Knowledge, Representation
and the Dynamics of Computation

Jan van Leeuwen and Jiii Wiedermann

Abstract Cognitive processes are often modelled in computational terms. Can this
still be done if only minimal assumptions are made about any sort of representation
of reality? Is there a purely knowledge-based theory of computation that explains the
key phenomena which are deemed to be computational in both living and artificial
systems as understood today? We argue that this can be done by means of techniques
inspired by the modelling of dynamical systems. In this setting, computations are
defined as curves in suitable metaspaces and knowledge is generated by virtue of the
operation of the underlying mechanism, whatever it is. Desirable properties such as
compositionality will be shown to fit naturally. The framework also enables one to
formally characterize the computational behaviour of both knowledge generation and
knowledge recognition. The approach may be used in identifying when processes or
systems can be viewed as being computational in general. Several further questions
pertaining to the philosophy of computing are considered.

1 Introduction

Can cognitive processes be simulated by machines? Can cognitive processes be
understood in computational terms at all? Can this be done without making severe
assumptions about any sort of representation of the subjective environment and on
the nature of the underlying computational mechanisms? These questions not only

J. van Leeuwen (5)

Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

e-mail: J.vanLeeuwen] @uu.nl

J. Wiedermann
Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodarenskou v. 2, 182 07 Prague 8, Czech Republic

J. Wiedermann

Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical
University in Prague, Zikova Street 1903/4, 166 36 Prague 6, Czech Republic
e-mail: jiri.wiedermann@cs.cas.cz

© Springer International Publishing AG 2017 69
G. Dodig-Crnkovic and R. Giovagnoli (eds.), Representation and Reality in Humans,

Other Living Organisms and Intelligent Machines, Studies in Applied Philosophy,

Epistemology and Rational Ethics 28, DOI 10.1007/978-3-319-43784-2_5

70 J. van Leeuwen and J. Wiedermann

challenge our deepest understanding of cognition and its computational modelling
[1], but also that of computation in itself, being commonly tied to algorithms and
discrete-state systems only since the ground-breaking insights of Turing. What are
the basic properties needed of a process in the human or animal brain in order for it
to be regarded as being computational?

The term “computation” is increasingly being used to describe aspects of natural
processes outside the well-formalized domain, including many occurring in cogni-
tion but also e.g. in living cells. In all these cases, computation is more than just a
metaphor. It appears as a much more general notion than what is implied by cur-
rent theories. It has already given rise to many alternative views, including many in
which computation is seen as a process for transforming information in some way.
Is there a notion of computation that is more fundamental? In particular, should one
not focus more on what computations do rather than on how they do what they do?

In previous studies [2, 3] we presented computation as some process that gener-
ates knowledge instead of one that merely manipulates symbols or transforms infor-
mation. The question of what constitutes knowledge and how it may be generated in
any subjective context clearly depends on the views or theories of the observer. How-
ever, if we adopt the Aristotelian view that knowledge, old or new, should be demon-
strable from basic premises, it makes sense to assume an underlying process, mental
or otherwise, that can acquire, deduce, combine, transform, adapt and create knowl-
edge, using some kind of causality as an ordering principle. A knowledge-generating
process is likely to interact with an environment and even evolve over time, using new
premises as new knowledge is generated, dispensing with old knowledge that is no
longer viable. We take the view that computation is what these knowledge-generating
processes do (and vice versa).

Viewing computation as a knowledge-generating process presupposes certain
manipulative possibilities and rules for knowledge. For our purposes we assume
that knowledge can be specified as items and that distinct knowledge items can be
recognized or observed. We assume that items can be processed, combined and com-
posed (fused) in some way but we will not be more specific than this. In the interest
of generality, we make no further assumptions about the concrete representation of
knowledge (items) or about any deductive or generative framework for the knowl-
edge domain (theory) that is considered. In Sect. 2 we introduce metaspaces to cap-
ture the sets of items we need.

Viewing computation as knowledge generation entails that computations are
‘observed’ in suitable metaspaces, while the generating mechanisms ‘live’ in other
suitable metaspaces. After defining the types of metaspaces involved, we give a gen-
eral definition of computation in Sect. 3. We will define computations as curves, in
a suitable topological setting. Clearly, the question arises of whether this approach
can explain known or new computational phenomena in cognition or otherwise, in
a more satisfying and general way than earlier approaches. We give several exam-
ples that aim to show that it does. The approach enables us to formally characterize
knowledge generation and knowledge recognition as computational processes. We
do so in Sects. 4 and 5.

Knowledge, Representation and the Dynamics of Computation 71

Having knowledge and knowledge generation as a starting point is not only inter-
esting for understanding computation. By linking the worlds of computation and
knowledge generation we bring two domains together which have been remarkably
converging to each other in the present information age. By concentrating on what
computation is and does, we may be losing the finer details of computation and the
strength of the mathematical theory as we know it since Turing, but this may be
required to achieve the abstraction we need today. This paper explores a theoreti-
cal framework that implements some of the ideas and viewpoints of our philosophy.
The new focus brings further insight into the essence of computation and its intimate
relation to cognitive processes and knowledge generation.

2 Metaspaces

The classical approaches to computation rely on machine models and algorithms,
but this severely limits the general interpretation of the notion. In order to explain
computation in the broadest possible way, we need a new way to abstract from the
underlying mechanisms that effectuate it.

In this section we introduce metaspaces as generic sets of items that can arise
in capturing mechanisms in some way. We subsequently introduce two types of
metaspaces that play a role here: action spaces and knowledge spaces. In the next
section we show how these spaces enable us to give an elegant and general definition
of computation.

2.1 General

Given our premise that knowledge is generated by a process of some kind, it is
implicit that there is some underlying mechanism producing it. We refrain from mak-
ing any further technical assumptions about such mechanisms, and merely posit that
their features can be captured at any desired moment in time. The joint features at
any time will form the meta-item for the mechanism at that time. The collective set
of all meta-items corresponding to a mechanism that can arise is called a metaspace.

Metaspaces occur in any context where systems or processes are observed. For
example, the configuration spaces obtained when physical systems are modelled
using vectors of parameters are metaspaces. Metaspaces typically have some struc-
ture, derived from the way the underlying mechanism is observed or explained.
Hence, meta-items will adhere to some descriptive framework or theory for the space
we are interested in. A consequence is that meta-items are presentable and distin-
guishable, even though we do not care how. We note that meta-items do not neces-
sarily characterize a given mechanism completely. Meta-items need not be unique
over the lifetime of a process and may repeat even when the observed system is not
cyclic.

72 J. van Leeuwen and J. Wiedermann

Metaspaces are intensionally defined. Even if meta-items are observable, this does
not mean that we know all of them before we observe them nor that we will actually
ever observe them in reality. In particular, we do not assume that all items that ‘look’
like valid meta-items according to some perception of the descriptive framework
actually are members of the given metaspace. For example, if meta-items are like
theorems of a non-trivial theory, it is clear that we can at best hope to discover some
of them in a gradual way. This is also seen e.g. in metaspaces arising in cognition
and in Nature.

For every metaspace M we assume that there is a core set M, which is ‘known’ and
that there is a process of some sort to discover the remaining elements of M, espe-
cially when meta-items that contain valuable information (‘knowledge’) are believed
to exist. If no such process is available, we may wish to design it. Metaspace dis-
covery will become crucial later on. We will not worry about questions like: are
metaspaces sets (we assume they are), are metaspaces enumerable (they probably
are) and are meta-items representable (we will discuss this later).

2.2 Action Spaces

Consider any mechanism (process) that is regarded as being computational. The
meta-items of the mechanism in action form a metaspace which we will call the
action space of the mechanism. The notion of action space is dependent on the way
meta-items are viewed and thus on the framework used to model the mechanism.
Hence, different frameworks could lead to different action spaces for the same mech-
anism. This happens, for example, when a refined framework or a different theory
altogether is used to capture a mechanism. It is similar to the way different ‘specta-
tors’ may have different views of reality, as in [4].

Action spaces are not arbitrary metaspaces. Observing meta-items while a given
mechanism is acting implies a notion of proximity among the meta-items as they are
occurring in sequence. This is an aspect of action spaces which is intuitively asso-
ciated with the idea of being computational. Action spaces may be ‘continuous’ or
‘discrete’ in this respect, or a combination of both. In order to delineate the action
spaces that we need, we resort to mathematical topology and postulate the following:

Action spaces are topological spaces, with a topology consistent with the prox-
imity relation between action items.

The postulate expresses that the topology of an action space ‘derives’ from the prox-
imity relation observed during the action of the mechanism (i.e. over time or as
induced by some other measure). Given the postulate, one can make use of com-
mon topological notions and e.g. define continuous mappings over action spaces.
The core set of an action space is the collection of meta-items that correspond to
valid ‘initializations’.

Knowledge, Representation and the Dynamics of Computation 73

We do not make any further assumptions about action spaces now; in particu-
lar, we make no assumptions on how the mechanism that corresponds to it actually
works. A mechanism may follow any mode of operation, consist of any number
of cooperating components, and interact with any environment. This gives action
spaces the full generality we wish to preserve.

Example I The observable descriptions of a living cell form an action space. The
meta-items give information about its development over time, a level of abstraction
away from the concrete content of the cell. We may also be interested in some special
knowledge, e.g. the fluctuation of a chemical compound or a property of the cell, all
to be gleaned from the meta-items. (Note that meta-items may be real-valued.) We
may also be interested in the metaspace of a family of cells, as in an experiment.

Example 2 The possible ‘full information descriptions’ of a computer executing a
(known or unknown) chain of instructions form an action space. Meta-items display
the possible instances of registers and memory in bits. We may read out or interpret
any meta-item as knowledge, if indeed it fits the sort of knowledge we are interested
in. The meta-items may correspond to any mode of execution (sequential, parallel or
distributed) and to any level of abstraction at which we want to observe the mecha-
nism, i.e. the computer system.

2.3 Knowledge Spaces

In viewing computation as knowledge generation, it is implicit that computations
generate knowledge that is meaningful in a suitable knowledge domain. In philoso-
phy one distinguishes between many different types of knowledge. We will be mostly
concerned with knowledge in a broad Aristotelian sense, as this is most naturally
quantized. Knowledge is then basically the collection of ‘actualities justified by an
understanding’, in a sense that may vary over time.

The strong assumption we make is that the knowledge over a given domain can
be qualified and described, and bound to a definite ‘point of view’. This may be
expressed as in some formal theory, but even the use of natural language is not
excluded here. The collection of potential ‘knowledge items’ for a domain will be
called the knowledge space of the domain. We assume that there is always a descrip-
tive framework or a deductive theory for defining or generating the items of the
knowledge spaces that we consider. Hence we postulate that knowledge spaces are
metaspaces. The core set of a knowledge space consists of the facts that are known
by observation or experience, or just by assumption.

Many ways are known by which knowledge can be generated. Knowledge gen-
eration has been studied in philosophy ever since the times of Plato and Aristotle.
It has given rise to principles such as formal inference, informal reasoning, anal-
ogy, knowledge acquisition by communication, cognition, causality and so on. In
[2, 3] we argued that computation is a general mechanism for generating knowl-
edge as well. By definition, knowledge generation is merely an instance of the, more
general, metaspace generation problem.

74 J. van Leeuwen and J. Wiedermann

Example 3 The theory of a first-order structure A as known in mathematical logic
forms a knowledge space. The knowledge items are sentences that hold in A. The
core set of A consists of the postulates of A. The mechanism underlying the
metaspace is a combination of first-order inference and the evaluation (‘invention’)
of new sentences. Knowledge here follows the standard pattern of a formalized
theory.

Example 4 The structures (worlds) that are possible instantiations of a given first-
order language L over a fixed base set form a knowledge space. The knowledge items
represent the way the ‘world’ could be shaped, using the functions and relations
as they are defined in it. The core set of the space consists of the ‘initial worlds’
one wishes to observe. The mechanisms underlying the metaspace are ‘programs’
that modify the assigned values of the functions and relations in a stepwise way,
with external influences possibly taking place as well. Worlds correspond to ‘states’
and the mechanisms to abstract state machines as defined by Gurevich [5, 6], pro-
vided that certain additional restrictions are imposed (notably, the so-called bounded
exploration condition).

Knowledge spaces are special because knowledge is. One may well have mech-
anisms that act on the items of a knowledge space, turning it into an action space
itself. Thus, action spaces and knowledge spaces may be viewed as dual structures,
even giving rise to formal equivalences between them if the corresponding actions
match, in analogy to similar correspondences between formal structures studied in
computer science. Alternatively, a knowledge space may serve as the action space
for another, higher-level knowledge space, potentially leading to a hierarchy of levels
of abstraction [7].

It is an intriguing thought that the (dispositions of the) brain may be viewed as a
knowledge space. The knowledge items are our possible mindsets (possibly restricted
to a certain topic), and the underlying mechanisms are provided by the facilities of
thought. The eternal question of whether the brain is a computer or not (cf. [8, 9])
amounts to the very question of whether, and if so how, the corresponding knowledge
spaces can be explored by computation.

3 Computation

Our premise is that, in principle, every computation effectuates some knowledge. We
need to have a good model in order to design, explain, prove or understand this and
highlight the nature of computation. In this section we give a definition of computa-
tion from this viewpoint. The definition will be fully machine- and algorithm-free,
and uses minimal assumptions on representation.

We start out by assuming that computation is performed by some process and for
some purpose, but how do these things connect? The duality we continually noted
between underlying mechanism and knowledge generation is similar to the duality

Knowledge, Representation and the Dynamics of Computation 75

between agency and goal in the philosophy of action. We will give a possible for-
malisation of this intuitive setting, while staying as general as possible. The formal-
ization implicitly leads to a possible criterion for the computationality of (cognitive)
processes as well.

The approach presented here uses ingredients from the modelling of dynamical
systems. It does not necessarily implement all aspects of our philosophy of com-
putation as knowledge generation [2, 3]. For example, we will make some concrete
assumptions in cases where normally more options would have to remain open. How-
ever, the framework as presented is an excellent testbed for the ideas.

We first introduce the metaspaces we need, and then define the notion of com-
putation in our present setting. In Sect. 4 we will show that the framework allows
one to manipulate, viz. to compose computations in a natural way and reflect on the
various further aspects of the framework.

3.1 Relevant Spaces

In our view, a computational process will always involve two metaspaces: an action
space A, and a knowledge space E. The two spaces reflect the ‘two sides’ of the
process. We use this to explain computation, but one may use it to explain knowledge
generation quite generally as well. Let A, and E, denote the core sets of A and E,
respectively.

The spaces A and E are coupled. In particular, (some) action items x with x € A
will carry information that maps to (some) knowledge items in E. We do not require
uniqueness. Thus, a knowledge item may be obtainable from several different action
items. We assume that the mapping is achieved by way of a simple readout function-
ality called a semantic map which aims to bring out the knowledge that is contained
in an action item, in the terms of the knowledge domain.

Definition 1 A semantic map from A to E is any partial mapping 6 : A — E with
the property that 6(A,) C E,.

Given 6 and x € A, we assume that 6(x) is obtained by only a simple ‘extension’ of
the observational means that produced x to begin with. In other words, no substantial
extra effort should be involved that has not already been expended by the underlying
mechanism. Note that 6(x) may be undefined for some items x, reflecting the fact
that an action item may not always contain knowledge that is ripe for ‘display’. The
condition that 6(A,) C E, is required for consistency: the knowledge embedded in
the (initial) core set of the action space should be part of the core knowledge known
at the outset. In particular, it is assumed that 6(x) is defined for all x € A,,.

Example 5 Consider any programming language, implemented on a (universal)
machine .#. Let A consist of all possible items (x,x,J,y), where x is a single-
input single-output program, x an input value, J the ‘full information vector’ with
the register contents of .# at any moment during z’s execution, and y the output or

76 J. van Leeuwen and J. Wiedermann

1 (undefined) as implied by J. Clearly A contains the action items of .Z, seen as
a mechanism (cf. Example 2). Let E consist of the items (f,a,b) with f : N - N
a partial function, a € N, b € NU { L}, and f(a) = b. E is the knowledge space of
all single-parameter partial functions. The two spaces can be linked by the semantic
map 6 : A — [E defined as follows:

if Jindicates that the computation is ongoing:
undefined
if J indicates that the computation has terminated:

(e X:)

5(<ﬂ’x7‘]’y>) =

where f, denotes the function determined by program z and f,(x) = y. The sub-
space 6(A) of E corresponds to the knowledge of the computable functions only. We
have A = {(z,x, ;- L) | 7 a program, x € N, J; ;, the initial information vector}
and E, = 0.

Instead of a single knowledge space E it may be desired to use several spaces and
have several semantic maps, to capture different facets of the knowledge that may be
generated. This is easily reduced to the case of a single knowledge space only.

3.2 Defining Computation

We can now give a definition of computation, in the present setting. We first define
single computations, and then focus on so-called bundles.

Let E be a knowledge space we are interested in, and let A be the action space of an
underlying mechanism. Let 6 : A — [E be a semantic map as above. By assumption,
A is a topological space, and thus we can have topological objects in A such as
curves. We posit that curves are precisely the sort of ‘trajectories’ that are traced by
computations.

A curve is any continuous function ¢ : S — A, where S is any segment on the
real or integer line that is possibly half-open to the right. (The lines are topological
spaces by virtue of the standard metric.) We usually identify ¢ and the image c¢(S) in
A. Given a curve ¢, we let ¢t be its starting point and, if it is defined, ™ jtg ending
point.

Definition 2 A computation is any curve ¢ C A with the following properties:

o 8(cM) is defined, and
o if ¢*™ i5 defined, then 6(c®™) is defined as well.

We require that any computation must start with ‘some knowledge’. We do not insist
a priori that 6(c"') € E,. If we would be perfectly general, a computation might
request ‘input knowledge’ at later points on the curve as well, but we will not elab-
orate on this in the present setting. Along the curve, 6 need not be defined in every

Knowledge, Representation and the Dynamics of Computation 77

-—-

6(Cend)

- N
Higher (cint) (\Core !
abstraction 3
level Knowledge space E
Semantic map &
Lower
abstraction

level
Action space A

Fig.1 A schematic diagram of a computation. (Abstraction levels can be iterated)

intermediate action item. However, if the curve ends, 6 must be defined in the ending
point. A schematic view of a computation is depicted in Fig. 1.

The definition of computation by means of curves is a natural one, fitting the intu-
ition that a computation moves through consecutive action items while respecting
the proximity relation in the space. Even ‘real-continuous’ curves may be needed,
for modeling certain natural mechanisms [10].

All information about how the computation is effectuated is presumed to be hid-
den in the details of the action items, which is of no specific concern to us. We may
even hide the interactions with other computations in it, checking that their curves
‘match’ separately. This enables us to concentrate on what the computation does.
The semantic map will help us read out the ‘knowledge’ that is generated over the
curve (cf. Fig. 1).

A computation ¢ in A inherits a natural orientation as a curve, progressing from
¢t towards ¢ (if it exists). The orientation reflects the (broadly viewed) serializ-
ability of computations, a notion that is found in many conceptions of computational
systems as they operate in any context, regardless of any causal effects whatsoever
(but normally consistent with it). A curve can be self-intersecting, without necessar-
ily implying any looping behaviour of the underlying mechanism.

Definition 3 A computation (curve) c is called convergent if ¢ is defined (i.e. as
a definite element of). It is called divergent otherwise.

Finally, the term ‘computation’ is often used to denote not just a single computa-
tion but a whole family of computations that can be effectuated by the same mecha-
nism or by some conglomerate of mechanisms. We use the term bundle here. Let A
be an action space.

Definition 4 A computation bundle is any collection of computations Z = {c;},;
where I is an index set and for every i € I, c; is a computation (curve) in A.

Whereas the computations are defined by the underlying mechanism of the action
space, it is rather more difficult to define what keeps them together as a bundle. An
example of a bundle we are most likely interested in is: & = {c € F | ¢;piy € Ap},
the bundle of all computations in some feasible set F that begin computing in the

78 J. van Leeuwen and J. Wiedermann

core set. We do not insist that bundles are defined in some finitistic way, for example
by a program or some other artefact.

Definition 5 A bundle Z = {c;},, is called (always) convergent if, for every i € I,
c; is convergent. We call & potentially divergent otherwise.

One may argue that all notions of computation reviewed in [2], classical or oth-
erwise, can be made to conform to our definition. For example, computation seen as
information processing is obtained by taking appropriate knowledge spaces which
just contain ‘information’ about their domain.

Example 6 Let | be the internet, M a computer connected to the internet, and =
the client program of a search engine running on M. Answering queries using z is
seen to be computational as follows: Let E be the collection of all ‘facts’ that can
be known, and E the subset of currently known facts. Let A be the set of tuples
(g, a,r), where q is a query, a a knowledge item or L (undefined), and r any possible
instantaneous description of z as running on M and accessing [. Let semantic map &
be defined by 6({g, a, r)) = a. Clearly A can be a very large set, but we do not need
to know all its elements as long as the search mechanism can generate the ones we
need. Define the core A, as the set of all tuples (g, L, r) where ¢ is a query and r is
an initial instantaneous description of z. The chain of consecutive action items that
result from initializing a search, moving through items as given by the instantaneous
descriptions, up to and including an item which has an answer to the query (if any)
is a curve in A and thus a computation. This is easily modified to the case of many
answers. It follows that internet searching, viewed as the collection of all searches
on initial queries, is a computation bundle.

4 Dynamics

We have seen how computation as a knowledge-generation process can be defined
using action and knowledge spaces. However, computations do not stand alone and
their result (knowledge) is often used, and needed, in other computations. We will
show that this feature can be expressed naturally in the given framework. We will
sacrifice some generality in order to show how this can be done. Next we discuss
various further aspects of the framework, from a philosophical viewpoint.

4.1 Composing Computations

The question is: What do computations as defined actually entail. Can a given com-
putation ¢ be effectuated even when §(c'"') ¢ E,? If not then, supposing c is part of
a bundle %, may c be effectuated based on knowledge that is generated by another
computation in Z? Realistically, many computations will depend on knowledge that

Knowledge, Representation and the Dynamics of Computation 79

is yet to become available. These computations have to wait for their ‘turn’ until
other computations have produced the lacking knowledge.

Definition 6 A computation c is called input-enabled if ¢ can be effectuated fully
as soon as ¢ is available.

There is no reason beforehand to require that computations are input-enabled. It
might happen e.g. that a computation needs extra knowledge that is not contained
in the core set [E,, and that it cannot compute itself. We will not model all modali-
ties here, and simply assume that each computation is self-contained and ‘runnable’
whenever ¢! is ‘known’, delegating any interactions to the definition of the curve.
This will be sufficient to illustrate the principles. Thus:

The computations in all bundles % = {c;},c; we consider are assumed to be input-
enabled.

By the assumption, all computations ¢ € % with ¢ € A, can be effectuated imme-
diately. However, it also makes sense now to define an important further property that
is often desired, namely that of compositionality.

Definition 7 Let ¢, d be computations (curves). Let ¢ be convergent and let ¢ =
d™". Then the curve ¢’ = c o d obtained by glueing ¢ and d together at ¢*", is called
the direct composition of ¢ and d.

An immediate consequence of this definition is that, if ¢ is enabled and convergent
and ¢ = ¢, then ¢ o d is well-defined and enabled as well. The following asso-
ciativity property is easily verified.

Proposition 1 Let c,d and e be computations, let ¢ and d be convergent, and let
¢ = gt gpd @ = et Then (cod)oe = co(doe).

From a computational point of view, direct composition alone is not satisfactory.
As a computation ¢ proceeds, we may want to pre-empt it at any point that is some-
how reasonable, viz. at any point x for which 6(x) is defined. Any such point might
be a valid starting point of a new computation.

Definition 8 Let ¢, d be computations (curves). Let x be any point on ¢ for which
8(x) is defined. Let c, be the curve of ¢ from ¢™ to x, and let x = d™'. Then the
curve ¢’ = ¢, o d obtained by glueing ¢, and d together at x = cfcnd, is called a grafted
composition of ¢ and d. The set of all possible grafted compositions of ¢ and d is
denoted by ¢ /\ d.

Note that the definition does not require either ¢ or d to be convergent. Also note
that a point x may occur more than once on a curve. In general ¢ /\ d may consist
of many curves (computations). One easily verifies the following:

Proposition 2 If c,d and e are computations (curves), then:
e Ifcod is defined, then (cod) € ¢ /\ d.
c(cAdAe=cAdAe).

80 J. van Leeuwen and J. Wiedermann

Definition 9 A bundle # = {c;},¢; is said to be closed under composition if, for all
i,j€lifc; A\ ¢; is defined, then ¢, AN ¢ CA.

If a bundle 4 is closed under (grafted) composition, we simply call it composi-
tional. In the next section we will see what role compositionality plays in the analysis
of computations for knowledge generation.

4.2 Reflections

The question of identifying the nature and character of computation has been the
subject of many studies and discussions [2]. The idea of viewing computation as
a process of some kind seems well accepted [11], but the opinions on what makes
processes computational differ considerably. For example, concrete processes may
be viewed as being computational if a representative abstraction of them is [12, 13].
The definition of computation we gave here implements our philosophy that compu-
tation is a process of knowledge generation and that this is its driving characteristic.

4.2.1 Cross Connections

Various connections to other areas should be observed. In particular, the way we
view computations here is reminiscent of the way systems are viewed in control the-
ory. Any dynamical system that evolves over time may be viewed as computational,
provided it is generating knowledge from some perspective in the first place. Con-
nections between computer science and control theory were observed before, e.g. by
Arbib [14] in the 1960s. Like [14], we believe that the philosophy of computation
‘can gain tremendously’ from the ideas in general systems theory.

Another connection can be found in the theory of concurrent systems. In partic-
ular, Mazurkiewicz [15] already showed in the 1970 s that the behavioural aspects
of these systems can be adequately studied using traces that represent the possible
serializations of the interactions that can take place. Sets of traces are an analogue of
what we called bundles. This is where the analogies diverge, as the theory of traces
has been elaborated entirely at the symbolic level.

Last but not least, we note that topology has been used extensively in the con-
struction of semantic models of programming systems, notably of the A-calculus
[16]. This has led to powerful approaches to the computability of functions and type
theory [17]. In general, computable topology has focussed on the computability of
‘topological objects’, rather than on computational processes as we do here. Again,
we believe that much can be gained from the ideas in this domain.

4.2.2 Evaluation

Our definition of computation is sufficiently different from extant notions that a crit-
ical evaluation is warranted. For example, there is still considerable flexibility in the

Knowledge, Representation and the Dynamics of Computation 81

underlying notions of knowledge and action spaces. This could give the impression
that the definition will allow one to declare just about anything as being computa-
tional. We reject this idea, as knowledge and action are sufficiently refined notions
to exclude abuse.

Nevertheless, we stress again that the notions are relative to the frameworks and
theories in which they are understood, as is the resulting notion of computation. As
an example, consider a light switch. The operation of a light switch is not seen as
computational, as no notion of knowledge is involved. However, if one declares the
signals going around in the switch as being ‘knowledge’ of its components at suitable
times, then one may say that what goes on in the light switch is computational. We
recall the actor-spectator phenomenon again (cf. Sect. 2.2).

An interesting issue is whether the definition of computation as we gave itis ‘free’
of representation. It has been claimed that the intensionality of computation requires
some form of grounding in a symbolic domain, a view which seems to have been
inspired heavily by the classical notion of computing by ‘computers’. Fodor [18] has
expressed this very eloquently as follows:

...it1is natural to think of the computer as a mechanism that manipulates symbols. A compu-
tation is a causal chain of computer states and the links in the chain are operations on seman-
tically interpreted formulas in a machine code. To think of a system (such as the nervous
system) as a computer is to raise questions about the nature of the code in which it computes
and the semantic properties of the symbols in the code. In fact, the analogy between minds
and computers actually implies the postulation of mental symbols. There is no computation
without representation.

In the definition of computation we gave, however, ‘symbolic representation’ plays
no role. Representation is left entirely implicit. This conforms to the view of Piccinini
[19], who argues that functional properties of computation may be specified without
aneed for any semantic properties. It is a great advantage to separate the two notions.

Finally, note that we concentrated on ‘what’ a computation does and not on ‘how’
it is effectuated by an underlying mechanism, following [2, 3] and in keeping with
the broader views of computation today. Nevertheless, one may still argue that some
intuitive machine concept is embodied in the notion of action space. We do not object
in principle, as long as the notion of machine is kept as general and open as e.g. in
the following definition by Beck [4]:

A machine [...] is an arrangement of matter devised so that a dependable correspondence
is secured between controlled input and usable output.

However, our definition of action spaces does not involve any constraints in terms of
input or output or any determined correspondence between them beforehand, leaving
room for arbitrary influences from an ‘uncontrolled’ environment. We reject the idea
that computation as a notion requires an analogy to artefacts such as machines, viz.
computers. Cases that make use of it are easily subsumed by our definition.

Example 7 Tt can be argued that the nervous system is computational, using the anal-
ogy to complex computing systems. For example, Piccinini and Bahar [20] reason

82 J. van Leeuwen and J. Wiedermann

that the nervous system may be seen as “an information-processing, feedback con-
trol, functionally organized, input-output system”, although they also point out that
this may not explain all of the neural processes involved. In particular they argue
that the neural processes are neither analog nor digital. Restricting to the computa-
tional part, it is easily seen that this follows from our definition without resort to any
functional properties of a computing system.

5 Exploring Knowledge Spaces by Computation

The general problem of discovery in metaspaces was introduced in Sect.2.1. Can
one characterize the knowledge that can be discovered by means of some underlying
computational mechanism? And, can one turn the question around and ‘recognize’
the knowledge items that can be computed?

Let E be a knowledge space we are interested in, and let E, be the core set we
have for it. In this section we will explore the following key problems in knowledge
space exploration:

o Knowledge generation: generate all knowledge items of E.
o Knowledge recognition: given a knowledge item e, is it an element of E?

Both knowledge generation and knowledge recognition, when viewed as processes
embedded in the human or animal brain, are likely to be constrained further in many
ways. For example, knowledge is likely to be aggregated in a coded rather than enu-
merative way only. Also, recognition may be restricted to the knowledge in a ‘known’
subset of the items that are potentially knowable. We will not address these con-
straints but aim to characterize the full extent of the knowledge space that has to be
mastered.

We immediately note that knowledge generation and knowledge recognition,
when viewed as processes without further constraints, may be indefinite, i.e. without
any finite bound on their duration or effect. In the case of knowledge generation this
is evident, e.g. when items can be generated multiple times or when the knowledge
space itself is infinite and only finitely many knowledge items can be discovered at
a time. However, the same can be said of knowledge recognition, e.g. when it relies
on some kind of searching without a criterion for when to stop, especially for items
that are not valid knowledge and thus cannot be found in the knowledge space at all.
This is a well-known phenomenon that occurs when these processes are simulated
by artefacts such as Turing machines [21].

This leads to the question of how knowledge generation and recognition can be
characterized in our framework. We will first show how to characterize the knowl-
edge in E that can be generated by computation from E,, from our present perspec-
tive. Next we show how knowledge recognition can be characterized as a computa-
tional process, in the defined framework.

Knowledge, Representation and the Dynamics of Computation 83

5.1 Knowledge Generation

Let E and E, be as above. Assume that we have some mechanism for exploring E
that is in essence computational. Let A be its action space, and let 6 : A — [E be the
relevant semantic map. Let 2 be the bundle of computations in A that we potentially
have at our disposal. How do we go from here?

A crucial question is how ‘knowledge’ is actually extracted from enabled com-
putations ¢ € A. If ¢"' € A and ¢*™ is defined, then we may tacitly assume that
5(c*) is a ‘logical consequence’ of [E, and thus ‘knowledge’ of the sort we are after.
However, any knowledge computed ‘on the way’ may be regarded as available too
(assuming it is accessible). Thus, if ¢ is enabled, the entire set 6(c¢) C E may be seen
as generated knowledge.

Making this more precise, we first define when a computation is regarded as being
enabled (runnable), cf. Definition 6. We do this recursively as follows:

Definition 10 A computation ¢ € 4 is called enabled when either ¢"' € A, or
some enabled computation d € % contains ¢™.

The knowledge-generation process in E now proceeds as follows: We begin with
E, and all computations ¢ € £ with ¢"' € A, and see what we get. Whenever any
new computation gets enabled in the process, we allow it to perform as well. Iterating
this ad infinitum, we obtain all knowledge in E that can possibly become ‘known’
or, at least, generated (i.e. by this mechanism).

Definition 11 Let ¢ € E be a knowledge item. We say that e is producible and
that computations c,, ..., ¢, with ¢; € & (1 <i < n) constitute a production for e
(denoted by ¢y, ..., c, F e) if and only if the following properties hold:

" e A, and

e e € 5(c) for some ¢ € ¢c; A\ -+ /¢,

Recalling that cilnit € A expresses that ¢, is enabled as a first ‘step’ in the compu-
tational argument, the definition captures precisely what it means for an item to be
knowable (by computation).

Let K4 C E be the set of all producible knowledge items. We will show that K 4
is indeed a well-defined set. To this end, we first define the function g : E — 2F as
follows, for all ¢ € E:

g(e) = {€' | there are computations cy, ..., ¢,, ¢, € % (n > 0) such that
ciy...,c,Feandcy,...,c,,c F ey,
Notice that g(e) = @ for any e that is not producible or in case itis and ¢, ..., ¢, F e,

if no computation exists in & that can still be grafted onto c¢,. The effect of g is
that it extends the knowledge obtainable through productions of some length n to
all knowledge producible by one computation more. Now consider the following
set-theoretic operator G : 2F — 2F:

84 J. van Leeuwen and J. Wiedermann

GK) =K u | Js(e).

eek

One observes that the iterative procedure for generating all knowledge in E that can
possibly be produced implies that K, = E, U G(E,) U G*(Ey) U ---.

Theorem 1 K is the least fixpoint of G that includes the core set . In particular,
K 5 is well defined.

Proof Clearly 2F is a complete partially ordered set (cpo) under inclusion. By its
very definition G is a monotone operator, but a stronger property can be proved:

Claim G is chain-continuous, i.e. if K; C K, C --- and | J;5, K; = K, then G(K;) C
G(Ky) € -+ and |5, G(K)) = G(K).

Proof By monotonicity one has G(K;) € G(K,) C --- and |J,,, G(K;) € G(K). To

prove that G(K) C Ui>1 G(K;) as well, consider any e with e€ G(K). As G(K) =

KU,k 8(e), we can distinguish the following cases:

e ¢ € K: then there is an i > 1 such that e € K;. By monotonicity we obtain that
e € G(K;) and thus that e € |J,.; G(K)).

« e =g(e) for some ¢’ € K: then there is an i > 1 such that ¢’ € K. It follows by
definition that ¢ € G(K;) and again that e € | J,., G(K)).

We conclude that | J 5, G(K}) = G(K). O

It now follows from the Tarski—Kantorovich fixed point theorem! that K, is indeed
the least fixpoint of G in the collection of all sets K with K 2 [E,,. O

If a bundle is closed under (grafted) composition, then the characterization of K 5
reduces to a much simpler form.

Corollary 1 Let # be compositional. Then K 5 = G(E).

Proof Let G be the operator as defined above. One easily verifies that the compo-
sitionality of % implies that G>(E’) = G(E'), for any E’ C E. Hence, we obtain that
K4 =FE,UG(E) UG*(Ey) U - = EyUG(Ey) = G(E). O

Corollary 1 shows that, if bundles are compositional, all knowledge that can be
generated from E can be generated using at most one computation from the bundle.
This may also be seen from the definition of compositionality directly. Composition-
ality is a strong property, but it can be expected to hold for all knowledge spaces that
are based on a deductive theory.

Finally, the characterization of K4 allows us to define another important notion
for knowledge generation by computation, namely universality. The concept is of key

IThe Tarski—Kantorovich fixed point theorem states the following: Let (X, <) be a cpo and let
H : X — X be chain-continuous. If there is an x € X such that x < H(x), then x’ = sup, H"(x) is
a fixpoint and in fact the least fixpoint of H among all y with y > x. For a proof see e.g. [22].
Chain-continuity is also known as Scott-continuity.

Knowledge, Representation and the Dynamics of Computation 85

importance in many branches of science and philosophy. In our approach here, we
may use it to signify that the underlying mechanism is powerful enough to generate
the entire knowledge space.

Definition 12 A bundle 4 is universal for E if and only if Kz = E.

In classical computability theory, universality refers to the property that all Tur-
ing machine programs can be simulated on one single (universal) Turing machine.
However, in the approach here, the notion of simulation is completely avoided. This
may lead to a possible answer to the quest for a clear-cut notion of universality as
expressed by Abramsky [23].

5.2 Knowledge Recognition

Now consider the recognition problem, i.e. the problem of determining whether a
given knowledge item e € E is ‘obtainable’ from the core knowledge. Our aim will
be to define recognition as a process, and show that this process is computational.

Before we get into this question, it should be noted that ‘recognition’ of knowledge
can be of greater concern than generation. For example, recognition processes take
place in natural systems such as found on the surfaces of cells and in cognition. One
may argue that in recognition there is as much generation of knowledge going on as
there is in any computation, except that the usage scenario differs. Let us make this
more precise.

We want to think of recognition as a concrete computational process, working
on an input datum e from some ‘interesting’ subdomain D C E and ‘flagging’ it as
soon as the process finds that e is recognized. Typically, D will consist of items
that have the right form but have to be tested for being valid knowledge, i.e. for
being in E. Clearly, when a recognition process is brought to bear on an item e with
e & K4, one should allow for the indefinite behaviour alluded to before, notably
when computational criteria are lacking for items not in K .

It is well-known from classical automata and formal language theory [21] that
the processes of recognition and generation are closely related. We show that this
phenomenon emerges at the present, very general level as well. In order to make this
concrete, we will show how to define recognition as a computational process in our
framework, in a way that it is dual to generation.

The following definition expresses exactly what we expect from the recognition
process, hiding all specificities of how the computations in a bundle work. For every
d € D, let d* be a (new) knowledge item expressing its positive recognition. Let
Dt ={d*|d e Dj}.

Definition 13 A recognizer % for some domain D C E consists of the following

components:

« An action space B and a knowledge space F 2 DU D*
o A semantic mapping y : B - F

86 J. van Leeuwen and J. Wiedermann

« Core sets B, and [, such that {u(x) | x € By} CFy = DuD*
» A computation bundle .

X 1s said to recognize item e € D if there are computations s, ..., s, € . with
6(511““) € {e,et} and sy, ...,s, F et. The set of all knowledge items from D recog-
nized by Z is denoted by D .

We now show how a recognizer can be constructed from the computational, gen-
erative process that underlies E. We assume that the items in E have a known form
so they can be identified as reasonable inputs. Let A and 6 : A — E correspond to
the computational mechanism for E. Let B be the bundle we have available for it.
Assume that {6(x) | x € Ay} = E,,.

Theorem 2 With the given conventions, a recognizer for the full set Kz can be
constructed from the computational mechanism underlying E.

Proof We define the components of a recognizer % with D = E, using the generative
process as follows:

o Let B=AXE, and let F 2 DU D™". Note that, if we supply E with the discrete
(pointwise) topology and take the product with the topology of A, then B is a
topological space again (as required).

 Define the semantic map y : B — F in terms of 6 as follows:

u([x, d]) = “if 8(x) = dthend™ else ’.

The map reflects the intention that, whenever an action item contains evidence
that an item d is recognized, it is flagged.

e Let By = Ay xEjand Fy = Du D*.

o In order to define . we do the following: For each c € % and d € D, let ¢, be
the curve ¢ X {d}, which is a curve in the product topology on B. Let . = {c¢, |
c € Pandd € D}.

The construction specifies a recognizer for D = E, as desired. Moreover, by the
assumption that {6(x) | x € Ay} = E,, it follows that the items d that can be recog-
nized ‘at the start’, are precisely those of E. Definition 13 implies that the further
items that can be recognized are precisely those that can be generated. It follows that
Dy, =K. (]

By a similar argument one can show that a recognizer for a domain D C E which
satisfies the specifications of Definition 13 can be ‘moulded’ into a generator for D.
This would prove the functional equivalence of knowledge generation and recogni-
tion, now resulting from the philosophy of computation that we followed.

Knowledge, Representation and the Dynamics of Computation 87

6 Conclusion

The question of how to characterize computation as an intrinsic notion is a complex
one. While analogies to classical models of computation have proved quite satis-
factory in the past, the spreading of the computing metaphor to natural systems has
made those analogies far less convincing and productive. The question of defining
computation adequately therefore remains an intriguing one. Can one capture com-
putation in such a way that the forms of computationality as understood today are
covered. Can new, so far unfathomed forms of computationality be identified?

In this paper we have followed up on the philosophy developed in [2, 3], in which
computation is viewed as a process of generating knowledge. We have presented
a theoretical framework in which computations are viewed as processes operating
against the backdrop of suitable spaces of knowledge and actions. The framework
is widely applicable and allows for a theory of computation which covers the wide
variety of processes that are all regarded as computational, without any assumptions
on how they work but focussing solely on what they do.

Computation is, in our theory, the generation of knowledge in action, with the
help of a suitable underlying mechanism. The framework we developed does not
require any concrete assumptions on representation, except that there is a ‘natural’
topology in the relevant action space so computations can be characterized as being
continuous over the course of their existence. In the resulting framework, knowledge
generation can be shown to be a well-defined process. Also knowledge recognition
can be captured computationally, from a logico-epistemic point of view.

While the notion of computation has wide reach as intended, it will be of interest
to test it on more cases than the current ones we used from conventional and uncon-
ventional computing. Philosophically intriguing boundary cases are plenty and can
be found e.g. in cognition [24], the more general computational theory of mind [25]
and in the even more general realm of pancomputationalism [26]. As an example
one might consider the presumed computationality of the Universe. It could be seen
as a system which evolves dynamically, producing (implicit) knowledge in the form
of life, and life eventually produces explicit knowledge. See also [27] for an expan-
sion on this theme. Hence one may view the meaning of life as being to compute, to
produce knowledge and, eventually, wisdom.

Whether a phenomenon can be meaningfully viewed as computational depends
on the frameworks and theories through which it is viewed. We posit that, if a process
or system is to be viewed as computational, one should be able to characterize it as
a knowledge-generating process in some perspective. Then, of course, the decision
whether a process is computational becomes observer dependent. Nevertheless, in
this way we have provided a ‘test’ for computationality with wider applicability than
the previous tests based on analogies to classical computing systems.

Acknowledgements The work of the second author was partially supported by ICS AS CR fund
RVO 67985807 and the Czech National Foundation Grant No. 15-04960S.

88

J. van Leeuwen and J. Wiedermann

References

(o]

10.
11.

12.

13.

16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

. Farkas, I.: Indispensability of computational modeling in cognitive science. J. Cognit. Sci. 13,

401-435 (2012)

. Wiedermann, J., van Leeuwen, J.: Rethinking computations. In: 6th AISB Symp. on Comput-

ing and Philosophy: The Scandal of Computation—What is Computation? AISB Convention
2013 Proceedings, pp. 6—10. AISB, Exeter, UK (2013)

. Wiedermann, J., van Leeuwen, J.: Computation as knowledge generation, with application to

the observer-relativity problem. In: 7th AISB Symp. on Computing and Philosophy: Is Compu-
tation Observer-Relative? AISB Convention 2014 Proceedings, AISB, Goldsmiths, University
of London (2014)

. Beck, L.W.: The actor and the spectator—foundations of the theory of human action. Yale

University Press (1975) (Reprinted: Key Texts, Thoemmes Press, 1998)

. Blass, A., Gurevich, Y.: Algorithms: a quest for absolute definitions. Bulletin EATCS 81, 195-

225 (2003)

. Gurevich, Y.: Foundational analyses of computation. In: Cooper, S.B., Dawar, A., Lowe, B.

(eds.), How the World Computes, Proc. CiE 2012. Lecture Notes in Computer Science, vol.
7318, pp. 264-275. Springer (2012)

. Floridi, L.: The Philosophy of Information. Oxford University Press, Oxford (2011)
. Searle, J.R.: Minds, brains, and programs. Behavioral Brain Sci. 3, 417-457 (1980)
. Searle, J.R.: Is the brain a digital computer? Proceedings and Addresses of the American Philo-

sophical Association 64(3), 21-37 (1990)

Tong, D.: The unquantum quantum. Sci. Am. 307, 46-49 (2012)

Frailey, D.J.: Computation is process. In: Ubiquity Symposium *What is Computation?’, ACM
Magazine Ubiquity, November issue, Article No 5 (2010)

Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute?
Proc. Royal Soc. A 470(2169), 20140182 (2014)

Horsman, C., Kendon, V., Stepney, S., Young, J.P.W.: Abstraction and representation in living
organisms: when does a biological system compute? In: Representation and Reality: Humans,
Animals and Machines. Springer, Heidelberg (2017)

. Arbib, M.A.: Automata theory and control theory—a rapprochement. Automatica 3, 161-189

(1966)

. Mazurkiewicz, A.: Concurrent program schemes and their interpretation. Technical Report No.

PB-17, DAIMI, Datalogisk Afdeling, Aarhus University, Aarhus (1977)

Scott, D.S.: Continuous lattices. In: Lawvere, F. (ed.), Toposes, Algebraic Geometry and Logic.
Lecture Notes in Mathematics, vol. 274, pp. 97-136. Springer (1972)

Longo, G.: Some topologies for computations, invited lecture. In: Géométrie au XX siecle,
1930-2000, Paris. http://www.di.ens.fr/users/longo/files/topol-comp.pdf (2001)

Fodor, J.A.: The mind-body problem. Sci. Am. 244, 124-132 (1981)

Piccinini, G.: Computation without representation. Philos. Stud. 137(2), 205-241 (2008)
Piccinini, G., Bahar, S.: Neural computation and the computational theory of cognition. Cognit.
Sci. 37(3), 453-488 (2013)

Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata. Addison-
Wesley, Reading, MA (1968)

Ok, E.A.: Elements of order theory. Ch 6: Order-theoretic fixed point theory. https://sites.
google.com/a/nyu.edu/efeok/books

Abramsky, S.: Two puzzles about computation. In: Cooper, S.B., van Leeuwen, J. (eds.) Alan
Turing—His Work and Impact, pp. 53-57. Elsevier, Amsterdam (2013)

Pylyshyn, Z.W.: Computation and cognition: toward a foundation for cognitive science. MIT
Press, Cambridge MA (1984)

Putnam, H.: Brains and behavior. Presented to the American Association for the Advancement
of Science, section L (History and Philosophy of Science), 27 Dec 1961

http://www.di.ens.fr/users/longo/files/topol-comp.pdf
https://sites.google.com/a/nyu.edu/efeok/books
https://sites.google.com/a/nyu.edu/efeok/books

Knowledge, Representation and the Dynamics of Computation 89

26. Piccinini, G.: Computational modelling vs computational explanation: is everything a Turing
machine, and does it matter to the philosophy of mind? Aust. J. Philoso. 85(1), 93—115 (2007)

27. Dodig-Crnkovic, G.: Modeling life as cognitive info-computation. In: Beckman, A., Csuhaj-
Varju, E., Meer, K. (eds.), Language, Life, Limits, Proc. CiE 2014. Lecture Notes in Computer
Science, vol. 8493, pp. 153-162. Springer (2014)

	Knowledge, Representation and the Dynamics of Computation
	1 Introduction
	2 Metaspaces
	2.1 General
	2.2 Action Spaces
	2.3 Knowledge Spaces

	3 Computation
	3.1 Relevant Spaces
	3.2 Defining Computation

	4 Dynamics
	4.1 Composing Computations
	4.2 Reflections

	5 Exploring Knowledge Spaces by Computation
	5.1 Knowledge Generation
	5.2 Knowledge Recognition

	6 Conclusion
	References

