θ1e = θ2e.

Proof. (Sketch) Since θ2 is a local modification of θ1, we have
(from condition (1) of Def. 16) that P = π, P ′ and θ1lo-bnd(π) 6=
θ2lo-bnd(π). We proceed by cases on the shape of π.
Case π is an Do bundle: We have θ1π = (mL,mR)

Do
�mU and

θ2π = (m′L,m
′
R)

Do
�mU . From Condition (3) of Definition 16, if

mL 6= m′L, then it’s a variable µL, and flowsToP µL 6= {}. Simi-
larly, ifmR 6= m′R, then it’s a variable µR, and flowsToP µR 6= {}.

We proceed by cases on the shape of each of the constraints
(π′, π′′) in sets flowsToP µL and flowsToP µR, respectively.

Sub-case π′ and π′′ are Do bundles: From examining the typ-
ing rule TA-Do, we have θ1π

′ = (m1,m2)
Do
�µL and θ2π

′ =

(m1,m2)
Do
�µ′L for some m1,m2; we similarly have θ1π

′′ =

(m1,m2)
Do
�µR and θ2π

′′ = (m′1,m
′
2)

Do
�µ′R for some m′1,m′2.

From the shape of the constraints, we reason that we have a source
term e of this form:

(let y=(let z=e3 in e4) in let x=e1 in e2)

that is elaborated to the terms shown below, where e1, e2, e3, and
e4 are the elaborated of the sub-terms. The solution θ1 yields the
following term ê:

bindmL,mR,mU (bindm1,m2,mLe3 (λz: . e4))
(λy: . bindm′1,m′2,mR

e1 (λx: . e2))

whereas the solution θ2 yields the following term:

bindm′
L
,m′

R
,mU

(bindm1,m2,m
′
L
e3 (λz: . e4))

(λy: . bindm′1,m′2,m′Re1 (λx: . e2))

The equality of the terms θ1ê and θ2ê follows from Lemma 15.
Case Other cases: To do.

Proof of coherence (Theorem 8)

Proof. Suppose that for some Σ,Γ, P, e,m, τ, θ1, θ2, e, µ̄, ᾱ, we
have

1. Σ is well-formed and P is cycle-free.
2. P | Γ ` e : τ ; e or P | Γ ` e : mτ ; e.
3. There exist open variables µ̄, ᾱ = ftv(P )\ftv(τ) (or µ̄, ᾱ =
ftv(P )\ftv(mτ)) such that for all µ ∈ µ̄, the sets flowsToP µ
and flowsFromP µ are non-empty, i.e., each µ ∈ µ̄ has a lower
and an upper bound.

4. θ1 and θ2 are ground solutions for P such that θ1(ν) = θ2(ν)
for all ν 6∈ ᾱ, µ̄.
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Since θ1 and θ2 are ground solutions for P under the original
signature Σ, they are also ground solutions under the saturated
signature Σsat . We can construct a solution θ3 with dom(θ3) =
dom(θ2), such that it assigns the same monads as θ2 to monad
variables: ∀µ ∈ µ̄.θ3µ = θ2µ, and the same types as θ1 to type
variables: ∀α ∈ ᾱ. θ3α = θ1α. By construction, solutions θ3

and θ2 only differ for ᾱ, and thus θ3 is also ground under the
saturated signature Σsat . By successively applying the (Param)
property (required to hold by Condition 1 of Definition 6) to every
constraint that contains a variable from ᾱ , we show that θ3e = θ2e.

Now we prove that θ1e = θ3e by induction on the number of
monad variables whose values differ in the solutions. Notationally,
we write θ\A to be the substitution with domain dom(θ) \A such
that (θ\A)(ν) = θ(ν) for all ν ∈ dom(θ\A).

The rest of the proof is by iteration on the number n of con-
straints in P with variables µ in their lower bounds and which are
solved differently by θ1 and θ3:

π̄ = {π | π ∈ P, ftv(lo-bnd(θ1π)) ∩ µ̄ 6= {}, θ1π 6= θ3π}
Because P is cycle-free, we can sort it topologically. For the proof
we number the constraints π̄ in reverse topological order:

∀i, j. up-bnd(πi) ∈ lo-bnd(πj) =⇒ i > j (Topo-π)

At each iteration i we construct a θi1 and θi3 for which the following
invariant holds:

1. θi1 and θi3 are ground solutions to P under the saturated signa-
ture Σsat

2. θi1e ∼= θ1e and θi3e ∼= θ3e
3. ∀k. 1 ≤ k ≤ i =⇒ θi1πk = θi3πk
4. ∀k. i+ 1 ≤ k ≤ n =⇒ θi1πk = θ1πk ∧ θi3πk = θ3πk
5. ∀π ∈ P. 6 ∃k.πk = π =⇒ θi1π = θi3π

Base case: if n = 0, the two solutions do not differ and the
lemma holds trivially. Now suppose that the invariant holds for i
iterations. We show how to construct θi+1

1 and θi+1
2 .

Let us consider the constraint πi+1 = (mL,mR) �mU . From
its definition we know that ftv(πi+1)∩ µ̄ 6= {}, so we consider all
positions where open variables may appear, and the values assigned
to them by the substitutions θi+1

1 and θi+1
3 .

From (Topo-π) we have that if there is a πk s.t. mU ∈
lo-bnd(πk) then i + 1 > k. From condition (3) of the invari-
ant, we have that θk1πk = θk2πk. So mU is either a constant, or a
variable that has the same value in θk1 and θk2 : θi+1

1 mU = θk1mU .
If there is no such πk, then we can draw the same conclusion since
we are given that all open µ variables have an upper bound.

We consider the case when mL andmR are equal to some open
variables µL and µR, resp., and have different values in θ1 and θ3.
From Condition (2) of Definition 6 we know that there is a pairm?

L

andm?
R such that (m?

L,m
?
R) = smooth((θ1µL, θ1µR), (θ3µL, θ3µR)).

We note that if either mL or mR is a constant, m?
L or m?

R will
be equal to the same constant, respectively, as smooth preserves
constants by definition. So from here on we assume mL is some
variable µL and mR is some variable µR.

Now we define θi+1
1 and θi+1

3 as follows:

θi+1 = (µL 7→ m?
L) (µR 7→ m?

R)
θi+1

1 = θi+1 θi1\{µL, µR}
θi+1

3 = θi+1 θi3\{µL, µR}
The last three conditions of the invariant follow directly from

this construction. Next we show why θi+1
1 and θi+1

2 are ground so-
lution, as in Definition 7. Since the co-domain of θi+1

1 and θi+1
3

is constructed from the co-domain of θi1 and θi3, which are them-
selves ground solutions, and from the results of smooth function,
we know that co-domain of θi+1

1 and θi+1
3 only contains ground

polymonads and types. Now we have to show that Σsat � θi+1
1 π

and Σsat � θi+1
3 π for all π ∈ P .

From the induction hypothesis we know that θi1 and θi3 are
ground; so Σsat � θi1π and Σsat � θi3π for all π ∈ P .

We consider different cases for all the constraints π ∈ P .
Sub-case π = πi+1: The first property of lubs applies: since we

have θi1((mL,mR) �mU and
θi3((mL,mR) �mU and
the invariant establishes that θi1mU = θi+1

1 mU = θi3mU =
θi+1

3 mU , so we have
θi+1

1 ((mL,mR) �mU ) and
θi+1

3 ((mL,mR) �mU ).
Sub-case π such that up-bnd(π) ∈ lo-bnds(πi+1): Second

property of lubs: for all m,m′ if (m,m′) � θi1mL or (m,m′) �
θi3mL then (m,m′)�θi+1mL. Similarly, for allm,m′ if (m,m′)�
θi1mR or (m,m′) � θi3mR then (m,m′) � θi+1mR.

Sub-case Other π ∈ P : are unchanged, so they are still en-
tailed.

So the solutions θi+1
1 and θi+1

3 are both ground. Now we prove
that the second condition of the invariant holds for θi+1

1 and θi+1
3 .

By construction, θi+1
1 (and θi+1

3 respectively) are local modifica-
tions of θi1 (and θi3). By Theorem 17, we know that θi1 e = θi+1

1 e
and θi3 e = θi+1

3 e. By transitivity of =, θi+1
1 e = θ1 e and θi+1

3 e =
θ3 e.

At the end of the iterations, we have θn1 e = θn3 e. By transi-
tivity, θ1 e = θn1 e = θn3 e = θ3 e. We combine this result with
θ3 e = θ2 e, we get θ1 e = θ2 e.

D. Categorical foundations
In this section we give some preliminary details of our categori-
cal study of polymonads. Whilst the main focus of this paper is
the generalization of monads for programming, there has been con-
siderable semantic work on generalizing monads; in particular, we
mention Filinski’s layered monads [9] and Atkey’s parameterised
monads [2].

Definition 18 (Polymonads). Given a (cartesian) category, C, a
polymonad is given by two collections:

1. A collection of endofunctors over C:

T = {Ti : C→ C | i ∈ {0..n}}
where we require each endofunctor Ti to come equipped with
a strength τ iA,B : A × Ti(B) → Ti(A × B) that satisfies the
following two diagrams.

Ti(A)

1× Ti(A)

snd

OO

τiA

// Ti(1×A)

Ti(snd)
ff

(A×B)× Ti(C)

α

��

τiA×B,C // Ti((A×B)× C)

Ti(α)

��
A× (B × Ti(C))

Id×τiB,C

// A× Ti(B × C)
τiA,B×C

// Ti(A× (B × C))

By convention in any given collection, T0 is always the identity
functor.

2. A collection of natural transformations:
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~T = {?jA : Tj2(Tj1(A))→ Tj3(A) | j ∈ {0..m},
Tj1 ∈ T, Tj2 ∈ T, Tj3 ∈ T}

where the collection must satisfy the (strong) polymonad laws.
Again, it is by convention that ?0 is the identity natural trans-
formation between identity functors, i.e. ?0

A : T0(T0(A)) →
T0(A).
A collection ~T is said to be polymonadic if it satisfies the
following.
(a) ∀T ∈ T.∃?1 ∈ ~T such that ?1 : T (T0(A))→ T (A) and

?1 = Id .
(b) ∀?1 ∈ ~T such that ?1

A : T1(T0(A))→ T2(A) then ∃?2 ∈
~T such that ?2

A : T0(T1(A)) → T2(A) and ?1 = ?2, and
vice versa.

(c) ∀?1, ?2 ∈ ~T such that ?1
A : T1(T2(A)) → T3(A) and

?2
A : T1(T2(A))→ T3(A) then ?1 = ?2.

(d) ∀?1, ?2, ?3, ?4 ∈ ~T if ?1 : T2(T1(A))→ T3(A), ?2 : T0(T ′1(A))→
T1(A), ?3 : T0(T ′2(A)) → T2(A) and ?4 : T0(T3(A)) →
T ′3(A) then ∃?5 ∈ ~T such that ?5 : T ′2(T ′1(A))→ T ′3(A).

(e) ∀?1, ?2, ?3, ?4 ∈ ~T such that ?1
A : T1(T2(A)) → T4(A),

?2
A : T4(T3(A)) → T5(A), ?3

A : T2(T3(A)) → T6(A) and
?4
A : T1(T6(A)) → T5(A), the following diagram com-

mutes.

T1(T2(T3(A)))
?1T3(A) //

T1(?3A)

��

T4(T3(A))

?2A

��
T1(T6(A)

?4A

// T5(A)

A polymonadic collection ~T is said to be strong if it in addi-
tion satisfies the following laws.

(a) ∀?iA : T2(T1(A)) → T3(A) ∈ ~T the following diagram
commutes.

A× T3(B)
τ3A,B // T3(A×B)

A× T2(T1(B))

Id×?iB

OO

τ2A,T1(B)

// T2(A× T1(B))
T2(τ1A,B)

// T2(T1(A×B))

?iA×B

OO

(b) ∀?iA : T0(T0(A)) → T1(A) ∈ ~T the following diagram
commutes.

A×B

Id×?iA
��

?iA×B

''
A× T1(B)

τ1A,B

// T1(A×B)

The definition is relatively straightforward. The polymonad law
(a) requires that there is an identity natural transformation between
every functor in the endofunctor set. Polymonad law (b) essentially
ensures that the identity functor acts like the unit in the monoid
where functor composition acts as the multiplication. Polymonad
law (c) reflects the coherence restriction of our setting that there
can only be only bind operation between any three functors. Poly-
monad law (d) is the analog of the composition closure law defined
in Section 2.2.

Polymonad law (e) is the generalization of the associativity law
for monads, and laws (f) and (g) are the generalizations of the
strong monad laws.

It is interesting to note that we do not require the generalization
of monad triangle laws. In fact, these are derivable.

Lemma 19. For every polymonad, the following diagrams com-
mute.

1. For ?1 : T0(T0(A)) → T2(A), ?2 : T1(T2(A)) → T3(A) and
?3 : T0(T1(A))→ T3(A)

T1(A)
T1(?1A) //

?3A %%

T1(T2(A))

?2A

��
T3(A)

2. For ?1 : T0(T0(A)) → T1(A), ?2 : T1(T2(A)) → T3(A) and
?3 : T0(T2(A))→ T3(A)

T2(A)
?1T2(A) //

?3A %%

T1(T2(A))

?2A

��
T3(A)

Proof. 1. In the following diagram, the square commutes as it is an
instance of the polymonad law (d). Laws (a) and (b) combine
to enforce that ?4

A : T1(T0(A)) → T1(A) both exists in the
polymonad and is the identity natural transformation. Hence the
left triangle commutes.

T1(A) T1(T0(T0(A)))
T1(?1A) //

?4T0(A)

��

T1(T2(A))

?2

��
T1(T0(A))

?3(A)

// T3(A)

2. In the following diagram, the polymonad laws (a) and (b)
combine to enforce that ?4

A : T0(T3(A)) → T3(A) both exists
in the polymonad and is the identity natural transformation. The
square commutes as it is an instance of the polymonad law (d).

T2(A) T0(T0(T2))
?1T2(A) //

T0(?3)

��

T1(T2(A))

?2A

��
T0(T3(A))

?4
// T3(A)

Atkey [3] proposed an generalization of a strong monad where
the functor is no longer an endofunctor but a functor T : Sop ×
S × C → C, where S is an additional category whose objects are
intended to denote states and morphisms denote state transitions.

Theorem 20. Every S-parameterized monad (T, η, µ) on C [3] is
a polymonad.

By currying the functor T : Sop × S → (C → C), the poly-
monad functor and natural transformation collections can be de-
fined by enumeration over the objects in S. Checking that the poly-
monad laws are satisfied is routine.
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