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Abstract

The aim of this thesis is to give a concise introduction to homotopy type theory, to Aczel’s
constructive set theory and to simplicial sets and their homotopy theory in particular

referring to their standard model structure, showing some of their interactions.
The original part of this thesis consists in the final chapter where we introduce in the type
theoretic context a definition of weak Tarski universe motivated by categorical models like
the one given by simplicial sets. The weakening of this notion, although present in some

imprecise form in mathematical folklore was not published before, at the best of our
knowledge. Moreover, we show using the axiom of function extensionality that the type

theoretic interpretation of constructive set theory generalises to homotopy type theory with a
weak Tarski universe.
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Introduction

Foundations of mathematics are usually settled in one of these three context: set
theory, type theory or category theory.

On the categorical side there are two quite different approaches: one focuses on the category
of all categories whereas the second relies on the notion of topos. Topoi are well-behaved
categories modelled on the key examples of the category of sets and the categories of sheaves
over a topological space, they can be conceived as categories of continuously variable sets.

Type theory is certainly the less known of these three outside the circle of logicians, for
this reason we briefly sketch some of its features.
Type theories were introduced the first time by Russell and Whitehead in the celebrated Prin-
cipia Mathematica as a way to overtake the paradoxes. Self-reference is avoided imposing a
stratification: atoms can be only elements of sets, sets can be only elements of "sets of sets",
and so on; the type of a term, being the level of the stratification in which it takes place.
Contemporary type theories have some differences but they share the characterising tract to
require every element to have a fixed type. Moreover, types can be conceived as intensional
sets.
One of the most important features of type theory is the so-called curry-Howard isomorphism
(although it is not an isomorphism), sometimes referred as the propositions-as-types paradigm.
The underlying idea is that propositions are identified with the type of their proofs, conversely
a term in a type is sometimes called a proof of this type. This symmetry extends to the logical
connectives ∧, ∨, ⇒ which correspond respectively to the type-theoretic product, the sum
and the function type. Moreover, normalisation theorems for proofs correspond to normalisa-
tion theorems for terms.
The kind of theory of our interest is Martin-Löf type theory with intensional identity types, it
is an intuitionistic type theory that formalizes dependencies i.e. families of types parametrised
by a "base type". Some constructors are available: products, sums, well-founded trees, which
produce a type from a family of types. Moreover, types for the natural numbers and for finite
sets are available and usually also a universe type is added. We will focus on Tarski universes
that are universes of names for small types, together with a constructor function which builds
the small types from the names. One of the motivations for the development of Martin-Löf
type theory was to extend the propositions-as-types correspondence to intuitionistic predicate
logic, so that dependent products and dependent sums correspond respectively to universal
and existential quantification. Finally, the most distinctive feature of Martin-Löf type the-
ory is its rich treatment of equality; indeed, two kinds of equality are available, a definitional
equality, that is a syntactical equality between terms, and a propositional equality that is the type
corresponding to an equality in first order logic under the Curry-Howard isomorphism. More-
over, the version of Martin-Löf type theory that will be discussed in this thesis has intensional
identity types, where two terms can be equal in (intensionally) different ways accordingly to
different proofs of their equality. One of the best successes of homotopy type theory is to give
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an homotopical interpretation of identity types.
Now we return to the three ways to approach foundations; we will focus only on topoi

on the categorical side (for the reader interested in the formalisation of the category of all
categories we refer to [McL91]), so that we have a correspondence between topos theory, a
kind of intuitionistic set theory and on the type-theoretic side, intuitionistic higher order
logic, as in the following diagram:

Sets;;

{{wwwwwwwww cc

##GGGGGGGG

Topoi oo //Types

For example, starting from set theory we can build the category of sets which is a topos. More-
over, every topos has an internal language which allows to interpret type theory inside it. For
more details about this tripos see [Awo11].
The content of this thesis can be seen as a path in a similar tripos that we shall sketch: the
constituents are simplicial sets, homotopy type theory with a weak Tarski universe and Aczel’s
constructive set theory (or constructive Zermelo-Fraenkel, CZF for short).

A remarkable example of topos is the one given by the category of simplicial sets. The idea
behind singular homology is to describe the topology of a space using the algebraic structure
of the singular simplices inside it. Simplicial sets are an abstract combinatorial generalisation
of Euclidean simplicial complexes in which for each dimension a set of n-faces is provided,
together with degeneracy and face maps that describe the structure of the complex: which
faces are glued and which vertices are collapsed. This sequence of sets can be organised in a
functor describing simplicial sets as a presheaf category.
The simplicial set given by two vertices linked by a 1-face is the simplicial interval, which
allows to define homotopies between simplicial maps, and to develop a theory of homotopy for
simplicial sets. A careful analysis of the common features shared by topological and simplicial
homotopy theory yields to the definition of model structure on a category that is an abstract
playground for homotopy even in absence of an interval. A model structure consists in three
distinguished classes of maps modelled on (topological) weak equivalences, Serre fibrations
and cofibration. We will see that identity types of Martin-Löf type theory, can be interpreted
categorically using model structures.

The history of the interplay between type theory and homotopy begun with the groupoid
interpretation of Martin-Löf type theory by Hofmann and Streicher [HS98] in which identity
types are interpreted as the Hom-sets of isomorphisms between two objects.
The basic ideas about homotopy type theory were developed in independent work by Awodey
and Warren [AW09] and by Voevodsky [Voe06] around 2006. Homotopy type theory can be
synthetically described as Martin-Löf type theory with some further axioms and rules added,
namely, the univalence axiom, some axioms needed to describe identity types of dependent
products and possibly higher inductive types. The expression "homotopy type theory", should
be thought as a family of theories, as we usually refer to set theory. However, in order to
simplify the exposition we will omit higher inductive types, which are also excluded from the
presentation of the core theory given in [KLV12].
The most important aspect of homotopy type theory is the univalence axiom; in presence of a
universe it can be stated as follows: under the Curry-Howard isomorphism we can form the
types of identity and equivalence of any two small types, identical types are also equivalent so
that there is a canonical map from the identity type to the equivalence one. The univalence
axiom states that this map is itself an equivalence. It allows to obtain a proof of identity from
a proof of equivalence, identifying equivalent objects, as it is done everyday in mathematical
practice.
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More conceptually, the univalence axiom can be restated as a rule expressing the principle of
indiscernibility of equivalents.
This thesis will not deal with higher categories (categories with objects, morphisms, mor-
phisms between morphisms and so on where the associativity and unit conditions hold up to
higher isomorphisms), but we need to mention these structures in order to properly contextu-
alise it, providing motivations for the study of homotopy type theory. In fact model categories
present a specific kind of∞-categories in which all k-morphisms for k > 1 are invertible, called
(∞, 1)-categories. The generalisations of the notion of topos to the higher setting is still an
open field of study, but it is conjectured that a good notion of (∞, 1)-topos should have some
kind of homotopy type theory as internal language (see [Awo10] and [Joy11]).
Hopefully, homotopy type theory can give some contribution to the long-standing open prob-
lem of the calculation of homotopy groups of sphere, in fact some classical calculations were
already performed synthetically in homotopy type theory.

Before talking about CZF we need to briefly introduce predicativism: it is a flavour of
constructivism, that does not allow the kind of circular arguments that provide the existence
of an element quantifying over a totality to which this element belongs. A typical example is
the definition of supremum as the least upper bound of a set of real numbers.
CZF is a predicative version of ZF where the underlying logic is intuitionistic. The axioms of
ZF incompatible with predicative principles that are separation, powerset and foundation, are
weakened. As a compensation, some other axioms are strengthened in order to make them
working predicatively.
In the series of three articles [Acz78] [Acz82] and [Acz86] Aczel developed the type-theoretic
interpretation of constructive set theory building a model of CZF from Martin-Löf type theory
with extensional identity types as a justification of CZF from the already established type-
theoretic setting, and used it to justify some further axioms like choice principles and axioms
for predicative inductive definitions (namely the regular extension axiom).

We can finally see how the work of this thesis fits in the tripos: we take motivations from
the model category of simplicial sets in order to justify the introduction of weak Tarski uni-
verses and then construct a model of CZF with dependent choices and the regular extension
axiom from homotopy type theory with a weak universe.

CZF hh

RRRRRRRRRRRRRR

SSet //HoTT + weak universe

Organisation

The first two chapters are devoted to algebraic topology, the former will deal with the basics
of simplicial sets, presented without the language of model categories which are introduced in
the second chapter, the definitions being motivated by the theory developed in first one.
The third chapter provides an introduction to Martin-Löf type theory and to homotopy type
theory.
The fourth chapter, following the article [KLV12], sketches the proof of the interpretation of
type theory in the model category of simplicial sets, in particular of the univalence axiom. We
will refer to the article for the many technical proofs involved, especially for the coherence
issues needed to interpret the type-theoretic substitution.
The fifth chapter presents CZF and develops some basic constructions needed in the sequel.
Finally the last chapter contains the proof of the generalised type-theoretic interpretation. In
this chapter, proofs are given in detail.
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A recall of the basics of locally cartesian closed categories is confined in the appendix.
In the chapters regarding simplicial sets (namely, the first two and the fourth) we will use
freely the excluded middle, the axiom of choice and impredicative definitions. In the fourth
chapter when dealing with the interpretation of type theory in simplicial sets we will assume
the existence of two inaccessible cardinals.

We assume the reader familiar with category theory, in particular the language of lim-
its, colimits and adjunctions, with the basics of algebraic topology namely singular homology,
higher homotopy groups of spaces, the long exact sequence of a fibration and the like. On
the logical side we assume familiarity with intuitionism and constructivism, in particular some
knowledge about natural deduction for intuitionistic logic; for set theory just little familiarity
with Zermelo-Fraenkel set theory is needed. We have tried to keep prerequisites to a mini-
mum.
For the reader in need to fill some gaps we suggest [Mac98] for category theory, and [Hat01],
[Spa94], [May99] for algebraic topology, these three references has increasing categorical flavour.
Finally, we mention [vPla13] for the logical prerequisites (for its high readability and concep-
tual insights [Abr09] is warmly suggested to the Italian reader).
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Chapter 1

Simplicial Sets

A simplicial set is an abstract generalisation of geometrical simplices which are a stan-
dard tool in basic algebraic topology. Simplicial sets turn out to be combinatorial

models of nice topological spaces, encoding their homotopic structure and allowing explicit
calculations.
The theory of simplicial sets also provides an abstract playground for homotopy theory and
allows to detect some common features with the classical theory of homotopy for topological
spaces. A convenient axiomatisation yields to the definition of model categories, which are
the usual setting for abstract homotopy theory.
In the first two chapters we will use the axiom of choice, its main consequence is the existence
theorem for minimal fibrations.
The main source for the first two chapters is [Hov99] integrated with parts from [GZ67] and
from these notes on simplicial homotopy theory [JT14].

Definition of Simplicial Set

We now start with some basic definitions; the abstract definition of simplicial sets can obscure
at first the geometrical intuition of these objects.
The intuition behind the formalism is that a simplicial set is a graded set whose elements of
degree n are n-simplices that can be glued along common boundaries. Simplices of arbitrary
dimension are allowed as well as degenerated simplices obtained collapsing some vertices.
Recall that the singular complex of a topological space is defined as S (X)n := { f : ∆n → X},
where ∆n is the standard Euclidean n-simplex in Rn, with face and degeneracy maps satisfying
the simplicial identities.
We want to express concisely this idea and have a similar description of a simplicial set in
terms of maps from a "standard simplex". Recall that the statement of Yoneda lemma have this
structure: Nat(Hom(r,−),K) � Kr, hence we may choose to define simplicial sets as functors
from an appropriate base category, morphisms as natural transformations and a "standard n-
simplex" as an Hom-functor. So we start defining the base category,:

Definition 1.1

(a) The simplicial category , written ∆, is the the category of finite ordinals and nonde-
creasing maps. We will denote its objects as [n].

(b) We will write ∂i
n : [n − 1]→ [n] for the injective map which omits the value i.
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(c) We will write σi
n : [n + 1]→ [n] for the surjective map which takes twice the value i.

Remark 1.1

1. It is easy to check that these maps satisfy the so called cosimplicial identities ∂ j∂i = ∂i∂ j−1

if i < j
σ jσi = σiσ j+1 if i ≤ j

σ j∂i =


∂iσ j−1 if i < j
1[n−1] if i = j or i = j + 1
∂i−1σ j if i > j + 1

2. It is straightforward to check that every nondecreasing map µ : [m]→ [n] can be written
in a unique way as

µ = ∂is∂is−1 . . . ∂i1σ jtσ jt−1 . . . σ j1

with n ≥ is ≥ · · · ≥ i1 ≥ 0, 0 ≤ j1 ≤ · · · ≤ jt and n = m − t + s.

3. By the previous remarks ∆ can be identified with the category generated by the objects
[n], the arrows ∂, σ and the cosimplicial identities.

4. Note that the epimorphisms are exactly the surjections, and that the monomorphisms
are exactly the injections. Hence, every epi is a split epi and every monic is a split
monic.

Definition 1.2

(a) A simplicial set is an object in the functor category Funct(∆op,Set).
Similarly, a simplicial object in a category C is an object in the functor category Funct(∆op,C ).
A cosimplicial object is an object in the functor category Funct(∆,C ).
A simplicial map is a natural transformation in the appropriate functor category. The
category of simplicial sets is written as SSet.

(b) An n-simplex is an element x ∈ Xn = X[n].

(c) The face maps of a simplicial set X are defined as di := X(∂i).

(d) The degeneracy maps of a simplicial set X are defined as s j := X(σ j).

(e) A subsimplicial set Y of a given simplicial set X is a subfunctor of X, i.e. a functor such
that for each [n] ∈ ∆ we have Y[n] ⊆ X[n], and for each map µ : [m] → [n] that Y(µ) is
a restriction of X(µ).

The face and degeneracy maps of a simplicial set satisfy the simplicial identities which are the
dual of the previous stated identities.

A simplicial set can be equivalently described as a sequence of sets {Xn}n with face and
degeneracy maps satisfying the simplicial identities; these maps are the abstract data encoding
the structure of the simplicial set, telling us which simplices are faces of the others, which
simplices are glued together and so on.
Note that the category of simplicial sets is complete and cocomplete, with limits and colimits
calculated pointwise, as all presheaf categories.
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Definition 1.3

(a) Any element v ∈ X0 is called a vertex.

(b) Any image of a simplex x ∈ Xn under a face map is called a face.

(c) Similarly, any image of a simplex under a degeneracy map is called a degeneracy.

(d) A nondegenerate simplex x ∈ Xn is a simplex which is a degeneracy only of itself.
A degenerate simplex is a simplex which is not nondegenerate.

(e) A simplicial set is finite iff it has only a finite number of nondegenerate simplices.

Now we provide some examples of common simplicial sets and give a description of sim-
plices in term of maps from a standard simplex:

Definition 1.4
The standard n-simplex is defined to be the complex [p] 7→ ∆([p], [n]) and it is written ∆[n].

Geometrically, the interior of the standard n-simplex is represented by the identity map 1 :
[n]→ [n], the faces are represented by the face maps ∂[n − 1]→ [n], and nondegenerate sim-
plices are represented by injective monotone maps. Therefore, the intuition of the standard
simplex is just an the abstract combinatorial structure of the usual Euclidean standard simplex.

Definition 1.5

(a) The boundary of the standard n-simplex, written ∂∆[n], has nondegenerate r-simplices
the non-identity injective monotone maps i : [r]→ [n].

(b) Given a k with 0 ≤ k ≤ n the k-horn Λk[n] has non-degenerate r-simplices all injective
order-preserving maps [r] → [n] except the identity and the injective order-preserving
maps ∂k : [n − 1]→ [n] whose image does not contain k.

(c) The simplicial circle is the coequalizer of the pair of morphisms ∆(∂0),∆(∂1) : ∆[0] →
∆[1].

The non-degenerate simplices of the boundary ∂∆[n] are exactly the ones of the standard n-
simplex except the interior represented by the identity.
Whereas the horn can be thought as obtained by the standard simplex omitting the interior
and the face opposed to the k-th vertex.

Definition 1.6
A singular simplex of a simplicial set X is a simplicial map ∆[n]→ X.
The category of simplices of a given simplicial set K is just the category of singular simplices
and natural transformations between them. We write it as ∆K.

By the Yoneda lemma we have the isomorphism SSet(∆[n],K) � Kn; so simplices x ∈ X
correspond to singular simplices, accordingly to our initial example of the singular complex of
a topological space.
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Lemma 1.1
Given a simplicial set K, it is the colimit of the functor ∆K → SSet which takes the singular simplex
f : ∆[n]→ K to ∆[n] itself.

Proof. It is an immediate corollary of the well-known fact that every presheaf is canonically a
colimit of representable functors. �

Geometric Realisation

Theorem 1.2
Let C be a category with small colimits, then the copresheaf category C ∆ is equivalent to the category
of adjunctions SSet → C . We denote the image of a simplicial object A under this equivalence by
(A ⊗ −,C (A,−), ϕ).

Proof. Start with an adjunction (F,U, ϕ) : SSet → C , and let consider the functor D : ∆ →

SSet which takes [n] to ∆[n], then we can consider the composite ∆
D
−→SSet

F
−→C . This

defines a functor from adjunctions to copresheaves.
Conversely, given a cosimplicial object K, there is a functor ∆K → ∆ which takes a singular
simplex f : ∆[n]→ K to [n]. We then have the corresponding restriction functor C ∆ → C ∆K

and the usual colimit functor C ∆K → C . Then we define A ⊗ − to be the image of A under
this composite functor. Since a map of cosimplicial sets induces a functor ∆K → ∆L this
assignment actually defines a functor.
The cosimplicial set C (A,Y) is defined to have n-simplices C (A[n],Y), and the adjointness
isomorphism is the composite

C (A ⊗ K,Y) � C (colim∆K A[n],Y) � limC (A[n],Y) � limSSet(∆[n],C (A,Y)) �

� SSet(colim∆K∆[n],C (A,Y)) � SSet(K,C (A,Y))

Since the identity map of ∆[n] is cofinal in the category ∆∆[n], we get an isomorphism A ⊗
∆[n] � A[n]. Conversely, if F preserves limits, then there is a natural isomorphism F(∆[−]) ⊗
K � FK. �

Remark 1.2

1. By the previous theorem each functor C → C ∆ gives rise to a functor C → Adj(SSet,C ),
which in turn gives a bifunctor − ⊗ − : C × SSet→ C .

2. We have an obvious functor SSet→ SSet∆ that takes a simplicial set K to the cosimpli-
cial simplicial set K ×∆[−]. Under the correspondence of the previous point we get the
associated bifunctor which is simply the product on SSet, since the product commutes
with colimits. The functor K × − has a right adjoint like all other presheaf categories
with its usual description: n-simplices of Hom(K, L) are simplicial maps K × ∆[n]→ L.

Now we recall the definition and the basic properties of a kind of convenient topological
spaces that will be useful in the study of the topological spaces associated to a simplicial sets.

Definition 1.7
A Kelley space X is an Hausdorff topological space such that a subset F ⊆ X is closed when-
ever its intersection with each compact subset of X is closed. We will write Ke for the full
subcategory of Kelley spaces.
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Definition 1.8
Given an Hausdorff topological space Y we can the associated topological space YKe with the
same underlying set, whose closed sets are the ones whose intersection with all compact subset
of Y is closed in Y . YKe is called the Kelleyfication of the Hausdorff space Y .

Theorem 1.3
The category of Kelley spaces is a full coreflective subcategory of the category of Hausdorff spaces.
Moreover, it is complete, cocomplete and cartesian closed with internal Hom given by the Kelleyfica-
tion of the Hom-space with the compact open topology.

Proof. See chapter VII.8 in [Mac98]. �

Note that we have a cosimplicial topological space |∆[−]|. By the previous theorem it gives rise
to an adjunction (| · |, S , ϕ) : SSet→ Top. | · | is a left adjoint, therefore it preserves colimits.
Since |∆[n]| is a compact Hausdorff space and the category of Kelley spaces Ke is closed under
colimits the functor | · | takes values in Ke.

Definition 1.9
We call geometric realisation the functor | · | : SSet→ Top defined in the previous remark.
Its right adjoint S : Top→ SSet is called the singular functor.
We will give the same names for the functors | · | : SSet → Ke and S : Ke → SSet where we
restrict to Kelley spaces.

In order to help the reader to develop some intuition about simplicial sets we state the follow-
ing:

Theorem 1.4
The geometric realisation of a simplicial set is a CW-complex.

Proof. See section 1.3 in [JT14]. �

Theorem 1.5
The geometric realisation | · | : SSet→ Ke preserves finite products.

Proof. Since the product functor is a left adjoint it preserves colimits, therefore it suffices to
show that the canonical map |∆[m] × ∆[n]| → |∆[m]| × |∆[n]| is a homeomorphism. We will
prove that the domain and the codomain are compact Hausdorff spaces, hence it will suffice
to show that this map is a bijection.
We start with some combinatorial preliminaries studying the nondegenerate simplices of ∆[m]×
∆[n]; a p-simplex of this simplicial set is the same thing as a monotone map [p] → [m] × [n],
with the order in the codomain given by (a, b) ≤ (a′, b′) iff a ≤ a′ and b ≤ b′. A nondegen-
erate p-simplex is an injective map [p] → [m] × [n], then it can be thought as a chain in this
ordered set.
Any chain can be extended to a maximal chain, and therefore any simplex in ∆[m] × ∆[n]
is a face of a nondegenerate (m + n)-simplex. Such a maximal chain is a path in the ordered
set [m] × [n] from (0, 0) to (m, n) which goes only right or up. We can conveniently label the
vertices of the rectangle [m] × [n] moving from left to right and then bottom up row by row.
In this way we can label the maximal chains as m-subsets of {1, . . . ,m + n}; of which there are
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(
m+n

m

)
.

Now, let c(i) for 0 ≤ i ≤
(
m+n

m

)
be the list of maximal chains of the rectangle [m] × [n]. Given

any chain c, let nc be the number of edges in c. From what we have said before is easy to check
that the following is a coequalizer diagram:

f , g :
∐

1≤i< j≤(m+n
m )

∆[nc(i)∩c( j)]⇒
∐

1≤i≤(m+n
m )

∆[nc(i)]→ ∆[m] × ∆[n]

where f and g are induced by the inclusions c(i) ∩ c( j) → c(i) and c(i) ∩ c( j) → c( j), respec-
tively.

Standard simplices are compact Hausdorff, and since the geometric realisation commutes
with coequalizers we get that |∆[m] × ∆[n]| is a compact Hausdorff space as well.
we now describe the maps hi : |∆[m+n]| → |∆[m]|×|∆[n]|, defined by the composite |∆[nc(i)]| →
|∆[m] × ∆[n]| → |∆[m]| × |∆[n]|. We denote a point in |∆[m + n]| as z = (z1, . . . , zn+m) where
0 ≤ zi and

∑
i zi ≤ 1. Suppose c(i) corresponds to the m-subset {a1 < · · · < am} of {1, . . . ,m + n}

whose complement is {b1 < · · · < bn}. We write am+1 = n + m + 1 = bn+1, then hi(z) = (u, v) =

(u1, . . . , um, v1, . . . , vn) ∈ |∆[m]| × |∆[n]| where u j =
∑a j+1−1

k=a j
zk and v j =

∑b j+1−1
k=b j

zk. Now it is
easy to check that hi is injective.
Given a point (u, v) ∈ |∆[m]| × |∆[n]| we must find a chain c(i) and a point in |∆[nc(i)]| whose
image under hi is (u, v). We must also show that different choices of c(i) are related by a
coequalizer diagram describing ∆[m] × ∆[n].
To find c(i) we let w j = u j + · · ·+um and x j = v j + · · ·+vn. We then write the set of x j and w j in
descending order y1 ≥ · · · ≥ ym+n. Each w j must be some yk j. The set of the k j is an m-subset
of m + n so corresponds to a maximal chain c(i). Now let z j = y j − y j+1, where ym+n+1 = 0.
Then hi(z1, . . . , zm+n) = (u, v) as required. It is not difficult to check that the ambiguity in the
choice of c(i) corresponds exactly to points in

∐
|∆[nc(i)∩c( j)]|. �

Theorem 1.6
The geometric realisation | · | : SSet→ Ke preserves finite limits.

Proof. It is sufficient to show that it preserves equalizers, for the details see lemma 3.2.4 in
[Hov99]. �

Definition 1.10
A map f : X → Y of simplicial sets is a weak equivalence iff | f | is a weak equivalence of
topological spaces i.e. it induces isomorphisms of all homotopy groups.

Anodyne Extensions and Kan Fibrations

Now we introduce the basic ingredients for the homotopy theory of simplicial sets that are
anodyne extensions and Kan fibrations. Usually, the latter are easy to introduce using lifting
properties, but also the former are often defined using lifting properties with respect to Kan
fibrations. This definition has the advantage of being quick, but it is not transparent at first
sight, nor explicit. For that reason we prefer a slightly more explicit one.

Definition 1.11
Given a morphism f : Y → Y ′ a morphism g : X → X′ is a retract of f iff it fits in a diagram
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X u //

g
��

Y

f
��

v //X
g

��

X′ u′ //Y ′ v′ //X′

such that v ◦ u = 1X and v′ ◦ u′ = 1X′ .

Definition 1.12
A set A of morphisms of simplicial sets is saturated iff

(i) it contains all isomorphisms;

(ii) it is stable under pushouts;

(iii) it is stable under retracts;

(iv) it is stable under countable compositions, i.e. if fi : Xi → Xi+1 are morphisms in A, then
the canonical map X1 → colimXi is a morphism in A;

(v) it is stable under arbitrary direct sums.

The intersection of all saturated sets contained in a given set of morphisms B is called the
saturated set generated by B.

Definition 1.13
The elements of the saturated set generated by all horn inclusions Λk[n] ↪→ ∆[n] with 1 ≤ n
and k ≤ n are called anodyne extensions.

Definition 1.14
Given a map p : E → B and a map i : K → L we say that i has the left lifting property
(LLP for short) with respect to p or that p has the right lifting property (RLP for short) with
respect to i iff for every commutative square of the form:

K u //

i
��

E
p

��
L v

//

w
@@�

�
�

�
B

there is an arrow w : L→ E such that u = w ◦ i and v = p ◦ w.

Definition 1.15
A map p : E → B of simplicial sets is a Kan fibration or simply a fibration iff it has the
right lifting property with respect to all anodyne extensions. A simplicial set X is called a Kan
complex or a fibrant object iff the unique map X → 1 is a Kan fibration.

Remark 1.3
Kan fibrations satisfy the closure conditions dual to the ones of a saturated class.
Namely, every isomorphism is a fibration, they are stable under pullbacks, retracts and arbitrary
products. Moreover, if pi : Xi+1 → Xi are fibrations, the canonical projection limXi → X0 is a
fibration.

The following theorem provides examples of Kan fibrations.
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Theorem 1.7 (Moore)
Every simplicial group is a Kan complex

Proof. See theorem 3.1.3 in [JT14]. �

We state now a useful result.

Theorem 1.8
The fibres of a fibration over a connected base have the same homotopy type.

Proof. See corollary 5.4.2 in [GZ67]. �

Definition 1.16
The elements of the saturated set generated by all boundary inclusions ∂∆[n] ↪→ ∆[n] are
called cofibration.
A simplicial set X is cofibrant iff the unique map 0→ X is a cofibration.

Theorem 1.9
A map is a cofibration in SSet iff it is a monomorphism. In particular every simplicial set is cofibrant.

Proof. Recall that the monomorphisms are exactly the injective maps. Since boundary in-
clusions are injective and injective maps are closed under pushouts, countable compositions,
coproducts and retracts we have that every cofibration is a monomorphism.
Conversely, given f : K → L a monomorphism we prove that it is countable composition
of pushouts of coproducts of boundary inclusions. By induction, define X0 := K and having
defined Xn and an injection Xn → L which is an isomorphism on simplices of dimension less
than n. Then let S n denote the set of simplices not in the image of Xn. Each such simplex s is
necessarily nondegenerate and corresponds to a map ∆[n] → L. Notice that the restriction of
s to the boundary factors uniquely through Xn. Define Xn+1 to be the pushout in the diagram:∐

S ∂∆[n] //

��

Xn

p
��∐

S ∆[n] //Xn+1

Then the inclusion Xn → L extends to a map Xn+1 → L, which is the desired map. �

The reader may ask why we have introduced a notion and proved immediately after that it is
equivalent to a previous one. The reason is that cofibrations will give an essential part of the
definition of model category, which we shall see in the next chapter.

Next we give another useful description of anodyne extensions. Put B1 to be the class
of horn inclusions used in the definition of anodyne extension. Let B2 be the class of all
inclusions of the form:

∆[1] × ∂∆[n] + {e} × ∆[n] ↪→ ∆[1] × ∆[n]

where e = 0, 1 and + is another symbol for the coproduct. Finally, let B3 be the class of the
more general inclusions:

∆[1] × Y + {e} × X ↪→ ∆[1] × X

where X runs through all simplicial sets and Y through the subcomplexes of X.

13



Theorem 1.10
The saturated sets generated by B1, B2 and B3 coincide.

Proof. It proceeds reducing each class to the previous one. See section 2, chapter IV in
[GZ67]. �

Definition 1.17
Given two maps f : Y → X and i : K → L, the induced map:

i� f : P(i, f ) = (K × X)
∐
K×Y

(L × Y)→ L × X

is called the pushout product of the two maps.
The object P(i, f ) is also called pushout product.

Theorem 1.11
Given two monomorphisms i : K → L and f : Y → X such that the first is an anodyne extension.
Then the map i� f : P(i, f )→ L × X is an anodyne extension.

Proof. Let A be the set of monomorphisms i′ : K′ → L′ such that the induced morphism
on the pushout product P(i′, f ) → L′ × X is an anodyne extension. It is easy to prove that
A is a saturated set, so that it is sufficient to check that A contains B3. Let then Y ′ → X′

be a monomorphism, and let K = ∆[1] × Y ′
∐
{e} × X′ and L = ∆[1] × X. We then have

P(i, f ) = ∆[1] × (Y ′ × X
∐

X′ × Y)
∐
{e} × X′ × X and L × X = ∆[1] × X′ × X. So that the

inclusion of K×X
∐

L×Y into L×X belongs to B3 and that the inclusion of K into L belongs
to A. �

Theorem 1.12
If i : K → L is a monomorphism and p : X → Y a Kan fibration. Then the induced map
Hom(i, p) : Hom(L, X)→ Hom(K, X) ×Hom(K,Y) Hom(L,Y) is a fibration.

Proof. Straightforward from the previous theorem, recalling that Kan fibrations are defined
using a lifting property in terms of anodyne extensions. �

Theorem 1.13
Any simplicial map can be factored as an anodyne extension followed by a fibration. Moreover, the
factorisation is functorial.

Proof. Consider the set L of commutative diagrams of the form:

Λk[n] //

��

X

f
��

∆[n] //Y

and we sum over the set L and form the pushout obtaining an anodyne extension i:∐
L Λk[n] //

i
��

X

i0
��∐

L ∆[n] //X1

14



So that we have the commutative diagram:

X i0 //

f

��
<<<<<<<< X1

f 1

����������

Y

We apply the same process, now to f 1 obtaining f 2 and so on. Finally, we put E := colimXn

and define p : E → Y as the map induced by the f n. Hence we have a factorisation f = pi
where i is anodyne, we have to check that p is a fibration, so consider a commutative diagram:

Λk[n] h //

��

E
p

��
∆[n] //Y

and try to lift it. Since Λk[n] has only finitely many non-degenerate simplices, h factors
through some Xn, but then we have a lifting in Xn+1, and hence a diagonal filler in the starting
square.
Note that functoriality follows by construction. �

Theorem 1.14
A map i is anodyne iff it has the left lifting property with respect to fibrations

Proof. Factor i as i = p j where j in an anodyne extension and p a fibration. since i has the
left lifting property with respect to p we can find a diagonal filler:

A
j

//

i
��

E
p

��
B

k
@@�

�
�

�
B

hence i is a retract of j, so an anodyne extension as well. �

Definition 1.18
A fibration P : X → Y is a locally trivial or a fibre bundle iff for every simplex y : ∆[n]→ Y of
Y , the pullback fibration y∗p : y∗X = ∆[n] ×Y X → ∆[n] is isomorphic over ∆[n] to a product
fibration π1 : ∆[n] × F → ∆[n].

Homotopy Groups

Definition 1.19
Given two maps of simplicial sets f , g : X → Y we say that a homotopy between them is a
simplicial map h : ∆[1] × X → Y such that h(0, x) = f (x) and h(1, x) = g(x) for all x.

Observe that by the definition of the Hom-complex a homotopy between two maps f and g
can be equivalently described as 1-simplex h connecting the two vertices f and g i.e. d0h = f
and d1h = g. Hence we give the following more general definition.

Definition 1.20
Given a simplicial set and x, y ∈ X0 two vertices, we say that x is homotopic to y, written x ∼ y
iff there is a 1-simplex x ∈ X1 such that d0z = x and d1z = y.
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Unfortunately, as we shall see in the sequel, this relation is not an equivalence relation for
arbitrary simplicial sets. However, we have the following result.

Lemma 1.15
If X is a Kan complex, then the homotopy of vertices is an equivalence relation.

Proof. It is obviously reflexive, since if x ∈ X0 we have d1s0x = d0s0x = x. If x ∼ y, we have
a 1-simplex z connecting the two vertices. Then we get a map f : Λ0[2] → X which is s0x
on d1i2 and z on d2i2. Because X is fibrant, there is an extension of f to a 2-simplex w ∈ X2.
Then d0w is the required homotopy from y to x. Finally, for the transitivity suppose x ∼ y and
y ∼ z, so that we have 1-simplices a and b connecting respectively x to y, and y to z. Then a
and b define a map f : Λ1[2]→ X which is a on d2i2 and b on d0i2. Since X is fibrant we can
extend f to a 2-simplex c ∈ X2. Then d1c is the required homotopy. �

Definition 1.21
Given a fibrant simplicial set X and v ∈ X0 a vertex, the n-th homotopy group written πn(X, v)
is the set of equivalence classes of singular simplices α : ∆[n]→ X that send ∂∆[n] to v, under
the equivalence relation defined by α ∼ β iff there is a homotopy H : ∆[1] × ∆[n] → X such
that H is α on {0} × ∆[n], β on {1} × ∆[n] and is the constant map v on ∆[1] × ∂∆[n].

After this definition the reader may ask if the notion of weak equivalence can be equivalently
defined requiring that the map induces isomorphisms in all simplicial homotopy groups.
Using the fibrancy of X it can be shown that ∼ is an equivalence relation.
Given a map f : X → Y there is as usual an induced map πn( f ) : πn(X, v) → πn(Y, f (v)),
making πn functorial.
It is not clear from this definition if πn are actually groups, nor if the notion of weak equiva-
lence can be equivalently defined requiring that the map induces isomorphisms in all simplicial
homotopy groups. An answer to both questions is given by the following theorem that we state
here although it requires notions from the next section:

Theorem 1.16
Let X be a fibrant simplicial set and v ∈ X0 a vertex. Then there is a natural isomorphism πn(X, v) �
πn(|X|, |v|).

Proof. See proposition 3.6.3 in [Hov99]. �

Lemma 1.17
The vertex n ∈ ∆[n] is a deformation retract of ∆[n], in the sense that there is a homotopy H :
∆[1] × ∆[n]→ ∆[n] from the identity map to the constant map at n, which sends ∆[1] × {n} to {n}.
Moreover, this homotopy restricts to a deformation retraction of Λn[n] onto its vertex n.

Proof. A simplex of ∆[1] × ∆[n] is a chain in the ordered set [1] × [n]. Hence a homotopy
H : ∆[n] × ∆[1] → ∆[n] is the same as an ordered map [1] × [n] → [n]. We choose tha map
that takes (k, 0) to k and (k, 1) to n. The corresponding homotopy is the desired H. �

Remark 1.4
The standard simplex ∆[n] is not fibrant.
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Indeed, in the previous lemma we have found a homotopy from the identity map of the stan-
dard simplex to the constant map v. There no homotopy going in the opposite direction,
because such a homotopy would be induced by a map of ordered sets that takes (k, 0) to n and
(k, 1) to k, and there is no such map. Hence homotopy is not an equivalence relation of the
set of endomorphisms of ∆[n], so that by theorem 1.12 the standard simplex cannot be fibrant.

Theorem 1.18
Suppose X is a fibrant simplicial set, v ∈ X0 a vertex and α : ∆[n] → X a simplex such that diα = v
for all i. Then [α] = [v] ∈ πn(X, v) iff there is an (n + 1)-simplex x ∈ X such that dn+1x = α and
dix = v for all i ≤ n.

Proof. see lemma 3.4.5 in [Hov99]. �

Remark 1.5
We want to develop a simplicial analogue of Serre long exact sequence, as a first step we
construct the connecting map ∂.
Let p : X → Y be a fibration of simplicial sets and v ∈ X0 a vertex. Let F denote the fibre
of p at p(v). We now construct a map ∂ : πn(Y, p(v)) → πn−1(F, v) as follows: given a class
[α] ∈ πn(Y, p(v)), let γ be the lift in the following diagram:

Λk[n] v //

��

X
p

��
∆[n] α //

γ
=={

{
{

{
{

Y

and define ∂[α] := dn(γ) where dn is the n-th face map. The commutativity of the diagram
implies that dn(γ) lies in the fibre, and it is easy to see that didnγ = v so that by the previous
lemma [dnγ] ∈ πn−1(F, v).
We should check that ∂ is well defined, but it is a standard exercise in lifting pushout products
of anodyne extensions. For the details see lemma 3.4.8 in [Hov99].

Theorem 1.19 (the long exact sequence)
Let p : X → Y be a fibration between fibrant simplicial sets, ad v ∈ X0 a vertex. Let F denote the
fibre of p over p(v).
Then we have an exact sequence of pointed sets:

· · · → πn(X, v)→ πn(Y, p(v))→ πn−1(F, v)→ πn−1(X, v)→ . . .

Proof. The proof is analogous to the standard one for topological spaces, for some details see
lemma 3.4.9 in [Hov99]. �

Minimal Fibrations

We know from theorem 1.8 that the fibres of a fibrations are homotopy equivalent. Now
we would like to find some reasonable sufficient condition for a fibration to have isomorphic
fibres. Note that by definition every locally trivial morphism has isomorphic fibres, and as we
shall see our condition will force the fibration to be a locally trivial one.
Let start with some preliminary definitions on homotopy equivalences.
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Definition 1.22
Two maps f : X → Z and g : Y → Z are fibre homotopy equivalent iff there are maps
θ : X → Y and ω : Y → X such that g ◦ θ = f and f ◦ ω = g, and there are homotopies
from θ ◦ ω to the identity 1Y and from ω ◦ θ to the other identity 1X that cover the constant
homotopy of Z.

Theorem 1.20
Let p : X → Y be a fibration of simplicial sets, and suppose f , g : K → Y are maps such that there is
a homotopy from f to g. Then the pullback fibrations f ∗p and g∗p are fibre homotopy equivalent.

Proof. See proposition 3.5.3 in [Hov99]. �

Corollary 1.21
Let p : X → Y be a fibration of simplicial sets and let y : ∆[n]→ Y be a singular simplex in Y. Then
the pullback y∗X → ∆[n] is fibre homotopy equivalent to the product fibration ∆[n] × Fn → ∆[n],
where Fn is the fibre of p over the vertex y(n).

Proof. By lemma 1.17 the identity map of ∆[n] is homotopic to the constant map n, hence the
thesis follows from the previous theorem. �

Definition 1.23
Given a fibration p : X → Y , two n-simplices x, y ∈ Xn are p-related written x ∼p y iff they rep-
resent vertices in the same path component of the same fibre of Hom(i, p) : Hom(∆[n], X) →
Hom(∂∆[n], X) ×Hom(∂∆[n],Y) Hom(∆[n],Y).

Observe that thanks to theorem 1.12 ∼p is an equivalence relation.
Moreover, we can rewrite the definition as follows: x ∼p y iff p(x) = p(y), dix = diy for all
0 ≤ i ≤ n and there is a fibrewise homotopy stationary on the boundary H : ∆[1] × ∆[n] → X
from x to y, i.e. pH is the constant homotopy and H is constant on ∂∆[n].

Definition 1.24
A fibration p : X → Y is minimal iff x ∼p y entails x = y, i.e. iff every path component of
every fibre of the fibration Hom(i, p) has only one vertex.

We underline the similarity between the defining condition for minimal fibrations and the -
for the moment prosaic and imprecise - statement of univalence, that equivalent objects are
equal. It is not surprisingly that we shall use minimal fibrations to prove that univalence holds
in simplicial sets.

Lemma 1.22
Minimal fibrations are stable under pullbacks.

Proof. Suppose p : X → Y be a fibration, every pullback square:

X′ //

p′

��

X
p

��
Y ′ //Y
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induces a pullback square:

Hom(∆[n], X′) //

Hom(i,p′)
��

Hom(∆[n], X)

Hom(i,p)
��

P′ //P

where
P′ := Hom(∆[n],Y ′) ×Hom(∂∆[n],Y′) Hom(∂∆[n], X′)

and
P := Hom(∆[n],Y) ×Hom(∂∆[n],Y) Hom(∂∆[n], X)

Hence every fibre of Hom(i, p′) is isomorphic to a fibre of Hom(i, p). �

Lemma 1.23
Let p : X → Y and q : Z → Y be fibrations of simplicial sets, and that q is a minimal fibration.
Suppose f , g : X → Z are two maps of simplicial sets over Y and suppose H : X × ∆[1] → Z be a
homotopy from f to g such that qH = pπ1.
If g is an isomorphism so is f .

Proof. See lemma 3.5.6 in [Hov99]. �

Theorem 1.24
Let p : X → Y be a minimal fibration of simplicial sets, then p is locally trivial.

Proof. Since minimal fibrations are stable under pullbacks we have that the pullback of p
along any singular simplex y : ∆[n] → Y is a minimal fibration y∗X → ∆[n]. We know from
corollary 1.21 that this map is fibre homotopy equivalent to the product fibration ∆[n]×Fn →

∆[n]. By the previous theorem we obtain an isomorphism. �

Theorem 1.25

Let p : X → Y be a fibration of simplicial sets. Then we can factor p as X
r
→ X′

p′
→Y, where p′ is a

minimal fibration and r is a retraction onto a subsimplicial set X′ ⊆ X.

Proof. We give a sketch of the proof: by the axiom of choice let T be a set of simplices of X
containing one simplex from each p-equivalence class. It is easy to check that it contains every
degenerate simplex (see lemma 3.5.8 in [Hov99]). Let S denote the set of all subsimplicial sets
of X whose simplices lie in T . We put a partial order on S induced by the one already present
on subsimplicial sets of X and by Zorn’s lemma we get a maximal subsimplicial set X′.
If the restriction p′ : X′ → Y is a fibration it will be automatically minimal. We will show
that p′ is a retract of p hence it will be a fibration.
We apply again Zorn’s lemma, now to pairs (Z,H) where Z is a subsimplicial set of X containing
X′, and H : ∆[1]× → X is a homotopy such that its restriction to {0} × Z is the inclusion, it
maps {1} × Z into X′, it is constant on ∆[1] × X′, and pH is the constant homotopy of p
restricted to Z. Let (Z,H) be a maximal pair, we must show that Z = X. If not consider a
simplex x : ∆[n] → X of minimal dimension that does not belongs to Z. We then construct
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the following pushout square:
∂∆[n] //

��

Z

��

∆[n] x //Z′

where Z′ is the subsimplicial set of X generated by Z and x. Finally, using the previous con-
struction we can extend H contradicting its maximality. For these remaining details see theo-
rem 3.5.9 in [Hov99]. �

Definition 1.25
A map of topological spaces is a Serre fibration iff it has the right lifting property with respect
to all inclusions Dn → Dn × I of the n-disk at ground zero of the cylinder over the n-disk.

Theorem 1.26
Let p : X → Y be a fibration of simplicial sets. Then |p| is a Serre fibration of Kelley spaces.

Proof. The statement is obtained adding at first the hypothesis that p is locally trivial and
then the hypothesis is dropped. See corollary 3.6.2 in [Hov99]. �
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Chapter 2

Model Categories

There are many different possible settings for an abstract theory of homotopy, perhaps
the easiest way to define a homotopical structure on a category is to distinguish a

suitable class of "weak equivalences" that contains the isomorphisms and is closed under some
basic constructions, is then possible to form its homotopy category localising with respect to this
family of arrows.
But in a such general framework is difficult to manage the homotopy category and the weak
equivalences; a way to face this problem is to add more structure taking topological spaces and
simplicial sets as guiding examples. The definition of model category adds two other classes of
morphisms to the structure, namely a class of fibrations and a class of cofibrations. Moreover,
the presence of these maps allows to define well-behaved objects and the interaction of these
two classes of maps gives a finer control on the homotopy category that turns out to be a
quotient of the initial model category under a homotopy equivalence relation.
The aim of this chapter is to give some basics in the theory of model categories and an outline
of the proof that the category of simplicial sets admits a model structure. The proof uses the
axiom of choice because it relies on the theory of minimal fibrations in particular on theorem
1.25.

Definition of Model Category

We start with some introductory definitions, motivated by the theory of simplicial sets that we
have seen so far.

Definition 2.1

(a) Recall that given a category C its category of arrows, written Ar(C ), has arrows of C
as objects and commutative squares of C as morphisms.

(b) Given a category C , a functorial factorisation is a pair (α, β) of functors Ar(C ) →
Ar(C ) such that for any arrow f of C we have a factorisation as f = β( f ) ◦ α( f ).

Definition 2.2
A subcategory of weak equivalences of a given category is a subcategory that contains all the
isomorphisms and satisfies the 2-out-of-3 property i.e. given any pair of composable maps f and
g if two elements of the set { f , g, f ◦ g} are weak equivalences so is the third.
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Following Hovey’s book we require that model structures has fixed functorial factorisations,
instead of simply asking for the existence of a factorisation. This is needed in order to perform
some constructions in a canonical way, which otherwise would depend on the choice of the
factorisation.

Definition 2.3
A weak factorisation system is a quadruple (A,B, α, β) where the first two are classes of maps
and (α, β) is a functorial factorisation such that α( f ) ∈ A and β( f ) ∈ B. Moreover, A is the
class of maps which have the left lifting property with respect to B and conversely B is the
class of maps which have the right lifting property with respect to A.

Notice that each of the two classes of a weak factorisation system determines the other.
Also, A∩B is exactly the class of isomorphisms since any map f such that f has the left lifting
property with respect to to itself is an isomorphism.

Definition 2.4
A model structure on a category consists in three subcategories Fib, Cof and W, and two
functorial factorisations (α, β) and (δ, γ) such that W is a subcategory of weak equivalences,
(Cof ∩W,Fib, α, β) and (Cof ,W ∩ Fib, δ, γ) are two weak factorisation systems.
Maps in W are called acyclic of weak equivalences. Maps in Cof are called cofibrations and
maps in Fib are called fibrations.
A model category is a complete and cocomplete category together with a model structure.

Every complete and cocomplete category admits three trivial examples of model structure, the
ones where one of the three classes Cof , Fib and W is the class of isomorphisms and the other
two are all maps.
Since Quillen axioms for model categories are self-dual, if a category C has a model structure
then also the opposite category admits one. The cofibration of C op are the fibration of C and
vice-versa.
If C is a model category, then every slice C /X inherits a model structure, where a map is a
fibration, cofibration or weak equivalence iff it is in C .
Given two model categories C and D we put on the product C × D the model structure
where a map ( f , g) is a fibration [cofibration, weak equivalence] iff both f and g are fibrations
[cofibrations, weak equivalences].
The definitions of fibrant and cofibrant objects are the same as in the case of simplicial sets.
Note that if we factor the map 0 → X into a cofibration followed by a trivial fibration we get
a functor X 7→ QX and a map qX : QX → X such that QX is cofibrant and qX is a trivial
fibration.
Dually, when we factor X → RX → 1 as a trivial cofibration followed by a fibration.

Definition 2.5
The two functors defined above are called respectively cofibrant replacement functor and
fibrant replacement functor.

Lemma 2.1 (the retract argument)
If we have a factorization f = pi in a category such that f has the left lifting property with respect to
p, then f is a retract of i.
Dually, if f has the right lifting property with respect to i, then it is a retract of p.
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Proof. First suppose f has the left lifting property with respect to p. Let consider the diagram
with the lifting r:

A i //

f
��

B
p

��
C

r
@@�

�
�

�
C

Hence f is a retract of i with retraction r. �

Lemma 2.2
In a model category the three classes Cof , Fib and W are closed under retracts.

Proof. Fibrations and cofibrations are closed under retracts because of the previous lemma.
For weak equivalences see proposition A.3.1 in [JT14]. �

Note that thanks to their characterisation in terms of lifting properties cofibrations are closed
under pushouts and fibrations are closed under pullbacks.

Lemma 2.3 (Ken Brown’s lemma)
Let C a model category and D a category with a distinguished class of "weak equivalences" satisfying
the 2-out-of-3 property. If F : C → D is a functor which takes trivial cofibrations between cofibrant
objects to weak equivalences. Then F takes all weak equivalences between cofibrant objects to weak
equivalences.

Proof. We suppose that f : A → B is a weak equivalence of cofibrant objects and factor
( f , 1B) : A + B → B into a cofibration followed by a trivial fibration A + B

q
−→C

p
−→ B. The

pushout diagram:
0 //

��

A

��
B //A + B

shows that the inclusions i1 : A → A + B and i2 : B → A + B are cofibrations. By the 2-out-
of-3 axiom we have that q ◦ i1 and q ◦ i2 are weak equivalences hence trivial cofibrations. By
hypothesis we have that both F(q◦i1) and F(q◦i2) are weak equivalences. Since F(p◦q◦i2) =

F(1B) is also a weak equivalence we conclude from the 2-out-of-3 property that F(p) is a weak
equivalence, and hence that F( f ) = F(p ◦ q ◦ i1) is a weak equivalence as required. �

Definition 2.6
A model category is right proper iff the pullback of a weak equivalence along a fibration is
again a weak equivalence.
It is left proper iff the pushout of a weak equivalence along a cofibration is again a weak
equivalence.
Finally, a model category is proper iff it is both left and right proper.

We now define morphisms and equivalences of model categories.

Definition 2.7
Let C and D be model categories.
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1. A functor F : C → D is a left Quillen functor iff F is a left adjoint and preserves
cofibrations and trivial cofibrations.

2. A functor U : D → C is a right Quillen functor iff it is a right adjoint and preserves
fibrations and trivial fibrations.

3. An adjunction (F,U, φ) : C → D is a Quillen adjunction iff F is a left Quillen functor
iff U is a right Quillen functor.

4. A Quillen adjunction (F,U, φ) : C → D is a Quillen equivalence iff for all cofibrant
X ∈ Ob(C ) and all fibrant Y ∈ Ob(D) we have that f ∈ HomD (FX,Y) is a weak
equivalence iff φ( f ) ∈ HomD (X,UY) is a weak equivalence.

Homotopy in Model Categories

Definition 2.8
Given a category C with a subcategory of weak equivalences W we define its homotopy cate-
gory, written Ho(C ) as the localisation C [W−1], obtained inverting formally all the arrows in
W.

Observe that for arbitrary categories with a subcategory of weak equivalences a size issue
emerges. Indeed, due to the size of W the homotopy category may have proper classes as
Hom even if the category C has Hom-sets.
We will state a theorem which guarantees that for model categories this phenomenon disap-
pears, in fact the homotopy category turns out to be a quotient of the model category.

Now we focus on homotopies. Observe that for simplicial sets and topological spaces,
homotopies admit two dual descriptions: as maps from a cylinder H : X×I → Y or as paths in a
path space X → Y I . Moreover, any cylinder retracts onto its base so that in particular we have
a weak equivalence I × X → X, similarly for the path space because paths can be contracted
to their starting point. Hence we split the notion of homotopy into left and right homotopies
expressing some key properties in terms of fibrations, cofibrations and weak equivalences, using
these two dual descriptions as guidance.

Definition 2.9
Let C be a model category and f , g : B→ X two maps.

(a) A cylinder object for B is a factorisation of the codiagonal ∇ : B + B → B into a
cofibration i0 + i1 : B + B→ IB followed by a weak equivalence s : IB→ B.

(b) A path object for X is a factorisation of the diagonal ∆ : X → X × X into a weak
equivalence r : X → PX followed by a fibration (p0, p1) : PX → X × X.
A very good path object is a factorisation of the diagonal as a trivial cofibration followed
by a fibration.

(c) A right homotopy from f to g is a map K : B → PX into some path object for X such
that p0K = f and p1K = g. We say that f is right homotopic to g, written f r

∼ g iff
there exists a right homotopy from f to g.

(d) A left homotopy from f to g is a map H : IB→ X from some cylinder object for B such
that Hi0 = f and Hi1 = g. We say that f is left homotopic to g, written f l

∼ g iff there
exists a left homotopy from f to g.
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(e) f and g are homotopic, written f ∼ g iff f is both left and right homotopic to g.

(f) f is a homotopy equivalence iff there is a map h : X → B such that f h ∼ 1X and
h f ∼ 1B.

Notice that in any model category both cylinder and path objects exist, simply applying the
factorisation to the codiagonal and the diagonal respectively.
Recalling the case of simplicial sets, we expect that some requirement on objects is needed in
order to make homotopy relations into equivalence relations.

Lemma 2.4
Let f , g : A→ X be two maps in a model category C . We have the following:

(a) If A is cofibrant, then left homotopy is an equivalence relation on Hom(A, X). Dually, if X is
fibrant, then right homotopy is an equivalence relation on Hom(A, X).

(b) If A is cofibrant, f l
∼ g implies f r

∼ g. Dually, if X is fibrant f r
∼ g implies f l

∼ g.

(c) Let Cc f be the full subcategory of fibrant and cofibrant objects of C . The homotopy relation
on the maps of Cc f is an equivalence relation compatible with composition.

Proof. See proposition 1.2.5 in [Hov99]. �

Lemma 2.5
Let C be a model category and A a cofibrant object. If f : X → Y is either a trivial fibration or a
weak equivalence between fibrant objects, then the map Hom(A, X)/ l

∼ → Hom(A,Y)/ l
∼ induced by

f is a bijection.
Dually, if X is a fibrant object and f : A → B is either a trivial cofibration or a weak equivalence
between cofibrant objects, then the map Hom(B, X)/ r

∼ → Hom(A, X)/ r
∼ induced by f is a bijection.

Proof. Let f : X → Y be a trivial fibration and consider the map induced by f . Since A is
cofibrant, any map A→ Y has a lifting to X, so the map is surjective even before passing to left

homotopy. On the other hand, let A + A
(i0,i1)
−→ IA

s
−→ A be a cylinder for A, and H : IA → Y a

left homotopy between f g, f h : A→ Y . Then the diagram:

A + A
(g,h)

//

(i0,i1)
��

X

f
��

IA H //

K
<<z

z
z

z
z

Y

has a diagonal filler K : IA → X, which is a left homotopy between g, h : A → X. Thus
the map induced by f is also injective. The case when f : X → Y is a weak equivalence
between fibrant objects follows from the first part of Ken Brown’s lemma using the functor
Hom(A,−)/∼l and bijections of sets as "weak equivalences". �

Theorem 2.6 (Whitehead’s theorem)
If C is a model category, then a map of Cc f is a weak equivalence iff it is a homotopy equivalence.

Proof. Let X, Y and A be objects in Cc f and f : X → Y be a weak equivalence. Then by
the previous lemma the map HomCc f (A, X)/∼→ HomCc f (A,Y)/∼ induced by f is a bijection.
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Taking A = Y we find a map f ′ : Y → X such that f f ′ ∼ 1Y . Since f f ′ f ∼ f it follows that
f ′ f ∼ 1X .
Conversely, given X and Y objects in Cc f and p : X → Y which is a homotopy equivalence,
we consider at first the case when it is a fibration. We will show that p is a weak equivalence.
So let p′ : Y → X be a homotopy inverse for p and H : IY → Y be a left homotopy pp′ ∼ 1Y .
Since p is a fibration there is a diagonal filler H′ : IY → X in the diagram:

Y
p′

//

i0
��

X
p

��
IY H //

H′
??�

�
�

�
Y

We define q := H′i1, then pq = 1Y and H′ : p′ ∼ q. We then have 1X ∼ p′p ∼ qp, so let
K : IX → X be a left homotopy such that Ki0 = 1X and Ki1 = qp. By the 2-out-of-3 property,
K is a weak equivalence, making qp a weak equivalence as well. From the diagram:

X
p

��

X
qp

��

X
p

��

p
��

Y
q

//X
p

//Y

we see that p is a retract of pq hence it is a weak equivalence.
Now we remove the additional hypothesis so let f : X → Y be an arbitrary homotopy equiv-
alence. Factor f as f = pi : X → Z → Y with i a trivial cofibration and p a fibration. Then
Z is cofibrant and fibrant, so by the first part i is a homotopy equivalence. It follows from the
2-out-of-3 property for the homotopy equivalences of Cc f that p is a homotopy equivalence.
Then by the argument above p is a weak equivalence, hence f is a weak equivalence. �

Theorem 2.7
Let πCc f be the quotient category modulo homotopy. There is an isomorphism of categories πCc f →

Ho(Cc f ).

Proof. See corollary 1.2.9 in [Hov99]. �

Theorem 2.8
In a model category, the pullback of a weak equivalence between fibrant objects along a fibration is a
weak equivalence. Therefore, a model category in which all objects are fibrant is right proper. Dually
for left properness.

Proof. Let w : X → Y be a weak equivalence between fibrant objects, in the following pullback
square:

X′
f ′

//

w′

��

X

w
��

Y ′
f

//Y

we want to show that w′ is a weak equivalence if f is a fibration. First, consider a factorisation

of (1X , f ) : X
iX
−→ P f

(pX ,pY )
−→ X × Y as a weak equivalence followed by a fibration. pXiX = 1X

and w = pY iX . Since X and Y are fibrant, pX and pY are trivial fibrations. The pullback of a
trivial fibration is a weak equivalence, so we may suppose w : X → Y is a weak equivalence
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that has a retraction r : Y → X such that rw = 1X and r is a trivial fibration. Now consider
the diagram:

X′ w′ //

w′

��

Y ′

u
��

1Y′

##GGGGGGGGGG

Y ′ v //

r f
��

Y ×X Y ′
p2

//

p1

��

Y ′

r f
��

X w //Y r //X

where p1u = f , p1v = wr f and p2v = 1Y′ . Now we have that p1uw′ = f w′ and p1vw′ =

wr f w′ = wrw f ′ = w f ′. Also, p2uw′ = w′ and p2vw′ = w′ so the top left-hand square
commutes. The lower left-hand square is a pullback, since the lower right-hand is and the two
together are. similarly, the top left-hand square is a pullback since the lower left-hand square is
and the two together are. It follows that w′ = w∗(u), where w∗ : C /Y → C /X is the pullback
functor. r is a trivial fibration, hence so is p2. Since p2u = 1Y′ , u is a weak equivalence in C /Y
between fibrant objects. Since the pullback functor preserves fibrations and trivial fibrations
w′ is a weak equivalence by Ken Brown’s lemma. �

A Model Structure on Simplicial Sets

As we have seen in the previous section the axioms of a model category are powerful. Hence
we expect that in exchange it is difficult to build a model structure. This is indeed the case, in
particular for simplicial sets.

Lemma 2.9 (recognition lemma)
Let C be a complete and cocomplete category provided with a subcategory W which has the 2-out-of-3
property. Moreover, given other subcategories Fib and Cof and two other classes of maps CW and
FW, such that (CW ,Fib) and (Cof ,FW) are weak factorisation systems. If the following hold:

(a) CW ⊆ Cof ∩W and FW ⊆ Fib ∩W;

(b) either Cof ∩W ⊆ CW or Fib ∩W ⊆ FW.

Then Fib, Cof and W determine a model structure on C .

Proof. Consider the case Fib ∩W ⊆ FW . We want to show Cof ∩W ⊆ CW , so let i : A → B
be a trivial cofibration. We factor i as i = p j : A → E → B, with j ∈ CW and p ∈ Fib. Since
i is a weak equivalence and j ∈ CW ⊆ Cof ∩ W it follows that p is a trivial fibration. Since
Fib ∩W ⊆ FW and i is a cofibration there is a diagonal filler d in the diagram:

A
j

//

i
��

E
p

��
B

d
@@�

�
�

�
B

It follows that i is a retract of j so i ∈ CW . Thus CW = Cof ∩W. �

In order to prove that the category of simplicial sets admits a model structure we choose Fib,
Cof and W to be the classes of Kan fibrations, cofibrations and weak equivalences respectively.
Moreover, CW is the class of anodyne extensions and FW the one of maps with the right lifting
property with respect to cofibrations.
The following lemmas are quite easy to obtain.
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Lemma 2.10
Any simplicial map can be factored as a cofibration followed by a map which has the right lifting
property with respect to cofibrations. Moreover, this factorisation is functorial.

Proof. It is enough to repeat the argument of theorem 1.13. �

Lemma 2.11
Every anodyne extension is a trivial cofibration of simplicial sets

Proof. See proposition 3.2.3 in [Hov99]. �

Lemma 2.12
If f is a map of simplicial sets which has the right lifting property with respect to cofibrations, then it is
a trivial fibration.

Proof. See proposition 3.2.6 in [Hov99]. �

The hard part is condition (b) in the recognition lemma.

Theorem 2.13
If p is a trivial Kan fibration, then it has the right lifting property with respect to all cofibrations.

Proof. Instead of breaking this proof into a chapter of lemmas we give here a sketch.
The idea of the proof is to start with simple cases and generalise step by step: first of all we
observe that if X is a non-empty Kan complex with no non-trivial homotopy groups, then the
map X → 1 has the RLP with respect to cofibrations. For the proof see proposition 3.4.7 in
[Hov99].
Next, if p : X → Y is a locally trivial fibration such that every fibre is non-empty and has no
non-trivial homotopy groups, then p has the RLP with respect to cofibrations. Indeed, since
p is locally trivial, a lift in the diagram:

∂∆[n] //

��

X
p

��
∆[n] v //Y

is equivalent to a lift in the diagram:

∂∆[n]
f

//

��

∆[n] × F
π1

��
∆[n] ∆[n]

A lift in this square is equivalent to an extension of the map π2 f : ∂∆[n]→ F to ∆[n]. By the
hypotheses F is a Kan complex with no non-trivial homotopy groups so that we conclude by
the first step.
Now we drop the hypothesis that p is locally trivial: by theorem 1.25 we factor p = p′r as a
minimal fibration followed by a retraction. r can be chosen to have the RLP with respect to
cofibrations, see theorem 3.5.9 in [Hov99]. Since p′ is a retract of p, its fibres are retracts of
the fibres of p. Every minimal fibration is locally trivial by theorem 1.24, hence we can apply
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the previous step.
Finally, we show that every trivial Kan fibration has non-empty fibres which have no non-
trivial homotopy groups. Let F be the fibre of p over the vertex v. Thanks to theorem 1.26

and the exactness properties of the geometric realisation functor, we have that |F| is the fibre of
|p| over the vertex |v|. Since |p| is a weak equivalence, |F| is non-empty and has no non-trivial
homotopy groups. We conclude recalling that πn(X, v) � πn(|X|, |v|). �

Hence we have obtained the following:

Corollary 2.14
The category of simplicial sets admits a model structure where fibrations, cofibrations and weak equiv-
alences defined as in the first chapter.

We cannot end this section without a mention to the standard model structure on topological
spaces. As we have anticipated in the first chapter simplicial sets are combinatorial models for
nice topological spaces. Here we make this statement precise.

Theorem 2.15
The category of topological spaces admits a model structure whose fibrations are Serre fibrations and
weak equivalences are the usual weak equivalences.
Every object is trivially fibrant; moreover, the cofibrant objects are the retracts CW-complexes.

Proof. See chapter 2 section 4 in [Hov99]. �

Theorem 2.16 (Milnor)
The geometric realisation | · | : SSet → Ke and the inclusion functor i : Ke → Top are Quillen
equivalences.
Their composition gives a Quillen equivalence from the model category of simplicial sets to the one of
topological spaces, with their standard model structures.

Proof. See corollary 2.4.24 and theorem 3.6.7 in [Hov99]. �

We conclude the section with this result that will play an important role in the interpre-
tation of type theory in simplicial sets.

Theorem 2.17
The model structure on simplicial sets is proper.

Proof. Since every object is cofibrant it is left proper thanks to theorem 2.8.
For right properness just consider the diagram:

X′
f ′

//

w′

��

X

w
��

Y ′
f

//Y

where w is a weak equivalence and f a fibration. We apply the geometric realisation functor,
thanks to theorem 1.26 and the definition of weak equivalence in simplicial sets it is enough
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to show that the model structure on topological spaces is right proper, but this is immediate,
since every topological space is fibrant. �

Monoidal Model Categories

When dealing with model categories we are mainly interested in their homotopy category,
therefore is important to give definitions which descends reasonably in the homotopy category.
For this reason we need to impose more than the usual structure on a model category to make
a "good notion" of monoidal model category; the key ingredient turns out to be closedness of
the monoidal category.

Definition 2.10
Given C , D and E categories, an adjunction of two variables from C ×D to E is a quintuple
(⊗,Homr,Homl, φr, φl) where ⊗ : C ×D → E , Homr : Dop×E → C and Homl : C op×E → D
are functors and φr and φl are natural isomorphisms:

C (C,Homr(D, E))
φ−1

r
−→E (C ⊗ D, E)

φl
−→D(D,Homl(C, E))

Definition 2.11
A closed monoidal structure on a category is an octuple (⊗, a, l, r,Homr,Homl, φr, φl) where
(⊗, a, l, r) is a monoidal structure on C and (⊗,Homr,Homl, φr, φl) : C ×C → C an adjunction
of two variables.

We have built the definition of closed monoidal category from an adjunction of two variables;
by analogy we want to define a convenient notion of Quillen adjunction of two variables. We
motivate the following definition using the examples provided in the chapter on simplicial
sets by the importance of the pushout product.

Definition 2.12
Given C , D and E model categories, an adjunction of two variables (⊗,Homr,Homl, φr, φl) :
C ×D → E is a Quillen adjunction of two variables iff given a cofibration f : U → V in C
and a cofibration g : W → X in D , the induced map f�g : P( f , g) = (V⊗W)

∐
U⊗W(U⊗X)→

V ⊗ X is a cofibration in E which is trivial if either f or g is.
The left adjoint ⊗ of a Quillen adjunction of two variables is simply called Quillen bifunctor.
By extension of the already established terminology we call f�g the pushout product of f and
g.

The following lemma characterize the property of being a Quillen bifunctor for a given ad-
junction of two variables.

Lemma 2.18
Let C , D and E be model categories and (⊗,Homr,Homl, φr, φl) : C × D → E an adjunction of
two variables. Then the following are equivalent:

(i) ⊗ is a Quillen bifunctor;

(ii) given a cofibration g : W → X in D and a fibration p : Y → Z in E , the induced map:

Homr(g, p) : Homr(X,Y)→ Homr(X,Z) ×Homr(W,Z) Homr(W,Y)
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is a fibration in C which is trivial if either g or p is;

(iii) given a cofibration f : U → V in C and a fibration p : Y → Z in E , the induced map:

Homl( f , p) : Homl(V,Y)→ Homl(V,Z) ×Homl(U,Z) Homl(U,Y)

is a fibration in D which is trivial if either f or p is.

Proof. It is a standard argument using the definition of adjunction. �

Now we give the promised definition of monoidal model category, as before we impose a
technical condition which is needed in order to obtain a well behaved homotopy category.
We anticipate that this additional condition is automatic if the unit of the monoidal category
is cofibrant, as it is in the main examples of simplicial sets and topological spaces.

Definition 2.13
A monoidal model category is a closed category C which is also a model category such that
the two following conditions hold:

(i) the monoidal structure ⊗ : C × C → C is a Quillen bifunctor;

(ii) let q : QS → S be the cofibrant replacement for the unit S of the monoidal structure,
then the standard map q⊗1 : QS ⊗X → S ⊗X is a weak equivalence for every cofibrant
X. Similarly the standard map 1 ⊗ q : X ⊗ QS → X ⊗ S is a weak equivalence for every
cofibrant X.

Definition 2.14
A symmetric monoidal model category is just a symmetric monoidal category and a model cat-
egory whose monoidal and model structures satisfy the compatibility conditions of the above
definition.

Theorem 2.19
The standard model structure on simplicial sets forms a symmetric monoidal model category.

Proof. The symmetric monoidal structure on SSet is the one given by the cartesian product,
the adjoint being the function complex Hom(X,Y). All objects are cofibrant, hence we just
need to check that the product is a Quillen bifunctor. Thanks to the previous lemma and to
theorem 1.12 we can conclude. �
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Chapter 3

Type Theory

In mathematics there are some question that we don’t want to answer, for example:
"is 1 ∈ 3?" or "can a finite simple group be a zero of the Riemann zeta function?".

These questions arise from the nature of material set theory used as implicit foundation for ev-
eryday mathematics like ZF where all mathematical entities are sets and a global membership
predicate is available. It is not important to know if 1 ∈ 3, because the answer depends on the
particular set-theoretic construction used to build the model of N, whereas we are interested
in the structural properties of natural numbers, i.e. the ones expressible from the constant 0
and the successor function. Similarly, is common in mathematical papers and books to write
"let G be a finite group and z a complex number", meaning that the two variables range over
fixed domains which cannot conflict. Moreover, this is exactly what is done in computer pro-
gramming when variables are declared.
Types are an answer for the need to a formalism adherent to informal reasoning. They can be
conceived as intensional sets, meaning that they are characterised by a global, holistic, essence
or nature instead of being reduced to their elements. Type theory has three main actors: terms,
types and contexts. Every term inhabits types, written a : A, whereas contexts are finite ordered
sets of inhabitation judgements like Γ = (x1 : A1, . . . , xn : An) such that for each k = 1, . . . , n
the expression xk : Ak can be inferred from the previous ones.
Type theories differ mainly for the type constructors which are admitted and by the rules,
more or less powerful, that are used to manage these constructors. Examples of common type
constructors are function and product types: given two types A and B we can form the type
of functions A → B and the type of paris A × B. We shall discuss in detail the constructors
allowed in Martin-Löf type theory.
As we have mentioned in the introduction a key feature of many type theories is the Curry-
Howard isomorphism also called propositions-as-types paradigm, its starting point is an analogy
between the syntactical rules used to define type-theoretic constructors and the ones used in
natural deduction for intuitionistic logic. This yields to the interpretation of a proposition as
the type of its proofs.

We cannot omit to mention the relationship between type theory and computer science.
The first and most basic example is the one given by the lambda calculus used by Church and
his school to formalise the notion of computable function. Moreover, the Curry-Howard cor-
respondence can be further extended to programs and games. Indeed, program specifications
can be interpreted as types and programs verifying the specification as terms inside the type.
Similarly, games can be interpreted as the types of their winning strategies.
As we shall see in the next section the Curry-Howard isomorphism can be seen as a type-
theoretic implementation of the Brouwer-Heyting-Kolmogorov interpretation of intuitionis-
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tic logic.
For an example of more general type theories, without the proposition-as-types correspon-
dence see [AG06].
In the following table we sketch the most significant articulations of the correspondence:

logic type theory
formula type
proof term

type constructors connectives
implication function type
conjunction product type
disjunction sum type
absurdity empty type

existential quantifier dependent sum
universal quantifier dependent product

equality identity type
normal term normal proof

Negation is defined as usual in intuitionistic logic as φ⇒ ⊥.
The Curry-Howard isomorphism allows a subtle and important distinction: the one be-

tween propositions and judgements. In natural language, propositions are syntactical con-
structions whereas judgements are acts of speech. φ is a proposition, "φ is true" is a judgement.
Observe that the statement that a proposition is well-formed like "φ is a proposition" is itself
a kind of judgement, this is one of the main sources of confusion regarding this distinction.
Under the Curry-Howard correspondence propositions are types, whereas judgements are
treated formally by a system of rules. There are six kinds of judgements, two for each of
the following: contexts, types and term.

• ` Γ context

• ` Γ = ∆ context

• Γ ` A type

• Γ ` A = B type

• Γ ` a : A

• Γ ` a = b : A

Judgements are expressed by the symbol `, meaning that the expression on the right can be
inferred from the context on the left. Sometimes the symbol ` is dropped when the empty
context appears.
We give now as an example the rules for contexts, postponing the discussion of the rules
governing syntactic operations (the so-called structural rules) to the sequel, when the main
ideas of Martin-Löf type theory will be already fixed. Contexts are given by two rules (where
the first is a rule with empty premiss i.e. an axiom):

` () context

Γ ` A type
` (Γ, x : A) context
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Which express the fact that contexts are inductively constructed finite list of judgements of
the form x : A. Notice again the similarity with computer programming.

In Martin-Löf theory the distinction between propositions and judgements induces an
analogous distinction between propositional equality and definitional or judgemental equality. In
fact the former is the one present in the basic judgements, whereas the latter is a type con-
structor written IdA(a, b) for a, b : A, motivated by the Curry-Howard isomorphism.
We cannot ask if a judgemental equality is true or not because it is not a proposition, although
we may derive it from other judgements. On the other hand, we can derive the judgement
p : IdA(a, b) asserting that there is a proof of the proposition "a and b are equal in A" so that
we know that the proposition IdA(a, b) is true.
In fact Martin-Löf type theory can be seen as a formalisation of the meta-theory of judgements
of an object theory which deals with propositions (i.e. types).
We will use the symbol = for generic definitional equalities and the specific := when we will
introduce new symbols inside type theory, thus we should distinguish between them, the latter
would deserve the name definitional equality and the former judgemental equality, but we will
not insist on this point.
We emphasize that the two symbols: ` and the long horizontal line used for syntactical rules
have very different meanings, in spite of the apparent similarity, in fact they both express some
kind of deduction. But the first is a formal symbol of the theory used to express judgements,
whereas the second is a meta-theoretical rule used to define the meaning of the former.

Finally, we introduce dependent types, that are families of types parametrized by another
type. Type dependencies are expressed formally as particular judgements, like: x : A ` b(x) :
C(x) and they are interpreted as hypothetical judgements i.e. judgements made under as-
sumptions. Type dependencies are familiar in computer programming, for example the type of
strings depends on the type of natural numbers; indeed, for every natural number n we have the
well-formed type of strings of length n. As we shall see in the next chapter type dependencies
are interpreted homotopically as fibrations.

The sources for this chapter are [ML84], [ML75] and [War08] for Martin-Löf type theory
and [KLV12],[UFP13] for homotopy type theory.
A good introductory book on type theory and the Curry-Howard isomorphism is [SU06].

Martin-Löf Type Theory

Martin-Löf type theory can be synthetically described as a dependent type theory with prod-
ucts, sums, types of well-founded trees, identity types, a type of natural numbers, for the stan-
dard finite sets and for one universe. Martin-Löf proposed two versions of his theory, one with
extensional identity types and another with intensional ones. In the sequel Martin-Löf type
theory will always mean the version with intensional identity types.
Thanks to the Curry-Howard correspondence, these constructors are defined by syntactical
rules following a pattern similar to the one used for natural deduction, every type constructor
has four rules defining it; namely: formation, introduction, elimination and computation. Let
start with dependent products. The formation rule tells us when the type constructor is well
defined.

A type x : A ` B(x) type
(Πx : A)B(x) type

The introduction rules specifies the so called canonical terms of the type constructor:

x : A ` b(x) : B(x)
λx.b(x) : (Πx : A)B(x)
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Notice that we should add in the premiss also judgements for the well definition of the types
involved as A type, but for a better readability we will leave these judgements implicit.
The introduction and formation rules can be seen as rules for the well definition of the canon-
ical terms. Their meaning is explained by the elimination and the computations rules.

a : A c : (Πx : A)B(x)
ap(c, a) : B(a)

And the computation rule which tells us what happens if we introduce and then eliminate a
canonical term, they are analogous to the metarules in natural deduction that express how we
can convert detours given by an introduction followed by an elimination. Note that the "com-
putation" is truly a syntactical computation thanks to the definitional equality that appears in
the conclusion.

a : A x : A ` b(x) : B(x)
ap(λx.b(x), a) = b(a) : B(a)

Observe that thanks to the correspondence with natural deduction we would like to read the
defintional equality above from the left to the right, otherwise we would introduce a detour
instead of elimnating it.
We can now say, after having inspected these rules, that the canonical terms of the dependent
product deserve the name of functions, which are obtained "abstracting" the variable x from
the dependent expression b(x). Furthermore, the eliminator ap has the meaning of the appli-
cation of a function to an element.
Function types are defined to be products of a family of types not depending over the base
type i.e. A→ B := (Πx : A)B.

Now we move to dependent sums, sums are types of pairs. As usual we start with the
formation and the introduction rules:

A type x : A ` B(x) type
(Σx : A)B(x) type

a : A b : B(a)
(a, b) : (Σx : A)B(x)

The elimination rule says that if we know how to prove a proposition C for pairs, then we can
prove it for any term in the sum type:

x : A, y : B(x) ` d(x, y) : C((x, y)) c : (Σx : A)B(x)
E(c, d(x, y)) : C(c)

Sometimes in the sequel we will write E(c, (x, y)d(x, y)) if the term d will have more free
variables. And finally the computation rule:

a : A b : B(a) x : A, y : B(x) ` d(x, y) : C((x, y))
E((a, b), d(x, y)) = d(a, b) : C(c)

In some cases - like for the dependent sum - the computation rules can be seen as recursion
principles, saying that in order to define the eliminator it suffices to know how to define it on
canonical terms. Then, morally speaking, a type contains only canonical terms. Intuitively,
we can interpret this feature recalling the constructive and computational content of type
theory; indeed, we can conceive generic terms as the result of iterated constructions based on
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canonical terms, we know in principle that every term is built on canonical ones, but we don’t
know what are the constituents and how to effectively build it.
Note that a normalisation theorem i.e. the metatheorem asserting that every term is defini-
tionally equal to a canonical one and that these canonical forms are well defined, is highly
nontrivial and has consistency as one of its consequences.
Again, consider the constant case: if the family of types is not dependent over the base, we
define the product type as A × B := (Σx : A)B.
Ordinary products are equipped with projections; this is the case, in fact we can define the left
projection as p(c) := E(c, (x, y)x). It is straightforward to obtain the derived rules:

c : (Σx : A)B(x)
p(c) : A

a : A b : B(a)
p((a, b)) = a : A

Furthermore, we can define a right projection as q(c) := E(c, (x, y)y). Similarly, we obtain the
two derived rules for the right projection:

c : (Σx : A)B(x)
q(c) : B(p(c))

a : A b : B(a)
q((a, b)) = b : B(a)

In addition to the logical interpretation given by the Curry-Howard isomorphism, sums allow
to interpret the constructive notion of such that: for example a construction of a Cauchy
sequence of rational numbers is a pair, the first component being a function s : N → Q,
and the second a proof that s is Cauchy. Thanks to this interpretation the dependent sum
(Σx : A)B(x) can also be thought as the set of all a in A such that the proposition B(a) holds,
so that the rules for the sum play the role of the set-theoretic separation axiom.
Then we present the rules for the identity types:

A type a, b : A
IdA(a, b) type

A type a : A
reflA(a) : IdA(a, a)

The introduction rule is stated with just one term, but allowing two definitionally equal term
it can be seen as a "reflection rule" giving us a propositional equality every time we have a
definitional one.
The elimination and the computation rules need a little explanation in order to become read-
able, we can explain them as follows: if we have a property C depending on a couple of terms
in A and on a proof of the identity between these two, and we know how to prove this property
for definitionally equal terms, then we know how to prove it for every couple of propositionally
equal terms. So it can be thought as an instance of the principle of indiscernibility of identicals:

x, y : A, u : IdA(x, y) ` C(x, y, u) type z : A ` d(z) : C(z, z, reflA(z))
Jz,d(x, y, u) : C(x, y, u)
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x, y : A, u : IdA(x, y) ` C(x, y, u) type z : A ` d(z) : C(z, z, reflA(z))
Jz,d(x, x, reflA(x)) = d(x) : C(x, x, reflA(x))

It is common to find the expression Leibniz’s law used sometimes for the principle of indiscerni-
bility of identicals and other times for the principle of identity of indiscernibles, which is the
converse. The latter is much more controversial and was one of the cornerstones of Leibniz’s
metaphysics, thus would be better to confine to it the use of this expression. Anyway, in order
to be clear we will avoid the expression "Leibniz’s law".
The disjoint sum of two types could be introduced as a dependent sum over the type of
Booleans N2, which we will introduce later. For a clearer understanding we present now
the rules of this type:

A type B type
A + B type

For this type constructor we have two introduction rules:

a : A
i(a) : A + B

b : B
j(b) : A + B

And the usual elimination and computation rules, explaining that proofs about a disjoint sum
can be performed by cases:

x : A ` d(x) : C(i(x)) y : B ` e(y) : C(j(y)) c : A + B
D(c, d(x), e(y)) : C(c)

a : A x : A ` d(x) : C(i(x)) y : B ` e(y) : C(j(y))
D(i(a), d(x), e(y)) = d(a) : C(c)

b : B x : A ` d(x) : C(i(x)) y : B ` e(y) : C(j(y))
D(j(b), d(x), e(y)) = e(b) : C(c)

The types of finite sets are given by the following rules. Notice that we could take as primitive
just N0, N1 and N2, defining the others as iterated disjoint unions.

Nk type

mk : Nk (m = 0, . . . , k − 1)

The elimination and computation rules tell us that in order to prove a proposition for the
terms of a finite set we can reason by cases checking separately each term.

c : Nk cm : C(mk) (m = 0, . . . , k − 1)
Rk(c, c0, . . . , ck−1) : C(c)
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cm : C(mk) (m = 0, . . . , k − 1)
Rk(mn, c0, . . . , ck−1) = cm : C(mk)

Notice that N0 has no introduction rule, therefore no terms.
Let move to the type of natural numbers again we could define them using W-types and

the type of Booleans, but a direct treatment is clearer for an introduction and allows in turn
to use natural numbers in order to understand W-types.

N type

We have two introduction rules:

0 : N

n : N
s(n) : N

The other rules encapsulate proofs by mathematical induction defining proofs by recursion.
The last two are the computational ones:

d : C(0) x : N, y : C(x) ` e(x, y) : C(s(x)) c : N
R(c, d, e(x, y)) : C(c)

d : C(0) x : N, y : C(x) ` e(x, y) : C(s(x))
R(0, d, e(x, y)) = d : C(0)

a : N d : C(0) x : N, y : C(x) ` e(x, y) : C(s(x))
R(s(a), d, e(x, y)) = e(a,R(a, d, e(x, y))) : C(s(a))

Finally, we present W-types, that are a generalisation of types of natural numbers, lists and
binary trees. For every dependent type we can form the appropriate W-type, written (Wx :
A)B(x), its terms can be thought as well-founded trees. The base type has the meaning of the
type of labels for the nodes, and given a label for a node a : A, we have that B(a) contains
names for the branches of the tree at the node a. They can be represented by a function
b : B(a)→ (Wx : A)B(x) so that b(v) for v : B(a) is the subtree obtained from the v-th branch
of the node labelled by a.
Moreover, intuitionistic ordinals are no longer totally ordered, hence they can be represented
as well-founded trees, and recursion over a W-type is the type-theoretic analogue of transfinite
recursion over ordinals.
As usual the first two rules are simple:

A type x : A ` B(x) type
(Wx : A)B(x) type

a : A b : B(a)→ (Wx : A)B(x)
sup(a, b) : (Wx : A)B(x)
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We may think of sup(a, b) as the supremum i.e. the least ordinal greater than all the ordinals
b(v) for v in B(a).
We would like to have also a bottom term 0 as starting points for recursion, but we can obtain
it by taking one of the types B(x) to be N0. Indeed, if a0 : A is such that B(a0) = N0, then
R0(y) : (Wx : A)B(x) given any y : B(a0), so that by λ-abstraction we can form a function in
B(a0)→ (Wx : A)B(x) and by the above introduction rule sup(a0, λy.R0(y)) : (Wx : A)B(x).
The elimination rule has the meaning of transfinite recursion or induction. Recall that ap(b, v)
is the eliminator term for dependent products, hence it can be conceived as b(v) i.e. the
application of the function b to the term v.
Notice that the first long premiss in the elimination rule says that C holds for sup(a, b) if it
holds for all predecessors ap(b, v), i.e. C is an inductive property:

x : A, y : B(x)→ (Wx : A)B(x), z : (Πv : B(x))C(ap(y, v)) ` d(x, y, z) : C(sup(x, y)) c : (Wx : A)B(x)
T(c, d(x, y, z)) : C(c)

The conclusion of the computation rule, as in the case of the type of natural numbers, contains
the expression for defining functions by recursion. Let (∗) be the first premiss in the previous
rule.

a : A b : B(a)→ (Wx : A)B(x) (∗)
T(sup(a, b), d(x, y, z)) = d(a, b, λv.T(ap(b, v), d(x, y, z))) : C(sup(a, b))

In order to fix the ideas, we sketch the construction of the type of natural numbers as a W-
type. The type of labels is A := N2 because natural numbers are zero or the successor of
another number. The labels are B(02) := N0 because zero is a constant so that it has arity
0, and B(12) := N1 because the successor function is a function with arity 1. Hence we can
define N := (Wx : N2)B(x), it is straightforward to check that the rules for the type of natural
numbers are the rules of this W-type.

Universes and their rules are analogous to the replacement axiom in classical ZF; more-
over, we expect to be able to form the type of all propositions and by the Curry-Howard
isomorphism we are induced to consider a "type of types". The first formulation of Martin-Löf
type theory included a literal formulation of this need, i.e. a type of all types that is a type U
such that for any type A we have A : U, included U : U. This formulation was recognized to
be inconsistent with the discovery of Girard’s paradox which is a type-theoretic version of the
standard set-theoretic paradoxes.
Therefore, other rules are used and a universe is conceived as a type of small types, with re-
flection rules that allow to perform the type constructions inside it. We discuss now the two
most important kinds of universes: à la Russell and à la Tarski. The first takes its name because
of their similarity with the ones used in the Principia Mathematica, the second for its resem-
blance with Tarski’s definition of truth in first order logic.
Russell style universes are types of small types, with the following formation rules:

U type

A : U
A type

With introduction rules, asserting that the universe is closed under the type constructors:

A : U x : A ` B(x) : U
(Πx : A)B(x) : U

39



And similarly for the other type constructors.
One remark is now needed: usually the universe has no elimination rules, the main reason
for leaving the universe without elimination rules is that we want universes to be open, in the
sense that we may want to add other type constructors in the future without changing the
universe. Moreover, the constructive content of the universe would be lost adding elimina-
tion rules for it; indeed, a universe is better conceived as the part of the ideal mathematical
world that we have explored, constructed, observed, conceived with our intuition and so on
depending on the flavour of intuitionism that we want to adopt, and therefore is necessarily
partial and open to further constructions or explorations.
Russell style universes have the defect of breaking the clear distinction between terms and
types, which was one of the motivations we used to introduce type theory. Instead we prefer
the slightly more involved, but conceptually much deeper Tarski style ones. They are types of
names for small types and they are given with a constructor function called El, suggesting that
the constructed type is the one of elements with the given name. The formation rules are:

U type

a : U
El(a) type

The introduction rules come with coherence rules asserting that the names for the type con-
structors which live inside the universe, correspond under the function El, to the actual ex-
ternal type constructors:

a : U x : El(a) ` b(x) : U
π(a, b(x)) : U

a : U x : El(a) ` b(x) : U
π(a, b(x)) = (Πx : El(a))El(b(x))

The rules for the reflection of identity types:

a : U b : El(a) c : El(a)
ia(b, c) : U

a : U b : El(a) c : El(a)
El(ia(b, c)) = IdEl(a)(b, c)

The rules for the reflection of the type of natural numbers:

n : U

El(n) = N

And similarly for the other type constructors.
Finally, now that the presentation of the type constructor is sufficient to grasp the idea of

Martin-Löf type theory, we present the remaining rules i.e. the structural ones.
Recall that the first two structural rules for contexts were already presented at the beginning
of the section. The following is the variable declaration rule:

x : A Γ context
Γ, x : A ` x : A
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Let J be a basic judgement, then we have the weakening rule, which can be thought as a form
of monotonicity for the judgement relation `, it means that, if a judgement J can be inferred
in a certain context, it can be inferred as well adding more information to the context:

A type Γ ` J
Γ, x : A ` J

We cannot omit to say that the variable declaration and the weakening rule are deeper than
their appearance, in fact they are linked to an idealised conception of information, so that
thanks to these rules informations can be freely duplicated and deleted. Logic and type theory
can be generalised without it and this yields to the world of linear logic.

Now we present the substitution rule:

a : A Γ, x : A ` J
Γ[a/x] ` J[a/x]

We finish with the rules for the definitional equality, we have reflexivity, symmetry and
transitivity for definitionally equal terms and types respectively:

A type
A = A type

A = B type
B = A type

A = B type B = C type
A = C type

a : A
a = a : A

a = b : A
b = a : A

a = b : A b = c : A
a = c : A

And the last two rules expressing the stability of judgements a : A or a = b : A under under
the change of definitionally equal types:

a : A A = B type
a : B

a = b : A A = B type
a = b : B

Perhaps surprisingly, Martin-Löf theory validates a type-theoretic version of the axiom of
choice.
In standard set-theoretic foundations the axiom of choice has been criticized as a prototypical
example of nonconstructive reasoning. Nevertheless, some kind of choice principle is al-
ready present in the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic where
a construction of a universal quantifier is interpreted as a function and one of the existential
quantifier as a couple of constructions.
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Theorem 3.1 (type-theoretic AC)
The following type is inhabited:

(∀x : A)(∃y : B(x))C(x, y)→
∑

f :(Πx:A)B(x))

(∀x : A)C(x, ap( f , x))

where the quantifiers are interpreted with the appropriate type constructor following the Curry-Howard
correspondence.

Proof. We first give an informal argument which shall be translated in formal derivations in
type theory. Suppose that the antecedent holds, hence we have a method to transform each x
in proof of (∃y)C(x, y) i.e. a pair of a term y and a proof of the proposition C(x, y). Let f be a
method to get from every x the first component of the pair, hence C(x, f (x)) holds.
Now the formal translation: assume z : (Πx : A)(Σy : B(x))C(x, y), if x is an arbitrary term of
type A, then by the elimination rule for products we get ap(z, x) : (Σy : B(x))C(x, y), we write
z(x) for the application.
Now apply the two projections to obtain p(z(x)) : B(x) and q(z(x)) : C(x, p(z(x))). Then we
discharge the assumption x : A by a λ-abstraction on x so that λx.p(z(x)) : (Πx : A)B(x).
By the computation rule for products we have ap(λx.p(z(x)), x) = p(z(x)), hence by substitu-
tion C(x, ap(λx.p(z(x)), x)) = C

(
x, p(z(x))

)
. By this equality we have that the term q(z(x))

inhabits the type C(x, ap(λx.p(z(x)), x)).
Finally, we use another λ-abstraction on x to get λx.q(z(x)) in the appropriate type and by the
introduction rule for sum we have the desired term (λx.p(z(x)), λx.q(z(x))) :

∑
f :(Πx:A)B(x)(Πx :

A)C(x, f (x)). �

Homotopy Type Theory

In this section we present and discuss the three further rules that we need to add to Martin-
Löf type theory in order to justify a honest homotopical interpretation. We also prove some
lemmas for the last chapter.

First of all we give a notion of "proof-irrelevant types", i.e. types for which all proofs are
identical.

Definition 3.1
A type A is a mere proposition iff the type (Πx, y : A)IdA(x, y) is inhabited.

We apologize for the clash of terminology between this definition and the one induced by the
Curry-Howard correspondence.
Next we study briefly some basic aspects of identity types in Martin-Löf type theory which can
already suggest that terms inside an identity type can be interpreted as paths. For this reason
sometimes we will abuse the terminology and use the term "path" in a type-theoretic context,
meaning a term in an identity type. For this reason, the elimination rule for identity types will
be sometimes called path induction.

Lemma 3.2
For every type A and every x, y : A there is a function IdA(x, y) → IdA(y, x), denoted as p 7→ p−1

such that refl−1 = refl. We call p−1 the inverse of p.

Proof. Under the Curry-Howard correspondence, prove a theorem means finding a term in an
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appropriate type, thus we search a term in the type (Πx, y : A)(IdA(x, y)→ IdA(y, x)).
The idea is to use the elimination and computation rules for identity types in order to find a
term in IdA(x, y) → IdA(y, x) and to use λ-abstraction to get the desired function. Recall the
elimination rule:

x, y : A, p : IdA(x, y) ` C(x, y, p) type z : A ` d(z) : C(z, z, reflA(z))
Jz,d(x, y, p) : C(x, y, p)

we choose the family of types to be C(x, y, p) := IdA(y, x), so that the conclusion of the rule
will give us the desired "inverse path" if we know how to prove (i.e. find a term inside)
C(x, x, reflA(x)) = IdA(x, x). We choose the term to be simply the canonical one reflA(x), so
that p−1 := Jx,refl(x)(x, y, p) : IdA(y, x).
The computation rule gives the desired definitional equality refl−1(x) = refl(x). �

Lemma 3.3
For every type A and every x, y, z : A, there is a function IdA(x, y)→ IdA(y, z)→ IdA(x, z), written
p 7→ q 7→ p · q called the concatenation or composite, such that refl(x) · refl(x) = refl(x).

Proof. The type corresponding to the statement is (Πx, y, z : A)(IdA(x, y) → IdA(y, z) →
IdA(x, z)). Again we will perform the construction of a term in IdA(x, y) → IdA(y, z) →
IdA(x, z) and finally use λ-abstraction.
The family of types needed for the elimination rule is C(x, y, p) := (Πz : A)(IdA(y, z) →
IdA(x, z)). Thus, in order to apply the induction principle we need for every x : A a term of
type C(x, x, refl(x)) = (Πz : A)(IdA(x, z)→ IdA(x, z)).
At this point we may wish to conclude using the identity function IdA(x, z)→ IdA(x, z), but we
want that our computation rule gives the desired definitional equality refl(x) · refl(x) = refl(x)
which would not be the case. If we stopped here after an induction on p over the identity
function we would have refl(y) · q = q, for q : IdA(x, z).
Hence an induction on q is needed. Now let D(x, z, q) := IdA(x, z). Note that D(x, x, refl(x)) =

IdA(x, x), then we can use refl(x) : IdA(x, x) to get by elimination a term in D(x, z, q) =

IdA(x, z) and by λ-abstraction one in IdA(x, z) → IdA(x, z). Finally, applying the induction
principle for identity type to C we get the desired term.

�

The need of a double induction in the previous proof is a consequence of proof-relevance of
type theory i.e. the fact that is not only important to know that a type is inhabited (or a
proposition is provable) but to know what is the proof. It can matter the kind of specific term
we have found in a type in order to perform other constructions.
For this reason we cannot stop after the proofs of reflexivity and transitivity but we need to
analyse these operations (−)−1 and (− · −). The following properties correspond to the usual
behaviour of paths.

Lemma 3.4
Let x, y, z,w : A and p : IdA(x, y), q : IdA(y, z) and r : IdA(z,w). The following types are inhabited:

(i) Id(p, p · refl(y)) and Id(p, refl(x) · p);

(ii) Id(p−1 · p, refl(y)) and Id(p · p−1, refl(x));

(iii) Id((p−1)−1, p);

(iv) Id(p · (q · r), (p · q) · r).
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All these identity types are of the form IdIdA(−,−).

Proof. As usual we use the induction principle for identity.

(i) Let C be the family of types C(x, y, p) := IdIdA(p, p · refl(y)). Then C(x, x, refl(x)) =

IdIdA(refl(x) · refl(x), refl(x)). We know that this equality holds definitionally, hence
propositionally and we conclude by induction. Similarly for the other identity.

(ii) Let C be the family of types C(x, y, p) := Id(p−1 · p, refl(y)). Then C(x, x, refl(x)) =

Id(refl(x)−1 · refl(x), refl(x)).

(iii) Let C be the family of types C(x, y, p) := Id((p−1)−1, p). Then C(x, x, refl(x)) = Id((refl(x)−1)−1, refl(x)).
Since refl(x)−1 = refl(x) we have C(x, x, refl(x)) = Id((refl(x), refl(x)) so that we obtain
a term in the desired type by the elimination rule.

(iv) For this last point and in the sequel we will use a less formal style, leaving the application
of the appropriate induction principle (i.e. elimination rule) to the reader. By induction
it suffices to assume p, q and r are all refl(x). In this case we have p · (q · r) = refl(x) ·
(refl(x) · refl(x)) = refl(x) = (refl(x) · refl(x)) · refl(x) = (p ·q) · r. Thus we have refl(refl(x))
inhabiting the desired type.

�

Lemma 3.5
Let f : A → B be a function, then for any x, y : A there is an operation ap f : IdA(x, y) →
IdB( f (x), f (y)). Moreover, for each x : A we have ap f (refl(x)) = refl( f (x)). We will write
f (p) := ap f (p).

Proof. By induction it suffices to assume p is refl(x). In this case we may define ap f (p) :=
refl( f (x)) : IdB( f (x), f (x)). �

The following lemma guarantees that we can transport a proof of a dependent type along a
path in the base type. In the homotopical interpretation it is analogous to the path-lifting
property of fibrations.

Lemma 3.6 (transport lemma)
Let B(x) be a family of types over A, then for every p : IdA(x, y) there is a function p∗ : B(x) →
B(y).

Proof. By induction it suffices to suppose that p = refl(x), in this case we take the transport to
be the identity function 1B(x) : B(x)→ B(x) and we conclude by identity elimination. �

Definition 3.2
A type-theoretic homotopy between the maps f , g : (Πx : A)B(x) is a term in the type
( f ∼ g) = (Πx : A)IdB(x)( f (x), g(x)).

Definition 3.3
Given f : A → B a quasi-inverse is a term in the type qinv( f ) := (Σg : B → A)(( f ◦ g ∼
1B) × (g ◦ f ∼ 1A)).
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The following theorem states that the concept of quasi-inverse, regarded as a type, can have a
nontrivial structure.

Theorem 3.7
There exist types A and B and a function f : A→ B such that qinv( f ) is not a mere proposition.

Proof. See theorem 4.1.3 in [UFP13], page 127. �

For the proof of the generalised type-theoretic interpretation it will not be important if equiv-
alences are mere propositions or not, but the search for alternative notions of equivalence
seems essential in order to have a well-behaved notion of univalence, explicitly we look for a
type isequiv( f ) such that the type isequiv( f ) ↔ qinv( f ) is inhabited, and that isequiv( f ) is a
mere proposition.
There are several ways to define equivalences corresponding to these desiderata. Following
the article [KLV12] we choose:

Definition 3.4
A function f : A→ B is an equivalence or a bi-invertible map iff the type

isequiv( f ) := (Σg : B→ A)(g ◦ f ∼ 1A) × (Σh : B→ A)( f ◦ h ∼ 1B)

is inhabited.
The equivalence type is Equiv(A, B) = (Σ f : A→ B) isequiv( f ).

We shall see in the sequel that in homotopy type theory this definition satisfies the require-
ments to be a mere proposition with maps from and to the type qinv( f ).

Now we study the structure of the identity types of a sum type. Observe that for every
term i : Id(Σx:A)B(x)(x, y) we get p(i) : IdA(p(x), p(y)) where p and q are the two canonical
projections. Moreover, we get by path induction a term in the type IdB(p(i)∗q(x), q(y)).
In this way we can give a homotopical interpretation: paths in a sum type as pairs where one
is a path in the base type and the second a path in the fibre of p(y). The following theorem
asserts that this data determine completely paths in a sum type.

Theorem 3.8
Let B(x) be a family of types over A and let w,w′ : (Σx : A)B(x). Then there is an equivalence
between Id(Σx:A)B(x)(w,w′) and

∑
i:Id(p(w),p(w′))

IdB(p(w′))(i∗(q(w)), q(w′)).

Proof. We define for any w,w′ : (Σx : A)B(x) a function

f : Id(Σx:A)B(x)(w,w′)→
∑

i:Id(p(w),p(w′))

IdB(p(w′))(i∗(q(w)), q(w′))

by the elimination rule for identity types, with f (w,w,w) := (refl(p(w)), refl(q(w))).
For the sake of readability we will write simply Id(x, y) for an identity type when the ambient
type will be clear from the context.
We want to show that f is an equivalence. In the opposite direction we define:

g :
∏

w,w′:Σx:AB(x)

 ∑
i:IdA(p(w),p(w′))

Id(i∗(q(w)), q(w′))→ Id(w,w′)


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by a first induction on w and w′ we split them into pairs (w1,w2) and (w′1,w
′
2), so it suffices to

show that the type is inhabited:∑
i:IdA(w1,w′1)

IdB(w′1)(i∗(w2),w′2))→ Id((w1,w2), (w′1,w
′
2))

Next, by induction on the sum type we take a pair (i1, i2) :
∑

i:IdA(w1,w′1)

IdB(w′1)(i∗(w2),w′2),

then by induction on i1 : IdA(w1,w′1) we have i2 : Id(refl∗(w2),w′2), and it suffices to show
Id((w1,w2), (w1,w′2)), so an induction on i2 reduces to Id((w1,w2), (w1,w2)).
Next we show that f ◦ g is homotopic to the identity map i.e. that its application is identical
to the identity map for every w, w′ and for every r :

∑
i:Id(p(w),p(w′))

Id(i∗(q(w)), q(w′)). First we

break these three terms as pairs, and then use two path inductions to reduce both components
of r to refl. Then it suffices to show that f g((refl, refl)) = refl, which is true by definition.
Similarly in the opposite direction.
We have proved that f has a quasi-inverse, which is a sufficient condition for being an equiv-
alence. �

Corollary 3.9
For z : (Σx : A)B(x) we have Id(z, ( p(z), q(z)) ), which is a kind of propositional canonicity for
terms in a sum type.

Proof. We have refl(p(z)) : Id( p(z), p( (p(z), q(z)) ) ), so that by the previous theorem it
suffices to exhibit a term in Id( refl(p(z))∗(q(z)), p( (p(z), q(z)) ) ). But both sides are judge-
mentally equal to q(z). �

Notice that from the beginning of this section we have worked entirely in Martin-Löf type
theory.
It is natural to ask for a similar result for product types, but the rules of Martin-Löf theory
leave the question open. This is a motivation for the introduction of further rules that lead to
homotopy type theory.

In the previous definitions (as in the whole previous section) we have interpreted terms in
a product type as functions, but now is the time for a more careful analysis, in fact without fur-
ther rules we can only say that terms in a product type can be interpreted as algorithms because
we are unable to prove that two terms are equal in a product type if they are equal pointwise.
Indeed, two algorithms can be different even if they produce the same outputs for the same
inputs, for example they can have extremely different computation time.
We want to develop some sort of homotopy type theory, therefore we are interested in ac-
tual mathematical functions and not in algorithms. For this reason we introduce and discuss
two extensional principles that seem needed for a homotopical interpretation of type theory.
As a firs extensional principle we may ask that every term in a product type is equal to a λ-
abstraction, so that it is determined by its values. It is called η-rule. It can come into two
guises, propositional or definitional, depending on the kind of equality imposed on terms. We
consider the definitional version, which is stronger:

f : (Πx : A)B(x)
λx.ap( f , x) = f : (Πx : A)B(x)
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Notice that under the Curry-Howard correspondence this rule says that we can perform con-
versions of proof and avoid every detour produced by an elimination followed by an introduc-
tion. To be honest we have to underline that the interpretation of this rule as an extensional
principle require to read the definitional equality from the right to the left, i.e. as an intro-
duction of a proof detour. This ambiguity is present in the literature where the rule is called
η-reduction or η-expansion, respectively if it read from the left to the right or in the opposite
direction.
In addition, we recall the interpretation of terms in a type as iterated constructions based
on canonical terms which we do not know a priori how to calculate. The η-rule intuitively
guarantees that we can perform an inspection and write every term in a product type as a λ-
abstraction.
However, this is a quite weak extensional principle and still does not give a statement for
product types similar to the one for sum types 3.8. For this reason we add a suitable axiom.
First of all, observe that there is a function happly : Id(Πx:A)B(x)( f , g)→ (Πx : A)IdB(x)( f (x), g(x))
easily defined by the elimination rule for identity types.
Now we state the function extensionality axiom, in the sequel we shall reformulate it as a
rule.

Axiom 1 (function extensionality)
The map happly is an equivalence, i.e. there is an inhabitant

funext : Equiv(Id(Πx:A)B(x)( f , g), (Πx : A)IdB(x)( f (x), g(x)))

Observe that function extensionality and the η-rule refer to different kinds of extensionality:
the former is interpreted internally inside type theory using the Curry-Howard correspon-
dence, whereas the latter refers to the behaviour of application at the level of rules and judge-
ments.
Notice that if we interpret types as spaces and terms inside an identity type as paths, we want
that a homotopy between functions is the same as a path in a function space, which is exactly
the content of function extensionality.

The last but not the least is the univalence axiom, we give three versions of the axiom:
the first one is modelled on Russell style universes and is maybe the easiest way to introduce
univalence. Given two small types A, B : U we can form the identity type as well as the
equivalence type, IdU(A, B) and Equiv(A, B). Moreover, we have a map from the former to
the latter:

Lemma 3.10
Given types in a Russell style universe A, B : U, there is a term in the type IdU(A, B)→ Equiv(A, B).

Proof. Note that the identity function of the universe 1U : U → U can be regarded as a family
of types. Thus for every path p : IdU(A, B) we have that the transport function p∗ : A → B.
We prove that it is an equivalence.
By induction suppose p = refl(A) in which case p∗ = 1A which is an equivalence. Indeed, a
quasi-inverse is given by 1A itself together with the trivial homotopies refl(x) and refl(y). Every
map with a quasi inverse is in particular an equivalence in our definition. �

In mathematical practice, an isomorphism between two structured objects allow to transfer
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the "structural properties" from one object to another. In the categorical context, equivalences
have the same behaviour.
This can motivate the following:

Axiom 2 (univalence axiom for Russell universes)
The function in IdU(A, B)→ Equiv(A, B), defined in the previous lemma is an equivalence.

In particular the axiom says that the canonical map has left and right inverses, hence from a
proof of equivalence we can get a (noncanonical) proof of identity. The reader may suspect
that we have imposed some sort of "skeletality" so that equivalent objects turn out to be
equal; but this is not the case, in fact we have changed material equality into a type-theoretic
intensional equality expanding its meaning to fit better the notion of equivalence.
We are interested in Tarski style universes, therefore we formulate univalence for them.
As we have done in the previous lemma, given a family of types x : A ` B(x) type we can
derive by the elimination rule for identity types the judgement x, y : A ` wx,y : IdA(x, y) →
Equiv(B(x), B(y)).

Definition 3.5
We say that a family of types is univalent iff for each x, y : A the map wx,y is itself an equiva-
lence, i.e. iff we have a term inhabiting the type (Πx, y : A)isequiv(wx,y).

Axiom 3 (univalence axiom for Tarski universes)
The family of types El over the universe U is univalent.

Univalence is a statement about a universe, hence we say that a univalent universe is a uni-
verse in which the univalence axiom holds.

Equivalence types are mere propositions, as we have anticipated before. Note that this
theorem uses function extensionality.

Theorem 3.11
For any f : A→ B the equivalence type Equiv( f ) is a mere proposition.

Proof. See theorem 4.3.2 in [UFP13]. �

Now we reformulate the univalence and function extensionality axioms as rules. We re-
mark that it is still an open problem to give a consistency proof for homotopy type theory by
means of a normalization theorem, on the other hand it is well known that axioms destroy
the normalization procedure (see [Gir87] page 125 for a simple counterexample), a first step
in this direction is to express axioms as rules.
We can interpret this phenomenon observing that a normalization proof for a system of rules is
a first step in the study of the conditions of possibility of the new rules, in fact it gives a better
explanation of the meaning analysing their mutual syntactical interactions, whereas axioms
are apodictic statements, which need to be justified. Usually they are justified semantically by
means of objects and considerations external to the theory.
We give just the Russell style version of the rules the other being similar, and refer to [UFP13],
corollary 5.8.5 and 5.8.6 for the proofs. We have an elimination and a computation rule,
their structure correspond to the one of identity types, the identity map takes the place of the
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canonical reflexivity term refl. These rules say that equivalences between small types behaves
like paths and are called equivalence induction. Extending the interpretation of identity types
we may say that these rules express a principle of indiscernibility of equivalents:

A, B : U, e : Equiv(A, B) ` D(A, B, e) type A, B : U, e : Equiv(A, B) ` d(A) : D(A, A, 1A)
A, B : U, e : Equiv(A, B) ` f (A, B, e) : D(A, B, e)

A, B : U, e : Equiv(A, B) ` D(A, B, e) type A, B : U, e : Equiv(A, B) ` d(A) : D(A, A, 1A)
A, B : U, e : Equiv(A, B) ` f (A, A, 1A) = d(A) : D(A, A, 1A)

Similarly we reformulate as rules the function extensionality axiom, which is named homotopy
induction in this form. Again the structure is the same as the one for the elimination and
computation of the identity types, thus they say that homotopies behaves like paths:

s, t : (Πx : A)B(x), h : (s ∼ t) ` D(s, t, h) type f : (Πx : A)B(x) ` d( f ) : D( f , f , λx.refl( f (x)))
s, t : (Πx : A)B(x), h : (s ∼ t) ` k(s, t, h) : D(s, t, h)

s, t : (Πx : A)B(x), h : (s ∼ t) ` D(s, t, h) type f : (Πx : A)B(x) ` d( f ) : D( f , f , λx.refl( f (x)))
s, t : (Πx : A)B(x), h : (s ∼ t) ` k( f , f , λx.refl( f (x))) = d( f ) : D( f , f , λx.refl( f (x)))

We end with some remarks: we may ask if some of the two axioms and the η-rule can be
derived from he others, in fact it can be shown that univalence and the η-rule together imply
function extensionality. See section 4.9 in [UFP13].
Anyway we have decided to add and discuss separately all these additional principles in order
to give a better exposition and also because someone may wish to change the η-rule in future,
maintaining function extensionality.

Now in the end of this section we can look back to the extensional principles introduced
and observe that the search of an equivalence that is a mere proposition, and the two axioms
of univalence and function extensionality can be seen as the need for a balance between
intensional and extensional concepts in type theory in order to make it adherent to homotopy
theory.

We present briefly the idea behind higher inductive types. Type constructors in Martin-Löf
theory can be conceived as "inductive types" because of the inductive structure of elimination
rules. Under a homotopical interpretation we may add types defined inductively using not
only terms, but also paths and higher paths. For example we can introduce rules to define
and manage synthetically the spheres, and calculate synthetically some homotopy groups (see
chapter 6 of [UFP13]).

Now we can finally give the definition of weak Tarski universe. The idea is to weaken the
definitional equalities present in the computation rules for the universe substituting them with
propositional equalities. However, we do not have identity types for arbitrary types outside the
universe if we do not have a second bigger universe containing that types.
Then we ask for an even weaker kind of universes: we replace the definitional equalities with
equivalences asking for a canonical term in the appropriate equivalence type.
Let start as usual with the formation rule:

U type

a : U
El(a) type
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Then we have the introduction rules:

a : A x : El(a) ` b(x)
π(a, b(x)) : U

The computation rule for the product types expresses the presence of a canonical term in the
equivalence type between El(π(a, b(x))) and (Πx : El(a))El(b(x)), as follows:

a : A x : El(a) ` B(x)
ceqπ : Equiv( El(π(a, b(x))), (Πx : El(a))El(b(x)) )

The rules for the reflection of identity types are:

a : U b : El(a) c : El(a)
ia(b, c) : U

a : U b : El(a) c : El(a)
ceqid : Equiv(El(ia(b, c)), IdEl(a)(b, c))

The rules for the reflection of the type of natural numbers:

n : U

ceqn : Equiv(El(n),N)

And similarly for the other type constructors.
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Chapter 4

Homotopy Type Theory in Simplicial
Sets

Simplicial sets form a locally cartesian closed category, and a model category. We shall
see that these structures allow to interpret respectively dependent types and inten-

sional identity types.
We emphasize that in order to give a clear and simple exposition at first we will ignore impor-
tant coherence issues that we shall discuss briefly in the sequel. In fact the naïve interpretation
of type theory give rise to problems with substitution which is interpreted as pullback, so that
it is in general stricter than its semantical counterpart, for example substitution is strictly as-
sociative, whereas pullbacks associate only up to isomorphism, hence the need of coherence
theorems asserting that pullbacks can be chosen in a way to fit the type-theoretic substitution.
Other coherence issues arise from the computation rules for the universe.
Following [KLV12] we give a sketch of Voevodsky’s answer to the coherence issues for simpli-
cial sets, the source for W-types in simplicial sets is [MvdB13] and in the end we give a proof
of univalence using [Moe11].
In this chapter we give sketches and outlines without going much into the details in order to
maintain the size of this thesis under control because proofs are quite long and technical.
In this chapter we shall use heavily the axiom of choice, both for univalence and the coher-
ence conditions, in the end we will use two inaccessible cardinals.

We give now a sketch of the interpretation of dependent sums and products in a locally
cartesian closed category, the idea is that the slices allow to express type dependencies and
that the right and left adjoint to the pullback functor give respectively dependent products
and sums. The interpretation of dependent type theory in locally cartesian closed categories
(lccc for short) was studied firstly in Seely’s seminal paper [See84] with inaccuracies in the
treatment of substitution, corrections in this sense can be found in [Hof95].
For a review on locally cartesian closed categories see appendix A.

Given a locally cartesian closed category C the basic idea is to interpret a context Γ as
an object ~Γ�, in particular every type is interpreted as an object of the category. The empty
context is interpreted as the terminal object of C . Types in context like Γ ` A type are
interpreted as maps with the interpretation of Γ as codomain pA : ~Γ, A�→ ~Γ�, so that they
are objects in the slice category C /~Γ�.
A substitution which yields the context Γ from the context ∆, is interpreted as a map ~∆� →
~Γ�, and when this substitution is applied to a dependent type of the form ∆ ` A type the
resulting judgement is interpreted as the pullback of ~∆, A� → ~∆� along the substitution
map ~Γ�→ ~∆�.
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Each term in context like Γ ` x : A is interpreted as a section of pA. The unit type (in
the empty context) is interpreted as a terminal object. For a dependent type Γ, x : A `
B(x) type we interpret the dependent sum Γ ` (Σx : A)B(x) as the composite ~Γ, A, B� →
~Γ, A� → ~Γ� i.e. as the application of the left-adjoint to the pullback ΣpA(~Γ, A, B� →
~Γ, A�) : C /~Γ, A�→ C /~Γ�.
Similarly, for the dependent products we use the right adjoint ΠpA(~Γ, A, B� → ~Γ, A�) :
C /~Γ, A�→ C /~Γ�.

Let us now consider the problem with this naïve interpretation: for example the standard
choice of pullbacks in the category of sets does not work, indeed if f : A → B, g : B → C
and h : D → C are three maps, then the pullback of h along g ◦ f is the set {(a, d) | a ∈
A, d ∈ D, g( f (a)) = h(d)} whereas the iterated pullback of h along g and then along f is
{(a, (b, d)) | a ∈ A, b ∈ B, d ∈ D, f (a) = b and g(b) = h(d)} which is isomorphic but not equal
to the former.
The are several ways to solve this issue, but they share the common idea to perform construc-
tions in the lccc in order to get more structure and then use it to build a semantic substitution
operation which commutes with composition and all semantic type and term formers. Then
the interpretation is changed in order to make coherent choices of the interpretations based
on the semantical substitution.
Following [KLV12] we will use contextual categories (the standard sources are [Car86] and
[Str91]). Other possibilities are categories with attributes again in [Car86], categories with families
[Hof97] or comprehension categories [Jac99].

Next we consider intensional identity types, which need a subtler treatment, in fact they
bring homotopical content into type theory. For the interpretation of identity type we will use
the model structure on simplicial sets.
The identity type Γ, x : A, y : A ` IdA(x, y) type is interpreted as a very good path object,
i.e. one obtained as an acyclic cofibration followed by a fibration P~Γ�~A� → ~A� ×~Γ� ~A�,
with the reflexivity term interpreted by the acyclic cofibration ~A� → P~Γ�~A�. Moreover,
the previously considered interpretation of dependent types need to be restricted to fibrations
and fibrant objects. Hence some conditions on the lccc category in consideration should
be imposed in order to guarantee that fibrations are stable under dependent products, the
case of dependent sum is trivial because the composition of fibrations is again a fibration.
Additionally, choices of all data including liftings need to be given such that they commute
with pullbacks.
In the following lemmas we take care of some details for the category of simplicial sets:

Lemma 4.1
Suppose q : Z → Y and p : Y → X are fibrations, then the dependent product Πpq is a fibration
over X.

Proof. Recall that SSet is a right proper model category whose cofibrations are exactly the
monomorphisms, hence the pullback functor p∗ : SSet/X → SSet/Y preserves trivial cofibra-
tions. Therefore by adjointness Πp preserves fibrations. �

Some notions of type-theoretic model category (i.e. categories with minimal requirements for
the structure needed to interpret Martin-Löf type theory with identity types) have been pro-
posed, they rely on some generalisation of these two key conditions: right properness, and the
property that cofibrations are the monomorphisms (see for example [Shu12]).

Now we focus on identity types showing how the monoidal model structure on simplicial
sets can help with one of the many coherence issues involved.
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Definition 4.1
Given a fibration p : E → B in SSet we define the fibred path object PB(E) as the pullback:

PB(E) //

��

E∆[1]

p∆[1]

��

B c // B∆[1]

where c is the map "constant path". Consider now the constant path map for E that is c :
E → E∆[1], which factors through PB(E) so that we get r : E → PB(E). Moreover, there are
source and target maps s, t : PB(E)→ E.

Lemma 4.2

For any fibration p : E → B in SSet the maps E
r
−→ PB(E)

(s,t)
−→ E ×B E give a factorisation of

the diagonal E → E ×B E over B as a trivial cofibration followed by a fibration. Moreover, this
construction is stable over B, i.e. the pullback along any B′ → B is again such a factorisation.

Proof. It is clear that these maps give a factorisation of the diagonal. To see that they are a
trivial cofibration and a fibration respectively, split the construction of PB(E) in two interme-
diate stages:

PB(E) //

(s,t)
��

E∆[1]

(s,p∆[1],t)
��

E ×B E //

π1

��

E ×B B∆[1] ×B E

(π1,π2)
��

E //

��

E ×B B∆[1]

��

B c // B∆[1]

These three square are all pullbacks. Notice that the map (s, p∆[1], t) is a fibration because of
lemma 2.18 applied to the cofibration 1 + 1 → ∆[1] and to the fibration p. Hence (s, t) is a
fibration because it is pullback of a fibration.
Similarly, the source map s is a trivial fibration since it is a pullback of E∆[1] → E ×B B∆[1],
which is one again by lemma 2.18. Observe that s is a retraction of r so that r is a weak equiv-
alence by the 2-out-of-3 property and a monomorphism, therefore it is a trivial cofibration as
desired.
Finally, the stability under pullback follows from the stability of the construction itself: for any
f : B→ B′ there is a canonical isomorphism PB′( f ∗E) � f ∗PB(E), commuting with the maps
r, s and t. �

Next we study the categorical analogues to W-types. This notion can be defined in every
locally cartesian closed category.

Definition 4.2
Let C be a locally cartesian closed category, and f : A → B be any map, the polynomial
functor P f associated to f is the composite:

C
−×B
−→C /B

Π f
−→C /A

ΣA
−→C
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If exists, the initial algebra for a polynomial endofunctor is called the W-type associated to f
and denoted W( f ).

The category of sets has all W-types. Indeed, for a map f : B → A in set theoretic notation
we have P f (X) =

∑
a∈A XBa where Ba = f −1(a). Then W( f ) is the set of labelled well-founded

trees with nodes labelled by the elements of A and the edges labelled by the elements of B.
The labelling is such that for a given node a ∈ A the edges coming into it are labelled by
elements in the fibre b ∈ Ba.
The algebra structure is given by the map sup : P f (W( f )) → W( f ) defined in the following
way: given a ∈ A and t : Ba → W( f ) we can form a new tree with as root the node of the
starting tree labelled by a, whose edges are labelled by the elements of Ba and "subtrees" linked
to the root the ones determined by t(b) for b ∈ Ba.
For these trees we can give the following:

Definition 4.3
Define by recursion the notion of rank rk : W( f )→ Ord as rk(sup(a, t)) := sup{rk(t(b))+1 | b ∈
Ba}. In addition we define W( f )<α := {w ∈ W( f ) | rk(w) < α}.

Observe that W( f )<0 = ∅ and W( f )<α+1 = P( f )(W( f )<α). It is easy to check that for a regular
cardinal κ strictly bigger than all the Ba, then W( f ) = W( f )<κ.

Categories of presheaves have all W-types as well. Given a category C and a morphism
of presheaves f : B → A we write Â := {(C, a) |C ∈ Ob(C ), a ∈ A(C)}. For (C, a) ∈ Â define
B̂(C,a) := {(α, b) |α : D → C, b ∈ B(D) and fD(b) = a · α}; finally, let f̂ be the projection
f̂ :

∑
(C,a)∈Â B̂(C,a) → Â.

As a first step we take the corresponding W-type in sets: W( f̂ ). Now we give it a presheaf
structure, to do so we declare that an element sup((C, a), t) lives in the fibre over C ∈ Ob(C )
and for any α : D → C its restriction is given by the formula: sup((C, a), t) · α = sup((D, a ·
α), (t · α)) where (t · α)(β, b) := t(αβ, b).
As before we can assign a rank by transfinite recursion:

rk(sup((C, a), t)) := sup{rk(t(β, b)) + 1 | (β, b) ∈ B̂(C,a)}

Definition 4.4

(a) A tree sup((C, a), t) is composable iff for any (α, b) ∈ B̂(C,a) the tree t(α, b) lives in the
fibre over dom(α).

(b) A tree sup((C, a), t) is called natural iff the map t is a natural transformation i.e. for any
(α, b) ∈ B̂(C,a) and β : E → D we have that t(αβ, b · β) = t(α, b) · β.

(c) The collection of subtrees of sup((C, a), t) is defined recursively as the collection con-
sisting of sup((C, a), t) itself and all subtrees of the t(α, b).

(d) A tree sup((C, a), t) is hereditarily natural iff all its subtrees are natural.

(e) The W-type in presheaves associated to f , written W( f ), is the subpresheaf of W( f̂ )
consisting of hereditarily natural trees.

This definition give rise to the desired initial algebra for the polynomial endofunctor.
In addition we put W( f )<α := {w ∈ W( f ) | rk(w) < α}.
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Theorem 4.3
If p : Y → X is a Kan fibration, then the canonical map W( f )<α → X is a Kan fibration.

Proof. See theorem 3.4 in [MvdB13] �

Now is the time for a concise exposition of the strategy used by Voevodsky to interpret
universes solve the coherence issues for them and for substitution.
As we have said before the idea is to put more structure on the locally cartesian closed category.
The construction splits in some intermediate steps:

SSet→ lccc with a category-theoretic universe→ contextual category→ type theory

The first step is to construct a strict universal fibration in simplicial set. This category-theoretic
universe is used to build a literal translation of type theory into category theory (a contextual
category), which finally yields the desired strict interpretation of type theory.
In the exposition we will walk these arrows in the opposite direction, starting from the defini-
tion of contextual category.
This definition is a little bit involved, although the basic idea is simple i.e. that objects behave
like contexts, so that they have a grade corresponding to the length of the context, and for
any object there is a map which forgets the last judgement of the context projecting it into a
lesser grade. In addition, there are chosen pullbacks added to the structure which satisfy by
definition the strict functoriality condition.

Definition 4.5
A contextual category is a category with the following structure:

• a grading of objects Ob(C ) =
∐

n∈NObn(C );

• an object 1 ∈ Ob0(C );

• forgetting maps f t : Obn+1(C )→ Obn(C );

• for every object X ∈ Obn+1(C ) the canonical projection pX : X → f t(X);

• for each X ∈ Obn+1(C ) and f : Y → f t(X), there are a distinguished object f ∗(X) and
morphism q( f , X) : f ∗(X)→ X.

Such that the following conditions hold:

• 1 is the unique object of Ob0(C );

• 1 is a terminal object in C ;

• for each n > 0, each X ∈ Obn(C ) and each f : Y → f t(X), we have f t( f ∗X) = Y and
the following square is a pullback called the canonical pullback of X along f :

f ∗X
q( f ,X)

//

p f ∗X

��

X
pX

��
Y

f
// f t(X)
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• these canonical pullbacks are strictly functorial, i.e. for X ∈ Obn+1(C ), we have that
1∗f t(X)X = X and q(1 f t(X), X) = 1X ; moreover, for X ∈ Obn+1(C ), f : Y → f t(X) and
g : Z → Y , we have ( f g)∗X = f ∗(g∗(X)) and q( f g, X) = q( f , X)q(g, f ∗X).

Remark 4.1
The intuitive explanation given before the definition is justified by the observation that every
system of dependent types give rise to a contextual category C , described as follows:

• Obn(C ) is formed by contexts of length n up to definitional equality and renaming of
free variables;

• maps of C are substitutions or context morphisms up to definitional equality and renam-
ing of free variables. That is, a map f : (x1 : A1, . . . , xn : An) → (y1 : B1, . . . , ym :
B(y1, . . . , ym−1)) is represented by a sequence of terms ( f1, . . . , fm) such that x1 : A1, . . . , xn :
An ` f1 : B1 and so on until x1 : A1, . . . , xn : An ` fm : Bm( f1, . . . , fm−1); two such maps
( fi)i, (gi)i are equal iff for each i we have x1 : A1, . . . , xn : An ` fi = gi : B( f1, . . . , fi−1);

• composition of maps is given by substitution of terms and the identity Γ → Γ by the
variables of Γ considered as terms;

• 1 is the empty context;

• f t((x1 : A1, . . . , xn+1 : An+1)) := (x1 : A1, . . . , xn : An), and the map pΓ : Γ → f t(Γ) is
simply the map forgetting the last judgement;

• for contexts Γ = (x1 : A1, . . . , xn+1 : An+1(x1, . . . , xn)) and Γ′ = (y1 : B1, . . . , ym :
Bm(y1, . . . , ym−1)) and a map f = ( f1(y), . . . , fn(y)) : Γ′ → f t(Γ) the canonical pullback
f ∗Γ is the context (y1 : B1, . . . , ym : Bm(y1, . . . , ym−1), ym+1 : An+1( f1(y), . . . , fm(y)));
finally, q(Γ, f ) : f ∗Γ→ Γ is the map ( f1, . . . , fn, yn+1).

Definition 4.6
Given a category C , a category-theoretic universe is an object U together with a morphism
p : Ũ → U such that each map f : X → U has a choice of pullback:

(X; f )
Q( f )

//

P(X; f )
��

Ũ
p

��
X

f
//U

For a sequence of maps f1 : X → U, f2 : (X; f1) → U and so on, we will write (X; f1, . . . , fn)
for the iteration ((. . . (X; f1); . . . ); fn).

In the following definition we explain how to build a contextual category from a category-
theoretic universe.

Definition 4.7
Given a category C with a universe U and a terminal object 1, we define a contextual category
CU as follows:

• Obn(CU) := {( f1, . . . , fn) | fi : (1; f1, . . . , fi−1)→ U};

• HomCU (( f1, . . . , fn), (g1, . . . , gm)) := HomC ((1; f1, . . . , fn), (1; g1, . . . , gm));
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• 1CU := () the empty sequence;

• f t(( f1, . . . , fn+1)) := ( f1, . . . , fn);

• the projection p( f1,..., fn+1) is the map P(X; fn+1) provided by the universe structure on U;

• given ( f1, . . . , fn+1) and a map α : (g1, . . . , gm) → ( f1, . . . , fn+1) in CU , the canoni-
cal pullback α∗( f1, . . . , fn+1) is given by (g1, . . . , gm, fn+1α) with projection induced by
Q( fn+1α):

(1; g1, . . . , gm, fn+1α) //

Q( fn+1α)

++

��

(1; f1, . . . , fn+1) //

��

Ũ

p
��

(1; g1, . . . , gm) α //(1; f1, . . . , fn)
fn+1

//U

We have given definitions only for the structure needed to manage substitution. The next step
should be to give suitable definition of Π, Σ, Id, W and type-theoretic universe structure on a
contextual category and on a category-theoretic universe, so that from the latter we can easily
reconstruct the former. Moreover, we have not checked that this definition is well-posed. For
these details we refer the interested reader to [KLV12].

The last step is to build a category-theoretic universe with all these structures inside the
category of simplicial sets. The construction uses a well-ordering trick in order to get a uni-
versal fibration that classifies fibrations uniquely (not only uniquely up to homotopy).
We need also to impose a smallness condition if we want that our universal map is a set instead
of a proper class. Hence we briefly recall few notions from set theory.

Definition 4.8

(a) Given an ordinal α its cofinality is the least ordinal that can be injected cofinally in α.
In symbols: cof(α) := min{β | ∃ f : β→ α cofinal in α};

(b) A cardinal α is regular iff it is equal to its cofinality.

(c) A cardinal α is strongly inaccessible (or simply inaccessible) iff it is regular, uncountable
and 2λ < α for every λ < α.

If ZFC is consistent it cannot prove the existence of inaccessible cardinals.
Now we use the notion of regular cardinal to give a notion of smallness for a fibration of
simplicial sets.

Definition 4.9
Fix a regular cardinal α, we say that a map X → Y is α-small iff it has fibres with cardinality
less than α.

Definition 4.10

(a) A well-ordered morphism of simplicial sets is a morphism f : Y → X together with a
function assigning to each simplex x ∈ Xn a well-ordering on the fibre f −1(x) ⊆ Yn.
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(b) Given two well-ordered morphisms f : Y → X and g : Z → X into a common base a
morphism of well-ordered morphisms from f to g is a morphism Y → Z respecting the
fibres and the well-ordering on each fibre.

Definition 4.11
Given a regular cardinal α and a simplicial set X we define Wα(X) as the set of isomorphism
classes of α-small well-ordered morphisms into X. We can define Wα on morphisms as the
pullback action on isomorphism classes making it into a functor Wα : SSetop

→ SSet.
Furthermore, we define a simplicial set by composing with the Yoneda embedding of ∆ into
SSet, so that Wα := Wα · yop : ∆op → SSet.

Lemma 4.4
The functor Wα is representable, represented by Wα.

Proof. The functors Wα and Hom(−,Wα) agree up to isomorphism on the standard simplices
by the Yoneda lemma. It is easy to check that Wα sends colimits into limits, hence they always
agree because every simplicial set is canonically a colimit of standard simplices. �

Applying the natural isomorphism above to the identity map 1Wα we get a map W̃α → Wα.
By construction we have that every α-small morphism of simplicial set can be obtained as a
pullback of this projection. Indeed, by the axiom of choice we can fix a well-ordering on the
fibres and use the universal property of Wα.

Definition 4.12
Let Uα ⊆ Wα be the subobject consisting of isomorphism classes of α-small fibrations and
pα : Ũα → Uα as the pullback:

Ũα
//

pα
��

W̃α

��
Uα

//Wα

Theorem 4.5
The map pα : Ũα → Uα is a fibration. Moreover, the simplicial set Uα is a Kan complex.

Proof. See theorems 2.1.10 and 2.2.1 in [KLV12]. �

Theorem 4.6
Let α be a strongly inaccessible cardinal, then Uα carries Π, Σ, Id, W, 0, 1 and 2 structure.
Moreover, if β < α is another inaccessible then Uβ gives an internal universe structure closed under
all the other type constructors.

Proof. See theorem 2.3.4 in [KLV12]. �

With the previous theorem we have finished our detour on coherence issues for Martin-Löf
type theory. Let now turn to homotopy type theory and univalence.
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Theorem 4.7
The η-rule and functional extensionality hold in the simplicial model.

Proof. The proof for the η-rule is simply the observation that the two maps involved are
forced to coincide thanks to the uniqueness in the universal property for exponentials in a
locally cartesian closed category.
For function extensionality see theorem 2.3.6 in [KLV12]. �

Definition 4.13
Given a fibration E → B we can form the simplicial set Eq(E) whose n-simplices are (x, y, p)
where x, y : ∆[n]→ B and p : x∗E → y∗E is a weak equivalence.
Similarly we define Iso(E) whose n-simplices are (x, y, i) where x, y : ∆[n] → B and i : x∗E →
y∗E is an isomorphism.

Notice how the internal Hom-complex allows to express properties of maps and simplicial sets
(like being an equivalence) as other simplicial sets (like Eq(E)) i.e. objects inside the theory.
It is reasonable to expect some for of correspondence between the analogous constructions
internal to type theory allowed by the Curry-Howard isomorphism.

Definition 4.14
A fibration p : E → B is univalent iff the obvious map B∆[1] → Eq(E) is a weak equivalence.
The simplicial univalence axiom states that the universal fibration Ũα → Uα is univalent.

Observe that by the 2-out-of-3 property p : E → B is univalent iff the canonical diagonal map
δ : B→ Eq(E) is a weak equivalence, which in turn is the same to say that B→ Eq(E)→ B×B
is a (trivial cofibration, fibration) factorisation of the diagonal, because the first is a cofibra-
tion and the second a fibration in any case. Hence p is univalent iff Eq(E) is a very good path
object for B.
Notice that this definition of simplicial univalence matches the basic naïve idea of the inter-
pretation of type theory without any worry about coherence issues. For this reason we need
the following:

Lemma 4.8
Simplicial univalence and type-theoretic univalence in simplicial sets are equivalent.

Proof. The proof requires several technical lemmas. See theorem 3.3.7 in [KLV12]. �

In view of the proof of simplicial univalence, we present here some definitions about simplicial
principal bundles.

Definition 4.15

(a) Given a simplicial group G and a Kan complex E we say that an action ρ : G × E → E
is principal iff for every fixed degree it is principal, i.e. the only elements g ∈ Gn that
have any fixed point e ∈ En are the neutral elements.

(b) Given G a simplicial group, a morphism P → X of Kan complexes equipped with a
G-action on P, is called a G-simplicial principal bundle iff the action is principal and
the base is isomorphic to the quotient E/G.
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Remark 4.2
The classical construction of the universal principal G-bundle EG → BG generalises to the
simplicial case. Recall that EG is weakly contractible (i.e. it has all homotopy groups trivial)
and that G acts freely on EG, hence BG � EG/G.
In addition, the correspondence between fibre bundles and principal G-bundles generalises
as well. From any principal G-bundle P → X we form the quotient P ×G F := P × F/ ∼
where (p, gy) ∼ (pg, y) when g runs over G. Conversely, given any fibre bundle with fibre F
we put G = Aut(F) and consider the associated frame bundle Fr(F,Y) → X whose fibres are
Fr(F,Y)x = Iso(F,Yx).
For the details we refer the reader to [May67].

Theorem 4.9
Simplicial univalence holds, i.e. for the universal fibration Ũα → Uα, the canonical map U∆[1]

α →

Eq(Ũα) is a weak equivalence.

Proof. The idea of the proof follows the one of the classification of fibration in simplicial sets.
By theorem 1.25 we extract from the universal fibration a retract which is a minimal fibration
π : M → Uα. Every fibre bundle is a fibration so that it is a pullback of the universal fibration
p, hence by a simple diagram chase in the pullback square we have that it is also a pullback of
π, i.e. π is universal for fibre bundles.

Y //

��

Ũα r
//

pα
��

M

π
��~~~~~~~~

i
{{

X //Uα

Observe that every fibred weak equivalence E → E′ over a base X induces a fibred weak
equivalence Eq(E)→ Eq(E′) over X × X.
Moreover, it follows from theorem 1.23 that for a minimal fibration M → X, there is a fibred
weak equivalence Eq(M)→ Iso(M) over X × X.
We want to prove that U∆[1] → Eq(Ũ) is a weak equivalence, so we compose with other weak
equivalences and prove that the composite is a weak equivalence:

U∆[1] → Eq(Ũ)
'
−→Eq(M)

'
−→ Iso(M)

We suppose without loss of generality that U is connected, otherwise we can reproduce the
same argument for each connected component.
Let F be the fibre over a fixed point u0 ∈ U and consider the principal bundle associated to π,
which is the frame bundle Fr(F,M) → U. By the universality of π this principal bundle is a
universal principal Aut(F)-bundle, i.e. B is a BAut(F).
Now we apply the long exact sequence of a fibration:

· · · → πn(EG, ∗)→ πn(BG, ∗)→ πn−1(G, ∗)→ πn−1(EG, ∗)→ . . .

Using the weak contractibility of EG we have πn(BG, ∗) � πn−1(G, ∗) and recalling the con-
struction of higher homotopy groups of spheres as π0 of iterated loop spaces we have that
πn−1(Ω(BG), ∗) � πn−1(G, ∗). Note that these two are simplicial groups, then by Moore’s
theorem 1.7 they are Kan complexes. Since they are fibrant and cofibrant objects this weak
equivalence is a homotopy equivalence by Whitehead’s theorem 2.6.
Then we have Ω(U, u0) ' Aut(F). Now let consider the diagram:
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U∆[1] //

$$IIIIIIIII Iso(M)

yytttttttttt

U × U

Pulling it back along the inclusion {u0} × U → U × U it is easy to check that we get the
diagram:

P(U, u0) //

##GGGGGGGGG Fr(F,M)

{{vvvvvvvvv

B

where P(U, b0) is the pointed path space. Recall that by theorem 1.8, for a map between
fibrations over a connected base to be a homotopy equivalence, it is enough that the induced
map between the fibres over just one base point is a homotopy equivalence, and this is indeed
the case by what we have proved before. Since the fibres of the two projections over a point
are the same before and after pulling back the diagram, we can conclude as well that U∆[1] →

Iso(M) is a weak equivalence. �

We can finally notice that simplicial univalence is easy to obtain from the classification result
for fibrations and from the theory of minimal fibrations. The difficulties in treating univalence
are mainly given by coherence conditions.
Observe that this proof may suggest that a universal fibration can give rise to a more direct
interpretation of type theory, if the usual coherence issues for pullbacks can be solved. In
particular the uniqueness up to homotopy of the classification theorem entails that we auto-
matically have coherence up to equivalence, which corresponds to equivalence of types.
This is just one hint for a possible motivation for weak Tarski universes, the difficulty of ex-
plaining in full detail motivations for weak Tarski universes is due to the mix of coherence
conditions: we still want coherence theorems for substitution, whereas we want to weaken the
ones for the computation rules for the universe. As the reader have noticed in the previous
pages the strategy used to manage substitution and the various type constructors uses a strongly
inaccessible cardinal in order to build a suitable category-theoretic universe, adding a second
inaccessible to the same construction solves automatically all the coherence conditions for the
universe.
We underline that the forthcoming paper [LW] should solve all the issues for substitution and
type constructors on Grothendieck (∞, 1)-topoi, except for the coherence conditions for the
universe, whose weakening is the main topic of this thesis.
For this reason a detour into the subject of (∞, 1)-topoi would be needed to adequately mo-
tivate weak Tarski universes, but the treatment of these notions is beyond the aim of this
thesis.

The coherence theorems quoted in this chapter have been generalised to a certain extent
in [Shu12], [Shu13] and [Cis14], to cover the cases of some well-behaved simplicial presheaves
and the one of cubical sets.

In conclusion, we underline that Voevodsky’s proof takes place in a classical metatheory
and makes heavy use of inaccessible cardinals and the axiom of choice. The search for a
consistency proof obtained by means of finitistic methods, like the ones given by normalisation
theorems, is still an open problem.
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Chapter 5

Constructive Set Theory

The intuitionistic and constructivist foundational program is not confined to logic.
The development of intuitionistic logic is just the first step for a thoroughly rethink-

ing of mathematics.
Type theory and category theory are deeply entangled with intuitionism, but also set theory
can be rebuilt constructively. One of the advantage of this enterprise is to rely on the already
familiar language of set theory, making constructive reasoning accessible to a wider audience.
Moreover, sets and membership between sets are two of the most basic and fundamental con-
cepts, then they doubtlessly deserve to be subject to a constructive analysis and clarification.
The sources for this chapter are the three articles by Peter Aczel on the type-theoretic inter-
pretation [Acz78], [Acz82],[Acz86], and the book draft on constructive set theory [AR10].

An obvious requirement for an intuitionistic theory of sets is to have an intuitionistic
underlying logic. It is immediate to see that this is not enough. Indeed, we have the following:

Theorem 5.1
Consider the core theory given by the axioms of extensionality, separation, emptyset, and pair with
intuitionistic logic.
The axiom of foundation in the form of a minimal ∈-element: ∀x [∃u ∈ x ⇒ ∃y (y ∈ x ∧ ∀z (z ∈
y⇒ z ∈ x))], implies the law of excluded middle.
Moreover, if separation is limited to bounded formulae, excluded middle for bounded formulae can be
derived.

Proof. The idea is a common trick: we form by emptyset and pair the set 2 := {∅, {∅}} and by
separation a suitable subset made with a given formula φ in a way such that this formulation
of the foundation axiom gives directly the excluded middle.
Let define A := {y ∈ 2 | y = {∅} ∨ (y = ∅ ∧ φ)}, it is nonempty because {∅} ∈ A, so that by
foundations it admits a minimal element Y which as an element of A must be Y = {∅} or
Y = ∅ ∧ φ. If Y = {∅}, then ∅ ∈ Y and by minimality ∅ < A, hence by definition ¬(∅ = ∅ ∧ φ)
therefore ¬φ.
On the other hand if Y = ∅ ∧ φ, we have trivially φ. �

Therefore, a careful analysis of the various axioms is needed together with a search of
constructive substitutions for non-constructive principles. Following Aczel’s work we will not
confine ourselves with the little changes needed to keep the excluded middle out of the theory,
but we will seek a predicative theory, at least to a certain reasonable extent.
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The language of CZF is a first order language with the following primitive logical symbols
⊥,∧,∨,⇒ ∀x,∃x, with the restricted quantifiers ∀x ∈ y and ∃x ∈ y, and two nonlogical
relational symbols ∈ and =. As we have said before the underlying logic is intuitionistic.
some basic axioms are retained from ZF, as the defining schemes for the restricted quantifiers:

• (∀x ∈ y) φ(x)⇔ ∀x (x ∈ y⇒ φ(x));

• (∃x ∈ y) φ(x)⇔ ∃x (x ∈ y ∧ φ(x)).

We also have the usual equality axioms:

• x = y⇔ ∀z (z ∈ x⇔ z ∈ y);

• x = y ∧ y ∈ z⇒ x ∈ z.

And finally pairing and union:

• pairing: ∃z (x ∈ z ∧ y ∈ z);

• union: ∃z (∀y ∈ x)(∀u ∈ y)(u ∈ z).

The first step for a predicative theory is to restrict the separation axiom to restricted formulae:

• restricted separation: for each restricted φ we have ∃z [(∀y ∈ z)(y ∈ x ∧ φ(y)) ∧ (∀y ∈
x)(φ(y)⇒ y ∈ z)].

Moreover, a weakening of the powerset axiom is also needed; we still want to be able to form
the set of functions between two arbitrary sets (the exponentiation axiom), which is enough
for the construction of the real numbers based on Cauchy sequences, but is too weak for
other constructions as Dedekind’s one which needs to manage relations. For these kinds of
reasons we will introduce a strengthening of the exponentiation axiom, namely the subset
collection axiom. We present here the formal statement of the axiom, but its explanation is not
immediate so we postpone its informal presentation to the sequel.
For the sake of readability we introduce the following notation: given a formula φ(x, y) we
define φ′(a, b) as (∀x ∈ a)(∃y ∈ b) φ(x, y) ∧ (∀y ∈ b)(∃x ∈ a) φ(x, y);

• subset collection: ∃c∀u [(∀x ∈ a)(∃y ∈ b) φ(x, y) ⇒ (∃d ∈ c) φ′(a, d), where u may
occour free in φ(x, y).

The axiom of foundation is replaced with its classically equivalent set induction axiom which
allows to prove property for all sets, provided that it can be proved with the induction hypoth-
esis that all the elements of the set in consideration already satisfy that property. This axiom
informally states that sets are built inductively from previously constructed sets.

• set induction scheme: ∀y [(∀x ∈ y) φ(x)⇒ φ(y)]⇒ ∀x φ(x).

In order to compensate the predicative weakening we strengthen some other axioms: the
axioms of replacement is substituted with the strong collection axiom which can be seen as
a version of replacement for relations; it is immediate to see that strong collection implies
replacement;

• strong collection: (∀x ∈ a)∃y φ(x, y)⇒ ∃b φ′(a, b).

Finally the infinity axiom is replaced with the strong infinity axiom which states directly the ex-
istence of the least inductive set, instead of constructing it impredicatively as the intersection
of all inductive sets:
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• let Zero(x) be the formula (∀y ∈ x)⊥, and Succ(x, y) be the formula (∀z ∈ y)(z ∈ x)∧ (y ∈
x) ∧ (∀z ∈ x)(z ∈ y ∨ z = y). The the axiom of infinity can be stated as ∃z Nat(z), where
Nat(z) is the conjunction of (∀x ∈ z)(Zero(x)∨ (∃y ∈ z) Succ(y, z)) with (∃x ∈ z) Zero(x)
and (∀y ∈ z)(∃x ∈ z) Succ(y, x).

The presentation of some of these axioms is not canonical, for example the pair axiom here
states simply the existence of a set having as elements the two constituents of the pair. Anyway
with restricted separation we can easily recover the usual formulation, and similarly for the
other cases. These choices are made with the aim to simplify the proof of the type-theoretic
interpretation.
In the following tabular we summarize the basic axioms:

ZF CZF changes
extensionality extensionality none

pair pair none
union union none

separation bounded separation weakened
powerset subset collection weakened

foundation set induction reformulated
replacement strong collection strengthened

infinity strong infinity strengthened

Set induction is a weakening or a strengthening depending on the classical variant chosen for
the foundation axiom.

The basic classical set-theoretic constructions like, pairs, products, disjoint unions and so
on can be easily performed in CZF in a straightforward way, sometimes minor changes are
necessary to avoid non-constructive arguments. We discuss pairs because they give a simple
example of constructive reformulation of a classical proof. As we have noticed before, applying
bounded separation to the set given by our form of pairing, we get the usual ∃y∀x (x ∈ y ⇔
x = a ∨ x = b). This set is unique by extensionality. We form the usual pair (a, b) := {a, {a, b}}
and prove the following:

Lemma 5.2
If (a, b) = (c, d), then a = c and b = d.

Proof. The usual classical proof uses the excluded middle to say that a = c or not, and reason
by cases. Instead we will argue focusing on the elements: {a} is an element of the left-hand set,
so it is also an element of (c, d), then either {a} = {c} or {a} = {c, d}, and in either cases a = c.
Similarly {a, b} = {c} or {a, b} = {c, d}. In either cases b = c or b = d. If b = c, then a = c = b
so that (a, b) = {{a}} and hence (c, d) must have a single element as well, so that c = d. �

Now we give some definitions about relations, and give an equivalent, version of subset
collection.

Definition 5.1

(a) For a relation R ⊆ A × B, we write A B iff R is total, i.e. (∀x ∈ A)(∃y ∈ B) (x, y) ∈ R;

(b) similarly, R : A B iff (∀x ∈ A)(∃y ∈ B) (x, y) ∈ R ∧ (∀y ∈ B)(∃x ∈ A) (x, y) ∈ R;

(c) a set C of subsets of B is A-full iff R : A B implies that R : A D for some D ∈ C.

64



Theorem 5.3
The subset collection scheme is equivalent to the following axiom: for all sets A and B, there exists a
set C that is an A-full set of subsets of B.

Proof. This axiom is a special case of the subset collection scheme where φ(x, y) is chosen
to be (x, y) ∈ R. For the converse we will combine the axiom above with strong collection:
let C be an A-full set of subsets of B and suppose that (∀x ∈ A)(∃y ∈ B) φ(x, y), we show
that φ′(A,D) for some D ∈ C. Let ψ(x, z) denote the formula (∃y ∈ B)(φ(x, y) ∧ (x, y) = z).
Then by definition (∀x ∈ A)∃zψ(x, z), so that by strong collection there is a set R such that
(∀x ∈ A)(∃z ∈ R)ψ(x, z) ∧ (∀z ∈ R)(∃x ∈ A)ψ(x, z). Hence R : A B and ∀x∀y ((x, y) ∈ R ⇒
φ(x, y)). As C is an A- full set of subsets of B we can find a D such that R : A B. It follows
that φ′(A,D). �

Theorem 5.4
We have the following chain of implications: powerset⇒ subset collection⇒ exponentiation axiom.

Proof. The first implication is trivial. For the second one we consider besides every function
f : A → B, the associated f ′ : A → A × B defined by f ′(x) := (x, f (x)), and then we apply
the axiom above to A × B, in order to obtain C, an A-full set of subsets of A × B. Now we
want to ensure that any f is in C, so that applying bounded separation we can form the set of
functions. f ′ is a total relation, therefore we can find a set D ∈ C such that f ′ : A D. As f ′

is a function D = { f ′(x) | x ∈ A} = f , so that f ∈ C, as required. �

The two previous theorems show that the axiom of subset collection can be conceived as a
strengthening of the exponentiation axiom that allows to manage total relations.

Theorem 5.5
The exponentiation axiom, together with the statement that {∅} has a powerset, is equivalent to the
full powerset axiom.

Proof. One direction is trivial, for the other the idea is that the set B = P({∅}) allows to
define characteristic functions and therefore the set of all subsets.
For any set A let C := {{x ∈ A | ∅ ∈ f (x)} | f ∈ BA}. This is a set by the exponentiation axiom,
restricted separation and replacement. If z ⊆ A, let f (x) be the set {y ∈ {∅} | x ∈ z} for x ∈ A.
Then f ∈ BA and hence z = {x ∈ A | ∅ ∈ f (x)} ∈ C. Hence C is the powerset of A. �

This theorem shows that in CZF, finite sets cannot have powersets. It may seem strange that
the sets that are most accessible to our intuition lack powersets; especially because finite sets
provided to Cantor the intuitive background for the introduction of powersets for arbitrary
infinite sets, and therefore full impredicativity. Probably, the best justification of this feature
is again the type-theoretic interpretation of CZF; indeed, in Martin-Löf type theory function
types are available and the types for finite sets have fully justified rules which provide only
canonical elements, and ways to introduce and eliminate them.
Now we want to prove that CZF with classical logic and ZF prove the same theorems, we start
with the following two lemmas:

Lemma 5.6
The exponentiation axiom and restricted excluded middle, together imply the powerset axiom.
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Proof. By the previous theorem it is enough to prove that {∅} has a powerset. In fact we show
that {∅, {∅}} is its powerset. So let x ⊆ {∅, {∅}}, by hypothesis ∅ ∈ x ∨ ∅ < x. In the first case
x = {∅}. Whereas in the second x = ∅. In either case x ∈ {∅, {∅}}. �

Lemma 5.7
The full separation scheme is equivalent to the scheme: ∃x (φ⇔ ∅ ∈ x), where x is not free in φ.

Proof. Given full separation and a formula φ let x := {y ∈ {∅} | φ} where y is not free in φ.
Then ∅ ∈ x⇔ φ.
Conversely, the idea is to build a function from the hypothesis by strong collection such that
φ(y) is equivalent to ∅ ∈ f (y) and then to apply restricted separation. Indeed, by assumption
there is a set x such that φ(y) ⇔ ∅ ∈ x, for each y ∈ A. We may assume that x ⊆ {∅} in
which case x is uniquely determined by y ∈ A. By strong collection there is a function f with
domain A such that (∀y ∈ A)(φ(y) ⇔ ∅ ∈ f (y)). By restricted separation we can form the set
{y ∈ A | ∅ ∈ f (y)} = {y ∈ A | φ(y)}. �

Theorem 5.8
CZF with classical logic and ZF prove the same theorems.

Proof. Clearly ZF contains all the theorems proved by CZF with classical logic. Conversely,
by 5.6 the powerset axiom holds. Full separation is also a theorem because for every formula φ
we have φ ∨ ¬φ, so choose x = {∅} if φ and x = ∅ if ¬φ. In either case φ ⇔ ∅ ∈ x and we get
full separation by the previous lemma. �

Let ω be the unique set such that Nat(x), which existence is given by the strong infinity
axiom. As usual define 0 := ∅ and x+ := x∪{x} for every x ∈ ω, which give rise to the successor
function s : ω→ ω, defined by s(x) := x+.

Theorem 5.9
The structure N := (ω, 0, s), satisfies the Peano axioms.

Proof. The first two axioms - that 0 is a number and that the successor of a number is again a
number - hold by definition. The third axiom says that 0 is not in the image of the successor
function; indeed, ∅ has no elements. Using set induction we easily obtain mathematical in-
duction.
In order to prove the injectivity of s we observe that every x ∈ ω, x is transitive (i.e.
(∀y ∈ x) y ⊆ x), and such that x < x. These properties follow easily by induction.
Let x, y ∈ ω be such that x+ = y+. As x ∈ x+ we get x ∈ y+, so that either x ∈ y or x = y,
and similarly with the roles of x and y shifted. If x ∈ y then x ∈ x for the transitivity, which is
absurd. The only remaining possibility is that x = y. �

Definition 5.2
Given a set B the set C is called the transitive closure iff B ⊆ C, C is transitive and for every
transitive set X such that B ⊆ X, then C ⊆ X.

Theorem 5.10
In CZF every set has a transitive closure.
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Proof. Let B be any set. We can then form the sets defined inductively h(0) := B and h(n +

1) := h(n)∪
⋃

h(n), let now C :=
⋃

n∈N h(n). As B = h(0) we have B ⊆ C, and given x ∈ y ∈ C,
by definition y ∈ h(n) for some n, thus x ⊆

⋃
h(n) ⊆ h(n + 1) ⊆ C, and hence x ∈ C. Finally,

suppose that B ⊆ D, where D is a transitive set. By induction on n one readily establish that
h(n) ⊆ D, whence C ⊆ D. �

Let now discuss choice principles. It can be shown that the full axiom of choice implies
unacceptable instances of the excluded middle. However, as we have seen in 3.1 Martin-Löf
theory validates the type-theoretic axiom of choice almost by definition.
A choice principle which can be justified constructively is the axiom of dependent choices. It
is usually stated in the following form: for every binary total relation ρ on a given set X (i.e.
(∀x ∈ X)(∃y ∈ X) such that x ρ y), there exists a sequence {xn}n∈ω such that xn ρ xn+1 for every
n ∈ ω. It allows to define sequences of elements whose choices depend over the previously
chosen ones.
We are interested in the axiom scheme (DC for short) of dependent choices, where the relation
x ∈ X is replaced by an arbitrary formula with a free variable, and similarly the binary relation
is replaced with an arbitrary formula with two free variables: for the sake of readability, given
formulae θ(x) and φ(x, y), we call ψ(x, z) the formula expressing that z is a function, whose
domain is ω, such that z(0) = x and for every natural number n ∈ ω, θ(z(n)) ∧ φ(z(n), z(n + 1))
holds.
The axiom scheme of dependent choices is then the following:

∀x (θ(x)⇒ ∃y (θ(y) ∧ φ(x, y)))⇒ ∀x (θ(x)⇒ ∃zψ(x, z))

It is easy to see that it is implied by the full axiom of choice (in presence of full separation),
and that in turn it implies the axiom of countable choice.
Dependent choice is sufficient to develop much of the usual choice-based classical mathe-
matics, included large parts of functional analysis. Indeed, the form with total relations is
equivalent to the Baire’s lemma (see [Gol85] for the Bair lemma in complete metric spaces
and [Bla77] for its version in locally compact Hausdorff spaces).
In [Acz82], the axiom scheme of dependent choices is considered as a way to extend CZF,
justified by the type-theoretic interpretation where it holds for the terms of the type of sets.
We emphasize that the the type-theoretic axiom of dependent choices and the interpretation
inside the type of sets of the set-theoretic one, are not the same, although the former is used
in the proof of the latter. In the next chapter we will see the generalisation of this proof to
homotopy type theory with a weak Tarski universe.
In the previous mentioned article by Peter Aczel other choice principles are considered, a base
is defined to be a set such that choice functions defined on it can always be found. The presen-
tation axiom states that every set is the surjective image of a base. The intended meaning is that
surjective maps from a base - presentations - correspond to the concrete ways in which sets
are given us. This axiom is again justified by the type-theoretic interpretation. We have not
considered this kind of choice principles because they are not stable under category-theoretic
constructions like taking sheaves (see [MvdB14]).

Finally, we discuss inductive definitions in CZF and the role of the other axiom which
can be possibly added: the regular extension axiom. We start with a discussion on classes in
CZF and inductively defined classes, then we introduce regular sets and the regular extension
axiom and state the theorem asserting that every bounded inductive definition, inductively
defines a set.
As in ZF, classes can be treated implicitly as formulae with a free variable:
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Definition 5.3

(a) Given a set x and a class Φ we write x ∈ Φ iff Φ(x);

(b) Φ is a sublcass of Ψ iff (∀x ∈ Φ) x ∈ Ψ, which means ∀x (Φ(x)⇒ Ψ(x));

(c) the union of classes is defined as the logical disjunction: Φ ∨ Ψ;

(d) similarly, the intersection of classes is the conjunction: Φ ∧ Ψ;

(e) the product of classes is (Φ × Ψ)(z) := ∃x∃y (Φ(x) ∧ Ψ(y) ∧ z = (x, y));

(f) the powerclass is defined as P(Φ)(x) := (∀y ∈ x) Φ(y);

(g) the class of sets, written V , is x = x.

In the sequel we will use the notation {x |Φ(x)} for the formula Φ interpreted as a class.

Proofs by transfinite recursion on ordinals are often used in the classical treatment of in-
ductive definitions. But intuitionistic ordinals have a quite different behaviour, moreover
accordingly to the constructive paradigm is generally preferable to build directly inductively
defined classes. We start with the following definition:

Definition 5.4
For any class Φ, the class X is Φ-closed iff A ⊆ X implies a ∈ X for every order pair (a, A) ∈ Φ.

Being the first encounter with a class defined as a formula we unwind the definition: X is
Φ-closed iff ∀a∀A [Φ((a, A))⇒ ((∀z ∈ A) X(z)⇒ X(a))].

Theorem 5.11
For any class Φ, there is a smallest Φ-closed class I(Φ).

Proof. Refer to the theorem in section 4.2 of [Acz82]. �

Usually a Φ-closed class is defined by a system of rules, it is straightforward to extract the class
involved from the rules. For example, the class of natural numbers can be characterised as the
smallest class ω closed under the rules: ∅ ∈ ω and a ∪ {a} ∈ ω if a ∈ ω. The class generating ω
is Φ = {(a ∪ {a}, {a}) | a ∈ V}.
Because of the previous theorem, classes are sometimes called inductive definitions, accordingly
to the use of the expression in the natural language.
We now present the regular extension axiom and show its how it can be used to manage
inductive definitions.

Definition 5.5
A class A is regular iff it is transitive, i.e. every element of A is a subset of A; moreover, for
every a ∈ A and relation R ⊆ a × A if (∀x ∈ a)∃y (x, y) ∈ R, then there is a set b ∈ A such that

(∀x ∈ a)(∃y ∈ b) (x, y) ∈ R ∧ (∀y ∈ b)(∃x ∈ a) (x, y) ∈ R

In particular if R : a→ A then ranR ∈ A.
For example it is easy to check that ω is a regular set.
The regular extension axiom (or REA for short) states that:
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• every set is a subset of a regular set.

As we have seen in the previous theorem the class I(Φ) always exists, we expect that I(Φ) is
a set whenever Φ is a set, and in certain well-behaved cases when Φ is a proper class. This is
the case, but in CZF, even when Φ is a set, the regular extension axiom is needed.

Definition 5.6
An inductive definition Φ is bounded iff

(i) for each set A the class ΦA := {x | (x, A) ∈ Φ} is a set, it is a condition of smallness on
the fibres;

(ii) there is a set B such that if (a, A) ∈ Φ, then A is an image of a set in B, it is a condition
of smallness for the elements in the image of Φ. The set B is called a bound for Φ.

Observe that if Φ is a set then it is automatically bounded with bound the image: {A | ∃a (a, A) ∈
Φ}. The class of natural numbers Φ = {(∅, ∅)} ∪ {(a ∪ {a}, {a}) | a ∈ V} is bounded with bound
{∅, {∅}}.

Theorem 5.12
In CZF+REA, every bounded inductive definition, inductively defines a set.

Proof. See theorem 5.2 in [Acz86]. �
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Chapter 6

Constructive Set Theory from a Weak
Tarski Universe

As we have seen in the previous chapters the type theoretic interpretation of CZF is the
main conceptual justification of this kind of constructive set theory. In this chapter

we shall generalise the standard interpretation to homotopy type theory with a weak Tarski
universe following the three articles by Peter Aczel [Acz78], and selected parts of [Acz82] and
[Acz86].
The generalisation has two main issues: firstly we need to reformulate statements and proofs
when the Russell style universe is replaced by a Tarski one, and secondly to adapt every defini-
tional equality given by the computation rule of the universe to an equivalence and make the
necessary lemmas work with equivalences. The first issue is straightforward although tedious,
whereas the second needs some actual rethinking especially in some points like in the discus-
sion about dependent choices and mainly in lemma 6.4 which uses the function extensionality
axiom, and seems needed for the restricted separation axiom.
We have to remark that some additional reformulations were needed because the kind of type
theory used in [Acz82] (and subsumed by [Acz86]) has extensional identity types and a closed
universe, i.e. an elimination rule for the universe stating a recursion principle over type con-
structors.
In this chapter the set-theoretic symbol for equality will be denoted as �.

The idea behind the type-theoretical interpretation is to organize all small types in a well-
founded tree as a W-type building a type of iterative sets, analogous to the usual cumulative
hierarchy. Then, to define a notion of extensional equality and use the type constructors to
induce similar operations inside this type of sets.

Definition 6.1
The type of iterative sets is defined as V := (Wx : U)El(x) where U is the universe.

Therefore we have the following rules which can be used as an alternative direct definition of
the type of sets:

a : U b : El(a)→ V
sup(a, b) : V

c : V x : U, y : El(x)→ V, z : (Πv : El(x))C(y(v)) ` d(x, y, z) : C(sup(x, y))
T(c, d(x, y, z)) : C(c)
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a : U f : El(a)→ V x : U, y : El(x)→ V, z : (Πv : El(x))C(y(v)) ` d(x, y, z) : C(sup(x, y))
T(sup(a, f ), d(x, y, z)) = d(a, f , λv.T ( f (v), d(x, y, z))) : C(c)

Where for the sake of readability we have written f (v) instead of ap( f , v). The elimination
and the computation rules for this type simply express transfinite recursion over the cumulative
hierarchy.

Lemma 6.1
There is a function assigning α : U and α̃ : El(α)→ V, to any α : V. Moreover, if α = sup(a, f ),
then α = a and α̃ = f .

Proof. We define τ : V → (Σx : U)(El(x) → V) by transfinite recursion on V using the
elimination rule for W-types: let C be the constant family of types (Σx : U)(El(x) → V),
hence it suffices to derive C(sup(x, y)) from x : U and y : El(x) → V . We give the following
definition: τ(sup(a, f )) = (a, f ) : (Σx : U)(El(x) → V). Now let α = p(τ(α)) and α̃ =

q(τ(α)). �

We may think at these α : U and α̃ : El(α)→ V as a presentation of the iterative set α as the
supremum of the image of the function α̃.

Definition 6.2
Let L be the language of set theory and LV the language obtained by adding to L a constant
for each term α : V .

Now we give the definition of interpretation of a set theoretic formula in type theory. In order
to do this we need to define a notion of extensional equality in V .

Definition 6.3
We define the extensional equality as a bisimulation relation by double transfinite recursion
on the canonical elements of V . Explicitly (sup(a, f ) � sup(b, g)) is defined to be:

(Πx : El(a))(Σy : El(b))( f (x) � g(y)) × (Πy : El(b))(Σx : El(a))( f (x) � g(y))

We can unwind this double transfinite recursion as the iteration of two simple recursions. We
firstly define:

F(sup(a, f )) := λβ.(Πx : El(a))(Σy : El(β))F( f (x)) × (Πy : El(β))(Σx : El(a))F( f (x))(β̃(y))

and then (α � β) := F(α)(β).

Lemma 6.2
The extensional equality is an equality, i.e. for all α, β, γ : V we have a term inside the following
types:

(i) α � α;

(ii) (α � β)→ (β � α);

(iii) (α � β) × (β � γ)→ (α � γ).
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Proof. We discuss the first, the other two require respectively a double and a triple transfinite
recursion. We want to find a term in the type:

(sup(a, f ) � sup(a, f )) = (Πx : El(a))(Σy : El(a))( f (x) � f (y))×(Πy : El(a))(Σx : El(a))( f (x) � f (y))

a proof of this type is constructed by a single transfinite recursion starting from a proof d(x) :
( f (x) � f (x)), and is given by r0 = (z1, z2) where z1 = λx.(x, d(x))(Πx : El(a))(Σx : El(a))( f (x) �
f (x)), and similarly for z2. �

Remark 6.1
In order to manage the weakening of the universe we shall use often the principle of indis-
cernibility of identicals.
By the elimination rule for the identity types we have that a proof of the identity p : IdA(x, y)
induces a proof of the extensional equality f (x) � f (y), for every f : A→ V .
Indeed, we define a family of types x, y : A, p : IdA(x, y) ` C(x, y, p) = ( f (x) � f (y)). By the
previous theorem we have a proof c = λz.r0(z) : (Πz : A)( f (z) � f (z)), therefore by the elimi-
nation rule we obtain h : (Πx, y : A)(Πp : IdA(x, y))( f (x) � f (y)) such that h(z, z, reflz) = c(z).

Remark 6.2
For any α : V we have a form of extensional canonicity: α � sup(α, α̃).
Indeed, let g = λx.sup(x, x̃) : V → V , by construction g(α) = α for all α = sup(a, f ), then we
have a canonical proof of the identity refl : IdV (g(sup(a, f )), sup(a, f )), hence by transfinite
recursion over V we get an identity term defined on all V , namely T (α, λx, y, z.refl(x, y, z)) :
IdV (g(α), α), that induces a proof of the extensional equality g(α) � α, by the previous remark.

Definition 6.4
We define the type-theoretic interpretation recursively on the structure of the formulae in
LV :

1. ~α � β� = (α � β);

2. ~α ∈ β� = (Σy : El(β))~α � β̃(y)�;

3. ~⊥� = N0;

4. ~φ⇒ ψ� = ~φ�→ ~ψ�;

5. ~φ ∧ ψ� = ~φ� × ~ψ�;

6. ~φ ∨ ψ� = ~φ� + ~ψ�;

7. ~(∀x ∈ α)φ(x)� = (Πx : El(α))~φ(α̃(x))�;

8. ~(∃x ∈ α)φ(x)� = (Σx : El(α))~φ(α̃(x))�;

9. ~∀x φ(x)� = (Πα : V)~φ(α)�;

10. ~∃x φ(x)� = (Σα : V)~φ(α)�.

Definition 6.5
We say that a set theoretic formula φ(x1, . . . , xn) is valid in the interpretation iff the type of
the interpretation of its universal closure ~∀x1, . . . , xn φ(x1, . . . , xn)� is inhabited.
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In order to prove our theorems we will perform the construction of a term in the type ~φ(x1, . . . , xn)�
leaving the last step of λ-abstraction always implicit.

The first step for the construction of a model of CZF in type theory is to take care of the
underlying logic, i.e. the Curry-Howard correspondence.

Theorem 6.3
If φ1, . . . φn ` φ in intuitionistic predicate logic and φ1, . . . φn are valid in the interpretation then so is
φ.

Proof. See [ML84] where it is shown without any use of the universe that the rules for intu-
itionistic natural deduction are particular cases of the rules for type-theoretic constructors. �

The reformulation of the following lemma is not easy as the others and seems to need function
extensionality to be carried out.

Lemma 6.4
For each restricted formula φ ∈ LV the type ~φ� is equivalent to a small type.

Proof. We prove the statement by induction on the structure of the formula. Atomic restricted
formulae are of the form α � β or α ∈ β. In the first case we proceed by double transfinite
recursion: we consider the judgement α, β : V ` C(α, β) = (Σe : U)Equiv(~α � β�, El(e)),
suppose to have canonical terms α = sup(a, f ), β = sup(b, g) and to already have terms
t(x, y) : C( f (x), g(y)). Now we want to find a term in the type:

C(sup(a, f ), sup(b, g)) = (Σe : U)Equiv(~sup(a, f ) � sup(b, g)�, El(e))

Recalling the recursive definition of extensional equality we see that it is enough to prove that
if we have a family of equivalences (Σe : U)Equiv(B(x), El(e)) parametrized by a type El(α),
then forming the dependent product of this family give rise to a corresponding equivalence
(Σe′ : U)Equiv((Πx : El(α))B(x), El(e′)) and similarly for the sum.
So we have the following situation:

El(e) τ // B(x)

θ
{{

tcc

Form the dependent product of these two types over El(α), note that El(e) is constant over
El(α) so we get simply the function type for it. We can easily define maps τ′, θ′ and t′ by
composition, i.e. τ′( f ) = f τ and similarly for the others. Hence:

El(exp(α, e)) //(El(α)→ El(e)) τ′ //
ii

uu

(Πx : El(α))B(x)

t′

ii

θ′

tt

Where the first is the equivalence given by the rule of the weak universe. Let P = (Πx :
El(α))B(x). We just need to check that the homotopies η : (Πs : B(x))IdB(x)(τθ(s), s) and
ε induce homotopies η′ : (τ′θ′ ∼ idP) = (Π f : P)IdP(τ′θ′( f ), f ) and similarly for ε. But is
just an application of function extensionality, in fact for every s : B(x) we have a pointwise
identification of the functions: η(s) : IdB(x)(τθ(s), s), by function extensionality we get a proof
of the identity IdP(τθ f , f ) for every f : P. For ε the proof is analogous and simpler because we
don’t have to manage a dependent product but just a function type.
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The case of dependent sums is similar and it relies on theorem 3.8 in order to construct an
term in the identity type of the dependent sum.
For the other kind of atomic restricted formula we need to show that (Σx : El(β))~α � β̃(x)�
is equivalent to a small type. This follows exactly as in the case of extensional equality since
we know that ~α � β̃(x)� is equivalent to a small type.
The rest of the induction is straightforward: the case of restricted quantification was already
covered whereas the cases of connectives can be easily reconstructed following the kind of
argument we needed to manage Σ and Π with function extensionality and theorem 3.8. �

Definition 6.6
In CZF we say that α is a subset of β, written α ⊆ β iff ∀x ∈ α (x ∈ β).

Remark 6.3
The following are valid:

1. u � v⇔ (∀x ∈ u)(∃y ∈ v)(x � y) ∧ (∀y ∈ v)(∃x ∈ u)(x � y);

2. u ∈ v⇔ (∃y ∈ v)(u � y);

3. u � v⇔ (α ⊆ β ∧ β ⊆ α)

Definition 6.7
A family of types over the type of iterative sets x : V ` B(x) type is extensional iff

(∀x, y ∈ V)((x � y) ∧ B(x)⇒ B(y))

Similarly, a set-theoretic formula φ ∈ LV is extensional iff (∀x, y ∈ V)[(x � y∧ φ(x))⇒ φ(y)].

Lemma 6.5
Every formula in LV is extensional in every variable.

Proof. As usual we proceed by induction on the structure of the formula. First of all consider
the case of atomic formulae: (α � β) is extensional because of the transitivity. So consider
β ∈ γ, we want to prove extensionality in the first variable, we have a term in ~α � β� and a
term in ~β ∈ γ� = (Σx : El(γ))~γ̃(x) � β� and a simple application of transitivity is enough to
obtain a term in ~α ∈ γ� = (Σx : El(γ))~γ̃(x) � α�. For extensionality in the other variable
suppose that we have a term in the type ~γ � δ∧α ∈ δ� = (γ � δ)× (Σy : El(δ))(α � δ̃(y)), and
we want a proof of ~α ∈ δ� = (Σx : El(γ))(γ̃(x) � α). Recalling the definition of extensional
equality we have that for all x : El(δ) exists a y : El(γ) such that γ̃(y) � δ̃(x) and we have the
statement.
The inductive steps for the non-atomic formulae are straightforward. �

Lemma 6.6
If φ(x) is extensional in x, then the structural defining axioms for the restricted quantifiers are valid.

Proof. We give the details just in the case of the universal quantifier, the existential one is
similar. We have a proof of t = (t1, t2) : ~(x � y ∧ φ) ⇒ φ(y)� × ~(∀x ∈ y)φ(x)� = [(x �

y) × ~φ(x)� → ~φ(y)�] × (Πx : El(y))~φ(ỹ(x))�, and we need a proof of (Πx : V)~x ∈ y ⇒
φ(x)� = (Πx : V)[(Σz : El(y))(x � ỹ(z)) → ~φ(x)�]. Therefore we can suppose to have a proof
given by a couple (t, s) where s = (s1, s2) : (Σz : El(y))(x � ỹ(z)). Applying t2 to s1 we get
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a proof of ~φ(ỹ(s1))�, whereas s2 is a proof of (x � ỹ(s1)), so we have the desired term inside
~φ(x)� and we conclude with a λ-abstraction on x.
Conversely, we have a term in [(x � y)×~φ(x)�→ ~φ(y)�]× (Πx : V)[(Σz : El(y))(x � ỹ(z))→
~φ(x)�] and we want a term in (Πx : El(y))~φ(ỹ(x))�. Consider x : El(y), then ỹ(x) : V and
we know that for every z : El(y) such that ỹ(x) � ỹ(z) we get a term in ~φ(x)�. We make the
trivial choice z = x and then we find a term in ~φ(ỹ(x))�. �

Before the main theorem we state a triviality: the formula ~(∀x ∈ α)(x ∈ α)� is valid.
Indeed, we already know that α � α is valid, in fact we have constructed a term r0(α) : ~α �
α�. Define α∗ := λx.(x, r0(α̃(x))) : ~(∀x ∈ α)(x ∈ α)�. In fact α∗(a) : ~α̃(a) ∈ α� for each set α
and each term a : El(α).
From this simple fact is clear that El(α) has the right to be thought as the type of elements of
the set α.

Theorem 6.7
Every basic axiom of CZF is valid in the interpretation.

Proof. We have already checked the defining schemes for the restricted quantifiers and the
equality axiom x � y ∧ y ∈ z⇒ x ∈ z.

(1) Extensionality: the formula x ∈ α is extensional, so that by the previous lemma α ⊆
β⇔ (∀x ∈ α)(x ∈ β)⇔ ∀x (x ∈ α⇒ x ∈ β), and similarly β ⊆ α⇔ ∀x (x ∈ β⇒ x ∈ α),
hence α � β⇔ (α ⊆ β ∧ β ⊆ α)⇔ ∀x (x ∈ α⇔ x ∈ β).

(2) Set induction: let B = ~∀y (∀x ∈ y) φ(x) → φ(y)�, we need to define for every set α : V
a function h(α) : B → ~φ(α)� in order to conclude by λ-abstraction. We define this
function by transfinite recursion on the canonical elements of V : we take a term b : B
and apply it to our set α = sup(a, b) gaining a term in (∀x ∈ α) φ(x) → φ(α). In order
to obtain a desired term in ~φ(α)� we just need a function in ~(∀x ∈ y) φ(x)� which is
given by the recursion hypothesis as follows λx.h( f (x))(b).

(3) Pairing: given sets α, β : V we define g′ : N2 → V by cases: g′(1) = α and g′(2) = β.
Now we want to use the equivalence given by the weak Tarski universe in order to define
an other function g : El(n2) → V , we will take its supremum to be the pair {α, β}. In
fact let ceqN2

= (τ, θ, t, η, ε) be the canonical term in the equivalence type

El(n2) τ //

g

??N2
g′

//
oo

θ
{{

V

Then we define g = g′τ : El(n2) → V and γ = sup(n2, g) : V . In order to conclude
it suffices to find a term in ~α ∈ γ ∧ β ∈ γ�, consider now γ∗(θ(1)) : ~γ̃(θ(1)) ∈ γ� =

~g(θ(1)) ∈ γ� = ~g′(τθ(1)) ∈ γ�. Thanks to the homotopy η(1) : IdN2(τθ(1), 1) and by
remark 6.1 we have that g′(τθ(1)) � g′(1) so that from a term in ~g′(τθ(1)) ∈ γ� we get
a term in ~g′(1) ∈ γ� = ~α ∈ γ� by an application of the transitivity of �, therefore the
term (γ∗(θ(a)), γ∗(θ(2))) give rise to the desired term.

(4) Union: the proof is similar to the previous one; indeed, for every α : V let A = (Σx :
El(α))El(α̃(x)). As before we want to apply the type constructor that matches the set
theoretic operation, in this case it is clearly the dependent sum. Define g′ : A → V by
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the elimination rule on the pairs (x, y) with x : El(α) and y : El(α̃(x)) as g′((x, y)) =˜̃α(x)(y), so that:

El(σ(α, α̃(x))) τ //

g

;;A
g′

//
oo

θ
uu

V

and we take the corresponding set inside V , namely γ = sup(σ(α, α̃(x)), g). In order
to conclude we want a term inside the type ~(∀x ∈ α)(∀y ∈ x)(y ∈ γ)�; unwinding the
definition of interpretation this type is equal to (Πx : El(α))(Πy : El(α̃(x)))( ˜̃α(x)(y) ∈ γ).
Now observe that ˜̃α(x)(y) = g′((x, y)) � g′(τθ(x, y)) = g(θ(x, y))) so is enough to find a
term inside ~g(θ(x, y)) ∈ γ�; and the needed term is γ∗(θ(x, y)) : ~g(θ(x, y)) ∈ γ�.

(5) Restricted separation: by a previous lemma every restricted formula φ ∈ LV give rise
to a type equivalent to a small one. Let φ(x) ∈ LV be our formula restricted in all its
variables except of x which is free; next consider (∃x ∈ α) φ(x) which is bounded, so
its interpretation A = (Σx : El(α))~φ(α̃(x))� is equivalent to a small type, in symbols
(Σe : U)Equiv(El(e), A). Define g′ : A → V by g′((x, v)) = α̃(x) where x : El(α) and
v : ~φ(α̃(x))� and the associated g as usual:

El(e) τ //

g

AAA
g′

//
oo

θ
}}

V

And we consider γ = sup(e, g) : V . Now we want a term in ~(∀y ∈ γ)(y ∈ x ∧ φ(y))� ×
~(∀y ∈ x)(φ(y) ⇒ y ∈ γ)�. For the first half we define a function h′1 on A by recursion
over pairs as follows h′1(x, v) = (α∗(x), v) : ~α̃(x) ∈ α� × ~φ(α̃(x))�, and h1 = τh′1. Hence
h1θ give rise to the desired term for the first half of our axiom. The second half is similar:
for x : El(α) and v : ~φ(α̃(x))� we define h′2(x)(v) = γ∗((x, v)) : ~γ̃(x, v) ∈ γ� = ~g(x, v) ∈
γ� = ~α̃(x) ∈ γ�, as usual h2θ determines the desired term.

(6) Strong collection: we start with a premiss, given a formula φ(x, y) ∈ LV with at most
x and y free, let α, β : V be sets such that α = β and for every a : El(α) we have
this term f (a) : ~φ(α̃(a), β̃(a))�. This yields a term in ~φ′(α, β)� where we recall that
φ′(α, β) = (∀x ∈ α)(∃y ∈ β) φ(x, y) ∧ (∀y ∈ β)(∃x ∈ α) φ(x, y). Indeed, this term is
K( f ) = (λx.(x, f (x)), λx.(x, f (x))).
Now turn to the strong collection axiom: let φ(x, y) as above and α : V . We start with a
term a : ~(∀x ∈ α)∃y φ(x, y)� and we want to construct a term in the type ~∃z φ′(α, z)�.
In order to achieve this consider the term a(x) in the dependent sum and project it
b = λx.p(a(x)) : El(α) → V and c = λx.q(a(x)) : (Πx : El(α))~φ(α̃(x), b(x))� where p
and q are the canonical projections.
Now define β = sup(α, b), so that K(c) : ~φ′(α, β)� and hence d(a) = (β,K(c)) is the
desired term.

(7) Subset collection: given sets α, β : V we use the equivalence given by the universe to
perform type-theoretically the needed construction. Consider z : El(α)→ El(β) so that
z(x) : El(β) and β̃(z(x)); now define G′ : (El(α) → El(β)) → V as G′ = λx.sup(α, β̃z)
and G = G′τ, given by our usual picture:
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El(exp(α, β)) τ //

G

88(El(α)→ El(β)) G′ //
oo

θ
tt

V

Let φu(x, y) ∈ LV with at most u, x and y free and let ψu(α, β) denote (∀x ∈ α)(∃y ∈
β) φu(x, y). Finally let δ : V be another set and take a : ~ψδ(α, β)� to be a given term
from which we wish to construct a term inside ~(∃d ∈ γ)φ′u(α, d)�. Then consider
b = λx.p(a(x)) : El(α) → El(β) and c = λx.q(a(x)) : (Πx : El(α))~φδ(α̃(x), β̃(b(x)))�,
by which we construct K(c) : ~φ′δ(α,G

′(b))�. Hence ~(∃z ∈ γ) φ′δ(α, z)� = (Σz :
El(exp(α, β)))~φ′δ(α,G(z))� and G(θ(b)) = G′(τθ(b)) � G′(b) so that d(δ, a) = (θ(b),K(c))
gives us the desired term.

(8) Infinity: let f ′0 : N0 → V and g′0 : N0 → N0 be the canonical functions and f0, g0 the
associated functions defined on El(n0):

El(n0)
τ1 //

f0

??N0
f ′0 //

oo

θ1

{{
V

and

El(n0)
τ2 //

g0

??N0
g′0 //

oo

θ2

{{
N0

Let ∅ = sup(n0, f0). We have g0 : ~Zero(∅)� = (Πy : El(n0))N0 = (El(n0) → N0).
Now for every set α : V define the function h′(α) : El(α) + N1 → V by cases as
h′(α)(i(x)) = α̃(x) and h′(α)(j(1)) = α; consider the following diagram:

El(plus(α, n1))
τ3 //

h(α)

55El(α) + El(n1)
τ4 //

oo

θ3
uu

El(α) + N1
h′(α)

//
oo

θ4
vv

V

and define τ = τ4τ3, θ = θ3θ4 and h(α) = h′(α)τ. By the kind of argument of lemma
6.4 we know that El(α) + El(n1) is equivalent to El(α) + N1, so that by composition we
have an equivalence from El(plus(α, n1)) to El(α) + N1.
We then form the supremum of this function S (α) = sup(plus(α, n1), h(α)). Hence
S (α)∗(θ j(1)) : ~S̃ (α)(θ j(1) ∈ S (α))� = ~h(α)(θ j(1)) ∈ S (α)� and by homotopy h(α)(θ j(1)) =

h′(α)(τθ j(1)) � h′(α)( j(1)) = α.
Now we prove that Succ(α, S (α)) is valid. recall that ~Succ(α, S (α))� = ~(∀z ∈ α)(z ∈
S (α))� × ~(α ∈ S (α))� × ~(∀z ∈ S (α))(z ∈ α ∨ z � α)�, we have already found a term
in the type in the middle. Now we construct a term in the first type: consider firstly
g1(α) = λx.S (α)∗(θi(x)); it yields a term in ~(∀x ∈ α)x ∈ S (α)�.

Finally define g′2(α) : (Πu : El(α) + N1)~h′(α)(u) ∈ α ∨ h′(α)(u) � α� by cases as
g′2(α)(i(x)) = i(α∗(x)) and g′2(α)( j(1)) = j(r0(α)). What we need is a term in (Πu :
El(plus(α, n1)))~h(α)(u) ∈ α∨h(α)(u) � α� = (Πu : El(S (α)))~ ˜S (α)(u) ∈ α∨ ˜S (α)(u) �
α� and this is easy since g2(α) = g′2(α)τ gives rise to a term in the desired type. Let g(α)
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be the term obtained in the type Succ(α, S (α)).
Then we define the set of natural numbers from the type N, so define the map ∆′ : N→
V by recursion as ∆(0) = ∅ and ∆′(s(n)) = S (∆′(n)); consider the diagram:

El(n)
τ4 //

∆

AAN ∆′ //
oo

θ4

}}
V

Define the set of natural numbers as ω = sup(n,∆) : V . First of all we check the va-
lidity of (∃x ∈ ω) Zero(x) so we need a term in (Σx ∈ El(n))~Zero(∆(x))� thanks to
∆(θ4(0)) = ∆′(τ4θ4(0)) � ∆′(0) = ∅ we have that g0 : ~Zero(∅)� together with θ4(0)
gives rise to the desired term.
Similarly for ~(∀x ∈ ω) Zero(x)∨(∃y ∈ x) Succ(y, x)�we define f ′ : (Πx : N)~Zero(∆′(x))∨
(∃y ∈ ∆′(x)) Succ(y,∆′(x))� by recursion as f ′(0) = i(g0) and f ′(s(n)) = j(n, g(∆′(n))) so
that by precomposition with τ4 we get the desired term. Similarly for h′ = λy.(s(y), g(∆′(y))) :
(Πy : N)(Σx : N)~Succ(y, x)� and we conclude as usual.

�

Now we focus on choice principle, we shall see that each instance of the set-theoretic
axiom scheme of dependent choices is valid in the interpretation.
First of all we prove in Martin-Löf type theory that the type theoretic scheme of dependent
choice holds.

Theorem 6.8 (type-theoretic DC)
The following type is inhabited:

[(Πx : A)(B(x)→ (Σy : A)(B(y) × F(x, y)))]→ [(Πx : A)(B(x)→ (Σz : N→ A)G(x, z))]

where G(x, z) := IdA(z(0), x) × (Πn : N)[B(z(n)) × F(z(n), z(s(n)))].

Proof. If f is an element of the premiss i.e. f : (Πx : A)(B(x)→ (Σy : A)(B(y)× F(x, y))) then
define C := (Σx : A)B(x) and let:

h := λu. f (p(u))(q(u)) : C → (Σy : A)(B(y) × F(p(u), y))

g := λu.(p(h(u)), p(q(h(u)))) : C → C

k := λu.q(q(h(u))) : (Πu : C)F(p(u), p(g(u)))

Now let a : A and b : B(a). Then by recursion over N we may define e : N → C by
e(0) := (a, b) and e(s(n)) := g(e(n)). Observe that we can derive the following inhabitation
judgements:

λz.p(e(z)) : N→ A

refl : IdA(p(e(0)), a)

λz.(q(e(z)), k(e(z))) : (Πz : N)[B(p(e(z))) × F(p(e(z)), p(es(z)))]

hence putting these three together we obtain the consequent of DC. �
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Using the basic axiom it is easy to define the standard set-theoretic notions, interpreted in
type theory. So for example a set α : V is a relation iff the following holds (Πβ ∈ α)(Σγ ∈
V)(Σδ ∈ V)(β � (γ, δ)).
Let now introduce an useful function: if α, β : V such that α = β then define T (α, β) :=
sup(α, λx.(α̃(x), β̃(x))) : El(α)→ V .

Lemma 6.9

(i) If α, β : V with α = β then T (α, β) is a relation with domain α and range β;

(ii) If α, γ : V such that γ is a relation with domain α then, for some β : V with α = β,
T (α, β) ⊆ γ.

Proof.

(i) Let γ be the set T (α, β). Then by choosing x = y = u we get a term in:

(Πu : El(α))(Σx : El(α))(Σy : El(α))(γ̃(u) � (α̃(x), β̃(y)))

so that we have a proof of:

(∀u ∈ γ)(∃x ∈ α)(∃y ∈ β)(u � (x, y))

hence γ is a relation whose domain is a subset of α and whose range is a subset of β.
Also, by choosing u = y = x, we get:

(∀x ∈ α)(∃u ∈ γ)(∃y ∈ β)(u � (x, y))

thus α is a subset of the domain of γ, and hence γ has domain α. Similarly, γ has range
β.

(ii) Let γ : V be a relation with domain α, then (Πx : El(α))(Σx : V)((α̃(x), z) ∈ γ).
By the type-theoretic axiom of choice 3.1 there is b : El(α) → V such that (∀x :
A)((α̃(x), b(x)) ∈ γ), so that if β := sup(α, b) then β : V with β = α and (Πx ∈
T (α, β))(x ∈ y).

�

Now we give a definition in type theory, which is internal to type theory and is not an exten-
sional notion, but is closely related to choice principles and will be one of the key ingredient
of the proof, being a bridge between the extensional equality � and the intensional identity
types of sets.

Definition 6.8
A set α : V is injectively presented iff for all x1, x2 : El(α) we have

(α̃(x1) � α̃(x2))→ IdEl(α)(x1, x2)

Lemma 6.10
Let α : V be injectively presented. Then:

(i) If β : V, such that β = α and δ : V, then for all x : El(α) we have

((α̃(x), δ) ∈ T (α, β))⇔ (δ � β̃(x))
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(ii) If γ : V then γ is a function with domain α iff γ � T (α, β) for some β : V such that β = α;

(iii) If β1, β2 : V such that β1 = β2 = α then

(T (α, β1) � T (α, β2))⇔ (∀x ∈ α)(β̃1(x) � β̃2(x))

Proof.

(i) Let β : V such that β = α and δ : V , x : El(α) . Then (α̃(x, δ) ∈ T (α, β)) iff
(Σy : El(α))((α̃(x), δ) � (α̃(y), β̃(y))) iff (Σy : El(α))(α̃(x) � α̃(y) × δ � β̃(y)) iff
(Σy : El(α))(IdEl(α)(x, y) × δ � β̃(y)) iff δ � β̃(x).

(ii) If γ : V is a function with domain α then it is in particular a relation with domain α

hence by the second part of the previous theorem there is β : V such that α = β and
T (α, β) ⊆ γ. As γ is a function with domain α and T (α, β) is a relation with domain
α it follows that T (α, β) � γ. For the converse let γ � T (α, β) where β : V such that
β = α. By the first part of the previous theorem γ is a relation with domain α. Also, for
x, y : El(α), if (α̃(x), β̃(y)) ∈ γ then by the first part of this theorem we have β̃(y) � β̃(x).
Hence:

(∀x ∈ α)(∀y1 ∈ β)(∀y2 ∈ β)((x, y1) ∈ γ ∧ (x, y2) ∈ γ ⇒ (y1 � y2))

so that γ is a function with domain α.

(iii) Let β1, β2 : V such that β1 = β2 = α. Then T (α, β1) ⊆ T (α, β2) iff (Πx : El(α))((α̃(x), β̃1(x)) ∈
T (α, β2)) iff (Πx : El(α))(β̃1(x) � β̃2(x)). Similarly for the converse.

�

Lemma 6.11
The set of natural numbers ω is injectively presented.

Proof. First of all recall the definition of the set of natural numbers in type theory ω :=
sup(n,∆) with the usual diagram:

El(n) τ //

∆

AAN ∆′ //
oo

θ
}}

V

Our goal is to prove (∆(x) � ∆(y))→ IdEl(n)(x, y). In order to do this we split the map in three
as: (∆′τ(x) � ∆′τ(y))→ IdN(τ(x), τ(y))→ IdEl(n)(θτ(x), θτ(y))→ IdEl(n)(x, y).
The latter is given as usual by the principle of indiscernibility of identicals, the second is simply
the application of θ to a path, whereas the first can be obtained by a routine double induction
on N on τ(x) and within that on τ(y), at the key steps two terms are needed one for the empty
set and one for the successors: (∅ � ∅) → IdN(0, 0) and (∆′(s(x)) � ∆′(s(y))) → IdN(x, y),
extracting these is easy. �

Theorem 6.12
The set-theoretic axiom of dependent choice is valid in the interpretation, more generally for any
extensional family of types B(x) over V and for any family of types F(x, y) over V × V extensional in
each argument, such that

(Πx : V)(B(x)→ (Σy : V)(B(x) × F(x, y)))
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Then for each α : V such that B(α) there is δ : V such that δ is a function with domain ω, moreover
(∅, α) ∈ δ and for every x ∈ ω and for all β, γ : V

(~(x, β) ∈ δ� × ~(S (x), γ) ∈ δ�)→ (B(β) × F(β, γ))

where S (x) is the successor of x.

Proof. The idea is to use the type-theoretic axiom of dependent choice and then obtain the
set-theoretic analogue using the fact that ω is injectively presented and the previous con-
structed function T (α, β).
Let α : V be such that B(α). Then by the type theoretic axiom of dependent choice 6.8 ex-
ists c′ : N → V such that IdV (c′(0), α) and B(c′(n)) × F(c′(n), c′(s(n))). Then consider the
diagram:

El(n) τ //

c

AAN c′ //
oo

θ
}}

V

and define η := sup(n, c), recall that ω = sup(n,∆), hence η = ω. If δ = T (ω, η). ω is
injectively presented by the previous lemma then by the second part of 6.10 δ is a function
with domain α. As (∅, α) � (∅, c′(0)) � (∆θ(0), cθ(0)) � (ω̃θ(0), η̃θ(0)) � δ̃θ(0), by the usual
trick it follows that (∅, α) ∈ δ.
Finally, let x : El(n) and β, γ : V such that (ω̃(x), β) ∈ δ and (S (ω̃(x)), γ) ∈ δ. Observe that
(ω̃(x), β) ∈ δ implies directly by the first part of 6.10 that β � η̃(x) = c(x) = c′(τ(x)). In order
to use the extensionality of the families B and F we just need the analogous for γ. So consider
the successor internal to El(n) given by θsτ(x), we have that S (ω̃(x)) � ω̃(θsτ(x)), which is a
simple calculation. Therefore by the first part of 6.10 we obtain γ � η̃(θsτ(x)) = c(θsτ(x)) =

c′(sτ(x)), so that we have the thesis.
�

Finally, we study the regular extension axiom.

Theorem 6.13
REA is valid in the interpretation.

Proof. In CZF every set is a subset of a transitive set, for example the transitive closure 5.10.
Hence it suffices to show that if α0 : V is transitive, then there is a regular set α : V such that
α0 ⊆ α. Then it suffices to show that α is transitive and that for each family of types F over
V × V we have:

(*) (∀x ∈ β)(∃y ∈ α)F(x, y)⇒ (∃β′ ∈ α)F′(β, β′)

where F′(β, β′) := (∀x ∈ β)(∃y ∈ β′)F(x, y) × (∀y ∈ β′)(∃x ∈ β)F(x, y).
So let α0 : V be transitive and define A0 := El(α0) hence we have b0 := λx.α̃(x) : El(α0)→ U
and then B0(x) := El(b0(x)). Now we form the W-type of this family: A := (Wx : A0)B0(x) =

(Wx : El(α0))El(α̃(x)), and the usual diagram:

El(w(α0, α̃0(x))) τ //

h

;;A h′ //
oo

θ
tt

V
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where h′ is defined by transfinite recursion over the W-type as h′(sup(a, f )) := (sup u :
B0(a))h′ f (u) given a : A0 and f : B0(a) → A. We define the desired extension as α :=
sup(w(α0, α̃0(x)), h).

Now we prove an intermediate step: let β : V , if β � γ for some γ : V such that γ = α̃0(a)
for some x : El(α0), then for every extensional family of types F over V × V the (∗) is valid.
Assume that (Πx : El(β))(Σy : El(α))F(β̃(x), α̃(y)). Recall the definition of α, hence by the
hypotheses we have (Πx : El(α̃0(a)))(Σy : El(w(α0, α̃0(a))))F(β̃(x), h(y)). Hence by the type-
theoretic axiom of choice there is an f : B0(a) → El(w(α0, α̃0(a))) such that the following
condition [∗] holds: (Πx : B0(a))F(γ̃(x), h f (x)).

Next consider the composition B0
τ f
−→ A

h′
−→V and consider the supremum sup(a, τ f ) : A. We

define the desired set as β′ := h′(sup(a, τ f )) = (sup u : B0(a))h f (u) hence β′ = γ and β̃′ = h f .
This yields to (Πx : B0(a))F(γ̃(x), β̃′(x)) by condition [∗]. Therefore we have F′(γ, β′). As
β � γ we get F′(β, β′) by extensionality, as desired.

Now return to our set α, we show that it is regular. For simplicity define w := w(α0, α̃0(a)).
Let β ∈ α then β � h(c) for some c : El(w), we want a map:

(Σc : A)~β � h′(c)�→ ~β ⊆ α� × ~(∀x ∈ β)(∃y ∈ α)F(x, y)⇒ (∃β′ ∈ α)F′(β, β′)�

and we build it on canonical terms: so by induction suppose c = sup(a, f ) for a : El(α0) and
f : B0(a) → A, then β � h′(sup(a, f )) = (sup u : B0(a))h′ f (u). As h′ f (u) ∈ α for u : B0(a)
it follows that β ⊆ α. Finally, note that the assumptions of the intermediate step hold with
γ = h′(c).

It remains to show that α0 ⊆ α. We show that ~β ∈ α0� → ~β ∈ α� by set-induction on
β : V . As inductive hypothesis we assume (∀y ∈ β)(y ∈ α0 ⇒ y ∈ α). Now if β ∈ α0 then
β � α̃0(a) for some a : El(α0) so the assumption of the intermediate step holds for γ = α̃0(a),
hence (∗) holds for F(x, y) = (x � y). As α0 is transitive by the induction hypothesis we have
β ⊆ α, from this proof we want a proof of the thesis.
Note that (∀x ∈ β)(∃y ∈ α)(x � y) ⇒ (∃β′ ∈ α)(β � β′) is equivalent to (∀x ∈ β)(x ∈ α) ⇒
(β ∈ α).

�

Conclusions

Let start with some remarks: extensionality, set-induction and subset collection do not need
any change in the previous theorems, the standard proofs generalise word by word. For the
other axioms some changes are needed in order to handle the weakening of the universe. In
particular the three nontrivial points are given by restricted separation and infinity which rely
on lemma 6.4, and the discussion about dependent choices which needs few more words than
the usual reformulations.
Observe that we have used function extensionality just for lemma 6.4. This yields to the
question if it is necessary for the lemma and for restricted separation. However, we will not
address this question here.

We cannot omit a brief comparison with the treatment of the cumulative hierarchy in
[UFP13]. It is defined as an higher inductive type with the aim to provide a model of ZFC (for
some improvements on the definition see [Led14]). Thank to its definition is possible to prove
that for x, y : V the type (x � y) → IdV (x, y) is inhabited. In spite of this result this notion
seems unable to prove strong collection and subset collection. Finally, in order to build the
desired model of ZFC an additional axiom is added to type theory, namely the set-theoretical
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axiom of choice, which yields full excluded middle.

This generalised interpretation has implications on the status of the axiom of univalence,
in fact univalence is a statement about the universe. Now we know that weak univalent Tarski
universes - which are easier to obtain in semantics - are good as the strict ones, if we are inter-
ested in obtaining models of constructive set theory.
Therefore one may wonder if there are substantial differences between the consequences of
the existence of strict univalent universes and weak ones. We expect that differences between
these two variants emerge when the proof-theoretic and computational structure of the theory
are analysed. Indeed, the rules for the weak universe break the symmetry of the computational
rules introducing equivalences instead of syntactical definitional equalities.

In addition, this result may be seen as a hint that also (some of) the other coherence con-
ditions can be weakened, hence that homotopical models can provide motivations and play a
role in the development of type theoretical system with explicit substitution, as suggested in
[AW09](for example they are studied in [ACCL90]). These systems have strong syntactical
motivations and are studied with the hope to fill the gap between type theories and concrete
implementations, in fact substitutions are usually treated implicitly, hiding relevant computa-
tions in the meta-theoretical level.

In our opinion the next step in the direction of the study of weak univalent universes is
to check if they imply function extensionality. We expect this to be true. Indeed, the main
reason for the introduction of an extensional principle like function extensionality - with the
risk to break the computational content of the theory - is the study of the models in which
this principle is validated, which are also the main motivation for weak universes.
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Appendix A

Locally Cartesian Closed Categories

In this appendix we recall the very basics about locally cartesian closed categories, we refer
the reader to [Joh02] chapter A1.5.

Definition A.1
A category C is locally cartesian closed (lccc for short) iff every slice C /A is cartesian closed.

Observe that Cat is not locally cartesian closed because pullback functors do not in general
preserve coequalizers. Given an object B in C we use the same letter for the unique morphism
B→ 1, thus B∗ : C → C /B denotes the right adjoint of the forgetful functor ΣB : C /B→ C .
B∗(A) is the product projection A × B→ B.

Lemma A.1
Let C be a category with finite limits. An object B of C is exponentiable iff the functor B∗ : C →
C /B has a right adjoint ΠB : C /B→ C .

Proof. Observe that (−) × B is the composite C
B∗
−→C /B

ΣB
−→C , so if ΠB exists we may define

(−)B as the composite ΠBB∗.
Conversely, suppose B exponentiable. Given f : A→ B form the pullback:

ΠB( f ) //

��

AB

f B

��

1
q̄

// BB

where q̄ is obtained by adjunction from the projection q : 1 × B → B. Now for any object C
of C , morphisms C → ΠB( f ) correspond to morphisms h̄ : C → AB such that f Bh̄ = q̄C, and
hence t morphisms h : C × B → A such that f h is the product projection C × B → B, i.e.
to morphisms B∗(C) → f in C /B. It is straightforward to verify that this correspondence is
natural in C and f . �

Corollary A.2
A category with finite limits is locally cartesian closed iff for every morphism f : A → B, the base
change functor f ∗ : C /B→ C /A has a right adjoint Π f .

Proof. It is easy to check that we have an isomorphism (C /B)/ f � /A, so that we have reduced
the statement to the previous lemma. �
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Lemma A.3
let C be a category and F : C → Set a functor. Then there is a category F such that the slice
category (SetC )/F is equivalent to the functor category SetF . Moreover, if C is small [with small
Hom-sets], then so is F .

Proof. We define F as a category structured over C its objects are the elements of the disjoint
union of sets

∐
A∈Ob(C ) F(A), the underlying object of x being the unique A such that x ∈ F(A).

Sources and targets are defined by f : x → y iff F( f )(x) = y. The fact that F is small (or has
small Hom-sets) if C is, follows automatically from the definition.
Given an object α : G → F of SetC /F, we define a functor Φ(α) : F → Set by:

Φ(α)(x) := {y ∈ G(A) |αA(y) = x}

if x ∈ F(A), with Φ(α)( f )(y) = G( f )(y) whenever this makes sense. It is clear that a morphism
γ : α→ β in SetC /F induces a natural transformation Φ(γ) : Φ(α)→ Φ(β), so that Φ becomes
a functor SetC /F → SetF .
Conversely, given a functor H : F → Set, let Ψ(H) denote the functor C → Set defined by:

Ψ(H)(A) :=
∐

x∈F(A)

H(x)

with Ψ(H)( f ), for f : A → B in C , defined as the union of the functions H( f : x → F( f )(x))
over all x ∈ F(A). Ψ(H) comes equipped with an obvious natural transformation to F, and
Ψ itself is a functor SetF → SetC /F. It is easy to check that Ψ and Ψ are actually quasi-
inverses. �

Theorem A.4
For every small category C , the functor category SetC is locally cartesian closed.

Proof. By the previous lemma every slice is equivalent to another category of presheaves, then
it suffices to show that SetC is cartesian closed. The idea of the proof is a common argument:
if exponentials exists, their definition is forced by the Yoneda lemma. Indeed, if GF exists,
then elements of GF(A) must correspond bijectively to morphisms HomC (A,−) → GF , and
hence to morphisms HomC (A,−) × F → G. The functor category SetC has small Hom-sets,
so we take the set of all such morphisms as the definition of GF(A) on objects. Given a
morphism f : A → B in C , GF( f ) is defined as the precomposition with HomC ( f ,−) × 1 :
HomC (B,−) × F → HomC (A,−) × F.
Next we define the evaluation map ev : GF × F → G by evA(φ, x) := φA(1A, x) where φ :
HomC (A,−) × F → G and x ∈ F(A). Finally, given a morphism θ : H × F → G we define its
exponential transpose as θ̄ : H → GF by

(θ̄A(z))B( f , x) := θB(H( f )(z), x)

for z ∈ H(A), f : A→ B and x ∈ F(B). �
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sup, 44
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adjunction of two variables, 34
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type, 50
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Kan, 15
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Serre, 23
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topological, 23
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fibre bundle, 18
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frame bundle, 66

function type, 40

functorial factorisation, 25

geometric realisation functor, 13

Girard’s paradox, 44
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abstract, 29

category, 25

equivalence, 29

groups, 19

induction, 54

left, 28

of simplicial maps, 18

of simplicial vertices, 18

right, 28

type-theoretic, 49

homotopy category, 28

horn, 11

identity types, 41

indiscernibility of equivalents, 54
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inductive definition, 75

inhabitation of a type, 37
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intersection of classes, 75
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Kan complex, 15

Kelley space, 12
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left lifting property, 15

left projection, 41

left Quillen functor, 28
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mere proposition, 47
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model structure, 26
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polynomial functor, 59
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principal simplicial action, 65
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RLP, 15
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simplicial
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object, 10
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weak equivalence, 14
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substitution rule, 46

such that, 41

transitive closure, 73
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type-theoretic interpretation of CZF, 79
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