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0. Introduction

T
My purpose here is to explain a method in homotopy theory. The following result
is perhaps the best example Lo dale of a statement that can be proved by this method:

Theorem 1. For any 2-connected map of topological spaces Y — X the fiber of
A(Y) = A(X) and the fiber of TC(Y)— TC(X) are weakly homotopy equivalent.

Here A4 is Waldhausen’s algebraic K-theory functor from spaces to spectra, and
TC is another functor which I will discuss below. “Fiber” means homotopy fiber.

If we write A for the reduced functor A(Y) = fiber(4(Y)— A(+)) and similarly
for TC, then in the case when X is a point we have the statement:

Corollary 2. For any 1-connected topological space Y the spectra A(Y) and TC(Y)
are weakly homotopy equivalent.

I will not say much now about the other functor TC, except that TC(X) is closely
related to the free loop space AX (the space of all unbased maps from the circle to
X) and is easier to study than A(X) from the point of view of algebraic topology.

The theorem stated above represents the work of several people. In particular,
the definition of the functor TC, and of a map A — T'C which is crucial to the proof,
uses work of Bokstedt-Hsiang-Madsen. A p-completed version of Theorem 1 (proved
by the method outlined below) was the main result of [BCCGHM]. The theorem
stated above is only a marginal advance over this, since a rational version ([G1],
Corollary on p. 349) has been known for some time. (The final steps in the proof of
Theorem 1 will appear in [G6].)

1. Summary of the Method

The proof of Theorem 1 uses a kind of deformation theory. The goal is to describe
the change in A(X) produced by a given (small) change in X. It turns out that to
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achieve this it is enough to describe the infinitesimal change in A(X) produced by
an infinitesimal change in X, By this I mean; to give an approximate description of
the change in 4(X) produced by a very small change in X. (A small change in X is
a highly connected map Y — X.)

In a little more detail, the method is this:

There is a natural map of spectra from A(X) to TC(X), called the cyclotomic
trace map. Denote its homotopy fiber by F(X). There is a constant ¢ such that for
any k-connected map of spaces Y — X the map of homotopy fibers

fiber(A(Y) — A(X)) — fiber(TC(Y) — TC(X))

is (c + 2k)-connected. In other words, the map F(Y) — F(X)is about twice as highly
connected as the map Y — X upon which it depends. By a certain general principle
(Proposition 5 below), it follows that the map F(Y) — F(X) is in fact co-connected
when the map Y — X is at least 2-connected. (In other words, up to weak equiva-
lence F(X) depends only on 7, (X) if X is connected.) This yields the conclusion of
Theorem 1.

The general principle used above is analogous to the following fact from differen-
tial calculus: If a function f (in a suitable domain, and satisfying suitable differenti-
ability hypotheses) is such that | f(x) — f(y)| < C|x — y|?, then fis locally constant.
A more familiar statement of this fact is that if the derivative of [ is identically zero
then f is locally constant.

Section 2 explains the idea “derivative of a homotopy functor”. Section 3 states
the general principle mentioned above. Section 4 discusses what one needs to know
about Waldhausen’s functor 4 in order to apply the principle here. Section 5
describes the other functor T'C. Section 6 discusses that part of the proof which
involves the map from A to TC. Details may be found in [BCCGHM, G2, G3, G4,
and GG]. -

2. Differentiation of a Functor

For a more detailed account of the ideas below, see [G2].

2.1 The Definition

The idea can be made quite general, but for concreteness let us suppose that F is a
functor from spaces to spectra. We always assume that it is a homotopy functor,
meaning that it takes equivalences to equivalences. (Throughout, an equivalence of
spaces or spectra means a weak homotopy equivalence.)

In calculus the concept of derivative, or differential, of a function f at a point x
is a way of systematically describing the quantity f(y) — f(x) with an accuracy like
|y — x| In a similar way the next two definitions serve to describe the 2k-homotopy
type of the fiber of F(Y) — F(X) when the map Y- X is k-connected.

Definition 3. The derivative J,F(X) of F at the based space (X, x) is the homotopy
colimit (as k — o0) of the spectra Q fiber(F(X v §¥) = F(X)).
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The maps in the limit system are (loosely speaking) induced by the diagrams

F(X v §') —— F(X v D%) ~ F(X)

|

F(X) ~ F(X vDt) —— F(X v 59

(Note that F(X v D¥) is equivalent to F(X).) Up to equivalence the derivative is
determined by X and by knowing which component of X contains the point x. The
spectrum 8, F(X) is a functor of the based space (X, x), and any based map (X, x) —
(Y, y) which is an equivalence induces an equivalence 8, F(X) — d,F(Y).

There is a more general construction. If f: ¥ — X is a map of spaces, think of
Y as a space over X, think of the mapping cylinder of f as the fiberwise cone of Y
over X (another space over X), and denote it by C,Y. Let X' Y, the fiberwise
suspension of Y over X, be the union along Y of two copies of Cy Y. ¢

Definition 4. The differential of (D, F)(Y), defined for any map ¥ — X, is the homo-
topy colimit of the spectra QF fiber(F(Z¥Y) — F(X)),

The maps in the limit system are defined using diagrams

F(EEY) — F(CyZX 1Y) ~ F(X)

|

F(X) ~ F(CyZX'Y) —— F(ZLY)

For fixed X the differential D, F is a functor from spaces over X to spectra. It
is a homotopy functor in the sense that it preserves equivalences, where a map of
spaces over X is called an equivalence if as a map of spaces it is a (weak homotopy)
equivalence. We have (Dy F)(X) ~ * and (DyF)(X v S°) ~ 6. F(X).

Note that there is a natural map

fiber(F(Y) = F(X)) = (Dy F)(Y)

The functor Dy F is intended to be an excisive functor that approximates Y
fiber(F(Y)— F(X)), much as in calculus the differential of a function f at a point x
is a linear function that approximates f(y) — f(x). To explain this I need some
language. '

2.2 Excision

A commutative diagram & of spaces (or spectra)

D) — Z(1)

|

22 — Z(1, 2)
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is a cofiber square if the canonical map to Z(1, 2) from the homotopy pushout (union
along Z() of the mapping cylinders of Z(&) — Z(1) and Z(F) — Z(2)) is an
equivalence. It is a fiber square (resp. k-connected) if the canonical map from Z()
to the homotopy pullback (fiber product over Z(l, 2) of the path fibrations of
2(1)— 2Z(1, 2) and Z(2) — 2(1, 2)) is an equivalence (resp. k-connected). Equiva-
lently, a square diagram & of spectra is k-connected if the iterated fiber, the
homotopy fiber of the map

fiber(2() — Z(1) — fiber(Z(2) = Z(1, 2))

of homotopy [ibers, is (k — 1)}-connected.

A functor F (say from spaces, or spaces over X, to spectra) is excisive if it takes
cofiber squares to fiber squares. This is a very strong condition. Homotopy functors
occurring in nature usually satisfy a much weaker, but useful, condition, called stable
excision: there is a constant ¢, such that if the maps 2(&) — 2(1) and 2(J) — Z(2)
in a cofiber square are respectively k,- and k,-connected, then the diagram F(%):

FE(Q)) —— F@@)

FZQ2) —— F(Z(1,2)

is (k; + k, + c,)-connected.

If F satisfies stable excision then, for each X, Dy F satisfies excision; we may
think of Dy F as a (reduced) homology theory on the category of spaces over X.
Moreover, stable excision for F implies that the map from fiber(F(Y) — F(X)) to
(D4 F)(Y) is approximately 2k-connected for any k-connected map Y — X. -

2.3 The Principle

Theorem 1 is proved by applying the following principle with F = fiber(4 — TC) -
and g = 1. The term “g-analytic” will be explained in Section 3.

Proposition 5. If F is a p-analytic functor from spaces to spectra such that (Dy F)(Y)
is trivial for all X and all Y — X, then for every (o + 1)-connected map Y — X of
spaces the map F(Y) — F(X) is an equivalence.

“Trivial” means equivalent to a point (all homotopy groups are trivial). If F
satisfies a suitable limit axiom, so that up to equivalence it is determined by its
behavior on finite CW complexes, then it is enough to assume that 4. F(X) rather
than Dy F is trivial.

3. Analytic Functors )

“Analyticity” of a homotopy functor F has to do with the behavior of F with respect
to cubical diagrams of spaces. By an n-cubical diagram we mean a functor 2 from
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the partially ordered set of all subsets of {1,...,n} to the category of spaces.
Analyticity of F involves one condition, stable (n — 1)st order excision, for each n.
Stable first-order excision is stable excision as defined in Sect. 2.2.

Stable (n — 1)st order excision concerns certain n-cubical diagrams Z, namely
the strong cofiber cubes. Call Z a strong cofiber cube if, foreach 1 <i <j<nand
Se{1,...,n} —{i,j}, the diagram

xS —— ZSuli})

|

ZSu{j} —— 2 ulij})

is a cofiber square. The condition is that there is a constant ¢, such that, whenever
& is a strong cofiber cube in which the map () — Z(i) is k;-conngcted for all i,
with k; > g, then F(Z) is (¢, + Zk;)-connected. (An n-cubical diagram of spectra is
called k-connected if its iterated fiber — the spectrum obtained by taking homotopy
fibers in each of the n directions in turn — is (k — 1)-connected.) Note that c, is
allowed to be negative.

For n =1 this simply says that there is a constant ¢, such that for any k-
connected map Z(F) — Z(1) of spaces the map F(Z()) = F(Z(1)) 1s (k + c,)-
connected, at least if & > p.

Definition 6. The functor F is g-analytic if it satisfies (n — 1)st order as above for all
n > 1, and if the numbers ¢, are bounded below by ¢ — gn for some constant c.

Most homotopy functors occurring in nature are g-analytic for some p, and in
many cases it is a routine matter to verify this. The identity functor [rom spaces to
spaces is 1-analytic, as is Waldhausen’s functor A.

The proof of Proposition 5 uses an unusualinductive argument. It is not diflicult,
but I will not take time to explain it here; see [G3].

Proposition 5 expresses one of two main consequences of analyticity. The other,
the existence of a “Taylor tower” for a functor in analogy with the Taylor series of
a function, is not used in the proof of Theorem 1. It is explained in [G5].

4. The Derivative of K-Theory

In order to use Proposition 5 for proving Theorem 1, it is necessary first of all to
know (up to natural equivalence) what the derivative of the functor A4 is. The answer
turns out to be this:

Theorem 7. For a based space (X, x) the spectrum 0. A(X) is related by a chain of
natural equivalences to Z=(2(X, x),).

This is the unreduced suspension spectrum of the based loopspace of X. (The
subscript “+" adds a disjoint basepoint.)
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Theorem 7 (3.3 of [G2]) is proved indirectly; it is reduced to a corresponding

statement (Theorem 7" below) about smooth manifolds, using a major theorem of
Waldhausen:

Theorem 8 (Waldhausen [W1]). There is a natural weak equivalence of spectra
between A(X) and the product £=(X.) x WhP'™(X), where WhP™(X) is a natural
double delooping of the differentiable pseudoisotopy spectrum (X)),

In view of Theorem 8, Theorem 7 may be rewritten:

Theorem 7'. For a based space (X, x) the spectrum 8,.2(X) is related by a chain
of natural equivalences to Q*Z*(2(X, x)/X).

It is notable that, while the relationship between K-theory and pseudoisotopy
theory expressed in Theorem 8 is usually viewed as a way of reducing geometry to
algebra, in this instance the flow of information is in the other direction. In this
connection see also Sect. 5.3.

Recall that the underlying space of the spectrum 2P1(X) is essentially defined
as a limit of spaces PP (M) for manifolds M (compact, with boundary, of arbitrarily
large dimension) of the homotopy type of X. The space PP(M) is the simplicial
group of all diffeomorphisms of M x I which are the identity along (M x 0)u
(@M x I).

Therefore, to “compute” 3.2 (X) is essentially to solve the lollowing problem:
For a smooth manifold M with an attached handle h of index k > 3, determine the
2k-homotopy type of the fiber of PP (M) — PP (M U h). This is done in [G2] using
Morlet’s “disjunction lemma” and an old-fashioned differentiable general-position
argument.

5. The Functor 7C

I will now say something about the functor TC which occurs in the statement of
Theorem 1. There are really two questions to address: How is it deflined, and what'
does it turn out to be?

5.1 Definition of TC

I will not be very specific about this. TC is related to Boksted(’s “topological
Hochschild homology” (THH). For details see [BCCGHM], [BHM], or [G4].

Recall that, according to one way of thinking about the K-theory of (based,
connected) spaces, A(BG) is the K-theory spectrum of the “ring up to homotopy”
2% 2*(|G|,). The latter is to be thought of as the “group ring” k[ G] of the simplicial
group G over the ground “ring” k = OS°. Heuristically,

connective spectrum = infinite loop space
— abelian group up to homotopy

= k-module §

and the group structure of G gives k[G] a mulitiplication compatible with its additive
structure. These ideas can be made precise by using a suitable notion of “ring up
to homotopy”, for example Bokstedt’s notion of FSP (functor with smash product).
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For such a “ring” R, Bokstedt defines a K-theory spectrum K(R). Both the
Quillen K-theory of rings and the Waldhausen K-theory of spaces are included as
special cases (the cases of a discrete ring R and a group ring k[ G] respectively). He
also defines a spectrum THH(R); heuristically it is the simplicial object

R

rd7
R®R

T4Td1
R®R®R

with face and degeneracy maps given by the product and unit of R, respectively, as
in the definition of the standard chain complex for Hochschild hemology. The
“tensor products” are meant to be over k and are really smash products of spectra.

Bokstedt defines a map of spectra K(R) - THH(R); it is modeled on the “trace
map” from K-theory to Hochschild homology defined by Dennis for an ordinary
ring R.

Very roughly speaking, TC is related to THH as cyclic homology is related to
Hochschild homology. For any FSP there is a spectrum TC(R) with a map TC(R) —
THH(R). The trace K(R)— THH(R) lifts to a map K(R)— TC(R), called the
cyclotomic trace. (After p-completion this is the same as the map of that same name
constructed in [BHM]).

Let the simplicial group G be a loop group for the space X, and let R be k[G].
In this case we sometimes write TC(X) instead of TC(R). Thus in this case the
cyclotomic trace is a map A(X)— TC(X). It is this which is used in the proof of the
theorem.

5.2 Description of TC

From a computational point of view the main thing to know about TC(X) is that
it is related in a certain way to the free loop space AX = Map(S*, X). Again let G
be a simplicial lpop group for X.

First of all, it is fairly easy to see that THH(k[G]) is equivalent to Z°(4X ).
This is essentially because AX is equivalent to the realization of the sirhplicial space

G

Ti1
GxG

FLhd™
GxGxG

(the “cyclic bar construction” or “cyclic nerve” of G).
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To describe TC(X) we must consider some additional structure that the space
AX has. Let the circle group S* act on AX in the usual way, and let 4,: AX — AX
be the pth power map (composition with the standard map S — S! of degree p).

It turns out that the functor X — TC(X) is very closely related to the functor
X B(X) = Z®°Z((ES' xg AX),), although to say exactly how they are related it
is apparently necessary to consider separately the profinite homotopy type and the
rational homotopy type.

Concerning the profinite type, the statement is that after p-completion (p a
prime) the spectrum T'C(X) becomes part of a fiber square

TC(X) —— B(X)

|

XmAX.i, T EwAX+
P

Tl

Here Trf is the S!-transfer associated to the bundle
(AX ~) ES' x AX — ES! x AX

and 1 — 4, is the difference between two stable maps, the identity and the map
induced by 4,. :

This, it turns out, has the consequence that for 1-connected spaces X there is a
natural equivalence, after p-completion and passage to reduced functors, between
TC(X) and

2°(X,) x fiber(e o Trf: B(X) —» Z*(X.))

where the map is the composition of the transfer and the map induced by evaluation
AX — X at a point in the circle.

Concerning the rational type, the statement is that for 2-connceted maps Y — X |
there is a natural equivalence, after rationalization, between the fiber of TC(Y) —
TC(X) and the fiber of B(Y) — B(X). (This is not, however, induced by a natural
map TC — Bor B— TC))

5.3 Generalizations

Theorem 1 can be generalized so as to apply to more than the K-theory of spaces.
There is considerable evidence for the following:

Conjecture 9. For any 1-connected map R — S of FSP’s the resulting map of spectra
Srom fiber(K(R) — K(S)) to fiber (TC(R) — TC(S) is an equivalence.

This can be deduced from Theorem 1 in some cases, namely those in which 74(R)
(= mo(S)) is an integral group ring Z[n]. In particular, it is true for the map
0S° = k = R — § = Z. Unfortunately, this does not yet amount to a computation
of the fiber of A(*) = K(Z)in any real sense, because T'C(Z) is still a fairly mysterious
object. i
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6. The Derivative of 7C

After producing a map from A to TC, it remains to show that it induces an
equivalence d,4(X) — 8, TC(X). This is done in two steps.

The first step is to show that d,4(X) and ., TC(X) are abstractly equivalent, in
the sense that these two functors from based spaces (X, x) to spectra are related by
a chain of natural equivalences. 1 have already said that d,4(X) is abstractly
equivalent to Z°Q(X, x),. The same is true of d, TC(X). Of course I cannot begin
to explain why, since I have not even defined TC here, but to get the idea I invite
the reader to work out the equivalences (see Section 2 of [G2]):

ameA{X)+ . Map(sls EQQ(X, .\')+)
8.B(X), ~ Z°Q(X, x),.

The second step is to prove:
Lemma 10. The cyclotomic trace A — TC induces an equivalence 0, A(X) — 6, TC(X).

The trick in proving this is to begin with the case when X is the suspension 'Y
of a connected space Y.

To see that this special case is enough, one classifies all the natural maps
22X, x), = 2*Q(X, x), in the homotopy category of homotopy functors from
based spaces to spectra. It turns out that the only maps which are equivalences
when X is a simply-connected suspension are those which are equivalences for all X.

The argument which proves the lemma in the case X = XY is essentially the
main argument of [CCGH]. It relies on a tool which is only available in the
suspension case: the cyclotomic trace can be composed with another natural map
as follows:

LI p,(v)» icy) - eTcy).

nzl
Here D,(Y) is the divided power E®(E(Z/n); Az, Y™). (I am writing Y™ for the
smash product of n copies of Y.) The composed map above induces a map of
derivatives

6,.(]_[ D, ( 1’}) — 0,2 TC(ZY)~ QZ°QXY,
nz21 y

which, more or less by direct examination, is seen to be an equivalence. It follows
that the map-

RI*QXY, ~ 0,QA(XY) - §,QTC(ZY) ~ QI°QXY,

induced by the cyclotomic trace is a split surjection, and from this one concludes
without much trouble that it is an equivalence.

As a by-product this yields the main result of [CCGH], which can now be viewed
as a special case of Corollary 2:
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Theorem 11. For connected spaces Y there is a natural equivalence of spectra

QAEY) ~ QA x LI D.(Y).
nx1
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