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Introduction

Shape is a fascinating and intriguing subject which has stimulated the imagination of
many people. It suffices to look around to become curious. Euclid did just that and came
up with the first pure creation. Relying on the common experience, he created an abstract
world that had a life of its own. As the human knowledge progressed so did the ability of
formulating and answering penetrating questions. In particular, mathematicians started
wondering whether Euclid’s “obvious” absolute postulates were indeed obvious and/or
absolute. Scientists realized that Shape and Space are two closely related concepts and
asked whether they really look the way our senses tell us. As Felix Klein pointed out
in his Erlangen Program, there are many ways of looking at Shape and Space so that
various points of view may produce different images. In particular, the most basic issue
of “measuring the Shape” cannot have a clear cut answer. This is a book about Shape,
Space and some particular ways of studying them.

Since its inception, the differential and integral calculus proved to be a very versatile
tool in dealing with previously untouchable problems. It did not take long until it found
uses in geometry in the hands of the Great Masters. This is the path we want to follow
in the present book.

In the early days of geometry nobody worried about the natural context in which the
methods of calculus “feel at home”. There was no need to address this aspect since for the
particular problems studied this was a non-issue. As mathematics progressed as a whole
the “natural context” mentioned above crystallized in the minds of mathematicians and
it was a notion so important that it had to be given a name. The geometric objects which
can be studied using the methods of calculus were called smooth manifolds. Special cases
of manifolds are the curves and the surfaces and these were quite well understood. B.
Riemann was the first to note that the low dimensional ideas of his time were particular
aspects of a higher dimensional world.

The first chapter of this book introduces the reader to the concept of smooth manifold
through abstract definitions and, more importantly, through many we believe relevant
examples. In particular, we introduce at this early stage the notion of Lie group. The
main geometric and algebraic properties of these objects will be gradually described as we
progress with our study of the geometry of manifolds. Besides their obvious usefulness in
geometry, the Lie groups are academically very friendly. They provide a marvelous testing
ground for abstract results. We have consistently taken advantage of this feature through-
out this book. As a bonus, by the end of these lectures the reader will feel comfortable
manipulating basic Lie theoretic concepts.

To apply the techniques of calculus we need “things to derivate and integrate”. These
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“things” are introduced in Chapter 2. The reason why smooth manifolds have many
differentiable objects attached to them is that they can be locally very well approximated
by linear spaces called tangent spaces . Locally, everything looks like traditional calculus.
Each point has a tangent space attached to it so that we obtain a “bunch of tangent spaces”
called the tangent bundle. We found it appropriate to introduce at this early point the
notion of vector bundle. It helps in structuring both the language and the thinking.

Once we have “things to derivate and integrate” we need to know how to explicitly
perform these operations. We devote the Chapter 3 to this purpose. This is perhaps
one of the most unattractive aspects of differential geometry but is crucial for all further
developments. To spice up the presentation, we have included many examples which
will found applications in later chapters. In particular, we have included a whole section
devoted to the representation theory of compact Lie groups essentially describing the
equivalence between representations and their characters.

The study of Shape begins in earnest in Chapter 4 which deals with Riemann manifolds.
We approach these objects gradually. The first section introduces the reader to the notion
of geodesics which are defined using the Levi-Civita connection. Locally, the geodesics
play the same role as the straight lines in an Euclidian space but globally new phenomena
arise. We illustrate these aspects with many concrete examples. In the final part of this
section we show how the Euclidian vector calculus generalizes to Riemann manifolds.

The second section of this chapter initiates the local study of Riemann manifolds.
Up to first order these manifolds look like Euclidian spaces. The novelty arises when we
study “second order approximations ” of these spaces. The Riemann tensor provides the
complete measure of how far is a Riemann manifold from being flat. This is a very involved
object and, to enhance its understanding, we compute it in several instances: on surfaces
(which can be easily visualized) and on Lie groups (which can be easily formalized). We
have also included Cartan’s moving frame technique which is extremely useful in concrete
computations. As an application of this technique we prove the celebrated Theorema
Egregium of Gauss. This section concludes with the first global result of the book, namely
the Gauss-Bonnet theorem. We present a proof inspired from [26] relying on the fact
that all Riemann surfaces are Einstein manifolds. The Gauss-Bonnet theorem will be a
recurring theme in this book and we will provide several other proofs and generalizations.

One of the most fascinating aspects of Riemann geometry is the intimate correlation
“local-global”. The Riemann tensor is a local object with global effects. There are cur-
rently many techniques of capturing this correlation. We have already described one in
the proof of Gauss-Bonnet theorem. In Chapter 5 we describe another such technique
which relies on the study of the global behavior of geodesics. We felt we had the moral
obligation to present the natural setting of this technique and we briefly introduce the
reader to the wonderful world of the calculus of variations. The ideas of the calculus of
variations produce remarkable results when applied to Riemann manifolds. For example,
we explain in rigorous terms why “very curved manifolds” cannot be “too long” .

In Chapter 6 we leave for a while the “differentiable realm” and we briefly discuss the
fundamental group and covering spaces. These notions shed a new light on the results
of Chapter 5. As a simple application we prove Weyl’s theorem that the semisimple Lie
groups with definite Killing form are compact and have finite fundamental group.

Chapter 7 is the topological core of the book. We discuss in detail the cohomology
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of smooth manifolds relying entirely on the methods of calculus. In writing this chapter
we could not, and would not escape the influence of the beautiful monograph [17], and
this explains the frequent overlaps. In the first section we introduce the DeRham coho-
mology and the Mayer-Vietoris technique. Section 2 is devoted to the Poincaré duality, a
feature which sets the manifolds apart from many other types of topological spaces. The
third section offers a glimpse at homology theory. We introduce the notion of (smooth)
cycle and then present some applications: intersection theory, degree theory, Thom iso-
morphism and we prove a higher dimensional version of the Gauss-Bonnet theorem at the
cohomological level. The fourth section analyzes the role of symmetry in restricting the
topological type of a manifold. We prove Élie Cartan’s old result that the cohomology
of a symmetric space is given by the linear space of its bi-invariant forms. We use this
technique to compute the lower degree cohomology of compact semisimple Lie groups. We
conclude this section by computing the cohomology of complex grassmannians relying on
Weyl’s integration formula and Schur polynomials. The chapter ends with a fifth section
containing a concentrated description of Čech cohomology.

Chapter 8 is a natural extension of the previous one. We describe the Chern-Weil
construction for arbitrary principal bundles and then we concretely describe the most im-
portant examples: Chern classes, Pontryagin classes and the Euler class. In the process,
we compute the ring of invariant polynomials of many classical groups. Usually, the con-
nections in principal bundles are defined in a global manner, as horizontal distributions.
This approach is geometrically very intuitive but, at a first contact, it may look a bit
unfriendly in concrete computations. We chose a local approach build on the reader’s ex-
perience with connections on vector bundles which we hope will attenuate the formalism
shock. In proving the various identities involving characteristic classes we adopt an invari-
ant theoretic point of view. The chapter concludes with the general Gauss-Bonnet-Chern
theorem. Our proof is a variation of Chern’s proof.

Chapter 9 is the analytical core of the book. Many objects in differential geometry
are defined by differential equations and, among these, the elliptic ones play an important
role. This chapter represents a minimal introduction to this subject. After presenting
some basic notions concerning arbitrary partial differential operators we introduce the
Sobolev spaces and describe their main functional analytic features. We then go straight
to the core of elliptic theory. We provide an almost complete proof of the elliptic a
priori estimates (we left out only the proof of the Calderon-Zygmund inequality). The
regularity results are then deduced from the a priori estimates via a simple approximation
technique. As a first application of these results we consider a Kazhdan-Warner type
equation which recently found applications in solving the Seiberg-Witten equations on
a Kähler manifold. We adopt a variational approach. The uniformization theorem for
compact Riemann surfaces is then a nice bonus. This may not be the most direct proof but
it has an academic advantage. It builds a circle of ideas with a wide range of applications.
The last section of this chapter is devoted to Fredholm theory. We prove that the elliptic
operators on compact manifolds are Fredholm and establish the homotopy invariance of the
index. These are very general Hodge type theorems. The classical one follows immediately
from these results. We conclude with a few facts about the spectral properties of elliptic
operators.

The last chapter is entirely devoted to a very important class of elliptic operators
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namely the Dirac operators. The important role played by these operators was singled
out in the works of Atiyah and Singer and, since then, they continue to be involved in the
most dramatic advances of modern geometry. We begin by first describing a general notion
of Dirac operators and their natural geometric environment, much like in [11]. We then
isolate a special subclass we called geometric Dirac operators. Associated to each such
operator is a very concrete Weitzenböck formula which can be viewed as a bridge between
geometry and analysis, and which is often the source of many interesting applications. The
abstract considerations are backed by a full section describing many important concrete
examples.

In writing this book we had in mind the beginning graduate student who wants to
specialize in global geometric analysis in general and gauge theory in particular. The
second half of the book is an extended version of a graduate course in differential geometry
we taught at the University of Michigan during the winter semester of 1996.

The minimal background needed to successfully go through this book is a good knowl-
edge of vector calculus and real analysis, some basic elements of point set topology and
linear algebra. A familiarity with some basic facts about the differential geometry of
curves of surfaces would ease the understanding of the general theory, but this is not a
must. Some parts of Chapter 9 may require a more advanced background in functional
analysis.

The theory is complemented by a large list of exercises. Quite a few of them contain
technical results we did not prove so we would not obscure the main arguments. There
are however many non-technical results which contain additional information about the
subjects discussed in a particular section. We left hints whenever we believed the solution
is not straightforward.

Personal note It has been a great personal experience writing this book, and I sincerely
hope I could convey some of the magic of the subject. Having access to the remarkable
science library of the University of Michigan and its computer facilities certainly made my
job a lot easier and improved the quality of the final product.

I learned differential equations from Professor Viorel Barbu, a very generous and en-
thusiastic person who guided my first steps in this field of research. He stimulated my
curiosity by his remarkable ability of unveiling the hidden beauty of this highly technical
subject. My thesis advisor, Professor Tom Parker, introduced me to more than the funda-
mentals of modern geometry. He played a key role in shaping the manner in which I regard
mathematics. In particular, he convinced me that behind each formalism there must be
a picture, and uncovering it, is a very important part of the creation process. Although
I did not directly acknowledge it, their influence is present throughout this book. I only
hope the filter of my mind captured the full richness of the ideas they so generously shared
with me.

My friends Louis Funar and Gheorghe Ionesei1 read parts of the manuscript. I am
grateful to them for their effort, their suggestions and for their friendship. I want to thank
Arthur Greenspoon for his advice, enthusiasm and relentless curiosity which boosted my
spirits when I most needed it. Also, I appreciate very much the input I received from the

1He passed away in 2006. He was the ultimate poet of mathematics.
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graduate students of my “Special topics in differential geometry” course at the University
of Michigan which had a beneficial impact on the style and content of this book.

At last, but not the least, I want to thank my family who supported me from the
beginning to the completion of this project.

Ann Arbor, 1996.

Preface to the second edition

Rarely in life is a man given the chance to revisit his “youthful indiscretions”. With
this second edition I have been given this opportunity, and I have tried to make the best
of it.

The first edition was generously sprinkled with many typos, which I can only attribute
to the impatience of youth. In spite of this problem, I have received very good feedback
from a very indulgent and helpful audience from all over the world.

In preparing the new edition, I have been engaged on a massive typo hunting, supported
by the wisdom of time, and the useful comments that I have received over the years from
many readers. I can only say that the number of typos is substantially reduced. However,
experience tells me that Murphy’s Law is still at work, and there are still typos out there
which will become obvious only in the printed version.

The passage of time has only strengthened my conviction that, in the words of Isaac
Newton, “in learning the sciences examples are of more use than precepts”. The new
edition continues to be guided by this principle. I have not changed the old examples, but
I have polished many of my old arguments, and I have added quite a large number of new
examples and exercises.

The only major addition to the contents is a new chapter on classical integral geometry.
This is a subject that captured my imagination over the last few years, and since the first
edition of this book developed all the tools needed to understand some of the juiciest
results in this area of geometry, I could not pass the chance to share with a curious reader
my excitement about this line of thought.

One novel feature in our presentation of integral geometry is the use of tame geometry.
This is a recent extension of the better know area of real algebraic geometry which allowed
us to avoid many heavy analytical arguments, and present the geometric ideas in as clear
a light as possible.

Notre Dame, 2007.
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7.2.2 The Poincaré duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

7.3 Intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.3.1 Cycles and their duals . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.3.2 Intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

7.3.3 The topological degree . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7.3.4 Thom isomorphism theorem . . . . . . . . . . . . . . . . . . . . . . . 266

7.3.5 Gauss-Bonnet revisited . . . . . . . . . . . . . . . . . . . . . . . . . 269

7.4 Symmetry and topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.4.1 Symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.4.2 Symmetry and cohomology . . . . . . . . . . . . . . . . . . . . . . . 276

7.4.3 The cohomology of compact Lie groups . . . . . . . . . . . . . . . . 279

7.4.4 Invariant forms on Grassmannians and Weyl’s integral formula . . . 280
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7.5 Čech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

7.5.1 Sheaves and presheaves . . . . . . . . . . . . . . . . . . . . . . . . . 294
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Chapter 1

Manifolds

1.1 Preliminaries

1.1.1 Space and Coordinatization

Mathematics is a natural science with a special modus operandi. It replaces concrete
natural objects with mental abstractions which serve as intermediaries. One studies the
properties of these abstractions in the hope they reflect facts of life. So far, this approach
proved to be very productive.

The most visible natural object is the Space, the place where all things happen. The
first and most important mathematical abstraction is the notion of number. Loosely
speaking, the aim of this book is to illustrate how these two concepts, Space and Number,
fit together.

It is safe to say that geometry as a rigorous science is a creation of ancient Greeks.
Euclid proposed a method of research that was later adopted by the entire mathematics.
We refer of course to the axiomatic method. He viewed the Space as a collection of points,
and he distinguished some basic objects in the space such as lines, planes etc. He then
postulated certain (natural) relations between them. All the other properties were derived
from these simple axioms.

Euclid’s work is a masterpiece of mathematics, and it has produced many interesting
results, but it has its own limitations. For example, the most complicated shapes one
could reasonably study using this method are the conics and/or quadrics, and the Greeks
certainly did this. A major breakthrough in geometry was the discovery of coordinates
by René Descartes in the 17th century. Numbers were put to work in the study of Space.

Descartes’ idea of producing what is now commonly referred to as Cartesian coor-
dinates is familiar to any undergraduate. These coordinates are obtained using a very
special method (in this case using three concurrent, pairwise perpendicular lines, each one
endowed with an orientation and a unit length standard. What is important here is that
they produced a one-to-one mapping

Euclidian Space→ R3, P 7−→ (x(P ), y(P ), z(P )).

We call such a process coordinatization. The corresponding map is called (in this case)

1
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θ
r

Figure 1.1: Polar coordinates

Cartesian system of coordinates. A line or a plane becomes via coordinatization an alge-
braic object, more precisely, an equation.

In general, any coordinatization replaces geometry by algebra and we get a two-way
correspondence

Study of Space←→ Study of Equations.

The shift from geometry to numbers is beneficial to geometry as long as one has efficient
tools do deal with numbers and equations. Fortunately, about the same time with the
introduction of coordinates, Isaac Newton created the differential and integral calculus
and opened new horizons in the study of equations.

The Cartesian system of coordinates is by no means the unique, or the most use-
ful coordinatization. Concrete problems dictate other choices. For example, the polar
coordinates represent another coordinatization of (a piece of the plane) (see Figure 1.1).

P 7→ (r(P ), θ(P )) ∈ (0,∞) × (−π, π).
This choice is related to the Cartesian choice by the well known formulae

x = r cos θ y = r sin θ. (1.1.1)

A remarkable feature of (1.1.1) is that x(P ) and y(P ) depend smoothly upon r(P ) and
θ(P ).

As science progressed, so did the notion of Space. One can think of Space as a configu-
ration set, i.e., the collection of all possible states of a certain phenomenon. For example,
we know from the principles of Newtonian mechanics that the motion of a particle in the
ambient space can be completely described if we know the position and the velocity of the
particle at a given moment. The space associated with this problem consists of all pairs
(position, velocity) a particle can possibly have. We can coordinatize this space using six
functions: three of them will describe the position, and the other three of them will de-
scribe the velocity. We say the configuration space is 6-dimensional. We cannot visualize
this space, but it helps to think of it as an Euclidian space, only “roomier”.
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There are many ways to coordinatize the configuration space of a motion of a particle,
and for each choice of coordinates we get a different description of the motion. Clearly, all
these descriptions must “agree” in some sense, since they all reflect the same phenomenon.
In other words, these descriptions should be independent of coordinates. Differential ge-
ometry studies the objects which are independent of coordinates.

The coordinatization process had been used by people centuries before mathematicians
accepted it as a method. For example, sailors used it to travel from one point to another
on Earth. Each point has a latitude and a longitude that completely determines its
position on Earth. This coordinatization is not a global one. There exist four domains
delimited by the Equator and the Greenwich meridian, and each of them is then naturally
coordinatized. Note that the points on the Equator or the Greenwich meridian admit two
different coordinatizations which are smoothly related.

The manifolds are precisely those spaces which can be piecewise coordinatized, with
smooth correspondence on overlaps, and the intention of this book is to introduce the
reader to the problems and the methods which arise in the study of manifolds. The next
section is a technical interlude. We will review the implicit function theorem which will
be one of the basic tools for detecting manifolds.

1.1.2 The implicit function theorem

We gather here, with only sketchy proofs, a collection of classical analytical facts. For
more details one can consult [27].

Let X and Y be two Banach spaces and denote by L(X,Y ) the space of bounded
linear operators X → Y . For example, if X = Rn, Y = Rm, then L(X,Y ) can be identified
with the space of m × n matrices with real entries. For any set S we will denote by 1S

the identity map S → S.

Definition 1.1.1. Let F : U ⊂ X → Y be a continuous function (U is an open subset of
X). The map F is said to be (Fréchet) differentiable at u ∈ U if there exists T ∈ L(X,Y )
such that

‖F (u0 + h)− F (u0)− Th‖Y = o(‖h‖X ) as h→ 0. ⊓⊔

Loosely speaking, a continuous function is differentiable at a point if, near that point,
it admits a “ best approximation ” by a linear map.

When F is differentiable at u0 ∈ U , the operator T in the above definition is uniquely
determined by

Th =
d

dt
|t=0 F (u0 + th) = lim

t→0

1

t
(F (u0 + th)− F (u0)) .

We will use the notation T = Du0F and we will call T the Fréchet derivative of F at u0.

Assume that the map F : U → Y is differentiable at each point u ∈ U . Then F is said
to be of class C1, if the map u 7→ DuF ∈ L(X,Y ) is continuous. F is said to be of class
C2 if u 7→ DuF is of class C1. One can define inductively Ck and C∞ (or smooth) maps.

Example 1.1.2. Consider F : U ⊂ Rn → Rm. Using Cartesian coordinates x =
(x1, . . . , xn) in Rn and u = (u1, . . . , um) in Rm we can think of F as a collection of
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m functions on U

u1 = u1(x1, . . . , xn), . . . , um = um(x1, . . . , xn).

The map F is differentiable at a point p = (p1, . . . , pn) ∈ U if and only if the functions ui

are differentiable at p in the usual sense of calculus. The Fréchet derivative of F at p is
the linear operator DpF : Rn → Rm given by the Jacobian matrix

DpF =
∂(u1, . . . , um)

∂(x1, . . . , xn)
=




∂u1

∂x1
(p) ∂u1

∂x2
(p) · · · ∂u1

∂xn (p)

∂u2

∂x1
(p) ∂u2

∂x2
(p) · · · ∂u2

∂xn (p)
...

...
...

...
∂um

∂x1 (p)
∂um

∂x2 (p) · · · ∂um

∂xn (p)



.

The map F is smooth if and only if the functions ui(x) are smooth. ⊓⊔

Exercise 1.1.3. (a) Let U ⊂ L(Rn,Rn) denote the set of invertible n×n matrices. Show
that U is an open subset of L(Rn,Rn).
(b) Let F : U → U be defined as A → A−1. Show that DAF (H) = −A−1HA−1 for any
n× n matrix H.
(c) Show that the Fréchet derivative of the map det : L(Rn,Rn) → R, A 7→ detA, at
A = 1Rn ∈ L(Rn,Rn) is given by trH, i.e.,

d

dt
|t=0 det(1Rn + tH) = trH, ∀H ∈ L(Rn,Rn). ⊓⊔

Theorem 1.1.4 (Inverse function theorem). Let X, Y be two Banach spaces, U ⊂ X open
and F : U ⊂ X → Y a smooth map. If at a point u0 ∈ U the derivative Du0F ∈ L(X,Y )
is invertible, then there exits an open neighborhood U1 of u0 in U such that F (U1) is an
open neighborhood of v0 = F (u0) in Y and F : U1 → F (U1) is bijective, with smooth
inverse. ⊓⊔

The spirit of the theorem is very clear: the invertibility of the derivative Du0F “prop-
agates” locally to F because Du0F is a very good local approximation for F .

More formally, if we set T = Du0F , then

F (u0 + h) = F (u0) + Th+ r(h),

where r(h) = o(‖h‖) as h → 0. The theorem states that, for every v sufficiently close to
v0, the equation F (u) = v has a unique solution u = u0 + h, with h very small. To prove
the theorem one has to show that, for ‖v − v0‖Y sufficiently small, the equation below

v0 + Th+ r(h) = v

has a unique solution. We can rewrite the above equation as Th = v − v0 − r(h) or,
equivalently, as h = T−1(v − v0 − r(h)). This last equation is a fixed point problem that
can be approached successfully via the Banach fixed point theorem.
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Theorem 1.1.5 (Implicit function theorem). Let X, Y , Z be Banach spaces, U ⊂ X,
V ⊂ Y open sets and

F : U × V → Z

a smooth map. Let (x0, y0) ∈ U × V , and z0 := F (x0, y0). Set

F2 : V → Z, F2(y) = F (x0, y).

Assume that Dy0F2 ∈ L(Y,Z) is invertible. Then there exist open neighborhoods U ⊂ U

of x0 in X, V ⊂ V of y0 in Y , and a smooth map G : U → V such that the set S of
solution (x, y) of the equation F (x, y) = z0 which lie inside U × V can be identified with
the graph of G, i.e.,

{
(x, y) ∈ U × V ; F (x, y) = z0

}
=
{
(x,G(x)) ∈ U × V ; x ∈ U

}
.

In pre-Bourbaki times, the classics regarded the coordinate y as a function of x defined
implicitly by the equality F (x, y) = z0.

Proof. Consider the map

H : X × Y → X × Z, ξ = (x, y) 7→ (x, F (x, y)).

The map H is a smooth map, and at ξ0 = (x0, y0) its derivative Dξ0H : X × Y → X × Z
has the block decomposition

Dξ0H =

[
1X 0

Dξ0F1 Dξ0F2

]
.

Above, DF1 (respectively DF2) denotes the derivative of x 7→ F (x, y0) (respectively the
derivative of y 7→ F (x0, y)). The linear operator Dξ0H is invertible, and its inverse has
the block decomposition

(Dξ0H)−1 =




1X 0

− (Dξ0F2)
−1 ◦ (Dξ0F1) (Dξ0F2)

−1


 .

Thus, by the inverse function theorem, the equation (x, F (x, y)) = (x, z0) has a unique
solution (x̃, ỹ) = H−1(x, z0) in a neighborhood of (x0, y0). It obviously satisfies x̃ = x and
F (x̃, ỹ) = z0. Hence, the set {(x, y) ; F (x, y) = z0} is locally the graph of x 7→ H−1(x, z0).

⊓⊔

1.2 Smooth manifolds

1.2.1 Basic definitions

We now introduce the object which will be the main focus of this book, namely, the
concept of (smooth) manifold. It formalizes the general principles outlined in Subsection
1.1.1.
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ψψ

ψ −1

i j

iψj

U U
i j

Rm R m

Figure 1.2: Transition maps

Definition 1.2.1. A smooth manifold of dimension m is a locally compact, second count-
able1 Hausdorff space M together with the following collection of data (henceforth called
atlas or smooth structure) consisting of the following.

(a) An open cover {Ui}i∈I of M ;

(b) A collection of homeomorphisms
{
Ψi : Ui → Ψi(Ui) ⊂ Rm; i ∈ I

}
(called charts

or local coordinates) such that, Ψi(Ui) is open in Rm, and if Ui ∩ Uj 6= ∅, then the
transition map

Ψj ◦Ψ−1i : Ψi(Ui ∩ Uj) ⊂ Rm → Ψj(Ui ∩ Uj) ⊂ Rm

is smooth. (We say that the various charts are smoothly compatible; see Figure 1.2).⊓⊔

Remark 1.2.2. (a) Each chart Ψi : Ui → Rm can be viewed as a collection of m functions
(x1, . . . , xm) on Ui,

Ψi(p) =




x1(p)
x2(p)

...
xm(p)


 .

Similarly, we can view another chart Ψj as another collection of functions (y1, . . . , ym).
The transition map Ψj ◦Ψ−1i can then be interpreted as a collection of maps

(x1, . . . , xm) 7→
(
y1(x1, . . . , xm), . . . , ym(x1, . . . , xm)

)
.

1A second countable space admits a countable basis of open sets.
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(b) Since a manifold is a second countable space we can always work with atlases that are
at most countable. ⊓⊔

The first and the most important example of manifold is Rn itself. The natural smooth
structure consists of an atlas with a single chart, 1Rn : Rn → Rn. To construct more
examples we will use the implicit function theorem .

Definition 1.2.3. (a) Let M , N be two smooth manifolds of dimensions m and respec-
tively n. A continuous map f : M → N is said to be smooth if, for any local charts φ
on M and ψ on N , the composition ψ ◦ f ◦ φ−1 (whenever this makes sense) is a smooth
map Rm → Rn.

(b) A smooth map f :M → N is called a diffeomorphism if it is invertible and its inverse
is also a smooth map. ⊓⊔

Example 1.2.4. The map t 7→ et is a diffeomorphism (−∞,∞) → (0,∞). The map
t 7→ t3 is a homeomorphism R→ R, but it is not a diffeomorphism! ⊓⊔

If M is a smooth m-dimensional manifold, we will denote by C∞(M) the linear space
of all smooth functions f :M → R. Let us point out a simple procedure that we will use
frequently in the sequel. Suppose that f : M → R is a smooth function. If (U,Ψ) is a
local chart on M so Ψ(U) is an open subset of Rm, then, by definition, the composition
f ◦ Ψ−1 : Ψ(U) → R is a smooth function on the open set Ψ(U) ⊂ Rn. If we denote
by x1, . . . , xm the canonical Euclidean coordinates on Rm, then ψ ◦ Ψ−1 is a function
depending on the m variables x1, . . . , xm and we will use the notation f

(
x1, . . . , xm

)
when

referring to this function.

Remark 1.2.5. Let U be an open subset of the smooth manifold M (dimM = m) and

Ψ : U → Rm

a smooth, one-to-one map with open image and smooth inverse. Then Ψ defines local
coordinates over U compatible with the existing atlas of M . Thus (U,Ψ) can be added
to the original atlas and the new smooth structure is diffeomorphic with the initial one.
Using Zermelo’s Axiom we can produce a maximal atlas (no more compatible local chart
can be added to it). ⊓⊔

Our next result is a general recipe for producing manifolds. Historically, this is how
manifolds entered mathematics.

Proposition 1.2.6. Let M be a smooth manifold of dimension m and f1, . . . , fk ∈
C∞(M). Define

Z = Z(f1, . . . , fk) =
{
p ∈M ; f1(p) = · · · = fk(p) = 0

}
.

Assume that the functions f1, . . . , fk are functionally independent along Z, i.e., for each
p ∈ Z, there exist local coordinates (x1, . . . , xm) defined in a neighborhood of p in M such
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that xi(p) = 0, i = 1, . . . ,m, and the matrix

∂ ~f

∂~x
|p :=




∂f1
∂x1

∂f1
∂x2 · · · ∂f1

∂xm
...

...
...

...
∂fk
∂x1

∂fk
∂x2

· · · ∂fk
∂xm



x1=···=xm=0

has rank k. Then Z has a natural structure of smooth manifold of dimension m− k.

Proof. Step 1: Constructing the charts. Let p0 ∈ Z, and denote by (x1, . . . , xm) local
coordinates near p0 such that xi(p0) = 0. One of the k × k minors of the matrix

∂ ~f

∂~x
|p :=




∂f1
∂x1

∂f1
∂x2 · · · ∂f1

∂xm
...

...
...

...
∂fk
∂x1

∂fk
∂x2

· · · ∂fk
∂xm



x1=···=xm=0

is nonzero. Assume this minor is determined by the last k columns (and all the k lines).
We can think of the functions f1, . . . , fk as defined on an open subset U of Rm. Split

Rm as Rm−k × Rk, and set

x′ := (x1, . . . , xm−k), x′′ := (xm−k+1, . . . , xm).

We are now in the setting of the implicit function theorem with

X = Rm−k, Y = Rk, Z = Rk,

and F : X × Y → Z given by

x 7→




f1(x)
...

fk(x))


 ∈ Rk.

In this case, DF2 =
(
∂F
∂x′′

)
: Rk → Rk is invertible since its determinant corresponds to

our nonzero minor. Thus, in a product neighborhood Up0 = U ′p0 × U ′′p0 of p0, the set Z is
the graph of some function

g : U ′p0 ⊂ Rm−k −→ U ′′p0 ⊂ Rk,

i.e.,
Z ∩ Up0 =

{
(x′, g(x′) ) ∈ Rm−k × Rk; x′ ∈ U ′p0 , |x′| small

}
.

We now define ψp0 : Z ∩ Up0 → Rm−k by

(x′, g(x′) )
ψp07−→ x′ ∈ Rm−k.

The map ψp0 is a local chart of Z near p0.

Step 2. The transition maps for the charts constructed above are smooth. The details
are left to the reader. ⊓⊔
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Exercise 1.2.7. Complete Step 2 in the proof of Proposition 1.2.6. ⊓⊔

Definition 1.2.8. Let M be a m-dimensional manifold. A codimension k submanifold
of M is a subset S ⊂ M locally defined as the common zero locus of k functionally
independent functions f1, . . . , fk ∈ C∞(M). More precisely, this means that, for any
p0 ∈ S, there exists an open neighborhood U of p0 ∈ M and k functionally independent
smooth functions

f1, . . . , fk : U → R

such that p ∈ U ∩ S if and only if f1(p) = · · · = fk(p) = 0. ⊓⊔

Proposition 1.2.6 shows that any submanifold N ⊂M has a natural smooth structure
so it becomes a manifold per se. Moreover, the inclusion map i : N →֒M is smooth.

Exercise 1.2.9. Suppose thatM is a smooth m-dimensional manifold. Prive that S ⊂M
is a codimension k-submanifold of M if and only if, for any p0 ∈ M , there exists a
coordinate chart (U,Ψ) with local coordinates (x1, . . . , xm) such that p0 ∈ U and

U ∩ S =
{
p ∈ U ; x1(p) = · · · = xk(p) = 0

}
. ⊓⊔

1.2.2 Partitions of unity

This is a very brief technical subsection describing a trick we will extensively use in this
book. Recall that manifolds are locally compact, second countable topological spaces. As
such, they are paracompact so they admit continuous partitions of unity; see [23, §3.7]. A
much more precise result is in fact true.

Definition 1.2.10. Let M be a smooth manifold and (Uα)α∈A an open cover of M . A
(smooth) partition of unity subordinated to this cover is a family (fβ)β∈B ⊂ C∞(M)
satisfying the following conditions.

(i) 0 ≤ fβ ≤ 1.

(ii) ∃φ : B→ A such that supp fβ ⊂ Uφ(β).

(iii) The family (supp fβ) is locally finite, i.e., any point x ∈ M admits an open neigh-
borhood intersecting only finitely many of the supports supp fβ.

(iv)
∑

β fβ(x) = 1 for all x ∈M . ⊓⊔

We include here for the reader’s convenience the basic existence result concerning
partitions of unity. For a proof we refer to [97].

Proposition 1.2.11. (a) For any open cover U = (Uα)α∈A of a smooth manifold M there
exists at least one smooth partition of unity (fβ)β∈B subordinated to U such that supp fβ
is compact for any β.

(b) If we do not require compact supports, then we can find a partition of unity in which
B = A and φ = 1A. ⊓⊔
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Exercise 1.2.12. Let M be a smooth manifold and S ⊂ M a closed submanifold, i.e.,
S is a closed subset of M . Prove that the restriction map

r : C∞(M)→ C∞(S) f 7→ f |S
is surjective. Deduce that for any finite set X ⊂ M and any function g : F → R there
exists a smooth, compactly supported gunction f :M → R such that f(x) = g(x), ∀x ∈ X.

⊓⊔

1.2.3 Examples

Manifolds are everywhere, and in fact, to many physical phenomena which can be modelled
mathematically one can naturally associate a manifold. On the other hand, many problems
in mathematics find their most natural presentation using the language of manifolds. To
give the reader an idea of the scope and extent of modern geometry, we present here a
short list of examples of manifolds. This list will be enlarged as we enter deeper into the
study of manifolds.

Example 1.2.13. (The n-dimensional sphere). This is the codimension 1 submanifold
of Rn+1 given by the equation

|x|2 =

n∑

i=0

(xi)2 = r2, x = (x0, . . . , xn) ∈ Rn+1.

One checks that, along the sphere, the differential of |x|2 is nowhere zero, so by Proposition
1.2.6, Sn is indeed a smooth manifold. In this case one can explicitly construct an atlas
(consisting of two charts) which is useful in many applications. The construction relies on
stereographic projections.

Let N and S denote the North and resp. South pole of Sn (N = (0, . . . , 0, 1) ∈ Rn+1,
S = (0, . . . , 0,−1) ∈ Rn+1). Consider the open sets UN = Sn \ {N} and US = Sn \ {S}.
They form an open cover of Sn. The stereographic projection from the North pole is the
map σN : UN → Rn such that, for any P ∈ UN , the point σN (P ) is the intersection of the
line NP with the hyperplane {xn = 0} ∼= Rn.

The stereographic projection from the South pole is defined similarly.

• For P ∈ UN we denote by (y1(P ), . . . , yn(P )) the coordinates of σN (P ).

• For Q ∈ US we denote by (z1(Q), . . . , zn(Q)) the coordinates of σS(Q).

A simple argument shows the map
(
y1(P ), . . . , yn(P )

)
7→
(
z1(P ), . . . , zn(P )

)
, P ∈ UN ∩ US ,

is smooth (see the exercise below). Hence {(UN , σN ), (US , σS)} defines a smooth structure
on Sn. ⊓⊔

Exercise 1.2.14. Show that the functions yi, zj constructed in the above example satisfy

zi =
yi(∑n

j=1(y
j)2
) , ∀i = 1, . . . , n. ⊓⊔
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Example 1.2.15. (The n-dimensional torus). This is the codimension n submanifold
of the vector space R2n with Cartesian coordinates (x1, y1; ... ;xn, yn), defined by the
equalities

x21 + y21 = · · · = x2n + y2n = 1.

Note that T 1 is diffeomorphic with the 1-dimensional sphere S1 (unit circle). As a set T n

is a direct product of n circles (see Figure 1.3)

T n =
{
x21 + y21 = 1

}
×
{
x2n + y2n = 1

}
= S1 × · · · × S1. ⊓⊔

Figure 1.3: The 2-dimensional torus

The above example suggests the following general construction.

Example 1.2.16. Let M and N be smooth manifolds of dimension m and respectively
n. Then their topological direct product has a natural structure of smooth manifold of
dimension m+ n. ⊓⊔

Example 1.2.17. (The connected sum of two manifolds). Let M1 and M2 be two
manifolds of the same dimension m. Pick pi ∈Mi (i = 1, 2), choose small open neighbor-
hoods Ui of pi inMi and then local charts ψi identifying each of these neighborhoods with
B2(0), the ball of radius 2 in Rm.

Let Vi ⊂ Ui correspond (via ψi) to the annulus {1/2 < |x| < 2} ⊂ Rm. Consider

φ :
{
1/2 < |x| < 2

}
→
{
1/2 < |x| < 2

}
, φ(x) =

x

|x|2 .

The action of φ is clear: it switches the two boundary components of {1/2 < |x| < 2},
and reverses the orientation of the radial directions.

Now “glue” V1 to V2 using the “prescription” given by ψ−12 ◦ φ ◦ ψ1 : V1 → V2. In this
way we obtain a new topological space with a natural smooth structure induced by the
smooth structures on Mi. Up to a diffeomeorphism, the new manifold thus obtained is
independent of the choices of local coordinates ([19]), and it is called the connected sum
of M1 and M2 and is denoted by M1#M2 (see Figure 1.4). ⊓⊔

Example 1.2.18. (The real projective space RPn). As a topological space RPn is
the quotient of Rn+1 modulo the equivalence relation

x ∼ y def⇐⇒ ∃λ ∈ R∗ : x = λy.
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V V
1 2

Figure 1.4: Connected sum of tori

The equivalence class of x = (x0, . . . , xn) ∈ Rn+1 \ {0} is usually denoted by [x0, . . . , xn].
Alternatively, RPn is the set of all lines (directions) in Rn+1. Traditionally, one attaches
a point to each direction in Rn+1, the so called “point at infinity” along that direction, so
that RPn can be thought as the collection of all points at infinity along all the directions
in Rn+1.

The space RPn has a natural structure of smooth manifold. To describe it consider
the sets

Uk =
{
[x0, . . . , xn] ∈ RPn ; xk 6= 0

}
, k = 0, . . . , n.

Now define

ψk : Uk → Rn [x0, . . . , xn] 7→ (x0/xk, . . . , xk−1/xk, xk+1/xk, . . . xn).

The maps ψk define local coordinates on the projective space. The transition map on the
overlap region Uk ∩ Um = {[x0, . . . , xn] ; xkxm 6= 0} can be easily described. Set

ψk([x
0, . . . , xn]) = (ξ1, . . . , ξn), ψm([x

0, . . . , xn]) = (η1, . . . , ηn).

The equality

[x0, . . . , xn] = [ξ1, . . . , ξk−1, 1, ξk, . . . , ξn] = [η1, . . . , ηm−1, 1, ηm, . . . , ηn]

immediately implies (assume k < m)





ξ1 = η1/ηk, . . . , ξk−1 = ηk−1/ηk, ξk+1 = ηk
ξk = ηk+1/ηk, . . . , ξm−2 = ηm−1/ηk, ξm−1 = 1/ηk
ξm = ηmηk, . . . , ξn = ηn/ηk

(1.2.1)
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This shows the map ψk ◦ψ−1m is smooth and proves that RPn is a smooth manifold. Note
that when n = 1, RP1 is diffeomorphic with S1. One way to see this is to observe that
the projective space can be alternatively described as the quotient space of Sn modulo the
equivalence relation which identifies antipodal points . ⊓⊔

Example 1.2.19. (The complex projective space CPn). The definition is formally
identical to that of RPn. CPn is the quotient space of Cn+1 \ {0} modulo the equivalence
relation

x ∼ y def⇐⇒ ∃λ ∈ C∗ : x = λy.

The open sets Uk are defined similarly and so are the local charts ψk : Uk → Cn. They
satisfy transition rules similar to (1.2.1) so that CPn is a smooth manifold of dimension
2n. ⊓⊔

Exercise 1.2.20. Prove that CP1 is diffeomorphic to S2. ⊓⊔

In the above example we encountered a special (and very pleasant) situation: the
gluing maps not only are smooth, they are also holomorphic as maps ψk ◦ ψ−1m : U → V
where U and V are open sets in Cn. This type of gluing induces a “rigidity” in the
underlying manifold and it is worth distinguishing this situation.

Definition 1.2.21. (Complex manifolds). A complex manifold is a smooth, 2n-
dimensional manifoldM which admits an atlas {(Ui, ψi) : Ui → Cn} such that all transition
maps are holomorphic. ⊓⊔

The complex projective space is a complex manifold. Our next example naturally
generalizes the projective spaces described above.

Example 1.2.22. (The real and complex Grassmannians Grk(R
n), Grk(C

n)).

Suppose V is a real vector space of dimension n. For every 0 ≤ k ≤ n we denote by
Grk(V ) the set of k-dimensional vector subspaces of V . We will say that Grk(V ) is the
linear Grassmannian of k-planes in E. When V = Rn we will write Grk,n(R) instead of
Grk(R

n).

We would like to give several equivalent descriptions of the natural structure of smooth
manifold on Grk(V ). To do this it is very convenient to fix an Euclidean metric on V .

Any k-dimensional subspace L ⊂ V is uniquely determined by the orthogonal projec-
tion onto L which we will denote by PL. Thus we can identify Grk(V ) with the set of
rank k projectors

Projk(V ) :=
{
P : V → V ; P ∗ = P = P 2, rankP = k

}
.

Let use observe that the rank of an orthogonal projector is determined by the equality

rankP = trP.

We have a natural map

P : Grk(V )→ Projk(V ), L 7→ PL
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with inverse P 7→ Range (P ).
The set Projk(V ) is a subset of the vector space of symmetric endomorphisms

End+(V ) :=
{
A ∈ End(V ), A∗ = A

}
.

The space End+(V ) is equipped with a natural inner product

(A,B) :=
1

2
tr(AB), ∀A,B ∈ End+(V ). (1.2.2)

We denote by ‖ − ‖ the norm on End+(V ) induced by this inner product,

‖A‖2 = 1

2
tr(A2).

Note that the subsetProjk(V ) ⊂ End+(V ) can alternatively be described by the equalities

P 2 = P, trP = k.

This proves that Projk(V ) is a closed subset of End+(V ). From the equality

‖P‖2 = 1

2
trP 2 =

1

2
trP =

k

2
, ∀P ∈ Projk(V )

we deduce that Projk(V ) is also bounded subset of End+(V ). The bijection

P : Grk(V )→ Projk(V ), L 7→ PL

induces a topology on Grk(V ), and with this topology Grk(V ) is a compact metric space.
We want to show that Grk(V ) has a natural structure of smooth manifold compatible

with this topology. To see this, we define for every L ⊂ Grk(V ) the set

Grk(V,L) :=
{
U ∈ Grk(V ); U ∩ L⊥ = 0

}
.

Lemma 1.2.23. (a) Let L ∈ Grk(V ). Then

U ∩ L⊥ = 0⇐⇒ 1− PL + PU : V → V is an isomorphism. (1.2.3)

(b) The set Grk(V,L) is an open subset of Grk(V ).

Proof. (a) Note first that a dimension count implies that

U ∩ L⊥ = 0⇐⇒ U + L⊥ = V ⇐⇒ U⊥ ∩ L = 0.

Let us show that U ∩ L⊥ = 0 implies that 1 − PL + PL is an isomorphism. It suffices to
show that

ker(1− PL + PU ) = 0.

Suppose v ∈ ker(1− PL + PU ). Then

0 = PL(1− PL + PU )v = PLPUv = 0 =⇒ PUv ∈ U ∩ kerPL = U ∩ L⊥ = 0.
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Hence PUv = 0, so that v ∈ U⊥. From the equality (1 − PL − PU )v = 0 we also deduce
(1− PL)v = 0 so that v ∈ L. Hence

v ∈ U⊥ ∩ L = 0.

Conversely, we will show that if 1− PL + PU = PL⊥ + PU is onto, then U + L⊥ = V .

Indeed, let v ∈ V . Then there exists x ∈ V such that

v = PL⊥x+ PUx ∈ L⊥ + U.

(b) We have to show that, for every K ∈ Grk(V,L), there exists ε > 0 such that any U
satisfying

‖PU − PK‖ < ε

intersects L⊥ trivially. SinceK ∈ Grk(V,L) we deduce from (a) that the map 1−PL−PK :
V → V is an isomorphism. Note that

‖(1− PL − PK)− (1− PL − PU )‖ = ‖PK − PU‖.

The space of isomorphisms of V is an open subset of End(V ). Hence there exists ε > 0
such that, for any subspace U satisfying ‖PU −PK‖ < ε, the endomorphism (1−PL−PU )
is an isomorphism. We now conclude using part (a). ⊓⊔

Since L ∈ Grk(V,L), ∀L ∈ Grk(V ), the collection

{
Grk(V,L); L ∈ Grk(V )

}

is an open cover of Grk(V ). Note that for every L ∈ Grk(V ) we have a natural map

Γ : Hom(L,L⊥)→ Grk(V,L), (1.2.4)

that associates to each linear map S : L→ L⊥ its graph (see Figure 1.5)

ΓS = {x+ Sx ∈ L+ L⊥ = V ; x ∈ L}.

The map (1.2.4) is obviously injective. We claim that it is in fact a bijection.

Indeed, if U ∈ Grk(V,L), then the restriction of PL to U is injective since

U ∩ kerPL = U ∩ L⊥ = 0.

Thus, the linear map PL
∣∣
U

: U → L, U ∋ Uu 7→ PLu is a linear isomorphism because
dimU = dimL = k. Denote by HU its inverse, HU : L → U . It is easy to see that U is
the graph of the linear map

S : L→ L⊥, Sx = PL⊥HUx.

We will show that the bijection (1.2.4) is a homeomorphism. We first prove that it is
continuous by providing an explicit description of the orthogonal projection PΓS
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v
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Figure 1.5: Subspaces as graphs of linear operators.

Observe first that the orthogonal complement of ΓS is the graph of −S∗ : L⊥ → L.
More precisely,

Γ⊥S = Γ−S∗ =
{
y − S∗y ∈ L⊥ + L = V ; y ∈ L⊥

}
.

Let v = PLv + PL⊥v = vL + vL+ ∈ V (see Figure 1.5). Then

PΓS
v = x+ Sx, x ∈ L⇐⇒ v − (x+ Sx) ∈ Γ⊥S

⇐⇒ ∃x ∈ L, y ∈ L⊥ such that

{
x+ S∗y = vL
Sx− y = vL⊥

.

Consider the operator S : L⊕ L⊥ → L⊕ L⊥ which has the block decomposition

S =

[
1L S∗

S −1⊥L

]
.

Then the above linear system can be rewritten as

S ·
[
x
y

]
=

[
vL
vL⊥

]
.

Now observe that

S2 =

[
1L + S∗S 0

0 1L⊥ + SS∗

]
.

Hence S is invertible, and

S−1 =

[
(1L + S∗S)−1 0

0 (1L⊥ + SS∗)−1

]
· S

=

[
(1L + S∗S)−1 (1L + S∗S)−1S∗

(1L⊥ + SS∗)−1S −(1L⊥ + SS∗)−1

]
.

We deduce

x = (1L + S∗S)−1vL + (1L + S∗S)−1S∗vL⊥
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and,

PΓS
v =

[
x
Sx

]
.

Hence PΓS
has the block decomposition

PΓS
=

[
1L

S

]
·
[
(1L + S∗S)−1 (1L + S∗S)−1S∗

]

=




(1L + S∗S)−1 (1L + S∗S)−1S∗

S(1L + S∗S)−1 S(1L + S∗S)−1S∗


 . (1.2.5)

This proves that the map

Hom(L,L⊥) ∋ S 7→ PΓS
∈ Grk(V,L)

is continuous. Note that if U ∈ Grk(V,L), then with respect to the decomposition V =
L+ L⊥ the projector PU has the block form

PU =

[
A B
C D

]
=




PLPU IL PLPU IL⊥

PL⊥PU IL PL⊥PU IL⊥


 ,

where for every subspace K →֒ V we denoted by IK : K → V the canonical inclusion,
then U = ΓS . If U = ΓS, then (1.2.5) implies

PLPUIL = A(U) = (1L + S∗S)−1, PLPU IL⊥ = C(U) = S(1L + S∗S)−1,

so S = CA−1. Since A and C depend continuously on PU we deduce shows that the
inverse of the graph map

Hom(L,L⊥) ∋ S 7→ ΓS ∈ Grk(V )

is also continuous. Moreover, the above formulæ show that if U ∈ Grk(V,L0)∩Grk(V,L1),
then we can represent U in two ways,

U = ΓS0 = ΓS1 , Si ∈ Hom(Li, L
⊥
i ), i = 0, 1,

and the correspondence S0 → S1 is smooth. This shows that Grk(V ) has a natural
structure of smooth manifold of dimension

dimGrk(V ) = dimHom(L,L⊥) = k(n− k).

Grk(C
n) is defined as the space of complex k-dimensional subspaces of Cn. It can be

structured as above as a smooth manifold of dimension 2k(n − k). Note that Gr1(R
n) ∼=

RPn−1, and Gr1(C
n) ∼= CPn−1. The Grassmannians have important applications in many

classification problems. ⊓⊔
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Exercise 1.2.24. Show that Grk(C
n) is a complex manifold of complex dimension k(n−

k)). ⊓⊔

Example 1.2.25. (Lie groups). A Lie group is a smooth manifold G together with a
group structure on it such that the map

G×G→ G (g, h) 7→ g · h−1

is smooth. These structures provide an excellent way to formalize the notion of symmetry.

(a) (Rn,+) is a commutative Lie group.

(b) The unit circle S1 can be alternatively described as the set of complex numbers of
norm one and the complex multiplication defines a Lie group structure on it. This is a
commutative group. More generally, the torus T n is a Lie group as a direct product of n
circles2.

(c) The general linear group GL(n,K) defined as the group of invertible n × n matrices
with entries in the field K = R, C is a Lie group. Indeed, GL(n,K) is an open subset (see
Exercise 1.1.3) in the linear space of n × n matrices with entries in K. It has dimension
dKn

2, where dK is the dimension of K as a linear space over R. We will often use the
alternate notation GL(Kn) when referring to GL(n,K).

(d) The orthogonal group O(n) is the group of real n× n matrices satisfying

T · T t = 1.

To describe its smooth structure we will use the Cayley transform trick as in [85] (see also
the classical [102]). Set

Mn(R)
# :=

{
T ∈Mn(R) ; det(1+ T ) 6= 0

}
.

The matrices inMn(R)
# are called non exceptional. Clearly 1 ∈ O(n)# = O(n)∩Mn(R)

#

so that O(n)# is a nonempty open subset of O(n). The Cayley transform is the map
# :Mn(R)

# →Mn(R) defined by

A 7→ A# = (1−A)(1+A)−1.

The Cayley transform has some very nice properties.
(i) A# ∈Mn(R)

# for every A ∈Mn(R)
#.

(ii) # is involutive, i.e., (A#)# = A for any A ∈Mn(R)
#.

(iii) For every T ∈ O(n)# the matrix T# is skew-symmetric, and conversely, if A ∈
Mn(R)

# is skew-symmetric then A# ∈ O(n).
Thus the Cayley transform is a homeomorphism from O(n)# to the space of non-

exceptional, skew-symmetric, matrices. The latter space is an open subset in the linear
space of real n× n skew-symmetric matrices, o(n).

Any T ∈ O(n) defines a self-homeomorphism of O(n) by left translation in the group

LT : O(n)→ O(n) S 7→ LT (S) = T · S.
2One can show that any connected commutative Lie group has the from Tn × Rm.
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We obtain an open cover of O(n):

O(n) =
⋃

T∈O(n)

T ·O(n)#.

Define ΨT : T · O(n)# → o(n) by S 7→ (T−1 · S)#. One can show that the collection

(
T ·O(n)#,ΨT

)
T∈O(n)

defines a smooth structure on O(n). In particular, we deduce

dimO(n) = n(n− 1)/2.

Inside O(n) lies a normal subgroup (the special orthogonal group)

SO(n) = {T ∈ O(n) ; detT = 1}.

The group SO(n) is a Lie group as well and dimSO(n) = dimO(n).

(e) The unitary group U(n) is defined as

U(n) = {T ∈ GL(n,C) ; T · T ∗ = 1},

where T ∗ denotes the conjugate transpose (adjoint) of T . To prove that U(n) is a manifold
one uses again the Cayley transform trick. This time, we coordinatize the group using the
space u(n) of skew-adjoint (skew-Hermitian) n × n complex matrices (A = −A∗). Thus
U(n) is a smooth manifold of dimension

dimU(n) = dimu(n) = n2.

Inside U(n) sits the normal subgroup SU(n), the kernel of the group homomorphism
det : U(n)→ S1. SU(n) is also called the special unitary group. This a smooth manifold
of dimension n2 − 1. In fact the Cayley transform trick allows one to coordinatize SU(n)
using the space

su(n) = {A ∈ u(n) ; trA = 0}. ⊓⊔
Exercise 1.2.26. (a) Prove the properties (i)-(iii) of the Cayley transform, and then show
that

(
T ·O(n)#,ΨT

)
T∈O(n)

defines a smooth structure on O(n).

(b) Prove that U(n) and SU(n) are manifolds.

(c) Show that O(n), SO(n), U(n), SU(n) are compact spaces.

(d) Prove that SU(2) is diffeomorphic with S3 (Hint: think of S3 as the group of unit
quaternions.) ⊓⊔

Exercise 1.2.27. Let SL(n;K) denote the group of n×n matrices of determinant 1 with
entries in the field K = R,C. Use the implicit function theorem to show that SL(n;K) is
a smooth manifold of dimension dK(n

2 − 1), where dK = dimR K. ⊓⊔
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Exercise 1.2.28. (Quillen). Suppose V0, V1 are two real, finite dimensional Euclidean
space, and T : V0 → V1 is a linear map. We denote by T ∗ is adjoint, T ∗ : V1 → V0, and by
ΓT the graph of T ,

ΓT =
{
(v0, v1) ∈ V0 ⊕ V1; v1 = Tv0 l

}
.

We form the skew-symmetric operator

X : V0 ⊕ V1 → V0 ⊕ V1, X ·
[
v0
v1

]
=

[
0 T ∗

−T 0

]
·
[
v0
v1

]
.

We denote by CT the Cayley transform of X,

CT = (1−X)(1+X)−1,

and by R0 : V0 ⊕ V1 → V0 ⊕ V1 the reflection

R0 =

[
1V0 0
0 −1V1

]
.

Show that RT = CTR0 is an orthogonal involution, i.e.,

R2
T = 1, R∗T = RT ,

and ker(1 − RT ) = ΓT . In other words, RT is the orthogonal reflection in the subspace
ΓT ,

RT = 2PΓT
− 1,

where PΓT
denotes the orthogonal projection onto ΓT . ⊓⊔

Exercise 1.2.29. Suppose G is a Lie group, and H is an abstract subgroup of G. Prove
that the closure of H is also a subgroup of G.

Exercise 1.2.30. (a) Let G be a connected Lie group and denote by U a neighborhood
of 1 ∈ G. If H is the subgroup algebraically generated by U show that H is dense in G.

(b) Let G be a compact Lie group and g ∈ G. Show that 1 ∈ G lies in the closure of
{gn; n ∈ Z \ {0}}. ⊓⊔

Remark 1.2.31. If G is a Lie group, and H is a closed subgroup of G, then H is in fact
a smooth submanifold of G, and with respect to this smooth structure H is a Lie group.
For a proof we refer to [45, 97]. In view of Exercise 1.2.29, this fact allows us to produce
many examples of Lie groups. ⊓⊔

1.2.4 How many manifolds are there?

The list of examples in the previous subsection can go on for ever, so one may ask whether
there is any coherent way to organize the collection of all possible manifolds. This is too
general a question to expect a clear cut answer. We have to be more specific. For example,
we can ask
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Question 1: Which are the compact, connected manifolds of a given dimension d?

For d = 1 the answer is very simple: the only compact connected 1-dimensional man-
ifold is the circle S1. (Can you prove this?)

We can raise the stakes and try the same problem for d = 2. Already the situation is
more elaborate. We know at least two surfaces: the sphere S2 and the torus T 2. They
clearly look different but we have not yet proved rigorously that they are indeed not
diffeomorphic. This is not the end of the story. We can connect sum two tori, three tori
or any number g of tori. We obtain doughnut-shaped surface as in Figure 1.6

Figure 1.6: Connected sum of 3 tori

Again we face the same question: do we get non-diffeomorphic surfaces for different
choices of g? Figure 1.6 suggests that this may be the case but this is no rigorous argument.

We know another example of compact surface, the projective plane RP2, and we nat-
urally ask whether it looks like one of the surfaces constructed above. Unfortunately,
we cannot visualize the real projective plane (one can prove rigorously it does not have
enough room to exist inside our 3-dimensional Universe). We have to decide this question
using a little more than the raw geometric intuition provided by a picture. To kill the
suspense, we mention that RP2 does not belong to the family of donuts. One reason is
that, for example, a torus has two faces: an inside face and an outside face (think of a car
rubber tube). RP2 has a weird behavior: it has “no inside” and “no outside”. It has only
one side! One says the torus is orientable while the projective plane is not.

We can now connect sum any numbers of RP2’s to any donut an thus obtain more
and more surfaces, which we cannot visualize and we have yet no idea if they are pairwise
distinct. A classical result in topology says that all compact surfaces can be obtained in
this way (see [69]), but in the above list some manifolds are diffeomorphic, and we have
to describe which. In dimension 3 things are not yet settled3 and, to make things look
hopeless, in dimension ≥ 4 Question 1 is algorithmically undecidable .

We can reconsider our goals, and look for all the manifolds with a given property X.
In many instances one can give fairly accurate answers. Property X may refer to more
than the (differential) topology of a manifold. Real life situations suggest the study of
manifolds with additional structure. The following problem may give the reader a taste
of the types of problems we will be concerned with in this book.

Question 2 Can we wrap a planar piece of canvas around a metal sphere in a one-
to-one fashion? (The canvas is flexible but not elastic).

3Things are still not settled in 2007, but there has been considerable progress due to G. Perelman’s
proof of the Poincaré conjecture.



22 CHAPTER 1. MANIFOLDS

A simple do-it-yourself experiment is enough to convince anyone that this is not pos-
sible. Naturally, one asks for a rigorous explanation of what goes wrong. The best ex-
planation of this phenomenon is contained in the celebrated Theorema Egregium (Golden
Theorem) of Gauss. Canvas surfaces have additional structure (they are made of a special
material), and for such objects there is a rigorous way to measure “how curved” are they.
One then realizes that the problem in Question 2 is impossible, since a (canvas) sphere is
curved in a different way than a plane canvas.

There are many other structures Nature forced us into studying them, but they may
not be so easily described in elementary terms.

A word to the reader. The next two chapters are probably the most arid in geometry
but, keep in mind that, behind each construction lies a natural motivation and, even if we
do not always have the time to show it to the reader, it is there, and it may take a while
to reveal itself. Most of the constructions the reader will have to “endure” in the next two
chapters constitute not just some difficult to “swallow” formalism, but the basic language
of geometry. It might comfort the reader during this less than glamorous journey to carry
in the back of his mind Hermann Weyl’s elegantly phrased advise.

“It is certainly regrettable that we have to enter into the purely formal aspect
in such detail and to give it so much space but, nevertheless, it cannot be
avoided. Just as anyone who wishes to give expressions to his thoughts with
ease must spend laborious hours learning language and writing, so here too the
only way we can lessen the burden of formulæ is to master the technique of
tensor analysis to such a degree that we can turn to real problems that concern
us without feeling any encumbrance, our object being to get an insight into
the nature of space [...]. Whoever sets out in quest of these goals must possess
a perfect mathematical equipment from the outset.”

H. Weyl: Space, Time, Matter.



Chapter 2

Natural Constructions on

Manifolds

The goal of this chapter is to introduce the basic terminology used in differential geometry.
The key concept is that of tangent space at a point which is a first order approximation of
the manifold near that point. We will be able to transport many notions in linear analysis
to manifolds via the tangent space.

2.1 The tangent bundle

2.1.1 Tangent spaces

We begin with a simple example which will serve as a motivation for the abstract defini-
tions.

Example 2.1.1. Consider the sphere

(S2) : x2 + y2 + z2 = 1 in R3.

We want to find the plane passing through the North pole N(0, 0, 1) that is “closest” to
the sphere. The classics would refer to such a plane as an osculator plane.

The natural candidate for this osculator plane would be a plane given by a linear
equation that best approximates the defining equation x2+ y2+ z2 = 1 in a neighborhood
of the North pole. The linear approximation of x2 + y2 + z2 near N seems like the best
candidate. We have

x2 + y2 + z2 − 1 = 2(z − 1) +O(2),

where O(2) denotes a quadratic error. Hence, the osculator plane is z = 1, Geometrically,
it is the horizontal affine plane through the North pole. The linear subspace {z = 0} ⊂ R3

is called the tangent space to S2 at N .
The above construction has one deficiency: it is not intrinsic, i.e., it relies on objects

“outside” the manifold S2. There is one natural way to fix this problem. Look at a smooth
path γ(t) on S2 passing through N at t = 0. Hence, t 7→ γ(t) ∈ R3, and

|γ(t)|2 = 1. (2.1.1)

23
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If we differentiate (2.1.1) at t = 0 we get (γ̇(0), γ(0)) = 0, i.e., γ̇(0) ⊥ γ(0), so that γ̇(0) lies
in the linear subspace z = 0. We deduce that the tangent space consists of the tangents
to the curves on S2 passing through N .

This is apparently no major conceptual gain since we still regard the tangent space
as a subspace of R3, and this is still an extrinsic description. However, if we use the
stereographic projection from the South pole we get local coordinates (u, v) near N , and
any curve γ(t) as above can be viewed as a curve t 7→ (u(t), v(t)) in the (u, v) plane. If
φ(t) is another curve through N given in local coordinates by t 7→ (u(t), v(t)), then

γ̇(0) = φ̇(0) ⇐⇒
(
u̇(0), v̇(0)

)
=
(
u̇(0), v̇(0)

)
.

The right hand side of the above equality defines an equivalence relation ∼ on the set of
smooth curves passing trough (0, 0). Thus, there is a bijective correspondence between the
tangents to the curves through N , and the equivalence classes of “∼”. This equivalence
relation is now intrinsic modulo one problem: “∼” may depend on the choice of the local
coordinates. Fortunately, as we are going to see, this is a non-issue. ⊓⊔

Definition 2.1.2. Let Mm be a smooth manifold and p0 a point in M . Two smooth
paths α, β : (−ε, ε)→M such that α(0) = β(0) = p0 are said to have a first order contact
at p0 if there exist local coordinates (x) = (x1, . . . , xm) near p0 such that

ẋα(0) = ẋβ(0),

where

α(t) = (xα(t)) :=
(
x1α(t), . . . , x

m
α (t)

)
,

and

β(t) = (xβ(t)) =
(
x1β(t), . . . , x

m
β (t)

)
.

We write this α ∼1 β. ⊓⊔

Lemma 2.1.3. ∼1 is an equivalence relation.

Sketch of proof. The binary relation ∼1 is obviously reflexive and symmetric, so we
only have to check the transitivity. Let α ∼1 β and β ∼1 γ. Thus there exist local
coordinates (x) = (x1, . . . , xm) and (y) = (y1, . . . , ym) near p0 such that

(
ẋα(0)

)
= (ẋβ(0)) and

(
ẏβ(0)

)
=
(
ẏγ(0)

)
.

The transitivity follows from the equality

ẏiγ(0) = ẏiβ(0) =
∑

j

∂yi

∂xj
ẋjβ(0) =

∑

j

∂yi

∂xj
ẋjα(0) = ẏjα(0). ⊓⊔

Definition 2.1.4. A tangent vector to M at p is a first-order-contact equivalence class
of curves through p. The equivalence class of a curve α(t) such that α(0) = p will be
temporarily denoted by [α̇(0)]. The set of these equivalence classes is denoted by TpM ,
and is called the tangent space to M at p. ⊓⊔
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Lemma 2.1.5. TpM has a natural structure of vector space.

Proof. Choose local coordinates (x1, . . . , xm) near p such that xi(p) = 0, ∀i, and let α and
β be two smooth curves through p. In the above local coordinates the curves α, β become(
xiα(t)

)
,
(
xiβ(t)

)
. Construct a new curve γ through p whose x coordinates are given by

(
xiγ(t)

)
=
(
xiα(t) + xiβ(t)

)
.

We want to emphasize that the above curve depends on α, β and the choice of local
coordinates (x1, . . . , xm). We will indicate this using the notation α +x β when referring
to γ. Set

[α̇(0)] + [β̇(0)] := [γ̇(0)].

The zero vector in TpM is described by a curve α such that ẋiα(0) = 0, ∀i. For this
operation to be well defined one has to check several things.

(a) The equivalence class [γ̇(0)] is independent of coordinates. In other words, if
(x1, . . . , xm) and (y1, . . . , ym) are local coordinates near p such that

xi(p) = yj(p) = 0, ∀i, j,

then
α+x β ∼1 α+y β.

(b) If a curve represents the zero vector in some local coordinates (xi) at p, then it
represents the zero vector in any other choice of local coordinates at p.

(c) If [α̇1(0)] = [α̇2(0)] and [β̇1(0)] = [β̇2(0)], then

[α̇1(0)] + [β̇1(0)] = [α̇2(0)] + [β̇2(0)].

We let the reader supply the routine details. ⊓⊔

Exercise 2.1.6. Finish the proof of the Lemma 2.1.5. ⊓⊔

From this point on we will omit the brackets [ – ] in the notation of a tangent vector.
Thus, [α̇(0)] will be written simply as α̇(0).

As one expects, all the above notions admit a nice description using local coordinates.
Let (x1, . . . , xm) be coordinates near p ∈M such that xi(p) = 0, ∀i. Consider the curves

ek(t) = (tδ1k, . . . , tδ
m
k ), k = 1, . . . ,m,

where δij denotes Kronecker’s delta symbol. For example

e1(t) = (t, 0, 0, . . . , 0 < e2(t) = (0, t, 0, . . . , 0), . . . .

We set
∂xk(p) := ėk(0) =

(
δ1k, . . . , δ

n
k

)
. (2.1.2)

Often, when the point p is clear from the context, we will omit it in the above notation.

☞ Note that the vectors ∂xk(p) depend on the choice of local coordinates (x1, . . . , xm).
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Lemma 2.1.7. The collection
(
∂xk(p)

)
1≤k≤m is a basis of TpM .

Proof. Given a smooth path

α(t) =
(
x1α(t), . . . , x

m
α (t)

)
, α(0) = p,

we have

α̇(0) =
(
ẋ1α(0), . . . , ẋ

m
α (0)

)
= ẋ1α(0)

(
1, 0, . . . , 0

)
+ · · ·+ ẋmα (0)

(
0, . . . , 0, 1

)

= ẋ1α(0)∂x1 + · · ·+ ẋmα (0)∂xm =

m∑

i=1

ẋiα(0)∂xi .
(2.1.3)

⊓⊔

Exercise 2.1.8. Suppose that M ⊂ Rn is an m-dimensional smooth submanifold of
Rn. Let p0 ∈ M and suppose that α, β : (−ε, ε) → M are two smooth paths such that
α(0) = β(0) = p0. Prove that the following statements are equivalent.

1. The paths α, β have first order contact at p0.

2. dα(0)
dt = dβ(0)

dt as vectors in Rn.

Deduce from the above that Tp0M can be identified with the vector subspace of Rn

spanned by the vectors ~v ∈ Rn with the property that there exists a smooth path α :
(ε, ε)→M ⊂ Rn such that

α(0) = p0,
dα(0)

dt
= ~v. ⊓⊔

Exercise 2.1.9. Let F : RN → Rk be a smooth map. Assume that

(a) M = F−1(0) 6= ∅;
(b) rankDxF = k, for all x ∈M .

Then M is a smooth manifold of dimension N − k and

TxM ∼= kerDxF, ∀x ∈M. ⊓⊔

Example 2.1.10. We want to describe T
1

G, where G is one of the Lie groups discussed
in Section 1.2.2.

(a) G = O(n). Let (−ε, ε) ∋ s 7→ T (s) be a smooth path of orthogonal matrices such that
T (0) = 1. Then T t(s) · T (s) = 1. Differentiating this equality at s = 0 we get

Ṫ t(0) + Ṫ (0) = 0.

The matrix Ṫ (0) defines a vector in T
1

O(n), so the above equality states that this tangent
space lies inside the space of skew-symmetric matrices, i.e., T

1

O(n) ⊂ o(n). On the other
hand, we proved in Section 1.2.2 that dimG = dimo(n) so that

T
1

O(n) = o(n).
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(b) G = SL(n;R). Let (−ε, ε) ∋ s 7→ T (s) be a smooth path in SL(n;R) such that
T (0) = 1. Then detT (s) = 1 and differentiating this equality at s = 0 we get (see
Exercise 1.1.3)

tr Ṫ (0) = 0.

Thus, the tangent space at 1 lies inside the space of traceless matrices, i.e. T
1

SL(n;R) ⊂
sl(n;R). Since (according to Exercise 1.2.27) dimSL(n;R) = dim sl(n;R) we deduce

T
1

SL(n;R) = sl(n;R). ⊓⊔

Exercise 2.1.11. Show that T
1

U(n) = u(n) and T
1

SU(n) = su(n). ⊓⊔

2.1.2 The tangent bundle

In the previous subsection we have naturally associated to an arbitrary point p on a
manifold M a vector space TpM . It is the goal of the present subsection to coherently
organize the family of tangent spaces (TpM)p∈M . In particular, we want to give a rigorous
meaning to the intuitive fact that TpM depends smoothly upon p.

We will organize the disjoint union of all tangent spaces as a smooth manifold TM .
There is a natural surjection

π : TM =
⊔

p∈M
TpM →M, π(v) = p⇐⇒ v ∈ TpM.

Any local coordinate system x = (xi) defined over an open set U ⊂M produces a natural
basis

(
∂
∂xi

(p)
)
of TpM , for any p ∈ U . Thus, an element v ∈ TU =

⊔
p∈U TpM is completely

determined if we know

• which tangent space does it belong to, i.e., we know the point p = π(v) ∈M ,

• the coordinates of v in the basis
(
∂xi(p)

)
,

v =
∑

i

Xi(v)∂xi(p).

We thus have a bijection

Ψx : TU → Ux × Rm ⊂ Rm × Rm,

where Ux is the image of U in Rm via the coordinates (xi). We can now use the map Ψx

to transfer the topology on Rm × Rm to TU . Again, we have to make sure this topology
is independent of local coordinates.

To see this, pick a different coordinate system y = (yi) on U . The coordinate inde-
pendence referred to above is equivalent to the statement that the transition map

Ψy ◦Ψ−1x : Ux × Rm −→ TU −→ Uy × Rm

is a homeomorphism.
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Let A := (x,X) ∈ Ux ×Rm. Then Ψ−1x (A) = (p, α̇(0)), where x(p) = x, and α(t) ⊂ U
is a path through p given in the x coordinates as

α(t) = x+ tX.

Denote by F : Ux → Uy the transition map x 7→ y. Then

Ψy ◦Ψ−1x (A) =
(
y(x);Y 1, . . . , Y m

)
,

where α̇(0) = (ẏjα(0)) =
∑
Y j∂yj (p), and

(
yα(t)

)
is the description of the path α(t) in

the coordinates yj. Applying the chain rule we deduce

Y j = ẏjα(0) =
∑

i

∂yj

∂xi
ẋi(0) =

∑

i

∂yj

∂xi
Xi. (2.1.4)

This proves that Ψy ◦Ψ−1x is actually smooth.
The natural topology of TM is obtained by patching together the topologies of TUγ ,

where (Uγ , φγ)γ is a countable atlas of M . A set D ⊂ TM is open if its intersection with
any TUγ is open in TUγ . The above argument shows that TM is a smooth manifold with
(TUγ ,Ψγ) a defining atlas. Moreover, the natural projection π : TM → M is a smooth
map.

Definition 2.1.12. The smooth manifold TM described above is called the tangent bundle
of M . ⊓⊔

Proposition 2.1.13. A smooth map f :M → N induces a smooth map Df : TM → TN
such that
(a) Df(TpM) ⊂ Tf(p)N , ∀p ∈M
(b) The restriction to each tangent space DpF : TpM → Tf(p)N is linear. The map Df is
called the differential of f , and one often uses the alternate notation f∗ = Df .

Proof. Recall that TpM is the space of tangent vectors to curves through p. If α(t) is such
a curve (α(0) = p), then β(t) = f(α(t)) is a smooth curve in N through q = f(p), and we
define

Df(α̇(0)) := β̇(0).

One checks easily that if α1 ∼1 α2, then f(α1) ∼1 f(α2), so that Df is well defined. To
prove that the map Df : TpM → TqN is linear it suffices to verify this in any particular
local coordinates (x1, . . . , xm) near p, and (y1, . . . , yn) near q, such that xi(p) = 0, yj(q) =
0, ∀i, j, since any two choices differ (infinitesimally) by a linear substitution. Hence, we
can regard f as a collection of maps

(x1, . . . , xm) 7→ (y1(x1, . . . , xm), . . . , yn(x1, . . . , xm)).

A basis in TpM is given by
{
∂xi
}
, while a basis of TqN is given by

{
∂yj
}
.

If α, β : (−ε, ε) → M are two smooth paths such that α(0) = β(0) = p, then in local
coordinates they have the description

α(t) = (x1α(t), . . . , x
m
α (t)), β(t) = (x1β(t), . . . , x

m
β (t)),
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α̇(0) = (ẋ1α(0), . . . , ẋ
m
α (0)), β̇(0) = (ẋ1β(0), . . . , ẋ

m
β (0) )

Then
F (α(t)) =

(
y1α(t), . . . , y

n
α(t)

)
=
(
y1(xiα(t) ), . . . , y

n(xiα(t) )
)
,

F (β(t)) =
(
y1β(t), . . . , y

n
β(t)

)
=
(
y1(xiβ(t) ), . . . , y

n(xiβ(t) )
)
,

F (α(t) + β(t) ) =
(
y1(xiα(t) + xiβ(t) ), . . . , y

n(xiα(t) + xiβ(t) )
)
.

DF
(
α̇(0)

)
=

d

dt

∣∣
t=0

F (α(t))
(2.1.3)
=

n∑

j=1

ẏjα(0)∂yj =

n∑

j=1

(
m∑

i=1

∂yj

∂xi
ẋiα(0)

)
∂yj ,

DF
(
β̇(0)

)
=

d

dt

∣∣
t=0

F (β(t))
(2.1.3)
=

n∑

j=1

ẏjβ(0)∂yj =

n∑

j=1

(
m∑

i=1

∂yj

∂xi
ẋiβ(0)

)
∂yj ,

DF
(
α̇(0) + β̇(0)

)
=

d

dt

∣∣
t=0

F
(
α(t) + β(t)

)
=

n∑

j=1

( m∑

i=1

∂yj

∂xi
(
ẋiα(0) + ẋiβ(0)

) )
∂yj

= DF
(
α̇(0)

)
+DF

(
β̇(0)

)
.

This shows that Df : TpM → TqN is the linear operator given in these bases by the

matrix
(
∂yj

∂xi

)
1≤j≤n, 1≤i≤m

. In particular, this implies that Df is also smooth. ⊓⊔

2.1.3 Sard’s Theorem

In this subsection we want to explain rigorously a phenomenon with which the reader may
already be intuitively acquainted. We describe it first in a special case.

SupposeM is a submanifold of dimension 2 in R3. Then, a simple thought experiment
suggests that most horizontal planes will not be tangent to M . Equivalently, if we denote
by f the restriction to M of the function (x, y, z) 7→ z , then for most real numbers h the
level set f−1(h) = M ∩ {z = h} does not contain a point where the differential of f is
zero, so that most level sets f−1(h) are smooth submanifolds of M of codimension 1, i.e.,
smooth curves on M .

We can ask a more general question. Given two smooth manifolds X,Y , a smooth map
f : X → Y , is it true that for “most” y ∈ Y the level set f−1(y) is a smooth submanifold of
X of codimension dimY ? This question has a positive answer, known as Sard’s theorem.

Definition 2.1.14. Suppose that Y is a smooth, connected manifold of dimension m.

(a) We say that a subset S ⊂ Y is negligible if, for any coordinate chart of Y , Ψ : U →
Rm, the set Ψ(S ∩ U) ⊂ Rm has Lebesgue measure zero in Rm.

(b) Suppose F : X → Y is a smooth map, where X is a smooth manifold. A point
x ∈ X is called a critical point of F , if the differential DxF : TxX → TF (x)Y is not
surjective.

We denote by CrF the set of critical points of F , and by ∆F ⊂ Y its image via F . We
will refer to ∆F as the discriminant set of F . The points in ∆F are called the critical
values of F . ⊓⊔
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Exercise 2.1.15. Define

Z :=
{
(x, a, b, c) ∈ R4; ax2 + bx+ c = 0; a 6= 0

}
.

(a) Prove that Z is a smooth submanifold of R4.
(b) Define π : Z → R3 by (x, a, b, c)

π7−→ (a, b, c). Describe explicitly the discriminant set
of π. ⊓⊔

Definition 2.1.16. Suppose U, V are finite dimensional real Euclidean vector spaces,
O ⊂ U is an open subset, and F : O → V is a smooth map. Then a point u ∈ O is a
critical point of F if and only if

rank (DuF : U → V ) < min
(
dimU,dimV

)
. ⊓⊔

Exercise 2.1.17. Show that if F :M → N is a smooth map and dimN ≤ dimM , hen for
every q ∈ N \∆F the fiber F−1(q) is either empty, or a submanifold of M of codimension
dimN . ⊓⊔

Theorem 2.1.18 (Sard). Suppose U, V are finite dimensional real Euclidean vector spaces,
O ⊂ U is an open subset, and F : O → V is a smooth map. Assume dimV ≤ dimU .
Then the discriminant set ∆F is negligible.

Proof. We follow the elegant approach of J. Milnor [75] and L. Pontryagin [83]. Set
n = dimU , and m = dimV . We will argue inductively on the dimension n.

For every positive integer k we denote by CrkF ⊂ CrF the set of points u ∈ O such
that all the partial derivatives of F up to order k vanish at u. We obtain a decreasing
filtration of closed sets

CrF ⊃ Cr1F ⊃ Cr2F ⊃ · · · .
The case n = 0 is trivially true so we may assume n > 0, and the statement is true for
any n′ < n, and any m ≤ n′. The inductive step is divided into three intermediary steps.

Step 1. The set F (CrF \Cr1F ) is negligible.
Step 2. The set F (CrkF \Crk+1

F ) is negligible for all k ≥ 1.
Step 3. The set F (CrkF ) is negligible for some sufficiently large k.

Step 1. Set Cr′F := CrF \Cr1F . We will show that there exists a countable open cover{
Oj
}
j≥1 of Cr′F such that F (Oj∩Cr′F

)
is negligible for all j ≥ 1. Since Cr′F is separable,

it suffices to prove that every point u ∈ Cr′F admits an open neighborhood N such that
F
(
N ∩Cr′F

)
is negligible.

Suppose u0 ∈ Cr′F . Assume first that there exist local coordinates (x1, . . . , , xn)
defined in a neighborhood N of u0, and local coordinates (y1, . . . , ym) near v0 = F (u0)
such that,

xi(u0) = 0, ∀i = 1, . . . n, yj(v0) = 0, ∀j = 1, . . . m,

and the restriction of F to N is described by functions yj = yj(x1, . . . , xm) such that
y1 = x1.

For every t ∈ R we set

Nt :=
{
(x1, . . . , xn) ∈ N; x1 = t

}
,
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and we define

Gt : Nt → Rm−1, (t, x2, . . . , xn) 7→
(
y2(t, x2, . . . , xn), . . . , ym(t, x2, . . . , xn)

)
.

Observe that
F
(
N ∩Cr′F

)
=
⋃

t

{t} ×Gt(CrGt ).

The inductive assumption implies that the sets Gt(CrGt) have trivial (m−1)-dimensional
Lebesgue measure. Using Cavalieri’s principle or Fubini’s theorem we deduce that F (N ∩
Cr′F ) has trivial m-dimensional Lebesgue measure.

To conclude Step 1 is suffices to prove that the above simplifying assumption concerning
the existence of nice coordinates is always fulfilled. To see this, choose local coordinates
(s1, . . . , sn) near u0 and coordinates (y1, . . . , ym) near v0 such that

si(u0) = 0, ∀i = 1, . . . n, yj(v0) = 0, ∀j = 1, . . . m,

The map F is then locally described by a collection of functions yj(s1, . . . , sn), j =
1, . . . , n. Since u ∈ Cr′F , we can assume, after an eventual re-labelling of coordinates,

that ∂y1

∂s1
(u0) 6= 0. Now define

x1 = y1(s1, . . . , sn), xi = si, ∀i = 2, . . . , n.

The implicit function theorem shows that the collection of functions (x1, . . . , xn) defines
a coordinate system in a neighborhood of u0. We regard yj as functions of xi. From the
definition we deduce y1 = x1.

Step 2. Set Cr
(k)
F := CrkF \Crk+1

F . Since u0 ∈ Cr
(k)
F , we can find local coordinates

(s1, . . . , sn) near u0 and coordinates (y1, . . . , ym) near v0 such that

si(u0) = 0, ∀i = 1, . . . n, yj(v0) = 0, ∀j = 1, . . . m,

∂jy1

∂(s1)j
(u0) = 0, ∀j = 1, . . . , k,

and
∂k+1y1

∂(s1)k+1
(u0) 6= 0.

Define

x1(s) =
∂ky1

∂(s1)k
,

and set xi := si, ∀i = 2, . . . , n.
Then the collection (xi) defines smooth local coordinates on an open neighborhood N

of u0, and CrkF ∩N is contained in the hyperplane {x1 = 0}. Define

G : N ∩ {x1 = 0} → V ; G(x2, . . . , xm) = F (0, x2, . . . , xn).

Then
CrkG ∩N = CrkG, F (CrkF ∩N) = G(CrkG),



32 CHAPTER 2. NATURAL CONSTRUCTIONS ON MANIFOLDS

and the induction assumption implies that G(CrkG) is negligible. By covering Cr
(k)
F with

a countably many open neighborhood {Nℓ}ℓ>1 such that F (CrkF ∩Nℓ) is negligible we

conclude that F (Cr
(k)
F ) is negligible.

Step 3. Suppose k > n
m . We will prove that F (CrkF ) is negligible. More precisely, we

will show that, for every compact subset S ⊂ O, the set F (S ∩CrkF ) is negligible.

From the Taylor expansion around points in CrkF ∩S we deduce that there exist num-
bers r0 ∈ (0, 1) and λ0 > 0, depending only on S, such that, if C is a cube with edge
r < r0 which intersects CrkF ∩S, then

diamF (C) < λ0r
k,

where for every set A ⊂ V we define

diam(A) := sup
{
|a1 − a2|; a1, a2 ∈ A

}
.

In particular, if µm denotes the m-dimensional Lebesgue measure on V , and µn denotes
the n-dimensional Lebesgue measure on U , we deduce that there exists a constant λ1 > 0
such that

µm(F (C)
)
≤ λ1rmk = λ1µn(C)mk/n.

Cover CrkF ∩S by finitely many cubes {Cℓ}1≤ℓ≤L, of edges < r0, such that their interiors
are disjoint. For every positive integer P , subdivide each of the cubes Cℓ into P

n sub-cubes
Cσℓ of equal sizes. For every sub-cube Cσℓ which intersects CrkF we have

µm(F (C
σ
ℓ ) ) ≤ λ1µn(Cσℓ )mk/n =

λ1
Pmk

µn(Cℓ).

We deduce that

µm
(
F (Cℓ ∩CrkF )

)
≤
∑

σ

µm(F (C
σ
ℓ ∩CrkF ) ) ≤ Pn−mkµn(C).

If we let P →∞ in the above inequality, we deduce that when k > n
m we have

µm(F (Cℓ ∩CrkF ) ) = 0, ∀ℓ = 1, . . . , L. ⊓⊔

Theorem 2.1.18 admits the following immediate generalization.

Corollary 2.1.19 (Sard). Suppose F : X → Y is a smooth map between two smooth
connected, separable, manifolds. Then its discriminant set is negligible. ⊓⊔

Definition 2.1.20. A smooth map f : M → N is called immersion (resp. submersion)
if for every p ∈ M the differential Dpf : TpM → Tf(p)N is injective (resp. surjective). A
smooth map f :M → N is called an embedding if it is an injective immersion. ⊓⊔

Suppose F :M → N is a smooth map, and dimM ≥ dimN . Then F is a submersion
if and only if the discriminant set ∆F is empty.
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Exercise 2.1.21. Suppose F : M → N is a smooth map, and S ⊂ N is a smooth
submanifold of N . We say that F is transversal to S if for every x ∈ F−1(S) we have

TF (x)N = TF (x)S +DxF (TxM).

Prove that if F is transversal to S, then F−1(S) is a submanifold of M whose codimension
is equal to the codimension of S in N . ⊓⊔

Exercise 2.1.22. Suppose Λ,X, Y are smooth, connected manifolds, and F : Λ×X → Y
is a smooth map

Λ×X ∋ (λ, x) 7→ Fλ(x) ∈ Y.
Suppose S is a submanifold of Y such that F is transversal to S. Define

Z = F−1(S) ⊂ Λ×X,

Λ0 =
{
λ ∈ Λ; Fλ : X → Y is not transversal to S

}
.

Prove that Λ0 is contained in the discriminant set of the natural projection Z → Λ. In
particular, Λ0 must be negligible. ⊓⊔

2.1.4 Vector bundles

The tangent bundle TM of a manifold M has some special features which makes it a
very particular type of manifold. We list now the special ingredients which enter into
this special structure of TM since they will occur in many instances. Set for brevity
E := TM , and F := Rm (m = dimM). We denote by Aut(F ) the Lie group GL(n,R) of
linear automorphisms of F . Then

(a) E is a smooth manifold, and there exists a surjective submersion π : E → M . For
every U ⊂M we set E |U := π−1(U).

(b) From (2.1.4) we deduce that there exists a trivializing cover, i.e., an open cover U

of M , and for every U ∈ U a diffeomorphism

ΨU : E |U→ U × F, v 7→ (p = π(v),ΦUp (v))

(b1) Φp is a diffeomorphism Ep → F for any p ∈ U .

(b2) If U, V ∈ U are two trivializing neighborhoods with non empty overlap U ∩ V
then, for any p ∈ U ∩ V , the map ΦV U (p) = ΦVp ◦ (ΦUp )−1 : F → F is a linear
isomorphism, and moreover, the map

p 7→ ΦV U (p) ∈ Aut(F )

is smooth.

In our special case, the map ΦV U (p) is explicitly defined by the matrix (2.1.4)

A(p) =

(
∂yj

∂xi
(p)

)

1≤i,j≤m
.
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In the above formula, the functions (xi) are local coordinates on U , and the functions (yj)
are local coordinates on V .

The properties (a) and (b) make no mention of the special relationship between E =
TM and M . There are many other quadruples (E, π,M,F ) with these properties and
they deserve a special name.

Definition 2.1.23. A vector bundle is a quadruple (E, π,M,F ) such that

• E, M are smooth manifolds,

• π : E →M is a surjective submersion,

• F is a vector space over the field K = R,C, and

• the conditions (a) and (b) above are satisfied.

The manifold E is called the total space, and M is called the base space. The vector
space F is called the standard fiber, and its dimension (over the field of scalars K) is called
the rank of the bundle. A line bundle is a vector bundle of rank one. ⊓⊔

Roughly speaking, a vector bundle is a smooth family of vector spaces. Note that the
properties (b1) and (b2) imply that the fibers π−1(p) of a vector bundle have a natural
structure of linear space. In particular, one can add elements in the same fiber. Moreover,
the addition and scalar multiplication operations on π−1(p) depend smoothly on p. The
smoothness of the addition operation this means that the addition is a smooth map

+ : E ×M E =
{
(u, v) ∈ E × E; π(u) = π(v)

}
→ E.

The smoothness of the scalar multiplication means that it is smooth map

R× E → E.

There is an equivalent way of defining vector bundles. To describe it, let us introduce
a notation. For any vector space F over the field K = R,C we denote by GLK(F ), (or
simply GL(F ) if there is no ambiguity concerning the field of scalars K) the Lie group of
linear automorphisms F → F .

According to Definition 2.1.23, we can find an open cover (Uα) of M such that each of
the restrictions Eα = E |Uα is isomorphic to a product Ψα : Eα ∼= F × Uα. Moreover, on
the overlaps Uα ∩ Uβ, the transition maps gαβ = ΨαΨ

−1
β can be viewed as smooth maps

gαβ : Uα ∩ Uβ → GL(F ).

They satisfy the cocycle condition

(a) gαα = 1F

(b) gαβgβγgγα = 1F over Uα ∩ Uβ ∩ Uγ .
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Conversely, given an open cover (Uα) of M , and a collection of smooth maps

gαβ : Uα ∩ Uβ → GL(F )

satisfying the cocycle condition, we can reconstruct a vector bundle by gluing the product
bundles Eα = F × Uα on the overlaps Uα ∩ Uβ according to the gluing rules

the point (v, x) ∈ Eα is identified with the point
(
gβα(x)v, x

)
∈ Eβ ∀x ∈ Uα ∩ Uβ.

The details are carried out in the exercise below.
We will say that the map gβα is the transition from the α-trivialization to the β-

trivialization, and we will refer to the collection of maps (gβα) satisfying the cocycle
condition as a gluing cocycle. We will refer to the cover (Uα) as above as a trivializing
cover.

Exercise 2.1.24. Consider a smooth manifold M , a vector space V , an open cover (Uα),
and smooth maps

gαβ : Uα ∩ Uβ → GL(V )

satisfying the cocycle condition. Set

X :=
⋃

α

V × Uα × {α}.

We topologize X as the disjoint union of the topological spaces Uα × V , and we define a
relation ∼⊂ X ×X by

V × Uα × {α} ∋ (u, x, α) ∼ (v, x, β) ∈ V × Uβ × {β}
def⇐⇒ x = y, v = gβα(x)u.

(a) Show that ∼ is an equivalence relation, and E = X/ ∼ equipped with the quotient
topology has a natural structure of smooth manifold.
(b) Show that the projection π : X →M , (u, x, α) 7→ x descends to a submersion E →M .
(c) Prove that (E, π,M, V ) is naturally a smooth vector bundle. ⊓⊔

Definition 2.1.25. A description of a vector bundle in terms of a trivializing cover, and
a gluing cocycle is called a gluing cocycle description of that vector bundle. ⊓⊔

Exercise 2.1.26. Find a gluing cocycle description of the tangent bundle of the 2-sphere.⊓⊔

In the sequel, we will prefer to think of vector bundles in terms of gluing cocycles.

Definition 2.1.27. (a) A section in a vector bundle E
π→M defined over the open subset

U ⊂M is a smooth map s : U → E such that

s(p) ∈ Ep = π−1(p), ∀p ∈ U ⇐⇒ π ◦ s = 1U .

The space of smooth sections of E over U will be denoted by Γ(U,E) or C∞(U,E). Note
that Γ(U,E) is naturally a vector space. We will use the simpler notation C∞(E) when
referring to the space of sections of E over M .
(b) A section of the tangent bundle of a smooth manifold is called a vector field on that
manifold. The space of vector fields over on open subset U of a smooth manifold is denoted
by Vect (U). ⊓⊔
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Proposition 2.1.28. Suppose E → M is a smooth vector bundle with standard fiber F ,
defined by an open cover (Uα)α∈A, and gluing cocycle

gβα : Uαβ → GL(F ).

Then there exists a natural bijection between the vector space of smooth sections of E, and
the set of families of smooth maps

{
sα : Uα → F ; α ∈ A

}
, satisfying the following gluing

condition on the overlaps

sα(x) = gαβ(x)sβ(x), ∀x ∈ Uα ∩ Uβ. ⊓⊔

Exercise 2.1.29. Prove the above proposition. ⊓⊔

Definition 2.1.30. (a) Let Ei
πi→Mi be two smooth vector bundles. A vector bundle map

consists of a pair of smooth maps f :M1 →M2 and F : E1 → E2 satisfying the following
properties.

• The map F covers f , i.e., F (E1
p) ⊂ E2

f(p), ∀p ∈ M1. Equivalently, this means that
the diagram below is commutative

E1 E2

M1 M2

u

π1

w

F

u

π2

w

f

• The induced map F : E1
p → E2

f(p) is linear.

The composition of bundle maps is defined in the obvious manner and so is the identity
morphism so that one can define the notion of bundle isomorphism in the standard way.

(b) If E and F are two vector bundles over the same manifold, then we denote by
Hom(E,F ) the space of bundle maps E → F which cover the identity 1M . Such bundle
maps are called bundle morphisms. ⊓⊔

For example, the differential Df of a smooth map f : M → N is a bundle map
Df : TM → TN covering f .

Definition 2.1.31. Let E
π→M be a smooth vector bundle. A bundle endomorphism of

E is a bundle morphism F : E → E. An automorphism (or gauge transformation) is an
invertible endomorphism. ⊓⊔

Example 2.1.32. Consider the trivial vector bundle RnM →M over the smooth manifold
M . A section of this vector bundle is a smooth map u :M → Rn. We can think of u as a
smooth family of vectors (u(x) ∈ Rn)x∈M .
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An endomorphism of this vector bundle is a smooth map A :M → EndR(R
n). We can

think of A as a smooth family of n× n matrices

Ax =




a11(x) a12(x) · · · a1n(x)
a21(x) a22(x) · · · a2n(x)

...
...

...
...

an1 (x) an2 (x) · · · ann(x)


 , aij(x) ∈ C∞(M).

The map A is a gauge transformation if and only if detAx 6= 0, ∀x ∈M . ⊓⊔

Exercise 2.1.33. Suppose E1, E2 → M are two smooth vector bundles over the smooth
manifold with standard fibers F1, and respectively F2. Assume that both bundles are
defined by a common trivializing cover (Uα)α∈A and gluing cocycles

gβα : Uαβ → GL(F1), hβα : Uαβ → GL(F2).

Prove that there exists a bijection between the vector space of bundle morphisms Hom(E,F ),
and the set of families of smooth maps

{
Tα : Uα → Hom(F1, F2); α ∈ A

}
,

satisfying the gluing conditions

Tβ(x) = hβα(x)Tα(x)(x)g
−1
βα , ∀x ∈ Uαβ. ⊓⊔

Exercise 2.1.34. Let V be a vector space, M a smooth manifold, {Uα} an open cover
of M , and gαβ , hαβ : Uα ∩ Uβ → GL(V ) two collections of smooth maps satisfying the
cocycle conditions. Prove the two collections define isomorphic vector bundles if and only
they are cohomologous, i.e., there exist smooth maps φα : Uα → GL(V ) such that

hαβ = φαgαβφ
−1
β . ⊓⊔

2.1.5 Some examples of vector bundles

In this section we would like to present some important examples of vector bundles and
then formulate some questions concerning the global structure of a bundle.

Example 2.1.35. (The tautological line bundle over RPn and CPn). First, let us
recall that a rank one vector bundle is usually called a line bundle. We consider only the
complex case. The total space of the tautological or universal line bundle over CPn is the
space

Un = UC
n =

{
(z, L) ∈ Cn+1 × CPn; z belongs to the line L ⊂ Cn+1

}
.

Let π : UC
n → CPn denote the projection onto the second component. Note that for every

L ∈ CPn, the fiber through π−1(L) = UC
n,L coincides with the one-dimensional subspace

in Cn+1 defined by L. ⊓⊔
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Example 2.1.36. (The tautological vector bundle over a Grassmannian). We
consider here for brevity only complex GrassmannianGrk(C

n). The real case is completely
similar. The total space of this bundle is

Uk,n = UC
k,n =

{
(z, L) ∈ Cn ×Grk(C

n) ; z belongs to the subspace L ⊂ Cn
}
.

If π denotes the natural projection π : Uk,n → Grk(C
n), then for each L ∈ Grk(C

n) the
fiber over L coincides with the subspace in Cn defined by L. Note that UC

n−1 = UC
1,n. ⊓⊔

Exercise 2.1.37. Prove that UC
n and UC

k,n are indeed smooth vector bundles. Describe a

gluing cocycle for UC
n . ⊓⊔

Example 2.1.38. A complex line bundle over a smooth manifold M is described by an
open cover (Uα)α∈A, and smooth maps

gβα : Uα ∩ Uβ → GL(1,C) ∼= C∗,

satisfying the cocycle condition

gγα(x) = gγβ(x) · gβα(x), ∀x ∈ Uα ∩ Uβ ∩ Uγ .

Consider for example the manifold M = S2 ⊂ R3. Denote as usual by N and S the North
and respectively South pole. We have an open cover

S2 = U0 ∪ U∞, U0 = S2 \ {S}, U1 = S2 \ {N}.

In this case, we have only a single nontrivial overlap, UN ∩ US . Identify U0 with the
complex line C, so that the North pole becomes the origin z = 0.

For every n ∈ Z we obtain a complex line bundle Ln → S2, defined by the open cover
{U0, U1} and gluing cocycle

g10(z) = z−n, ∀z ∈ C∗ = U0 \ {0}.

A smooth section of this line bundle is described by a pair of smooth functions

u0 : U0 → C, u1 : U1 → C,

which along the overlap U0 ∩ U1 satisfy the equality u1(z) = z−nu0(z). For example, if
n ≥ 0, the pair of functions

u0(z) = zn, u1(p) = 1, ∀p ∈ U1

defines a smooth section of Ln. ⊓⊔

Exercise 2.1.39. We know that CP1 is diffeomorphic to S2. Prove that the universal
line bundle Un → CP1 is isomorphic with the line bundle L−1 constructed in the above
example. ⊓⊔
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Exercise 2.1.40. Consider the incidence set

I :=
{
(x,L) ∈ (Cn+1 \ {0} ) × CPn; z ∈ L

}
.

Prove that the closure of I in Cn+1×CPn is a smooth manifold diffeomorphic to the total
space of the universal line bundle Un → CPn. This manifold is called the complex blowup
of Cn+1 at the origin. ⊓⊔

The family of vector bundles is very large. The following construction provides a very
powerful method of producing vector bundles.

Definition 2.1.41. Let f : X → M be a smooth map, and E a vector bundle over M
defined by an open cover (Uα) and gluing cocycle (gαβ). The pullback of E by f is the
vector bundle f∗E over X defined by the open cover f−1(Uα), and the gluing cocycle
( gαβ ◦ f ). ⊓⊔

One can check easily that the isomorphism class of the pullback of a vector bundle E is
independent of the choice of gluing cocycle describing E. The pullback operation defines
a linear map between the space of sections of E and the space of sections of f∗E.

More precisely, if s ∈ Γ(E) is defined by the open cover (Uα), and the collection of
smooth maps ( sα ), then the pullback f∗s is defined by the open cover f−1(Uα), and
the smooth maps ( sα ◦ f ). Again, there is no difficulty to check the above definition is
independent of the various choices.

Exercise 2.1.42. For every positive integer k consider the map

pk : CP
1 → CP1, pk([z0, z1]) = [zk0 , z

k
1 ].

Show that p∗kLn
∼= Lkn, where Ln is the complex line bundle Ln → CP1 defined in Example

2.1.38. ⊓⊔

Exercise 2.1.43. Let E → X be a rank k (complex) smooth vector bundle over the
manifold X. Assume E is ample, i.e. there exists a finite family s1, . . . , sN of smooth
sections of E such that, for any x ∈ X, the collection {s1(x), . . . , sN (x)} spans Ex. For
each x ∈ X we set

Sx :=
{
v ∈ CN ;

∑

i

visi(x) = 0
}
.

Note that dimSx = N − k. We have a map F : X → Grk(C
N ) defined by x 7→ S⊥x .

(a) Prove that F is smooth.
(b) Prove that E is isomorphic with the pullback F ∗Uk,N . ⊓⊔

Exercise 2.1.44. Show that any vector bundle over a smooth compact manifold is ample.
Thus any vector bundle over a compact manifold is a pullback of some tautological bundle!

⊓⊔

The notion of vector bundle is trickier than it may look. Its definition may suggest
that a vector bundle looks like a direct productmanifold×vector space since this happens
at least locally. We will denote by Kn

M the bundle Kr ×M →M .
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Definition 2.1.45. A rank r vector bundle E
π→ M (over the field K = R,C) is called

trivial or trivializable if there exists a bundle isomorphism E ∼= Kr
M . A bundle isomor-

phism E → Kr
M is called a trivialization of E, while an isomorphism Kr → E is called a

framing of E.

A pair (trivial vector bundle, trivialization) is called a trivialized, or framed bundle. ⊓⊔

Remark 2.1.46. Let us explain why we refer to a bundle isomorphism ϕ : Kr
M → E as

a framing.
Denote by (e1, . . . , er) the canonical basis of Kr. We can also regard the vectors

ei as constant maps M → Kr, i.e., as (special) sections of Kr
M . The isomorphism ϕ

determines sections fi = ϕ(ei) of E with the property that for every x ∈M the collection
(f1(x), . . . , fr(x) ) is a frame of the fiber Ex.

This observation shows that we can regard any framing of a bundle E →M of rank r
as a collection of r sections u1, . . . , ur which are pointwise linearly independent. ⊓⊔

One can naively ask the following question. Is every vector bundle trivial? We can
even limit our search to tangent bundles. Thus we ask the following question.

Is it true that for every smooth manifold M the tangent bundle TM is trivial (as a
vector bundle)?

Let us look at some positive examples.

Example 2.1.47. TS1 ∼= RS1 Let θ denote the angular coordinate on the circle. Then
∂θ is a globally defined, nowhere vanishing vector field on S1. We thus get a map

RS1 → TS1, (s, θ) 7→ (s∂θ, θ) ∈ TθS1

which is easily seen to be a bundle isomorphism.
Let us carefully analyze this example. Think of S1 as a Lie group (the group of complex

numbers of norm 1). The tangent space at z = 1, i.e., θ = 0, coincides with the subspace
Re z = 0, and ∂

∂θ |1 is the unit vertical vector j.

Denote by Rθ the counterclockwise rotation by an angle θ. Clearly Rθ is a diffeomor-
phism, and for each θ we have a linear isomorphism

Dθ |θ=0 Rθ : T1S
1 → TθS

1.

Moreover,

∂θ = Dθ |θ=0 Rθj.

The existence of the trivializing vector field ∂θ is due to to our ability to “move freely and
coherently” inside S1. One has a similar freedom inside a Lie group as we are going to see
in the next example. ⊓⊔

Example 2.1.48. For any Lie group G the tangent bundle TG is trivial.
To see this let n = dimG, and consider e1, . . . , en a basis of the tangent space at the

origin, T
1

G. We denote by Rg the right translation (by g) in the group defined by

Rg : x 7→ x · g, ∀x ∈ G.
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Rg is a diffeomorphism with inverse Rg−1 so that the differential DRg defines a linear
isomorphism DRg : T1G→ TgG. Set

Ei(g) = DRg(ei) ∈ TgG, i = 1, · · · , n.
Since the multiplication G ×G → G, (g, h) 7→ g · h is a smooth map we deduce that the
vectors Ei(g) define smooth vector fields over G. Moreover, for every g ∈ G, the collection
{E1(g), . . . , En(g)} is a basis of TgG so we can define without ambiguity a map

Φ : RnG → TG, (g;X1, . . . Xn) 7→ (g;
∑

XiEi(g)).

One checks immediately that Φ is a vector bundle isomorphism and this proves the claim.
In particular TS3 is trivial since the sphere S3 is a Lie group (unit quaternions). (Using
the Cayley numbers one can show that TS7 is also trivial; see [84] for details). ⊓⊔

We see that the tangent bundle TM of a manifoldM is trivial if and only if there exist
vector fields X1, . . . ,Xm (m = dimM) such that for each p ∈ M , X1(p), . . . ,Xm(p) span
TpM . This suggests the following more refined question.

Problem Given a manifold M , compute v(M), the maximum number of pointwise linearly
independent vector fields over M . Obviously 0 ≤ v(M) ≤ dimM and TM is trivial if and
only if v(M) = dimM . A special instance of this problem is the celebrated vector field
problem: compute v(Sn) for any n ≥ 1.

We have seen that v(Sn) = n for n =1,3 and 7. Amazingly, these are the only cases
when the above equality holds. This is a highly nontrivial result, first proved by J.F.Adams
in [2] using very sophisticated algebraic tools. This fact is related to many other natural
questions in algebra. For a nice presentation we refer to [70].

The methods we will develop in this book will not suffice to compute v(Sn) for any n,
but we will be able to solve “half” of this problem. More precisely we will show that

v(Sn) = 0 if and only if n is an even number.

In particular, this shows that TS2n is not trivial. In odd dimensions the situation is far
more elaborate (a complete answer can be found in [2]).

Exercise 2.1.49. v(S2k−1) ≥ 1 for any k ≥ 1. ⊓⊔

The quantity v(M) can be viewed as a measure of nontriviality of a tangent bundle.
Unfortunately, its computation is highly nontrivial. In the second part of this book we will
describe more efficient ways of measuring the extent of nontriviality of a vector bundle.

2.2 A linear algebra interlude

We collect in this section some classical notions of linear algebra. Most of them might be
familiar to the reader, but we will present them in a form suitable for applications in differ-
ential geometry. This is perhaps the least glamorous part of geometry, and unfortunately
cannot be avoided.

☞ Convention. All the vector spaces in this section will tacitly be assumed finite dimen-
sional, unless otherwise stated.
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2.2.1 Tensor products

Let E, F be two vector spaces over the field K (K = R,C). Consider the (infinite) direct
sum

T(E,F ) =
⊕

(e,f)∈E×F
K.

Equivalently, the vector space T(E,F ) can be identified with the space of functions c :
E×F → K with finite support. The space T(E,F ) has a natural basis consisting of “Dirac
functions”

δe,f : E × F → K, (x, y) 7→
{

1 if (x, y) = (e, f)
0 if (x, y) 6= (e, f)

In particular, we have an injection1

δ : E × F → T(E,F ), (e, f) 7→ δe,f .

Inside T(E,F ) sits the linear subspace R(E,F ) spanned by

λδe,f − δλe,f , λδe,f − δe,λf , δe+e′,f − δe,f − δe′,f , δe,f+f ′ − δe,f − δe,f ′ ,

where e, e′ ∈ E, f, f ′ ∈ F , and λ ∈ K. Now define

E ⊗K F := T(E,F )/R(E,F ),

and denote by π the canonical projection π : T(E,F )→ E ⊗ F . Set

e⊗ f := π(δe,f ).

We get a natural map

ι : E × F → E ⊗ F, e× f 7→ e⊗ f.
Obviously ι is bilinear. The vector space E ⊗K F is called the tensor product of E and F
over K. Often, when the field of scalars is clear from the context, we will use the simpler
notation E ⊗ F . The tensor product has the following universality property.

Proposition 2.2.1. For any bilinear map φ : E × F → G there exists a unique linear
map Φ : E ⊗ F → G such that the diagram below is commutative.

E × F E ⊗ F

G

w

ι

'

'

'

'

')φ
u

Φ . ⊓⊔

The proof of this result is left to the reader as an exercise. Note that if (ei) is a basis
of E, and (fj) is a basis of F , then (ei ⊗ fj) is a basis of E ⊗ F , and therefore

dimKE ⊗K F = (dimKE) · (dimK F ).

1A word of caution: δ is not linear!
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Exercise 2.2.2. Using the universality property of the tensor product prove that there
exists a natural isomorphism E ⊗ F ∼= F ⊗ E uniquely defined by e⊗ f 7→ f ⊗ e. ⊓⊔

The above construction can be iterated. Given three vector spaces E1, E2, E3 over
the same field of scalars K we can construct two triple tensor products:

(E1 ⊗ E2)⊗ E3 and E1 ⊗ (E2 ⊗ E3).

Exercise 2.2.3. Prove there exists a natural isomorphism of K-vector spaces

(E1 ⊗ E2)⊗ E3
∼= E1 ⊗ (E2 ⊗ E3). ⊓⊔

The above exercise implies that there exists a unique (up to isomorphism) triple tensor
product which we denote by E1 ⊗ E2 ⊗ E3. Clearly, we can now define multiple tensor
products: E1 ⊗ · · · ⊗ En.

Definition 2.2.4. (a) For any two vector spaces U, V over the field K we denote by
Hom(U, V ), or HomK(U, V ) the space of K-linear maps U → V .

(b) The dual of a K-linear space E is the linear space E∗ defined as the space HomK(E,K)
of K-linear maps E → K. For any e∗ ∈ E∗ and e ∈ E we set

〈e∗, e〉 := e∗(e). ⊓⊔

The above constructions are functorial. More precisely, we have the following result.

Proposition 2.2.5. Suppose Ei, Fi, Gi, i = 1, 2 are K-vector spaces. Let Ti ∈ Hom (Ei, Fi),
Si ∈ Hom(Fi, Gi), i = 1, 2, be two linear operators. Then they naturally induce a linear
operator

T = T1 ⊗ T2 : E1 ⊗E2 → F1 ⊗ F2, S1 ⊗ S2 : F1 ⊗ F2

uniquely defined by

T1 ⊗ T2(e1 ⊗ e2) = (T1e1)⊗ (T2e2), ∀ei ∈ Ei,

and satisfying

(S1 ⊗ S2) ◦ (T1 ⊗ T2) = (S1 ◦ T1)⊗ (S2 ◦ T2).

(b) Any linear operator A : E → F induces a linear operator A† : F ∗ → E∗ uniquely
defined by

〈A†f∗, e〉 = 〈f∗, Ae〉, ∀e ∈ E, f∗ ∈ F ∗.

The operator A† is called the transpose or adjoint of A. Moreover,

(A ◦B)† = B† ◦ A†, ∀A ∈ Hom(F,G), B ∈ Hom(E,F ). ⊓⊔

Exercise 2.2.6. Prove the above proposition. ⊓⊔
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Remark 2.2.7. Any basis (ei)1≤i≤n of the n-dimensional K-vector space determines a
basis (ei)1≤i≤n of the dual vector space V ∗ uniquely defined by the conditions

〈ei,ej〉 = δij =

{
1 i = j

0 i 6= j.

We say that the basis (ei) is dual to the basis (ej). The quantity (δij) is called the
Kronecker symbol.

A vector v ∈ V admits a decomposition

v =
n∑

i=1

viei,

while a vector v∗ ∈ V ∗ admits a decomposition

v∗ =
n∑

i=1

v∗i e
i.

Moreover,

〈v∗,v〉 =
n∑

i=1

v∗i v
i.

Classically, a vector v in V is represented by a one-column matrix

v =



v1

...
vn


 ,

while a vector v∗ is represented by a one-row matrix

v∗ = [v∗1 . . . v∗n].

Then

〈v∗,v〉 = [v∗1 . . . v∗n] ·



v1

...
vn


 ,

where the · denotes the multiplication of matrices. ⊓⊔

Using the functoriality of the tensor product and of the dualization construction one
proves easily the following result.

Proposition 2.2.8. (a) There exists a natural isomorphism

E∗ ⊗ F ∗ ∼= (E ⊗ F )∗,

uniquely defined by

E∗ ⊗ F ∗ ∋ e∗ ⊗ f∗ 7−→ Le∗⊗f∗ ∈ (E ⊗ F )∗,
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where

〈Le∗⊗f∗ , x⊗ y〉 = 〈e∗, x〉〈f∗, y〉, ∀x ∈ E, y ∈ F.

In particular, this shows E∗⊗F ∗ can be naturally identified with the space of bilinear maps
E × F → K.

(b) The adjunction morphism E∗ ⊗ F → Hom (E,F ), given by

E∗ ⊗ F ∋ e∗ ⊗ f 7−→ Te∗⊗f ∈ Hom(E,F ),

where

Te∗⊗f (x) := 〈e∗, x〉f, ∀x ∈ E,

is an isomorphism.2 ⊓⊔

Exercise 2.2.9. Prove the above proposition. ⊓⊔

Let V be a vector space. For r, s ≥ 0 set

Trs(V ) := V ⊗r ⊗ (V ∗)⊗s,

where by definition V ⊗0 = (V ∗)⊗0 = K. An element of Trs is called tensor of type (r,s).

Example 2.2.10. According to Proposition 2.2.8 a tensor of type (1, 1) can be identified
with a linear endomorphism of V , i.e.,

T1
1(V ) ∼= End (V ),

while a tensor of type (0, k) can be identified with a k-linear map

V × · · · × V︸ ︷︷ ︸
k

→ K. ⊓⊔

A tensor of type (r, 0) is called contravariant, while a tensor of type (0, s) is called
covariant. The tensor algebra of V is defined to be

T(V ) :=
⊕

r,s

Trs(V ).

We use the term algebra since the tensor product induces bilinear maps

⊗ : Trs × Tr
′

s′ → Tr+r
′

s+s′ .

The elements of T(V ) are called tensors.

Exercise 2.2.11. Show that
(
T(V ), +, ⊗

)
is an associative algebra. ⊓⊔

2The finite dimensionality of E is absolutely necessary. This adjunction formula is known in Bourbaki
circles as “formule d’adjonction chêr à Cartan”.
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Example 2.2.12. It is often useful to represent tensors using coordinates. To achieve
this pick a basis (ei) of V , and let (ei) denote the dual basis in V ∗ uniquely defined by

〈ei, ej〉 = δij =

{
1 if i = j
0 if i 6= j

.

We then obtain a basis of Trs(V )

{ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs/ 1 ≤ iα, jβ ≤ dimV }.

Any element T ∈ Trs(V ) has a decomposition

T = T i1...irj1...js
ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ,⊗ejs ,

where we use Einstein convention to sum over indices which appear twice, once as a
superscript, and the second time as a subscript.

Using the adjunction morphism in Proposition 2.2.8, we can identify the space T1
1(V )

with the space End(V ) a linear isomorphisms. Using the bases (ei) and (ej), and Einstein’s
convention, the adjunction identification can be described as the correspondence which
associates to the tensor A = aijei ⊗ ej ∈ T1

1(V ), the linear operator LA : V → V which

maps the vector v = vjej to the vector LAv = aijv
jei. ⊓⊔

On the tensor algebra there is a natural contraction (or trace) operation

tr : Trs → Tr−1s−1

uniquely defined by

tr (v1 ⊗ · · · ⊗ vr ⊗ u1 ⊗ · · · ⊗ us) := 〈u1, v1〉v2 ⊗ · · · vr ⊗ u2 ⊗ · · · ⊗ us,

∀vi ∈ V, uj ∈ V ∗.
In the coordinates determined by a basis (ei) of V , the contraction can be described

as

(trT )i2...irj2...js
=
(
T ii2...irij2...js

)
,

where again we use Einstein’s convention. In particular, we see that the contraction
coincides with the usual trace on T1

1(V ) ∼= End (V ).

2.2.2 Symmetric and skew-symmetric tensors

Let V be a vector space over K = R,C. We set Tr(V ) := Tr0(V ), and we denote by Sr the
group of permutations of r objects. When r = 0 we set S0 := {1}.

Every permutation σ ∈ Sr determines a linear map Tr(V ) → Tr(V ), uniquely deter-
mined by the correspondences

v1 ⊗ · · · ⊗ vr 7−→ vσ(1) ⊗ · · · ⊗ vσ(r), ∀v1, . . . , vr ∈ V.

We denote this action of σ ∈ Sr on an arbitrary element t ∈ Tr(V ) by σt.
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In this subsection we will describe two subspaces invariant under this action. These
are special instances of the so called Schur functors. (We refer to [35] for more general
constructions.) Define

Sr : T
r(V )→ Tr(V ), Sr(t) :=

1

r!

∑

σ∈Sr
σt,

and

Ar : T
r(V )→ Tr(V ), Ar(t) :=

{
1
r!

∑
σ∈Sr ǫ(σ)σt if r ≤ dimV

0 if r > dimV
.

Above, we denoted by ǫ(σ) the signature of the permutation σ. Note that

A0 = S0 = 1K.

The following results are immediate. Their proofs are left to the reader as exercises.

Lemma 2.2.13. The operators Ar and Sr are projectors of Tr(V ), i.e.,

S2
r = Sr, A2

r = Ar.

Moreover,

σSr(t) = Sr(σt) = Sr(t), σAr(t) = Ar(σt) = ǫ(σ)Ar(t), ∀t ∈ Tr(V ). ⊓⊔
Definition 2.2.14. A tensor T ∈ Tr(V ) is called symmetric (respectively skew-symmetric)
if

Sr(T ) = T (respectively Ar(T ) = T ).

The nonnegative integer r is called the degree of the (skew-)symmetric tensor.
The space of symmetric tensors (respectively skew-symmetric ones) of degree r will be

denoted by SrV (and respectively ΛrV ). ⊓⊔

Set
S• V :=

⊕

r≥0
SrV, and Λ• V :=

⊕

r≥0
ΛrV.

Definition 2.2.15. The exterior product is the bilinear map

∧ : ΛrV × ΛsV → Λr+sV,

defined by

ωr ∧ ηs := (r + s)!

r!s!
Ar+s(ω ⊗ η), ∀ωr ∈ ΛrV, ηs ∈ ΛsV. ⊓⊔

Proposition 2.2.16. The exterior product has the following properties.
(a) (Associativity)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ), ∀α, β γ ∈ Λ• V.

In particular,

v1 ∧ · · · ∧ vk = k!Ak(v1 ⊗ ... ⊗ vk) =
∑

σ∈Sk
ǫ(σ)vσ(1) ⊗ ... ⊗ vσ(k), ∀vi ∈ V.

(b) (Super-commutativity)

ωr ∧ ηs = (−1)rsηs ∧ ωr, ∀ωr ∈ ΛrV, ωs ∈ ΛsV.
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Proof. We first define a new product “∧1” by

ωr∧1ηs := Ar+s(ω ⊗ η),

which will turn out to be associative and will force ∧ to be associative as well.
To prove the associativity of ∧1 consider the quotient algebra Q∗ = T∗/I∗, where T∗

is the associative algebra (
⊕

r≥0 T
r(V ), +, ⊗), and I∗ is the bilateral ideal generated by

the set of squares {v⊗ v/ v ∈ V }. Denote the (obviously associative) multiplication in Q∗

by ∪. The natural projection π : T∗ → Q∗ induces a linear map π : Λ• V → Q∗. We will
complete the proof of the proposition in two steps.

Step 1. We will prove that the map π : Λ• V → Q∗ is a linear isomorphism, and moreover

π(α∧1β) = π(α) ∪ π(β). (2.2.1)

In particular, ∧1 is an associative product.
The crucial observation is

π(T ) = π(Ar(T )), ∀t ∈ Tr(V ). (2.2.2)

It suffices to check (2.2.2) on monomials T = e1 ⊗ · · · ⊗ er, ei ∈ V . Since

(u+ v)⊗2 ∈ I∗, ∀u, v ∈ V

we deduce u⊗ v = −v ⊗ u(mod I∗). Hence, for any σ ∈ Sr

π(e1 ⊗ · · · ⊗ er) = ǫ(σ)π(eσ(1) ⊗ · · · ⊗ eσ(r)) (2.2.3)

When we sum over σ ∈ Sr in (2.2.3) we obtain (2.2.2).
To prove the injectivity of π note first that A∗(I∗) = 0. If π(ω) = 0 for some ω ∈ Λ• V ,

then ω ∈ ker π = I∗ ∩ Λ• V so that

ω = A∗(ω) = 0.

The surjectivity of π follows immediately from (2.2.2). Indeed, any π(T ) can be alterna-
tively described as π(ω) for some ω ∈ Λ• V . It suffices to take ω = A∗(T ).

To prove (2.2.1) it suffices to consider only the special cases when α and β are mono-
mials:

α = Ar(e1 ⊗ · · · ⊗ er), β = As(f1 ⊗ · · · ⊗ fs).
We have

π(α∧1β) = π (Ar+s(Ar(e1 ⊗ · · · ⊗ er)⊗As(f1 ⊗ · · · ⊗ fs)))
(2.2.2)
= π (Ar(e1 ⊗ · · · ⊗ er)⊗As(f1 ⊗ · · · ⊗ fs))

def
= π(Ar(e1 ⊗ · · · ⊗ er)) ∪ π(As(f1 ⊗ · · · ⊗ fs)) = π(α) ∪ π(β).

Thus ∧1 is associative.

Step 2. The product ∧ is associative. Consider α ∈ ΛrV , β ∈ ΛsV and γ ∈ ΛtV . We
have

(α ∧ β) ∧ γ =

(
(r + s)!

r!s!
α∧1β

)
∧ γ =

(r + s)!

r!s!

(r + s+ t)!

(r + s)!t!
(α∧1β)∧1γ
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=
(r + s+ t)!

r!s!t!
(α∧1β)∧1γ =

(r + s+ t)!

r!s!t!
α∧1(β∧1γ) = α ∧ (β ∧ γ).

The associativity of ∧ is proved. The computation above shows that

e1 ∧ · · · ∧ ek = k!Ak(e1 ⊗ · · · ⊗ ek).

(b) The supercommutativity of ∧ follows from the supercommutativity of ∧1 (or ∪). To
prove the latter one uses (2.2.2). The details are left to the reader. ⊓⊔

Exercise 2.2.17. Finish the proof of part (b) in the above proposition. ⊓⊔

The space Λ• V is called the exterior algebra of V . ∧ is called the exterior product .
The exterior algebra is a Z-graded algebra, i.e.,

(ΛrV ) ∧ (ΛsV ) ⊂ Λr+sV, ∀r, s.

Note that ΛrV = 0 for r > dimV (pigeonhole principle).

Definition 2.2.18. Let V be an n-dimensional K-vector space. The one dimensional
vector space ΛnV is called the determinant line of V , and it is denoted by detV . ⊓⊔

There exists a natural injection ιV : V →֒ Λ• V , ιV (v) = v, such that

ιV (v) ∧ ιV (v) = 0, ∀v ∈ V.

This map enters crucially into the formulation of the following universality property.

Proposition 2.2.19. Let V be a vector space over K. For any K-algebra A, and any
linear map φ : V → A such that (φ(x)2 = 0, there exists an unique morphism of K-
algebras Φ : Λ• V → A such that the diagram below is commutative

V Λ• V

A

y w

ιV

[

[

[

[℄φ
u

Φ ,

i.e., Φ ◦ ιV = φ.

Exercise 2.2.20. Prove Proposition 2.2.19. ⊓⊔

The space of symmetric tensors S• V can be similarly given a structure of associative
algebra with respect to the product

α · β := Sr+s(α⊗ β), ∀α ∈ SrV, β ∈ SsV.

The symmetric product “·” is also commutative.

Exercise 2.2.21. Formulate and prove the analogue of Proposition 2.2.19 for the algebra
S• V . ⊓⊔
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It is often convenient to represent (skew-)symmetric tensors in coordinates. If e1, ... , en
is a basis of the vector space V then, for any 1 ≤ r ≤ n, the family

{ei1 ∧ · · · ∧ eir/ 1 ≤ i1 < · · · < ir ≤ n}

is a basis for ΛrV so that any degree r skew-symmetric tensor ω can be uniquely repre-
sented as

ω =
∑

1≤i1<···<ir≤n
ωi1···irei1 ∧ · · · ∧ eir .

Symmetric tensors can be represented in a similar way.

The Λ• and the S• constructions are functorial in the following sense.

Proposition 2.2.22. Any linear map L : V →W induces a natural morphisms of algebras

Λ• L : Λ• V → Λ•W, S• L : S• V → S•W

uniquely defined by their actions on monomials

Λ• L(v1 ∧ · · · ∧ vr) = (Lv1) ∧ · · · ∧ (Lvr),

and

S• L(v1, . . . , vr) = (Lv1) · · · (Lvr).

Moreover, if U
A−→ V

B−→W are two linear maps, then

Λr(BA) = (ΛrB)(ΛrA), Sr(BA) = (SrB)(SrA). ⊓⊔

Exercise 2.2.23. Prove the above proposition. ⊓⊔

In particular, if n = dimK V , then any linear endomorphism L : V → V defines an
endomorphism

ΛnL : detV = ΛnV → detV.

Since the vector space detV is 1-dimensional, the endomorphism ΛnL can be identified
with a scalar detL, the determinant of the endomorphism L.

Definition 2.2.24. Suppose V is a finite dimensional vector space and A : V → V is
an endomorphism of V . For every positive integer r we denote by σr(A) the trace of the
induced endomorphism

ΛrA : ΛrV → ΛrV,

and by ψr(A) the trace of the endomorphism Ar : V → V . We define

σ0(A) = 1, ψ0(A) = dimV. ⊓⊔
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Exercise 2.2.25. Suppose V is a complex n-dimensional vector space, and A is an endo-
morphism of V .

(a) Prove that if A is diagonalizable and its eigenvalues are a1, . . . , an, then

σr(A) =
∑

1≤i1<···<ir≤n
ai1 · · · air , ψr(A) = ar1 + · · ·+ arn.

(b) Prove that for every sufficiently small z ∈ C we have the equalities

det(1V + zA) =
∑

j≥0
σr(A)z

r, − d

dz
log det(1− zA) =

∑

r≥1
ψr(A)z

r−1. ⊓⊔

The functors Λ• and S• have an exponential like behavior, i.e., there exists a natural
isomorphism

Λ• (V ⊕W ) ∼= Λ• V ⊗ Λ•W. (2.2.4)

S• (V ⊕W ) ∼= S• V ⊗ S•W. (2.2.5)

To define the isomorphism in (2.2.4) consider the bilinear map

φ : Λ• V × Λ•W → Λ• (V ⊕W ),

uniquely determined by

φ(v1 ∧ · · · ∧ vr , w1 ∧ · · · ∧ ws) = v1 ∧ · · · ∧ vr ∧ w1 ∧ · · · ∧ ws.

The universality property of the tensor product implies the existence of a linear map

Φ : Λ• V ⊗ Λ•W → Λ• (V ⊕W ),

such that Φ ◦ ι = φ, where ι is the inclusion of Λ• V ×Λ•W in Λ• V ⊗Λ•W . To construct
the inverse of Φ, note that Λ• V ⊗ Λ•W is naturally a K-algebra by

(ω ⊗ η) ∗ (ω′ ⊗ η′) = (−1)deg η·deg ω′

(ω ∧ ω′)⊗ (η ∧ η′).

The vector space V ⊕W is naturally embedded in Λ• V ⊗ Λ•W via the map given by

(v,w) 7→ ψ(v,w) = v ⊗ 1 + 1⊗ w ∈ Λ• V ⊗ Λ•W.

Moreover, for any x ∈ V ⊕W we have ψ(x) ∗ ψ(x) = 0. The universality property of the
exterior algebra implies the existence of a unique morphism of K-algebras

Ψ : Λ• (V ⊕W )→ Λ• V ⊗ Λ•W,

such that Ψ ◦ ιV⊕W = ψ. Note that Φ is also a morphism of K-algebras, and one verifies
easily that

(Φ ◦Ψ) ◦ ιV⊕W = ιV⊕W .
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The uniqueness part in the universality property of the exterior algebra implies Φ ◦ Ψ =
identity. One proves similarly that Ψ ◦ Φ = identity, and this concludes the proof of
(2.2.4).

We want to mention a few general facts about Z-graded vector spaces, i.e., vector
spaces equipped with a direct sum decomposition

V =
⊕

n∈Z
Vn.

(We will always assume that each Vn is finite dimensional.) The vectors in Vn are said
to be homogeneous, of degree n. For example, the ring of polynomials K[x] is a K-graded
vector space. The spaces Λ• V and S• V are Z-graded vector spaces.

The direct sum of two Z-graded vector spaces V and W is a Z-graded vector space
with

(V ⊕W )n := Vn ⊕Wn.

The tensor product of two Z-graded vector spaces V and W is a Z-graded vector space
with

(V ⊗W )n :=
⊕

r+s=n

Vr ⊗Ws.

To any Z-graded vector space V one can naturally associate a formal series PV (t) ∈
Z[[t, t−1]] by

PV (t) :=
∑

n∈Z
(dimK Vn)t

n.

The series PV (t) is called the Poincaré series of V .

Example 2.2.26. The Poincaré series of K[x] is

PK[x](t) = 1 + t+ t2 + · · · + tn−1 + · · · = 1

1− t . ⊓⊔

Exercise 2.2.27. Let V and W be two Z-graded vector spaces. Prove the following
statements are true (whenever they make sense).
(a) PV ⊕W (t) = PV (t) + PW (t).

(b) PV⊗W (t) = PV (t) · PW (t).

(c) dimV = PV (1). ⊓⊔

Definition 2.2.28. Let V be a Z-graded vector space. The Euler characteristic of V,
denoted by χ(V ), is defined by

χ(V ) := PV (−1) =
∑

n∈Z
(−1)n dimVn,

whenever the sum on the right-hand side makes sense. ⊓⊔

Remark 2.2.29. If we try to compute χ(K[x]) using the first formula in Definition 2.2.28
we get χ(K[x]) = 1/2, while the second formula makes no sense (divergent series). ⊓⊔
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Proposition 2.2.30. Let V be a K-vector space of dimension n. Then

PΛ• V (t) = (1 + t)n and PS• V (t) =

(
1

1− t

)n
=

1

(n− 1)!

(
d

dt

)n−1( 1

1− t

)
.

In particular, dimΛ• V = 2n and χ(Λ• V ) = 0.

Proof. From (2.2.4) and (2.2.5) we deduce using Exercise 2.2.27 that for any vector spaces
V and W we have

PΛ•(V⊕W )(t) = PΛ•V (t) · PΛ•W (t) and PS•(V⊕W )(t) = PS•V (t) · PS•W (t).

In particular, if V has dimension n, then V ∼= Kn so that

PΛ• V (t) = (PΛ• K(t))
n and PS• V (t) = (PS• K(t))

n .

The proposition follows using the equalities

PΛ• K(t) = 1 + t, and PS• K(t) = PK[x](t) =
1

1− t . ⊓⊔

2.2.3 The “super” slang

The aim of this very brief section is to introduce the reader to the “super” terminology.
We owe the “super” slang to the physicists. In the quantum world many objects have a
special feature not present in the Newtonian world. They have parity (or chirality), and
objects with different chiralities had to be treated differently.

The “super” terminology provides an algebraic formalism which allows one to deal
with the different parities on an equal basis. From a strictly syntactic point of view, the
“super” slang adds the attribute super to most of the commonly used algebraic objects.
In this book, the prefix “s-” will abbreviate the word “super”

Definition 2.2.31. (a) A s-space is a Z2-graded vector space, i.e., a vector space V
equipped with a direct sum decomposition V = V0 ⊕ V1.
(b) A s-algebra over K is a Z2-graded K-algebra, i.e., a K-algebra A together with a direct
sum decomposition A = A0 ⊕A1 such that Ai ·Aj ⊂ Ai+j (mod 2). The elements in Ai are
called homogeneous of degree i. For any a ∈ Ai we denote its degree (mod 2) by |a|. The
elements in A0 are said to be even while the elements in A1 are said to be odd.

(c) The supercommutator in a s-algebra A = A0 ⊕A1 is the bilinear map

[•, •]s : A×A→ A,

defined on homogeneous elements ωi ∈ Ai, ηj ∈ Aj by

[ωi, ηj ]s := ωiηj − (−1)ijηjωj.

An s-algebra is called s-commutative, if the suppercommutator is trivial, [•, •]s ≡ 0. ⊓⊔

.
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Example 2.2.32. Let E = E0⊕E1 be a s-space. Any linear endomorphism T ∈ End (E)
has a block decomposition

T =

[
T00 T01
T10 T11

]
,

where Tji ∈ End (Ei, Ej). We can use this block decomposition to describe a structure of
s-algebra on End (E). The even endomorphisms have the form

[
T00 0
0 T11

]
,

while the odd endomorphisms have the form

[
0 T01
T10 0

]
. ⊓⊔

Example 2.2.33. Let V be a finite dimensional space. The exterior algebra Λ•V is
naturally a s-algebra. The even elements are gathered in

ΛevenV =
⊕

r even

ΛrV,

while the odd elements are gathered in

ΛoddV =
⊕

r odd

ΛrV.

The s-algebra Λ•V is s-commutative. ⊓⊔

Definition 2.2.34. Let A = A0 ⊕ A1 be a s-algebra. An s-derivation on A is a linear
operator on D ∈ End (A) such that, for any x ∈ A,

[D,Lx]
End(A)
s = LDx, (2.2.6)

where [ , ]
End(A)
s denotes the supercommutator in End (A) (with the s-structure defined

in Example 2.2.32), while for any z ∈ A we denoted by Lz the left multiplication operator
a 7→ z · a.

An s-derivation is called even (respectively odd), if it is even (respectively odd) as an
element of the s-algebra End (A). ⊓⊔

Remark 2.2.35. The relation (2.2.6) is a super version of the usual Leibniz formula.
Indeed, assumingD is homogeneous (as an element of the s-algebra End (A)) then equality
(2.2.6) becomes

D(xy) = (Dx)y + (−1)|x||D|x(Dy),

for any homogeneous elements x, y ∈ A. ⊓⊔
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Example 2.2.36. Let V be a vector space. Any u∗ ∈ V ∗ defines an odd s-derivation of
Λ•V denoted by iu∗ uniquely determined by its action on monomials.

iu∗(v0 ∧ v1 ∧ · · · ∧ vr) =
r∑

i=0

(−1)i〈u∗, vi〉v0 ∧ v1 ∧ ... ∧ v̂i ∧ · · · ∧ vr.

As usual, a hat indicates a missing entry. The derivation iu∗ is called the interior derivation
by u∗ or the contraction by u∗. Often, one uses the alternate notation u∗ to denote this
derivation. ⊓⊔

Exercise 2.2.37. Prove the statement in the above example. ⊓⊔

Definition 2.2.38. Let A = (A0 ⊕ A1, +, [ , ]) be an s-algebra over K, not necessarily
associative. For any x ∈ A we denote by Rx the right multiplication operator, a 7→ [a, x].
A is called an s-Lie algebra if it is s-anticommutative, i.e.,

[x, y] + (−1)|x||y|[y, x] = 0, for all homogeneous elements x, y ∈ A,

and ∀x ∈ A, Rx is a s-derivation.
When A is purely even, i.e., A1 = {0}, then A is called simply a Lie algebra. The

multiplication in a (s-) Lie algebra is called the (s-)bracket. ⊓⊔

The above definition is highly condensed. In down-to-earth terms, the fact that Rx is
a s-derivation for all x ∈ A is equivalent with the super Jacobi identity

[[y, z], x] = [[y, x], z] + (−1)|x||y|[y, [z, x]], (2.2.7)

for all homogeneous elements x, y, z ∈ A. When A is a purely even K-algebra, then A is
a Lie algebra over K if [ , ] is anticommutative and satisfies (2.2.7), which in this case is
equivalent with the classical Jacobi identity,

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0, ∀x, y, z ∈ A. (2.2.8)

Example 2.2.39. Let E be a vector space (purely even). Then A = End (E) is a Lie
algebra with bracket given by the usual commutator: [a, b] = ab− ba. ⊓⊔

Proposition 2.2.40. Let A = A0 ⊕A1 be a s-algebra, and denote by Ders(A) the vector
space of s-derivations of A.
(a) For any D ∈ Ders(A), its homogeneous components D0, D1 ∈ End (A) are also
s-derivations.
(b) For any D, D′ ∈ Ders(A), the s-commutator [D,D′]End(A)s is again an s-derivation.
(c) ∀x ∈ A the bracket Bx : a 7→ [a, x]s is a s-derivation called the bracket derivation
determined by x. Moreover

[Bx, By]End (A)
s = B[x,y]s, ∀x, y ∈ A. ⊓⊔
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Exercise 2.2.41. Prove Proposition 2.2.40. ⊓⊔

Definition 2.2.42. Let E = E0 ⊕ E1 and F = F 0 ⊕ F 1 be two s-spaces. Their s-tensor
product is the s-space E ⊗ F with the Z2-grading,

(E ⊗ F )ǫ :=
⊕

i+j≡ǫ (2)
Ei ⊗ F j , ǫ = 0, 1.

To emphasize the super-nature of the tensor product we will use the symbol “⊗̂” instead
of the usual “⊗”. ⊓⊔

Exercise 2.2.43. Show that there exists a natural isomorphism of s-spaces

V ∗⊗̂Λ•V ∼= Ders(Λ
•V ),

uniquely determined by v∗ × ω 7→ Dv∗⊗ω, where Dv∗⊗ω is s-derivation defined by

Dv∗⊗ω(v) = 〈v∗, v〉ω, ∀v ∈ V.

Notice in particular that any s-derivation of Λ•V is uniquely determined by its action on
Λ1V . (When ω = 1, Dv∗⊗1 coincides with the internal derivation discussed in Example
2.2.36.) ⊓⊔

Let A = A0⊕A1 be an s-algebra over K = R, C. A supertrace on A is a K-linear map
τ : A→ K such that,

τ([x, y]s) = 0 ∀x, y ∈ A.

If we denote by [A,A]s the linear subspace of A spanned by the supercommutators

{
[x, y]s ; x, y ∈ A

}
,

then we see that the space of s-traces is isomorphic with the dual of the quotient space
A/[A,A]s.

Proposition 2.2.44. Let E = E0 ⊕ E1 be a finite dimensional s-space, and denote by
A the s-algebra of endomorphisms of E. Then there exists a canonical s-trace trs on A

uniquely defined by

trs1E = dimE0 − dimE1.

In fact, if T ∈ A has the block decomposition

T =

[
T00 T01
T10 T11

]
,

then

trsT = trT00 − trT11. ⊓⊔

Exercise 2.2.45. Prove the above proposition. ⊓⊔
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2.2.4 Duality

Duality is a subtle and fundamental concept which permeates all branches of mathematics.
This section is devoted to those aspects of the atmosphere called duality which are relevant
to differential geometry. In the sequel, all vector spaces will be tacitly assumed finite
dimensional, and we will use Einstein’s convention without mentioning it. K will denote
one of the fields R or C.

Definition 2.2.46. A pairing between two K-vector spaces V and W is a bilinear map
B : V ×W → K. ⊓⊔

Any pairing B : V ×W → K defines a linear map

IB : V →W ∗, v 7→ B(v, • ) ∈W ∗,

called the adjunction morphism associated to the pairing.
Conversely, any linear map L : V →W ∗ defines a pairing

BL : V ×W → K, B(v,w) = (Lv)(w), ∀v ∈ V, w ∈W.

Observe that IBL
= L. A pairing B is called a duality if the adjunction map IB is an

isomorphisms.

Example 2.2.47. The natural pairing 〈•, •〉 : V ∗ × V → K is a duality. One sees that
I〈•,•〉 = 1V ∗ : V ∗ → V ∗. This pairing is called the natural duality between a vector space
and its dual. ⊓⊔

Example 2.2.48. Let V be a finite dimensional real vector space. Any symmetric non-
degenerate quadratic form (•, •) : V × V → R defines a (self)duality, and in particular a
natural isomorphism

L := I(•,•) : V → V ∗.

When (•, •) is positive definite, then the operator L is called metric duality or lowering-
the-indices map. This operator can be nicely described in coordinates as follows. Pick a
basis (ei) of V , and set

gij := (ei, ej).

Let (ej) denote the dual basis of V ∗ defined by

〈ej , ei〉 = δji , ∀i, j.

The action of L is then
Lei = gije

j . ⊓⊔
Example 2.2.49. Consider V a real vector space and ω : V × V → R a skew-symmetric
bilinear form on V . The form ω is said to be symplectic if this pairing is a duality. In
this case, the induced operator Iω : V → V ∗ is called symplectic duality. ⊓⊔

Exercise 2.2.50. Suppose that V is a real vector space, and ω : V ×V → R is a symplectic
duality. Prove the following.
(a) The V has even dimension.
(b) If (ei) is a basis of V , and ωij := ω(ei, ej), then det(ωij)1≤i,j≤dimV 6= 0. ⊓⊔
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The notion of duality is compatible with the functorial constructions introduced so
far.

Proposition 2.2.51. Let Bi : Vi ×Wi → R (i = 1, 2) be two pairs of spaces in duality.
Then there exists a natural duality

B = B1 ⊗B2 : (V1 ⊗ V2)× (W1 ⊗W2)→ R,

uniquely determined by

IB1⊗B2 = IB1 ⊗ IB2 ⇐⇒ B(v1 ⊗ v2, w1 ⊗ w2) = B1(v1, w1) ·B2(v2, w2). ⊓⊔

Exercise 2.2.52. Prove Proposition 2.2.51. ⊓⊔

Proposition 2.2.51 implies that given two spaces in duality B : V ×W → K there is a
naturally induced duality

B⊗n : V ⊗r ×W⊗r → K.

This defines by restriction a pairing

ΛrB : ΛrV × ΛrW → K

uniquely determined by

ΛrB (v1 ∧ · · · ∧ vr, w1 ∧ · · · ∧ wr) := det (B (vi, wj))1≤i,j≤r .

Exercise 2.2.53. Prove the above pairing is a duality. ⊓⊔

In particular, the natural duality 〈 • , • 〉 : V ∗ × V → K induces a duality

〈 • , • 〉 : ΛrV ∗ × ΛrV → R,

and thus defines a natural isomorphism

ΛrV ∗ ∼= (ΛrV )∗ .

This shows that we can regard the elements of ΛrV ∗ as skew-symmetric r-linear forms
V r → K.

A duality B : V ×W → K naturally induces a duality B† : V ∗ ×W ∗ → K by

B†(v∗, w∗) : =〈v∗, I−1B w∗〉,
where IB : V →W ∗ is the adjunction isomorphism induced by the duality B.

Now consider a (real) Euclidean vector space V . Denote its inner product by ( • , • ).
The self-duality defined by ( • , • ) induces a self-duality

( • , • ) : ΛrV × ΛrV → R,

determined by

(v1 ∧ · · · ∧ vr, w1 ∧ · · · ∧ wr) := det ( (vi, wj) )1≤i,j≤r . (2.2.9)

The right hand side of (2.2.9) is a Gramm determinant, and in particular, the bilinear
form in (2.2.9) is symmetric and positive definite. Thus, we have proved the following
result.
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Corollary 2.2.54. An inner product on a real vector space V naturally induces an inner
product on the tensor algebra T(V ), and in the exterior algebra Λ•V . ⊓⊔

In a Euclidean vector space V the inner product induces the metric duality L : V → V ∗.
This induces an operator L : T rs (V )→ T r−1s+1 (V ) defined by

L(v1 ⊗ . . .⊗ vr ⊗ u1 ⊗ · · · ⊗ us) = (v2 ⊗ · · · ⊗ vr) ⊗ ((Lv1 ⊗ u1 ⊗ · · · ⊗ us). (2.2.10)

The operation defined in (2.2.10) is classically referred to as lowering the indices.

The reason for this nomenclature comes from the coordinate description of this oper-
ation. If T ∈ Trs(V ) is given by

T = T i1...irj1...js
ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs ,

then

(LT )i2...irjj1...jr
= gijT

ii2...ir
j1...js

,

where gij = (ei, ej). The inverse of the metric duality L−1 : V ∗ → V induces a linear
operation Trs(V )→ Tr+1

s−1(V ) called raising the indices.

Exercise 2.2.55 (Cartan). Let V be an Euclidean vector space. For any v ∈ V denote by
ev (resp. iv) the linear endomorphism of Λ∗V defined by evω = v∧ω (resp. iv = ıv∗ where
ıv∗ denotes the interior derivation defined by v∗ ∈ V ∗-the metric dual of v; see Example
2.2.36). Show that for any u, v ∈ V

[ev, iu]s = eviu + iuev = (u, v)1Λ•V . ⊓⊔

Definition 2.2.56. Let V be a real vector space. A volume form on V is a nontrivial
linear form on the determinant line of V , µ : detV → R. ⊓⊔

Equivalently, a volume form on V is a nontrivial element of detV ∗ (n = dimV ). Since
detV is 1-dimensional, a choice of a volume form corresponds to a choice of a basis of
detV .

Definition 2.2.57. (a) An orientation on a vector space V is a continuous, surjective
map

or : detV \ {0} → {±1}.

We denote byOr(V ) the set of orientations of V . Observe that Or(V ) consists of precisely
two elements.

(b) A pair (V,or), where V is a vector space, and or is an orientation on V is called an
oriented vector space.

(c) Suppose or ∈ Or(V ). A basis ω of detV is said to be positively oriented if or(ω) > 0.
Otherwise, the basis is said to be negatively oriented. ⊓⊔
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There is an equivalent way of looking at orientations. To describe it, note that any
nontrivial volume form µ on V uniquely specifies an orientation orµ given by

orµ(ω) := signµ(ω), ∀ω ∈ detV \ {0}.

We define an equivalence relation on the space of nontrivial volume forms by declaring

µ1 ∼ µ2 ⇐⇒ µ1(ω)µ2(ω) > 0, ∀ω ∈ detV \ {0}.

Then
µ1 ∼ µ2 ⇐⇒ orµ1 = orµ2 .

To every orientation or we can associate an equivalence class [µ]or of volume forms such
that

µ(ω)or(ω) > 0, ∀ω ∈ detV \ {0}.
Thus, we can identify the set of orientations with the set of equivalence classes of nontrivial
volume forms.

Equivalently, to specify an orientation on V it suffices to specify a basis ω of detV .
The associated orientation orω is uniquely characterized by the condition

orω(ω) = 1.

To any basis {e1, ..., en} of V one can associate a basis e1 ∧ · · · ∧ en of detV . Note that a
permutation of the indices 1, . . . , n changes the associated basis of detV by a factor equal
to the signature of the permutation. Thus, to define an orientation on a vector space, it
suffices to specify a total ordering of a given basis of the space.

An ordered basis of an oriented vector space (V,or) is said to be positively oriented
if so is the associated basis of detV .

Definition 2.2.58. Given two orientations or1,or2 on the vector space V we define

or1/or2 ∈ {±1}

to be
or1/or2 := or1(ω)or2(ω), ∀ω ∈ detV \ {0}.

We will say that or1/or2 is the relative signature of the pair of orientations or1,or2. ⊓⊔

Assume now that V is an Euclidean space. Denote the Euclidean inner product by
g( • , • ). The vector space detV has an induced Euclidean structure, and in particular,
there exist exactly two length-one-vectors in detV . If we fix one of them, call it ω, and
we think of it as a basis of detV , then we achieve two things.

• First, it determines a volume form µg defined by

µg(λω) = λ.

• Second, it determines an orientation on V .
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Conversely, an orientation or ∈ Or(V ) uniquely selects a length-one-vector ω = ωor

in detV , which determines a volume form µg = µorg . Thus, we have proved the following
result.

Proposition 2.2.59. An orientation or on an Euclidean vector space (V, g) canonically
selects a volume form on V , henceforth denoted by Detg = Detorg . ⊓⊔

Exercise 2.2.60. Let (V, g) be an n-dimensional Euclidean vector space, and or an
orientation on V . Show that, for any basis v1, . . . vn of V , we have

Detorg (v1 ∧ · · · ∧ vn) = or(v1 ∧ · · · ∧ vn)
√

(det g(vi, vj)).

If V = R2 with its standard metric, and the orientation given by e1 ∧ e2, prove that

|Detorg (v1 ∧ v2)|
is the area of the parallelogram spanned by v1 and v2. ⊓⊔

Definition 2.2.61. Let (V, g,or) be an oriented, Euclidean space and denote by Detorg
the associated volume form. The Berezin integral or ( berezinian) is the linear form

~∫

g
: Λ•V → R,

defined on homogeneous elements by

~∫

g
ω =

{
0 if degω < dimV

Detorg ω if degω = dimV
. ⊓⊔

Definition 2.2.62. Let ω ∈ Λ2V , where (V, g,or) is an oriented, Euclidean space. We
define its pfaffian as

Pf (ω) = Pfor
g (ω) :=

~∫

g
expω =

{
0 if dimV is odd

1
n!Detorg (ω∧n) if dimV = 2n

,

where expω denotes the exponential in the (nilpotent) algebra Λ•V ,

expω :=
∑

k≥0

ωk

k!
. ⊓⊔

If (V, g) is as in the above definition, dimV = N , and A : V → V is a skew-symmetric
endomorphism of V , then we can define ωA ∈ Λ2V by

ωA =
∑

i<j

g(Aei, ej)ei ∧ ej =
1

2

∑

i,j

g(Aei, ej)ei ∧ ej ,

where (e1, ..., eN ) is a positively oriented orthonormal basis of V . The reader can check
that ωA is independent of the choice of basis as above. Notice that

ωA(u, v) = g(Au, v), ∀u, v ∈ V.
We define the pfaffian of A by

Pf(A) := Pf(ωA).
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Example 2.2.63. Let V = R2 denote the standard Euclidean space oriented by e1 ∧ e2,
where e1e2 denotes the standard basis. If

A =

[
0 −θ
θ 0

]
,

then ωA = θe1 ∧ e2 so that Pf(A) = θ. ⊓⊔

Exercise 2.2.64. Let A : V → V be a skew-symmetric endomorphism of an oriented
Euclidean space V . Prove that Pf(A)2 = detA. ⊓⊔

Exercise 2.2.65. Let (V, g,or) be an oriented Euclidean space of dimension 2n. Consider
A : V → V a skewsymmetric endomorphism and a positively oriented orthonormal frame
e1, . . . , e2n. Prove that

Pfor
g (A) =

(−1)n
2nn!

∑

σ∈S2n
ǫ(σ)aσ(1)σ(2) · · · aσ(2n−1)σ(2n)

= (−1)n
∑

σ∈S′2n

ǫ(σ)aσ(1)σ(2) · · · aσ(2n−1)σ(2n) ,

where aij = g(ei, Aej) is the (i, j)-th entry in the matrix representing A in the basis (ei),
and S′2n denotes the set of permutations σ ∈ S2n satisfying

σ(2k − 1) < min{σ(2k), σ(2k + 1)}, ∀k. ⊓⊔

Let (V, g,or) be an n-dimensional, oriented, real Euclidean vector space. The metric
duality Lg : V → V ∗ induces both a metric, and an orientation on V ∗. In the sequel we
will continue to use the same notation Lg to denote the metric duality Trs(V )→ Trs(V

∗) ∼=
Trs(V ).

Definition 2.2.66. Suppose (V, g,or) oriented Euclidean space, and r is a nonnegative
integer, r ≤ dimV . The r-th Hodge pairing is the pairing

Ξ = Ξrg,or : ΛrV ∗ × Λn−rV → R,

defined by

Ξ(ωr, ηn−r) := Detorg
(
L−1g ωr ∧ ηn−r

)
, ωr ∈ ΛrV ∗, ηn−r ∈ Λn−rV. ⊓⊔

Exercise 2.2.67. Prove that the Hodge pairing is a duality. ⊓⊔

Definition 2.2.68. The Hodge ∗-operator is the adjunction isomorphism

∗ = IΞ : ΛrV ∗ → Λn−rV ∗

induced by the Hodge duality. ⊓⊔
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The above definition obscures the meaning of the ∗-operator. We want to spend some
time clarifying its significance.

Let α ∈ ΛrV ∗ so that ∗α ∈ Λn−rV ∗. Denote by 〈•, •〉 the standard pairing

Λn−rV ∗ × Λn−rV → R,

and by (•, •) the induced metric on Λn−rV ∗. Then, by definition, for every β ∈ Λn−sV ∗

the operator ∗ satisfies

Detg(L
−1
g α ∧ L−1g β) =

〈
∗α,L−1g β

〉
= (∗α, β), ∀β ∈ Λn−rV ∗. (2.2.11)

Let ω denote the unit vector in detV defining the orientation. Then (2.2.11) can be
rewritten as

〈α ∧ β, ω〉 = (∗α, β), ∀β ∈ Λn−rV ∗.

Thus

α ∧ β = (∗α, β)Detorg , ∀α ∈ ΛrV ∗, ∀β ∈ Λn−rV ∗. (2.2.12)

Equality (2.2.12) uniquely determines the action of ∗.
Example 2.2.69. Let V be the standard Euclidean spaceR3 with standard basis e1, e2, e3,
and orientation determined by e1 ∧ e2 ∧ e3. Then

∗e1 = e2 ∧ e3, ∗e2 = e3 ∧ e1, ∗e3 = e1 ∧ e2,

∗1 = e1 ∧ e2 ∧ e3, ∗(e1 ∧ e2 ∧ e3) = 1,

∗(e2 ∧ e3) = e1, ∗(e3 ∧ e1) = e2, ∗(e1 ∧ e2) = e3. ⊓⊔
The following result is left to the reader as an exercise.

Proposition 2.2.70. Suppose (V, g,or) is an oriented, real Euclidean space of dimension
n. Then the associated Hodge ∗-operator satisfies

∗(∗ω) = (−1)p(n−p)ω ∀ω ∈ ΛpV ∗,

Detg(∗1) = 1,

and
α ∧ ∗β = (α, β) ∗ 1, ∀α ∈ ΛkV ∗, ∀β ∈ Λn−kV ∗. ⊓⊔

Exercise 2.2.71. Let (V, g, ε) be an n-dimensional, oriented, Euclidean space. For every
t > 0 Denote by gt the rescaled metric gt = t2g. If ∗ is the Hodge operator corresponding
to the metric g and orientation or, and ∗t is the Hodge operator corresponding to the
metric gt and the same orientation, show that

Detortg = tnDetorg ,

and
∗tω = tn−2p ∗ ω ∀ω ∈ ΛpV ∗. ⊓⊔
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We conclude this subsection with a brief discussion of densities.

Definition 2.2.72. Let V be a real vector space. For any r ≥ 0 we define an r-density
to be a function f : detV → R such that

f(λu) = |λ|rf(u), ∀u ∈ detV \ {0}, ∀λ 6= 0. ⊓⊔

The linear space of r-densities on V will be denoted by |Λ|rV . When r = 1 we set
|Λ|V := |Λ|1V , and we will refer to 1-densities simply as densities.

Example 2.2.73. Any Euclidean metric g on V defines a canonical 1-density |Detg | ∈
|Λ|1V which associated to each ω ∈ detV its length, |ω|g. ⊓⊔

Observe that an orientation or ∈ Or(V ) defines a natural linear isomorphism

ıor : detV ∗ → |Λ|V detV ∗ ∋ µ 7→ ıorµ ∈ |Λ|V , (2.2.13)

where

ıorµ(ω) = or(ω)µ(ω), ∀ω ∈ detV \ {0}.

In particular, an orientation in a Euclidean vector space canonically identifies |Λ|V with
R.

2.2.5 Some complex linear algebra

In this subsection we want to briefly discuss some aspects specific to linear algebra over
the field of complex numbers.

Let V be a complex vector space. Its conjugate is the complex vector space V which
coincides with V as a real vector space, but in which the multiplication by a scalar λ ∈ C

is defined by

λ · v := λv, ∀v ∈ V.

The vector space V has a complex dual V ∗c that can be identified with the space of complex
linear maps V → C. If we forget the complex structure we obtain a real dual V ∗r consisting
of all real-linear maps V → R.

Definition 2.2.74. A Hermitian metric is a complex bilinear map

(•, •) : V × V → C

satisfying the following properties.

• The bilinear from (•, •) is positive definite, i.e.

(v, v) > 0, ∀v ∈ V \ {0}.

• For any u, v ∈ V we have (u, v) = (v, u). ⊓⊔
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A Hermitian metric defines a duality V × V → C, and hence it induces a complex
linear isomorphism

L : V → V ∗c , v 7→ (·, v) ∈ V ∗c .
If V andW are complex Hermitian vector spaces, then any complex linear map A : V → W
induces a complex linear map

A∗ :W → V ∗c A∗w :=
(
v 7→ 〈Av,w〉

)
∈ V ∗c ,

where 〈•, •〉 denotes the natural duality between a vector space and its dual. We can
rewrite the above fact as

〈Av,w〉 = 〈v,A∗w〉.
A complex linear map W → V ∗c is the same as a complex linear map W → Vc

∗
. The

metric duality defines a complex linear isomorphism Vc
∗ ∼= V so we can view the adjoint

A∗ as a complex linear map W → V .
Let h = (•, •) be a Hermitian metric on the complex vector space V . If we view (•, •)

as an object over R, i.e., as an R-bilinear map V × V → C, then the Hermitian metric
decomposes as

h = Re h− iω, i :=
√
−1, ω = − Imh.

The real part is an inner product on the real space V , while ω is a real, skew-symmetric
bilinear form on V , and thus can be identified with an element of Λ2

RV
∗. ω is called the

real 2-form associated to the Hermitian metric.
It is convenient to have a coordinate description of the abstract objects introduced

above. Let V be an n-dimensional complex vector space and h a Hermitian metric on it.
Pick an unitary basis e1, ..., en of V , i.e., n = dimC V , and h(ei, ej) = δij . For each j,
we denote by fj the vector iej . Then the collection e1, f1, . . . , en, fn is an R-basis of V .
Denote by e1, f1, . . . , en, fn the dual R-basis in V ∗. Then

Re h (ei, ej) = δij = Re h(fi, fj) and Re h (ei, fj) = 0,

i.e.,

Re h =
∑

i

(ei ⊗ ei + f i ⊗ f i).

Also
ω(ei, fj) = −Imh(ei, iej) = δij , ω(ei, ej) = ω(fi, fj) = 0 ∀i, j,

which shows that
ω = −Im h =

∑

i

ei ∧ f i.

Any complex space V can be also thought of as a real vector space. The multiplication
by i =

√
−1 defines a real linear operator which we denote by J . Obviously J satisfies

J2 = −1V .
Conversely, if V is a real vector space then any real operator J : V → V as above

defines a complex structure on V by

(a+ bi)v = av + bJv, ∀v ∈ V, a+ bi ∈ C.
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We will call an operator J as above a complex structure .
Let V be a real vector space with a complex structure J on it. The operator J has no

eigenvectors on V . The natural extension of J to the complexification of V , VC = V ⊗C,
has two eigenvalues ±i, and we have a splitting of VC as a direct sum of complex vector
spaces (eigenspaces)

VC = ker (J − i)⊕ (ker J + i).

Exercise 2.2.75. Prove that we have the following isomorphisms of complex vector spaces

V ∼= ker (J − i) V ∼= (ker J + i). ⊓⊔

Set
V 1,0 := ker(J − i) ∼=C V V 0,1 := ker(J + i) ∼=C V .

Thus VC ∼= V 1,0⊕V 0,1 ∼= V ⊕V . We obtain an isomorphism of Z-graded complex vector
spaces

Λ•VC ∼= Λ•V 1,0 ⊗ Λ•V 0,1.

If we set

Λp,qV := ΛpV 1,0 ⊗C ΛqV 0,1,

then the above isomorphism can be reformulated as

ΛkVC ∼=
⊕

p+q=k

Λp,qV. (2.2.14)

Note that the complex structure J on V induces by duality a complex structure J∗ on
V ∗r , and we have an isomorphism of complex vector spaces

V ∗c = (V, J)∗c ∼= (V ∗r , J
∗).

We can define similarly Λp,qV ∗ as the Λp,q-construction applied to the real vector space
V ∗r equipped with the complex structure J∗. Note that

Λ1,0V ∗ ∼= (Λ1,0V )∗c ,

Λ0,1V ∗ ∼= (Λ0,1V )∗c ,

and, more generally
Λp,qV ∗ ∼= (Λp,qV )∗c .

If h is a Hermitian metric on the complex vector space (V, J), then we have a natural
isomorphism of complex vector spaces

V ∗c ∼= (V ∗r , J
∗) ∼=C (V,−J) ∼=C V ,

so that
Λp,qV ∗ ∼=C Λq,pV.

The Euclidean metric g = Re h, and the associated 2-form ω = −Imh are related by

g(u, v) = ω(u, Jv), ω(u, v) = g(Ju, v), ∀u, v ∈ V. (2.2.15)



2.2. A LINEAR ALGEBRA INTERLUDE 67

Moreover, ω is a (1, 1)-form. To see this it suffices to pick a unitary basis (ei) of V , and
construct as usual the associated real orthonormal basis {e1, f1, · · · , en, fn} (fi = Jei).
Denote by {ei, f i ; i = 1, . . . , n} the dual orthonormal basis in V ∗r . Then J

∗ei = −f i, and
if we set

εi :=
1√
2
(ei + if i), ε̄j :=

1√
2
(ej − if j),

then

Λ1,0V ∗ = spanC{εi} Λ0,1 = spanC{ε̄j},
and

ω = i
∑

εi ∧ ε̄i.

Let V be a complex vector space, and e1, . . . , en be a basis of V over C. This is not a real
basis of V since dimR V = 2dimC V . We can however complete this to a real basis. More
precisely, the vectors e1, ie1, . . . , en, ien form a real basis of V .

Proposition 2.2.76. Suppose (e1, . . . , en) and (f1, . . . , fn) are two complex bases of V ,
and Z = (zjk)1≤j,k is the complex matrix describing the transition from the basis e to the
basis f , i.e.,

fk =
∑

j

zjkej , ∀1 ≤ k ≤ n.

Then

f1 ∧ if1 ∧ · · · ∧ fn ∧ ifn = |detZ|2e1 ∧ ie1 ∧ · · · ∧ en ∧ ien.

Proof. We write

zjk = xjk + iyjk, xjk, y
j
k ∈ R, êj = iej , f̂k = ifk.

Then

fk =
∑

j

(xjk + iyjk)ej =
∑

j

xjkej +
∑

j

yjkêj,

and

f̂k = −
∑

j

yjkej +
∑

j

xjkêj.

Then, if we set ǫn = (−1)n(n−1)/2, we deduce

f1 ∧ if1 ∧ · · · ∧ fn ∧ ifn = ǫnf1 ∧ · · · ∧ fn ∧ f̂1 ∧ · · · ∧ f̂n

= ǫn(det Ẑ)e1 ∧ · · · ∧ en ∧ ê1 ∧ · · · ∧ ên = (det Ẑ)e1 ∧ ie1 ∧ ... ∧ en ∧ ien,

where Ẑ is the 2n× 2n real matrix

Ẑ =

[
ReZ − ImZ
ImZ ReZ

]
=

[
X −Y
Y X

]
,

and X, Y denote the n× n real matrices with entries (xjk) and respectively (yjk).



68 CHAPTER 2. NATURAL CONSTRUCTIONS ON MANIFOLDS

We want to show that

det Ẑ = |detZ|2, ∀Z ∈ EndC(C
n). (2.2.16)

Let

A :=
{
Z ∈ EndC(C

n); |detZ|2 = det Ẑ
}
.

We will prove that A = EndC(C
n).

The set A is nonempty since it contains all the diagonal matrices. Clearly A is a closed
subset of EndC(C

n), so it suffices to show that A is dense in EndC(C
n).

Observe that the correspondence

EndC(C
n) ∋ Z → Ẑ ∈ EndR(R)

is an endomorphism of R-algebras. Then, for every Z ∈ EndC(C
n), and any complex

linear automorphism T ∈ AutC(C
n), we have

T̂ZT−1 = T̂ ẐT̂−1.

Hence

Z ∈ A⇐⇒ TZT−1 ∈ A, ∀T ∈ AutC(C
n).

In other words, if a complex matrix Z satisfies (2.2.16), then so will any of its conjugates.
In particular, A contains all the diagonalizable n× n complex matrices, and these form a
dense subset of EndC(C

n) (see Exercise 2.2.77). ⊓⊔

Exercise 2.2.77. Prove that the set of diagonalizable n × n complex matrices form a
dense subset of the vector space EndC(C

n). ⊓⊔

Definition 2.2.78. The canonical orientation of a complex vector space V , dimC V = n,
is the orientation defined by e1 ∧ ie1 ∧ ... ∧ en ∧ ien ∈ Λ2n

R V , where {e1, . . . , en} is any
complex basis of V . ⊓⊔

Suppose h is a Hermitian metric on the complex vector space V . Then g = Re h defines
is real, Euclidean metric on V regarded as a real vector space. The canonical orientation
orc on V , and the metric g define a volume form Detorc

g ∈ Λ2n
R V ∗r , n = dimC V , and a

pffafian

Pfh = Pforc
h : Λ2

RV
∗ → R, Λ2V ∗r ∋ η 7→

1

n!
g(ηn,Detg).

If ω = − Imh is real 2-form associated with the Hermitian metric h, then

Detg = Detorc
g =

1

n!
ωn,

and we conclude

Pfh ω = 1.
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2.3 Tensor fields

2.3.1 Operations with vector bundles

We now return to geometry, and more specifically, to vector bundles.
Let K denote one of the fields R or C, and let E → M be a rank r K-vector bundle

over the smooth manifold M . According to the definition of a vector bundle, we can find
an open cover (Uα) of M such that each restriction E |Uα is trivial: E |Uα

∼= V × Uα,
where V is an r-dimensional vector space over the field K. The bundle E is obtained by
gluing these trivial pieces on the overlaps Uα ∩ Uβ using a collection of transition maps
gαβ : Uα ∩ Uβ → GL(V ) satisfying the cocycle condition.

Conversely, a collection of gluing maps as above satisfying the cocycle condition
uniquely defines a vector bundle. In the sequel, we will exclusively think of vector bundles
in terms of gluing cocycles.

Let E, F be two vector bundles over the smooth manifold M with standard fibers VE
and respectively VF , given by a (common) open cover (Uα), and gluing cocycles

gαβ : Uαβ → GL(VE), and respectively hαβ : Uαβ → GL(VF ).

Then the collections

gαβ ⊕ hαβ : Uαβ → GL(VE ⊕ VF ), gαβ ⊗ hαβ : Uαβ → GL(VE ⊗ VF ),

(g†αβ)
−1 : Uαβ → GL(V ∗E ), Λrgαβ : Uαβ → GL(ΛrVE),

where † denotes the transpose of a linear map, satisfy the cocycle condition, and therefore
define vector bundles which we denote by E ⊕ F , E ⊗ F , E∗, and respectively ΛrE. In
particular, if r = rankKE, the bundle ΛrE has rank 1. It is called the determinant line
bundle of E, and it is denoted by detE. Given the adjunction isomorphism V ∗E ⊗ VF ∼=
Hom(VE , VF ), we set

Hom(E,F ) := E∗ ⊗ F.
We set

End(E) := Hom(E,E).

The reader can check easily that these vector bundles are independent of the choices of
transition maps used to characterize E and F (use Exercise 2.1.34). The bundle E∗ is
called the dual of the vector bundle E. The direct sum E ⊕ F is also called the Whitney
sum of vector bundles. All the functorial constructions on vector spaces discussed in the
previous section have a vector bundle correspondent. (Observe that a vector space can be
thought of as a vector bundle over a point.)

These above constructions are natural in the following sense. Let E′ and F ′ be vector
bundles over the same smooth manifold M ′. Any bundle maps S : E → E′ and T : F →
F ′, both covering the same diffeomorphism φ :M →M ′, induce bundle morphisms

S ⊕ T : E ⊕ F → E′ ⊕ T ′, S ⊗ T : E ⊗ F → E′ ⊗ F ′,
covering φ, a morphism

S† : (E′)∗ → E∗,

covering φ−1 etc.
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Exercise 2.3.1. Prove the assertion above. ⊓⊔

Example 2.3.2. Let E, F , E′ and F ′ be vector bundles over a smooth manifoldM . Con-
sider bundle isomorphisms S : E → E′ and T : F → F ′ covering the same diffeomorphism
of the base, φ : M → M . Then (S−1)† : E∗ → (E′)∗ is a bundle isomorphism covering φ,
so that we get an induced map (S−1)† ⊗ T : E∗ ⊗ F → (E′)∗ ⊗ F ′. Note that we have a
natural identification

C∞
(
Hom(E,F )

)
= C∞(E∗ ⊗ F ) ∼= Hom(E,F ),

where we recall that Hom(E,F ) denotes the space of smooth bundle morphisms E → F .⊓⊔

Definition 2.3.3. Let E →M be a K-vector bundle over M . A metric on E is a section
h of E∗⊗K E∗ (E = E if K = R) such that, for any m ∈M , h(m) defines a metric on Em
(Euclidean if K = R or Hermitian if K = C). ⊓⊔

2.3.2 Tensor fields

We now specialize the previous considerations to the special situation when E is the
tangent bundle of M , E ∼= TM . The cotangent bundle is then

T ∗M := (TM)∗.

We define the tensor bundles of M

Trs(M) : =Trs(TM) = (TM)⊗r ⊗ (T ∗M)⊗s.

Definition 2.3.4. (a) A tensor field of type (r, s) over the open set U ⊂ M is a section
of Trs(M) over U .

(b) A degree r differential form (r-form for brevity) is a section of Λr(T ∗M). The space
of (smooth) r-forms over M is denoted by Ωr(M). We set

Ω•(M) :=
⊕

r≥0
Ωr(M).

(c) A Riemannian metric on a manifold M is a metric on the tangent bundle. More
precisely, it is a symmetric (0, 2)-tensor g, such that for every x ∈M , the bilinear map

gx : TxM × TxM → R

defines a Euclidean metric on TxM . ⊓⊔

If we view the tangent bundle as a smooth family of vector spaces, then a tensor field
can be viewed as a smooth selection of a tensor in each of the tangent spaces. In particular,
a Riemann metric defines a smoothly varying procedure of measuring lengths of vectors
in tangent spaces.
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Example 2.3.5. It is often very useful to have a local description of these objects.
If (x1, . . . , xn) are local coordinates on an open set U ⊂ M , then the vector fields
( ∂
∂x1

, . . . , ∂
∂xn ) trivialize TM |U , i.e., they define a framing of the restriction of TM to

U . We can form a dual framing of T ∗M |U , using the 1-forms dxi, i = 1, . . . , n. They
satisfy the duality conditions

〈dxi, ∂xj 〉 = δij , ∀i, j.
A basis in Trs(TxM) is given by

{
∂xi1 ⊗ ... ⊗ ∂xir ⊗ dxj1 ⊗ ... ⊗ dxjs ; 1 ≤ i1, ... , ir ≤ n, 1 ≤ j1, ... , js ≤ n

}
.

Hence, any tensor T ∈ Trs(M) has a local description

T = T i1...irj1...js
∂xi1 ⊗ ... ⊗ ∂xir ⊗ dxj1 ⊗ ... ⊗ dxjs .

In the above equality we have used Einstein’s convention. In particular, an r-form ω has
the local description

ω =
∑

1≤i1<···<ir≤n
ωi1...irdx

i1 ∧ · · · ∧ dxir , ωi1...ir = ω
(
∂xi1 , · · · , ∂xir

)
,

while a Riemann metric g has the local description

g =
∑

i,j

gijdx
i ⊗ dxj , gij = gji = g

(
∂xi , ∂xj

)
. ⊓⊔

Remark 2.3.6. (a) A covariant tensor field, i.e., a (0, s)-tensor field S, naturally defines
a C∞(M)-multilinear map

S :

s⊕

1

Vect (M)→ C∞(M),

(X1, ... ,Xs) 7→
(
p 7→ Sp

(
X1(p), . . . ,Xs(p)

)
∈ C∞(M).

Conversely, any such map uniquely defines a (0, s)-tensor field. In particular, an r-form η
can be identified with a skew-symmetric C∞(M)-multilinear map

η :
r⊕

1

Vect (M)→ C∞(M).

Notice that the wedge product in the exterior algebras induces an associative product in
Ω•(M) which we continue to denote by ∧.
(b) Let f ∈ C∞(M). Its Fréchet derivative Df : TM → TR ∼= R×R is naturally a 1-form.
Indeed, we get a smooth C∞(M)-linear map df : Vect (M)→ C∞(M) defined by

df(X)m := Df(X)f(m) ∈ Tf(m)R ∼= R.

In the sequel we will always regard the differential of a smooth function f as a 1-form and
to indicate this we will use the notation df (instead of the usual Df). ⊓⊔
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Any diffeomorphism f : M → N induces bundle isomorphisms Df : TM → TN and
(Df−1)† : T ∗M → T ∗N covering f . Thus, a diffeomorphism f induces a linear map

f∗ : T
r
s(M)→ Trs(N), (2.3.1)

called the push-forward map. In particular, the group of diffeomorphisms of M acts
naturally (and linearly) on the space of tensor fields on M .

Example 2.3.7. Suppose f : M → N is a diffeomorphism, and S is a (0, k)-tensor field
on M , which we regard as a C∞(M)-multilinear map

S : Vect (M)× · · · ×Vect (M)︸ ︷︷ ︸
k

→ C∞(M).

Then f∗S is a (0, k) tensor field on N . Let q ∈ N , and set p := f−1(q). Then, for any
Y1, . . . , Yk ∈ TqN , we have

(f∗S)q(Y1, . . . , Yk) = Sp
(
f−1∗ Y1, . . . , (f∗)

−1Yk
)

= Sp
(
(Dpf)

−1Y1, . . . , (Dpf)
−1Yk

)
. ⊓⊔.

For covariant tensor fields a more general result is true. More precisely, any smooth
map f :M → N defines a linear map

f∗ : T0
s(N)→ T0

s (M),

called the pullback by f . Explicitly, if S is such a tensor defined by a C∞(M)-multilinear
map

S : (Vect (N))s → C∞(N),

then f∗S is the covariant tensor field defined by

(f∗S)p(X1(p), . . . ,Xs(p)) := Sf(p)
(
Dpf(X1), . . . ,Dpf(Xs)

)
,

∀X1, . . . ,Xs ∈ Vect (M), p ∈M . Note that when f is a diffeomorphism we have

f∗ = (f−1∗ )†,

where f∗ is the push-forward map defined in (2.3.1).

Example 2.3.8. Consider the map

F∗ : (0,∞)× (0, 2π)→ R2, (r, θ) 7→ (x = r cos θ, y = r sin θ).

The map F defines the usual polar coordinates. It is a diffeomorphism onto the open
subset

U := R2 \ {(x, 0); x ≥ 0}.
For simplicity, we will write ∂r, ∂x instead of ∂

∂r ,
∂
∂x etc. We have

F ∗dx = d(r cos θ) = cos θdr − rsinθdθ, F ∗dy = d(r sin θ) = sinθdr + r cos θdθ,
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F ∗(dx ∧ dy) = d(r cos θ) ∧ d(rsinθ) = (cos θdr − rsinθdθ) ∧ (sinθdr + r cos θdθ)

= r(cos2 θ + sin2θ)dr ∧ dθ = rdr ∧ dθ.
To compute F∗∂r and F∗∂θ we use the chain rule which implies

F∗∂r =
∂x

∂r
∂x +

∂y

∂r
∂y = cos θ∂x + sin θ∂y =

1

r
(x∂x + y∂y)

=
1

(x2 + y2)1/2
(x∂x + y∂y).

The Euclidean metric is described over U by the symmetric (0, 2)–tensor g = dx2 + dy2.
The pullback of g by F is the symmetric (0, 2)–tensor

F ∗(dx2 + dy2) =
(
d(r cos θ)

)2
+
(
d(r sin θ)

)2

= (cos θdr − rsinθdθ)2 + (sinθdr + r cos θdθ)2 = dr2 + r2dθ2.

To compute F∗dr we need to express r as a function of x and y, r = (x2+y2)1/2, and then
we have

F∗dr = (F−1)∗dr = d(x2 + y2)1/2 = x(x2 + y2)−1/2dx+ y(x2 + y2)−1/2dy. ⊓⊔

All the operations discussed in the previous section have natural extensions to ten-
sor fields. There exists a tensor multiplication, a Riemann metric defines a duality
L : Vect (M)→ Ω1(M) etc. In particular, there exists a contraction operator

tr : Tr+1
s+1(M)→ Trs(M)

defined by

tr (X0 ⊗ · · · ⊗Xr)⊗ (ω0 ⊗ · · · ⊗ ωs) = ω0(X0)(X1 ⊗ · · ·Xr ⊗ ω1 ⊗ · · · ⊗ ωs),

∀Xi ∈ Vect (M), ∀ωj ∈ Ω1(M). In local coordinates the contraction has the form

{
tr
(
T i0...irj0...js

)}
= {T ii1...irij1...js

}.

Let us observe that a Riemann metric g on a manifold M induces metrics in all the
associated tensor bundles Trs(M). If we choose local coordinates (xi) on an open set U
then, as explained above, the metric g can be described as

g =
∑

i,j

gijdx
i ⊗ dxj ,

while a tensor field T of type (r, s) can be described as

T = T i1...irj1...js
∂xi1 ⊗ ... ⊗ ∂xir ⊗ dxj1 ⊗ ... ⊗ dxjs .

If we denote by (gij) the inverse of the matrix (gij), then, for every point p ∈ U , the length
of T (p) ∈ Trs(M)p is the number |T (p)|g defined by

|T (p)|g = gi1k1 . . . girkrg
j1ℓ1 · · · gjsℓsT i1...irj1...js

T k1...krℓ1...ℓs
,
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where in the above equalities we have used Einstein’s convention.

The exterior product defines an exterior product on the space of smooth differential
forms

∧ : Ω•(M)×Ω•(M)→ Ω•(M).

The space Ω•(M) is then an associative algebra with respect to the operations + and ∧.

Proposition 2.3.9. Let f : M → N be a smooth map. The pullback by f defines a
morphism of associative algebras f∗ : Ω•(N)→ Ω•(M). ⊓⊔

Exercise 2.3.10. Prove the above proposition. ⊓⊔

2.3.3 Fiber bundles

We consider useful at this point to bring up the notion of fiber bundle. There are several
reasons to do this.

On one hand, they arise naturally in geometry, and they impose themselves as worth
studying. On the other hand, they provide a very elegant and concise language to describe
many phenomena in geometry.

We have already met examples of fiber bundles when we discussed vector bundles.
These were “smooth families of vector spaces”. A fiber bundle wants to be a smooth
family of copies of the same manifold. This is a very loose description, but it offers a first
glimpse at the notion about to be discussed.

The model situation is that of direct product X = F ×B, where B and F are smooth
manifolds. It is convenient to regard this as a family of manifolds (Fb)b∈B . The manifold
B is called the base, F is called the standard (model) fiber, and X is called the total
space. This is an example of trivial fiber bundle.

In general, a fiber bundle is obtained by gluing a bunch of trivial ones according to
a prescribed rule. The gluing may encode a symmetry of the fiber, and we would like to
spend some time explaining what do we mean by symmetry.

Definition 2.3.11. (a) Let M be a smooth manifold, and G a Lie group. We say the
group G acts on M from the left (respectively right), if there exists a smooth map

Φ : G×M →M, (g,m) 7→ Tgm,

such that T1 ≡ 1M and

Tg(Thm) = Tghm (respectively Tg(Thm) = Thgm) ∀g, h ∈ G, m ∈M.

In particular, we deduce that ∀g ∈ G the map Tg is a diffeomorphism of M . For any
m ∈M the set

G ·m = {Tgm; g ∈ G}

is called the orbit of the action through m.

(b) Let G act on M . The action is called free if ∀g ∈ G \ {1}, and ∀m ∈ M Tgm 6= m.
The action is called effective if, ∀g ∈ G \ {1}, Tg 6= 1M . ⊓⊔



2.3. TENSOR FIELDS 75

It is useful to think of a Lie group action on a manifold as encoding a symmetry of
that manifold.

Example 2.3.12. Consider the unit 3-dimensional sphere

S2 =
{
(x, y, z) ∈ R3; x2 + y2 + z2 = 1 }.

Then the counterclockwise rotations about the z-axis define a smooth left action of S1 on
S2. More formally, if we use cylindrical coordinates (r, θ, z),

x = r cos θ, y = r sin θ, z = 0,

then for every ϕ ∈ R mod 2π ∼= S1 we define Tϕ : S2 → S2 by

Tϕ(r, θ, z) = (r, (θ + ϕ) mod 2π, z).

The resulting map T : S1 × S2 → S2, (ϕ, p) 7→ Tϕ(p) defines a left action of S1 on S2

encoding the rotational symmetry of S2 about the z-axis. ⊓⊔

Example 2.3.13. Let G be a Lie group. A linear representation of G on a vector space
V is a left action of G on V such that each Tg is a linear map. One says V is a G-module.
For example, the tautological linear action of SO(n) on Rn defines a linear representation
of SO(n). ⊓⊔

Example 2.3.14. Let G be a Lie group. For any g ∈ G denote by Lg (resp. Rg) the left
(resp right) translation by g. In this way we get the tautological left (resp. right) action
of G on itself. ⊓⊔

Definition 2.3.15. A smooth fiber bundle is an object composed of the following:

(a) a smooth manifold E called the total space;

(b) a smooth manifold F called the standard fiber ;

(c) a smooth manifold B called the base;

(d) a surjective submersion π : E → B called the natural projection;

(e) a collection of local trivializations, i.e., an open cover (Uα) of the base B, and dif-
feomorphisms Ψα : F × Uα → π−1(Uα) such that

π ◦Ψα(f, b) = b, ∀(f, b) ∈ F × Uα,

i.e., the diagram below is commutative.

F × Uα π−1(Uα)

Uα

w

Ψα

'

'

')

)

[

[

[̂

^π
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We can form the transition (gluing) maps Ψαβ : F × Uαβ → F × Uαβ, where Uαβ =
Uα ∩ Uβ , defined by Ψαβ = ψ−1α ◦ ψβ. According to (e), these maps can be written
as

ψαβ(f, b) = (Tαβ(b)f, b),

where Tαβ(b) is a diffeomorphism of F depending smoothly upon b ∈ Uαβ.

We will denote this fiber bundle by (E, π, F,B).
If G is a Lie group, then the bundle (E, π, F,B) is called a G-fiber bundle if it satisfies

the following additional conditions.

(f) There exists an effective left action of the Lie group G on F ,

G× F ∋ (g, x) 7→ g · x = Tgx ∈ F.

The group G is called the symmetry group of the bundle.

(g) There exist smooth maps gαβ : Uαβ → G satisfying the cocycle condition

gαα = 1 ∈ G, gγα = gγβ · gβα, ∀α, β, γ,

and such that

Tαβ(b) = Tgαβ(b).

We will denote a G-fiber bundle by (E, π, F,B,G). ⊓⊔

The choice of an open cover (Uα) in the above definition is a source of arbitrariness
since there is no natural prescription on how to perform this choice. We need to describe
when two such choices are equivalent.

Two open covers (Uα) and (Vi), together with the collections of local trivializations

Φα : F × Uα → π−1(Uα) and Ψi : F × Vi → π−1(Vi)

are said to be equivalent if, for all α, i, there exists a smooth map

Tαi : Uα ∩ Vi → G,

such that, for any x ∈ Uα ∩ Vi, and any f ∈ F , we have

Φ−1α Ψi(f, x) = (Tαi(x)f, x).

A G-bundle structure is defined by an equivalence class of trivializing covers.
As in the case of vector bundles, a collection of gluing data determines a G-fiber bundle.

Indeed, if we are given a cover (Uα)α∈A of the base B, and a collection of transition maps
gαβ : Uα ∩ Uβ → G satisfying the cocycle condition, then we can get a bundle by gluing
the trivial pieces Uα × F along the overlaps.

More precisely, if b ∈ Uα ∩ Uβ, then the element (f, b) ∈ F × Uα is identified with the
element (gβα(b) · f, b) ∈ F × Uβ.
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Definition 2.3.16. Let E
π→ B be a G-fiber bundle. A G-automorphism of this bundle is

a diffeomorphism T : E → E such that π ◦T = π, i.e., T maps fibers to fibers, and for any
trivializing cover (Uα) (as in Definition 2.3.15) there exists a smooth map gα : Uα → G
such that

Ψ−1α TΨα(f, b) = ( gα(b)f, b ), ∀b, f. ⊓⊔
Definition 2.3.17. (a) A fiber bundle is an object defined by conditions (a)-(d) and (f) in
the above definition. (One can think the structure group is the group of diffeomorphisms
of the standard fiber).
(b) A section of a fiber bundle E

π→ B is a smooth map s : B → E such that π ◦ s = 1B ,
i.e., s(b) ∈ π−1(b), ∀ b ∈ B. ⊓⊔

Example 2.3.18. A rank r vector bundle (over K = R,C) is a GL(r,K)-fiber bundle with
standard fiber Kr, and where the group GL(r,K) acts on Kr in the natural way. ⊓⊔

Example 2.3.19. Let G be a Lie group. A principal G-bundle is a G-fiber bundle with
fiber G, where G acts on itself by left translations. Equivalently, a principal G-bundle
over a smooth manifold M can be described by an open cover U of M and a G-cocycle,
i.e., a collection of smooth maps

gUV : U ∩ V → G U,V ∈ U,

such that ∀x ∈ U ∩ V ∩W (U, V,W ∈ U)

gUV (x)gVW (x)gWU (x) = 1 ∈ G. ⊓⊔
Exercise 2.3.20. (Alternative definition of a principal bundle). Let P be a fiber
bundle with fiber a Lie group G. Prove the following are equivalent.
(a) P is a principal G-bundle.
(b) There exists a free, right action of G on G,

P ×G→ P, (p, g) 7→ p · g,
such that its orbits coincide with the fibers of the bundle P , and there exists a trivializing
cover {

Ψα : G× Uα → π−1(Uα)
}
,

such that
Ψα(hg, u) = Ψα(h, u) · g, ∀g, h ∈ G, u ∈ Uα. ⊓⊔

Exercise 2.3.21. (The frame bundle of a manifold). LetMn be a smooth manifold.
Denote by F (M) the set of frames on M , i.e.,

F (M) = {(m;X1, ... ,Xn); m ∈M, Xi ∈ TmM and span(X1, ... ,Xn) = TmM} .
(a) Prove that F (M) can be naturally organized as a smooth manifold such that the
natural projection p : F (M)→M , (m;X1, ... ,Xn) 7→ m is a submersion.
(b) Show F (M) is a principal GL(n,R)-bundle. The bundle F (M) is called the frame
bundle of the manifold M .
Hint: A matrix T = (T ij ) ∈ GL(n,K) acts on the right on F (M) by

(m;X1, ...,Xn) 7→ (m; (T−1)i1Xi, ..., (T
−1)inXi). ⊓⊔
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Example 2.3.22. (Associated fiber bundles). Let π : P → G be a principal G-
bundle. Consider a trivializing cover (Uα)α∈A, and denote by gαβ : Uα ∩ Uβ → G a
collection of gluing maps determined by this cover. Assume G acts (on the left) on a
smooth manifold F

τ : G× F → F, (g, f) 7→ τ(g)f.

The collection ταβ = τ(gαβ) : Uαβ → Diffeo (F ) satisfies the cocycle condition and can be
used (exactly as we did for vector bundles) to define a G-fiber bundle with fiber F . This
new bundle is independent of the various choices made (cover (Uα) and transition maps
gαβ). (Prove this!) It is called the bundle associated to P via τ and is denoted by P ×τ F .

⊓⊔

Exercise 2.3.23. Prove that the tangent bundle of a manifold Mn is associated to F (M)
via the natural action of GL(n,R) on Rn. ⊓⊔

Exercise 2.3.24. (The Hopf bundle) If we identify the unit odd dimensional sphere
S2n−1 with the submanifold

{
(z1, ... , zn) ∈ Cn; |z0|2 + · · ·+ |zn|2 = 1

}

then we detect an S1-action on S2n−1 given by

eiθ · (z1, ..., zn) = (eiθz1, ..., e
iθzn).

The space of orbits of this action is naturally identified with the complex projective space
CPn−1.
(a) Prove that p : S2n−1 → CPn−1 is a principal S1 bundle called Hopf bundle. (p is the
obvious projection). Describe one collection of transition maps.
(b) Prove that the tautological line bundle over CPn−1 is associated to the Hopf bundle
via the natural action of S1 on C1. ⊓⊔

Exercise 2.3.25. Let E be a vector bundle over the smooth manifold M . Any metric h
on E (euclidian or Hermitian) defines a submanifold S(E) ⊂ E by

S(E) = {v ∈ E; |v|h = 1}.

Prove that S(E) is a fibration overM with standard fiber a sphere of dimension rankE−1.
The bundle S(E) is usually called the sphere bundle of E. ⊓⊔



Chapter 3

Calculus on Manifolds

This chapter describes the “kitchen” of differential geometry. We will discuss how one
can operate with the various objects we have introduced so far. In particular, we will
introduce several derivations of the various algebras of tensor fields, and we will also
present the inverse operation of integration.

3.1 The Lie derivative

3.1.1 Flows on manifolds

The notion of flow should be familiar to anyone who has had a course in ordinary differ-
ential equations. In this section we only want to describe some classical analytic facts in
a geometric light. We strongly recommend [4] for more details, and excellent examples.

A neighborhood N of {0} ×M in R ×M is called balanced if, ∀m ∈ M , there exists
r ∈ (0,∞] such that

(R × {m} ) ∩N = (−r, r)× {m}.
Note that any continuous function f :M → (0,∞) defines a balanced open

Nf :=
{
(t,m) ∈ R×M ; |t| < f(m)

}
.

Definition 3.1.1. A local flow is a smooth map Φ : N → M , (t,m) 7→ Φt(m), where N

is a balanced neighborhood of {0} ×M in R×M , such that

(a) Φ0(m) = m, ∀m ∈M .

(b) Φt(Φs(m)) = Φt+s(m) for all s, t ∈ R, m ∈M such that

(s,m), (s+ t,m), (t,Φs(m)) ∈ N.

When N = R×M , Φ is called a flow. ⊓⊔

The conditions (a) and (b) above show that a flow is nothing but a left action of the
additive (Lie) group (R,+) on M .

79
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Example 3.1.2. Let A be a n× n real matrix. It generates a flow ΦtA on Rn by

ΦtAx = etAx =

( ∞∑

k=0

tk

k!
Ak

)
x. ⊓⊔

Definition 3.1.3. Let Φ : N → M be a local flow on M . The infinitesimal generator of
Φ is the vector field X on M defined by

X(p) = XΦ(p) :=
d

dt
|t=0 Φ

t(p), ∀p ∈M,

i.e., X(p) is the tangent vector to the smooth path t 7→ Φt(p) at t = 0. This path is called
the flow line through p. ⊓⊔

Exercise 3.1.4. Show that XΦ is a smooth vector field. ⊓⊔

Example 3.1.5. Consider the flow etA on Rn generated by a n×nmatrix A. Its generator
is the vector field XA on Rn defined by

XA(u) =
d

dt
|t=0 e

tAu = Au. ⊓⊔

Proposition 3.1.6. Let M be a smooth n-dimensional manifold. The map

X : {Local flows onM} → Vect (M), Φ 7→ XΦ,

is a surjection. Moreover, if Φi : Ni →M (i=1,2) are two local flows such that XΦ1 = XΦ2 ,
then Φ1 = Φ2 on N1 ∩N2.

Proof. Surjectivity. Let X be a vector field on M . An integral curve for X is a smooth
curve γ : (a, b)→M such that

γ̇(t) = X(γ(t)).

In local coordinates (xi) over on open subset U ⊂M this condition can be rewritten as

ẋi(t) = Xi
(
x1(t), ..., xn(t)

)
, ∀i = 1, . . . , n, (3.1.1)

where γ(t) = (x1(t), ..., xn(t)), and X = Xi ∂
∂xi

. The above equality is a system of ordinary
differential equations. Classical existence results (see e.g. [4, 44]) show that, for any
precompact open subset K ⊂ U , there exists ε > 0 such that, for all x ∈ K, there exists
a unique integral curve for X, γx : (−ε, ε)→M satisfying

γx(0) = x. (3.1.2)

Moreover, as a consequence of the smooth dependence upon initial data we deduce that
the map

ΦK : NK = (−ε, ε) ×K →M, (x, t) 7→ γx(t),

is smooth.
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Now we can cover M by open, precompact, local coordinate neighborhoods (Kα)α∈A,
and as above, we get smooth maps Φα : Nα = (−εα, εα) × Kα → M solving the initial
value problem (3.1.1-2). Moreover, by uniqueness, we deduce

Φα = Φα on Nα ∩Nβ .

Define

N :=
⋃

α∈A
Nα,

and set Φ : N→M , Φ = Φα on Nα.

The uniqueness of solutions of initial value problems for ordinary differential equations
implies that Φ satisfies all the conditions in the definition of a local flow. Tautologically,
X is the infinitesimal generator of Φ. The second part of the proposition follows from the
uniqueness in initial value problems. ⊓⊔

The family of local flows on M with the same infinitesimal generator X ∈ Vect(M) is
naturally ordered according to their domains,

(Φ1 : N1 →M) ≺ (Φ2 : N2 →M)

if and only if N1 ⊂ N2. This family has a unique maximal element which is called the
local flow generated by X, and it is denoted by ΦX .

Exercise 3.1.7. Consider the unit sphere

S2 =
{
(x, y, z) ∈ R3; x2 + y2 + z2 = 1

}
.

For every point p ∈ S2 we denote by X(p) ∈ TpR3, the orthogonal projection of the vector
k = (0, 0, 1) onto TpS

2.

(a) Prove that p 7→ X(p) is a smooth vector field on S2, and then describe it in cylindrical
coordinates (z, θ), where

x = r cos θ, y = r sin θ, r = (x2 + y2)1/2.

(b) Describe explicitly the flow generated by X. ⊓⊔

3.1.2 The Lie derivative

Let X be a vector field on the smooth n-dimensional manifold M and denote by Φ =
ΦX the local flow it generates. For simplicity, we assume Φ is actually a flow so its
domain is R×M . The local flow situation is conceptually identical, but notationally more
complicated.

For each t ∈ R, the map Φt is a diffeomorphism of M and so it induces a push-forward
map on the space of tensor fields. If S is a tensor field on M we define its Lie derivative
along the direction given by X as

LXSm := − lim
t→0

1

t

(
(Φt∗S)m − Sm

)
∀m ∈M. (3.1.3)
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Intuitively, LXS measures how fast is the flow Φ changing1 the tensor S.
If the limit in (3.1.3) exists, then one sees that LXS is a tensor of the same type as S.

To show that the limit exists, we will provide more explicit descriptions of this operation.

Lemma 3.1.8. For any X ∈ Vect (M) and f ∈ C∞(M) we have

Xf := LXf = 〈df,X〉 = df(X).

Above, 〈•, •〉 denotes the natural duality between T ∗M and TM ,

〈•, •〉 : C∞(T ∗M)× C∞(TM)→ C∞(M),

C∞(T ∗M)×C∞(TM) ∋ (α,X) 7→ α(X) ∈ C∞(M).

In particular, LX is a derivation of C∞(M).

Proof. Let Φt = ΦtX be the local flow generated by X. Assume for simplicity that it is
defined for all t. The map Φt acts on C∞(M) by the pullback of its inverse, i.e.

Φt∗ = (Φ−t)∗.

Hence, for point p ∈M we have

LXf(p) = lim
t→0

1

t
(f(p)− f(Φ−tp)) = − d

dt
|t=0 f(Φ

−tp) = 〈df,X〉p. ⊓⊔

Exercise 3.1.9. Prove that any derivation of the algebra C∞(M) is of the form LX for
some X ∈ Vect(M), i.e.

Der (C∞(M)) ∼= Vect (M). ⊓⊔

Lemma 3.1.10. Let X,Y ∈ Vect (M). Then the Lie derivative of Y along X is a new
vector field LXY which, viewed as a derivation of C∞(M), coincides with the commutator
of the two derivations of C∞(M) defined by X and Y i.e.

LXY f = [X,Y ]f, ∀ f ∈ C∞(M).

The vector field [X,Y ] = LXY is called the Lie bracket of X and Y . In particular the Lie
bracket induces a Lie algebra structure on Vect (M).

Proof. We will work in local coordinates (xi) near a point m ∈M so that

X = Xi∂xi and Y = Y j∂xj .

We first describe the commutator [X,Y ]. If f ∈ C∞(M), then

[X,Y ]f = (Xi∂xi)(Y
j ∂f

∂xj
)− (Y j∂xj )(X

i ∂f

∂xi
)

1Arnold refers to the Lie derivative LX as the “fisherman’s derivative”. Here is the intuition behind
this very suggestive terminology. We place an observer (fisherman) at a fixed point p ∈ M , and we let him
keep track of the the sizes of the tensor S carried by the flow at the point p. The Lie derivatives measures
the rate of change in these sizes.
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=

(
XiY j ∂2f

∂xi∂xj
+Xi ∂Y

j

∂xi
∂f

∂xj

)
−
(
XiY j ∂2f

∂xi∂xj
+ Y j ∂X

i

∂xj
∂f

∂xi

)
,

so that the commutator of the two derivations is the derivation defined by the vector field

[X,Y ] =

(
Xi∂Y

k

∂xi
− Y j ∂X

k

∂xj

)
∂xk . (3.1.4)

Note in particular that [∂xi , ∂xj ] = 0, i.e., the basic vectors ∂xi commute as derivations.
So far we have not proved the vector field in (3.1.4) is independent of coordinates. We

will achieve this by identifying it with the intrinsically defined vector field LXY .
Set γ(t) = Φtm so that we have a parametrization γ(t) = (xi(t)) with ẋi = Xi. Then

Φ−tm = γ(−t) = γ(0)− γ̇(0)t+O(t2) =
(
xi0 − tXi +O(t2)

)
,

and

Y j
γ(−t) = Y j

m − tXi ∂Y
j

∂xi
+O(t2). (3.1.5)

Note that Φ−t∗ : Tγ(0)M → Tγ(−t)M is the linearization of the map

(xi) 7→
(
xi − tXi +O(t2)

)
,

so it has a matrix representation

Φ−t∗ = 1− t
(
∂Xi

∂xj

)

i,j

+O(t2). (3.1.6)

In particular, using the geometric series

(1−A)−1 = 1+A+A2 + · · · ,

where A is a matrix of operator norm strictly less than 1, we deduce that the differential

Φt∗ = (Φ−t∗ )−1 : Tγ(−t)M → Tγ(0)M,

has the matrix form

Φt∗ = 1+ t

(
∂Xi

∂xj

)

i,j

+O(t2). (3.1.7)

Using (3.1.7) in (3.1.5) we deduce

Y k
m −

(
Φt∗YΦ−tm

)k
= t

(
Xi∂Y

k

∂xi
− Y j ∂X

k

∂xj

)
+O(t2).

This concludes the proof of the lemma. ⊓⊔

Lemma 3.1.11. For any differential form ω ∈ Ω1(M), and any vector fields X,Y ∈
V ect(M) we have

(LXω)(Y ) = LX (ω(Y ))− ω([X,Y ]), (3.1.8)

where X ·ω(Y ) denotes the (Lie) derivative of the function ω(Y ) along the vector field X.
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Proof. Denote by Φt the local flow generated by X. We have Φt∗ω = (Φ−t)∗ω, i.e., for any
p ∈M , and any Y ∈ Vect (M), we have

(Φt∗ω)p(Yp) = ωΦ−tp

(
Φ−t∗ Yp

)
.

Fix a point p ∈M , and choose local coordinates (xi) near p. Then

ω =
∑

i

ωidxi, X =
∑

i

Xi∂xi , Y =
∑

i

Y i∂xi .

Denote by γ(t) the path t 7→ Φt(p). We set ωi(t) = ωi(γ(t)), X
i
0 = Xi(p), and Y i

0 = Y i(p).
Using (3.1.6) we deduce

(Φt∗ω)p(Yp) =
∑

i

ωi(−t) ·
(
Y i
0 − t

∑

j

∂Xi

∂xj
Y j
0 +O(t2)

)
.

Hence

−(LXω)Y =
d

dt
|t=0(Φ

t
∗ω)p(Yp) = −

∑

i

ω̇i(0)Y
i
0 −

∑

i,j

ωi(0)
∂Xi

∂xj
Y j
0 .

One the other hand, we have

X · ω(Y ) =
d

dt
|t=0

∑

i

ωi(t)Y
i(t) =

∑

i

ω̇i(0)Y
i
0 +

∑

i,j

ωi(0)X
j
0

∂Y i

∂xj
.

We deduce that

X · ω(Y )− (LXω)Y =
∑

i,j

ωi(0)
(
Xj

0

∂Y i

∂xj
− ∂Xi

∂xj
Y j
0

)
= ωp([X,Y ]p). ⊓⊔

Observe that if S, T are two tensor fields on M such that both LXS and LXT exist,
then using (3.1.3) we deduce that LX(S ⊗ T ) exists, and

LX(S ⊗ T ) = LXS ⊗ T + S ⊗ LXT. (3.1.9)

Since any tensor field is locally a linear combination of tensor monomials of the form

X1 ⊗ · · · ⊗Xr ⊗ ω1 ⊗ · · · ⊗ ωs, Xi ∈ Vect (M), ωj ∈ Ω1(M),

we deduce that the Lie derivative LXS exists for every X ∈ Vect (M), and any smooth
tensor field S. We can now completely describe the Lie derivative on the algebra of tensor
fields.

Proposition 3.1.12. Let X be a vector field on the smooth manifold M . Then the Lie
derivative LX is the unique derivation of T∗∗(M) with the following properties.
(a) LXf = 〈df,X〉 = Xf , ∀f ∈ C∞(M).
(b) LXY = [X,Y ], ∀X,Y ∈ Vect (M).
(c) LX commutes with the contraction tr : Tr+1

s+1(M)→ Trs(M).
Moreover, LX is a natural operation, i.e., for any diffeomorphism φ :M → N we have

φ∗ ◦ LX = Lφ∗X ◦ φ∗, ∀X ∈ Vect (M), i.e., φ∗(LX) = Lφ∗X .
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Proof. The fact that LX is a derivation follows from (3.1.9). Properties (a) and (b) were
proved above. As for part (c), in its simplest form, when T = Y ⊗ω, where Y ∈ Vect (M),
and ω ∈ Ω1(M), the equality

LX trT = trLXT

is equivalent to

LX (ω(Y )) = (LXω)(Y ) + ω(LX(Y ), (3.1.10)

which is precisely (3.1.8).

Since LX is a derivation of the algebra of tensor fields, its restriction to C∞(M) ⊕
Vect (M) ⊕ Ω1(M) uniquely determines the action on the entire algebra of tensor fields
which is generated by the above subspace. The reader can check easily that the general
case of property (c) follow from this observation coupled with the product rule (3.1.9).

The naturality of LX is another way of phrasing the coordinate independence of this
operation. We leave the reader to fill in the routine details. ⊓⊔

Corollary 3.1.13. For any X,Y ∈ Vect (M) we have

[LX , LY ] = L[X,Y ],

as derivations of the algebra of tensor fields on M . In particular, this says that Vect (M)
as a space of derivations of T∗∗(M) is a Lie subalgebra of the Lie algebra of derivations.

Proof. The commutator [LX , LY ] is a derivation (as a commutator of derivations). By
Lemma 3.1.10, [LX , LY ] = L[X,Y ] on C

∞(M). Also, a simple computation shows that

[LX , LY ]Z = L[X,Y ]Z, ∀Z ∈ Vect (M),

so that [LX , LY ] = L[X,Y ] on Vect (M). Finally, since the contraction commutes with both
LX and LY it obviously commutes with LXLY − LY LX . The corollary is proved. ⊓⊔

Exercise 3.1.14. Prove that the map

D : Vect (M)⊕ End (TM)→ Der(T∗∗(M))

given by D(X,S) = LX + S is well defined and is a linear isomorphism. Moreover,

[D(X1, S1),D(X2, S2)] = D([X1,X2], [S1, S2]). ⊓⊔

The Lie derivative LX is a derivation of T∗∗ with the remarkable property

LX(Ω
∗(M)) ⊂ Ω∗(M).

The wedge product makes Ω∗(M) a s-algebra, and it is natural to ask whether LX is an
s-derivation with respect to this product.

Proposition 3.1.15. The Lie derivative along a vector field X is an even s-derivation of
Ω∗(M), i.e.

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη), ∀ω, η ∈ Ω∗(M).
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Proof. As in Subsection 2.2.2, denote byA the anti-symmetrization operator A : (T ∗M)⊗k →
Ωk(M). The statement in the proposition follows immediately from the straightforward
observation that the Lie derivative commutes with this operator (which is a projector).
We leave the reader to fill in the details. ⊓⊔

Exercise 3.1.16. Let M be a smooth manifold, and suppose that Φ,Ψ : R ×M → M
are two smooth flows on M with infinitesimal generators X and respectively Y . We say
that the two flows commute if

Φt ◦Ψs = Ψs ◦Ψt, ∀s, t ∈ R.

Prove that if {
p ∈M ; X(p) = 0

}
=
{
p ∈M ; Y (p) = 0

}
.

the two flows commute if and only if [X,Y ] = 0. ⊓⊔

3.1.3 Examples

Example 3.1.17. Let ω = ωidx
i be a 1-form on Rn. If X = Xj∂xj is a vector field on

Rn, then LXω = (LXω)kdx
k is defined by

(LXω)k = (LXω)(∂xk) = Xω(∂xk)− ω(LX∂xk) = X · ωk + ω

(
∂Xi

∂xk
∂xi

)
.

Hence

LXω =

(
Xj ∂ωk

∂xj
+ ωj

∂Xj

∂xk

)
dxk.

In particular, if X = ∂xi =
∑

j δ
ij∂xj , then

LXω = L∂xiω =

n∑

k=1

∂ωk
∂xi

dxk.

If X is the radial vector field X =
∑

i x
i∂xi , then

LXω =
∑

k

(X · ωk + ωk)dx
k. ⊓⊔

Example 3.1.18. Consider a smooth vector field X = F∂x+G∂y+H∂z on R3. We want
to compute LXdv, where dv is the volume form on R3, dv = dx∧ dy ∧ dz. Since LX is an
even s-derivation of Ω∗(M), we deduce

LX(dx ∧ dy ∧ dz) = (LXdx) ∧ dy ∧ dz + dx ∧ (LXdy) ∧ dz + dx ∧ dy ∧ (LXdz).

Using the computation in the previous example we get

LX(dx) = dF :=
∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
dz, LX(dy) = dG, LX(dz) = dH
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so that

LX(dv) =

(
∂F

∂x
+
∂G

∂y
+
∂H

∂z

)
dv = (divX)dv.

In particular, we deduce that if divX = 0, the local flow generated by X preserves the
form dv. We will get a better understanding of this statement once we learn integration
on manifolds, later in this chapter. ⊓⊔

Example 3.1.19. (The exponential map of a Lie group). Consider a Lie group
G. Any element g ∈ G defines two diffeomorphisms of G: the left (Lg), and the right
translation (Rg) on G,

Lg(h) = g · hy, Rg(h) = h · g, ∀h ∈ G.
A tensor field T on G is called left (respectively right) invariant if for any g ∈ G (Lg)∗T =
T (respectively (Rg)∗T = T ). The set of left invariant vector fields on G is denoted by
LG. The naturality of the Lie bracket implies

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ],

so that ∀X,Y ∈ LG, [X,Y ] ∈ LG. Hence LG is a Lie subalgebra of Vect (G). It is called
called the Lie algebra of the group G.

Fact 1. dimLG = dimG. Indeed, the left invariance implies that the restriction map
LG → T1G, X 7→ X1 is an isomorphism (Exercise). We will often find it convenient to
identify the Lie algebra of G with the tangent space at 1.

Fact 2. Any X ∈ LG defines a local flow ΦtX on G that is is defined for all t ∈ R. In
other wors, ΦtX is a flow. (Exercise) Set

exp(tX) : =ΦtX(1).

We thus get a map
exp : T1G ∼= LG → G, X 7→ exp(X)

called the exponential map of the group G.

Fact 3. ΦtX(g) = g · exp (tX), i.e.,

ΦtX = Rexp (tX).

Indeed, it suffices to check that

d

dt
|t=0 (g · exp (tX)) = Xg.

We can write (g · exp(tX)) = Lg exp(tX) so that

d

dt
|t=0 (Lg exp(tX)) = (Lg)∗

( d

dt
|t=0 exp(tX)

)
= (Lg)∗X = Xg, (left invariance).

The reason for the notation exp (tX) is that when G = GL(n,K), then the Lie algebra of G
is the Lie algebra gl(n,K) of all n×n matrices with the bracket given by the commutator
of two matrices, and for any X ∈ LG we have (Exercise)

exp (X) = eX =
∑

k≥0

1

k!
Xk. ⊓⊔
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Exercise 3.1.20. Prove the statements left as exercises in the example above. ⊓⊔

Exercise 3.1.21. Let G be a matrix Lie group, i.e., a Lie subgroup of some general linear
group GL(N,K). This means the tangent space T1G can be identified with a linear space
of matrices. Let X,Y ∈ T1G, and denote by exp(tX) and exp(tY ) the 1-parameter groups
with they generate, and set

g(s, t) = exp(sX) exp(tY ) exp(−sX) exp(−tY ).

(a) Show that

gs,t = 1 + [X,Y ]algst+O((s2 + t2)3/2) as s, t→ 0,

where the bracket [X,Y ]alg (temporarily) denotes the commutator of the two matrices X
and Y .

(b) Denote (temporarily) by [X,Y ]geom the Lie bracket of X and Y viewed as left invariant
vector fields on G. Show that at 1 ∈ G

[X,Y ]alg = [X,Y ]geom.

(c) Show that o(n) ⊂ gl(n,R) (defined in Section 1.2.2) is a Lie subalgebra with respect to
the commutator [ · , · ]. Similarly, show that u(n), su(n) ⊂ gl(n,C) are real Lie subalgebras
of gl(n,C), while su(n,C) is even a complex Lie subalgebra of gl(n,C).

(d) Prove that we have the following isomorphisms of real Lie algebras. LO(n)
∼= o(n),

LU(n)
∼= u(n), LSU(n)

∼= su(n) and LSL(n,C)
∼= sl(n,C). ⊓⊔

Remark 3.1.22. In general, in a non-commutative matrix Lie group G, the traditional
equality

exp(tX) exp(tY ) = exp(t(X + Y ))

no longer holds. Instead, one has the Campbell-Hausdorff formula

exp(tX) · exp(tY ) = exp
(
td1(X,Y ) + t2d2(X,Y ) + t3d3(X,Y ) + · · ·

)
,

where dk are homogeneous polynomials of degree k in X, and Y with respect to the
multiplication between X and Y given by their bracket. The dk’s are usually known as
Dynkin polynomials. For example,

d1(X,Y ) = X + Y, d2(X,Y ) =
1

2
[X,Y ],

d3(X,Y ) =
1

12
([X, [X,Y ]] + [Y, [Y,X]]) etc.

For more details we refer to [42, 85]. ⊓⊔
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3.2 Derivations of Ω•(M)

3.2.1 The exterior derivative

The super-algebra of exterior forms on a smooth manifold M has additional structure,
and in particular, its space of derivations has special features. This section is devoted
precisely to these new features.

The Lie derivative along a vector field X defines an even derivation in Ω•(M). The
vector field X also defines, via the contraction map, an odd derivation iX , called the
interior derivation along X, or the contraction by X,

iXω : =tr (X ⊗ ω), ∀ω ∈ Ωr(M).

More precisely, iXω is the (r − 1)-form determined by

(iXω)(X1, . . . ,Xr−1) = ω(X,X1, . . . ,Xr−1), ∀X1, . . . ,Xr−1 ∈ Vect (M).

The fact that iX is an odd s-derivation is equivalent to

iX(ω ∧ η) = (iXω) ∧ η + (−1)deg ωω ∧ (iXη), ∀ω, η ∈ Ω∗(M).

Often the contraction by X is denoted by X .

Exercise 3.2.1. Prove that the interior derivation along a vector field is a s-derivation.
⊓⊔

Proposition 3.2.2. (a) [iX , iY ]s = iXiY + iY iX = 0.

(b) The super-commutator of LX and iY as s-derivations of Ω∗(M) is given by

[LX , iY ]s = LXiY − iY LX = i[X,Y ]. ⊓⊔

The proof uses the fact that the Lie derivative commutes with the contraction operator,
and it is left to the reader as an exercise.

The above s-derivations by no means exhaust the space of s-derivations of Ω•(M). In
fact we have the following fundamental result.

Proposition 3.2.3. There exists an odd s-derivation d on the s-algebra of differential
forms Ω•( · ) uniquely characterized by the following conditions.

(a) For any smooth function f ∈ Ω0(M), df coincides with the differential of f .

(b) d2 = 0.

(c) d is natural, i.e., for any smooth function φ : N → M , and for any form ω on M ,
we have

dφ∗ω = φ∗dω(⇐⇒ [φ∗, d] = 0).

The derivation d is called the exterior derivative.
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Proof. Uniqueness. Let U be a local coordinate chart on Mn with local coordinates
(x1, ... , xn). Then, over U , any r-form ω can be described as

ω =
∑

1≤i1<···<ir≤n
ωi1...irdx

i1 ∧ ... ∧ dxir .

Since d is an s-derivation, and d(dxi) = 0, we deduce that, over U

dω =
∑

1≤i1<···<ir≤n
(dωi1...ir) ∧ (dxi1 ∧ · · · ∧ dxir)

=
∑

1≤i1<···<ir≤n

(
∂ωi1...ir
∂xi

dxi
)
∧ (dxi1 ∧ · · · ∧ dxir). (3.2.1)

Thus, the form dω is uniquely determined on any coordinate neighborhood, and this
completes the proof of the uniqueness of d.

Existence. Consider an r-form ω. For each coordinate neighborhood U we define dω |U as
in (3.2.1). To prove that this is a well defined operation we must show that, if U , V are
two coordinate neighborhoods, then

dω |U= dω |V on U ∩ V.

Denote by (x1, ... , xn) the local coordinates on U , and by (y1, ... , yn) the local coordinates
along V , so that on the overlap U ∩V we can describe the y’s as functions of the x’s. Over
U we have

ω =
∑

1≤i1<···<ir≤n
ωi1...irdx

i1 ∧ ... ∧ dxir

dω =
∑

1≤i1<···<ir≤n

(
∂ωi1...ir
∂xi

dxi
)
∧ (dxi1 ∧ ... ∧ dxir),

while over V we have

ω =
∑

1≤j1<···<jr≤n
ω̂j1...jrdy

j1 ∧ · · · ∧ dyjr

dω =
∑

1≤j1<···<jr≤n

(
∂ω̂j1...jr
∂yj

dyj
)
(dyj1 ∧ · · · ∧ dyjr).

The components ωi1...ir and ω̂j1...jr are skew-symmetric, i.e., ∀σ ∈ Sr

ωiσ(1)...iσ(r)
= ǫ(σ)ωi1...ir ,

and similarly for the ω̂′s. Since ω |U= ω |V over U ∩ V we deduce

ωi1...ir =
∂yj1

∂xi1
· · · ∂y

jr

∂xir
ω̂j1...jr .
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Hence

∂ωi1...ir
∂xi

=
r∑

k=1

(
∂yj1

∂xi1
· · · ∂2yjk

∂xi∂xik
· · · ∂y

jr

∂xir
ω̂j1...jr +

∂yj1

∂xi1
· · · ∂y

jr

∂xir
∂ω̂j1...jr
∂xi

)
,

where in the above equality we also sum over the indices j1, ..., jr according to Einstein’s
convention. We deduce

∑

i

∑

1≤i1<···<ir≤n

∂ωi1...ir
∂xi

dxi ∧ dxi1 ∧ ... ∧ dxir

=
∑

i

r∑

k=1

∂yj1

∂xi1
· · · ∂2yjk

∂xi∂xik
· · · ∂y

jr

∂xir
ω̂j1...jrdx

i ∧ dxi1 ∧ ... ∧ dxir

+
∑

i

r∑

k=1

∂yj1

∂xi1
· · · ∂y

jr

∂xir
∂ω̂j1...jr
∂xi

dxi ∧ dxi1 ∧ ... ∧ dxir . (3.2.2)

Notice that
∂2

∂xi∂xik
=

∂2

∂xik∂xi
,

while dxi ∧ dxik = −dxik ∧ dxi so that the first term in the right hand side of (3.2.2)
vanishes. Consequently on U ∩ V

∂ωi1...ir
∂xi

dxi ∧ dxi1 · · · ∧ dxir =
∂yj1

∂xi1
· · · ∂y

jr

∂xir
∂ω̂j1...jr
∂xi

∧ dxi ∧ dxi1 · · · dxir

=

(
∂ω̂j1...jr
∂xi

dxi
)
∧
(
∂yj1

∂xi1
dxi1

)
∧ · · · ∧

(
∂yjr

∂xir
dxir

)

= (dω̂j1...jr) ∧ dyj1 ∧ · · · ∧ dyjr =
∂ω̂j1...jr
∂yj

dyj ∧ dyj1 ∧ · · · ∧ dyjr .

This proves dω |U= dω |V over U ∩V . We have thus constructed a well defined linear map

d : Ω•(M)→ Ω•+1(M).

To prove that d is an odd s-derivation it suffices to work in local coordinates and show
that the (super)product rule on monomials.

Let θ = fdxi1 ∧ · · · ∧ dxir and ω = gdxj1 ∧ · · · ∧ dxjs . We set for simplicity

dxI := dxi1 ∧ · · · ∧ dxir and dxJ := dxj1 ∧ · · · ∧ dxjs .

Then
d(θ ∧ ω) = d(fgdxI ∧ dxJ) = d(fg) ∧ dxI ∧ dxJ

= (df · g + f · dg) ∧ dxI ∧ dxJ

= df ∧ dxI ∧ dxJ + (−1)r(f ∧ dxI) ∧ (dg ∧ dxJ )
= dθ ∧ ω + (−1)deg θθ ∧ dω.
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We now prove d2 = 0. We check this on monomials fdxI as above.

d2(fdxI) = d(df ∧ dxI) = (d2f) ∧ dxI .
Thus, it suffices to show d2f = 0 for all smooth functions f . We have

d2f =
∂f2

∂xi∂xj
dxi ∧ dxj .

The desired conclusion follows from the identities

∂f2

∂xi∂xj
=

∂f2

∂xj∂xi
and dxi ∧ dxj = −dxj ∧ dxi.

Finally, let φ be a smooth map N → M and ω =
∑

I ωIdx
I be an r-form on M . Here I

runs through all ordered multi-indices 1 ≤ i1 < · · · < ir ≤ dimM . We have

dN (φ
∗ω) =

∑

I

(
dN (φ

∗ωI) ∧ φ∗(dxI) + φ∗ωI ∧ d(φ∗dxI)
)
.

For functions, the usual chain rule gives dN (φ
∗ωI) = φ∗(dMωI). In terms of local coordi-

nates (xi) the map φ looks like a collection of n functions φi ∈ C∞(N) and we get

φ∗(dxI) = dφI = dNφ
i1 ∧ · · · ∧ dNφir .

In particular, dN (dφ
I) = 0. We put all the above together and we deduce

dN (φ
∗ω) = φ∗(dMω

I) ∧ dφI = φ∗(dMω
I) ∧ φ∗dxI = φ∗(dMω).

The proposition is proved. ⊓⊔

Proposition 3.2.4. The exterior derivative satisfies the following relations.
(a) [d, d]s = 2d2 = 0.
(b) (Cartan’s homotopy formula) [d, iX ]s = diX + iXd = LX , ∀X ∈ Vect (M).
(c) [d, LX ]s = dLX − LXd = 0, ∀X ∈ Vect (M).

An immediate consequence of the homotopy formula is the following invariant descrip-
tion of the exterior derivative:

(dω)(X0,X1, ... ,Xr) =

r∑

i=0

(−1)iXi(ω(X0, ..., X̂i, ...,Xr))

+
∑

0≤i<j≤r
(−1)i+jω([Xi,Xj ],X0, ..., X̂i, ..., X̂j , ...,Xr). (3.2.3)

Above, the hat indicates that the corresponding entry is missing, and [ , ]s denotes the
super-commutator in the s-algebra of real endomorphisms of Ω•(M).

Proof. To prove the homotopy formula set

D := [d, iX ]s = diX + iXd.

D is an even s-derivation of Ω∗(M). It is a local s-derivation, i.e., if ω ∈ Ω∗(M) vanishes
on some open set U then Dω vanishes on that open set as well. The reader can check easily
by direct computation that Dω = LXω, ∀ω ∈ Ω0(M)⊕Ω1(M). The homotopy formula is
now a consequence of the following technical result left to the reader as an exercise.
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Lemma 3.2.5. Let D, D′ be two local s-derivations of Ω•(M) which have the same parity,
i.e., they are either both even or both odd. If D = D′ on Ω0(M) ⊕ Ω1(M), then D = D′

on Ω•(M). ⊓⊔

Part (c) of the proposition is proved in a similar way. Equality (3.2.3) is a simple
consequence of the homotopy formula. We prove it in two special case r = 1 and r = 2.

The case r = 1. Let ω be an 1-form and let X,Y ∈ Vect (M). We deduce from the
homotopy formula

dω(X,Y ) = (iXdω)(Y ) = (LXω)(Y )− (dω(X))(Y ).

On the other hand, since LX commutes with the contraction operator, we deduce

Xω(Y ) = LX(ω(Y )) = (LXω)(Y ) + ω([X,Y ]).

Hence

dω(X,Y ) = Xω(Y )− ω([X,Y ])− (dω(X))(Y ) = Xω(Y )− Y ω(X) − ω([X,Y ]).

This proves (3.2.3) in the case r = 1.

The case r = 2. Consider a 2-form ω and three vector fields X, Y and Z. We deduce
from the homotopy formula

(dω)(X,Y,Z) = (iXdω)(Y,Z) = (LX − diX)ω(Y,Z). (3.2.4)

Since LX commutes with contractions we deduce

(LXω)(Y,X) = X(ω(Y,Z)) − ω([X,Y ], Z)− ω(Y, [X,Z]). (3.2.5)

We substitute (3.2.5) into (3.2.4) and we get

(dω)(X,Y,Z) = X(ω(Y,Z))− ω([X,Y ], Z)− ω(Y, [X,Z]) − d(iXω)(Y,X). (3.2.6)

We apply now (3.2.3) for r = 1 to the 1-form iXω. We get

d(iXω)(Y,X) = Y (iXω(Z))− Z(iXω(Y ))− (iXω)([Y,Z])

= Y ω(X,Z)− Zω(X,Y )− ω(X, [Y,Z]). (3.2.7)

If we use (3.2.7) in (3.2.6) we deduce

(dω)(X,Y,Z) = Xω(Y,Z)− Y ω(X,Z) + Zω(X,Y )

−ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z],X). (3.2.8)

The general case in (3.2.3) can be proved by induction. The proof of the proposition is
complete. ⊓⊔

Exercise 3.2.6. Prove Lemma 3.2.5. ⊓⊔

Exercise 3.2.7. Finish the proof of (3.2.3) in the general case. ⊓⊔
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3.2.2 Examples

Example 3.2.8. (The exterior derivative in R3).
(a) Let f ∈ C∞(R3). Then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

The differential df looks like the gradient of f .
(b) Let ω ∈ Ω1(R3), ω = Pdx+Qdy +Rdz. Then

dω = dP ∧ dx+ dQ ∧ dy + dR ∧ dz

=

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy +

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx,

so that dω looks very much like a curl.
(c) Let ω = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy ∈ Ω2(R3). Then

dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz.

This looks very much like a divergence. ⊓⊔

Example 3.2.9. Let G be a connected Lie group. In Example 3.1.11 we defined the Lie
algebra LG of G as the space of left invariant vector fields on G. Set

Ωrleft(G) = left invariant r-forms on G.

In particular, L∗G
∼= Ω1

left(G). If we identify L∗G
∼= T ∗1G, then we get a natural isomorphism

Ωrleft(G)
∼= ΛrL∗G.

The exterior derivative of a form in Ω∗left can be described only in terms of the algebraic
structure of LG.

Indeed, let ω ∈ L∗G = Ω1
left(G). For X,Y ∈ L∗G we have (see (3.2.3) )

dω(X,Y ) = Xω(Y )− Y ω(X) − ω([X,Y ]).

Since ω, X and Y are left invariant, the scalars ω(X) and ω(Y ) are constants. Thus, the
first two terms in the above equality vanish so that

dω(X,Y ) = −ω([X,Y ]).

More generally, if ω ∈ Ωrleft, then the same arguments applied to (3.2.3) imply that for all
X0, ...,Xr ∈ LG we have

dω(X0,X1, ...,Xr) =
∑

0≤i<j≤r
(−1)i+jω([Xi,Xj ],X1, ..., X̂i, ..., X̂j , ...,Xr). (3.2.9)

⊓⊔
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3.3 Connections on vector bundles

3.3.1 Covariant derivatives

We learned several methods of differentiating tensor objects on manifolds. However, the
tensor bundles are not the only vector bundles arising in geometry, and very often one is
interested in measuring the “oscillations” of sections of vector bundles.

Let E be a K-vector bundle over the smooth manifold M (K = R,C). Technically, one
would like to have a procedure of measuring the rate of change of a section u of E along a
direction described by a vector field X. For such an arbitrary E, we encounter a problem
which was not present in the case of tensor bundles. Namely, the local flow generated by
the vector field X on M no longer induces bundle homomorphisms.

For tensor fields, the transport along a flow was a method of comparing objects in
different fibers which otherwise are abstract linear spaces with no natural relationship
between them.

To obtain something that looks like a derivation we need to formulate clearly what
properties we should expect from such an operation.

(a) It should measure how fast is a given section changing along a direction given by a
vector field X. Hence it has to be an operator

∇ : Vect (M)× C∞(E)→ C∞(E), (X,u) 7→ ∇Xu,

where we recall (see Definition 2.1.27) that C∞(E) denotes the space of smooth
sections of E over M .

(b) If we think of the usual directional derivative, we expect that after “rescaling” the
direction X the derivative along X should only rescale by the same factor, i.e.,

∀f ∈ C∞(M) : ∇fXu = f∇Xu.

(c) Since ∇ is to be a derivation, it has to satisfy a sort of (Leibniz) product rule.
The only product that exists on an abstract vector bundle is the multiplication of a
section with a smooth function. Hence we require

∇X(fu) = (Xf)u+ f∇Xu, ∀f ∈ C∞(M), u ∈ C∞(E).

The conditions (a) and (b) can be rephrased as follows: for any u ∈ C∞(E), the map

∇u : Vect (M)→ C∞(E), X 7→ ∇Xu,

is C∞(M)-linear so that it defines a bundle morphism (see Definition 2.1.30(b) and Ex-
ample 2.3.2)

∇u ∈ Hom(TM,E) ∼= C∞(T ∗M ⊗E).

Summarizing, we can formulate the following definition.



96 CHAPTER 3. CALCULUS ON MANIFOLDS

Definition 3.3.1. A covariant derivative (or linear connection) on E is a K-linear map

∇ : C∞(E)→ C∞(T ∗M ⊗ E),

such that, ∀f ∈ C∞(M), and ∀u ∈ C∞(E), we have

∇(fu) = df ⊗ u+ f∇u. ⊓⊔

Example 3.3.2. Let Kr
M
∼= Kr×M be the rank r trivial vector bundle overM . The space

C∞(KM ) of smooth sections coincides with the space C∞(M,Kr) of Kr-valued smooth
functions on M . We can define

∇0 : C∞(M,Kr)→ C∞(M,T ∗M ⊗Kr)

∇0(f1, ..., fr) = (df1, ..., dfr).

One checks easily that ∇ is a connection. This is called the trivial connection. ⊓⊔

Remark 3.3.3. Let ∇0, ∇1 be two connections on a vector bundle E → M . Then for
any α ∈ C∞(M) the map

∇ = α∇1 + (1− α)∇0 : C∞(E)→ C∞(T ∗ ⊗ E)

is again a connection. ⊓⊔

✍Notation. For any vector bundle F over M we set

Ωk(F ) : =C∞(ΛkT ∗M ⊗ F ).

We will refer to these sections as differential k-forms with coefficients in the vector bundle
F . ⊓⊔

Proposition 3.3.4. Let E be a vector bundle. The space A(E) of linear connections on
E is an affine space modeled on Ω1(End (E)).

Proof. We first prove that A (E) is not empty. To see this, choose an open cover {Uα} of
M such that E |Uα is trivial ∀α. Next, pick a smooth partition of unity (µβ) subordinated
to this cover.

Since E |Uα is trivial, it admits at least one connection, the trivial one, as in the above
example. Denote such a connection by ∇α. Now define

∇ :=
∑

α

µα∇α.

One checks easily that ∇ is a connection so that A(E) is nonempty. To check that A (E)
is an affine space, consider two connections ∇0 and ∇1. Their difference A = ∇1 −∇0 is
an operator

A : C∞(E)→ C∞(T ∗M ⊗ E),
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satisfying A(fu) = fA(u), ∀u ∈ C∞(E). Thus,

A ∈ C∞
(
Hom(E,T ∗M ⊗ E)

) ∼= C∞(T ∗M ⊗ E∗ ⊗E) ∼= Ω1(E∗ ⊗ E) ∼= Ω1
(
End(E)

)
.

Conversely, given ∇0 ∈ A(E) and A ∈ Ω1
(
End(E)

)
one can verify that the operator

∇A = ∇0 +A : C∞(E)→ Ω1(E).

is a linear connection. This concludes the proof of the proposition. ⊓⊔

The tensorial operations on vector bundles extend naturally to vector bundles with
connections. The guiding principle behind this fact is the product formula. More precisely,
if Ei (i = 1, 2) are two bundles with connections ∇i, then E1⊗E2 has a naturally induced
connection ∇E1⊗E2 uniquely determined by the product rule,

∇E1⊗E2(u1 ⊗ u2) = (∇1u1)⊗ u2 + u1 ⊗∇2u2.

The dual bundle E∗1 has a natural connection ∇∗ defined by the identity

X〈v, u〉 = 〈∇∗Xv, u〉 + 〈v,∇1
Xu〉, ∀u ∈ C∞(E1), v ∈ C∞(E∗1), X ∈ Vect (M),

where

〈•, •〉 : C∞(E∗1)× C∞(E1)→ C∞(M)

is the pairing induced by the natural duality between the fibers of E∗1 and E1. In particular,
any connection ∇E on a vector bundle E induces a connection ∇End(E) on End (E) ∼=
E∗ ⊗ E by

(∇End(E)T )(u) = ∇E(Tu)− T (∇Eu) = [∇E , T ]u, (3.3.1)

∀T ∈ End(E), u ∈ C∞(E).

It is often useful to have a local description of a covariant derivative. This can be
obtained using Cartan’s moving frame method.

Let E → M be a K-vector bundle of rank r over the smooth manifold M . Pick a
coordinate neighborhood U such E |U is trivial. A moving frame2 is a bundle isomorphism
φ : Kr

U = Kr ×M → E |U .
Consider the sections eα = φ(δα), α = 1, ..., r, where δα are the natural basic sections

of the trivial bundle Kr
U . As x moves in U , the collection (e1(x), ..., er(x)) describes a basis

of the moving fiber Ex, whence the terminology moving frame. A section u ∈ C∞(E |U )
can be written as a linear combination

u = uαeα uα ∈ C∞(U,K).

Hence, if ∇ is a covariant derivative in E, we have

∇u = duα ⊗ eα + uα∇eα.

Thus, the covariant derivative is completely described by its action on a moving frame.

2A moving frame is what physicists call a choice of local gauge.
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To get a more concrete description, pick local coordinates (xi) over U . Then ∇eα ∈
Ω1(E |U ) so that we can write

∇eα = Γβiαdx
i ⊗ eβ , Γβiα ∈ C∞(U,K).

Thus, for any section uαeα of E |U we have

∇u = duα ⊗ eα + Γβiαu
αdxi ⊗ eβ. (3.3.2)

It is convenient to view
(
Γβiα

)
as an r × r-matrix valued 1-form, and we write this as

(
Γβiα

)
= dxi ⊗ Γi.

The form Γ = dxi ⊗ Γi is called the connection 1-form associated to the choice of local
gauge. A moving frame allows us to identify sections of E |U with Kr-valued functions on
U , and we can rewrite (3.3.2) as

∇u = du+ Γu. (3.3.3)

A natural question arises: how does the connection 1-form changes with the change of the
local gauge?

Let f = (fα) be another moving frame of E |U . The correspondence eα 7→ fα defines
an automorphism of E |U . Using the local frame e we can identify this correspondence
with a smooth map g : U → GL(r;K). The map g is called the local gauge transformation
relating e to f .

Let Γ̂ denote the connection 1-form corresponding to the new moving frame, i.e.,

∇fα = Γ̂βαfβ.

Consider a section σ of E |U . With respect to the local frame (eα) the section σ has a
decomposition

σ = uαeα,

while with respect to (fβ) it has a decomposition

σ = ûβfβ.

The two decompositions are related by

u = gû. (3.3.4)

Now, we can identify the E-valued 1-form ∇σ with a Kr-valued 1-form in two ways: either
using the frame e, or using the frame f . In the first case, the derivative ∇σ is identified
with the Kr-valued 1-form

du+ Γu,

while in the second case it is identified with

dû+ Γ̂û.
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These two identifications are related by the same rule as in (3.3.4):

du+ Γu = g(dû + Γ̂û).

Using (3.3.4) in the above equality we get

(dg)û + gdû+ Γgû = gdû+ gΓ̂û.

Hence

Γ̂ = g−1dg + g−1Γg.

The above relation is the transition rule relating two local gauge descriptions of the same
connection.
☞A word of warning. The identification

{moving frames} ∼= {local trivialization}

should be treated carefully. These are like an object and its image in a mirror, and there
is a great chance of confusing the right hand with the left hand.

More concretely, if tα : Eα
∼=−→ Kr × Uα (respectively tβ : Eβ

∼=−→ Kr × Uβ) is a
trivialization of a bundle E over an open set Uα (respectively Uβ), then the transition
map “from α to β” over Uα ∩ Uβ is gβα = tβ ◦ t−1α . The standard basis in Kr, denoted by
(δi), induces two local moving frames on E:

eα,i = t−1α (δi) and eβ,i = t−1β (δi).

On the overlap Uα ∩ Uβ these two frames are related by the local gauge transformation

eβ,i = g−1βαeα,i = gαβeα,i.

This is precisely the opposite way the two trivializations are identified. ⊓⊔

The above arguments can be reversed producing the following global result.

Proposition 3.3.5. Let E →M be a rank r smooth vector bundle, and (Uα) a trivializing
cover with transition maps gαβ : Uα∩Uβ → GL(r;K). Then any collection of matrix valued
1-forms Γα ∈ Ω1(EndKr

Uα
) satisfying

Γβ = (g−1αβdgαβ) + g−1αβΓαgαβ = −(dgβα)g−1βα + gβαΓαg
−1
βα over Uα ∩ Uβ, (3.3.5)

uniquely defines a covariant derivative on E. ⊓⊔

Exercise 3.3.6. Prove the above proposition. ⊓⊔

We can use the local description in Proposition 3.3.5 to define the notion of pullback
of a connection. Suppose we are given the following data.

• A smooth map f : N →M .



100 CHAPTER 3. CALCULUS ON MANIFOLDS

• A rank r K-vector bundle E → M defined by the open cover (Uα), and transition
maps gβα : Uα ∩ Uβ → GL(Kr).

• A connection ∇ on E defined by the 1-forms Γα ∈ Ω1
(
End(Kr

Uα
)
)
satisfying the

gluing conditions (3.3.5).

Then, these data define a connection f∗∇ on f∗E described by the open cover f−1(Uα),
transition maps gβα ◦ f and 1-forms f∗Γα. This connection is independent of the various
choices and it is called the pullback of ∇ by f

Example 3.3.7. (Complex line bundles). Let L → M be a complex line bundle
over the smooth manifold M . Let {Uα} be a trivializing cover with transition maps
zαβ : Uα ∩ Uβ → C∗ = GL(1,C). The bundle of endomorphisms of L, End (L) ∼= L∗ ⊗ L
is trivial since it can be defined by transition maps (zαβ)

−1 ⊗ zαβ = 1. Thus, the space of
connections on L, A (L) is an affine space modelled by the linear space of complex valued
1-forms. A connection on L is simply a collection of C-valued 1-forms ωα on Uα related
on overlaps by

ωβ =
dzαβ
zαβ

+ ωα = d log zαβ + ωα. ⊓⊔

3.3.2 Parallel transport

As we have already pointed out, the main reason we could not construct natural derivations
on the space of sections of a vector bundle was the lack of a canonical procedure of
identifying fibers at different points. We will see in this subsection that such a procedure
is all we need to define covariant derivatives. More precisely, we will show that once a
covariant derivative is chosen, it offers a simple way of identifying different fibers.

Let E →M be a rank r K-vector bundle and ∇ a covariant derivative on E. For any
smooth path γ : [0, 1] →M we will define a linear isomorphism Tγ : Eγ(0) → Eγ(1) called
the parallel transport along γ. More exactly, we will construct an entire family of linear
isomorphisms

Tt : Eγ(0) → Eγ(t).

One should think of this Tt as identifying different fibers. In particular, if u0 ∈ Eγ(0)
then the path t 7→ ut = Ttu0 ∈ Eγ(t) should be thought of as a “constant” path. The
rigorous way of stating this “constancy” is via derivations: a quantity is “constant” if its
derivatives are identically 0. Now, the only way we know how to derivate sections is via
∇, i.e., ut should satisfy

∇ d
dt
ut = 0, where

d

dt
= γ̇.

The above equation suggests a way of defining Tt. For any u0 ∈ Eγ(0), and any t ∈ [0, 1],
define Ttu0 as the value at t of the solution of the initial value problem

{
∇ d

dt
u(t) = 0

u(0) = u0
. (3.3.6)

The equation (3.3.6) is a system of linear ordinary differential equations in disguise.
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To see this, let us make the simplifying assumption that γ(t) lies entirely in some
coordinate neighborhood U with coordinates (x1, ..., xn), such that E |U is trivial. This
is always happening, at least on every small portion of γ. Denote by (eα)1≤α≤r a local
moving frame trivializing E |U so that u = uαeα. The connection 1-form corresponding to
this moving frame will be denoted by Γ ∈ Ω1(End (Kr)). Equation (3.3.6) becomes (using
Einstein’s convention) {

duα

dt + Γαtβu
β = 0

uα(0) = uα0
, (3.3.7)

where

Γt =
d

dt
Γ = γ̇ Γ ∈ Ω0

(
End(Kr)

)
= End(Kr).

More explicitly, if the path γ(t) is given by the smooth map

t 7→ γ(t) =
(
x1(t), . . . , xn(t)

)
,

then Γt is the endomorphism given by

Γteβ = ẋiΓαiβeα.

The system (3.3.7) can be rewritten as





duα

dt + Γαiβẋ
iuβ = 0

uα(0) = uα0

, (3.3.8)

This is obviously a system of linear ordinary differential equations whose solutions
exist for any t. We deduce

u̇(0) = −Γtu0. (3.3.9)

This gives a geometric interpretation for the connection 1-form Γ: for any vector field X,
the contraction

−iXΓ = −Γ(X) ∈ C∞
(
End(E)

)

describes the infinitesimal parallel transport along the direction prescribed by the vector
field X, in the non-canonical identification of nearby fibers via a local moving frame.

In more intuitive terms, if γ(t) is an integral curve for X, and Tt denotes the parallel
transport along γ from Eγ(0) to Eγ(t), then, given a local moving frame for E in a neigh-
borhood of γ(0), Tt is identified with a t-dependent matrix which has a Taylor expansion
of the form

Tt = 1− Γ0t+O(t2), t very small, (3.3.10)

with Γ0 = (iXΓ) |γ(0).

3.3.3 The curvature of a connection

Consider a rank k smooth K-vector bundle E →M over the smooth manifold M , and let
∇ : Ω0(E)→ Ω1(E) be a covariant derivative on E.
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Proposition 3.3.8. The connection ∇ has a natural extension to an operator

d∇ : Ωr(E)→ Ωr+1(E)

uniquely defined by the requirements,

(a) d∇ |Ω0(E)= ∇,

(b) ∀ω ∈ Ωr(M), η ∈ Ωs(E)

d∇(ω ∧ η) = dω ∧ η + (−1)rω ∧ d∇η.

Outline of the proof Existence. For ω ∈ Ωr(M), u ∈ Ω0(E) set

d∇(ω ⊗ u) = dω ⊗ u+ (−1)rω∇u. (3.3.11)

Using a partition of unity one shows that any η ∈ Ωr(E) is a locally finite combination of
monomials as above so the above definition induces an operator Ωr(E) → Ωr+1(E). We
let the reader check that this extension satisfies conditions (a) and (b) above.
Uniqueness. Any operator with the properties (a) and (b) acts on monomials as in (3.3.11)
so it has to coincide with the operator described above using a given partition of unity. ⊓⊔

Example 3.3.9. The trivial bundle KM has a natural connection ∇0- the trivial con-
nection. This coincides with the usual differential d : Ω0(M) ⊗ K → Ω1(M) ⊗ K. The
extension d∇

0
is the usual exterior derivative. ⊓⊔

There is a major difference between the usual exterior derivative d, and an arbitrary
d∇. In the former case we have d2 = 0, which is a consequence of the commutativity
[∂xi , ∂xj ] = 0, where (xi) are local coordinates on M . In the second case, the equality
(d∇)2 = 0 does not hold in general. Still, something very interesting happens.

Lemma 3.3.10. For any smooth function f ∈ C∞(M), and any ω ∈ Ωr(E) we have

(d∇)2(fω) = f{(d∇)2ω}.

Hence (d∇)2 is a bundle morphism ΛrT ∗M ⊗ E → Λr+2T ∗M ⊗ E.

Proof. We compute

(d∇)2(fω) = d∇(df ∧ ω + fd∇ω)

= −df ∧ d∇ω + df ∧ d∇ω + f(d∇)2ω = f(d∇)2ω. ⊓⊔
As a map Ω0(E)→ Ω2(E), the operator (d∇)2 can be identified with a section of

HomK (E,Λ2T ∗M ⊗R E) ∼= E∗ ⊗ Λ2T ∗M ⊗R E ∼= Λ2T ∗M ⊗R EndK (E).

Thus, (d∇)2 is an EndK (E)-valued 2-form.

Definition 3.3.11. For any connection ∇ on a smooth vector bundle E →M , the object
(d∇)2 ∈ Ω2(EndK (E)) is called the curvature of ∇, and it is usually denoted by F (∇). ⊓⊔
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Example 3.3.12. Consider the trivial bundleKr
M . The sections of this bundle are smooth

Kr-valued functions onM . The exterior derivative d defines the trivial connection on Kr
M ,

and any other connection differs from d by a Mr(K)-valued 1-form on M . If A is such a
form, then the curvature of the connection d+A is the 2-form F (A) defined by

F (A)u = (d+A)2u = (dA+A ∧A)u, ∀u ∈ C∞(M,Kr).

The ∧-operation above is defined for any vector bundle E as the bilinear map

Ωj(End (E)) × Ωk(End (E))→ Ωj+k(End (E)),

uniquely determined by

(ωr ⊗A) ∧ (ηs ⊗B) = ωj ∧ ηk ⊗AB, A,B ∈ C∞
(
End(E)

)
. ⊓⊔

We conclude this subsection with an alternate description of the curvature which hope-
fully will shed some light on its analytical significance.

Let E → M be a smooth vector bundle on M and ∇ a connection on it. Denote its
curvature by F = F (∇) ∈ Ω2(End (E)). For any X,Y ∈ Vect (M) the quantity F (X,Y )
is an endomorphism of E. In the remaining part of this section we will give a different
description of this endomorphism.

For any vector field Z, we denote by iZ : Ωr(E) → Ωr−1(E) the C∞(M) − linear
operator defined by

iZ(ω ⊗ u) = (iZω)⊗ u, ∀ω ∈ Ωr(M), u ∈ Ω0(E).

For any vector field Z, the covariant derivative ∇Z : C∞(E)→ C∞(E) extends naturally
as a linear operator Ωr(E)→ Ωr(E), which we continue to denote by ∇Z , uniquely defined
by the requirements

∇Z(ω ⊗ u) := (LZω)⊗ u+ ω ⊗∇Zu.
The operators d∇, iZ , ∇Z : Ω•(E)→ Ω•(E) satisfy the usual super-commutation identi-
ties.

iZd
∇ + d∇iZ = ∇Z . (3.3.12)

iXiY + iY iX = 0. (3.3.13)

∇XiY − iY∇X = i[X,Y ]. (3.3.14)

For any u ∈ Ω0(E) we compute using (3.3.12)-(3.3.14)

F (X,Y )u = iY iX(d
∇)2u = iY (iXd

∇)∇u

= iY (∇X − d∇iX)∇u = (iY∇X)∇u− (iY d
∇)∇Xu

= (∇XiY − i[X,Y ])∇u−∇Y∇Xu = (∇X∇Y −∇Y∇X −∇[X,Y ])u.
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Hence

F (X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. (3.3.15)

If in the above formula we take X = ∂xi and Y = ∂xj , where (x
i) are local coordinates on

M , and we set ∇i := ∇∂xi , ∇j = ∇∂xj , then we deduce

Fij = −Fji := F
(
∂xi , ∂xj

)
= [∇i,∇j ]. (3.3.16)

Thus, the endomorphism Fij measures the extent to which the partial derivatives ∇i, ∇j
fail to commute. This is in sharp contrast with the classical calculus and an analytically
oriented reader may object to this by saying we were careless when we picked the con-
nection. Maybe an intelligent choice will restore the classical commutativity of partial
derivatives so we should concentrate from the very beginning to covariant derivatives ∇
such that F (∇) = 0.

Definition 3.3.13. A connection ∇ such that F (∇) = 0 is called flat. ⊓⊔

A natural question arises: given an arbitrary vector bundle E → M do there exist
flat connections on E? If E is trivial then the answer is obviously positive. In general,
the answer is negative, and this has to do with the global structure of the bundle. In the
second half of this book we will discuss in more detail this fact.

3.3.4 Holonomy

The reader may ask a very legitimate question: why have we chosen to name curvature,
the deviation from commutativity of a given connection. In this subsection we describe the
geometric meaning of curvature, and maybe this will explain this choice of terminology.
Throughout this subsection we will use Einstein’s convention.

Let E →M be a rank r smooth K-vector bundle, and ∇ a connection on it. Consider
local coordinates (x1, ..., xn) on an open subset U ⊂ M such that E |U is trivial. Pick a
moving frame (e1, ..., er) of E over U . The connection 1-form associated to this moving
frame is

Γ = Γidx
i = (Γαiβ)dx

i, 1 ≤ α, β ≤ r.
It is defined by the equalities (∇i := ∇∂

xi
)

∇ieβ = Γαiβeα. (3.3.17)

Using (3.3.16) we compute

Fijeβ = (∇i∇j −∇j∇i)eβ = ∇i(Γjeβ)−∇j(Γieβ)

=

(
∂Γαjβ
∂xi

−
∂Γαjβ
∂xj

)
eα +

(
ΓγjβΓ

α
iγ − ΓγiβΓ

α
jγ

)
eα,

so that

Fij =

(
∂Γj
∂xi
− ∂Γi
∂xj

+ ΓiΓj − ΓjΓi

)
. (3.3.18)



3.3. CONNECTIONS ON VECTOR BUNDLES 105

p

p p

p
0 1

23

Figure 3.1: Parallel transport along a coordinate parallelogram.

Though the above equation looks very complicated it will be the clue to understanding
the geometric significance of curvature.

Assume for simplicity that the point of coordinates (0, ..., 0) lies in U . Denote by
T s1 the parallel transport (using the connection ∇) from (x1, ..., xn) to (x1 + s, x2, ..., xn)
along the curve τ 7→ (x1 + τ, x2, ..., xn). Define T t2 in a similar way using the coordinate
x2 instead of x1.

Look at the parallelogram Ps,t in the “plane” (x1, x2) described in Figure 3.1, where

p0 = (0, . . . , 0), p1 = (s, 0, . . . , 0), p2 = (s, t, 0, . . . , 0), p3 = (0, t, 0, . . . , 0).

We now perform the counterclockwise parallel transport along the boundary of Ps,t. The
outcome is a linear map Ts,t : E0 → E0, where E0 is the fiber of E over p0 Set F12 :=
F ( ∂

∂x1
∂
∂x2

) |(0,...,0). F12 is an endomorphism of E0.

Proposition 3.3.14. For any u ∈ E0 we have

F12u = − ∂2

∂s∂t
Ts,tu.

We see that the parallel transport of an element u ∈ E0 along a closed path may not
return it to itself. The curvature is an infinitesimal measure of this deviation.

Proof. The parallel transport along ∂Ps,t can be described as

Ts,t = T−t2 T−s1 T t2T
s
1 .

The parallel transport T s1 : E0 → Ep1 can be approximated using (3.3.9)

u1 = u1(s, t) = T s1u0 = u0 − sΓ1(p0)u0 + C1s
2 +O(s3). (3.3.19)

C1 is a constant vector in E0 whose exact form is not relevant to our computations. In
the sequel the letter C (eventually indexed) will denote constants.

u2 = u2(s, t) = T t2T
s
1u = T t2u1 = u1 − tΓ2(p1)u1 +C2t

2 +O(t3)
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= u0 − sΓ1(p0)u0 − tΓ2(p1)(u0 − sΓ1(p0)u0) + C1s
2 + C2t

2 +O(3)

=
{
1− sΓ1(p0)− tΓ2(p1) + tsΓ2(p1)Γ1(p0)

}
u0 + C1s

2 + C2t
2 +O(3).

O(k) denotes an error ≤ C(s2 + t2)k/2 as s, t→ 0. Now use the approximation

Γ2(p1) = Γ2(p0) + s
∂Γ2

∂x1
(p0) +O(2),

to deduce

u2 =
{
1− sΓ1 − tΓ2 − st

( ∂Γ2

∂x1
− Γ2Γ1

) }
|p0 u0

+C1s
2 + C2t

2 +O(3). (3.3.20)

Similarly, we have

u3 = u3(s, t) = T−s1 T t2T
s
1u0 = T−s1 u2 = u2 + sΓ1(p2)u2 + C3s

2 +O(3).

The Γ-term in the right-hand-side of the above equality can be approximated as

Γ1(p2) = Γ1(p0) + s
∂Γ1

∂x1
(p0) + t

∂Γ1

∂x2
(p0) +O(2).

Using u2 described as in (3.3.20) we get after an elementary computation

u3 = u3(s, t) =

{
1− tΓ2 + st

(
∂Γ1

∂x2
− ∂Γ2

∂x1
+ Γ2Γ1 − Γ1Γ2

)}
|p0 u0

+C4s
2 + C5t

2 +O(3). (3.3.21)

Finally, we have

u4 = u4(s, t) = T−t2 = u3 + tΓ2(p3)u3 + C6t
2 +O(3),

with

Γ2(p3) = Γ2(p0) + t
∂Γ2

∂x2
(p0) +C7t

2 +O(3).

Using (3.3.21) we get

u4(s, t) = u0 + st

(
∂Γ1

∂x2
− ∂Γ2

∂x1
+ Γ2Γ1 − Γ1Γ2

)
|p0 u0

+C8s
2 + C9t

2 +O(3)

= u0 − stF12(p0)u0 +C8s
2 + C9t

2 +O(3).

Clearly ∂2u4
∂s∂t = −F12(p0)u0 as claimed. ⊓⊔
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Remark 3.3.15. If we had kept track of the various constants in the above computation
we would have arrived at the conclusion that C8 = C9 = 0 i.e.

Ts,t = 1− stF12 +O(3).

Alternatively, the constant C8 is the second order correction in the Taylor expansion of
s 7→ Ts,0 ≡, so it has to be 0. The same goes for C9. Thus we have

−F12 =
dTs,t

dareaPs,t
=
dT√s,√s
ds

.

Loosely speaking, the last equality states that the curvature is the the “amount of holon-
omy per unit of area”. ⊓⊔

The result in the above proposition is usually formulated in terms of holonomy.

Definition 3.3.16. Let E →M be a vector bundle with a connection ∇. The holonomy
of ∇ along a closed path γ is the parallel transport along γ. ⊓⊔

We see that the curvature measures the holonomy along infinitesimal parallelograms.
A connection can be viewed as an analytic way of trivializing a bundle. We can do so
along paths starting at a fixed point, using the parallel transport, but using different paths
ending at the same point we may wind up with trivializations which differ by a twist. The
curvature provides an infinitesimal measure of that twist.

Exercise 3.3.17. Prove that any vector bundle E over the Euclidean space Rn is trivial-
izable.

Hint: Use the parallel transport defined by a connection on the vector bundle E to
produce a bundle isomorphism E → E0 × Rn, where E0 is the fiber of E over the origin.

⊓⊔

3.3.5 The Bianchi identities

Consider a smooth K-vector bundle E → M equipped with a connection ∇ = ∇E. We
have seen that the associated exterior derivative d∇ : Ωp(E) → Ωp+1(E) does not satisfy
the usual (d∇)2 = 0, and the curvature is to blame for this. The Bianchi identity describes
one remarkable algebraic feature of the curvature.

Recall that ∇E induces a connection in any tensor bundle constructed from E. In
particular, it induces a connection in E∗ ⊗ E ∼= End (E) which we denote by ∇End(E).
This extends to an “exterior derivative”

DE = d∇
End(E)

: Ωp(End (E))→ Ωp+1(End (E)).

Proposition 3.3.18. (The Bianchi identity.) Let E → M be a K-vector bundle on
M and ∇E a connection on E. Then

DEF (∇E) = 0.
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Roughly speaking, the Bianchi identity states that (d∇)3 is 0.

Proof. We will use the identities (3.3.12)–(3.3.14). For any vector fields X, Y , Z we have

iXD
E = ∇End(E)

X −DEiX .

Hence,

(DEF )(X,Y,Z) = iZiY iXD
EF = iZiY (∇End(E)

X −DEiX)F

= iZ(∇End(E)
X iY − i[X,Y ])F − iZ(∇End(E)

Y −DEiY )iXF

= (∇End(E)
X iZiY − i[X,Z]iY − iZi[X,Y ])F − (∇End(E)

Y iZiX − i[Y,Z]iX −∇End(E)
Z iY iX)F

(i[X,Y ]iZ + i[Y,Z]iX + i[Z,X]iY )F − (∇End(E)
X iY iZ +∇End(E)

Y iZiX +∇End(E)
Z iX iY )F

= A(X,Y,Z) +A(Y,Z,X) +A(Z,X, Y ),

where

A(X,Y,Z) :=
(
i[X,Y ]iZ −∇End(E)

X iY iZ
)
F, ∀X,Y,Z ∈ Vect (M).

We compute immediately

i[X,Y ]iZF = F (Z, [X,Y ]) =
[
∇EZ ,∇E[X,Y ]

]
−∇E[Z,[X,Y ]].

Also for any u ∈ Ω0(E) we have

(∇End(E)
X iY iZF )u = ∇EX(F (Z, Y )u)− F (Z, Y )∇EXu =

[
∇EX , F (Z, Y )

]
u

=
[
∇EX ,∇E[Y,Z]

]
u−

[
∇EX ,

[
∇EY ,∇EZ

] ]
u.

Hence

A(X,Y,Z) =
[
∇EX ,

[
∇EY ,∇EZ

] ]
.

The Bianchi identity now follows from the classical Jacobi identity for commutators. ⊓⊔

Example 3.3.19. Let K be the trivial line bundle over a smooth manifold M . Any
connection on K has the form ∇ω = d + ω, where d is the trivial connection, and ω is a
K-valued 1-form on M . The curvature of this connection is

F (ω) = dω.

The Bianchi identity is in this case precisely the equality d2ω = 0. ⊓⊔
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3.3.6 Connections on tangent bundles

The tangent bundles are very special cases of vector bundles so the general theory of
connections and parallel transport is applicable in this situation as well. However, the
tangent bundles have some peculiar features which enrich the structure of a connection.

Recall that, when looking for a local description for a connection on a vector bundle,
we have to first choose local coordinates on the manifolds, and then a local moving frame
for the vector bundle. For an arbitrary vector bundle there is no correlation between these
two choices.

For tangent bundles it happens that, once local coordinates (xi) are chosen, they
automatically define a moving frame of the tangent bundle, (∂i = ∂xi), and it is thus very
natural to work with this frame. Hence, let ∇ be a connection on TM . With the above
notations we set

∇i∂j = Γkij∂k (∇i = ∇∂i).

The coefficients Γkij are usually known as the Christoffel symbols of the connection. As
usual we construct the curvature tensor

F (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] ∈ C∞
(
End(TM)

)
.

Still, this is not the only tensor naturally associated to ∇.
Lemma 3.3.20. For X,Y ∈ Vect (M) consider

T (X,Y ) = ∇XY −∇YX − [X,Y ] ∈ Vect (M).

Then ∀f ∈ C∞(M)

T (fX, Y ) = T (X, fY ) = fT (X,Y ),

so that T (•, •) is a tensor T ∈ Ω2(TM), i.e., a 2-form whose coefficients are vector fields
on M . The tensor T is called the torsion of the connection ∇. ⊓⊔

The proof of this lemma is left to the reader as an exercise. In terms of Christoffel
symbols, the torsion has the description

T (∂i, ∂j) = (Γkij − Γkji)∂k.

Definition 3.3.21. A connection on TM is said to be symmetric if T = 0. ⊓⊔

We guess by now the reader is wondering how the mathematicians came up with
this object called torsion. In the remaining of this subsection we will try to sketch the
geometrical meaning of torsion.

To find such an interpretation, we have to look at the finer structure of the tangent
space at a point x ∈ M . It will be convenient to regard TxM as an affine space modeled
by Rn, n = dimM . Thus, we will no longer think of the elements of TxM as vectors, but
instead we will treat them as points. The tangent space TxM can be coordinatized using
affine frames. These are pairs (p; e), where p is a point in TxM , and e is a basis of the



110 CHAPTER 3. CALCULUS ON MANIFOLDS

underlying vector space. A frame allows one to identify TxM with Rn, where p is thought
of as the origin.

Suppose that A, B are two affine spaces, both modelled by Rn, and (p; e) , (p; f) are
affine frames of A and respectively B. Denote by (xi) the coordinates in A induced by
the frame (p; e), and by (yj) the coordinates in B induced by the frame (q; f). An affine
isomorphism T : A→ B can then be described using these coordinates as

T : Rnx → Rny x 7→ y = Sx+ v,

where v is a vector in Rn, and S is an invertible n×n real matrix. Thus, an affine map is
described by a “rotation” S, followed by a translation v. This vector measures the “drift”
of the origin. We write T = S+̂x

If now (xi) are local coordinates on M , then they define an affine frame Ax at each
x ∈M : (Ax = (0; (∂i)). Given a connection ∇ on TM , and a smooth path γ : I →M , we
will construct a family of affine isomorphisms Tt : Tγ(0) → Tγ(t) called the affine transport
of ∇ along γ. In fact, we will determine Tt by imposing the initial condition T0 = 1, and
then describing Ṫt.

This is equivalent to describing the infinitesimal affine transport at a given point
x0 ∈M along a direction given by a vector X = Xi∂i ∈ Tx0M . The affine frame of Tx0M
is Ax0 = (0; (∂i)).

If xt is a point along the integral curve of X, close to x0 then its coordinates satisfy

xit = xi0 + tXi +O(t2).

This shows the origin x0 of Ax0 “drifts” by tX + O(t2). The frame (∂i) suffers a parallel
transport measured as usual by 1− tiXΓ +O(t2). The total affine transport will be

Tt = (1− tiXΓ)+̂tX +O(t2).

The holonomy of ∇ along a closed path will be an affine transformation and as such it has
two components: a “rotation”” and a translation. As in Proposition 3.3.14 one can show
the torsion measures the translation component of the holonomy along an infinitesimal
parallelogram, i.e., the “amount of drift per unit of area”. Since we will not need this fact
we will not include a proof of it.

Exercise 3.3.22. Consider the vector valued 1-form ω ∈ Ω1(TM) defined by

ω(X) = X ∀X ∈ Vect (M).

Show that if ∇ is a linear connection on TM , then d∇ω = T∇, where T∇ denotes the
torsion of ∇. ⊓⊔

Exercise 3.3.23. Consider a smooth vector bundle E → M over the smooth manifold
M . We assume that both E and TM are equipped with connections and moreover the
connection on TM is torsionless. Denote by ∇̂ the induced connection on Λ2T ∗M ⊗
End (E). Prove that ∀X,Y,Z ∈ Vect (M)

(
∇̂XF

)
(Y,Z) +

(
∇̂Y F

)
(Z,X) +

(
∇̂ZF

)
(X,Y ) = 0. ⊓⊔
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3.4 Integration on manifolds

3.4.1 Integration of 1-densities

We spent a lot of time learning to differentiate geometrical objects but, just as in classical
calculus, the story is only half complete without the reverse operation, integration.

Classically, integration requires a background measure, and in this subsection we will
describe the differential geometric analogue of a measure, namely the notion of 1-density
on a manifold.

Let E → M be a rank k, smooth real vector bundle over a manifold M defined by
an open cover (Uα) and transition maps gβα : Uαβ → GL(k,R) satisfying the cocycle
condition. For any r ∈ R we can form the real line bundle |Λ|r(E) defined by the same
open cover and transition maps

tβα := |det gβα|−r = |det gαβ |r : Uαβ → R>0 →֒ GL(1,R).

The fiber at p ∈M of this bundle consists of r-densities on Ep (see Subsection 2.2.4).

Definition 3.4.1. Let M be a smooth manifold and r ≥ 0. The bundle of r-densities on
M is

|Λ|rM : =|Λ|r(TM).

When r = 1 we will use the notation |Λ|M = |Λ|1M . We call |Λ|M the density bundle of
M . ⊓⊔

Denote by C∞(|Λ|M ) the space of smooth sections of |Λ|M , and by C∞0 (|Λ|M ) its
subspace consisting of compactly supported densities.

It helps to have local descriptions of densities. To this aim, pick an open cover of M
consisting of coordinate neighborhoods (Uα). Denote the local coordinates on Uα by (xiα).
This choice of a cover produces a trivializing cover of TM with transition maps

Tαβ =

(
∂xiα

∂xjβ

)

1≤i,j≤n
,

where n is the dimension of M . Set δαβ = |detTαβ |. A 1-density onM is then a collection
of functions µα ∈ C∞(Uα) related by

µα = δ−1αβµβ.

It may help to think that for each point p ∈ Uα the basis ∂
∂x1α

, ..., ∂
∂xnα

of TpM spans an

infinitesimal parallelepiped and µα(p) is its “volume”. A change in coordinates should
be thought of as a change in the measuring units. The gluing rules describe how the
numerical value of the volume changes from one choice of units to another.

The densities on a manifold resemble in many respects the differential forms of maximal
degree. Denote by detTM = ΛdimMTM the determinant line bundle of TM . A density
is a map

µ : C∞(detTM)→ C∞(M),
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such that µ(fe) = |f |µ(e), for all smooth functions f :M → R, and all e ∈ C∞(detTM).
In particular, any smooth map φ : M → N between manifolds of the same dimension
induces a pullback transformation

φ∗ : C∞(|Λ|N )→ C∞(|Λ|M ),

described by

(φ∗µ)(e) = µ
(
(detφ∗) · e

)
= |detφ∗|µ(e), ∀e ∈ C∞(detTM).

Example 3.4.2. (a) Consider the special caseM = Rn. Denote by e1, ..., en the canonical
basis. This extends to a trivialization of TRn and, in particular, the bundle of densities
comes with a natural trivialization. It has a nowhere vanishing section |dvn| defined by

|dvn|(e1 ∧ ... ∧ en) = 1.

In this case, any smooth density on Rn takes the form µ = f |dvn|, where f is some smooth
function on Rn. The reader should think of |dvn| as the standard Lebesgue measure on
Rn.

If φ : Rn → Rn is a smooth map, viewed as a collection of n smooth functions

φ1 = φ1(x
1, ..., xn), . . . , φn = φn(x

1, ..., xn),

then,

φ∗(|dvn|) =
∣∣∣∣∣det

(
∂φi
∂xj

)∣∣∣∣∣ · |dvn|.

(b) Suppose M is a smooth manifold of dimension m. Then any top degree form ω ∈
Ωm(M) defines a density |ω| on M which associates to each section e ∈ C∞(detTM) the
smooth function

x 7→ |ωx(e(x) )|
Observe that |ω| = | − ω|, so this map Ωm(M)→ C∞(|Λ|M ) is not linear.
(c) Suppose g is a Riemann metric on the smooth manifold M . The volume density
defined by g is the density denoted by |dVg| which associates to each e ∈ C∞(detTM)
the pointwise length

x 7→ |e(x)|g.
If (Uα, (x

i
α) ) is an atlas of M , then on each Uα we have top degree forms

dxα := dx1α ∧ · · · ∧ dxmα ,

to which we associate the density |dxα|. In the coordinates (xiα) the metric g can be
described as

g =
∑

i,j

gα;ijdx
i
α ⊗ dxjα.

We denote by |gα| the determinant of the symmetric matrix gα = (gα;ij)1≤i,j≤m. Then the
restriction of |dVg| to Uα has the description

|dVg| =
√
|gα| |dxα|. ⊓⊔
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The importance of densities comes from the fact that they are exactly the objects that
can be integrated. More precisely, we have the following abstract result.

Proposition 3.4.3. There exists a natural way to associate to each smooth manifold M
a linear map ∫

M
: C∞0 (|Λ|M )→ R

uniquely defined by the following conditions.
(a)

∫
M is invariant under diffeomorphisms, i.e., for any smooth manifolds M , N of the

same dimension n, any diffeomorphism φ :M → N , and any µ ∈ C∞0 (|Λ|M ), we have

∫

M
φ∗µ =

∫

N
µ.

(b)
∫
M is a local operation, i.e., for any open set U ⊂ M , and any µ ∈ C∞0 (|Λ|M ) with

suppµ ⊂ U , we have ∫

M
µ =

∫

U
µ.

(c) For any ρ ∈ C∞0 (Rn) we have

∫

Rn

ρ|dvn| =
∫

Rn

ρ(x)dx,

where in the right-hand-side stands the Lebesgue integral of the compactly supported func-
tion ρ.

∫
M is called the integral on M .

Proof. To establish the existence of an integral we associate to each manifold M a collec-
tion of data as follows.

(i) A smooth partition of unity A ⊂ C∞0 (M) such that ∀α ∈ A the support suppα lies
entirely in some precompact coordinate neighborhood Uα, and such that the cover
(Uα) is locally finite.

(ii) For each Uα we pick a collection of local coordinates (xiα), and we denote by |dxα|
(n = dimM) the density on Uα defined by

|dxα|
(

∂

∂x1α
∧ ... ∧ ∂

∂xnα

)
= 1.

For any µ ∈ C∞(|Λ|), the product αµ is a density supported in Uα, and can be written
as

αµ = µα|dxα|,
where µα is some smooth function compactly supported on Uα. The local coordinates
allow us to interpret µα as a function on Rn. Under this identification |dxiα| corresponds
to the Lebesgue measure |dvn| on Rn, and µα is a compactly supported, smooth function.
We set ∫

Uα

αµ :=

∫

Rn

µα|dxα|.
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Finally, define ∫ A

M
µ =

∫

M
µ
def
=
∑

α∈A

∫

Uα

αµ.

The above sum contains only finitely many nonzero terms since suppµ is compact, and
thus it intersects only finitely many of the U ′αs which form a locally finite cover.

To prove property (a) we will first prove that the integral defined as above is indepen-
dent of the various choices: the partition of unity A ⊂ C∞0 (M), and the local coordinates
(xiα)α∈A.

• Independence of coordinates. Fix the partition of unity A, and consider a new
collection of local coordinates (yiα) on each Uα. These determine two densities |dxiα| and
respectively |dyjα|. For each µ ∈ C∞0 (|Λ|M ) we have

αµ = αµxα|dxα| = αµyα|dyα|,

where µxα, µ
y
α ∈ C∞0 (Uα) are related by

µyα =

∣∣∣∣det
(
∂xiα

∂yjα

)∣∣∣∣µxα.

The equality ∫

Rn

µxα|dxα| =
∫

Rn

µyα|dyα|

is the classical change in variables formula for the Lebesgue integral.

• Independence of the partition of unity. Let A,B ⊂ C∞0 (M) two partitions of unity
on M . We will show that ∫ A

M
=

∫ B

M
.

Form the partition of unity

A ∗B :=
{
αβ ; (α, β) ∈ A×B

}
⊂ C∞0 (M).

Note that suppαβ ⊂ Uαβ = Uα ∩ Uβ . We will prove

∫ A

M
=

∫ A∗B

M
=

∫ B

M
.

Let µ ∈ C∞0 (|Λ|M ). We can view αµ as a compactly supported function on Rn. We have

∫

Uα

αµ =
∑

β

∫

Uα⊂Rn

βαµ =
∑

β

∫

Uαβ

αβµ. (3.4.1)

Similarly ∫

Uβ

βµ =
∑

α

∫

Uαβ

αβµ. (3.4.2)

Summing (3.4.1) over α and (3.4.2) over β we get the desired conclusion.
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To prove property (a) for a diffeomorphism φ : M → N , consider a partition of unity
A ⊂ C∞0 (N). From the classical change in variables formula we deduce that, for any
coordinate neighborhood Uα containing the support of α ∈ A, and any µ ∈ C∞0 (|Λ|N ) we
have ∫

φ−1(Uα)
(φ∗α)φ∗µ =

∫

Uα

αµ.

The collection
(
φ∗α = α ◦ φ

)
α∈A

forms a partition of unity on M . Property (a) now

follows by summing over α the above equality, and using the independence of the integral
on partitions of unity.

To prove property (b) on the local character of the integral, pick U ⊂ M , and then
choose a partition of unity B ⊂ C∞0 (U) subordinated to the open cover (Vβ)β∈B. For any
partition of unity A ⊂ C∞0 (M) with associated cover (Vα)α∈A we can form a new partition
of unity A ∗ B of U with associated cover Vαβ = Vα ∩ Vβ . We use this partition of unity
to compute integrals over U . For any density µ on M supported on U we have

∫

M
µ =

∑

α

∫

Vα

αµ =
∑

α∈A

∑

β∈B

∫

Vαβ

αβµ =
∑

αβ∈A∗B

∫

Vαβ

αβµ =

∫

U
µ.

Property (c) is clear since, forM = Rn, we can assume that all the local coordinates chosen
are Cartesian. The uniqueness of the integral is immediate, and we leave the reader to fill
in the details. ⊓⊔

3.4.2 Orientability and integration of differential forms

Under some mild restrictions on the manifold, the calculus with densities can be replaced
with the richer calculus with differential forms. The mild restrictions referred to above
have a global nature. More precisely, we have to require that the background manifold is
oriented.

Roughly speaking, the oriented manifolds are the “2-sided manifolds”, i.e., one can
distinguish between an “inside face” and an “outside face” of the manifold. (Think of a
2-sphere in R3 (a soccer ball) which is naturally a “2-faced” surface.)

The 2-sidedness feature is such a frequent occurrence in the real world that for many
years it was taken for granted. This explains the “big surprise” produced by the famous
counter-example due to Möbius in the first half of the 19th century. He produced a 1-sided
surface nowadays known as the Möbius band using paper and glue. More precisely, he
glued the opposite sides of a paper rectangle attaching arrow to arrow as in Figure 3.2.
The 2-sidedness can be formulated rigorously as follows.

Definition 3.4.4. A smooth manifold M is said to be orientable if the determinant line
bundle detTM (or equivalently detT ∗M) is trivializable. ⊓⊔

We see that detT ∗M is trivializable if and only if it admits a nowhere vanishing section.
Such a section is called a volume form on M . We say that two volume forms ω1 and ω2

are equivalent if there exists f ∈ C∞(M) such that

ω2 = efω1.
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Figure 3.2: The Mobius band.

This is indeed an equivalence relation, and an equivalence class of volume forms will be
called an orientation of the manifold. We denote by Or(M) the set of orientations on
the smooth manifold M . A pair (orientable manifold, orientation) is called an oriented
manifold.

Let us observe that if M is orientable, and thus Or(M) 6= ∅, then for every point
p ∈M we have a natural map

Or(M)→ Or(TpM), Or(M) ∋ or 7→ orp ∈ Or(TpM),

defined as follows. If the orientation or on M is defined by a volume form ω, then
ωp ∈ detT ∗pM is a nontrivial volume form on TpM , which canonically defines an orientation
orω,p on TpM . It is clear that if ω1 and ω2 are equivalent volume form then orω1,p = orω2,p.

This map is clearly a surjection because or−ω,p = −orω,p, for any volume form ω.

Proposition 3.4.5. If M is a connected, orientable smooth manifold M , then for every
p ∈M the map

Or(M) ∋ or 7→ orp ∈ Or(TpM)

is a bijection.

Proof. Suppose or and or′ are two orientations on M such that orp = or′p. The function

M ∋ q 7→ ǫ(q) = or′q/orq ∈ {±1}

is continuous, and thus constant. In particular, ǫ(q) = ǫ(p) = 1, ∀q ∈M .
If or is given by the volume form ω and or′ is given by the volume form ω′, then there

exists a nowhere vanishing smooth function ρ :M → R such that ω′ = ρω. We deduce

sign ρ(q) = ǫ(q), ∀q ∈M.

This shows that the two forms ω′ and ω are equivalent and thus or = or′. ⊓⊔
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Figure 3.3: The normal line bundle to the round sphere.

The last proposition shows that on a connected, orientable manifold, a choice of an
orientation of one of its tangent spaces uniquely determines an orientation of the manifold.
A natural question arises.

How can one decide whether a given manifold is orientable or not.

We see this is just a special instance of the more general question we addressed in Chap-
ter 2: how can one decide whether a given vector bundle is trivial or not. The orientability
question can be given a very satisfactory answer using topological techniques. However,
it is often convenient to decide the orientability issue using ad-hoc arguments. In the
remaining part of this section we will describe several simple ways to detect orientability.

Example 3.4.6. If the tangent bundle of a manifold M is trivial, then clearly TM is
orientable. In particular, all Lie groups are orientable. ⊓⊔

Example 3.4.7. Suppose M is a manifold such that the Whitney sum RkM ⊕ TM is
trivial. Then M is orientable. Indeed, we have

det(Rk ⊕ TM) = detRk ⊗ detTM.

Both detRk and det(Rk ⊕ TM) are trivial. We deduce detTM is trivial since

detTM ∼= det(Rk ⊕ TM)⊗ (detRk)∗.

This trick works for example when M ∼= Sn. Indeed, let ν denote the normal line bundle.
The fiber of ν at a point p ∈ Sn is the 1-dimensional space spanned by the position vector
of p as a point in Rn; (see Figure 3.3). This is clearly a trivial line bundle since it has a
tautological nowhere vanishing section p 7→ p ∈ νp. The line bundle ν has a remarkable
feature:

ν ⊕ TSn = Rn+1.

Hence all spheres are orientable. ⊓⊔
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☞Important convention. The canonical orientation on Rn is the orientation defined
by the volume form dx1∧· · ·∧dxn, where x1, ..., xn are the canonical Cartesian coordinates.

The unit sphere Sn ⊂ Rn+1 is orientable. In the sequel we will exclusively deal with
its canonical orientation. To describe this orientation it suffices to describe a positively
oriented basis of detTpM for some p ∈ Sn. To this aim we will use the relation

Rn+1 ∼= νp ⊕ TpSn.

An element ω ∈ detTpS
n defines the canonical orientation if ~p ∧ ω ∈ detRn+1 defines the

canonical orientation of Rn+1. Above, by ~p we denoted the position vector of p as a point
inside the Euclidean space Rn+1. We can think of ~p as the “outer” normal to the round
sphere. We call this orientation outer normal first. When n = 1 it coincides with the
counterclockwise orientation of the unit circle S1. ⊓⊔

Lemma 3.4.8. A smooth manifold M is orientable if and only if there exists an open
cover (Uα)α∈A, and local coordinates (x1α, ..., x

n
α) on Uα such that

det

(
∂xiα

∂xjβ

)
> 0 on Uα ∩ Uβ. (3.4.3)

Proof. 1. We assume that there exists an open cover with the properties in the lemma,
and we will prove that detT ∗M is trivial by proving that there exists a volume form.

Consider a partition of unity B ⊂ C∞0 (M) subordinated to the cover (Uα)α∈A, i.e.,
there exists a map ϕ : B→ A such that

suppβ ⊂ Uϕ(β) ∀β ∈ B.

Define
ω :=

∑

β

βωϕ(β),

where for all α ∈ A we define ωα := dx1α ∧ · · · ∧ dxnα. The form ω is nowhere vanishing
since condition (3.4.3) implies that on an overlap Uα1 ∩ · · · ∩ Uαm the forms ωα1 , ..., ωαm

differ by a positive multiplicative factor.
2. Conversely, let ω be a volume form on M and consider an atlas (Uα; (x

i
α)). Then

ω |Uα= µαdx
1
α ∧ · · · ∧ dxnα,

where the smooth functions µα are nowhere vanishing, and on the overlaps they satisfy
the gluing condition

∆αβ = det

(
∂xiα

∂xjβ

)
=
µβ
µα
.

A permutation ϕ of the variables x1α, ..., x
n
α will change dx1α ∧ · · · ∧ dxnα by a factor ǫ(ϕ) so

we can always arrange these variables in such an order so that µα > 0. This will insure
the positivity condition

∆αβ > 0.
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The lemma is proved. ⊓⊔

We can rephrase the result in the above lemma in a more conceptual way using the
notion of orientation bundle. Suppose E → M is a real vector bundle of rank r on the
smooth manifold M described by the open cover (Uα)α∈A, and gluing cocycle

gβα : Uαβ → GL(r,R).

The orientation bundle associated to E is the real line bundle Θ(E) → M described by
the open cover (Uα)α∈A, and gluing cocycle

ǫβα := sign det gβα : Uαβ → R∗ = GL(1,R).

We define orientation bundle ΘM of a smooth manifold M as the orientation bundle
associated to the tangent bundle of M , ΘM := Θ(TM).

The statement in Lemma 3.4.8 can now be rephrased as follows.

Corollary 3.4.9. A smooth manifold M is orientable if and only if the orientation bundle
ΘM is trivializable. ⊓⊔

From Lemma 3.4.8 we deduce immediately the following consequence.

Proposition 3.4.10. The connected sum of two orientable manifolds is an orientable
manifold. ⊓⊔

Exercise 3.4.11. Prove the above result. ⊓⊔

Using Lemma 3.4.8 and Proposition 2.2.76 we deduce the following result.

Proposition 3.4.12. Any complex manifold is orientable. In particular, the complex
Grassmannians Grk(C

n) are orientable. ⊓⊔

Exercise 3.4.13. Supply the details of the proof of Proposition 3.4.12. ⊓⊔

The reader can check immediately that the product of two orientable manifolds is
again an orientable manifold. Using connected sums and products we can now produce
many examples of manifolds. In particular, the connected sums of g tori is an orientable
manifold.

By now the reader may ask where does orientability interact with integration. The
answer lies in Subsection 2.2.4 where we showed that an orientation or on a vector space
V induces a canonical, linear isomorphism ıor : detV ∗ → |Λ|V ; see (2.2.13).

Similarly, an orientation or on a smooth manifold M defines an isomorphism

ıor : C∞(detT ∗M)→ C∞(|Λ|M ).

For any compactly supported differential form ω on M of maximal degree we define its
integral by ∫

M
ω :=

∫

M
ıorω.
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Figure 3.4: Spherical coordinates.

We want to emphasize that this definition depends on the choice of orientation.
We ought to pause and explain in more detail the isomorphism ıor : C∞(detT ∗M)→

C∞(|Λ|M ). Since M is oriented we can choose a coordinate atlas
(
Uα, (xiα)

)
such that

det
[ ∂xiβ
∂xjα

]
1≤,i,j≤M

> 0, n = dimM, (3.4.4)

and on each coordinate patch Uα the orientation is given by the top degree form dxα =
dx1α ∧ · · · ∧ dxnα.

A top degree differential form ω is described by a collection of forms

ωα = ραdxα, ρα ∈ C∞(Uα),

and due to the condition (3.4.4) the collection of densities

µα = ρα|dxα| ∈ C∞(Uα, | |Λ| |M )

satisfy µα = µβ on the overlap Uαβ. Thus they glue together to a density on M , which is
precisely ıorω.

Example 3.4.14. Consider the 2-form on R3, ω = xdy ∧ dz, and let S2 denote the unit
sphere. We want to compute

∫
S2 ω |S2 , where S2 has the canonical orientation. To compute

this integral we will use spherical coordinates (r, ϕ, θ). These are defined by (see Figure
3.4.) 




x = r sinϕ cos θ
y = r sinϕ sin θ
z = r cosϕ

.

At the point p = (1, 0, 0) we have

∂r = ∂x = ~p, ∂θ = ∂y ∂ϕ = −∂z,
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so that the standard orientation on S2 is given by dϕ ∧ dθ. On S2 we have r ≡ 1 and
dr ≡ 0 so that

xdy ∧ dz |S2= sinϕ cos θ (cos θ sinϕdθ + sin θ cosϕdϕ)) ∧ (− sinϕ)dϕ

= sin3 ϕ cos2 θdϕ ∧ dθ.
The standard orientation associates to this form de density sin3 ϕ cos2 θ|dϕdθ|, and we
deduce

∫

S2

ω =

∫

[0,π]×[0,2π]
sin3 ϕ cos2 θ|dϕdθ| =

∫ π

0
sin3 ϕdϕ ·

∫ 2π

0
cos2 θdθ

=
4π

3
= volume of the unit ball B3 ⊂ R3.

As we will see in the next subsection the above equality is no accident. ⊓⊔

Example 3.4.15. (Invariant integration on compact Lie groups). Let G be a
compact, connected Lie group. Fix once and for all an orientation on the Lie algebra
LG. Consider a positively oriented volume element ω ∈ detL∗G. We can extend ω by left
translations to a left-invariant volume form on G which we continue to denote by ω. This
defines an orientation, and in particular, by integration, we get a positive scalar

c =

∫

G
ω.

Set dVG = 1
cω so that ∫

G
dVG = 1. (3.4.5)

The differential form dVG is the unique left-invariant n-form (n = dimG) on G satisfying
(3.4.5) (assuming a fixed orientation on G). We claim dVG is also right invariant.

To prove this, consider the modular function G ∋ h 7→ ∆(h) ∈ R defined by

R∗h(dVG) = ∆(h)dVG.

The quantity ∆(h) is independent of h because R∗hdVG is a left invariant form, so it has
to be a scalar multiple of dVG. Since (Rh1h2)

∗ = (Rh2Rh1)
∗ = R∗h1R

∗
h2

we deduce

∆(h1h2) = ∆(h1)∆(h2) ∀h1, h2 ∈ G.

Hence h 7→ ∆h is a smooth morphism

G→ (R \ {0}, ·).

Since G is connected ∆(G) ⊂ R+, and since G is compact, the set ∆(G) is bounded.
If there exists x ∈ G such that ∆(x) 6= 1, then either ∆(x) > 1, or ∆(x−1) > 1, and
in particular, we would deduce the set (∆(xn))n∈Z is unbounded. Thus ∆ ≡ 1 which
establishes the right invariance of dVG.
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The invariant measure dVG provides a very simple way of producing invariant objects
on G. More precisely, if T is tensor field on G, then for each x ∈ G define

T
ℓ
x =

∫

G
((Lg)∗T )xdVG(g).

Then x 7→ T x defines a smooth tensor field on G. We claim that T is left invariant.
Indeed, for any h ∈ G we have

(Lh)∗T
ℓ
=

∫

G
(Lh)∗((Lg)∗T )dVG(g) =

∫

G
((Lhg)∗T )dVG(g)

u=hg
=

∫

G
(Lu)∗TL

∗
h−1dVG(u) = T

ℓ
(L∗h−1dVG = dVG ).

If we average once more on the right we get a tensor

G ∋ x 7→
∫

G

(
(Rg)∗T

ℓ )
x
dVG,

which is both left and right invariant. ⊓⊔

Exercise 3.4.16. Let G be a Lie group. For any X ∈ LG denote by ad(X) the linear
map LG → LG defined by

LG ∋ Y 7→ [X,Y ] ∈ LG.

(a) If ω denotes a left invariant volume form prove that ∀X ∈ LG

LXω = − tr ad(X)ω.

(b) Prove that if G is a compact Lie group, then tr ad(X) = 0, for any X ∈ LG. ⊓⊔

3.4.3 Stokes’ formula

The Stokes’ formula is the higher dimensional version of the fundamental theorem of
calculus (Leibniz-Newton formula)

∫ b

a
df = f(b)− f(a),

where f : [a, b]→ R is a smooth function and df = f ′(t)dt. In fact, the higher dimensional
formula will follow from the simplest 1-dimensional situation.

We will spend most of the time finding the correct formulation of the general version,
and this requires the concept of manifold with boundary. The standard example is the
lower half-space

Hn
− = { (x1, ..., xn) ∈ Rn ; x1 ≤ 0 }.

Definition 3.4.17. A smooth manifold with boundary of dimension n is a topological
space with the following properties.

(a) There exists a smooth n-dimensional manifold M̃ that containsM as a closed subset.
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(b) The interior of M , denoted by M0, is non empty.

(c) For each point p ∈ ∂M :=M \M0, there exist smooth local coordinates (x1, ..., xn)

defined on an open neighborhood N of p in M̃ such that

(c1) M
0 ∩N =

{
q ∈ N; x1(q) < 0,

}
.

(c2) ∂M ∩N = {x1 = 0 }.

The set ∂M is called the boundary of M . A manifold with boundary M is called
orientable if its interior M0 is orientable. ⊓⊔

Example 3.4.18. (a) A closed interval I = [a, b] is a smooth 1-dimensional manifold with

boundary ∂I = {a, b}. We can take M̃ = R.
(b) The closed unit ball B3 ⊂ R3 is an orientable manifold with boundary ∂B3 = S2.

We can take M̃ = R3.
(c) Suppose X is a smooth manifold, and f : X → R is a smooth function such that

0 ∈ R is a regular value of f , i.e.,

f(x) = 0 =⇒ df(x) 6= 0.

Define M :=
{
x ∈ X; f(x) ≤ 0

}
. A simple application of the implicit function theorem

shows that the pair (X,M) defines a manifold with boundary. Note that examples (a)
and (b) are special cases of this construction. In the case (a) we take X = R, and
f(x) = (x−a)(x−b), while in the case (b) we takeX = R3 and f(x, y, z) = (x2+y2+z2)−1.

⊓⊔

Definition 3.4.19. Two manifolds with boundary M1 ⊂ M̃1, and M2 ⊂ M̃2 are said to
be diffeomorphic if, for every i = 1, 2 there exists an open neighborhood Ui of Mi in M̃i,
and a diffeomorphism F : U1 → U2 such that F (M1) =M2. ⊓⊔

Exercise 3.4.20. Prove that any manifold with boundary is diffeomorphic to a manifold
with boundary constructed via the process described in Example 3.4.18(c). ⊓⊔

Proposition 3.4.21. Let M be a smooth manifold with boundary. Then its boundary
∂M is also a smooth manifold of dimension dim ∂M = dimM − 1. Moreover, if M is
orientable, then so is its boundary. ⊓⊔

The proof is left to the reader as an exercise.

☞Important convention. Let M be an orientable manifold with boundary. There is
a (non-canonical) way to associate to an orientation onM0 an orientation on the boundary
∂M . This will be the only way in which we will orient boundaries throughout this book.
If we do not pay attention to this convention then our results may be off by a sign.

We now proceed to described this induced orientation on ∂M . For any p ∈ ∂M choose
local coordinates (x1, ..., xn) as in Definition 3.4.17. Then the induced orientation of Tp∂M
is defined by

ǫdx2 ∧ · · · ∧ dxn ∈ detTp∂M, ǫ = ±1,
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where ǫ is chosen so that for x1 < 0, i.e. inside M , the form

ǫdx1 ∧ dx2 ∧ · · · ∧ dxn

is positively oriented. The differential dx1 is usually called an outer conormal since
x1 increases as we go towards the exterior of M . −dx1 is then the inner conormal for
analogous reasons. The rule by which we get the induced orientation on the boundary can
be rephrased as

{outer conormal} ∧ {induced orientation on boundary} = {orientation in the interior}.

We may call this rule “outer (co)normal first” for obvious reasons. ⊓⊔

Example 3.4.22. The canonical orientation on Sn ⊂ Rn+1 coincides with the induced
orientation of Sn+1 as the boundary of the unit ball Bn+1. ⊓⊔

Exercise 3.4.23. Consider the hyperplane Hi ⊂ Rn defined by the equation {xi = 0}.
Prove that the induced orientation ofHi as the boundary of the half-space H

n,i
+ = {xi ≥ 0}

is given by the (n−1)-form (−1)idx1∧· · ·∧ d̂xi∧· · · dxn where, as usual, the hat indicates
a missing term. ⊓⊔

Theorem 3.4.24 (Stokes formula). Let M be an oriented n-dimensional manifold with
boundary ∂M and ω ∈ Ωn−1(M) a compactly supported form. Then

∫

M0

dω =

∫

∂M
ω.

In the above formula d denotes the exterior derivative, and ∂M has the induced orientation.

Proof. Via partitions of unity the verification is reduced to the following two situations.

Case 1. The (n− 1)-form ω is compactly supported in Rn. We have to show

∫

Rn

dω = 0.

It suffices to consider only the special case

ω = f(x)dx2 ∧ · · · ∧ dxn,

where f(x) is a compactly supported smooth function. The general case is a linear com-
bination of these special situations. We compute

∫

Rn

dω =

∫

Rn

∂f

∂x1
dx1 ∧ · · · ∧ dxn =

∫

Rn−1

(∫

R

∂f

∂x1
dx1
)
dx2 ∧ · · · ∧ dxn = 0,

since ∫

R

∂f

∂x1
dx1 = f(∞, x2, ..., xn)− f(−∞, x2, ..., xn),

and f has compact support.
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Case 2. The (n− 1)-form ω is compactly supported in Hn
−. Let

ω =
∑

i

fi(x)dx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Then

dω =

(∑

i

(−1)i+1 ∂f

∂xi

)
dx1 ∧ · · · ∧ dxn.

One verifies as in Case 1 that
∫

Hn
−

∂f

∂xi
dx1 ∧ · · · ∧ dxn = 0 for i 6= 1.

For i = 1 we have
∫

Hn
+

∂f

∂x1
dx1 ∧ · · · ∧ dxn =

∫

Rn−1

(∫ 0

−∞

∂f

∂x1
dx1
)
dx2 ∧ · · · ∧ dxn

=

∫

Rn−1

(
f(0, x2, ..., xn)− f(−∞, x2, ..., xn)

)
dx2 ∧ · · · ∧ dxn

=

∫

Rn−1

f(0, x2, ..., xn)dx2 ∧ · · · ∧ dxn =

∫

∂Hn
−

ω.

The last equality follows from the fact that the induced orientation on ∂Hn
− is given by

dx2 ∧ · · · ∧ dxn. This concludes the proof of the Stokes formula. ⊓⊔

Remark 3.4.25. Stokes formula illustrates an interesting global phenomenon. It shows
that the integral

∫
M dω is independent of the behavior of ω inside M . It only depends on

the behavior of ω on the boundary. ⊓⊔

Example 3.4.26.
∫

S2

xdy ∧ dz =

∫

B3

dx ∧ dy ∧ dz = vol (B3) =
4π

3
. ⊓⊔

Remark 3.4.27. The above considerations extend easily to more singular situations.
For example, when M is the cube [0, 1]n its topological boundary is no longer a smooth
manifold. However, its singularities are inessential as far as integration is concerned. The
Stokes formula continues to hold

∫

In
dω =

∫

∂I
ω ∀ω ∈ Ωn−1(In).

The boundary is smooth outside a set of measure zero and is given the induced orientation:
“ outer (co)normal first”. The above equality can be used to give an explanation for the
terminology “exterior derivative” we use to call d. Indeed if ω ∈ Ωn−1(Rn) and Ih = [0, h]
then we deduce

dω |x=0= lim
h→0

h−n
∫

∂Inh

ω. (3.4.6)

When n = 1 this is the usual definition of the derivative. ⊓⊔
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Example 3.4.28. We now have sufficient technical background to describe an example
of vector bundle which admits no flat connections, thus answering the question raised at
the end of Section 3.3.3.

Consider the complex line bundle Ln → S2 constructed in Example 2.1.38. Recall that
Ln is described by the open cover

S2 = U0 ∪ U1, U0 = S2 \ {South pole}, U1 = S2 \ {North pole},

and gluing cocycle

g10 : U0 ∩ U1 → C∗, g10(z) = z−n = g01(z)
−1,

where we identified the overlap U0 ∩ U1 with the punctured complex line C∗.
A connection on Ln is a collection of two complex valued forms ω0 ∈ Ω1(U1) ⊗ C,

ω1 ∈ Ω1(U1)⊗ C, satisfying a gluing relation on the overlap (see Example 3.3.7)

ω1 = −
dg10
g10

+ ω0 = n
dz

z
+ ω0.

If the connection is flat, then

dω0 = 0 on U0 and dω1 = 0 on U1.

Let E+ be the Equator equipped with the induced orientation as the boundary of the
northern hemisphere, and E− the equator with the opposite orientation, as the boundary
of the southern hemisphere. The orientation of E+ coincides with the orientation given
by the form dθ, where z = exp(iθ).

We deduce from the Stokes formula (which works for complex valued forms as well)
that ∫

E+

ω0 = 0

∫

E+

ω1 = −
∫

E−

ω1 = 0.

On the other hand, over the Equator, we have

ω1 − ω0 = n
dz

z
= nidθ,

from which we deduce

0 =

∫

E+

ω0 − ω1 = ni

∫

E+

dθ = 2nπi !!!

Thus there exist no flat connections on the line bundle Ln, n 6= 0, and at fault is the
gluing cocycle defining L. In a future chapter we will quantify the measure in which the
gluing data obstruct the existence of flat connections. ⊓⊔

3.4.4 Representations and characters of compact Lie groups

The invariant integration on compact Lie groups is a very powerful tool with many uses.
Undoubtedly, one of the most spectacular application is Hermann Weyl’s computation
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of the characters of representations of compact semi-simple Lie groups. The invariant
integration occupies a central place in his solution to this problem.

We devote this subsection to the description of the most elementary aspects of the
representation theory of compact Lie groups.

Let G be a Lie group. Recall that a (linear) representation of G is a left action on a
(finite dimensional) vector space V

G× V → V (g, v) 7→ T (g)v ∈ V,

such that the map T (g) is linear for any g. One also says that V has a structure of
G-module. If V is a real (respectively complex) vector space, then it is said to be a real
(respectively complex) G-module.

Example 3.4.29. Let V = Cn. Then G = GL(n,C) acts linearly on V in the tautological
manner. Moreover V ∗, V ⊗k, ΛmV and SℓV are complex G-modules. ⊓⊔

Example 3.4.30. Suppose G is a Lie group with Lie algebra LG−T1G. For every g ∈ G,
the conjugation

Cg : G→ G, h 7→ Cg(h) = ghg−1,

sends the identity 1 ∈ G to itself. We denote by Adg : LG → L the differential of
h 7→ Cg(h) at h = 1. The operator Adg is a linear isomorphism of LG, and the resulting
map

G 7→ Aut(LG), g 7→ Adg,

is called adjoint representation of G.

For example, if G = SO(n), then LG = so(n), and the adjoint representation Ad :
SO(n)→ Aut(so(n)), can be given the more explicit description

so(n) ∋ X Ad(g)7−→ gXg−1 ∈ so(n), ∀g ∈ SO(n). ⊓⊔

Exercise 3.4.31. Let G be a Lie group, with Lie algebra LG. Prove that for any X,Y ∈
LG we have

d

dt
|t=0 Adexp(tX)(Y ) = ad(X)Y = [X,Y ]. ⊓⊔

Definition 3.4.32. A morphism of G-modules V1 and V2 is a linear map L : V1 → V2
such that, for any g ∈ G, the diagram below is commutative, i.e., T2(g)L = LT1(g).

V1 V2

V1 V2

w

L

u

T1(g)

u

T2(g)

w

L

.

The space of morphisms of G-modules is denoted by HomG(V1, V2). The collection of
isomorphisms classes of complex G-modules is denoted by G−Mod. ⊓⊔
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If V is a G-module, then an invariant subspace (or submodule) is a subspace U ⊂ V
such that T (g)(U) ⊂ U , ∀g ∈ G. A G-module is said to be irreducible if it has no invariant
subspaces other than {0} and V itself.

Proposition 3.4.33. The direct sum “⊕”, and the tensor product “⊗” define a structure
of semi-ring with 1 on G−Mod. 0 is represented by the null representation {0}, while 1
is represented by the trivial module G→ Aut (C), g 7→ 1. ⊓⊔

The proof of this proposition is left to the reader.

Example 3.4.34. Let Ti : G→ Aut (Ui) (i = 1, 2) be two complex G-modules. Then U∗1
is a G-module given by (g, u∗) 7→ T1(g

−1)† u∗. Hence Hom (U1, U2) is also a G-module.
Explicitly, the action of g ∈ G is given by

(g, L) 7−→ T2(g)LT1(g
−1), ∀L ∈ Hom(U1, U2).

We see that HomG(U1, U2) can be identified with the linear subspace in Hom (U1, U2)
consisting of the linear maps U1 → U2 unchanged by the above action of G. ⊓⊔

Proposition 3.4.35 (Weyl’s unitary trick). Let G be a compact Lie group, and V a
complex G-module. Then there exists a Hermitian metric h on V which is G-invariant,
i.e., h(gv1, gv2) = h(v1, v2), ∀v1, v2 ∈ V .

Proof. Let h be an arbitrary Hermitian metric on V . Define its G-average by

h(u, v) :=

∫

G
h(gu, gv)dVG(g),

where dVG(g) denotes the normalized bi-invariant measure on G. One can now check
easily that h is G-invariant. ⊓⊔

In the sequel, G will always denote a compact Lie group.

Proposition 3.4.36. Let V be a complex G-module and h a G-invariant Hermitian met-
ric. If U is an invariant subspace of V then so is U⊥, where “⊥” denotes the orthogonal
complement with respect to h.

Proof. Since h is G-invariant it follows that, ∀g ∈ G, the operator T (g) is unitary,
T (g)T ∗(g) = 1V . Hence, T

∗(g) = T−1(g) = T (g−1), ∀g ∈ G.
If x ∈ U⊥, then for all u ∈ U , and ∀g ∈ G

h(T (g)x, u) = h((x, T ∗(g)u) = h(x, T (g−1)u) = 0.

Thus T (g)x ∈ U⊥, so that U⊥ is G-invariant. ⊓⊔

Corollary 3.4.37. Every G-module V can be decomposed as a direct sum of irreducible
ones. ⊓⊔
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If we denoted by Irr(G) the collection of isomorphism classes of irreducibleG-modules,
then we can rephrase the above corollary by saying that Irr(G) generates the semigroup
(G−Mod, ⊕).

To gain a little more insight we need to use the following remarkable trick due to Isaac
Schur.

Lemma 3.4.38 (Schur lemma). Let V1, V2 be two irreducible complex G-modules. Then

dimCHomG(V1, V2) =

{
1 if V1 ∼= V2
0 if V1 6∼= V2

.

Proof. Let L ∈ HomG(V1, V2). Then kerL ⊂ V1 is an invariant subspace of V1. Similarly,
Range (L) ⊂ V2 is an invariant subspace of V2. Thus, either kerL = 0 or kerL = V1.

The first situation forces RangeL 6= 0 and, since V2 is irreducible, we conclude
RangeL = V2. Hence, L has to be in isomorphism of G-modules. We deduce that, if
V1 and V2 are not isomorphic as G-modules, then HomG(V1, V2) = {0}.

Assume now that V1 ∼= V2 and S : V1 → V2 is an isomorphism of G-modules. According
to the previous discussion, any other nontrivial G-morphism L : V1 → V2 has to be an
isomorphism. Consider the automorphism T = S−1L : V1 → V1. Since V1 is a complex
vector space T admits at least one (non-zero) eigenvalue λ.

The map λ1V1 − T is an endomorphism of G-modules, and ker (λ1V1 − T ) 6= 0.
Invoking again the above discussion we deduce T ≡ λ1V1 , i.e. L ≡ λS. This shows
dimHomG(V1, V2) = 1. ⊓⊔

Schur’s lemma is powerful enough to completely characterize S1 −Mod, the repre-
sentations of S1.

Example 3.4.39. (The irreducible (complex) representations of S1). Let V be
a complex irreducible S1-module

S1 × V ∋ (eiθ, v) 7−→ Tθv ∈ V,
where Tθ1 ·Tθ2 = Tθ1+θ2 mod 2π, In particular, this implies that each Tθ is an S

1-automorphism
since it obviously commutes with the action of this group. Hence Tθ = λ(θ)1V which
shows that dimV = 1 since any 1-dimensional subspace of V is S1-invariant. We have
thus obtained a smooth map

λ : S1 → C∗,

such that
λ(eiθ · eiτ ) = λ(eiθ)λ(eiθ).

Hence λ : S1 → C∗ is a group morphism. As in the discussion of the modular function we
deduce that |λ| ≡ 1. Thus, λ looks like an exponential, i.e., there exists α ∈ R such that
(verify!)

λ(eiθ) = exp(iαθ), ∀θ ∈ R.

Moreover, exp(2πiα) = 1, so that α ∈ Z.
Conversely, for any integer n ∈ Z we have a representation

S1 ρn→ Aut (C) (eiθ, z) 7→ einθz.

The exponentials exp(inθ) are called the characters of the representations ρn. ⊓⊔
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Exercise 3.4.40. Describe the irreducible representations of T n-the n-dimensional torus.
⊓⊔

Definition 3.4.41. (a) Let V be a complex G-module, g 7→ T (g) ∈ Aut (V ). The
character of V is the smooth function

χV : G→ C, χV (g) := trT (g).

(b) A class function is a continuous function f : G→ C such that

f(hgh−1) = f(g) ∀g, h ∈ G.

(The character of a representation is an example of class function). ⊓⊔

Theorem 3.4.42. Let G be a compact Lie group, U1, U2 complex G-modules and χUi

their characters. Then the following hold.
(a)χU1⊕U2

= χU1
+ χU2

, χU1⊗U2
= χU1

· χU1
.

(b) χUi
(1) = dimUi.

(c) χU∗
i
= χUi

-the complex conjugate of χUi
.

(d) ∫

G
χUi

(g)dVG(g) = dimUGi ,

where UGi denotes the space of G-invariant elements of Ui,

UGi = {x ∈ Ui ; x = Ti(g)x ∀g ∈ G}.

(e) ∫

G
χU1

(g) · χU2
(g)dVG(g) = dimHomG(U2, U1).

Proof. The parts (a) and (b) are left to the reader. To prove (c), fix an invariant Hermitian
metric on U = Ui. Thus, each T (g) is a unitary operator on U . The action of G on U∗ is
given by T (g−1)†. Since T (g) is unitary, we have T (g−1)† = T (g). This proves (c).

Proof of (d). Consider

P : U → U, Pu =

∫

G
T (g)u dVG(g).

Note that PT (h) = T (h)P , ∀h ∈ G, i.e., P ∈ HomG(U,U). We now compute

T (h)Pu =

∫

G
T (hg)u dVG(g) =

∫

G
T (γ)u R∗h−1dVG(γ),

∫

G
T (γ)u dVG(γ) = Pu.

Thus, each Pu is G-invariant. Conversely, if x ∈ U is G-invariant, then

Px =

∫

G
T (g)xdg =

∫

G
x dVG(g) = x,
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i.e., UG = RangeP . Note also that P is a projector, i.e., P 2 = P . Indeed,

P 2u =

∫

G
T (g)Pu dVG(g) =

∫

G
Pu dVG(g) = Pu.

Hence P is a projection onto UG, and in particular

dimC U
G = trP =

∫

G
trT (g) dVG(g) =

∫

G
χU (g) dVG(g).

Proof of (e).

∫

G
χU1
· χU2

dVG(g) =

∫

G
χU1
· χU∗

2
dVG(g) =

∫

G
χU1⊗U∗

2
dVG(g) =

∫

G
χHom(U2,U1)

= dimC (Hom (U2, U1))
G = dimCHomG(U2, U1),

since HomG coincides with the space of G-invariant morphisms. ⊓⊔

Corollary 3.4.43. Let U , V be irreducible G-modules. Then

(χU ,χV ) =

∫

G
χU · χV dg = δUV =

{
1 , U ∼= V
0 , U 6∼= V

.

Proof. Follows from Theorem 3.4.42 using Schur’s lemma. ⊓⊔

Corollary 3.4.44. Let U , V be two G-modules. Then U ∼= V if and only if χU = χV .

Proof. Decompose U and V as direct sums of irreducible G-modules

U = ⊕m1 (miUi) V = ⊕ℓ1(njVj).

Hence χU =
∑
miχVi and χV =

∑
njχVj . The equivalence “representation” ⇐⇒ “char-

acters” stated by this corollary now follows immediately from Schur’s lemma and the
previous corollary. ⊓⊔

Thus, the problem of describing the representations of a compact Lie group boils down
to describing the characters of its irreducible representations. This problem was completely
solved by Hermann Weyl, but its solution requires a lot more work that goes beyond the
scope of this book. We will spend the remaining part of this subsection analyzing the
equality (d) in Theorem 3.4.42.

Describing the invariants of a group action was a very fashionable problem in the
second half of the nineteenth century. Formula (d) mentioned above is a truly remarkable
result. It allows (in principle) to compute the maximum number of linearly independent
invariant elements.

Let V be a complex G-module and denote by χV its character. The complex exterior
algebra Λ•cV

∗ is a complex G-module, as the space of complex multi-linear skew-symmetric
maps

V × · · · × V → C.
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Denote by bck(V ) the complex dimension of the space of G-invariant elements in ΛkcV
∗.

One has the equality

bck(V ) =

∫

G
χΛk

cV
∗dVG(g).

These facts can be presented coherently by considering the Z-graded vector space

I•c(V ) :=
⊕

k

ΛkinvV
∗.

Its Poincaré polynomial is

PI•c(V )(t) =
∑

tkbck(V ) =

∫

G
tkχΛk

cV
∗dVG(g).

To obtain a more concentrated formulation of the above equality we need to recall some
elementary facts of linear algebra.

For each endomorphism A of V denote by σk(A) the trace of the endomorphism

ΛkA : ΛkV → ΛkV.

Equivalently, (see Exercise 2.2.25) the number σk(A) is the coefficient of tk in the charac-
teristic polynomial

σt(A) = det(1V + tA).

Explicitly, σk(A) is given by the sum

σk(A) =
∑

1≤i1···ik≤n
det
(
aiαiβ

)
(n = dimV ).

If g ∈ G acts on V by T (g), then g acts on ΛkV ∗ by ΛkT (g−1)† = ΛkT (g). (We
implicitly assumed that each T (g) is unitary with respect to some G-invariant metric on
V ). Hence

χΛk
cV

∗ = σk
(
T (g)

)
. (3.4.7)

We conclude that

PI•c(V )(t) =

∫

G

∑
tkσk

(
T (g)

)
dVG(g) =

∫

G
det
(
1V + t T (g)

)
dVG(g). (3.4.8)

Consider now the following situation. Let V be a complex G-module. Denote by Λ•rV the
space of R-multi-linear, skew-symmetric maps

V × · · · × V → R.

The vector space Λ•rV
∗ is a real G-module. We complexify it, so that Λ•rV ⊗C is the space

of R-multi-linear, skew-symmetric maps

V × · · · × V → C,
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and as such, it is a complex G-module. The real dimension of the subspace Ikr (V ) of
G-invariant elements in ΛkrV

∗ will be denoted by brk(V ), so that the Poincaré polynomial
of I•r(V ) = ⊕kIkr is

PI•r(V )(t) =
∑

k

tkbrk(V ).

On the other hand, brk(V ) is equal to the complex dimension of ΛkrV
∗ ⊗ C. Using the

results of Subsection 2.2.5 we deduce

Λ•rV ⊗ C ∼= Λ•cV
∗ ⊗C Λ•cV

∗
=
⊕

k

(
⊕i+j=kΛicV ∗ ⊗ ΛjcV

∗)
. (3.4.9)

Each of the above summands is a G-invariant subspace. Using (3.4.7) and (3.4.9) we
deduce

PI•r(V )(t) =
∑

k

∫

G

∑

i+j=k

σi
(
T (g)

)
σj
(
T (g)

)
ti+j dVG(g)

=

∫

G
det
(
1V + tT (g)

)
det
(
1V + t T (g)

)
dVG(g)

=

∫

G

∣∣det
(
1V + tT (g)

)∣∣2 dVG(g).

(3.4.10)

We will have the chance to use this result in computing topological invariants of man-
ifolds with a “high degree of symmetry” like, e.g., the complex Grassmannians.

3.4.5 Fibered calculus

In the previous section we have described the calculus associated to objects defined on a
single manifold. The aim of this subsection is to discuss what happens when we deal with
an entire family of objects parameterized by some smooth manifold. We will discuss only
the fibered version of integration. The exterior derivative also has a fibered version but its
true meaning can only be grasped by referring to Leray’s spectral sequence of a fibration
and so we will not deal with it. The interested reader can learn more about this operation
from [41], Chapter 3, Sec.5.

Assume now that, instead of a single manifold F , we have an entire (smooth) family of
them (Fb)b∈B . In more rigorous terms this means that we are given a smooth fiber bundle
p : E → B with standard fiber F .

On the total space E we will always work with split coordinates (xi; yj), where (xi)
are local coordinates on the standard fiber F , and (yj) are local coordinates on the base
B (the parameter space).

The model situation is the bundle

E = Rk × Rm
p→ Rm = B, (x, y)

p7−→ y.

We will first define a fibered version of integration. This requires a fibered version of
orientability.

Definition 3.4.45. Let p : E → B be a smooth bundle with standard fiber F . The
bundle is said to be orientable if the following hold.
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(a) The manifold F is orientable;

(b) There exists an open cover (Uα), and trivializations p−1(Uα)
Ψα−→ F × Uα, such that

the gluing maps

Ψβ ◦Ψ−1α : F × Uαβ → F × Uαβ (Uαβ = Uα ∩ Uβ)

are fiberwise orientation preserving, i.e., for each y ∈ Uαβ, the diffeomorphism

F ∋ f 7→ Ψαβ(f, y) ∈ F

preserves any orientation on F . ⊓⊔

Exercise 3.4.46. If the base B of an orientable bundle p : E → B is orientable, then so
is the total space E (as an abstract smooth manifold). ⊓⊔

☞Important convention. Let p : E → B be an orientable bundle with oriented basis
B. The natural orientation of the total space E is defined as follows.

If E = F × B then the orientation of the tangent space T(f,b)E is given by ΩF ×
ωB, where ωF ∈ detTfF (respectively ωB ∈ detTbB) defines the orientation of TfF
(respectively TbB).

The general case reduces to this one since any bundle is locally a product, and the
gluing maps are fiberwise orientation preserving. This convention can be briefly described
as

orientation total space = orientation fiber ∧ orientation base.

The natural orientation can thus be called the fiber-first orientation. In the sequel all
orientable bundles will be given the fiber-first orientation. ⊓⊔

Let p : E → B be an orientable fiber bundle with standard fiber F .

Proposition 3.4.47. There exists a linear operator

p∗ =
∫

E/B
: Ω•cpt(E)→ Ω•−rcpt (B), r = dimF,

uniquely defined by its action on forms supported on domains D of split coordinates

D ∼= Rr × Rm
p→ Rm, (x; y) 7→ y.

If ω = fdxI ∧ dyJ , f ∈ C∞cpt(Rr+m), then
∫

E/B
=

{
0 , |I| 6= r(∫

Rr fdx
I
)
dyJ , |I| = r

.

The operator
∫
E/B is called the integration-along-fibers operator. ⊓⊔
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The proof goes exactly as in the non-parametric case, i.e., when B is a point. One
shows using partitions of unity that these local definitions can be patched together to
produce a well defined map

∫

E/B
: Ω•cpt(E)→ Ω•−rcpt (B).

The details are left to the reader.

Proposition 3.4.48. Let p : E → B be an orientable bundle with an r-dimensional
standard fiber F . Then for any ω ∈ Ω∗cpt(E) and η ∈ ω∗cpt(B) such that degω + deg η =
dimE we have ∫

E/B
dEω = (−1)rdB

∫

E/B
ω.

If B is oriented and ω η ar as above then

∫

E
ω ∧ p∗(η) =

∫

B

(∫

E/B
ω

)
∧ η. (Fubini)

The last equality implies immediately the projection formula

p∗(ω ∧ p∗η) = p∗ω ∧ η. (3.4.11)

Proof. It suffices to consider only the model case

p : E = Rr × Rm → Rm = B, (x; y)
p→ y,

and ω = fdxI ∧ dyJ . Then

dEω =
∑

i

∂f

∂xi
dxi ∧ dxI ∧ dyJ + (−1)|I|

∑

j

∂f

∂yj
dxI ∧ dyj ∧ dyJ .

∫

E/B
dEω =

(∫

Rr

∑

i

∂f

∂xi
dxi ∧ dxI

)
+ (−1)|I|



∫

Rr

∑

j

∂f

∂yj
dxI


 ∧ dyj ∧ dyJ .

The above integrals are defined to be zero if the corresponding forms do not have degree
r. Stokes’ formula shows that the first integral is always zero. Hence

∫

E/B
dEω = (−1)|I| ∂

∂yj



∫

Rr

∑

j

dxI


 ∧ dyj ∧ dyJ = (−1)rdB

∫

E/B
ω.

The second equality is left to the reader as an exercise. ⊓⊔
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Exercise 3.4.49. (Gelfand-Leray). Suppose that p : E → B is an oriented fibration,
ωE is a volume form on E, and ωB is a volume form on B.

(a) Prove that, for every b ∈ B, there exists a unique volume form ωE/B on Eb = p−1(b)
with the property that, for every x ∈ Eb, we have

ωE(x) = ωE/B(x) ∧ (p∗ωB)(x) ∈ ΛdimET ∗xE.

This form is called the Gelfand-Leray residue of ωE rel p.

(b) Prove that for every compactly supported smooth function f : E → R we have

(
p∗(fωE)

)
b
=

(∫

Eb

fωE/B

)
ωB(b),∀b ∈ B,

∫

E
fωE =

∫

B

(∫

Eb

fωE/B

)
ωB.

(c) Consider the fibration R2 → R, (x, y)
p7→ t = ax + by, a2 + b2 6= 0. Compute the

Gelfand-Leray residue dx∧dy
dt along the fiber p(x, y) = 0. ⊓⊔

Definition 3.4.50. A ∂-bundle is a collection (E, ∂E, p,B) consisting of the following.

(a) A smooth manifold E with boundary ∂E.

(ii) A smooth map p : E → B such that the restrictions p : IntE → B and p : ∂E → B
are smooth bundles.

The standard fiber of p : IntE → B is called the interior fiber. ⊓⊔

One can think of a ∂-bundle as a smooth family of manifolds with boundary.

Example 3.4.51. The projection

p : [0, 1] ×M →M (t;m) 7→ m,

defines a ∂-bundle. The interior fiber is the open interval (0, 1). The fiber of p : ∂(I×M)→
M is the disjoint union of two points. ⊓⊔

Standard Models A ∂-bundle is obtained by gluing two types of local models.

• Interior models Rr ×Rm → Rm

• Boundary models Hr
+ × Rm → Rm, where

Hr
+ :=

{
(x1, · · · , xr) ∈ Rr; x1 ≥ 0

}
.

Remark 3.4.52. Let p : (E, ∂E) → B be a ∂-bundle. If p : IntE → B is orientable and
the basis B is oriented as well, then on ∂E one can define two orientations.

(i) The fiber-first orientation as the total space of an oriented bundle ∂E → B.

(ii) The induced orientation as the boundary of E.
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These two orientations coincide. ⊓⊔

Exercise 3.4.53. Prove that the above orientations on ∂E coincide. ⊓⊔

Theorem 3.4.54. Let p : (E, ∂E) → B be an orientable ∂-bundle with an r-dimensional
interior fiber. Then for any ω ∈ Ω•cpt(E) we have

∫

∂E/B
ω =

∫

E/B
dEω − (−1)rdB

∫

E/B
ω (Homotopy formula). ⊓⊔

The last equality can be formulated as

∫

∂E/B
=

∫

E/B
dE − (−1)rdB

∫

E/B
.

This is “the mother of all homotopy formulæ”. It will play a crucial part in Chapter 7
when we embark on the study of DeRham cohomology.

Exercise 3.4.55. Prove the above theorem. ⊓⊔



Chapter 4

Riemannian Geometry

Now we can finally put to work the abstract notions discussed in the previous chapters.
Loosely speaking, the Riemannian geometry studies the properties of surfaces (manifolds)
“made of canvas”. These are manifolds with an extra structure arising naturally in many
instances. On such manifolds one can speak of the length of a curve, and the angle between
two smooth curves. In particular, we will study the problem formulated in Chapter 1: why
a plane (flat) canvas disk cannot be wrapped in an one-to-one fashinon around the unit
sphere in R3. Answering this requires the notion of Riemann curvature which will be the
central theme of this chapter.

4.1 Metric properties

4.1.1 Definitions and examples

To motivate our definition we will first try to formulate rigorously what do we mean by a
“canvas surface”.

A “canvas surface” can be deformed in many ways but with some limitations: it cannot
be stretched as a rubber surface because the fibers of the canvas are flexible but not elastic.
Alternatively, this means that the only operations we can perform are those which do not
change the lengths of curves on the surface. Thus, one can think of “canvas surfaces” as
those surfaces on which any “reasonable” curve has a well defined length.

Adapting a more constructive point of view, one can say that such surfaces are endowed
with a clear procedure of measuring lengths of piecewise smooth curves.

Classical vector analysis describes one method of measuring lengths of smooth paths
in R3. If γ : [0, 1]→ R3 is such a paths, then its length is given by

length (γ) =

∫ 1

0
|γ̇(t)|dt,

where |γ̇(t)| is the Euclidean length of the tangent vector γ̇(t).
We want to do the same thing on an abstract manifold, and we are clearly faced with

one problem: how do we make sense of the length |γ̇(t)|? Obviously, this problem can be
solved if we assume that there is a procedure of measuring lengths of tangent vectors at
any point on our manifold. The simplest way to do achieve this is to assume that each

138
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tangent space is endowed with an inner product (which can vary from point to point in a
smooth way).

Definition 4.1.1. (a) A Riemann manifold is a pair (M,g) consisting of a smooth
manifold M and a metric g on the tangent bundle, i.e., a smooth, symmetric positive
definite (0, 2)–tensor field on M . The tensor g is called a Riemann metric on M .
(b) Two Riemann manifolds (Mi, gi) (i = 1, 2) are said to be isometric if there exists a
diffeomorphism φ :M1 →M2 such that φ∗g2 = g1. ⊓⊔

If (M,g) is a Riemann manifold then, for any x ∈M , the restriction

gx : TxM × TxM → R

is an inner product on the tangent space TxM . We will frequently use the alternative
notation (•, •)x = gx(•, •). The length of a tangent vector v ∈ TxM is defined as usual,

|v|x := gx(v, v)
1/2.

If γ : [a, b]→M is a piecewise smooth path, then we define its length by

l(γ) =

∫ b

a
|γ̇(t)|γ(t)dt.

If we choose local coordinates (x1, . . . , xn) on M , then we get a local description of g as

g = gijdx
idxj , gij = g(∂xi , ∂xj ).

Proposition 4.1.2. Let M be a smooth manifold, and denote by RM the set of Riemann
metrics on M . Then RM is a non-empty convex cone in the linear space of symmetric
(0, 2)–tensors.

Proof. The only thing that is not obvious is that RM is non-empty. We will use again
partitions of unity. Cover M by coordinate neighborhoods (Uα)α∈A. Let (xiα) be a collec-
tion of local coordinates on Uα. Using these local coordinates we can construct by hand
the metric gα on Uα by

gα = (dx1α)
2 + · · · + (dxnα)

2.

Now, pick a partition of unity B ⊂ C∞0 (M) subordinated to the cover (Uα)α∈A, i.e., there
exits a map φ : B→ A such that ∀β ∈ B suppβ ⊂ Uφ(β). Then define

g =
∑

β∈B
βgφ(β).

The reader can check easily that g is well defined, and it is indeed a Riemann metric on
M . ⊓⊔

Example 4.1.3. (The Euclidean space). The space Rn has a natural Riemann metric

g0 = (dx1)2 + · · ·+ (dxn)2.

The geometry of (Rn, g0) is the classical Euclidean geometry. ⊓⊔
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Example 4.1.4. (Induced metrics on submanifolds). Let (M,g) be a Riemann
manifold and S ⊂ M a submanifold. If ı : S → M denotes the natural inclusion then we
obtain by pull back a metric on S

gS = ı∗g = g |S .

For example, any invertible symmetric n × n matrix defines a quadratic hypersurface in
Rn by

HA =
{
x ∈ Rn ; (Ax, x) = 1,

}
,

where (•, •) denotes the Euclidean inner product on Rn. HA has a natural metric induced
by the Euclidean metric on Rn. For example, when A = In, then HIn is the unit sphere
in Rn, and the induced metric is called the round metric of Sn−1. ⊓⊔

Figure 4.1: The unit sphere and an ellipsoid look “different”.

Figure 4.2: A plane sheet and a half cylinder are “not so different”.

Remark 4.1.5. On any manifold there exist many Riemann metrics, and there is no
natural way of selecting one of them. One can visualize a Riemann structure as defining
a “shape” of the manifold. For example, the unit sphere x2 + y2 + z2 = 1 is diffeomorphic

to the ellipsoid x2

12
+ y2

22
+ z2

32
= 1, but they look “different ” (see Figure 4.1). However,
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appearances may be deceiving. In Figure 4.2 it is illustrated the deformation of a sheet
of paper to a half cylinder. They look different, but the metric structures are the same
since we have not changed the lengths of curves on our sheet. The conclusion to be drawn
from these two examples is that we have to be very careful when we use the attribute
“different”. ⊓⊔

Example 4.1.6. (The hyperbolic plane). The Poincaré model of the hyperbolic
plane is the Riemann manifold (D, g) where D is the unit open disk in the plane R2 and
the metric g is given by

g =
1

1− x2 − y2 (dx
2 + dy2). ⊓⊔

Exercise 4.1.7. Let H denote the upper half-plane

H = {(u, v) ∈ R2 ; v > 0},

endowed with the metric

h =
1

4v2
(du2 + dv2).

Show that the Cayley transform

z = x+ iy 7→ w = −iz + i

z − i
= u+ iv

establishes an isometry (D, g) ∼= (H, h). ⊓⊔

Example 4.1.8. (Left invariant metrics on Lie groups). Consider a Lie group G,
and denote by LG its Lie algebra. Then any inner product 〈·, ·〉 on LG induces a Riemann
metric h = 〈·, ·〉g on G defined by

hg(X,Y ) = 〈X,Y 〉g = 〈(Lg−1)∗X, (Lg−1)∗Y 〉, ∀g ∈ G, X, Y ∈ TgG,

where (Lg−1)∗ : TgG → T1G is the differential at g ∈ G of the left translation map Lg−1 .
One checks easily that the correspondence

G ∋ g 7→ 〈·, ·〉g

is a smooth tensor field, and it is left invariant, i.e.,

L∗gh = h ∀g ∈ G.

If G is also compact, we can use the averaging technique of Subsection 3.4.2 to produce
metrics which are both left and right invariant. ⊓⊔

4.1.2 The Levi-Civita connection

To continue our study of Riemann manifolds we will try to follow a close parallel with
classical Euclidean geometry. The first question one may ask is whether there is a notion
of “straight line” on a Riemann manifold.

In the Euclidean space R3 there are at least two ways to define a line segment.
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(i) A line segment is the shortest path connecting two given points.

(ii) A line segment is a smooth path γ : [0, 1]→ R3 satisfying

γ̈(t) = 0. (4.1.1)

Since we have not said anything about calculus of variations which deals precisely with
problems of type (i), we will use the second interpretation as our starting point. We will
soon see however that both points of view yield the same conclusion.

Let us first reformulate (4.1.1). As we know, the tangent bundle of R3 is equipped
with a natural trivialization, and as such, it has a natural trivial connection ∇0 defined
by

∇0
i ∂j = 0 ∀i, j, where ∂i := ∂xi , ∇i := ∇∂i ,

i.e., all the Christoffel symbols vanish. Moreover, if g0 denotes the Euclidean metric, then

(
∇0
i g0
)
(∂j , ∂k) = ∇0

i δjk − g0(∇0
i ∂j , ∂k)− g0(∂j ,∇0

i ∂k) = 0,

i.e., the connection is compatible with the metric. Condition (4.1.1) can be rephrased as

∇0
γ̇(t)γ̇(t) = 0, (4.1.2)

so that the problem of defining “lines” in a Riemann manifold reduces to choosing a
“natural” connection on the tangent bundle.

Of course, we would like this connection to be compatible with the metric, but even so,
there are infinitely many connections to choose from. The following fundamental result
will solve this dilemma.

Proposition 4.1.9. Consider a Riemann manifold (M,g). Then there exists a unique
symmetric connection ∇ on TM compatible with the metric g i.e.

T (∇) = 0, ∇g = 0.

The connection ∇ is usually called the Levi-Civita connection associated to the metric g.

Proof. Uniqueness. We will achieve this by producing an explicit description of a connec-
tion with the above two mproperties.

Let ∇ be such a connection, i.e.,

∇g = 0 and ∇XY −∇YX = [X,Y ], ∀X,Y ∈ Vect (M).

For any X,Y,Z ∈ Vect (M) we have

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY )

since ∇g = 0. Using the symmetry of the connection we compute

Zg(X,Y )− Y g(Z,X) +Xg(Y,Z) = g(∇ZX,Y )− g(∇Y Z,X) + g(∇XY,Z)

+g(X,∇ZY )− g(Z,∇YX) + g(Y,∇XZ)
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= g([Z, Y ],X) + g([X,Y ], Z) + g([Z,X], Y ) + 2g(∇XZ, Y ).

We conclude that

g(∇XZ, Y ) =
1

2
{Xg(Y,Z) − Y g(Z,X) + Zg(X,Y )

−g([X,Y ], Z) + g([Y,Z],X) − g([Z,X], Y )}. (4.1.3)

The above equality establishes the uniqueness of ∇.
Using local coordinates (x1, . . . , xn) on M we deduce from (4.1.3), with X = ∂i = ∂xi ,

Y = ∂k = ∂xk , Z = ∂j = ∂xj ), that

g(∇i∂j , ∂k) = gkℓΓ
ℓ
ij =

1

2
(∂igjk − ∂kgij + ∂jgik) .

Above, the scalars Γℓij denote the Christoffel symbols of ∇ in these coordinates, i.e.,

∇∂i∂j = Γℓij∂ℓ.

If (giℓ) denotes the inverse of (giℓ) we deduce

Γℓij =
1

2
gkℓ (∂igjk − ∂kgij + ∂jgik) . (4.1.4)

Existence. It boils down to showing that (4.1.3) indeed defines a connection with the
required properties. The routine details are left to the reader. ⊓⊔

We can now define the notion of “straight line” on a Riemann manifold.

Definition 4.1.10. A geodesic on a Riemann manifold (M,g) is a smooth path

γ : (a, b)→M,

satisfying

∇γ̇(t)γ̇(t) = 0, (4.1.5)

where ∇ is the Levi-Civita connection. ⊓⊔

Using local coordinates (x1, ..., xn) with respect to which the Christoffel symbols are
(Γkij), and the path γ is described by γ(t) = (x1(t), ..., xn(t)), we can rewrite the geodesic
equation as a second order, nonlinear system of ordinary differential equations. Set

d

dt
= γ̇(t) = ẋi∂i.

Then,

∇ d
dt
γ̇(t) = ẍi∂i + ẋi∇ d

dt
∂i = ẍi∂i + ẋiẋj∇j∂i

= ẍk∂k + Γkjiẋ
iẋj∂k (Γkij = Γkji),
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so that the geodesic equation is equivalent to

ẍk + Γkij ẋ
iẋj = 0 ∀k = 1, ..., n. (4.1.6)

Since the coefficients Γkij = Γkij(x) depend smoothly upon x, we can use the classical
Banach-Picard theorem on existence in initial value problems (see e.g. [4]). We deduce
the following local existence result.

Proposition 4.1.11. Let (M,g) be a Riemann manifold. For any compact subset K ⊂
TM there exists ε > 0 such that for any (x,X) ∈ K there exists a unique geodesic
γ = γx,X : (−ε, ε)→M such that γ(0) = x, γ̇(0) = X. ⊓⊔

One can think of a geodesic as defining a path in the tangent bundle t 7→ (γ(t), γ̇(t)).
The above proposition shows that the geodesics define a local flow Φ on TM by

Φt(x,X) = (γ(t), γ̇(t)) γ = γx,X .

Definition 4.1.12. The local flow defined above is called the geodesic flow of the Riemann
manifold (M,g). When the geodesic glow is a global flow, i.e., any γx,X is defined at each
moment of time t for any (x,X) ∈ TM , then the Riemann manifold is called geodesically
complete. ⊓⊔

The geodesic flow has some remarkable properties.

Proposition 4.1.13 (Conservation of energy). If the path γ(t) is a geodesic, then the
length of γ̇(t) is independent of time. ⊓⊔

Proof. We have
d

dt
|γ̇(t)|2 =

d

dt
g(γ̇(t), γ̇(t)) = 2g(∇γ̇(t), γ̇(t)) = 0. ⊓⊔

Thus, if we consider the sphere bundles

Sr(M) = {X ∈ TM ; |X| = r},

we deduce that Sr(M) are invariant subsets of the geodesic flow.

Exercise 4.1.14. Describe the infinitesimal generator of the geodesic flow. ⊓⊔

Example 4.1.15. Let G be a connected Lie group, and let LG be its Lie algebra. Any
X ∈ LG defines an endomorphism ad(X) of LG by

ad(X)Y := [X,Y ].

The Jacobi identity implies that

ad([X,Y ]) = [ad(X), ad(Y )],

where the bracket in the right hand side is the usual commutator of two endomorphisms.
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Assume that there exists an inner product 〈·, ·〉 on LG such that, for any X ∈ LG, the
operator ad(X) is skew-adjoint, i.e.,

〈[X,Y ], Z〉 = −〈Y, [X,Z]〉. (4.1.7)

We can now extend this inner product to a left invariant metric h on G. We want to
describe its geodesics.

First, we have to determine the associated Levi-Civita connection. Using (4.1.3) we
get

h(∇XZ, Y ) =
1

2
{Xh(Y,Z) − Y (Z,X) + Zh(X,Y )

−h([X,Y ], Z) + h([Y,Z],X) − h([Z,X], Y )}.
If we take X,Y,Z ∈ LG, i.e., these vector fields are left invariant, then h(Y,Z) = const.,
h(Z,X) = const., h(X,Y ) = const. so that the first three terms in the above formula
vanish. We obtain the following equality (at 1 ∈ G)

〈∇XZ, Y 〉 =
1

2
{−〈[X,Y ], Z〉+ 〈[Y,Z],X〉 − 〈[Z,X], Y 〉}.

Using the skew-symmetry of ad(X) and ad(Z) we deduce

〈∇XZ, Y 〉 =
1

2
〈[X,Z], Y 〉,

so that, at 1 ∈ G, we have

∇XZ =
1

2
[X,Z] ∀X,Z ∈ LG. (4.1.8)

This formula correctly defines a connection since any X ∈ Vect (G) can be written as a
linear combination

X =
∑

αiXi αi ∈ C∞(G) Xi ∈ LG.

If γ(t) is a geodesic, we can write γ̇(t) =
∑
γiXi, so that

0 = ∇γ̇(t)γ̇(t) =
∑

i

γ̇iXi +
1

2

∑

i,j

γiγj[Xi,Xj ].

Since [Xi,Xj ] = −[Xj ,Xi], we deduce γ̇i = 0, i.e.,

γ̇(t) =
∑

γi(0)Xi = X.

This means that γ is an integral curve of the left invariant vector field X so that the
geodesics through the origin with initial direction X ∈ T1G are

γX(t) = exp(tX). ⊓⊔



146 CHAPTER 4. RIEMANNIAN GEOMETRY

Exercise 4.1.16. Let G be a Lie group and h a bi-invariant metric on G. Prove that its
restriction to LG satisfies (4.1.7). In particular, on any compact Lie groups there exist
metrics satisfying (4.1.7). ⊓⊔

Definition 4.1.17. Let L be a finite dimensional real Lie algebra. The Killing pairing or
form is the bilinear map

κ : L× L→ R, κ(x, y) := −tr (ad(x) ad(y)) x, y ∈ L.

The Lie algebra L is said to be semisimple if the Killing pairing is a duality. A Lie group
G is called semisimple if its Lie algebra is semisimple. ⊓⊔

Exercise 4.1.18. Prove that SO(n) and SU(n) and SL(n,R) are semisimple Lie groups,
but U(n) is not. ⊓⊔

Exercise 4.1.19. Let G be a compact Lie group. Prove that the Killing form is positive
semi-definite1 and satisfies (4.1.7).
Hint: Use Exercise 4.1.16. ⊓⊔

Exercise 4.1.20. Show that the parallel transport of X along exp(tY ) is

(Lexp( t
2
Y ))∗(Rexp( t

2
Y ))∗X. ⊓⊔

Example 4.1.21. (Geodesics on flat tori, and on SU(2)). The n-dimensional torus
T n ∼= S1×· · ·×S1 is an Abelian, compact Lie group. If (θ1, ..., θn) are the natural angular
coordinates on T n, then the flat metric is defined by

g = (dθ1)2 + · · · + (dθn)2.

The metric g on T n is bi-invariant, and obviously, its restriction to the origin satisfies the
skew-symmetry condition (4.1.7) since the bracket is 0. The geodesics through 1 will be
the exponentials

γα1,...,αn(t) t 7→ (eiα1t, ..., eiαnt) αk ∈ R.

If the numbers αk are linearly dependent over Q, then obviously γα1,...,αn(t) is a closed
curve. On the contrary, when the α’s are linearly independent over Q then a classical
result of Kronecker (see e.g. [43]) states that the image of γα1,...,αn is dense in T n!!! (see
also Section 7.4 to come)

The special unitary group SU(2) can also be identified with the group of unit quater-
nions {

a+ bi+ cj + dk ; a2 + b2 + c2 + d2 = 1
}
,

so that SU(2) is diffeomorphic with the unit sphere S3 ⊂ R4. The round metric on S3 is
bi-invariant with respect to left and right (unit) quaternionic multiplication (verify this),

1The converse of the above exercise is also true, i.e., any semisimple Lie group with positive definite
Killing form is compact. This is known as Weyl’s theorem. Its proof, which will be given later in the book,
requires substantially more work.
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and its restriction to (1, 0, 0, 0) satisfies (4.1.7). The geodesics of this metric are the 1-
parameter subgroups of S3, and we let the reader verify that these are in fact the great
circles of S3, i.e., the circles of maximal diameter on S3. Thus, all the geodesics on S3 are
closed. ⊓⊔

4.1.3 The exponential map and normal coordinates

We have already seen that there are many differences between the classical Euclidean
geometry and the the general Riemannian geometry in the large. In particular, we have
seen examples in which one of the basic axioms of Euclidean geometry no longer holds: two
distinct geodesic (read lines) may intersect in more than one point. The global topology
of the manifold is responsible for this “failure”.

Locally however, things are not “as bad”. Local Riemannian geometry is similar in
many respects with the Euclidean geometry. For example, locally, all of the classical
incidence axioms hold.

In this section we will define using the metric some special collections of local coordi-
nates in which things are very close to being Euclidean.

Let (M,g) be a Riemann manifold and U an open coordinate neighborhood with
coordinates (x1, ..., xn). We will try to find a local change in coordinates (xi) 7→ (yj)
in which the expression of the metric is as close as possible to the Euclidean metric
g0 = δijdy

idyj .
Let q ∈ U be the point with coordinates (0, ..., 0). Via a linear change in coordinates

we may as well assume that
gij(q) = δij .

We can formulate this by saying that (gij) is Euclidean up to order zero.
We would like to “spread” the above equality to an entire neighborhood of q. To

achieve this we try to find local coordinates (yj) near q such that in these new coordinates
the metric is Euclidean up to order one, i.e.,

gij(q) = δij
∂gij
∂yk

(q) =
∂δij
∂yk

(q) = 0. ∀i, j, k.

We now describe a geometric way of producing such coordinates using the geodesic flow.
Denote as usual the geodesic from q with initial direction X ∈ TqM by γq,X(t). Note

the following simple fact.
∀s > 0 γq,sX(t) = γq,X(st).

Hence, there exists a small neighborhood V of 0 ∈ TqM such that, for any X ∈ V , the
geodesic γq,X(t) is defined for all |t| ≤ 1. We define the exponential map at q by

expq : V ⊂ TqM →M, X 7→ γq,X(1).

The tangent space TqM is a Euclidean space, and we can define Dq(r) ⊂ TqM , the open
“disk” of radius r centered at the origin. We have the following result.

Proposition 4.1.22. Let (M,g) and q ∈M as above. Then there exists r > 0 such that
the exponential map

expq : Dq(r)→M
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is a diffeomorphism onto. The supremum of all radii r with this property is denoted by
ρM (q). ⊓⊔

Definition 4.1.23. The positive real number ρM (q) is called the injectivity radius of M
at q. The infimum

ρM = inf
q
ρM (q)

is called the injectivity radius of M . ⊓⊔

The proof of Proposition 4.1.22 relies on the following key fact.

Lemma 4.1.24. The Fréchet differential at 0 ∈ TqM of the exponential map

D0 expq : TqM → Texpq(0)M = TqM

is the identity TqM → TqM .

Proof. Consider X ∈ TqM . It defines a line t 7→ tX in TqM which is mapped via the
exponential map to the geodesic γq,X(t). By definition

(D0 expq)X = γ̇q,X(0) = X. ⊓⊔

Proposition 4.1.22 follows immediately from the above lemma using the inverse func-
tion theorem. ⊓⊔

Now choose an orthonormal frame (e1, ...,en) of TqM , and denote by (x1, ...,xn) the
resulting cartesian coordinates in TqM . For 0 < r < ρM (q), any point p ∈ expq(Dq(r))
can be uniquely written as

p = expq(x
iei),

so that the collection (x1, ...,xn) provides a coordinatization of the open set expq(Dq(r)) ⊂
M . The coordinates thus obtained are called normal coordinates at q, the open set
expq(Dq(r)) is called a normal neighborhood, and will be denoted by Br(q) for reasons
that will become apparent a little later.

Proposition 4.1.25. Let (xi) be normal coordinates at q ∈ M , and denote by gij the
expression of the metric tensor in these coordinates. Then we have

gij(q) = δij and
∂gij
∂xk

(q) = 0 ∀i, j, k.

Thus, the normal coordinates provide a first order contact between g and the Euclidean
metric.

Proof. By construction, the vectors ei =
∂
∂xi form an orthonormal basis of TqM and this

proves the first equality. To prove the second equality we need the following auxiliary
result.

Lemma 4.1.26. In normal coordinates (xi) (at q) the Christoffel symbols Γijk vanish at
q.
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Proof. For any (m1, ...,mn) ∈ Rn the curve t 7→
(
xi(t)

)
1≤i≤n, xi(t) = mit, ∀i is the

geodesic t 7→ expq
(∑

mit ∂
∂xi

)
so that

Γijk(x(t))m
jmk = 0.

In particular,
Γijk(0)m

jmk = 0 ∀mj ∈ Rn

from which we deduce the lemma. ⊓⊔

The result in the above lemma can be formulated as

g

(
∇ ∂

∂xj

∂

∂xi
,
∂

∂xk

)
= 0, ∀i, j, k

so that,

∇ ∂

∂xj

∂

∂xi
= 0 at q, ∀i, j. (4.1.9)

Using ∇g = 0 we deduce
∂gij

∂xk (q) = ( ∂
∂xk gij) |q= 0. ⊓⊔

The reader may ask whether we can go one step further, and find local coordinates
which produce a second order contact with the Euclidean metric. At this step we are in for
a big surprise. This thing is in general not possible and, in fact, there is a geometric way
of measuring the “second order distance” between an arbitrary metric and the Euclidean
metric. This is where the curvature of the Levi-Civita connection comes in, and we will
devote an entire section to this subject.

4.1.4 The length minimizing property of geodesics

We defined geodesics via a second order equation imitating the second order equation
defining lines in an Euclidean space. As we have already mentioned, this is not the unique
way of extending the notion of Euclidean straight line to arbitrary Riemann manifolds.

One may try to look for curves of minimal length joining two given points. We will
prove that the geodesics defined as in the previous subsection do just that, at least locally.
We begin with a technical result which is interesting in its own. Let (M,g) be a Riemann
manifold.

Lemma 4.1.27. For each q ∈ M there exists 0 < r < ρM (q), and ε > 0 such that,
∀m ∈ Br(q), we have ε < ρM (m) and Bε(m) ⊃ Br(q). In particular, any two points of
Br(q) can be joined by a unique geodesic of length < ε.

We must warn the reader that the above result does not guarantee that the postulated
connecting geodesic lies entirely in Br(q). This is a different ball game.

Proof. Using the smooth dependence upon initial data in ordinary differential equations
we deduce that there exists an open neighborhood V of (q, 0) ∈ TM such that expmX is
well defined for all (m,X) ∈ V . We get a smooth map

F : V →M ×M (m,X) 7→ (m, expmX).
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We compute the differential of F at (q, 0). First, using normal coordinates (xi) near q we
get coordinates (xi;Xj) near (q, 0) ∈ TM . The partial derivatives of F at (q, 0) are

D(q,0)F (
∂

∂xi
) =

∂

∂xi
+

∂

∂Xi
, D(q,0)F (

∂

∂X i
) =

∂

∂X i
.

Thus, the matrix defining D(q,0)F has the form

[
1 0
∗ 1

]
,

and in particular, it is nonsingular.

It follows from the implicit function theorem that F maps some neighborhood V of
(q, 0) ∈ TM diffeomorphically onto some neighborhood U of (q, q) ∈ M ×M . We can
choose V to have the form {(m,X) ; |X|m < ε, m ∈ Bδ(q)} for some sufficiently small ε
and δ. Choose 0 < r < min(ε, ρM (q)) such that

m1,m2 ∈ Br(q) =⇒ (m1,m2) ∈ U.

In particular, we deduce that, for any m ∈ Br(q), the map expm : Dε(m) ⊂ TmM → M
is a diffeomorphism onto its image, and

Bε(m) = expm(Dε(m)) ⊃ Br(q).

Clearly, for any m ∈M , the curve t 7→ expm(tX) is a geodesic of length < ε joining m to
expm(X). It is the unique geodesic with this property since F : V → U is injective. ⊓⊔

We can now formulate the main result of this subsection.

Theorem 4.1.28. Let q, r and ε as in the previous lemma, and consider the unique
geodesic γ : [0, 1] → M of length < ε joining two points of Br(q). If ω : [0, 1] → M is a
piecewise smooth path with the same endpoints as γ then

∫ 1

0
|γ̇(t)|dt ≤

∫ 1

0
|ω̇(t)|dt.

with equality if and only if ω([0, 1]) = γ([0, 1]). Thus, γ is the shortest path joining its
endpoints.

The proof relies on two lemmata. Let m ∈ M be an arbitrary point, and assume
0 < R < ρM (m).

Lemma 4.1.29 (Gauss). In BR(m) ⊂M , the geodesics through m are orthogonal to the
hypersurfaces

Σδ = expq(Sδ(0)) =
{
expm(X); |X| = δ

}
, 0 < δ < R.
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Proof. Let t 7→ X(t), 0 ≤ t ≤ 1 denote a smooth curve in TmM such that |X(t)|m = 1,
i.e., X(t) is a curve on the unit sphere S1(0) ⊂ TmM . We assume that the map t 7→
X(t) ∈ S1(0) is an embedding, i.e., it is injective, and its differential is nowhere zero. We
have to prove that the curve t 7→ expm(δX(t)) are orthogonal to the radial geodesics

s 7→ expm(sX(t)), 0 ≤ s ≤ R.

Consider the smooth map

f : [0, R] × [0, 1]→M, f(s, t) = expm(sX(t)) (s, t) ∈ (0, R) × (0, 1).

If we use normal coordinates on BR(m) we can express f as the embedding

(0, R)× (0, 1) → TmM, (s, t) 7→ sX(t).

Set

∂s := f∗

(
∂

∂s

)
∈ Tf(s,t)M.

Define ∂t similarly. The objects ∂s, and ∂t are sections of the restriction of TM to the
image of f . Using the normal coordinates on BR(m) we can think of ∂s as a vector field
on a region in TmM , and as such we have the equality ∂s = X(t). We have to show

〈∂s, ∂t〉 = 0 ∀(s, t),

where 〈·, ·〉 denotes the inner product defined by g.
Using the metric compatibility of the Levi-Civita connection along the image of f we

compute
∂s〈∂s, ∂t〉 = 〈∇∂s∂s, ∂t〉+ 〈∂s,∇∂s∂t〉.

Since the curves s 7→ f(s, t = const.) are geodesics, we deduce

∇∂s∂s = 0.

On the other hand, since [∂s, ∂t] = 0, we deduce (using the symmetry of the Levi-Civita
connection)

〈∂s,∇∂s∂t〉 = 〈∂s,∇∂t∂s〉 =
1

2
∂t |∂s|2 = 0,

since |∂s| = |X(t)| = 1. We conclude that the quantity 〈∂s, ∂t〉 is independent of s. For
s = 0 we have f(0, t) = expm(0) so that ∂t|s=0 = 0, and therefore

〈∂s, ∂t〉 = 0 ∀(s, t),

as needed. ⊓⊔

Now consider any continuous, piecewise smooth curve

ω : [a, b]→ BR(m) \ {m}.

Each ω(t) can be uniquely expressed in the form

ω(t) = expm(ρ(t)X(t)) |X(t)| = 1 0 < |ρ(t)| < R.
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Lemma 4.1.30. The length of the curve ω(t) is ≥ |ρ(b) − ρ(a)|. The equality holds if
and only if X(t) = const and ρ̇(t) ≥ 0. In other words, the shortest path joining two
concentrical shells Σδ is a radial geodesic.

Proof. Let f(ρ, t) := expm(ρX(t)), so that ω(t) = f(ρ(t), t). Then

ω̇ =
∂f

∂ρ
ρ̇+

∂f

∂t
.

Since the vectors ∂f
∂ρ and ∂f

∂t are orthogonal, and since

∣∣∣∣
∂f

∂ρ

∣∣∣∣ = |X(t)| = 1

we get

|ω̇|2 = |ρ̇|2 +
∣∣∣∣
∂f

∂t

∣∣∣∣
2

≥ |ρ̇|2.

The equality holds if and only if ∂f
∂t = 0, i.e. Ẋ = 0. Thus

∫ b

a
|ω̇|dt ≥

∫ b

a
|ρ̇|dt ≥ |ρ(b)− ρ(a)|.

Equality holds if and only if ρ(t) is monotone, and X(t) is constant. This completes the
proof of the lemma. ⊓⊔

The proof of Theorem 4.1.28 is now immediate. Let m0,m1 ∈ Br(q), and consider a
geodesic γ : [0, 1] →M of length < ε such that γ(i) = mi, i = 0, 1. We can write

γ(t) = expm0
(tX) X ∈ Dε(m0).

Set R = |X|. Consider any other piecewise smooth path ω : [a, b] → M joining m0 to
m1. For any δ > 0 this path must contain a portion joining the shell Σδ(m0) to the shell
ΣR(m0) and lying between them. By the previous lemma the length of this segment will
be ≥ R− δ. Letting δ → 0 we deduce

l(ω) ≥ R = l(γ).

If ω([a, b]) does not coincide with γ([0, 1]) then we obtain a strict inequality. ⊓⊔

Any Riemann manifold has a natural structure of metric space. More precisely, we set

d(p, q) = inf
{
l(ω); ω : [0, 1]→M piecewise smooth path joining p to q

}

A piecewise smooth path ω connecting two points p, q such that l(ω) = d(p, q) is said to
be minimal. From Theorem 4.1.28 we deduce immediately the following consequence.

Corollary 4.1.31. The image of any minimal path coincides with the image of a geodesic.
In other words, any minimal path can be reparametrized such that it satisfies the geodesic
equation.
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Exercise 4.1.32. Prove the above corollary. ⊓⊔

Theorem 4.1.28 also implies that any two nearby points can be joined by a unique
minimal geodesic. In particular we have the following consequence.

Corollary 4.1.33. Let q ∈M . Then for all r > 0 sufficiently small

expq(Dr(0))(= Br(q) ) =
{
p ∈M d(p, q) < r

}
. (4.1.10)

Corollary 4.1.34. For any q ∈M we have the equality

ρM (q) = sup
{
r; r satisfies (4.1.10)

}
.

Proof. The same argument used in the proof of Theorem 4.1.28 shows that for any 0 <
r < ρM (q) the radial geodesics expq(tX) are minimal. ⊓⊔

Definition 4.1.35. A subset U ⊂ M is said to be convex if any two points in U can be
joined by a unique minimal geodesic which lies entirely inside U . ⊓⊔

Proposition 4.1.36. For any q ∈M there exists 0 < R < ιM (q) such that for any r < R
the ball Br(q) is convex.

Proof. Choose ax 0 < ε < 1
2ρM (q), and 0 < R < ε such that any two points m0, m1

in BR(q) can be joined by a unique minimal geodesic [0, 1] ∋ t 7→ γm0,m1(t) of length
< ε, not necessarily contained in BR(q). We will prove that ∀m0,m1 ∈ BR(q) the map
t 7→ d(q, γm0,m1(t)) is convex and thus it achieves its maxima at the endpoints t = 0, 1.
Note that

d(q, γ(t)) < R+ ε < ρM (q).

The geodesic γm0,m1(t) can be uniquely expressed as

γm0,m1(t) = expq(r(t)X(t)) X(t) ∈ TqM with r(t) = d(q, γm0,m1(t)).

It suffices to show d2

dt2
(r2) ≥ 0 for t ∈ [0, 1] if d(q,m0) and d(q,m1) are sufficiently small.

At this moment it is convenient to use normal coordinates (xi) near q. The geodesic
γm0,m1 takes the form (xi(t)), and we have

r2 = (x1)2 + · · ·+ (xn)2.

We compute easily
d2

dt2
(r2) = 2r2(ẍ1 + · · ·+ ẍn) + |ẋ|2 (4.1.11)

where ẋ(t) =
∑

ẋiei ∈ TqM . The path γ satisfies the equation

ẍi + Γijk(x)ẋ
jẋk = 0.

Since Γijk(0) = 0 (normal coordinates), we deduce that there exists a constant C > 0
(depending only on the magnitude of the second derivatives of the metric at q) such that

|Γijk(x)| ≤ C|x|.
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Using the geodesic equation we obtain

ẍi ≥ −C|x||ẋ|2.

We substitute the above inequality in (4.1.11) to get

d2

dt2
(r2) ≥ 2|ẋ|2

(
1− nC|x|3

)
. (4.1.12)

If we chose from the very beginning

R+ ε ≤ (nC)−1/3 ,

then, because along the geodesic we have |x| ≤ R + ε, the right-hand-side of (4.1.12) is
nonnegative. This establishes the convexity of t 7→ r2(t) and concludes the proof of the
proposition. ⊓⊔

In the last result of this subsection we return to the concept of geodesic completeness.
We will see that this can be described in terms of the metric space structure alone.

Theorem 4.1.37 (Hopf-Rinow). LetM be a Riemann manifold and q ∈M . The following
assertions are equivalent:

(a) expq is defined on all of TqM .

(b) The closed and bounded (with respect to the metric structure) sets of M are compact.

(c) M is complete as a metric space.

(d) M is geodesically complete.

(e) There exists a sequence of compact sets Kn ⊂ M , Kn ⊂ Kn+1 and
⋃
nKn = M such

that if pn 6∈ Kn then d(q, pn)→∞.

Moreover, on a (geodesically) complete manifold any two points can be joined by a
minimal geodesic. ⊓⊔

Remark 4.1.38. On a complete manifold there could exist points (sufficiently far apart)
which can be joined by more than one minimal geodesic. Think for example of a manifold
where there exist closed geodesic, e.g., the tori T n. ⊓⊔

Exercise 4.1.39. Prove the Hopf-Rinow theorem. ⊓⊔

Exercise 4.1.40. Let (M,g) be a Riemann manifold and let (Uα) be an open cover
consisting of bounded, geodesically convex open sets. Set dα = (diameter (Uα))

2. Denote
by gα the metric on Uα defined by gα = d−1α g so that the diameter of Uα in the new metric
is 1. Using a partition of unity (ϕi) subordinated to this cover we can form a new metric

g̃ =
∑

i

ϕigα(i) (suppϕi ⊂ Uα(i)).

Prove that g̃ is a complete Riemann metric. Hence, on any manifold there exist complete
Riemann metrics. ⊓⊔
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4.1.5 Calculus on Riemann manifolds

The classical vector analysis extends nicely to Riemann manifolds. We devote this sub-
section to describing this more general “vector analysis”.

Let (M,g) be an oriented Riemann manifold. We now have two structures at our
disposal: a Riemann metric, and an orientation, and we will use both of them to construct
a plethora of operations on tensors.

First, using the metric we can construct by duality the lowering-the-indices isomor-
phism L : Vect (M)→ Ω1(M); see Example 2.2.48.

Example 4.1.41. Let M = R3 with the Euclidean metric. A vector field V on M has
the form

V = P
∂

∂x
+Q

∂

∂y
+R

∂

∂z
.

Then
W = LV = Pdx+Qdy +Rdz.

If we think of V as a field of forces in the space, then W is the infinitesimal work of V . ⊓⊔

On a Riemann manifold there is an equivalent way of describing the exterior derivative.

Proposition 4.1.42. Let

ε : C∞(T ∗M ⊗ ΛkT ∗M)→ C∞(Λk+1T ∗M)

denote the exterior multiplication operator

ε(α ⊗ β) = α ∧ β, ∀α ∈ Ω1(M), β ∈ Ωk(M).

Then the exterior derivative d is related to the Levi-Civita on ΛkT ∗M connection via the
equality d = ε ◦ ∇.

Proof. We will use a strategy useful in many other situations. Our discussion about normal
coordinates will payoff. Denote temporarily by D the operator ε ◦ ∇.

The equality d = D is a local statement, and it suffices to prove it in any coordinate
neighborhood. Choose (xi) normal coordinates at an arbitrary point p ∈ M , and set
∂i :=

∂
∂xi . Note that

D =
∑

i

dxi ∧ ∇i, ∇i = ∇∂i .

Let ω ∈ Ωk(M). Near p it can be written as

ω =
∑

I

ωIdx
I ,

where as usual, for any ordered multi-index I: (1 ≤ i1 < · · · < ik ≤ n), we set

dxI := dxi1 ∧ · · · ∧ dxik .

In normal coordinates at p we have (∇i∂i) |p= 0 from which we get the equalities

(∇idxj) |p (∂k) = −(dxj(∇i∂k)) |p= 0.
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Thus, at p,

Dω =
∑

I

dxi ∧ ∇i(ωIdxI)

=
∑

I

dxi ∧ (∂jωIdx
I + ωI∇i(dxI)) =

∑

I

dxi ∧ ∂jωI = dω.

Since the point p was chosen arbitrarily this completes the proof of Proposition 4.1.42. ⊓⊔

Exercise 4.1.43. Show that for any k-form ω on the Riemann manifold (M,g) the exterior
derivative dω can be expressed by

dω(X0,X1, . . . ,Xk) =

k∑

i=0

(−1)i(∇Xiω)(X0, . . . , X̂i, . . . ,Xk),

for all X0, . . . ,Xk ∈ Vect (M). (∇ denotes the Levi-Civita connection.) ⊓⊔

The Riemann metric defines a metric in any tensor bundle Trs(M) which we continue
to denote by g. Thus, given two tensor fields T1, T2 of the same type (r, s) we can form
their pointwise scalar product

M ∋ p 7→ g(T, S)p = gp(T1(p), T2(p)).

In particular, any such tensor has a pointwise norm

M ∋ p 7→ |T |g,p = (T, T )1/2p .

Using the orientation we can construct (using the results in subsection 2.2.4) a natural
volume form on M which we denote by dVg, and we call it the metric volume. This is the
positively oriented volume form of pointwise norm ≡ 1.

If (x1, ..., xn) are local coordinates such that dx1∧ · · · ∧dxn is positively oriented, then

dVg =
√
|g|dx1 ∧ · · · ∧ dxn,

where |g| := det(gij). In particular, we can integrate (compactly supported) functions on
M by ∫

(M,g)
f
def
=

∫

M
fdVg ∀f ∈ C∞0 (M).

We have the following not so surprising result.

Proposition 4.1.44. ∇XdVg = 0, ∀X ∈ Vect (M).

Proof. We have to show that for any p ∈M
(∇XdVg)(e1, ..., en) = 0, (4.1.13)

where e1, ..., ep is a basis of TpM . Choose normal coordinates (xi) near p. Set ∂i =
∂
∂xi ,

gij = g(∂i, ∂k), and ei = ∂i |p. Since the expression in (4.1.13) is linear in X, we may as
well assume X = ∂k, for some k = 1, ..., n. We compute

(∇XdVg)(e1, ..., en) = X(dVg(∂1, ..., ∂n)) |p
−
∑

i

dvg(e1, ..., (∇X∂i) |p, ..., ∂n). (4.1.14)
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We consider each term separately. Note first that dVg(∂1, ..., ∂n) = (det(gij))
1/2, so that

X(det(gij))
1/2 |p= ∂k(det(gij))

1/2 |p
is a linear combination of products in which each product has a factor of the form ∂kgij |p.
Such a factor is zero since we are working in normal coordinates. Thus, the first term
in(4.1.14) is zero. The other terms are zero as well since in normal coordinates at p we
have the equality

∇X∂i = ∇∂k∂i = 0.

Proposition 4.1.44 is proved. ⊓⊔

Once we have an orientation, we also have the Hodge ∗-operator

∗ : Ωk(M)→ Ωn−k(M),

uniquely determined by

α ∧ ∗β = (α, β)dVg , ∀α β ∈ Ωk(M). (4.1.15)

In particular, ∗1 = dVg.

Example 4.1.45. To any vector field F = P∂x + Q∂y + R∂z on R3 we associated its
infinitesimal work

WF = L(F ) = Pdx+Qdy +Rdz.

The infinitesimal energy flux of F is the 2-form

ΦF = ∗WF = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

The exterior derivative of WF is the infinitesimal flux of the vector field curlF

dWF = (∂yR− ∂zQ)dy ∧ dz + (∂zP − ∂xR)dz ∧ dx+ (∂xQ− ∂yP )dx ∧ dy

= ΦcurlF = ∗WcurlF .

The divergence of F is the scalar defined as

div F = ∗d ∗WF = ∗dΦF
= ∗ {(∂xP + ∂yQ+ ∂zR)dx ∧ dy ∧ dz} = ∂xP + ∂yQ+ ∂zR.

If f is a function on R3, then we compute easily

∗d ∗ df = ∂2xf + ∂2yf + ∂2xf = ∆f. ⊓⊔

Definition 4.1.46. (a) For any smooth function f on the Riemann manifold (M,g) we
denote by grad f , or gradg f , the vector field g-dual to the 1-form df . In other words

g(grad f,X) = df(X) = X · f ∀X ∈ Vect (M).

(b) If (M,g) is an oriented Riemann manifold, and X ∈ Vect (M), we denote by divX,
or divgX, the smooth function defined by the equality

LXdVg = (divX)dVg. ⊓⊔
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Exercise 4.1.47. Consider the unit sphere

S2 =
{
(x, y, z) ∈ R3; x2 + y2 + z2 = 1

}
,

and denote by g the Riemann metric on S2 induced by the Euclidean metric g0 = dx2 +
dy2 + dz2 on R3.

(a) Express g in the spherical coordinates (r, θ, ϕ) defined as in Example 3.4.14.
(b) Denote by h the restriction to S2 of the function ĥ(x, y, z) = z. Express gradg f in
spherical coordinates. ⊓⊔

Proposition 4.1.48. Let X be a vector field on the oriented Riemann manifold (M,g),
and denote by α the 1-form dual to X. Then
(a) divX = tr (∇X), where we view ∇X as an element of C∞(End (TM)) via the iden-
tifications

∇X ∈ Ω1(TM) ∼= C∞(T ∗M ⊗ TM) ∼= C∞(End (TM)).

(b) divX = ∗d ∗ α.
(c) If (x1, ..., xn) are local coordinates such that dx1 ∧ · · · ∧ dxn is positively oriented, then

divX =
1√
|g|
∂i(
√
|g|Xi),

where X = Xi∂i.

The proof will rely on the following technical result which is interesting in its own. For
simplicity, we will denote the inner products by (•, •), instead of the more precise g(•, •).
Lemma 4.1.49. Denote by δ the operator

δ = ∗d∗ : Ωk(M)→ Ωk−1(M).

Let α be a (k − 1)-form and β a k-form such that at least one of them is compactly
supported. Then ∫

M
(dα, β)dVg = (−1)νn,k

∫

M
(α, δβ)dVg ,

where νn,k = nk + n+ 1.

Proof. We have
∫

M
(dα, β)dVg =

∫

M
dα ∧ ∗β =

∫

M
d(α ∧ ∗β) + (−1)k

∫

M
α ∧ d ∗ β.

The first integral in the right-hand-side vanishes by the Stokes formula since α ∧ ∗β has
compact support. Since

d ∗ β ∈ Ωn−k+1(M) and ∗2 = (−1)(n−k+1)(k−1) on Ωn−k+1(M)

we deduce ∫

M
(dα, β)dVg = (−1)k+(n−k+1)(n−k)

∫

M
α ∧ ∗δβ.

This establishes the assertion in the lemma since

(n − k + 1)(k − 1) + k ≡ νn,k (mod 2). ⊓⊔
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Definition 4.1.50. Define d∗ : Ωk(M)→ Ωk−1(M) by

d∗ := (−1)νn,kδ = (−1)νn,k ∗ d ∗ . ⊓⊔

Proof of the proposition. Set Ω := dVg, and let (X1, ...,Xn) be a local moving frame
of TM in a neighborhood of some point. Then

(LXΩ)(X1, ...,Xn) = X(Ω(X1, ...,Xn))−
∑

i

Ω(X1, ..., [X,Xi ], ...,Xn). (4.1.16)

Since ∇Ω = 0 we get

X · (Ω(X1, ...,Xn)) =
∑

i

Ω(X1, ...,∇XXi, ...,Xn).

Using the above equality in (4.1.16) we deduce from ∇XY − [X,Y ] = ∇YX that

(LXΩ)(X1, ...,Xn) =
∑

i

Ω(X1, ...,∇XiX, ...,Xn). (4.1.17)

Over the neighborhood where the local moving frame is defined, we can find smooth
functions f ji , such that

∇XiX = f jiXj ⇒ tr (∇X) = f ii .

Part (a) of the proposition follows after we substitute the above equality in (4.1.17).

Proof of (b) For any f ∈ C∞0 (M) we have

LX(fω) = (Xf)Ω + f(divX)Ω.

On the other hand,
LX(fΩ) = (iXd+ d iX)(fΩ) = d iX(fΩ).

Hence
{(Xf) + f(divX)} dVg = d(iXfΩ).

Since the form fΩ is compactly supported we deduce from Stokes formula

∫

M
d(iXfΩ) = 0.

We have thus proved that for any compactly supported function f we have the equality

−
∫

M
f(divX)dVg =

∫

M
(Xf)dVg =

∫

M
df(X)dVg

=

∫

M
(grad f,X)dVg =

∫

M
(df, α)dVg .

Using Lemma 4.1.49 we deduce

−
∫

M
f(divX)dVg = −

∫

M
fδαdVg ∀f ∈ C∞0 (M).
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This completes the proof of (b).
Proof of (c) We use the equality

LX(
√
|g|dx1 ∧ · · · ∧ dxn) = div(X)(

√
|g|dx1 ∧ · · · ∧ dxn).

The desired formula follows derivating in the left-hand-side. One uses the fact that LX is
an even s-derivation and the equalities

LXdx
i = ∂iX

idxi (no summation),

proved in Subsection 3.1.3. ⊓⊔

Exercise 4.1.51. Let (M,g) be a Riemann manifold and X ∈ Vect (M). Show that the
following conditions on X are equivalent.
(a) LXg = 0.
(b) g(∇YX,Z) + g(Y,∇ZX) = 0 for all Y,Z ∈ Vect (M).
(A vector field X satisfying the above equivalent conditions is called a Killing vector field).

⊓⊔

Exercise 4.1.52. Consider a Killing vector field X on the oriented Riemann manifold
(M,g), and denote by η the 1-form dual to X. Show that δη = 0, i.e., div(X) = 0. ⊓⊔

Definition 4.1.53. Let (M,g) be an oriented Riemann manifold (possibly with bound-
ary). For any k-forms α, β define

〈α, β〉 = 〈α, β〉M =

∫

M
(α, β)dVg =

∫

M
α ∧ ∗β,

whenever the integrals in the right-hand-side are finite. ⊓⊔

Let (M,g) be an oriented Riemann manifold with boundary ∂M . By definition, M is
a closed subset of a boundary-less manifold M̃ of the same dimension. Along ∂M we have
a vector bundle decomposition

(TM̃) |∂M= T (∂M)⊕ n

where n = (T∂M)⊥ is the orthogonal complement of T∂M in (TM) |∂M . Since both M
and ∂M are oriented manifolds it follows that ν is a trivial line bundle. Indeed, over the
boundary

detTM = det(T∂M) ⊗n

so that
n ∼= detTM ⊗ det(T∂M)∗.

In particular, n admits nowhere vanishing sections, and each such section defines an
orientation in the fibers of n.

An outer normal is a nowhere vanishing section σ of n such that, for each x ∈ ∂M ,
and any positively oriented ωx ∈ detTx∂M , the product σx ∧ ωx is a positively oriented
element of detTxM . Since n carries a fiber metric, we can select a unique outer normal
of pointwise length ≡ 1. This will be called the unit outer normal, and will be denoted by
~ν. Using partitions of unity we can extend ~ν to a vector field defined on M .
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Proposition 4.1.54 (Integration by parts). Let (M,g) be a compact, oriented Riemann
manifold with boundary, α ∈ Ωk−1(M) and β ∈ Ωk(M). Then

∫

M
(dα, β)dVg =

∫

∂M
(α ∧ ∗β) |∂M +

∫

M
(α, d∗β)dVg

=

∫

∂M
α |∂M ∧∗̂(i~νβ) |∂M +

∫

M
(α, d∗β)dVg

where ∗̂ denotes the Hodge ∗-operator on ∂M with the induced metric ĝ and orientation.

Using the 〈·, ·〉 notation of Definition 4.1.53 we can rephrase the above equality as

〈dα, β〉M = 〈α, i~νβ〉∂M + 〈α, d∗β〉M .
Proof. As in the proof of Lemma 4.1.49 we have

(dα, β)dVg = dα ∧ ∗β = d(α ∧ ∗β) + (−1)kα ∧ d ∗ β.
The first part of the proposition follows from Stokes formula arguing precisely as in Lemma
4.1.49. To prove the second part we have to check that

(α ∧ ∗β) |∂M= α |∂M ∧∗̂(i~νβ) |∂M .

This is a local (even a pointwise) assertion so we may as well assume

M = Hn
+ = {(x1, ..., xn) ∈ Rn ; x1 ≥ 0},

and that the metric is the Euclidean metric. Note that ~ν = −∂1. Let I be an ordered
(k − 1)-index, and J be an ordered k-index. Denote by Jc the ordered (n − k)-index
complementary to J so that (as sets) J ∪ Jc = {1, ..., n}. By linearity, it suffices to
consider only the cases α = dxI , β = dxJ . We have

∗dxJ = ǫJdx
Jc

(ǫJ = ±1) (4.1.18)

and

i~νdx
J =

{
0 , 1 6∈ J

−dxJ ′
, 1 ∈ J ,

where J ′ = J \ {1}. Note that, if 1 6∈ J , then 1 ∈ Jc so that

(α ∧ ∗β) |∂M= 0 = α |∂M ∧∗̂(i~νβ) |∂M ,
and therefor, the only nontrivial situation left to be discussed is 1 ∈ J . On the boundary
we have the equality

∗̂(i~νdxJ) = −∗̂(dxJ
′

) = −ǫ′JdxJ
c

(ǫ′J = ±1). (4.1.19)

We have to compare the two signs ǫJ and ǫ′J . in (4.1.18) and (4.1.19). The sign ǫJ is
the signature of the permutation J~∪Jc of {1, ..., n} obtained by writing the two increasing
multi-indices one after the other, first J and then Jc. Similarly, since the boundary ∂M
has the orientation −dx2 ∧ · · · ∧ dxn, we deduce that the sign ǫ′J is (−1)×(the signature
of the permutation J ′~∪Jc of {2, ..., n}). Obviously

sign (J~∪Jc) = sign (J ′~∪Jc),
so that ǫJ = −ǫ′J . The proposition now follows from (4.1.18) and (4.1.19). ⊓⊔
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Corollary 4.1.55 (Gauss). Let (M,g) be a compact, oriented Riemann manifold with
boundary, and X a vector field on M . Then

∫

M
div(X)dVg =

∫

∂M
(X,~ν)dvg∂ ,

where g∂ = g |∂M .

Proof. Denote by α the 1-form dual to X. We have

∫

M
div(X)dVg =

∫

M
1 ∧ ∗d ∗ αdVg =

∫

M
(1, ∗d ∗ α)dVg = −

∫

M
(1, d∗α)dVg

=

∫

∂M
α(~ν)dvg∂ =

∫

∂M
(X,~ν)dvg∂ . ⊓⊔

Remark 4.1.56. The compactness assumption onM can be replaced with an integrability
condition on the forms α, β so that the previous results hold for noncompact manifolds as
well provided all the integrals are finite. ⊓⊔

Definition 4.1.57. Let (M,g) be an oriented Riemann manifold. The geometric Lapla-
cian is the linear operator ∆M : C∞(M)→ C∞(M) defined by

∆M = d∗df = − ∗ d ∗ df = −div(grad f).

A smooth function f on M satisfying the equation ∆Mf = 0 is called harmonic. ⊓⊔

Using Proposition 4.1.48 we deduce that in local coordinates (x1, ..., xn), the geometer’s
Laplacian takes the form

∆M = − 1√
|g|
∂i

(√
|g|gij∂j

)
,

where (gij) denotes as usual the matrix inverse to (gij). Note that when g is the Euclidean
metric, then the geometers’ Laplacian is

∆0 = −(∂2i + · · ·+ ∂2n),

which differs from the physicists’ Laplacian by a sign.

Corollary 4.1.58 (Green). Let (M,g) as in Proposition 4.1.54, and f, g ∈ C∞(M).
Then

〈f,∆Mg〉M = 〈df, dg〉M − 〈f,
∂g

∂~ν
〉∂M ,

and

〈f,∆Mg〉M − 〈∆Mf, g〉M = 〈∂f
∂~ν
, g〉∂M − 〈f,

∂g

∂~ν
〉∂M .

Proof. The first equality follows immediately from the integration by parts formula (Propo-
sition 4.1.54), with α = f , and β = dg. The second identity is now obvious. ⊓⊔
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Exercise 4.1.59. (a) Prove that the only harmonic functions on a compact oriented
Riemann manifold M are the constant ones.
(b) If u, f ∈ C∞(M) are such that ∆Mu = f show that

∫
M f = 0. ⊓⊔

Exercise 4.1.60. Denote by (u1, . . . , un) the coordinates on the round sphere Sn →֒ Rn+1

obtained via the stereographic projection from the south pole.
(a) Show that the round metric g0 on Sn is given in these coordinates by

g0 =
4

1 + r2
{
(du1)2 + · · · + (dun)2

}
,

where r2 = (u1)2 + · · ·+ (un)2.
(b) Show that the n-dimensional “area” of Sn is

σn =

∫

Sn

dvg0 =
2π(n+1)/2

Γ(n+1
2 )

,

where Γ is Euler’s Gamma function

Γ(s) =

∫ ∞

0
ts−1e−tdt. ⊓⊔

Hint: Use the “doubling formula”

π1/2Γ(2s) = 22s−1Γ(s)Γ(s+ 1/2),

and the classical Beta integrals (see [40], or [103], Chapter XII)

∫ ∞

0

rn−1

(1 + r2)n
dr =

(Γ(n/2))2

2Γ(n)
. ⊓⊔

Exercise 4.1.61. Consider the Killing form on su(2) (the Lie algebra of SU(2)) defined
by

〈X,Y 〉 = −trX · Y.
(a) Show that the Killing form defines a bi-invariant metric on SU(2), and then compute
the volume of the group with respect to this metric. The group SU(2) is given the
orientation defined by e1 ∧ e2 ∧ e3 ∈ Λ3su(2), where ei ∈ su(2) are the Pauli matrices

e1 =

[
i 0
0 −i

]
e2 =

[
0 1
−1 0

]
e3 =

[
0 i
i 0

]

(b) Show that the trilinear form on su(2) defined by

B(X,Y,Z) = 〈[X,Y ], Z〉,

is skew-symmetric. In particular, B ∈ Λ3su(2)∗.
(c) B has a unique extension as a left-invariant 3-form on SU(2) known as the Cartan
form on SU(2)) which we continue to denote by B. Compute

∫
SU(2)B.

Hint: Use the natural diffeomorphism SU(2) ∼= S3, and the computations in the previous
exercise. ⊓⊔
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4.2 The Riemann curvature

Roughly speaking, a Riemann metric on a manifold has the effect of “giving a shape” to
the manifold. Thus, a very short (in diameter) manifold is different from a very long one,
and a large (in volume) manifold is different from a small one. However, there is a lot
more information encoded in the Riemann manifold than just its size. To recover it, we
need to look deeper in the structure, and go beyond the first order approximations we
have used so far.

The Riemann curvature tensor achieves just that. It is an object which is very rich
in information about the “shape” of a manifold, and loosely speaking, provides a second
order approximation to the geometry of the manifold. As Riemann himself observed, we
do not need to go beyond this order of approximation to recover all the information.

In this section we introduce the reader to the Riemann curvature tensor and its as-
sociates. We will describe some special examples, and we will conclude with the Gauss-
Bonnet theorem which shows that the local object which is the Riemann curvature has
global effects.
☞ Unless otherwise indicated, we will use Einstein’s summation convention.

4.2.1 Definitions and properties

Let (M,g) be a Riemann manifold, and denote by ∇ the Levi-Civita connection.

Definition 4.2.1. The Riemann curvature is the tensor R = R(g), defined as

R(g) = F (∇),

where F (∇) is the curvature of the Levi-Civita connection. ⊓⊔

The Riemann curvature is a tensor R ∈ Ω2(End (TM)) explicitly defined by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

In local coordinates (x1, . . . , xn) we have the description

Rℓijk∂ℓ = R(∂j , ∂k)∂i.

In terms of the Christoffel symbols we have

Rℓijk = ∂jΓ
ℓ
ik − ∂kΓℓij + ΓℓmjΓ

m
ik − ΓℓmkΓ

m
ij .

Lowering the indices we get a new tensor

Rijkℓ := gimR
m
jkℓ = g

(
R(∂k, ∂ℓ)∂j , ∂i

)
= g
(
∂i, R(∂k, ∂ℓ)∂j

)
.

Theorem 4.2.2 (The symmetries of the curvature tensor). The Riemann curvature tensor
R satisfies the following identities (X,Y,Z,U, V ∈ Vect (M)).

(a) g(R(X,Y )U, V ) = −g(R((Y,X), U, V ).

(b) g(R(X,Y )U, V ) = −g(R(X,Y )V,U).
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(c) (The 1st Bianchi identity)

R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = 0.

(d) g(R(X,Y )U, V ) = g(R(U, V )X,Y ).

(e) (The 2nd Bianchi identity)

(∇XR)(Y,Z) + (∇YR)(Z,X) + (∇ZR)(X,Y ) = 0

In local coordinates the above identities have the form

Rijkℓ = −Rjikℓ = −Rijℓk,

Rijkℓ = Rkℓij,

Rijkℓ +Riℓjk +Rikℓj = 0,

(∇iR)jmkℓ + (∇ℓR)jmik + (∇kR)jmℓi = 0.

Proof. (a) It follows immediately from the definition of R as an End(TM)-valued skew-
symmetric bilinear map (X,Y ) 7→ R(X,Y ).

(b) We have to show that the symmetric bilinear form

Q(U, V ) = g(R(X,Y )U, V ) + g(R(X,Y )V,U)

is trivial. Thus, it suffices to check Q(U,U) = 0. We may as well assume that [X,Y ] = 0,
since (locally) X, Y can be written as linear combinations (over C∞(M)) of commuting
vector fields. (E.g. X = Xi∂i). Then

Q(U,U) = g((∇X∇Y −∇Y∇X)U,U).

We compute

Y (Xg(U,U)) = 2Y g(∇XU,U) = 2g(∇Y∇XU,U) + 2g(∇XU,∇Y U),

and similarly,

X(Y g(U,U)) = 2g(∇X∇Y U,U) + 2g(∇XU,∇Y U).

Subtracting the two equalities we deduce (b).

(c) As before, we can assume the vector fields X, Y , Z pairwise commute. The 1st Bianchi
identity is then equivalent to

∇X∇Y Z −∇Y∇XZ +∇Z∇XY −∇X∇ZY +∇Y∇ZX −∇Z∇YX = 0.

The identity now follows from the symmetry of the connection: ∇XY = ∇YX etc.

(d) We will use the following algebraic lemma ([61], Chapter 5).
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Lemma 4.2.3. Let R : E ×E ×E ×E → R be a quadrilinear map on a real vector space
E. Define

S(X1,X2,X3,X4) = R(X1,X2,X3,X4) +R(X2,X3,X1,X4) +R(X3,X1,X2,X4).

If R satisfies the symmetry conditions

R(X1,X2,X3,X4) = −R(X2,X1,X3,X4)

R(X1,X2,X3,X4) = −R(X1,X2,X4,X3),

then

R(X1,X2,X3,X4)−R(X3,X4,X1,X2)

=
1

2

{
S(X1,X2,X3,X4)− S(X2,X3,X4,X1)

− S(X3,X4,X1,X2) + S(X4,X3,X1,X2)
}
.

The proof of the lemma is a straightforward (but tedious) computation which is left
to the reader. The Riemann curvature R = g(R(X1,X2)X3,X4) satisfies the symmetries
required in the lemma and moreover, the 1st Bianchi identity shows that the associated
form S is identically zero. This concludes the proof of (d).
(e) This is the Bianchi identity we established for any linear connection (see Exercise
3.3.23). ⊓⊔

Exercise 4.2.4. Denote by Cn of n-dimensional curvature tensors, i.e., tensors (Rijkl) ∈
(Rn)⊗4 satisfying the conditions,

Rijkℓ = Rkℓij = −Rjikℓ, Rijkℓ +Riℓjk +Rikℓj = 0, ∀i, j, k, ℓ.

Prove that

dimCn =

((n
2

)
+ 1

2

)
−
(
n

4

)
=

1

2

(
n

2

)((
n

2

)
+ 1

)
−
(
n

4

)
.

(Hint: Consult [13], Chapter 1, Section G.) ⊓⊔

The Riemann curvature tensor is the source of many important invariants associated
to a Riemann manifold. We begin by presenting the simplest ones.

Definition 4.2.5. Let (M,g) be a Riemann manifold with curvature tensor R. Any two
vector fields X, Y on M define an endomorphism of TM by

U 7→ R(U,X)Y.

The Ricci curvature is the trace of this endomorphism, i.e.,

Ric (X,Y ) = tr (U 7→ R(U,X)Y ).

We view it as a (0,2)-tensor (X,Y ) 7→ Ric (X,Y ) ∈ C∞(M). ⊓⊔
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If (x1, . . . , xn) are local coordinates onM and the curvature R has the local expression
R = (Rℓkij) then the Ricci curvature has the local description

Ric = (Ricij) =
∑

ℓ

Rℓjℓi.

The symmetries of the Riemann curvature imply that Ric is a symmetric (0,2)-tensor (as
the metric).

Definition 4.2.6. The scalar curvature s of a Riemann manifold is the trace of the Ricci
tensor. In local coordinates, the scalar curvature is described by

s = gij Ricij = gijRℓiℓj, (4.2.1)

where (gij) is the inverse matrix of (gij). ⊓⊔

Let (M,g) be a Riemann manifold and p ∈ M . For any linearly independent X,Y ∈
TpM set

Kp(X,Y ) =
(R(X,Y )Y,X)

|X ∧ Y | ,

where |X ∧ Y | denotes the Gramm determinant

|X ∧ Y | =
∣∣∣∣
(X,X) (X,Y )
(Y,X) (Y, Y )

∣∣∣∣ ,

which is non-zero since X and Y are linearly independent. (|X ∧ Y |1/2 measures the area
of the parallelogram in TpM spanned by X and Y .)

Remark 4.2.7. Given a metric g on a smooth manifold M , and a constant λ > 0, we
obtained a new, rescaled metric gλ = λ2g. A simple computation shows that the Christoffel
symbols and Riemann tensor of gλ are equal with the Christoffel symbols and the Riemann
tensor of the metric g. In particular, this implies

Ricgλ = Ricg .

However, the sectional curvatures are sensitive to metric rescaling.
For example, if g is the canonical metric on the 2-sphere of radius 1 in R3, then gλ is

the induced metric on the 2-sphere of radius λ in R3. Intuitively, the larger the constant
λ, the less curved is the corresponding sphere.

In general, for any two linearly independent vectors X,Y ∈ Vect (M) we have

Kgλ(X,Y ) = λ−2Kg(X,Y ).

In particular, the scalar curvature changes by the same factor upon rescaling the metric.
If we thing of the metric as a quantity measured in meter2, then the sectional curvatures

are measured in meter−2. ⊓⊔

Exercise 4.2.8. LetX,Y,Z,W ∈ TpM such that span(X,Y)= span(Z,W) is a 2-dimensional
subspace of TpM prove that Kp(X,Y ) = Kp(Z,W ). ⊓⊔
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According to the above exercise the quantity Kp(X,Y ) depends only upon the 2-plane
in TpM generated by X and Y . Thus Kp is in fact a function on Gr2(p) the Grassmannian
of 2-dimensional subspaces of TpM .

Definition 4.2.9. The function Kp : Gr2(p) → R defined above is called the sectional
curvature of M at p. ⊓⊔

Exercise 4.2.10. Prove that

Gr2(M) = disjoint union of Gr2(p) p ∈M

can be organized as a smooth fiber bundle over M with standard fiber Gr2(R
n), n =

dimM , such that, if M is a Riemann manifold, Gr2(M) ∋ (p;π) 7→ Kp(π) is a smooth
map. ⊓⊔

4.2.2 Examples

Example 4.2.11. Consider again the situation discussed in Example 4.1.15. Thus, G is
a Lie group, and 〈•, •〉 is a metric on the Lie algebra LG satisfying

〈ad(X)Y,Z〉 = −〈Y, ad(X)Z〉.

In other words, 〈•, •〉 is the restriction of a bi-invariant metric m on G. We have shown
that the Levi-Civita connection of this metric is

∇XY =
1

2
[X,Y ], ∀X,Y ∈ LG.

We can now easily compute the curvature

R(X,Y )Z =
1

4
{[X, [Y,Z]] − [Y, [X,Z]]} − 1

2
[[X,Y ], Z]

(Jacobi identity) =
1

4
[[X,Y ], Z]+

1

4
[Y, [X,Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X,Y ], Z] = −1

4
[[X,Y ], Z].

We deduce

〈R(X,Y )Z,W 〉 = −1

4
〈[[X,Y ], Z],W 〉 = 1

4
〈ad(Z)[X,Y ],W 〉

= −1

4
〈[X,Y ], ad(Z)W 〉 = −1

4
〈[X,Y ], [Z,W ]〉.

Now let π ∈ Gr2(TgG) be a 2-dimensional subspace of TgG, for some g ∈ G. If (X,Y ) is
an orthonormal basis of π, viewed as left invariant vector fields on G, then the sectional
curvature along π is

Kg(π) =
1

4

〈
[X,Y ], [X,Y ]

〉
≥ 0.

Denote the Killing form by κ(X,Y ) = −tr
(
ad(X) ad(Y )

)
. To compute the Ricci curva-

ture we pick an orthonormal basis E1, . . . , En of LG. For any X = XiEi, Y = Y jEj ∈ LG

we have

Ric (X,Y ) =
1

4
tr (Z 7→ [[X,Z], Y ])
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=
1

4

∑

i

〈[[X,Ei], Y ], Ei)〉 = −
1

4

∑

i

〈ad(Y )[X,Ei], Ei〉

=
1

4

∑

i

〈[X,Ei], [Y,Ei]〉 =
1

4

∑

i

〈ad(X)Ei, ad(Y )Ei〉

= −1

4

∑

i

〈ad(Y ) ad(X)Ei, Ei〉 = −
1

4
tr
(
ad(Y ) ad(X)

)
=

1

4
κ(X,Y ).

In particular, on a compact semisimple Lie group the Ricci curvature is a symmetric
positive definite (0, 2)-tensor, and more precisely, it is a scalar multiple of the Killing
metric.

We can now easily compute the scalar curvature. Using the same notations as above
we get

s =
1

4

∑

i

Ric (Ei, Ei) =
1

4

∑
κ(Ei, Ei).

In particular, if G is a compact semisimple group and the metric is given by the Killing
form then the scalar curvature is

s(κ) =
1

4
dimG. ⊓⊔

Remark 4.2.12. Many problems in topology lead to a slightly more general situation
than the one discussed in the above example namely to metrics on Lie groups which are
only left invariant. Although the results are not as “crisp” as in the bi-invariant case many
nice things do happen. For details we refer to [74]. ⊓⊔

Example 4.2.13. Let M be a 2-dimensional Riemann manifold (surface), and consider
local coordinates on M , (x1, x2). Due to the symmetries of R,

Rijkl = −Rijlk = Rklij,

we deduce that the only nontrivial component of the Riemann tensor is R = R1212. The
sectional curvature is simply a function on M

K =
1

|g|R1212 =
1

2
s(g), where |g| = det(gij).

In this case, the scalar K is known as the total curvature or the Gauss curvature of the
surface.

In particular, if M is oriented, and the form dx1 ∧ dx2 defines the orientation, we can
construct a 2-form

ε(g) =
1

2π
Kdvg =

1

4π
s(g)dVg =

1

2π
√
|g|
R1212dx

1 ∧ dx2.

The 2-form ε(g) is called the Euler form associated to the metric g. We want to emphasize
that this form is defined only when M is oriented.
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We can rewrite this using the pfaffian construction of Subsection 2.2.4. The curvature
R is a 2-form with coefficients in the bundle of skew-symmetric endomorphisms of TM so
we can write

R = A⊗ dVg, A =
1√
|g|

[
0 R1212

R2112 0

]

Assume for simplicity that (x1, x2) are normal coordinates at a point q ∈ M . Thus at q,
|g| = 1 since ∂1, ∂2 is an orthonormal basis of TqM . Hence, at q, dVg = dx1 ∧ dx2, and

ε(g) =
1

2π
g
(
R(∂1, ∂2

)
∂2, ∂1)dx

1 ∧ dx2 = 1

2π
R1212dx

1 ∧ dx2.

Hence we can write

ε(g) =
1

2π
Pfg(−A)dvg =:

1

2π
Pfg(−R).

The Euler form has a very nice interpretation in terms of holonomy. Assume as before
that (x1, x2) are normal coordinates at q, and consider the square St = [0,

√
t] × [0,

√
t]

in the (x1, x2) plane. Denote the (counterclockwise) holonomy along ∂St by Tt. This is
an orthogonal transformation of TqM , and with respect to the orthogonal basis (∂1, ∂2) of
TqM , it has a matrix description as

Tt =

[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
.

The result in Subsection 3.3.4 can be rephrased as

sin θ(t) = −tg(R(∂1, ∂2)∂2, ∂1) +O(t2),

so that
R1212 = θ̇(0).

Hence R1212 is simply the infinitesimal angle measuring the infinitesimal rotation suffered
by ∂1 along St. We can think of the Euler form as a “density” of holonomy since it
measures the holonomy per elementary parallelogram. ⊓⊔

4.2.3 Cartan’s moving frame method

This method was introduced by Élie Cartan at the beginning of the 20th century. Cartan’s
insight was that the local properties of a manifold equipped with a geometric structure can
be very well understood if one knows how the frames of the tangent bundle (compatible
with the geometric structure) vary from one point of the manifold to another. We will
begin our discussion with the model case of Rn. Throughout this subsection we will use
Einstein’s convention.

Example 4.2.14. Consider an orthonormal moving frame on Rn,Xα = Xi
α∂i, α = 1, ..., n,

where (x1, . . . , xn) are the usual Cartesian coordinates, and ∂i :=
∂
∂xi

. Denote by (θα) the
dual coframe, i.e., the moving frame of T ∗Rn defined by

θα(Xβ) = δαβ .
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The 1-forms θα measure the infinitesimal displacement of a point P with respect to the
frame (Xα). Note that the TM -valued 1-form θ = θαXα is the differential of the identity
map 1 : Rn → Rn expressed using the given moving frame.

Introduce the 1-forms ωαβ defined by

dXβ = ωαβXα, (4.2.2)

where we set

dXα :=

(
∂Xi

α

∂xj

)
dxj ⊗ ∂i.

We can form the matrix valued 1-form ω = (ωαβ ) which measures the infinitesimal rotation
suffered by the moving frame (Xα) following the infinitesimal displacement x 7→ x + dx.
In particular, ω = (ωαβ ) is a skew-symmetric matrix since

0 = d〈Xα,Xβ〉 = 〈ω ·Xα,Xβ〉+ 〈Xα, ω ·Xβ〉.

Since θ = d1 we deduce

0 = d21 = dθ = dθα ⊗Xα − θβ ⊗ dXβ = (dθα − θβ ∧ ωαβ )⊗Xα,

and we can rewrite this as

dθα = θβ ∧ ωαβ , or dθ = −ω ∧ θ. (4.2.3)

Above, in the last equality we interpret ω as a n × n matrix whose entries are 1-forms,
and θ as a column matrix, or a n× 1 matrix whose entries are 1-forms.

Using the equality d2Xβ = 0 in (4.2.2) we deduce

dωαβ = −ωαγ ∧ ωγβ, or equivalently, dω = −ω ∧ ω. (4.2.4)

The equations (4.2.3)–(4.2.4) are called the structural equations of the Euclidean space.
The significance of these structural equations will become evident in a little while. ⊓⊔

We now try to perform the same computations on an arbitrary Riemann manifold
(M,g), dimM = n. We choose a local orthonormal moving frame (Xα)1≤α≤n, and we
construct similarly its dual coframe (θα)1≤α≤n. Unfortunately, there is no natural way to
define dXα to produce the forms ωαβ entering the structural equations. We will find them
using a different (dual) search strategy.

Proposition 4.2.15 (E. Cartan). There exists a collection of 1-forms (ωαβ )1≤α,β≤n uniquely
defined by the requirements

(a) ωαβ = −ωβα, ∀α, β.

(b) dθα = θβ ∧ ωαβ , ∀α.
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Proof. Since the collection of two forms (θα∧θβ)1≤α<β≤n defines a local frame of Λ2T ∗Rn,
there exist functions gαβγ , uniquely determined by the conditions

dθα =
1

2
gαβγθ

β ∧ θγ, gαβγ = −gαγβ .

Uniqueness. Suppose that there exist forms ωαβ satisfy the conditions (a)&(b) above. Then
there exist functions fαβγ such that

ωαβ = fαβγθ
γ.

Then the condition (a) is equivalent to

(a1) fαβγ = −fβαγ ,
while (b) gives
(b1) fαβγ − fαγβ = gαβγ

The above two relations uniquely determine the f ’s in terms of the g’s via a cyclic
permutation of the indices α, β, γ

fαβγ =
1

2
(gαβγ + gβγα − gγαβ) (4.2.5)

Existence. Define ωαβ = fαβγθ
γ , where the f ’s are given by (4.2.5). We let the reader check

that the forms ωαβ satisfy both (a) and (b). ⊓⊔

The reader may now ask why go through all this trouble. What have we gained by
constructing the forms ω, and after all, what is their significance?

To answer these questions, consider the Levi-Civita connection ∇. Define ω̂αβ by

∇Xβ = ω̂αβXα.

Hence
∇XγXβ = ω̂αβ (Xγ)Xα.

Since ∇ is compatible with the Riemann metric, we deduce in standard manner that
ω̂αβ = −ω̂βα.

The differential of θα can be computed in terms of the Levi-Civita connection (see
Subsection 4.1.5), and we have

dθα(Xβ ,Xγ) = Xβθ
α(Xγ)−Xγθ

α(Xβ)− θα(∇Xβ
Xγ) + θα(∇XγXβ)

(use θα(Xβ) = δαβ = const) = −θα(ω̂δγ(Xβ)Xδ) + θα(ω̂δβ(Xγ)Xδ)

= ω̂αβ (Xγ)− ω̂αγ (Xβ) = (θβ ∧ ω̂αβ )(Xβ ,Xγ).

Thus the ω̂’s satisfy both conditions (a) and (b) of Proposition 4.2.15 so that we must
have

ω̂αβ = ωαβ .

In other words, the matrix valued 1-form (ωαβ ) is the 1-form associated to the Levi-Civita
connection in this local moving frame. In particular, using the computation in Example
3.3.12 we deduce that the 2-form

Ω = (dω + ω ∧ ω)
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is the Riemannian curvature of g. The Cartan structural equations of a Riemann manifold
take the form

dθ = −ω ∧ θ, dω + ω ∧ ω = Ω. (4.2.6)

Comparing these with the Euclidean structural equations we deduce another interpretation
of the Riemann curvature: it measures “the distance” between the given Riemann metric
and the Euclidean one”. We refer to [93] for more details on this aspect of the Riemann
tensor.

The technique of orthonormal frames is extremely versatile in concrete computations.

Example 4.2.16. We will use the moving frame method to compute the curvature of the
hyperbolic plane, i.e., the upper half space

H+ = {(x, y) ; y > 0}

endowed with the metric g = y−2(dx2 + dy2).
The pair (y∂x, y∂y) is an orthonormal moving frame, and (θx = 1

ydx, θ
y = 1

ydy) is its
dual coframe. We compute easily

dθx = d(
1

y
dx) =

1

y2
dx ∧ dy = (

1

y
dx) ∧ θy,

dθy = d(
1

y
dy) = 0 = (−1

y
dx) ∧ θx.

Thus the connection 1-form in this local moving frame is

ω =

[
0 − 1

y
1
y 0

]
dx.

Note that ω ∧ ω = 0. Using the structural equations (4.2.6) we deduce that the Riemann
curvature is

Ω = dω =

[
0 1

y2

− 1
y2 0

]
dy ∧ dx =

[
0 −1
1 0

]
θx ∧ θy.

The Gauss curvature is

K =
1

|g|g(Ω(∂x, ∂y)∂y, ∂x) = y4(− 1

y4
) = −1. ⊓⊔

Exercise 4.2.17. Suppose (M,g) is a Riemann manifold, and u ∈ C∞(M). Define a new
metric gu := e2fg. Using the moving frames method, describe the scalar curvature of gu
in terms of u and the scalar curvature of g. ⊓⊔

4.2.4 The geometry of submanifolds

We now want to apply Cartan’s method of moving frames to discuss the the local geometry
of submanifolds of a Riemann manifold.

Let (M,g) be a Riemann manifold of dimensionm, and S a k-dimensional submanifold
in M . The restriction of g to S induces a Riemann metric gS on S. We want to analyze
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the relationship between the Riemann geometry of M (assumed to be known) and the
geometry of S with the induced metric.

Denote by ∇M (respectively ∇S) the Levi-Civita connection of (M,g) (respectively of
(S, gS). The metric g produces an orthogonal splitting of vector bundles

(TM) |S∼= TS ⊕NSS.

The NS is called the normal bundle of S →֒ M , and its is the orthogonal complement of
TS in (TM) |S . Thus, a section of (TM) |S , that is a vector field X of M along S, splits
into two components: a tangential component Xτ , and a normal component, Xν .

Now choose a local orthonormal moving frame (X1, ...,Xk;Xk+1, ...,Xm) such that the
first k vectors (X1, ...,Xk) are tangent to S. Denote the dual coframe by (θα)1≤α≤m. Note
that

θα |S= 0 for α > k.

Denote by (µαβ), (1 ≤ α, β ≤ m) the connection 1-forms associated to ∇M by this frame,

and let σαβ , (1 ≤ α, β ≤ k) be the connection 1-forms of ∇S corresponding to the frame
(X1, . . . ,Xk). We will analyze the structural equations of M restricted to S →֒M .

dθα = θβ ∧ µαβ 1 ≤ α, β ≤ m. (4.2.7)

We distinguish two situations.
A. 1 ≤ α ≤ k. Since θβ |S= 0 for β > k the equality (4.2.7) yields

dθα =
k∑

β=1

θβ ∧ µαβ , µαβ = −µβα 1 ≤ α, β ≤ k.

The uniqueness part of Proposition 4.2.15 implies that along S

σαβ = µαβ 1 ≤ α, β ≤ k.
This can be equivalently rephrased as

∇SXY = (∇MX Y )τ ∀X,Y ∈ Vect (S). (4.2.8)

B. k < α ≤ m. We deduce

0 =
k∑

β=1

θβ ∧ µαβ .

At this point we want to use the following elementary result.

Exercise 4.2.18 (Cartan Lemma). Let V be a d-dimensional real vector space and con-
sider p linearly independent elements ω1, ... , ωp ∈ Λ1V , p ≤ d. If θ1, ... , θp ∈ Λ1V are
such that

p∑

i=1

θi ∧ ωi = 0,

then there exist scalars Aij , 1 ≤ i, j ≤ p such that Aij = Aji and

θi =

p∑

j=1

Aijωj . ⊓⊔
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Using Cartan lemma we can find smooth functions fλβγ , λ > k, 1 ≤ β, γ ≤ k satisfying

fλβγ = fλγβ, and µλβ = fλβγθ
γ.

Now form
N = fλβγθ

β ⊗ θγ ⊗Xλ.

We can view N as a symmetric bilinear map

Vect (S)×Vect (S)→ C∞(NS).

If U, V ∈ Vect (S)
U = UβXβ = θβ(U)Xβ 1 ≤ β ≤ k,

and
V = V γXγ = θγ(V )Xγ 1 ≤ γ ≤ k,

then

N(U, V ) =
∑

λ>k




∑

β

(∑

γ

fλβγθ
γ(V )

)
θβ(U)



Xλ

=
∑

λ>k


∑

β

µλβ(V )Uβ


Xλ.

The last term is precisely the normal component of ∇MV U . We have thus proved the
following equality. so that we have established

(
∇MV U

)ν
= N(U, V ) = N(V,U) =

(
∇MU V

)ν
. (4.2.9)

The map N is called the 2nd fundamental form2 of S →֒M .
There is an alternative way of looking at N. Choose

U, V ∈ Vect (S), N ∈ C∞(NS).

If we write g(•, •) =
〈
•, •

〉
, then

〈
N(U, V ), N

〉
=
〈 (
∇MU V

)ν
, N
〉
=
〈
∇MU V,N

〉

= ∇MU
(
V, N

〉
−
〈
V,∇MU N

〉
= −

〈
V,
(
∇MU N

)τ 〉
.

We have thus established

−
〈
V,
(
∇MU N

)τ 〉
=
〈
N(U, V ), N

〉
=
〈
N(V,U), N

〉
= −

〈
U,
(
∇MV N

)τ 〉
. (4.2.10)

The 2nd fundamental form can be used to determine a relationship between the curvature
of M and that of S. More precisely we have the following celebrated result.

Theorema Egregium (Gauss). Let RM (resp. RS) denote the Riemann curvature
of (M,g) (resp. (S, g |S). Then for any X,Y,Z, T ∈ Vect (S) we have

〈
RM (X,Y )Z, T

〉
=
〈
RS(X,Y )Z, T

〉

+
〈
N(X,Z) , N(Y, T )

〉
−
〈
N(X,T ) , N(Y,Z)

〉
.

(4.2.11)

2The first fundamental form is the induced metric.
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Proof. Note that
∇MX Y = ∇SXY +N(X,Y ).

We have
RM (X,Y )X = [∇MX ,∇MY ]Z −∇M[X,Y ]Z

= ∇MX
(
∇SY Z +N(Y,Z)

)
−∇MY

(
∇SXZ +N(X,Z)

)
−∇S[X,Y ]Z −N([X,Y ], Z).

Take the inner product with T of both sides above. Since N(•, •) is NS-valued, we deduce
using (4.2.8)-(4.2.10)

〈
RM (X,Y )Z, T

〉
=
〈
∇MX∇SY Z, T

〉
+
〈
∇MXN(Y,Z), T

〉

−〈∇MY ∇SXZ, T
〉
−
〈
∇MY N(X,Z), T

〉
−
〈
∇S[X,Y ]Z, T

〉

=
〈
[∇SX ,∇SY ]Z, T

〉
−
〈
N(Y,Z),N(X,T )

〉
+
〈
N(X,Z),N(Y, T )

〉
−
〈
∇S[X,Y ]Z, T

〉
.

This is precisely the equality (4.2.11). ⊓⊔

The above result is especially interesting when S is a transversally oriented hypersur-
face, i.e., S is a a codimension 1 submanifold such that the normal bundle NS is trivial3.
Pick an orthonormal frame n of NS , i.e., a length 1 section of NS , and choose an orthonor-
mal moving frame (X1, ...,Xm−1) of TS.

Then (X1, ...,Xm−1,n) is an orthonormal moving frame of (TM) |S , and the second
fundamental form is completely described by

Nn(X,Y ) :=
〈
N(X,Y ),n

〉
.

Nn is a bona-fide symmetric bilinear form, and moreover, according to (4.2.10) we have

Nn(X,Y ) = −
〈
∇MX n, Y

〉
= −

〈
∇MY n,X

〉
.

In this case, Gauss formula becomes

〈
RS(X,Y )Z, T

〉
=
〈
RM (X,Y )Z, T

〉
−
∣∣∣∣
Nn(X,Z) Nn(X,T )
Nn(Y,Z) Nn(Y, T )

∣∣∣∣ .

Let us further specialize, and assume M = Rm. Then

〈
RS(X,Y )Z, T

〉
=

∣∣∣∣
Nn(X,T ) Nn(X,Z)
Nn(Y, T ) Nn(Y,Z)

∣∣∣∣ . (4.2.12)

In particular, the sectional curvature along the plane spanned by X,Y is

〈
RS(X,Y )Y,X

〉
= Nn(X,X) ·Nn(Y, Y )− |Nn(X,Y )|2 .

This is a truly remarkable result. On the right-hand-side we have an extrinsic term (it
depends on the “space surrounding S”), while in the left-hand-side we have a purely in-
trinsic term (which is defined entirely in terms of the internal geometry of S). Historically,

3Locally, all hypersurfaces are transversally oriented since NS is locally trivial by definition.
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the extrinsic term was discovered first (by Gauss), and very much to Gauss surprise (?!?)
one does not need to look outside S to compute it. This marked the beginning of a new
era in geometry. It changed dramatically the way people looked at manifolds and thus it
fully deserves the name of The Golden (egregium) Theorem of Geometry.

We can now explain rigorously why we cannot wrap a plane canvas around the sphere.
Notice that, when we deform a plane canvas, the only thing that changes is the extrinsic
geometry, while the intrinsic geometry is not changed since the lengths of the“fibers” stays
the same. Thus, any intrinsic quantity is invariant under “bending”. In particular, no
matter how we deform the plane canvas we will always get a surface with Gauss curvature
0 which cannot be wrapped on a surface of constant positive curvature! Gauss himself
called the total curvature a“bending invariant”.

Example 4.2.19. (Quadrics in R3). Let A : R3 → R3 be a selfadjoint, invertible
linear operator with at least one positive eigenvalue. This implies the quadric

QA = {u ∈ R3 ;
〈
Au, u

〉
= 1},

is nonempty and smooth (use implicit function theorem to check this). Let u0 ∈ QA.
Then

Tu0QA = {x ∈ R3 ;
〈
Au0, x

〉
= 0} = (Au0)

⊥.

QA is a transversally oriented hypersurface in R3 since the map QA ∋ u 7→ Au defines a
nowhere vanishing section of the normal bundle. Set n = 1

|Au|Au.

Consider an orthonormal frame (e0, e1, e2) of R3 such that e0 = n(u0). Denote the
Cartesian coordinates in R3 with respect to this frame by (x0, x1, x2), and set ∂i := ∂xi .
Extend (e1, e2) to a local moving frame of TQA near u0.

The second fundamental form of QA at u0 is

Nn(∂i, ∂j) =
〈
∂in, ∂j

〉
|u0 .

We compute

∂in = ∂i

(
Au

|Au|

)
= ∂i(

〈
Au,Au

〉−1/2
)Au+

1

|Au|A∂iu

= −
〈
∂iAu,Au

〉

|Au|3/2 Au+
1

|Au|∂iAu.

Hence

Nn(∂i, ∂j) |u0=
1

|Au0|
〈
A∂iu, ej

〉
|u0

=
1

|Au0|
〈
∂iu,Aej

〉
|u0=

1

|Au0|
〈
ei, Aej

〉
. (4.2.13)

We can now compute the Gaussian curvature at u0.

Ku0 =
1

|Au0|2
∣∣∣∣
〈
Ae1, e1

〉 〈
Ae1, e2

〉
〈
Ae2, e1

〉 〈
Ae2, e2

〉
∣∣∣∣ .
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In particular, when A = r−2I so that QA is the round sphere of radius r we deduce

Ku =
1

r2
∀|u| = r.

Thus, the round sphere has constant positive curvature. ⊓⊔

Example 4.2.20. (Gauss). Let Σ be a transversally oriented, compact surface in R3,
e.g., a connected sum of a finite number of tori. Note that the Whitney sum NΣ ⊕ TΣ is
the trivial bundle R3

Σ. We orient NΣ such that

orientationNΣ ∧ orientation TΣ = orientationR3.

Let n be the unit section of NΣ defining the above orientation. We obtain in this way a
map

G : Σ→ S2 = {u ∈ R3 ; |u| = 1}, Σ ∋ x 7→ n(x) ∈ S2.

The map G is called the Gauss map of Σ →֒ S2. It really depends on how Σ is embedded
in R3 so it is an extrinsic object. Denote by Nn the second fundamental form of Σ →֒ R3,
and let (x1, x2) be normal coordinates at q ∈ Σ such that

orientation TqΣ = ∂1 ∧ ∂2.

Consider the Euler form εΣ on Σ with the metric induced by the Euclidean metric in R3.
Then, taking into account our orientation conventions, we have

2πεΣ(∂1, ∂2) = R1212 =

∣∣∣∣
Nn(∂1, ∂1) Nn(∂1, ∂2)
Nn(∂2, ∂1) Nn(∂2, ∂2)

∣∣∣∣ . (4.2.14)

Now notice that

∂in = −Nn(∂i, ∂1)∂1 −Nn(∂i, ∂2)∂2.

We can think of n, ∂1 |q and ∂2 |q as defining a (positively oriented) frame of R3. The last
equality can be rephrased by saying that the derivative of the Gauss map

G∗ : TqΣ→ Tn(q)S
2

acts according to

∂i 7→ −Nn(∂i, ∂1)∂1 −Nn(∂i, ∂2)∂2.

In particular, we deduce

G∗ preserves (reverses) orientations⇐⇒ R1212 > 0 (< 0), (4.2.15)

because the orientability issue is decided by the sign of the determinant

∣∣∣∣∣∣

1 0 0
0 −Nn(∂1, ∂1) −Nn(∂1, ∂2)
0 −Nn(∂2, ∂1) −Nn(∂2, ∂2)

∣∣∣∣∣∣
.
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At q, ∂1 ⊥ ∂2 so that,

〈
∂in, ∂jn

〉
= Nn(∂i, ∂1)Nn(∂j , ∂1) +Nn(∂i, ∂2)Nn(∂j , ∂2).

We can rephrase this coherently as an equality of matrices

[
〈∂1n, ∂1n

〉 〈
∂1n, ∂2n

〉
〈
∂2n, ∂1n

〉 〈
∂2n, ∂2n

〉
]

=

[
Nn(∂1, ∂1) Nn(∂1, ∂2)
Nn(∂2, ∂1) Nn(∂2, ∂2)

]
×
[
Nn(∂1, ∂1) Nn(∂1, ∂2)
Nn(∂2, ∂1) Nn(∂2, ∂2)

]t
.

Hence

∣∣∣∣
Nn(∂1, ∂1) Nn(∂1, ∂2)
Nn(∂1, ∂2) Nn(∂2, ∂2)

∣∣∣∣
2

=

∣∣∣∣
〈∂1n, ∂1n

〉 〈
∂1n, ∂2n

〉
〈
∂1n, ∂2n

〉 〈
∂2n, ∂2n

〉
∣∣∣∣ . (4.2.16)

If we denote by dv0 the metric volume form on S2 induced by the restriction of the
Euclidean metric on R3, we see that (4.2.14) and (4.2.16) put together yield

2π|εΣ(∂1, ∂2)| = |dv0(∂1n, ∂2n)| = |dv0(G∗(∂1),G∗(∂2))|.

Using (4.2.15) we get

εΣ =
1

2π
G∗Σdv0 =

1

2π
G∗ΣεS2 . (4.2.17)

This is one form of the celebrated Gauss-Bonnet theorem . We will have more to say
about it in the next subsection.

Note that the last equality offers yet another interpretation of the Gauss curvature.
From this point of view the curvature is a “distortion factor”. The Gauss map “stretches”
an infinitesimal parallelogram to some infinitesimal region on the unit sphere. The Gauss
curvature describes by what factor the area of this parallelogram was changed. In Chapter
9 we will investigate in greater detail the Gauss map of arbitrary submanifolds of an
Euclidean space. ⊓⊔

4.2.5 The Gauss-Bonnet theorem for oriented surfaces

We conclude this chapter with one of the most beautiful results in geometry. Its meaning
reaches deep inside the structure of a manifold and can be viewed as the origin of many
fertile ideas.

Recall one of the questions we formulated at the beginning of our study: explain
unambiguously why a sphere is “different” from a torus. This may sound like forcing our
way in through an open door since everybody can “see” they are different. Unfortunately
this is not a conclusive explanation since we can see only 3-dimensional things and possibly
there are many ways to deform a surface outside our tight 3D Universe.

The elements of Riemann geometry we discussed so far will allow us to produce an
invariant powerful enough to distinguish a sphere from a torus. But it will do more than
that.
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Theorem 4.2.21. (Gauss-Bonnet Theorem. Preliminary version.) Let S be a
compact oriented surface without boundary. If g0 and g1 are two Riemann metrics on S
and εgi(S) (i = 0, 1) are the corresponding Euler forms then

∫

S
εg0(S) =

∫

S
εg1(S).

Hence the quantity
∫
S εg(S) is independent of the Riemann metric g so that it really

depends only on the topology of S!!!

The idea behind the proof is very natural. Denote by gt the metric gt = g0+ t(g1−g0).
We will show

d

dt

∫

S
εgt = 0 ∀t ∈ [0, 1].

It is convenient to consider a more general problem.

Definition 4.2.22. Let M be a compact oriented manifold. For any Riemann metric g
on E define

EM (M,g) =

∫

M
s(g)dVg,

where s(g) denotes the scalar curvature of (M,g). The functional g 7→ E(g) is called the
Hilbert-Einstein functional. ⊓⊔

We have the following remarkable result.

Lemma 4.2.23. Let M be a compact oriented manifold without boundary and gt = (gtij)
be a 1-parameter family of Riemann metrics on M depending smoothly upon t ∈ R. Then

d

dt
E(gt) = −

∫

M

〈
Ricgt −

1

2
s(gt)gt , ġt

〉
t
dVgt , ∀t.

In the above formula 〈·, ·〉t denotes the inner product induced by gt on the space of sym-
metric (0,2)-tensors while the dot denotes the t-derivative.

Definition 4.2.24. A Riemann manifold (M,g) of dimension n is said to be Einstein if
the metric g satisfies Einstein’s equation

Ricg =
s(x)

n
g,

where s(x) denotes the scalar curvature.

Example 4.2.25. Observe that if the Riemann metric g satisfies the condition

Ricg(x) = λ(x)g(x) (4.2.18)

for some smooth function λ ∈ C∞(M), then by taking the traces of both sides of the
above equality we deduce

λ(x) =
s(g)(x)

n
, n := dimM.
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Thus, the Riemann manifold is Einstein if and only if it satisfies (4.2.18).
Using the computations in Example 4.2.11 we deduce that a certain constant multiple

of the Killing metric on a compact semisimple Lie group is an Einstein metric.
We refer to [13] for an in depth study of the Einstein manifolds. ⊓⊔

The (0, 2)-tensor

Eij := Rij(x)−
1

2
s(x)gij(x)

is called the Einstein tensor of (M,g).

Exercise 4.2.26. Consider a 3-dimensional Riemann manifold (M,g). Show that

Rijkℓ = Eikgjℓ − Eiℓgjk + Ejℓgik − Ejkgiℓ +
s

2
(giℓgjk − gikgjℓ).

In particular, this shows that on a Riemann 3-manifold the full Riemann tensor is com-
pletely determined by the Einstein tensor. ⊓⊔

Exercise 4.2.27. (Schouten-Struik, [88]). Prove that the scalar curvature of an Ein-
stein manifold of dimension ≥ 3 is constant.
Hint: Use the 2nd Bianchi identity. ⊓⊔

Notice that when (S, g) is a compact oriented Riemann surface two very nice things
happen.
(i) (S, g) is Einstein. (Recall that only R1212 is nontrivial).
(ii) E(g) = 2

∫
S εg.

Theorem 4.2.21 is thus an immediate consequence of Lemma 4.2.23.
Proof of the lemma We will produce a very explicit description of the integrand

d

dt

(
s(gt)dVgt

)
=
( d
dt
s(gt)

)
dVgt + s(gt)

( d
dt
dVgt

)
(4.2.19)

of d
dtE(g

t). We will adopt a “roll up your sleeves, and just do it” strategy reminiscent to
the good old days of the tensor calculus frenzy. By this we mean that we will work in a
nicely chosen collection of local coordinates, and we will keep track of the zillion indices
we will encounter. As we will see, the computations are not as hopeless as they may seem
to be.

We will study the integrand (4.2.19) at t = 0. The general case is entirely analogous.
For typographical reasons we will be forced to introduce new notations. Thus, ĝ will
denote (gt) for t = 0, while gt will be denoted simply by g. A hat over a quantity means
we think of that quantity at t = 0, while a dot means differentiation with respect to t at
t = 0.

Let q be an arbitrary point on S, and denote by (x1, . . . , xn) a collection of ĝ-normal
coordinates at q. Denote by ∇ the Levi-Civita connection of g and let Γijk denote its

Christoffel symbols in the coordinates (xi).
Many nice things happen at q, and we list a few of them which will be used later.

ĝij = ĝij = δij, ∂kĝij = 0. (4.2.20)
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∇̂i∂j = 0, Γ̂ijk = 0. (4.2.21)

If α = αidx
i is a 1-form then, at q,

δĝα =
∑

i

∂iαi. where δ = ∗d ∗ . (4.2.22)

In particular, for any smooth function u we have

(∆M,ĝu)(q) = −
∑

i

∂i
2u. (4.2.23)

Set

h = (hij) := (ġ) = (ġij).

The tensor h is a symmetric (0, 2)-tensor. Its ĝ-trace is the scalar

trĝh = ĝijhij = trL−1(h),

where L is the lowering the indices operator defined by ĝ. In particular, at q

trĝ h =
∑

i

hii. (4.2.24)

The curvature of g is given by

Rℓikj = −Rℓijk = ∂kΓ
ℓ
ij − ∂jΓℓik + ΓℓmkΓ

m
ij − ΓℓmjΓ

m
ik.

The Ricci tensor is

Rij = Rkikj = ∂kΓ
k
ij − ∂jΓkik + ΓkmkΓ

m
ij − ΓkmjΓ

m
ik.

Finally, the scalar curvature is

s = trg Rij = gijRij = gij
(
∂kΓ

k
ij − ∂jΓkik + ΓkmkΓ

m
ij − ΓkmjΓ

m
ik

)
.

Differentiating s at t = 0, and then evaluating at q we obtain

ṡ = ġij
(
∂kΓ̂

k
ij − ∂jΓ̂kik

)
+ δij

(
∂kΓ̇

k
ij − ∂jΓ̇kik

)

= ġijR̂ij +
∑

i

(
∂kΓ̇

k
ii − ∂iΓ̇kik

)
.

(4.2.25)

The term ġij can be computed by derivating the equality gikgjk = δik at t = 0. We get

ġik ĝjk + ĝikhjk = 0,

so that

ġij = −hij. (4.2.26)
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To evaluate the derivatives Γ̇’s we use the known formulæ

Γmij =
1

2
gkm (∂igjk − ∂kgij + ∂jgik) ,

which, upon differentiation at t = 0, yield

Γ̇mij =
1

2
(∂iĝjk − ∂kĝij + ∂j ĝik) +

1

2
ĝkm (∂ihjk − ∂khij + ∂jhik)

=
1

2
(∂ihjm − ∂mhij + ∂jhim) .

(4.2.27)

We substitute (4.2.26) -(4.2.27) in (4.2.25), and we get, at q

ṡ = −
∑

i,j

hijR̂ij +
1

2

∑

i,k

(∂k∂ihik − ∂k2hii + ∂k∂ihik)−
1

2

∑

i,k

(∂i
2hkk − ∂i∂khik)

= −
∑

i,j

hijR̂ij −
∑

i,k

∂i
2hkk +

∑

i,k

∂i∂khik

= −〈R̂ic, ġ〉ĝ +∆M,ĝtrĝ ġ +
∑

i,k

∂i∂khik. (4.2.28)

To get a coordinate free description of the last term note that, at q,

(∇̂kh)(∂i, ∂m) = ∂khim.

The total covariant derivative ∇̂h is a (0, 3)-tensor. Using the ĝ-trace we can construct a
(0, 1)-tensor, i.e., a 1-form

trĝ(∇̂h) = tr(L−1ĝ ∇̂h),

where L−1ĝ is the raising the indices operator defined by ĝ. In the local coordinates (xi)
we have

trĝ(∇̂h) = ĝij(∇̂ih)jkdxk.

Using (4.2.20), and (4.2.22) we deduce that the last term in (4.2.28) can be rewritten (at
q) as

δtrĝ (∇̂h) = δtrĝ(∇̂ġ).

We have thus established that

ṡ = −〈R̂ic, ġ〉ĝ +∆M,ĝtrĝ ġ + δtrĝ(∇̂ġ). (4.2.29)

The second term of the integrand (4.2.19) is a lot easier to compute.

dVg = ±
√
|g|dx1 ∧ · · · ∧ dxn,

so that

dV̇g = ±
1

2
|ĝ|−1/2 d

dt
|g|dx1 ∧ · · · ∧ dxn.
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At q the metric is Euclidean, ĝij = δij , and

d

dt
|g| =

∑

i

ġii = |ĝ| · trĝ(ġ) = 〈 ĝ, ġ 〉ĝ |ĝ|.

Hence

Ė(g) =

∫

M

〈 ( 1
2
s(ĝ)ĝ − Ricĝ

)
, ġ
〉
ĝ
dVĝ +

∫

M

(
∆M,ĝ trĝ ġ + δtrĝ(∇̂ġ)

)
dVĝ.

Green’s formula shows the last two terms vanish and the proof of the Lemma is concluded.
⊓⊔

Definition 4.2.28. Let S be a compact, oriented surface without boundary. We define
its Euler characteristic as the number

χ(S) =
1

2π

∫

S
ε(g),

where g is an arbitrary Riemann metric on S. The number

g(S) =
1

2
(2− χ(S))

is called the genus of the surface. ⊓⊔

Remark 4.2.29. According to the theorem we have just proved, the Euler characteristic is
independent of the metric used to define it. Hence, the Euler characteristic is a topological
invariant of the surface. The reason for this terminology will become apparent when we
discuss DeRham cohomology, a Z-graded vector space naturally associated to a surface
whose Euler characteristic coincides with the number defined above. So far we have no
idea whether χ(S) is even an integer. ⊓⊔

Proposition 4.2.30.

χ(S2) = 2 and χ(T 2) = 0.

Proof. To compute χ(S2) we use the round metric g0 for which K = 1 so that

χ(S2) =
1

2π

∫

S2

dvg0 =
1

2π
areag0(S

2) = 2.

To compute the Euler characteristic of the torus we think of it as an Abelian Lie group with
a bi-invariant metric. Since the Lie bracket is trivial we deduce from the computations in
Subsection 4.2.2 that its curvature is zero. This concludes the proof of the proposition. ⊓⊔

Proposition 4.2.31. If Si (i=1,2) are two compact oriented surfaces without boundary
then

χ(S1#S2) = χ(S1) + χ(S2)− 2.
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f f
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Figure 4.3: Generating a hot-dog-shaped surface

Thus upon iteration we get

χ(S1# · · ·#Sk) =
k∑

i=1

χ(Si)− 2(k − 1),

for any compact oriented surfaces S1, . . . , Sk. In terms of genera, the last equality can be
rephrased as

g(S1# · · ·#Sk) =
k∑

i=1

g(Si).

In the proof of this proposition we will use special metrics on connected sums of surfaces
which require a preliminary analytical discussion.

Consider f : (−4, 4)→ (0,∞) a smooth, even function such that

(i) f(x) = 1 for |x| ≤ 2.

(ii) f(x) =
√

1− (x+ 3)2 for x ∈ [−4,−3.5].
(iii) f(x) =

√
1− (x− 3)2 for x ∈ [3.5, 4].

(iv) f is non-decreasing on [−4, 0].
One such function is graphed in Figure 4.3

Denote by Sf the surface inside R3 obtained by rotating the graph of f about the x-
axis. Because of properties (i)-(iv), Sf is a smooth surface diffeomorphic4 to S2. We denote

4One such diffeomorphism can be explicitly constructed projecting along radii starting at the origin.
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Figure 4.4: Special metric on a connected sum

by g the metric on Sf induced by the Euclidean metric in R3. Since Sf is diffeomorphic
to a sphere

∫

Sf

KgdVg = 2πχ(S2) = 4π.

Set

S±f := Sf ∩ {±x > 0}, S±1f := Sf ∩ {±x > 1}

Since f is even we deduce

∫

S±
f

Kgdvg =
1

2

∫

Sf

Kgdvg = 2π. (4.2.30)

On the other hand, on the neck C = {|x| ≤ 2} the metric g is locally Euclidean g =
dx2 + dθ2, so that over this region Kg = 0. Hence

∫

C
Kgdvg = 0. (4.2.31)

Proof of the Proposition 4.2.31 Let Di ⊂ Si (i = 1, 2) be a local coordinate neigh-
borhood diffeomorphic with a disk in the plane. Pick a metric gi on Si such that (D1, g1) is
isometric with S+

f and (D2, g2) is isometric to S−f . The connected sum S1#S2 is obtained

by chopping off the regions S1
f from D1 and S−1f from D2 and (isometrically) identifying

the remaining cylinders S±f ∩ {|x| ≤ 1} = C and call O the overlap created by gluing (see
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Figure 4.4). Denote the metric thus obtained on S1#S2 by ĝ. We can now compute

χ(S1#S2) =
1

2π

∫

S1#S2

Kĝdvĝ

=
1

2π

∫

S1\D1

Kg1dVg1 +
1

2π

∫

S2\D2

Kg2dVg2 +
1

2π

∫

O
Kg dVg

(4.2.31)
=

1

2π

∫

S1

Kg1dVg1 −
1

2π

∫

D1

KgdVg

+
1

2π

∫

S2

Kg2dVg2 −
1

2π

∫

D2

KgdVg
(4.2.30)

= χ(S1) + χ(S2)− 2.

This completes the proof of the proposition. ⊓⊔

Corollary 4.2.32 (Gauss-Bonnet). Let Σg denote the connected sum of g-tori. (By defi-
nition Σ0 = S2. Then

χ(Σg) = 2− 2g and g(Σg) = g.

In particular, a sphere is not diffeomorphic to a torus.

Remark 4.2.33. It is a classical result that the only compact oriented surfaces are the
connected sums of g-tori (see [69]), so that the genus of a compact oriented surface is a
complete topological invariant. ⊓⊔



Chapter 5

Elements of the Calculus of

Variations

This is a very exciting subject lieing at the frontier between mathematics and physics. The
limited space we will devote to this subject will hardly do it justice, and we will barely
touch its physical significance. We recommend to anyone looking for an intellectual feast
the Chapter 16 in vol.2 of “The Feynmann Lectures on Physics” [36], which in our opinion
is the most eloquent argument for the raison d’être of the calculus of variations.

5.1 The least action principle

5.1.1 The 1-dimensional Euler-Lagrange equations

From a very “dry” point of view, the fundamental problem of the calculus of variations
can be easily formulated as follows.

Consider a smooth manifold M , and let L : R × TM → R by a smooth function
called the lagrangian. Fix two points p0, p1 ∈M . The action of a piecewise smooth path
γ : [0, 1]→M connecting these points is the real number S(γ) = SL(γ) defined by

S(γ) = SL(γ) :=

∫ 1

0
L(t, γ̇(t), γ(t))dt.

In the calculus of variations one is interested in those paths as above with minimal action.

Example 5.1.1. Given a smooth function U : R3 → R called the potential, we can form
the lagrangian

L(q̇, q) : R3 × R3 ∼= TR3 → R,

given by

L = Q− U = kinetic energy − potential energy =
1

2
m|q̇|2 − U(q).

The scalar m is called the mass. The action of a path (trajectory) γ : [0, 1] → R3 is a
quantity called the Newtonian action. Note that, as a physical quantity, the Newtonian
action is measured in the same units as the energy. ⊓⊔

188
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Example 5.1.2. To any Riemann manifold (M,g) one can naturally associate two la-
grangians L1, L2 : TM → R defined by

L1(v, q) = gq(v, v)
1/2 (v ∈ TqM),

and

L2(v, q) =
1

2
gq(v, v).

We see that the action defined by L1 coincides with the length of a path. The action
defined by L2 is called the energy of a path. ⊓⊔

Before we present the main result of this subsection we need to introduce a bit of
notation.

Tangent bundles are very peculiar manifolds. Any collection (q1, . . . , qn) of local co-
ordinates on a smooth manifold M automatically induces local coordinates on TM . Any
point in TM can be described by a pair (v, q), where q ∈ M , v ∈ TqM . Furthermore, v
has a decomposition

v = vi∂i, where ∂i :=
∂

∂qi
.

We set q̇i := vi so that
v = q̇i∂i.

The collection (q̇1, . . . , q̇n; q1, . . . , qn) defines local coordinates on TM . These are said to
be holonomic local coordinates on TM . This will be the only type of local coordinates we
will ever use.

Theorem 5.1.3 (The least action principle). Let L : R× TM → R be a lagrangian, and
p0, p1 ∈ M two fixed points. Suppose γ : [0, 1] → M is a smooth path such that the
following hold.

(i) γ(i) = pi, i = 0, 1.

(ii) SL(γ) ≤ SL(γ̃), for any smooth path γ̃ : [0, 1]→M joining p0 to p1.

Then the path γ satisfies the Euler-Lagrange equations

d

dt

∂

∂γ̇
L(t, γ̇, γ) =

∂

∂γ
L(t, γ̇, γ).

More precisely, if (q̇j , qi) are holonomic local coordinates on TM such that γ(t) = (qi(t)),
and γ̇ = (q̇j(t)), then γ is a solution of the system of nonlinear ordinary differential
equations

d

dt

∂L

∂q̇k
(t, q̇j , qi) =

∂L

∂qk
(t, q̇j , qi), k = 1, . . . , n = dimM.

Definition 5.1.4. A path γ : [0, 1] → M satisfying the Euler-Lagrange equations with
respect to some lagrangian L is said to be an extremal of L. ⊓⊔
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To get a better feeling of these equations consider the special case discussed in Example
5.1.1

L =
1

2
m|q̇|2 − U(q).

Then
∂

∂q̇
L = mq̇,

∂

∂q
L = −∇U(q),

and the Euler-Lagrange equations become

mq̈ = −∇U(q). (5.1.1)

These are precisely Newton’s equation of the motion of a particle of mass m in the force
field −∇U generated by the potential U .

In the proof of the least action principle we will use the notion of variation of a path.

Definition 5.1.5. Let γ : [0, 1] → M be a smooth path. A variation of γ is a smooth
map

α = αs(t) : (−ε, ε) × [0, 1]→M,

such that α0(t) = γ(t). If moreover, αs(i) = pi ∀s, i = 0, 1, then we say that α is a
variation rel endpoints. ⊓⊔

Proof of Theorem 5.1.3. Let αs be a variation of γ rel endpoints. Then

SL(α0) ≤ SL(αs) ∀s,

so that
d

ds
|s=0 SL(αs) = 0.

Assume for simplicity that the image of γ is entirely contained in some open coordinate
neighborhood U with coordinates (q1, . . . , qn). Then, for very small |s|, we can write

αs(t) = (qi(s, t)) and
dαs
dt

= (q̇i(s, t)).

Following the tradition, we set

δα :=
∂α

∂s
|s=0=

∂qi

∂s
∂i δα̇ :=

∂

∂s
|s=0

dαs
dt

=
∂q̇j

∂s

∂

∂q̇j
.

The quantity δα is a vector field along γ called infinitesimal variation (see Figure 5.1). In
fact, the pair (δα; δα̇) ∈ T (TM) is a vector field along t 7→ (γ(t), γ̇(t)) ∈ TM . Note that
δα̇ = d

dtδα, and at endpoints δα = 0.

Exercise 5.1.6. Prove that if t 7→ X(t) ∈ Tγ(t)M is a smooth vector field along γ, such
that X(t) = 0 for t = 0, 1 then there exists at least one variation rel endpoints α such that
δα = X.

Hint: Use the exponential map of some Riemann metric on M . ⊓⊔
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p

q

γ

Figure 5.1: Deforming a path rel endpoints

We compute (at s = 0)

0 =
d

ds
SL(αs) =

d

ds

∫ 1

0
L(t, α̇s, αs) =

∫ 1

0

∂L

∂qi
δαidt+

∫ 1

0

∂L

∂q̇j
δα̇jsdt.

Integrating by parts in the second term in the right-hand-side we deduce

∫ 1

0

{
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)}
δαidt. (5.1.2)

The last equality holds for any variation α. From Exercise 5.1.6 we deduce that it holds
for any vector field δαi∂i along γ. At this point we use the following classical result of
analysis.

If f(t) is a continuous function on [0,1] such that

∫ 1

0
f(t)g(t)dt = 0 ∀g ∈ C∞0 (0, 1),

then f is identically zero.

Using this result in (5.1.2) we deduce the desired conclusion. ⊓⊔

Remark 5.1.7. (a) In the proof of the least action principle we used a simplifying assump-
tion, namely that the image of γ lies in a coordinate neighborhood. This is true locally,
and for the above arguments to work it suffices to choose only a special type of variations,
localized on small intervals of [0, 1]. In terms of infinitesimal variations this means we
need to look only at vector fields along γ supported in local coordinate neighborhoods.
We leave the reader fill in the details.

(b) The Euler-Lagrange equations were described using holonomic local coordinates.
The minimizers of the action, if any, are objects independent of any choice of local coordi-
nates, so that the Euler-Lagrange equations have to be independent of such choices. We
check this directly.
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If (xi) is another collection of local coordinates on M and (ẋj , xi) are the coordinates
induced on TM , then we have the transition rules

xi = xi(q1, . . . , qn), ẋj =
∂xj

∂qk
q̇k,

so that
∂

∂qi
=
∂xj

∂qi
∂

∂xj
+

∂2xj

∂qk∂qi
q̇k

∂

∂ẋj

∂

∂q̇j
=
∂ẋi

∂q̇j
∂

∂ẋj
=
∂xj

∂qi
∂

∂ẋj

Then
∂L

∂qi
=
∂xj

∂qi
∂L

∂xj
+

∂2xj

∂qk∂qi
q̇k
∂L

∂ẋj
.

d

dt

(
∂L

∂q̇i

)
=

d

dt

(
∂xj

∂qi
∂L

∂ẋj

)
=

∂2xj

∂qk∂qi
q̇k
∂L

∂ẋj
+
∂xj

∂qi
d

dt

(
∂L

∂ẋj

)
.

We now see that the Euler-Lagrange equations in the q-variables imply the Euler-Lagrange
in the x-variable, i.e., these equations are independent of coordinates.

The æsthetically conscious reader may object to the way we chose to present the
Euler-Lagrange equations. These are intrinsic equations we formulated in a coordinate
dependent fashion. Is there any way of writing these equation so that the intrinsic nature
is visible “on the nose”?

If the lagrangian L satisfies certain nondegeneracy conditions there are two ways of
achieving this goal. One method is to consider a natural nonlinear connection ∇L on TM
as in [78] . The Euler-Lagrange equations for an extremal γ(t) can then be rewritten as a
“geodesics equation”

∇Lγ̇ γ̇.

The example below will illustrate this approach on a very special case when L is the
lagrangian L2 defined in Example 5.1.2, in which the extremals will turn out to be precisely
the geodesics on a Riemann manifold.

Another far reaching method of globalizing the formulation of the Euler-Lagrange
equation is through the Legendre transform, which again requires a nondegeneracy condi-
tion on the lagrangian. Via the Legendre transform the Euler-Lagrange equations become
a system of first order equations on the cotangent bundle T ∗M known as Hamilton equa-
tions.

These equations have the advantage that can be formulated on manifolds more general
than the cotangent bundles, namely on symplectic manifolds. These are manifolds carrying
a closed 2-form whose restriction to each tangent space defines a symplectic duality (see
Subsection 2.2.4.)

Much like the geodesics equations on a Riemann manifold, the Hamilton equations
carry a lot of information about the structure of symplectic manifolds, and they are
currently the focus of very intense research. For more details and examples we refer to
the monographs [5, 26]. ⊓⊔
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Example 5.1.8. Let (M,g) be a Riemann manifold. We will compute the Euler-Lagrange
equations for the lagrangians L1, L2 in Example 5.1.2.

L2(q̇, q) =
1

2
gij(q)q̇

iq̇j,

so that
∂L2

∂q̇k
= gjkq̇

j ∂L2

∂qk
=

1

2

∂gij
∂qk

q̇iq̇j.

The Euler-Lagrange equations are

q̈jgjk +
∂gjk
∂qi

q̇iq̇j =
1

2

∂gij
∂qk

q̇iq̇j. (5.1.3)

Since gkmgjm = δmj , we get

q̈m + gkm
(
∂gjk
∂qi
− 1

2

∂gij
∂qk

)
q̇iq̇j = 0. (5.1.4)

When we derivate with respect to t the equality gik q̇
i = gjkq̇

j we deduce

gkm
∂gjk
∂qi

q̇iq̇j =
1

2
gkm

(
∂gik
∂qj

+
∂gjk
∂qi

)
q̇iq̇j .

We substitute this equality in (5.1.4), and we get

q̈m +
1

2
gkm

(
∂gik
∂qj

+
∂gjk
∂qi
− ∂gij
∂qk

)
q̇iq̇j = 0. (5.1.5)

The coefficient of q̇iq̇j in (5.1.5) is none other than the Christoffel symbol Γmij so this
equation is precisely the geodesic equation. ⊓⊔

Example 5.1.9. Consider now the lagrangian L1(q̇, q) = (gij q̇
iq̇j)1/2. Note that the

action

SL
(
q(t)

)
=

∫ p1

p0

L(q̇, q)dt,

is independent of the parametrization t 7→ q(t) since it computes the length of the path
t 7→ q(t). Thus, when we express the Euler-Lagrange equations for a minimizer γ0 of
this action, we may as well assume it is parameterized by arclength, i.e., |γ̇0| = 1. The
Euler-Lagrange equations for L1 are

d

dt

gkj q̇
j

√
gij q̇iq̇j

=

∂gij
∂qk

q̇iq̇j

2
√
gij q̇iq̇j

.

Along the extremal we have gij q̇
iq̇j = 1 (arclength parametrization) so that the previous

equations can be rewritten as

d

dt

(
gkj q̇

j
)
=

1

2

∂gij
∂qk

q̇iq̇j.

We recognize here the equation (5.1.3) which, as we have seen, is the geodesic equation in
disguise. This fact almost explains why the geodesics are the shortest paths between two
nearby points. ⊓⊔
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5.1.2 Noether’s conservation principle

This subsection is intended to offer the reader a glimpse at a fascinating subject touching
both physics and geometry. We first need to introduce a bit of traditional terminology
commonly used by physicists.

Consider a smooth manifold M . The tangent bundle TM is usually referred to as the
space of states or the lagrangian phase space. A point in TM is said to be a state. A
lagrangian L : R× TM → R associates to each state several meaningful quantities.

• The generalized momenta: pi =
∂L
∂q̇i

.

• The energy : H = piq̇
i − L.

• The generalized force: F = ∂L
∂qi

.

This terminology can be justified by looking at the lagrangian of a classical particle in
a potential force field, F = −∇U ,

L =
1

2
m|q̇|2 − U(q).

The momenta associated to this lagrangian are the usual kinetic momenta of the Newto-
nian mechanics

pi = mq̇i,

while H is simply the total energy

H =
1

2
m|q̇|2 + U(q).

It will be convenient to think of an extremal for an arbitrary lagrangian L(t, q̇, q) as
describing the motion of a particle under the influence of the generalized force.

Proposition 5.1.10 (Conservation of energy). Let γ(t) be an extremal of a time inde-
pendent lagrangian L = L(q̇, q). Then the energy is conserved along γ, i.e.,

d

dt
H(γ, γ̇) = 0.

Proof. By direct computation we get

d

dt
H(γ, γ̇) =

d

dt
(piq̇

i − L) = d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i − ∂L

∂q̇i
q̈i

=

{
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

}
q̈i = 0 (by Euler− Lagrange). ⊓⊔

At the beginning of the 20th century (1918), Emmy Noether discovered that many of the
conservation laws of the classical mechanics had a geometric origin: they were, most of
them, reflecting a symmetry of the lagrangian!!!

This became a driving principle in the search for conservation laws, and in fact, con-
servation became almost synonymous with symmetry. It eased the leap from classical to
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quantum mechanics, and one can say it is a very important building block of quantum
physics in general. In the few instances of conservation laws where the symmetry was not
apparent the conservation was always “blamed” on a “hidden symmetry”. What is then
this Noether principle?

To answer this question we need to make some simple observations.
Let X be a vector field on a smooth manifold M defining a global flow Φs. This flow

induces a flow Ψs on the tangent bundle TM defined by

Ψs(v, x) =
(
Φs∗(v),Φ

s(x)
)
.

One can think of Ψs as defining an action of the additive group R on TM . Alterna-
tively, physicists say that X is an infinitesimal symmetry of the given mechanical system
described by the lagrangian L.

Example 5.1.11. Let M be the unit round sphere S2 ⊂ R3. The rotations about the
z-axis define a 1-parameter group of isometries of S2 generated by ∂

∂θ , where θ is the
longitude on S2. ⊓⊔

Definition 5.1.12. Let L be a lagrangian on TM , and X a vector field on M . The
lagrangian L is said to be X- invariant if

L ◦Ψs = L, ∀s. ⊓⊔

Denote by X ∈ Vect (TM) the infinitesimal generator of Ψs, and by LX the Lie deriva-
tive on TM along X. We see that L is X-invariant if and only if

LXL = 0.

We describe this derivative using the local coordinates (q̇j, qi). Set

(
q̇j(s), qi(s)

)
:= Ψs(q̇j , qi).

Then
d

ds
|s=0 q

i(s) = Xkδik.

To compute d
ds |s=0 q̇

j(s) ∂
∂qj

we use the definition of the Lie derivative on M

− d

ds
q̇j

∂

∂qj
= LX(q̇

i ∂

∂qi
) =

(
Xk ∂q̇

j

∂qk
− q̇k ∂X

j

∂qk

)
∂

∂qj
= −q̇i∂X

j

∂qi
∂

∂qj
,

since ∂q̇j/∂qi = 0 on TM . Hence

X = Xi ∂

∂qi
+ q̇k

∂Xj

∂qk
∂

∂q̇j
.

Corollary 5.1.13. The lagrangian L is X-invariant if and only if

Xi ∂L

∂qi
+ q̇k

∂Xj

∂qk
∂L

∂q̇j
= 0. (5.1.6)

⊓⊔
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Figure 5.2: A surface of revolution

Theorem 5.1.14 (E. Noether). If the lagrangian L is X-invariant, then the quantity

PX = Xi ∂L

∂q̇i
= Xipi

is conserved along the extremals of L.

Proof. Consider an extremal γ = γ(qi(t)) of L. We compute

d

dt
PX(γ, γ̇) =

d

dt

{
Xi(γ(t))

∂L

∂q̇i

}
=
∂Xi

∂qk
q̇k
∂L

∂q̇i
+Xi d

dt

(
∂L

∂q̇i

)

Euler-Lagrange
=

∂Xi

∂qk
q̇k
∂L

∂q̇i
+Xi ∂L

∂qi
(5.1.6)
= 0. ⊓⊔

The classical conservation-of-momentum law is a special consequence of Noether’s theo-
rem.

Corollary 5.1.15. Consider a lagrangian L = L(t, q̇, q, ) on Rn. If ∂L
∂qi

= 0, i.e., the i-th

component of the force is zero, then dpi
dt = 0 along any extremal, i.e., the i-th component

of the momentum is conserved).

Proof. Take X = ∂
∂qi

in Noether’s conservation law. ⊓⊔

The conservation of momentum has an interesting application in the study of geodesics.

Example 5.1.16. (Geodesics on surfaces of revolution). Consider a surface of
revolution S in R3 obtained by rotating about the z-axis the curve y = f(z) situated in
the yz plane. If we use cylindrical coordinates (r, θ, z) we can describe S as r = f(z).

In these coordinates, the Euclidean metric in R3 has the form

ds2 = dr2 + dz2 + r2dθ2.
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We can choose (z, θ) as local coordinates on S, then the induced metric has the form

gS = {1 + (f ′(z))2}dz2 + f2(z)dθ2 = A(z)dz2 + r2dθ2, r = f(z).

The lagrangian defining the geodesics on S is

L =
1

2

(
Aż2 + r2θ̇2

)
.

We see that L is independent of θ: ∂L
∂θ = 0, so that the generalized momentum

∂L

∂θ̇
= r2θ̇

is conserved along the geodesics. ⊓⊔

This fact can be given a nice geometric interpretation. Consider a geodesic

γ(t) = (z(t), θ(t)),

and compute the angle φ between γ̇ and ∂
∂θ . We get

cosφ =
〈γ̇, ∂/∂θ〉
|γ̇| · |∂/∂θ| =

r2θ̇

r|γ̇| ,

i.e., r cosφ = r2θ̇|γ̇|−1. The conservation of energy implies that |γ̇|2 = 2L = H is constant
along the geodesics. We deduce the following classical result.

Theorem 5.1.17 (Clairaut). On a a surface of revolution r = f(z) the quantity r cosφ
is constant along any geodesic, where φ ∈ (−π, π) is the oriented angle the geodesic makes
with the parallels z = const. ⊓⊔

Exercise 5.1.18. Describe the geodesics on the round sphere S2, and on the cylinder
{x2 + y2 = 1} ⊂ R3. ⊓⊔

5.2 The variational theory of geodesics

We have seen that the paths of minimal length between two points on a Riemann manifold
are necessarily geodesics.

However, given a geodesic joining two points q0, q1 it may happen that it is not a
minimal path. This should be compared with the situation in calculus, when a critical
point of a function f may not be a minimum or a maximum.

To decide this issue one has to look at the second derivative. This is precisely what
we intend to do in the case of geodesics. This situation is a bit more complicated since
the action functional

S =
1

2

∫
|γ̇|2dt

is not defined on a finite dimensional manifold. It is a function defined on the “space of all
paths” joining the two given points. With some extra effort this space can be organized
as an infinite dimensional manifold. We will not attempt to formalize these prescriptions,
but rather follow the ad-hoc, intuitive approach of [72].
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5.2.1 Variational formulæ

Let M be a connected Riemann manifold, and consider p, q ∈ M . Denote by Ωp,q =
Ωp,q(M) the space of all continuous, piecewise smooth paths γ : [0, 1] →M connecting p
to q.

An infinitesimal variation of a path γ ∈ Ωp,q is a continuous, piecewise smooth
vector field V along γ such that V (0) = 0 and V (1) = 0 and

lim
hց0

V (t± h)

exists for every t ∈ [0, 1], they are vectors V (t)± ∈ Tγ(t)M , and V (t)+ = V (t)− for all
but finitely many t-s. The space of infinitesimal variations of γ is an infinite dimensional
linear space denoted by Tγ = TγΩp,q.

Definition 5.2.1. Let γ ∈ Ωp,q. A variation of γ is a continuous map

α = αs(t) : (−ε, ε) × [0, 1]→M

such that

(i) ∀s ∈ (−ε, ε), αs ∈ Ωp,q.

(ii) There exists a partition 0 = t0 < t1 · · · < tk−1 < tk = 1 of [0,1] such that the
restriction of α to each (−ε, ε)× (ti−1, ti) is a smooth map. ⊓⊔

Every variation α of γ defines an infinitesimal variation

δα :=
∂αs
∂s
|s=0 .

Exercise 5.2.2. Given V ∈ Tγ construct a variation α such that δα = V . ⊓⊔

Consider now the energy functional

E : Ωp,q → R, E(γ) =
1

2

∫ 1

0
|γ̇(t)|2dt.

Fix γ ∈ Ωp,q, and let α be a variation of γ. The velocity γ̇(t) has a finite number of
discontinuities, so that the quantity

∆tγ̇ = lim
h→0+

(γ̇(t+ h)− γ̇(t− h))

is nonzero only for finitely many t’s.

Theorem 5.2.3 (The first variation formula).

E∗(δα) :=
d

ds
|s=0 E(αs) = −

∑

t

〈(δα)(t),∆tγ̇〉 −
∫ 1

0
〈δα,∇ d

dt
γ̇〉dt, (5.2.1)

where ∇ denotes the Levi-Civita connection. (Note that the right-hand-side depends on
α only through δα so it is really a linear function on Tγ.)
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Proof. Set α̇s =
∂αs
∂t . We differentiate under the integral sign using the equality

∂

∂s
|α̇s|2 = 2〈∇ ∂

∂s
α̇s, α̇s〉,

and we get
d

ds
|s=0 E(αs) =

∫ 1

0
〈∇ ∂

∂s
α̇s, α̇s〉 |s=0 dt.

Since the vector fields ∂
∂s and ∂

∂t commute we have ∇ ∂
∂s

∂α
∂t = ∇ ∂

∂t

∂α
∂s .

Let 0 = t0 < t2 < · · · < tk = 1 be a partition of [0,1] as in Definition 5.2.1. Since
αs = γ for s = 0 we conclude

E∗(δα) =
k∑

i=1

∫ ti

ti−1

〈∇ ∂
∂t
δα, γ̇〉.

We use the equality
∂

∂t
〈δα, γ̇〉 = 〈∇ ∂

∂t
δα, γ̇〉+ 〈δα,∇ ∂

∂t
γ̇〉

to integrate by parts, and we obtain

E∗(δα) =
k∑

i=1

〈δα, γ̇〉
∣∣∣titi−1

−
k∑

i=1

∫ ti

ti−1

〈δα,∇ ∂
∂t
γ̇〉dt.

This is precisely equality (5.2.1). ⊓⊔

Definition 5.2.4. A path γ ∈ Ωp,q is called critical if

E∗(V ) = 0, ∀V ∈ Tγ . ⊓⊔

Corollary 5.2.5. A path γ ∈ Ωp,q is critical if and only if it is a geodesic. ⊓⊔

Exercise 5.2.6. Prove the above corollary. ⊓⊔

Remark 5.2.7. Note that, a priori, a critical path may have a discontinuous first deriva-
tive. The above corollary shows that this is not the case: the criticality also implies
smoothness. This is a manifestation of a more general analytical phenomenon called el-
liptic regularity. We will have more to say about it in Chapter 11. ⊓⊔

The map E∗ : Tγ → R, δα 7→ E∗(δα) is called the first derivative of E at γ ∈ Ωp,q.
We want to define a second derivative of E in order to address the issue raised at the
beginning of this section. We will imitate the finite dimensional case which we now briefly
analyze.

Let f : X → R be a smooth function on the finite dimensional smooth manifold X. If
x0 is a critical point of f , i.e., df(x0) = 0, then we can define the Hessian at x0

f∗∗ : Tx0X × Tx0X → R
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as follows. Given V1, V2 ∈ Tx0X, consider a smooth map (s1, s2) 7→ α(s1, s2) ∈ X such
that

α(0, 0) = x0 and
∂α

∂si
(0, 0) = Vi, i = 1, 2. (5.2.2)

Now set

f∗∗(V1, V2) =
∂2f(α(s1, s2) )

∂s1∂s2
|(0,0) .

Note that since x0 is a critical point of f , the Hessian f∗∗(V1, V2) is independent of the
function α satisfying (5.2.2).

We now return to our energy functional E : Ωp,q → R. Let γ ∈ Ωp,q be a critical path.
Consider a 2-parameter variation of γ

α := αs1,s2 : (−ε, ε) × (−ε, ε) × [0, 1]→M, (s1, s2, t) 7→ αs1,s2(t).

Set U := (−ε, ε) × (−ε, ε) ⊂ R2 and γ := α0,0. The map α is continuous, and has
second order derivatives everywhere except maybe on finitely many “coordinate” planes
si = const, or t = const. Set δiα := ∂α

∂si
|(0,0), i = 1, 2. Note that δiα ∈ Tγ .

Exercise 5.2.8. Given V1, V2 ∈ Tγ construct a 2-parameter variation α such that Vi = δiα.
⊓⊔

We can now define the Hessian of E at γ by

E∗∗(δ1α, δ2α) :=
∂2E(αs1,s2)

∂s1∂s2
|(0,0) .

Theorem 5.2.9 (The second variation formula).

E∗∗(δ1α, δ2α) = −
∑

t

〈δ2α,∆tδ1α〉 −
∫ 1

0
〈δ2α,∇2 ∂

∂t
δ1α−R(γ̇, δ1α)γ̇〉dt, (5.2.3)

where R denotes the Riemann curvature. In particular, E∗∗ is a bilinear functional on
Tγ .

Proof. According to the first variation formula we have

∂E

∂s2
= −

∑

t

〈δ2α,∆t
∂α

∂t
〉 −

∫ 1

0
〈δ2α,∇ ∂

∂t

∂α

∂t
〉dt.

Hence
∂2E

∂s1∂s2
= −

∑

t

〈∇ ∂
∂s1

δ2α,∆1γ̇〉 −
∑

t

〈δ2α,∇ ∂
∂s1

(
∆t
∂α

∂t

)
〉

−
∫ 1

0
〈∇ ∂

∂s1

δ2α,∇ ∂
∂t
γ̇〉dt−

∫ 1

0
〈δ2α,∇ ∂

∂s1

∇ ∂
∂t

∂α

∂t
〉dt. (5.2.4)

Since γ is a geodesic, we have

∆tγ̇ = 0 and ∇ ∂
∂t
γ̇ = 0.
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Using the commutativity of ∂
∂t with

∂
∂s1

we deduce

∇ ∂
∂s1

(
∆t
∂α

∂t

)
= ∆t

(
∇ ∂

∂s1

∂α

∂t

)
= ∆t

(
∇ ∂

∂t
δ1α
)
.

Finally, the definition of the curvature implies

∇ ∂
∂s1

∇ ∂
∂t

= ∇ ∂
∂t
∇ ∂

∂s1

+R(δ1α, γ̇).

Putting all the above together we deduce immediately the equality (5.2.3). ⊓⊔

Corollary 5.2.10.
E∗∗(V1, V2) = E∗∗(V2, V1), ∀V1, V2 ∈ Tγ . ⊓⊔

5.2.2 Jacobi fields

In this subsection we will put to work the elements of calculus of variations presented so
far. Let (M,g) be a Riemann manifold and p, q ∈M .

Definition 5.2.11. Let γ ∈ Ωp,q be a geodesic. A geodesic variation of γ is a smooth
map αs(t) : (−ε, ε) × [0, 1] → M such that, α0 = γ, and t 7→ αs(t) is a geodesic for all s.
We set as usual δα = ∂α

∂s |s=0. ⊓⊔

Proposition 5.2.12. Let γ ∈ Ωp,q be a geodesic and (αs) a geodesic variation of γ. Then
the infinitesimal variation δα satisfies the Jacobi equation

∇2
t δα = R(γ̇, δα)γ̇ (∇t = ∇ ∂

∂t
).

Proof.

∇2
t δα = ∇t

(
∇t
∂α

∂s

)
= ∇t

(
∇s

∂α

∂t

)

= ∇s
(
∇t
∂α

∂t

)
+R(γ̇, δα)

∂α

∂t
= R(γ̇, δα)

∂α

∂t
. ⊓⊔

Definition 5.2.13. A smooth vector field J along a geodesic γ is called a Jacobi field if
it satisfies the Jacobi equation

∇2
tJ = R(γ̇, J)γ̇. ⊓⊔

Exercise 5.2.14. Show that if J is a Jacobi field along a geodesic γ, then there exists a
geodesic variation αs of γ such that J = δα. ⊓⊔

Exercise 5.2.15. Let γ ∈ Ωp,q, and J a vector field along γ.
(a) Prove that J is a Jacobi field if and only if

E∗∗(J, V ) = 0, ∀V ∈ Tγ .

(b) Show that a vector field J along γ which vanishes at endpoints, is a Jacobi field if any
only if E∗∗(J,W ) = 0, for all vector fields W along γ. ⊓⊔
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S

N γ

Figure 5.3: The poles are conjugate along meridians.

Exercise 5.2.16. Let γ ∈ Ωp,q be a geodesic. Define Jp to be the space of Jacobi fields
V along γ such that V (p) = 0. Show that dim Jp = dimM , and moreover, the evaluation
map

evq : Jp → TpM V 7→ ∇tV (p)

is a linear isomorphism. ⊓⊔

Definition 5.2.17. Let γ(t) be a geodesic. Two points γ(t1) and γ(t2) on γ are said to
be conjugate along γ if there exists a nontrivial Jacobi field J along γ such that J(ti) = 0,
i = 1, 2. ⊓⊔

Example 5.2.18. Consider γ : [0, 2π] → S2 a meridian on the round sphere connection
the poles. One can verify easily (using Clairaut’s theorem) that γ is a geodesic. The
counterclockwise rotation by an angle θ about the z-axis will produce a new meridian,
hence a new geodesic γθ. Thus (γθ) is a geodesic variation of γ with fixed endpoints. δγ
is a Jacobi field vanishing at the poles. We conclude that the poles are conjugate along
any meridian (see Figure 5.3). ⊓⊔

Definition 5.2.19. A geodesic γ ∈ Ωp,qis said to be nondegenerate if q is not conjugated
to p along γ. ⊓⊔

The following result (partially) explains the geometric significance of conjugate points.

Theorem 5.2.20. Let γ ∈ Ωp,q be a nondegenerate, minimal geodesic. Then p is con-
jugate with no point on γ other than itself. In particular, a geodesic segment containing
conjugate points cannot be minimal !
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Proof. We argue by contradiction. Let p1 = γ(t1) be a point on γ conjugate with p.
Denote by Jt a Jacobi field along γ |[0,t1] such that J0 = 0 and Jt1 = 0. Define V ∈ Tγ by

Vt =

{
Jt, t ∈ [0, t1]

0, t ≥ t1.

We will prove that Vt is a Jacobi field along γ which contradicts the nondegeneracy of γ.

Step 1.

E∗∗(U,U) ≥ 0 ∀U ∈ Tγ . (5.2.5)

Indeed, let αs denote a variation of γ such that δα = U . One computes easily that

d2

ds2
E(αs2) = 2E∗∗(U,U).

Since γ is minimal for any small s we have length (αs2) ≥ length (α0) so that

E(αs2) ≥
1

2

(∫ 1

0
|α̇s2 |dt

)2

=
1

2
length (αs2)

2 ≥ 1

2
length (α0)

2

=
1

2
length (γ)2 = E(α0).

Hence
d2

ds2
|s=0 E(αs2) ≥ 0.

This proves (5.2.5).

Step 2. E∗∗(V, V ) = 0. This follows immediately from the second variation formula and
the fact that the nontrivial portion of V is a Jacobi field.

Step 3.

E∗∗(U, V ) = 0, ∀U ∈ Tγ .
From (5.2.5) and Step 2 we deduce

0 = E∗∗(V, V ) ≤ E∗∗(V + τU, V + τU) = fU (τ) ∀τ.

Thus, τ = 0 is a global minimum of fU(τ) so that

f ′U (0) = 0.

Step 3 follows from the above equality using the bilinearity and the symmetry of E∗∗. The
final conclusion (that V is a Jacobi field) follows from Exercise 5.2.15. ⊓⊔

Exercise 5.2.21. Let γ : R→M be a geodesic. Prove that the set

{
t ∈ R ; γ(t) is conjugate to γ(0)

}

is discrete. ⊓⊔
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Definition 5.2.22. Let γ ∈ Ωp,q be a geodesic. We define its index, denoted by ind (γ),
as the cardinality of the set

Cγ =
{
t ∈ (0, 1) ; is conjugate to γ(0)

}

which by Exercise 5.2.21 is finite. ⊓⊔

Theorem 5.2.20 can be reformulated as follows: the index of a nondegenerate minimal
geodesic is zero.

The index of a geodesic obviously depends on the curvature of the manifold. Often,
this dependence is very powerful.

Theorem 5.2.23. Let M be a Riemann manifold with non-positive sectional curvature,
i.e.,

〈R(X,Y )Y,X〉 ≤ 0 ∀X,Y ∈ TxM ∀x ∈M. (5.2.6)

Then for any p, q ∈M and any geodesic γ ∈ Ωp,q, ind (γ) = 0.

Proof. It suffices to show that for any geodesic γ : [0, 1] → M the point γ(1) is not
conjugated to γ(0).

Let Jt be a Jacobi field along γ vanishing at the endpoints. Thus

∇2
tJ = R(γ̇, J)γ̇,

so that ∫ 1

0
〈∇2

tJ, J〉dt =
∫ 1

0
〈R(γ̇, J)γ̇, J〉dt = −

∫ 1

0
〈R(J, γ̇)γ̇, J〉dt.

We integrate by parts the left-hand-side of the above equality, and we deduce

〈∇tJ, J〉|10 −
∫ 1

0
|∇tJ |2dt = −

∫ 1

0
〈R(J, γ̇)γ̇, J〉dt.

Since J(τ) = 0 for τ = 0, 1, we deduce using (5.2.6)

∫ 1

0
|∇tJ |2dt ≤ 0.

This implies ∇tJ = 0 which coupled with the condition J(0) = 0 implies J ≡ 0. The
proof is complete. ⊓⊔

The notion of conjugacy is intimately related to the behavior of the exponential map.

Theorem 5.2.24. Let (M,g) be a connected, complete, Riemann manifold and q0 ∈ M .
A point q ∈M is conjugated to q0 along some geodesic if and only if it is a critical value
of the exponential map

expq0 : Tq0M →M.
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Proof. Let q = expq0 v, v ∈ Tq0M . Assume first that q is a critical value for expq0 , and v
is a critical point. Then Dv expq0(X) = 0, for some X ∈ Tv(Tq0M). Let v(s) be a path
in Tq0M such that v(0) = v and v̇(0) = X. The map (s, t) 7→ expq0(tv(s)) is a geodesic
variation of the radial geodesic γv : t 7→ expq0(tv). Hence, the vector field

W =
∂

∂s
|s=0 expq0(tv(s))

is a Jacobi field along γv. Obviously W (0) = 0, and moreover

W (1) =
∂

∂s
|s=0 expq0(v(s)) = Dv expq0(X) = 0.

On the other hand this is a nontrivial field since

∇tW = ∇s |s=0
∂

∂t
expq0(tv(s)) = ∇sv(s) |s=0 6= 0.

This proves q0 and q are conjugated along γv.
Conversely, assume v is not a critical point for expq0 . For any X ∈ Tv(Tq0M) denote

by JX the Jacobi field along γv such that

JX(q0) = 0. (5.2.7)

The existence of such a Jacobi field follows from Exercise 5.2.16. As in that exercise,
denote by Jq0 the space of Jacobi fields J along γv such that J(q0) = 0. The map

Tv(Tq0M)→ Jq0 X 7→ JX

is a linear isomorphism. Thus, a Jacobi field along γv vanishing at both q0 and q must
have the form JX , where X ∈ Tv(Tq0M) satisfies Dv expq0(X) = 0. Since v is not a critical
point, this means X = 0 so that JX ≡ 0. ⊓⊔

Corollary 5.2.25. On a complete Riemann manifold M with non-positive sectional cur-
vature the exponential map expq has no critical values for any q ∈M . ⊓⊔

We will see in the next chapter that this corollary has a lot to say about the topology
of M .

Consider now the following experiment. Stretch the round two-dimensional sphere of
radius 1 until it becomes “very long”. A possible shape one can obtain may look like
in Figure 5.4. The long tube is very similar to a piece of cylinder so that the total (=
scalar) curvature is very close to zero, in other words is very small. The lesson to learn
from this intuitive experiment is that the price we have to pay for lengthening the sphere
is decreasing the curvature. Equivalently, a highly curved surface cannot have a large
diameter. Our next result offers a more quantitative description of this phenomenon.

Theorem 5.2.26 (Myers). Let M be an n-dimensional complete Riemann manifold. If
for all X ∈ Vect (M)

Ric (X,X) ≥ (n− 1)

r2
|X|2,
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Figure 5.4: Lengthening a sphere.

then every geodesic of length ≥ πr has conjugate points and thus is not minimal. Hence

diam (M) = sup{dist (p, q) ; p, q ∈M} ≤ πr,

and in particular, Hopf-Rinow theorem implies that M must be compact. ⊓⊔

Proof. Fix a minimal geodesic γ : [0, ℓ]→M of length ℓ, and let ei(t) be an orthonormal
basis of vector fields along γ such that en(t) = γ̇(t). Set q0 = γ(0), and q1 = γ(ℓ). Since
γ is minimal we deduce

E∗∗(V, V ) ≥ 0 ∀V ∈ Tγ .
Set Wi = sin(πt/ℓ)ei. Then

E∗∗(Wi,Wi) = −
∫ ℓ

0
〈Wi,∇tWi +R(Wi, γ̇)γ̇〉dt

=

∫ ℓ

0
sin2(πt/ℓ)

(
π2/ℓ2 − 〈R(ei, γ̇)γ̇, ei〉

)
dt.

We sum over i = 1, . . . , n− 1, and we obtain

n−1∑

i=1

E∗∗(Wi,Wi) =

∫ ℓ

0
sin2 πt/ℓ

(
(n− 1)π2/ℓ2 − Ric (γ̇, γ̇)

)
dt ≥ 0.

If ℓ > πr, then

(n − 1)π2/ℓ2 − Ric (γ̇, γ̇) < 0,

so that,
n−1∑

i=1

E∗∗(Wi,Wi) < 0.
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Hence, at least for some Wi, we have E∗∗(Wi,Wi) < 0. This contradicts the minimality
of γ. The proof is complete. ⊓⊔

We already know that the Killing form of a compact, semisimple Lie group is positive
definite; see Exercise 4.1.19. The next result shows that the converse is also true.

Corollary 5.2.27. A semisimple Lie group G with positive definite Killing pairing is
compact.

Proof. The Killing form defines in this case a bi-invariant Riemann metric on G. Its
geodesics through the origin 1 ∈ G are the 1-parameter subgroups exp(tX) which are
defined for all t ∈ R. Hence, by Hopf-Rinow theorem G has to be complete.

On the other hand, we have computed the Ricci curvature of the Killing metric, and
we found

Ric (X,Y ) =
1

4
κ(X,Y ) ∀X,Y ∈ LG.

The corollary now follows from Myers’ theorem. ⊓⊔

Exercise 5.2.28. Let M be a Riemann manifold and q ∈ M . For the unitary vectors
X,Y ∈ TqM consider the family of geodesics

γs(t) = expq t(X + sY ).

Denote by Wt = δγs the associated Jacobi field along γ0(t). Form f(t) = |Wt|2. Prove the
following.
(a) Wt = DtX expq(Y ) = Frechet derivative of v 7→ expq(v).

(b) f(t) = t2 − 1
3〈R(Y,X)X,Y 〉qt4 +O(t5).

(c) Denote by xi a collection of normal coordinates at q. Prove that

gkℓ(x) = δkℓ −
1

3
Rkijℓx

ixj +O(3).

det gij(x) = 1− 1

3
Rijx

ixj +O(3).

(d) Let
Dr(q) = {x ∈ TqM ; |x| ≤ r}.

Prove that if the Ricci curvature is negative definite at q then

vol0 (Dr(q)) ≤ volg (expq(Dr(q))

for all r sufficiently small. Above, vol0 denotes the Euclidean volume in TqM while volg
denotes the volume on the Riemann manifold M . ⊓⊔

Remark 5.2.29. The interdependence “curvature-topology” on a Riemann manifold has
deep reaching ramifications which stimulate the curiosity of many researchers. We refer
to [28] or [72] and the extensive references therein for a presentation of some of the most
attractive results in this direction. ⊓⊔



Chapter 6

The Fundamental group and

Covering Spaces

In the previous chapters we almost exclusively studied local properties of manifolds. This
study is interesting only if some additional structure is present since otherwise all manifolds
are locally alike.

We noticed an interesting phenomenon: the global “shape” (topology) of a manifold
restricts the types of structures that can exist on a manifold. For example, the Gauss-
Bonnet theorem implies that on a connected sum of two tori there cannot exist metrics
with curvature everywhere positive because the integral of the curvature is a negative
universal constant.

We used the Gauss-Bonnet theorem in the opposite direction, and we deduced the
intuitively obvious fact that a sphere is not diffeomorphic to a torus because they have
distinct genera. The Gauss-Bonnet theorem involves a heavy analytical machinery which
may obscure the intuition. Notice that S2 has a remarkable property which distinguishes
it from T 2: on the sphere any closed curve can be shrunk to a point while on the torus
there exist at least two “independent” unshrinkable curves (see Figure 6.1). In particular,
this means the sphere is not diffeomorphic to a torus.

This chapter will set the above observations on a rigorous foundation.

Figure 6.1: Looking for unshrinkable loops.
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6.1 The fundamental group

6.1.1 Basic notions

In the sequel all topological spaces will be locally path connected spaces.

Definition 6.1.1. (a) Let X and Y be two topological spaces. Two continuous maps
f0, f1 : X → Y are said to be homotopic if there exists a continuous map

F : [0, 1] ×X → Y (t, x) 7→ Ft(x),

such that, Fi ≡ fi for i = 0, 1. We write this as f0 ≃ f1.
(b) Two topological spaces X, Y are said to be homotopy equivalent if there exist maps
f : X → Y and g : Y → X such that f ◦ g ≃ 1Y and g ◦ f ≃ 1X . We write this X ≃ Y .
(c) A topological space is said to be contractible if it is homotopy equivalent to a point.⊓⊔

Example 6.1.2. The unit disk in the plane is contractible. The annulus {1 ≤ |z| ≤ 2} is
homotopy equivalent to the unit circle. ⊓⊔

Definition 6.1.3. (a) Let X be a topological space and x0 ∈ X. A loop based at x0 is a
continuous map

γ : [0, 1] → X, such that γ(0) = γ(1) = x0.

The space of loops in X based at x0 is denoted by Ω(X,x0).
(b) Two loops γ0, γ1 : I → X based at x0 are said to be homotopic rel x0 if there exists a
continuous map

Γ : [0, 1] × I → X, (t, s) 7→ Γt(s),

such that
Γi(s) = γi(s) i = 0, 1,

and
(s 7→ Γt(s)) ∈ Ω(X,x0) ∀t ∈ [0, 1].

We write this as γ0 ≃x0 γ1. ⊓⊔

Note that a loop is more than a closed curve; it is a closed curve + a description of a
motion of a point around the closed curve.

Example 6.1.4. The two loops γ1, γ2 : I → C, γk(t) = exp(2kπt), k = 1, 2 are different
though they have the same image. ⊓⊔

Definition 6.1.5. (a) Let γ1, γ2 be two loops based at x0 ∈ X. The product of γ1 and γ2
is the loop

γ1 ∗ γ2(s) =
{

γ1(2s) , 0 ≤ s1/2
γ2(2s − 1) , 1/2 ≤ s ≤ 1

.

The inverse of a based loop γ is the based loop γ− defined by

γ−(s) = γ(1− s).

(c) The identity loop is the constant loop ex0(s) ≡ x0. ⊓⊔
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Intuitively, the product of two loops γ1 and γ2 is the loop obtained by first following
γ1 (twice faster), and then γ2 (twice faster).

The following result is left to the reader as an exercise.

Lemma 6.1.6. Let α0 ≃x0 α1, β0≃x0β1 and γ0≃x0γ1 be three pairs of homotopic based
loops.. Then
(a) α0 ∗ β0≃x0α1 ∗ β1.
(b) α0 ∗ α−0 ≃x0ex0 .
(c) α0 ∗ ex0≃x0α0.
(d) (α0 ∗ β0) ∗ γ0≃x0α0 ∗ (β0 ∗ γ0). ⊓⊔

Hence, the product operation descends to an operation “·” on Ω(X,x0)/≃x0 , the set
of homotopy classes of based loops. Moreover the induced operation is associative, it has
a unit and each element has an inverse. Hence (Ω(X,x0)/≃x0 , ·) is a group.

Definition 6.1.7. The group (Ω(X,x0)/≃x0 , ·) is called the fundamental group (or the
Poincaré group) of the topological space X, and it is denoted by π1(X,x0). The image of
a based loop γ in π1(X,x0) is denoted by [γ]. ⊓⊔

The elements of π1(X,x0) are the “unshrinkable loops” discussed at the beginning of
this chapter.

The fundamental group π1(X,x0) “sees” only the connected component of X which
contains x0. To get more information aboutX one should study all the groups {π1(X,x)}x∈X .

Proposition 6.1.8. Let X and Y be two topological spaces. Fix two points, x0 ∈ X and
y0 ∈ Y . Then any continuous map f : X → Y such that f(x0) = y0 induces a morphism
of groups

f∗ : π1(X,x0)→ π1(Y, y0),

satisfying the following functoriality properties.

(a) (1X)∗ = 1π1(X,x0).
(b) If

(X,x0)
f→ (Y, y0)

g→ (Z, z0)

are continuous maps, such that f(x0) = y0 and g(y0) = z0, then (g ◦ f)∗ = g∗ ◦ f∗.
(c) Let f0, f1 : (X,x0)→ (Y, y0) be two base-point-preserving continuous maps. Assume f0
is homotopic to f1 rel x0, i.e., there exists a continuous map F : I×X → Y , (t, x) 7→ Ft(x)
such that, Fi(x) ≡ fi(x). for i = 0, 1 and Ft(x0) ≡ y0. Then (f0)∗ = (f1)∗.

Proof. Let γ ∈ Ω(X,x0), Then f(γ) ∈ Ω(Y, y0), and one can check immediately that

γ≃x0γ′ ⇒ f(γ) ≃y0 f(γ′).

Hence the correspondence

Ω(X,x0) ∋ γ 7→ f(γ) ∈ Ω(Y, y0)

descends to a map f : π1(X,x0) → π1(Y, y0). This is clearly a group morphism. The
statements (a) and (b) are now obvious. We prove (c).
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x0
γ 1xα−

α

Figure 6.2: Connecting base points.

Let f0, f1 : (X,x0) → (Y, y0) be two continuous maps, and Ft a homotopy rel x0
connecting them. For any γ ∈ Ω(X,x0) we have

β0 = f0(γ) ≃y0 f1(γ) = β1.

The above homotopy is realized by Bt = Ft(γ). ⊓⊔

A priori, the fundamental group of a topological space X may change as the base point
varies and it almost certainly does if X has several connected components. However, if
X is connected, and thus path connected since it is locally so, all the fundamental groups
π1(X,x), x ∈ X are isomorphic.

Proposition 6.1.9. Let X be a connected topological space. Any continuous path α :
[0, 1]→ X joining x0 to x1 induces an isomorphism

α∗ : π1(X,x0)→ π1(X,x1),

defined by, α∗([γ]) := [α− ∗ γ ∗ α]; see Figure 6.2. ⊓⊔

Exercise 6.1.10. Prove Proposition 6.1.9. ⊓⊔

Thus, the fundamental group of a connected space X is independent of the base point
modulo some isomorphism. We will write π1(X, pt) to underscore this weak dependence
on the base point.

Corollary 6.1.11. Two homotopically equivalent connected spaces have isomorphic fun-
damental groups.

Example 6.1.12. (a) π1(R
n, pt) ∼ π1(pt, pt) = {1}.

(b) π1(annulus) ∼ π1(S1). ⊓⊔

Definition 6.1.13. A connected space X such that π1(X, pt) = {1} is said to be simply
connected. ⊓⊔

Exercise 6.1.14. Prove that the spheres of dimension ≥ 2 are simply connected. ⊓⊔
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Exercise 6.1.15. Let G be a connected Lie group. Define a new operation “⋆ ” on Ω(G, 1)
by

(α ⋆ β)(s) = α(s) · β(s),

where · denotes the group multiplication.

(a) Prove that α ⋆ β ≃1 α ∗ β.
(b) Prove that π1(G, 1) is Abelian. ⊓⊔

Exercise 6.1.16. Let E → X be a rank r complex vector bundle over the smooth manifold
X, and let ∇ be a flat connection on E, i.e., F (∇) = 0. Pick x0 ∈ X, and identify the fiber
Ex0 with Cr. For any continuous, piecewise smooth γ ∈ Ω(X,x0) denote by Tγ = Tγ(∇)
the parallel transport along γ, so that Tγ ∈ GL (Cr).

(a) Prove that α≃x0β ⇒ Tα = Tβ.

(b) Tβ∗α = Tα ◦ Tβ.
Thus, any flat connection induces a group morphism

T : π1(X,x0)→ GL(Cr) γ 7→ T−1γ .

This morphism (representation) is called the monodromy of the connection. ⊓⊔

Example 6.1.17. We want to compute the fundamental group of the complex projective
space CPn. More precisely, we want to show it is simply connected. We will establish this
by induction.

For n = 1, CP1 ∼= S2, and by Exercise 6.1.14, the sphere S2 is simply connected. We
next assume CPk is simply connected for k < n and prove the same is true for n.

Notice first that the natural embedding Ck+1 →֒ Cn+1 induces an embedding CPk →֒
CPn. More precisely, in terms of homogeneous coordinates this embedding is given by

[z0, . . . : zk] 7→ [z0, . . . , zk, 0, . . . , 0] ∈ CPn.

Choose as base point pt = [1, 0, . . . , 0] ∈ CPn, and let γ ∈ Ω(CPn,pt). We may assume γ
avoids the point P = [0, . . . , 0, 1] since we can homotop it out of any neighborhood of P .

We now use a classical construction of projective geometry. We project γ from P to the
hyperplane H = CPn−1 →֒ CPn. More precisely, if ζ = [z0, . . . , zn] ∈ CPn, we denote by
π(ζ) the intersection of the line Pζ with the hyperplane H. In homogeneous coordinates

π(ζ) = [z0(1− zn), . . . , zn−1(1− zn), 0] (= [z0, . . . , zn−1, 0] when zn 6= 1).

Clearly π is continuous. For t ∈ [0, 1] define

πt(ζ) = [z0(1− tzn), . . . , zn−1(1− tzn), (1 − t)zn].

Geometrically, πt flows the point ζ along the line Pζ until it reaches the hyperplane H.
Note that πt(ζ) = ζ, ∀t, and ∀ζ ∈ H. Clearly, πt is a homotopy rel pt connecting γ = π0(γ)
to a loop γ1 in H ∼= CPn−1 based at pt. Our induction hypothesis shows that γ1 can be
shrunk to pt inside H . This proves that CPn is simply connected. ⊓⊔
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6.1.2 Of categories and functors

The considerations in the previous subsection can be very elegantly presented using the
language of categories and functors. This brief subsection is a minimal introduction to
this language. The interested reader can learn more about it from the monograph [55, 68].

A category is a triplet C = (Ob(C),Hom(C), ◦) satisfying the following conditions.

(i) Ob(C) is a set whose elements are called the objects of the category.

(ii) Hom(C) is a family of sets Hom (X,Y ), one for each pair of objects X and Y . The
elements of Hom (X,Y ) are called the morphisms (or arrows) from X to Y .

(iii) ◦ is a collection of maps

◦ : Hom(X,Y )×Hom(Y,Z)→ Hom(X,Z), (f, g) 7→ g ◦ f,

which satisfies the following conditions.

(C1) For any object X, there exists a unique element 1X ∈ Hom(X,X) such that,

f ◦ 1X = f g ◦ 1X = g ∀f ∈ Hom(X,Y ), ∀g ∈ Hom(Z,X).

(C2) ∀f ∈ Hom(X,Y ), g ∈ Hom(Y,Z), h ∈ Hom(Z,W )

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Example 6.1.18. • Top is the category of topological spaces. The objects are topological
spaces and the morphisms are the continuous maps. Here we have to be careful about one
foundational issue. Namely, the collection of all topological spaces is not a set. To avoid
this problem we need to restrict to topological spaces whose subjacent sets belong to a
certain Universe. For more about this foundational issue we refer to [55].

• (Top, ∗) is the category of marked topological spaces. The objects are pairs (X, ∗),
where X is a topological space, and ∗ is a distinguished point of X. The morphisms

(X, ∗) f→ (Y, ⋄)

are the continuous maps f : X → Y such that f(∗) = ⋄.
• FVect is the category of vector spaces over the field F. The morphisms are the F-linear
maps.

• Gr is the category of groups, while Ab denotes the category of Abelian groups. The
morphisms are the obvious ones.

• RMod denotes the category of left R-modules, where R is some ring. ⊓⊔

Definition 6.1.19. Let C1 and C2 be two categories. A covariant (respectively contravari-
ant) functor is a map

F : Ob(C1)×Hom(C1)→ Ob(C2)×Hom(C2),
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(X, f) 7→ (F(X),F(f)),

such that, if X
f→ Y , then F(X)

F(f)−→ F(Y ) (respectively F(X)
F(f)←− F(Y )), and

(i) F(1X) = 1F(X),
(ii) F(g) ◦ F(f) = F(g ◦ f) (respectively F(f) ◦ F(g) = F(g ◦ f)). ⊓⊔

Example 6.1.20. Let V be a real vector space. Then the operation of right tensoring
with V is a covariant functor

⊗V : RVect→ RVect, U  U ⊗ V, (U1
L→ U2) (U1 ⊗ V L⊗1V→ U2 ⊗ V ).

On the other hand, the operation of taking the dual defines a contravariant functor,

∗ : RVect→ RVect, V  V ∗, (U
L→ V ) (V ∗

Lt

→ U∗).

The fundamental group construction of the previous is a covariant functor

π1 : (Top, ∗)→ Gr. ⊓⊔

In Chapter 7 we will introduce other functors very important in geometry. For more
information about categories and functors we refer to [55, 68].

6.2 Covering Spaces

6.2.1 Definitions and examples

As in the previous section we will assume that all topological spaces are locally path
connected.

Definition 6.2.1. (a) A continuous map π : X → Y is said to be a covering map if, for
any y ∈ Y , there exists an open neighborhood U of y in Y , such that π−1(U) is a disjoint
union of open sets Vi ⊂ X each of which is mapped homeomorphically onto U by π. Such
a neighborhood U is said to be an evenly covered neighborhood. The sets Vi are called
the sheets of π over U .
(b) Let Y be a topological space. A covering space of Y is a topological space X, together
with a covering map π : X → Y .
(c) If π : X → Y is a covering map, then for any y ∈ Y the set π−1(y) is called the fiber
over y. ⊓⊔

Example 6.2.2. Let D be a discrete set. Then, for any topological space X, the product
X×D is a covering of X with covering projection π(x, d) = x. This type of covering space
is said to be trivial. ⊓⊔

Exercise 6.2.3. Show that a fibration with standard fiber a discrete space is a covering.
⊓⊔

Example 6.2.4. The exponential map exp : R → S1, t 7→ exp(2πit) is a covering map.
However, its restriction to (0,∞) is no longer a a covering map. (Prove this!). ⊓⊔
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Exercise 6.2.5. Let (M,g) and (M̃, g̃) be two Riemann manifolds of the same dimension
such that (M̃ , g̃) is complete. Let φ : M̃ → M be a surjective local isometry i.e. Φ is
smooth and

|v|g = |Dφ(v)|g̃ ∀v ∈ TM̃.

Prove that φ is a covering map. ⊓⊔

The above exercise has a particularly nice consequence.

Theorem 6.2.6 (Cartan-Hadamard). Let (M,g) be a complete Riemann manifold with
non-positive sectional curvature. Then for every point q ∈M , the exponential map

expq : TqM →M

is a covering map.

Proof. The pull-back h = exp∗q(g) is a symmetric non-negative definite (0, 2)-tensor field
on TqM . It is in fact positive definite since the map expq has no critical points due to the
non-positivity of the sectional curvature.

The lines t 7→ tv through the origin of TqM are geodesics of h and they are defined
for all t ∈ R. By Hopf-Rinow theorem we deduce that (TqM,h) is complete. The theorem
now follows from Exercise 6.2.5. ⊓⊔

Exercise 6.2.7. Let G̃ and G be two Lie groups of the same dimension and φ : G̃ → G
a smooth, surjective group morphism. Prove that φ is a covering map. In particular, this
explains why exp : R→ S1 is a covering map. ⊓⊔

Exercise 6.2.8. Identify S3 ⊂ R4 with the group of unit quaternions

S3 = {q ∈ H ; |q| = 1}.

The linear space R3 can be identified with the space of purely imaginary quaternions

R3 = ImH = {xi + yj + zk}.

(a) Prove that qxq−1 ∈ ImH, ∀q ∈ S3.

(b) Prove that for any q ∈ S3 the linear map

Tq : ImH→ ImH x 7→ qxq−1

is an isometry so that Tq ∈ SO(3). Moreover, the map

S3 ∋ q 7→ Tq ∈ SO(3)

is a group morphism.

(c) Prove the above group morphism is a covering map. ⊓⊔
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Example 6.2.9. LetM be a smooth manifold. A Riemann metric onM induces a metric
on the determinant line bundle detTM . The sphere bundle of detTM (with respect to
this metric) is a 2 : 1 covering space of M called the orientation cover of M . ⊓⊔

Definition 6.2.10. Let X1
π1→ Y and X2

π2→ Y be two covering spaces of Y . A morphism
of covering spaces is a continuous map F : X1 → X2 such that π2 ◦ F = π1, i.e., the
diagram below is commutative.

X1 X2

Y

[

[℄

π1

w

F

�

��

π2

If F is also a homeomorphism we say F is an isomorphism of covering spaces.
Finally, if X

π→ Y is a covering space then its automorphisms are called deck transfor-
mations. The deck transformations form a group denoted by Deck (X,π). ⊓⊔

Exercise 6.2.11. Show that Deck (R
exp→ S1) ∼= Z. ⊓⊔

Exercise 6.2.12. (a) Prove that the natural projection Sn → RPn is a covering map.
(b) Denote by UR

1 the tautological (real) line bundle over RPn. Using a metric on this
line bundle form the associated sphere bundle S(UR

1 )→ RPn. Prove that this fiber bundle
defines a covering space isomorphic with the one described in part (a). ⊓⊔

6.2.2 Unique lifting property

Definition 6.2.13. Let X
π→ Y be a covering space and F : Z → Y a continuous map.

A lift of f is a continuous map F : Z → X such that π ◦ F = f , i.e. the diagram below is
commutative.

X

Z Y
u

π

�

�

��F

w

f

⊓⊔

Proposition 6.2.14 (Unique Path Lifting). Let X
π→ Y be a covering map, γ : [0, 1]→ Y

a path in Y and x0 a point in the fiber over y0 = γ(0), x0 ∈ π−1(y0). Then there exists at
most one lift of γ, Γ : [0, 1]→ Y such that Γ(0) = x0.

Proof. We argue by contradiction. Assume there exist two such lifts, Γ1,Γ2 : [0, 1] → X.
Set

S :=
{
t ∈ [0, 1]; Γ1(t) = Γ2(t)

}
.

The set S is nonempty since 0 ∈ S. Obviously S is closed so it suffices to prove that it is also
open. We will prove that for every s ∈ S, there exists ε > 0 such that [s−ε, s+ε]∩[0, 1] ⊂ S.
For simplicity, we consider the case s = 0. The general situation is entirely similar.

We will prove that there exists r0 > 0 such that [0, r0] ⊂ S. Pick a small open
neighborhood U of x0 such that π restricts to a homeomorphism onto π(U). There exists
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r0 > 0 such that γi
(
[0, r0]

)
⊂ U , i = 1, 2. Since π ◦ Γ1 = π ◦ Γ2, we deduce Γ1 |[0,r0]=

Γ2 |[0,r0]. The proposition is proved. ⊓⊔

Theorem 6.2.15. Let X
π→ Y be a covering space, and f : Z → Y be a continuous map,

where Z is a connected space. Fix z0 ∈ Z, and x0 ∈ π−1(y0), where y0 = f(z0). Then
there exists at most one lift F : Z → X of f such that F (z0) = x0.

Proof. For each z ∈ Z let αz be a continuous path connecting z0 to z. If F1, F2 are two
lifts of f such that F1(z0) = F2(z0) = x0 then, for any z ∈ Z, the paths Γ1 = Fi(αz),
and Γ2 = F2(αz) are two lifts of γ = f(αz) starting at the same point. From Proposition
6.2.14 we deduce that Γ1 ≡ Γ2, i.e., F1(z) = F2(z), for any z ∈ Z. ⊓⊔

6.2.3 Homotopy lifting property

Theorem 6.2.16 (Homotopy lifting property). Let X
π→ Y be a covering space, f : Z →

Y be a continuous map, and F : Z → X be a lift of f . If

h : [0, 1] × Z → Y (t, z) 7→ ht(z)

is a homotopy of f (h0(z) ≡ f(z)), then there exists a unique lift of h

H : [0, 1] × Z → X (t, z) 7→ Ht(z),

such that H0(z) ≡ F (z).

Proof. For each z ∈ Z we can find an open neighborhood Uz of z ∈ Z, and a partition
0 = t0 < t1 < . . . < tn = 1, depending on z, such that h maps [ti−1, ti]×Uz into an evenly
covered neighborhood of hti−1(z). Following this partition, we can now successively lift
h |I×Uz to a continuous map H = Hz : I × Uz → X such that H0(ζ) = F (ζ), ∀ζ ∈ Uz. By
unique lifting property, the liftings on I × Uz1 and I × Uz2 agree on I × (Uz1 ∩ Uz2), for
any z1, z2 ∈ Z, and hence we can glue all these local lifts together to obtain the desired
lift H on I × Z. ⊓⊔

Corollary 6.2.17 (Path lifting property). Suppose that X
π→ Y is a covering map, y0 ∈

Y , and γ : [0, 1] → Y is a continuous path starting at y0. Then, for every x0 ∈ π−1(y0)
there exists a unique lift Γ : [0, 1]→ X of γ starting at x0.

Proof. Use the previous theorem with f : {pt} → Y , f(pt) = γ(0), and ht(pt) = γ(t). ⊓⊔

Corollary 6.2.18. Let X
π→ Y be a covering space, and y0 ∈ Y . If γ0, γ1 ∈ Ω(Y, y0) are

homotopic rel y0, then any lifts Γ0, Γ1 which start at the same point also end at the same
point, i.e. Γ0(1) = Γ1(1).

Proof. Lift the homotopy connecting γ0 to γ1 to a homotopy in X. By unique lifting
property this lift connects Γ0 to Γ1. We thus get a continuous path Γt(1) inside the fiber
π−1(y0) which connects Γ0(1) to Γ1(1). Since the fibers are discrete, this path must be
constant. ⊓⊔



218 The Fundamental group and covering spaces

Let X
π→ Y be a covering space, and y0 ∈ Y . Then, for every x ∈ π−1(y0), and any

γ ∈ Ω(Y, y0), denote by Γx the unique lift of γ starting at x. Set

x · γ := Γx(1).

By Corollary 6.2.18, if ω ∈ Ω(Y, y0) is homotopic to γ rel y0, then

x · γ = x · ω.

Hence, x · γ depends only upon the equivalence class [γ] ∈ π1(Y, y0). Clearly

x · ([γ] · [ω]) = (x · [γ]) · [ω],

and
x · ey0 = x,

so that the correspondence

π−1(y0)× π1(Y, y0) ∋ (x, γ) 7→ x · γ ∈ x · γ ∈ π−1(y0)

defines a right action of π1(Y, y0) on the fiber π−1(y0). This action is called the monodromy
of the covering. The map x 7→ x · γ is called the monodromy along γ. Note that when Y
is simply connected, the monodromy is trivial. The map π induces a group morphism

π∗ : π1(X,x0)→ π1(Y, y0) x0 ∈ π−1(y0).

Proposition 6.2.19. π∗ is injective.

Proof. Indeed, let γ ∈ Ω(X,x0) such that π(γ) is trivial in π1(Y, y0). The homotopy
connecting π(γ) to ey0 lifts to a homotopy connecting γ to the unique lift of ey0 at x0,
which is ex0 . ⊓⊔

6.2.4 On the existence of lifts

Theorem 6.2.20. Let X
π→ Y be a covering space, x0 ∈ X, y0 = π(x0) ∈ Y , f : Z → Y

a continuous map and z0 ∈ Z such that f(z0) = y0. Assume the spaces Y and Z are
connected (and thus path connected). f admits a lift F : Z → X such that F (z0) = x0 if
and only if

f∗ (π1(Z, z0)) ⊂ π∗ (π1(X,x0)) . (6.2.1)

Proof. Necessity. If F is such a lift then, using the functoriality of the fundamental
group construction, we deduce f∗ = π∗ ◦ F∗. This implies the inclusion (6.2.1).

Sufficiency. For any z ∈ Z, choose a path γz from z0 to z. Then αz = f(γz) is a
path from y0 to y = f(z). Denote by Az the unique lift of αz starting at x0, and set
F (z) = Az(1). We claim that F is a well defined map.

Indeed, let ωz be another path in Z connecting z0 to z. Set λz := f(ωz), and denote
by Λz its unique lift in X starting at x0. We have to show that Λz(1) = Az(1). Construct
the loop based at z0

βz = ωz ∗ γ−z .
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Then f(βz) is a loop in Y based at y0. From (6.2.1) we deduce that the lift Bz of f(βz)
at x0 ∈ X is a closed path, i.e., the monodromy along f(βz) is trivial. We now have

Λz(1) = Bz(1/2) = Az(0) = Az(1).

This proves that F is a well defined map. We still have to show that this map is also
continuous.

Pick z ∈ Z. Since f is continuous, for every arbitrarily small, evenly covered neigh-
borhood U of f(z) ∈ Y there exists a path connected neighborhood V of z ∈ Z such that
f(V ) ⊂ U . For any ζ ∈ V pick a path σ = σζ in V connecting z to ζ. Let ω denote
the path ω = γz ∗ σζ (go from z0 to z along γz, and then from z to ζ along σζ). Then
F (ζ) = Ω(1), where Ω is the unique lift of f(ω) starting at x0. Since (f(ζ) ∈ U , we deduce
that Ω(1) belongs to the local sheet Σ, containing F (z), which homeomorphically covers
U . We have thus proved z ∈ V ⊂ F−1(Σ). The proof is complete since the local sheets Σ
form a basis of neighborhoods of F (z). ⊓⊔

Definition 6.2.21. Let Y be a connected space. A covering space X
π→ Y is said to be

universal if X is simply connected. ⊓⊔

Corollary 6.2.22. Let X1
pi→ Y (i=0,1) be two covering spaces of Y . Fix xi ∈ Xi such

that p0(x0) = p(x1) = y0 ∈ Y . If X0 is universal, then there exists a unique covering
morphism F : X0 → X1 such that F (x0) = x1.

Proof. A bundle morphism F : X0 → X1 can be viewed as a lift of the map p0 : X0 → Y
to the total space of the covering space defined by p1. The corollary follows immediately
from Theorem 6.2.20 and the unique lifting property. ⊓⊔

Corollary 6.2.23. Every space admits at most one universal covering space (up to iso-
morphism).

Theorem 6.2.24. Let Y be a connected, locally path connected space such that each of
its points admits a simply connected neighborhood. Then Y admits an (essentially unique)
universal covering space.

Sketch of proof. Assume for simplicity that Y is a metric space. Fix y0 ∈ Y . Let Py0
denote the collection of continuous paths in Y starting at y0. It can be topologized using
the metric of uniform convergence in Y . Two paths in Py0 are said to be homotopic rel
endpoints if they we can deform one to the other while keeping the endpoints fixed. This
defines an equivalence relation on Py0 . We denote the space of equivalence classes by Ỹ ,
and we endow it with the quotient topology. Define p : Ỹ → Y by

p([γ]) = γ(1) ∀γ ∈ Py0 .

Then (Ỹ , p) is a universal covering space of Y . ⊓⊔

Exercise 6.2.25. Finish the proof of the above theorem. ⊓⊔
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Example 6.2.26. The map R
exp→ S1 is the universal cover of S1. More generally, exp :

Rn → T n

(t1, . . . , tn) 7→ (exp(2πit1), . . . , exp(2πitn)), i =
√
−1,

is the universal cover of T n. The natural projection p : Sn → RPn is the universal cover
of RPn. ⊓⊔

Example 6.2.27. Let (M,g) be a complete Riemann manifold with non-positive sectional
curvature. By Cartan-Hadamard theorem, the exponential map expq : TqM → M is a
covering map. Thus, the universal cover of such a manifold is a linear space of the same
dimension. In particular, the universal covering space is contractible!!!

We now have another explanation why exp : Rn → T n is a universal covering space of
the torus: the sectional curvature of the (flat) torus is zero. ⊓⊔

Exercise 6.2.28. Let (M,g) be a complete Riemann manifold and p : M̃ → M its
universal covering space.
(a) Prove that M̃ has a natural structure of smooth manifold such that p is a local
diffeomorphism.
(b) Prove that the pullback p∗g defines a complete Riemann metric on M̃ locally isometric
with g. ⊓⊔

Example 6.2.29. Let (M,g) be a complete Riemann manifold such that

Ric (X,X) ≥ const.|X|2g, (6.2.2)

where const denotes a strictly positive constant. By Myers theorem M is compact. Using
the previous exercise we deduce that the universal cover M̃ is a complete Riemann manifold
locally isometric with (M,g). Hence the inequality (6.2.2) continues to hold on the covering
M̃ . Myers theorem implies again that the universal cover M̃ is compact !! In particular,
the universal cover of a semisimple, compact Lie group is compact!!! ⊓⊔

6.2.5 The universal cover and the fundamental group

Theorem 6.2.30. Let X̃
p→ X be the universal cover of a space X. Then

π1(X, pt) ∼= Deck (X̃ → X).

Proof. Fix ξ0 ∈ X̃ and set x0 = p(ξ0). There exists a bijection

Ev : Deck (X̃)→ p−1(x0),

given by the evaluation
Ev (F ) := F (ξ0).

For any ξ ∈ π−1(x0), let γξ be a path connecting ξ0 to ξ. Any two such paths are homotopic
rel endpoints since X̃ is simply connected (check this). Their projections on the base X
determine identical elements in π1(X,x0). We thus have a natural map

Ψ : Deck (X̃)→ π1(X,x0) F 7→ p(γF (ξ0)).
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The map Ψ is clearly a group morphism. (Think monodromy!) The injectivity and the
surjectivity of Ψ are consequences of the lifting properties of the universal cover. ⊓⊔

Corollary 6.2.31. If the space X has a compact universal cover, then π1(X, pt) is finite.

Proof. Indeed, the fibers of the universal cover have to be both discrete and compact.
Hence they must be finite. The map Ev in the above proof is a bijection onto Deck (X̃).⊓⊔

Corollary 6.2.32 (H. Weyl). The fundamental group of a compact semisimple group is
finite.

Proof. Indeed, we deduce from Example 6.2.29 that the universal cover of such a group is
compact. ⊓⊔

Example 6.2.33. From Example 6.2.11 we deduce that π1(S
1) ∼= (Z,+). ⊓⊔

Exercise 6.2.34. (a) Prove that π1(RP
n, pt) ∼= Z2, ∀n ≥ 2.

(b) Prove that π1(T
n) ∼= Zn. ⊓⊔

Exercise 6.2.35. Show that the natural inclusion U(n − 1) →֒ U(n) induces an isomor-
phism between the fundamental groups. Conclude that the map

det : U(n)→ S1

induces an isomorphism
π1(U(n), 1) ∼= π1(S

1, 1) ∼= Z. ⊓⊔



Chapter 7

Cohomology

7.1 DeRham cohomology

7.1.1 Speculations around the Poincaré lemma

To start off, consider the following partial differential equation in the plane. Given two
smooth functions P and Q, find a smooth function u such that

∂u

∂x
= P,

∂u

∂y
= Q. (7.1.1)

As is, the formulation is still ambiguous since we have not specified the domains of the
functions u, P and Q. As it will turn out, this aspect has an incredible relevance in
geometry.

Equation (7.1.1) has another interesting feature: it is overdetermined, i.e., it imposes
too many conditions on too few unknowns. It is therefore quite natural to impose some
additional restrictions on the data P , Q just like the zero determinant condition when
solving overdetermined linear systems.

To see what restrictions one should add it is convenient to introduce the 1-form α =
Pdx+Qdy. The equality (7.1.1) can be rewritten as

du = α. (7.1.2)

If (7.1.2) has at least one solution u, then 0 = d2u = dα, so that a necessary condition for
existence is

dα = 0, (7.1.3)

i.e.,
∂P

∂y
=
∂Q

∂x
.

A form satisfying (7.1.3) is said to be closed. Thus, if the equation du = α has a solution
then α is necessarily closed. Is the converse also true?

Let us introduce a bit more terminology. A form α such that the equation (7.1.2) has
a solution is said to be exact. The motivation for this terminology comes from the fact

222
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that sometimes the differential form du is called the exact differential of u. We thus have
an inclusion of vector spaces

{exact forms} ⊂ {closed forms}.

Is it true that the opposite inclusion also holds?
Amazingly, the answer to this question depends on the domain on which we study

(7.1.2). The Poincaré lemma comes to raise our hopes. It says that this is always true, at
least locally.

Lemma 7.1.1 (Poincaré lemma). Let C be an open convex set in Rn and α ∈ Ωk(C).
Then the equation

du = α (7.1.4)

has a solution u ∈ Ωk−1(C) if and only if α is closed, dα = 0.

Proof. The necessity is clear. We prove the sufficiency. We may as well assume that 0 ∈ C.
Consider the radial vector field on C

~r = xi∂xi ,

and denote by Φt the flow it generates. More explicitly, Φt is the linear flow

Φt(x) = etx, x ∈ Rn.

The flow lines of Φt are half-lines, and since C is convex, for every x ∈ C, and any t ≤ 0
we have Φt(x) ∈ C.

We begin with an a priori study of (7.1.4). Let u satisfy du = α. Using the homotopy
formula,

L~r = di~r + i~rd,

we get
dL~ru = d(di~r + i~rd)u = di~rα⇒ d(L~ru− i~rα) = 0.

This suggests looking for solutions ϕ of the equation

L~rϕ = i~rα, ϕ ∈ Ωk−1(C). (7.1.5)

If ϕ is a solution of this equation, then

L~rdϕ = dL~rϕ = di~rα = L~rα− i~Rdα = L~rα.

Hence the form ϕ also satisfies
L~r(dϕ − α) = 0.

Set ω := dϕ− α =
∑

I ωIdx
I . Using the computations in Subsection 3.1.3 we deduce

L~rdx
i = dxi,

so that
L~rω =

∑

I

(L~rωI)dx
I = 0.
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We deduce that L~rωI = 0, and consequently, the coefficients ωI are constants along the
flow lines of Φt which all converge at 0. Thus,

ωI = cI = const.

Each monomial cIdx
I is exact, i.e., there exist ηI ∈ Ωk−1(C) such that dηI = cIdx

I . For
example, when I = 1 < 2 < · · · < k

dx1 ∧ dx2 ∧ · · · ∧ dxk = d(x1dx2 ∧ · · · ∧ dxk).

Thus, the equality L~rω = 0 implies ω is exact. Hence there exists η ∈ Ωk−1(C) such that

d(ϕ− η) = α,

i.e., the differential form u := ϕ − η solves (7.1.4). Conclusion: any solution of (7.1.5)
produces a solution of (7.1.4).

We now proceed to solve (7.1.5), and to this aim, we use the flow Φt.Define

u =

∫ 0

−∞
(Φt)∗(i~rα)dt. (7.1.6)

Here the convexity assumption on C enters essentially since it implies that

Φt(C) ⊂ C ∀t ≤ 0,

so that if the above integral is convergent, then u is a form on C. If we write

(Φt)∗(i~rα) =
∑

|I|=k−1
ηtI(x)dx

I ,

then

u(x) =
∑

I

(∫ 0

−∞
ηtI(x)dt

)
dxI . (7.1.7)

We have to check two things.

A. The integral in (7.1.7) is well defined. To see this, we first write

α =
∑

|J |=k
αJdx

J ,

and then we set
A(x) := max

J ;0≤τ≤1
|αJ (τx)|.

Then

(Φt)∗(i~rα) = eti~r

(∑

J

αJ(e
tx)dxJ

)
,

so that
|ηtI(x)| ≤ Cet|x|A(x) ∀t ≤ 0.
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This proves the integral in (7.1.7) converges.

B. The differential form u defined by (7.1.6) is a solution of (7.1.5). Indeed,

L~ru = lim
s→0

1

s
( (Φs)∗u− u )

= lim
s→0

1

s

(
(Φs)∗

∫ 0

−∞
(Φt)∗(i~rα)dt−

∫ 0

−∞
(Φt)∗(i~rα)dt

)

= lim
s→0

(∫ s

−∞
(Φt)∗(i~rα)dt −

∫ 0

−∞
(Φt)∗(i~rα)dt

)

= lim
s→0

∫ s

0
(Φt)∗(i~rα)dt = (Φ0)∗(i~rα) = i~rα.

The Poincaré lemma is proved. ⊓⊔

The local solvability does not in any way implies global solvability. Something happens
when one tries to go from local to global.

Example 7.1.2. Consider the form dθ on R2\{0} where (r, θ) denote the polar coordinates
in the punctured plane. To write it in cartesian coordinates (x, y) we use the equality

tan θ =
y

x

so that

(1 + tan2 θ)dθ = − y

x2
dx+

dy

x
and (1 +

y2

x2
)dθ =

−ydx+ xdy

x2
,

i.e.,

dθ =
−ydx+ xdy

x2 + y2
= α.

Obviously, dα = d2θ = 0 on R2 \ {0} so that α is closed on the punctured plane. Can we
find a smooth function u on R2 \ {0} such that du = α?

We know that we can always do this locally. However, we cannot achieve this globally.
Indeed, if this was possible, then

∫

S1

du =

∫

S1

α =

∫

S1

dθ = 2π.

On the other hand, using polar coordinates u = u(r, θ) we get
∫

S1

du =

∫

S1

∂u

∂θ
dθ =

∫ 2π

0

∂u

∂θ
dθ = u(1, 2π) − u(1, 0) = 0.

Hence on R2 \ {0}
{exact forms} 6= {closed forms}.

We see what a dramatic difference a point can make: R2 \ {point} is structurally very
different from R2. ⊓⊔

The artifice in the previous example simply increases the mystery. It is still not clear
what makes it impossible to patch-up local solutions. The next subsection describes two
ways to deal with this issue.
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7.1.2 Čech vs. DeRham

Let us try to analyze what prevents the “spreading” of local solvability of (7.1.4) to global
solvability. We will stay in the low degree range.

The Čech approach. Consider a closed 1-form ω on a smooth manifold. To solve the
equation du = ω, u ∈ C∞(M) we first cover M by open sets (Uα) which are geodesically
convex with respect to some fixed Riemann metric.

Poincaré lemma shows that we can solve du = ω on each open set Uα so that we can
find a smooth function fα ∈ C∞(Uα) such that dfα = ω. We get a global solution if and
only if

fαβ = fα − fβ = 0 on each Uαβ = Uα ∩ Uβ 6= ∅.
For fixed α, the solutions of the equation du = ω on Uα differ only by additive constants,
i.e., closed 0-forms.

The quantities fαβ satisfy dfαβ = 0 on the (connected) overlaps Uαβ so they are con-
stants. Clearly they satisfy the conditions

fαβ + fβγ + fγα = 0 on every Uαβγ := Uα ∩ Uβ ∩ Uγ 6= ∅. (7.1.8)

On each Uα we have, as we have seen, several choices of solutions. Altering a choice is
tantamount to adding a constant fα → fα + cα. The quantities fαβ change according to

fαβ → fαβ + cα − cβ .

Thus, the global solvability issue leads to the following situation.
Pick a collection of local solutions fα. The equation du = ω is globally solvable if we

can alter each fα by a constant cα such that

fαβ = (cβ − cα) ∀α, β such that Uαβ 6= ∅. (7.1.9)

We can start the alteration at some open set Uα, and work our way up from one such
open set to its neighbors, always trying to implement (7.1.9). It may happen that in the
process we might have to return to an open set whose solution was already altered. Now
we are in trouble. (Try this on S1, and ω = dθ.) After several attempts one can point the
finger to the culprit: the global topology of the manifold may force us to always return to
some already altered local solution.

Notice that we replaced the partial differential equation du = ω with a system of linear
equations (7.1.9), where the constants fαβ are subject to the constraints (7.1.8). This is
no computational progress since the complexity of the combinatorics of this system makes
it impossible solve in most cases.

The above considerations extend to higher degree, and one can imagine that the com-
plexity increases considerably. This is however the approach Čech adopted in order to
study the topology of manifolds, and although it may seem computationally hopeless, its
theoretical insights are invaluable.

The DeRham approach. This time we postpone asking why the global solvability
is not always possible. Instead, for each smooth manifold M one considers the Z-graded
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vector spaces

B•(M) =
⊕

k≥0
Bk(M),

(
B0(M) := {0}

)
Z•(M) :=

⊕

k≥0
Zk(M),

where
Bk(M) =

{
dω ∈ Ωk(M); ω ∈ Ωk−1(M)

}
= exact k − forms,

and
Zk(M =

{
η ∈ Ωk(M); dη = 0

}
= closed k − forms.

Clearly Bk ⊂ Zk. We form the quotients,

Hk(M) := Zk(M)/Bk(M).

Intuitively, this space consists of those closed k-forms ω for which the equation du = ω
has no global solution u ∈ Ωk−1(M). Thus, if we can somehow describe these spaces, we
may get an idea “who” is responsible for the global nonsolvability.

Definition 7.1.3. For any smooth manifold M the vector space Hk(M) is called the k-th
DeRham cohomology group of M . ⊓⊔

Clearly Hk(M) = 0 for k > dimM .

Example 7.1.4. The Poincaré lemma shows that Hk(Rn) = 0 for k > 0. The discussion
in Example 7.1.2 shows that H1(R2 \ {0}) 6= 0. ⊓⊔

Proposition 7.1.5. For any smooth manifold M

dimH0(M) = number of connected components of M.

Proof. Indeed
H0(M) = Z0(M) =

{
f ∈ C∞(M) ; df = 0

}
.

Thus, H0(M) coincides with the linear space of locally constant functions. These are
constant on the connected components of M . ⊓⊔

We see thatH0(M), the simplest of the DeRham groups, already contains an important
topological information. Obviously the groups Hk are diffeomorphism invariants, and its
is reasonable to suspect that the higher cohomology groups may contain more topological
information.

Thus, to any smooth manifold M we can now associate the graded vector space

H•(M) :=
⊕

k≥0
Hk(M).

A priori, the spaces Hk(M) may be infinite dimensional. The Poincaré polynomial of M ,
denoted by PM (t), is defined by

PM (t) =
∑

k≥0
tk dimHk(M),
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every time the right-hand-side expression makes sense. The number dimHk(M) is usually
denoted by bk(M), and it is called the k-th Betti number of M . Hence

PM (t) =
∑

k

bk(M)tk.

The alternating sum

χ(M) :=
∑

k

(−1)kbk(M),

is called the Euler characteristic of M .

Exercise 7.1.6. Show that PS1(t) = 1 + t. ⊓⊔

We will spend the remaining of this chapter trying to understand what is that these
groups do and which, if any, is the connection between the two approaches outlined above.

7.1.3 Very little homological algebra

At this point it is important to isolate the common algebraic skeleton on which both
the DeRham and the Čech approaches are built. This requires a little terminology from
homological algebra.

☞ In the sequel all rings will be assumed commutative with 1.

Definition 7.1.7. (a) Let R be a ring, and let

C• =
⊕

n∈Z
Cn, D• =

⊕

n∈Z
Dn

be two Z-graded left R-modules. A degree k-morphism φ : C• → D• is an R-module
morphism such that

φ(Cn) ⊂ Dn+k ∀n ∈ Z.

(b) Let

C• =
⊕

n∈Z
Cn

be a Z-graded R-module. A boundary (respectively coboundary) operator is a degree −1
(respectively a degree 1) endomorphism d : C• → C• such that d2 = 0.

A chain (respectively cochain) complex over R is a pair (C•, d), where C• is a Z-graded
R-module, and d is a boundary (respectively a coboundary) operator. ⊓⊔

In this book we will be interested mainly in cochain complexes so in the remaining
part of this subsection we will stick to this situation. In this case cochain complexes are
usually described as (C• = ⊕n∈ZCn, d). Moreover, we will consider only the case Cn = 0
for n < 0.

Traditionally, a cochain complex is represented as a long sequence of R-modules and
morphisms of R-modules

(C•, d) : · · · → Cn−1
dn−1−→ Cn

dn−→ Cn+1 → · · · ,
such that range (dn−1) ⊂ ker (dn), i.e., dndn−1 = 0.
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Definition 7.1.8. Let

· · · → Cn−1
dn−1−→ Cn

dn−→ Cn+1 → · · ·

be a cochain complex of R-modules. Set

Zn(C) := ker dn Bn(C) := range (dn−1).

The elements of Zn(C) are called cocycles, and the elements of Bn(C) are called cobound-
aries.

Two cocycles c, c′ ∈ Zn(C) are said to be cohomologous if c−c′ ∈ Bn(C). The quotient
module

Hn(C) := Zn(C)/Bn(C)

is called the n-th cohomology group (module) of C. It can be identified with the set of
equivalence classes of cohomologous cocycles. A cochain complex complex C is said to be
acyclic if Hn(C) = 0 for all n > 0. ⊓⊔

For a cochain complex (C•, d) one usually writes

H•(C) = H•(C, d) =
⊕

n≥0
Hn(C).

Example 7.1.9. (The DeRham complex). Let M be an m-dimensional smooth
manifold. Then the sequence

0→ Ω0(M)
d→ Ω1 d→ · · · d→ Ωm(M)→ 0

(where d is the exterior derivative) is a cochain complex of real vector spaces called the
DeRham complex. Its cohomology groups are the DeRham cohomology groups of the
manifold. ⊓⊔

Example 7.1.10. Let (g, [·, ·]) be a real Lie algebra. Define

d : Λkg∗ → Λk+1g∗,

by

(dω)(X0,X1, . . . ,Xk) :=
∑

0≤i<j≤k
(−1)i+jω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk),

where, as usual, the hatˆindicates a missing argument.
According to the computations in Example 3.2.9 the operator d is a coboundary op-

erator, so that (Λ•g∗, d) is a cochain complex. Its cohomology is called the Lie algebra
cohomology, and it is denoted by H•(g). ⊓⊔

Exercise 7.1.11. (a) Let g be a real Lie algebra. Show that

H1(g) ∼= (g/[g, g])∗,
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where [g, g] = span
{
[X,Y ] ; X,Y ∈ g

}
.

(b) Compute H1(gl(n,R)), where gl(n,R) denotes the Lie algebra of n × n real matrices
with the bracket given by the commutator.
(c) (Whitehead) Let g be a semisimple Lie algebra, i.e., its Killing pairing is nondegenerate.
Prove that H1(g) = {0}. (Hint: Prove that [g, g]⊥ = 0, where ⊥ denotes the orthogonal
complement with respect to the Killing pairing.) ⊓⊔

Proposition 7.1.12. Let

(C•, d) : · · · → Cn−1
dn−1−→ Cn

dn−→ Cn+1 → · · · ,
be a cochain complex of R-modules. Assume moreover that C is also a Z-graded R-algebra,
i.e., there exists an associative multiplication such that

Cn · Cm ⊂ Cm+n ∀m,n.
If d is a quasi-derivation, i.e.,

d(x · y) = ±(dx) · y ± x · (dy) ∀x, y ∈ C,
then H•(C) inherits a structure of Z-graded R-algebra.

A cochain complex as in the above proposition is called a differential graded algebra
or DGA.

Proof. It suffices to show Z•(C) · Z•(C) ⊂ Z•(C), and B•(C) ·B•(C) ⊂ B•(C).
If dx = dy = 0, then d(xy) = ±(dx)y ± x(dy) = 0. If x = dx′ and y = dy′ then, since

d2 = 0, we deduce xy = ±(dx′dy′). ⊓⊔

Corollary 7.1.13. The DeRham cohomology of a smooth manifold has an R-algebra struc-
ture induced by the exterior multiplication of differential forms. ⊓⊔

Definition 7.1.14. Let (A•, d) and (B•, δ) be two cochain complexes of R-modules.
(a) A cochain morphism, or morphism of cochain complexes is a degree 0 morphism φ :
A• → B• such that φ ◦ d = δ ◦ φ, i.e., the diagram below is commutative for any n.

An An+1

Bn Bn+1

w

dn

u

φn

u

φn+1

w

δn

(b) Two cochain morphisms φ,ψ : A• → B• are said to be cochain homotopic , and we
write this φ ≃ ψ, if there exists a degree −1 morphism χ : {An → Bn−1} such that

φ(a)− ψ(a) = ±δ ◦ χ(a)± χ ◦ d(a).
(c) Two cochain complexes (A•, d), and (B•, δ) are said to be homotopic, if there exist
cochain morphism

φ : A→ B and ψ : B → A,

such that ψ ◦ φ ≃ 1A, and φ ◦ ψ ≃ 1B. ⊓⊔
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Example 7.1.15. The commutation rules in Subsection 3.2.1, namely [LX , d] = 0, and
[iX , d]s = LX , show that for each vector fieldX on a smooth manifoldM , the Lie derivative
along X, LX : Ω•(M) → Ω•(M) is a cochain morphism homotopic with the trivial map
(≡ 0). The interior derivative iX is the cochain homotopy achieving this. ⊓⊔

Proposition 7.1.16. (a) Any cochain morphism φ : (A•, d) → (B•, δ) induces a degree
zero morphism in cohomology

φ∗ : H
•(A)→ H•(B).

(b) If the cochain maps φ,ψ : A → B are cochain homotopic, then they induce identical
morphisms in cohomology, φ∗ = ψ∗.

(c) (1A)∗ = 1H•(A), and if (A•0, d
0)

φ−→ (A•1, d
1)

ψ−→ (A•2, d
2) are cochain morphisms, then

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Proof. (a) It boils down to checking the inclusions

φ(Zn(A)) ⊂ Zn(B) and φ(Bn(A)) ⊂ Bn(B).

These follow immediately from the definition of a cochain map.

(b) We have to show that φ(cocycle)− ψ(cocycle) = coboundary. Let da = 0. Then

φ(a)− ψ(a) = ±δ(χ(a) ± χ(da) = δ(±χ(a)) = coboundary in B.

(c) Obvious. ⊓⊔

Corollary 7.1.17. If two cochain complexes (A•, d) and (B•, δ) are cochain homotopic,
then their cohomology modules are isomorphic. ⊓⊔

Proposition 7.1.18. Let

0→ (A•, dA)
φ−→ (B•, dB)

ψ−→ (C•, dC)→ 0

be a short exact sequence of cochain complexes of R-modules. This means that we have a
commutative diagram
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...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

w w

φn+1

u

dA

u

dB

w

ψn+1

u

dC

w

w

u

dA

w

φn

u

dB

w

ψn

u

dC

w

w

u

dA

w

ψn−1

u

dB

w

ψn−1

u

dC

w

u

dA

u

dB

u

dC

(7.1.10)

in which the rows are exact. Then there exists a long exact sequence

· · · → Hn−1(C)
∂n−1→ Hn(A)

φ∗→ Hn(B)
ψ∗→ Hn(C)

∂n→ Hn+1(A)→ · · · . (7.1.11)

We will not include a proof of this proposition. We believe this is one proof in ho-
mological algebra that the reader should try to produce on his/her own. We will just
indicate the construction of the connecting maps ∂n. This construction, and in fact the
entire proof, relies on a simple technique called diagram chasing.

Start with x ∈ Hn(C). The cohomology class x can be represented by some cocycle
c ∈ Zn(C). Since ψn is surjective there exists b ∈ Bn such that c = ψn(b). From the
commutativity of the diagram (7.1.10) we deduce 0 = dCψn(b) = ψn+1d

B(b), i.e., dB(b) ∈
kerψn+1 = rangeφn+1. In other words, there exists a ∈ An+1 such that φn+1(a) = dBn b.
We claim that a is a cocycle. Indeed,

φn+2d
A
n+1a = dBn+1φn+1a = dBn+1d

B
n b = 0.

Since φn+2 is injective we deduce dAn+1a = 0, i.e., a is a cocycle.
If we trace back the path which lead us from c ∈ Zn(C) to a ∈ Zn+1(A), we can write

a = φ−1n+1 ◦ dB ◦ ψ−1n (c) = φ−1n+1 ◦ dBb.

This description is not entirely precise since a depends on various choices. We let the
reader check that the correspondence Zn(C) ∋ c 7→ a ∈ Zn+1(A) above induces a well
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defined map in cohomology, ∂n : Hn(C)→ Hn+1(A) and moreover, the sequence (7.1.11)
is exact.

Exercise 7.1.19. 1 Suppose R is a commutative ring with 1. For any cochain complex
(K•, dK) of R-modules, and any integer n we denote by K[n]• the complex defined by
K[n]m = Kn+m, dK[n] = (−1)ndK . We associate to any cochain map f : K• → L• two
new cochain complexes:

(a) The cone
(
C(f)•, dC(f)

)
where

C(f)• = K[1]• ⊕ L•, dC(f)

[
ki+1

ℓi

]
=

[
−dK 0
f dL

]
·
[
ki+1

ℓi

]
.

(b) The cylinder
(
Cyl(f), dCyl(f)

)

Cyl(f)• ∼= K• ⊕ C(f)•, dCyl(f)




ki

ki+1

ℓi


 =



dK −1Ki+1 0
0 −dK 0
0 f dL


 ·




ki

ki+1

ℓi


 .

We have canonical inclusions α : L• → Cyl(f), f̄ : K• → Cyl(f)•, a canonical projections
β : Cyl(f)• → L•, δ = δ(f) : C(f)• → K[1]•, and π : Cyl(f)→ C(f).

(i) Prove that α, βf̄ , δ(f) are cochain maps, β ◦α = 1L and α ◦ β is cochain homotopic to
1Cyl(f).
(ii) Show that we have the following commutative diagram of cochain complexes, where
the rows are exact.

0 L• C(f)• K[1]• 0

0 K• Cyl(f) C(f) 0

K• L•

w

u

α

w

π̄

u

1C(f)

w

δ(f)
w

w

u

1K

w

f̄

u

β

w

π
w

w

f

(iii) Show that the connecting morphism in the long exact sequence corresponding to the
short exact sequence

0→ K•
f̄−→ Cyl(f)

π−→ C(f)→ 0

coincides with the morphism induced in cohomology by δ(f) : C(f)→ K[1]•.

(iv) Prove that f induces an isomorphism in cohomology if and only if the cone of f is
acyclic. ⊓⊔

1This exercise describes additional features of the long exact sequence in cohomology. They are partic-
ularly useful in the study of derived categories.
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Exercise 7.1.20. (Abstract Morse inequalities). Let C• =
⊕

n≥0C
n be a cochain

complex of vector spaces over the field F. Assume each of the vector spaces Cn is finite
dimensional. Form the Poincaré series

PC(t) =
∑

n≥0
tn dimFC

n,

and

PH•(C)(t) =
∑

n≥0
tn dimFH

n(C).

Prove that there exists a formal series R(t) ∈ Z[[t]] with non-negative coefficients such
that

PC•(t) = PH•(C)(t) + (1 + t)R(t).

In particular, whenever it makes sense, the graded spaces C∗ and H∗ have identical Euler
characteristics

χ(C•) = PC(−1) = PH•(C)(−1) = χ(H•(C)). ⊓⊔
Exercise 7.1.21. (Additivity of Euler characteristic). Let

0→ A• → B• → C• → 0

be a short exact sequence of cochain complexes of vector spaces over the field F. Prove
that if at least two of the cohomology modules H•(A), H•(B) and H•(C) have finite
dimension over F, then the same is true about the third one, and moreover

χ(H•(B)) = χ(H•(A)) + χ(H•(C)). ⊓⊔

Exercise 7.1.22. (Finite dimensional Hodge theory). Let

(V •, d) :=
(⊕

n≥0
V n, dn

)
,

be a cochain complex of real vector spaces such that dimV n <∞, for all n. Assume that
each V n is equipped with a Euclidean metric, and denote by d∗n : V n+1 → V n the adjoint
of dn. We can now form the Laplacians

∆n : V n → V n, ∆n := d∗ndn + dn−1d
∗
n−1.

(a) Prove that ⊕n≥0∆n = (d+ d∗)2.
(b) Prove that ∆nc = 0 if and only if dnc = 0 and d∗n−1c = 0. In particular, ker∆n ⊂
Zn(V •).
(c) Let c ∈ Zn(V ). Prove that there exists a unique c ∈ Zn(V ) cohomologous to c such
that

|c| = min
{
|c′|; c− c′ ∈ Bn(C)

}
,

where | · | denotes the Euclidean norm in V n.
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(d) Prove that c determined in part (c) satisfies ∆nc = 0. Deduce from all the above that
the natural map

ker∆n → Hn(V •)

is a linear isomorphism. ⊓⊔

Exercise 7.1.23. Let V be a finite dimensional real vector space, and v0 ∈ V . Define

dk = dk(v0) : Λ
kV → Λk+1V, ω 7−→ v0 ∧ ω.

(a) Prove that

· · · dk−1−→ ΛkV
dk−→ Λk+1V

dk+1−→ · · ·
is a cochain complex. (It is known as the Koszul complex.)
(b) Use the Cartan identity in Exercise 2.2.55 and the finite dimensional Hodge theory
described in previous exercise to prove that the Koszul complex is acyclic if v0 6= 0, i.e.,

Hk
(
Λ•V, d(v0)

)
= 0, ∀k ≥ 0. ⊓⊔

7.1.4 Functorial properties of the DeRham cohomology

Let M and N be two smooth manifolds. For any smooth map φ :M → N the pullback

φ∗ : Ω•(N)→ Ω•(M)

is a cochain morphism, i.e., φ∗dN = dMφ
∗, where dM and respectively dN denote the

exterior derivative onM , and respectively N . Thus, φ∗ induces a morphism in cohomology
which we continue to denote by φ∗;

φ∗ : H•(N)→ H•(M).

In fact, we have a more precise statement.

Proposition 7.1.24. The DeRham cohomology construction is a contravariant functor
from the category of smooth manifolds and smooth maps to the category of Z-graded vector
spaces with degree zero morphisms. ⊓⊔

Note that the pullback is an algebra morphism φ∗ : Ω•(N)→ Ω•(M),

φ∗(α ∧ β) = (φ∗α) ∧ (φ∗β), ∀α, β ∈ Ω•(N),

and the exterior differentiation is a quasi-derivation, so that the map it induces in coho-
mology will also be a ring morphism.

Definition 7.1.25. (a) Two smooth maps φ0, φ1 : M → N are said to be (smoothly)
homotopic, and we write this φ0 ≃sh φ1, if there exists a smooth map

Φ : I ×M → N (t,m) 7→ Φt(m),

such that Φi = φi, for i = 0, 1.
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(b) A smooth map φ : M → N is said to be a (smooth) homotopy equivalence if there
exists a smooth map ψ : N →M such that φ ◦ ψ ≃sh 1N , and ψ ◦ φ ≃sh 1M .
(c) Two smooth manifolds M and N are said to be homotopy equivalent if there exists a
homotopy equivalence φ :M → N . ⊓⊔

Proposition 7.1.26. Let φ0, φ1 : M → N be two homotopic smooth maps. Then they
induce identical maps in cohomology

φ∗0 = φ∗1 : H
•(N)→ H•(M).

Proof. According to the general results in homological algebra, it suffices to show that the
pullbacks

φ∗0, φ
∗
1 : Ω

•(N)→ Ω•(M)

are cochain homotopic. Thus, we have to produce a map

χ : Ω•(N)→ Ω∗•−1(M),

such that
φ∗1(ω)− φ∗0(ω) = ±χ(dω)± dχω, ∀ω ∈ Ω•(M).

At this point, our discussion on the fibered calculus of Subsection 3.4.5 will pay off.
The projection Φ : I ×M → M defines an oriented ∂-bundle with standard fiber I.

For any ω ∈ Ω•(N) we have the equality

φ∗1(ω)− φ∗0(ω) = Φ∗(ω) |1×M −Φ∗(ω) |0×M=

∫

(∂I×M)/M
Φ∗(ω).

We now use the homotopy formula in Theorem 3.4.54 of Subsection 3.4.5, and we deduce
∫

(∂I×M)/M
Φ∗(ω) =

∫

(I×M)/M
dI×MΦ∗(ω)− dM

∫

(I×M)/M
Φ∗(ω)

=

∫

(I×M)/M
Φ∗(dNω)− dM

∫

(I×M)/M
Φ∗(ω).

Thus

χ(ω) :=

∫

(I×M)/M
Φ∗(ω)

is the sought for cochain homotopy. ⊓⊔

Corollary 7.1.27. Two homotopy equivalent spaces have isomorphic cohomology rings.⊓⊔

Consider a smooth manifoldM , and U , V two open subsets ofM such thatM = U∪V .
Denote by ıU (respectively ıV ) the inclusions U →֒M (resp. V →֒M). These induce the
restriction maps

ı∗U : Ω•(M)→ Ω•(U), ω 7→ ω |U ,
and

ı∗V : Ω•(M)→ Ω•(V ), ω 7→ ω |V .
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We get a cochain morphism

r : Ω•(M)→ Ω•(U)⊕ Ω•(V ), ω 7→ (ı∗Uω, ı
∗
V ω).

There exists another cochain morphism

δ : Ω•(U)⊕ Ω•(V )→ Ω•(U ∩ V ), (ω, η) 7→ −ω |U∩V +η |U∩V .

Lemma 7.1.28. The short Mayer-Vietoris sequence

0→ Ω•(M)
r−→ Ω•(U)⊕ Ω•(V )

δ−→ Ω∗(U ∩ V )→ 0

is exact.

Proof. Obviously r is injective. The proof of the equality Range r = ker δ can be safely
left to the reader. The surjectivity of δ requires a little more effort.

The collection {U, V } is an open cover of M , so we can find a partition of unity
{ϕU , ϕV } ⊂ C∞(M) subordinated to this cover, i.e.,

suppϕU ⊂ U, suppϕV ⊂ V, 0 ≤ ϕU , ϕV ≤ 1, ϕU + ϕV = 1.

Note that for any ω ∈ Ω∗(U ∩ V ) we have

suppϕV ω ⊂ suppϕV ⊂ V,

and thus, upon extending ϕV ω by 0 outside V , we can view it as a form on U . Similarly,
ϕUω ∈ Ω∗(V ). Note that

δ(−ϕV ω,ϕUω) = (ϕV + ϕU )ω = ω.

This establishes the surjectivity of δ. ⊓⊔

Using the abstract results in homological algebra we deduce from the above lemma
the following fundamental result.

Theorem 7.1.29 (Mayer-Vietoris). Let M = U ∪ V be an open cover of the smooth
manifold M. Then there exists a long exact sequence

· · · → Hk(M)
r→ Hk(U)⊕Hk(V )

δ→ Hk(U ∩ V )
∂→ Hk+1(M)→ · · · ,

called the long Mayer-Vietoris sequence. ⊓⊔

The connecting morphisms ∂ can be explicitly described using the prescriptions fol-
lowing Proposition 7.1.18 in the previous subsection. Let us recall that construction.

Start with ω ∈ Ωk(U ∩ V ) such that dω = 0. Writing as before

ω = ϕV ω + ϕUω,

we deduce
d(ϕV ω) = d(−ϕUω) on U ∩ V.
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Thus, we can find η ∈ Ωk+1(M) such that

η |U= d(ϕV ω) η |V= d(−ϕUω).

Then
∂ω := η.

The reader can prove directly that the above definition is independent of the various
choices.

The Mayer-Vietoris sequence has the following functorial property.

Proposition 7.1.30. Let φ : M → N be a smooth map and {U, V } an open cover of N .
Then U ′ = φ−1(U), V ′ = φ−1(V ) form an open cover of M and moreover, the diagram
below is commutative.

Hk(N) Hk(U)⊕Hk(V ) Hk(U ∩ V ) Hk+1(N)

Hk(M) Hk(U ′)⊕Hk(V ′) Hk(U ′ ∩ V ′) Hk+1(M)

w

r

u

φ∗

w

δ

u

φ∗

w

∂

u

φ∗

u

φ∗

w

r′
w

δ′
w

∂′

⊓⊔

Exercise 7.1.31. Prove the above proposition. ⊓⊔

7.1.5 Some simple examples

The Mayer-Vietoris theorem established in the previous subsection is a very powerful tool
for computing the cohomology of manifolds. In principle, it allows one to recover the
cohomology of a manifold decomposed into simpler parts, knowing the cohomologies of its
constituents. In this subsection we will illustrate this principle on some simple examples.

Example 7.1.32. (The cohomology of spheres). The cohomology of S1 can be easily
computed using the definition of DeRham cohomology. We have H0(S1) = R since S1 is
connected. A 1-form η ∈ Ω1(S1) is automatically closed, and it is exact if and only if

∫

S1

η = 0.

Indeed, if η = dF , where F : R→ R is a smooth 2π-periodic function, then
∫

S1

η = F (2π) − F (0) = 0.

Conversely if η = f(θ)dθ, where f : R→ R is a smooth 2π-periodic function and

∫ 2π

0
f(θ)dθ = 0,

then the function

F (t) =

∫ t

0
f(s)ds
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is smooth, 2π-periodic, and dF = η.
Thus, the map ∫

S1

: Ω1(S1)→ R, η 7→
∫

S1

η,

induces an isomorphism H1(S1)→ R, and we deduce

PS1(t) = 1 + t.

To compute the cohomology of higher dimensional spheres we use the Mayer-Vietoris
theorem.

The (n+ 1)-dimensional sphere Sn+1 can be covered by two open sets

Usouth = Sn+1 \ {North pole} and Unorth = Sn+1 \ {South pole}.

Each is diffeomorphic to Rn+1. Note that the overlap Unorth ∩ Usouth is homotopically
equivalent with the equator Sn. The Poincaré lemma implies that

Hk+1(Unorth)⊕Hk+1(Usouth) ∼= 0

for k ≥ 0. The Mayer-Vietoris sequence gives

Hk(Unorth)⊕Hk(Usouth)→ Hk(Unorth ∩ Usouth)→ Hk+1(Sn+1)→ 0.

For k > 0 the group on the left is also trivial, so that we have the isomorphisms

Hk(Sn) ∼= Hk(Unorth ∩ Usouth) ∼= Hk+1(Sn+1) k > 0.

Denote by Pn(t) the Poincaré polynomial of Sn and set Qn(t) = Pn(t)−Pn(0) = Pn(t)−1.
We can rewrite the above equality as

Qn+1(t) = tQn(t) n > 0.

Since Q1(t) = t we deduce Qn(t) = tn, i.e.,

PSn(t) = 1 + tn. ⊓⊔

Example 7.1.33. Let {U, V } be an open cover of the smooth manifold M. We assume
that all the Betti numbers of U , V and U ∩ V are finite. Using the Mayer-Vietoris short
exact sequence, and the Exercise 7.1.21 in Subsection 7.1.3, we deduce that all the Betti
numbers of M are finite, and moreover

χ(M) = χ(U) + χ(V )− χ(U ∩ V ). (7.1.12)

This resembles very much the classical inclusion-exclusion principle in combinatorics. We
will use this simple observation to prove that the Betti numbers of a connected sum of g
tori is finite, and then compute its Euler characteristic.

Let Σ be a surface with finite Betti numbers. From the decomposition

Σ = (Σ \ disk) ∪ disk,
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we deduce (using again Exercise 7.1.21)

χ(Σ) = χ(Σ \ disk) + χ(disk)− χ ( (Σ \ disk) ∩ (disk) ) .

Since (Σ \ disk) ∩ disk is homotopic to a circle, and χ(disk) = 1, we deduce

χ(Σ) = χ(Σ \ disk) + 1− χ(S1) = χ(Σ \ disk) + 1.

If now Σ1 and Σ2 are two surfaces with finite Betti numbers, then

Σ1#Σ2 = (Σ1 \ disk) ∪ (Σ2 \ disk),

where the two holed surfaces intersect over an entire annulus, which is homotopically a
circle. Thus

χ(Σ1#Σ2) = χ(Σ1 \ disk) + χ(Σ2 \ disk)− χ(S1)

= χ(Σ1) + χ(Σ2)− 2.

This equality is identical with the one proved in Proposition 4.2.31 of Subsection 4.2.5.
We can decompose a torus as a union of two cylinders. The intersection of these

cylinders is the disjoint union of two annuli so homotopically, this overlap is a disjoint
union of two circles. In particular, the Euler characteristic of the intersection is zero.
Hence

χ(torus) = 2χ(cylinder) = 2χ(circle) = 0.

We conclude as in Proposition 4.2.31 that

χ(connected sum of g tori) = 2− 2g.

This is a pleasant, surprising connection with the Gauss-Bonnet theorem. And the story
is not over. ⊓⊔

7.1.6 The Mayer-Vietoris principle

We describe in this subsection a “patching” technique which is extremely versatile in estab-
lishing general homological results about arbitrary manifolds building up from elementary
ones.

Definition 7.1.34. A smooth manifold M is said to be of finite type if it can be covered
by finitely many open sets U1, . . . , Um such that any nonempty intersection Ui1 ∩ · · · ∩Uik
(k ≥ 1) is diffeomorphic to RdimM . Such a cover is said to be a good cover. ⊓⊔

Example 7.1.35. (a) All compact manifolds are of finite type. To see this, it suffices
to cover such a manifold by finitely many open sets which are geodesically convex with
respect to some Riemann metric.

(b) If M is a finite type manifold, and U ⊂ M is a closed subset homeomorphic with
the closed unit ball in RdimM , then M \ U is a finite type non-compact manifold. (It
suffices to see that Rn \ closed ball is of finite type).

(c) The connected sums, and the direct products of finite type manifolds are finite
type manifolds. ⊓⊔
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Proposition 7.1.36. Let p : E → B be a smooth vector bundle. If the base B is of finite
type, then so is the total space E.

In the proof of this proposition we will use the following fundamental result.

Lemma 7.1.37. Let p : E → B be a smooth vector bundle such that B is diffeomorphic
to Rn. Then p : E → B is a trivializable bundle. ⊓⊔

Proof of Proposition 7.1.36. Denote by F the standard fiber of E. The fiber F
is a vector space. Let (Ui)1≤i≤ν be a good cover of B. For each ordered multi-index
I := {i1 < · · · < ik} denote by UI the multiple overlap Ui1 ∩ · · · ∩Uik . Using the previous
lemma we deduce that each EI = E |UI

is a product F × Ui, and thus it is diffeomorphic
with some vector space. Hence (Ei) is a good cover. ⊓⊔

Exercise 7.1.38. Prove Lemma 7.1.37.

Hint: Assume that E is a vector bundle over the unit open ball B ⊂ Rn. Fix a connection
∇ on E, and then use the ∇-parallel transport along the half-lines Lx, [0,∞) ∋ t 7→ tx ∈
Rn, x ∈ Rn \ {0}. ⊓⊔

✍ We denote by Mn the category finite type smooth manifolds of dimension n. The
morphisms of this category are the smooth embeddings, i.e., the one-to-one immersions
M1 →֒M2, Mi ∈Mn.

Definition 7.1.39. Let R be a commutative ring with 1. A contravariant Mayer-Vietoris
functor (or MV -functor for brevity) is a contravariant functor from the category Mn, to
the category of Z-graded R-modules

F = ⊕n∈ZFn → GradRMod, M 7→
⊕

n

Fn(M),

with the following property. If {U, V } is aMV -cover of M ∈Mn, i.e., U, V, U ∩V ∈Mn,
then there exist morphisms of R-modules

∂n : Fn(U ∩ V )→ Fn+1(M),

such that the sequence below is exact

· · · → Fn(M)
r∗→ Fn(U)⊕ Fn(V )

δ→ Fn(U ∩ V )
∂n→ Fn+1(M)→ · · · ,

where r∗ is defined by

r∗ = F(ıU )⊕ F(ıV ),

and δ is defined by

δ(x⊕ y) = F(ıU∩V )(y)− F(ıU∩V )(x).

(The maps ı• denote natural embeddings.) Moreover, if N ∈Mn is an open submanifold
of N , and {U, V } is an MV -cover of M such that {U ∩N,V ∩N} is an MV -cover of N ,
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then the diagram below is commutative.

Fn(U ∩ V ) Fn+1(M)

Fn(U ∩ V ∩N) Fn+1(N)

w

∂n

u

u

w

∂n

The vertical arrows are the morphisms F(ı•) induced by inclusions. ⊓⊔

The covariant MV -functors are defined in the dual way, by reversing the orientation
of all the arrows in the above definition.

Definition 7.1.40. Let F, G be two contravariant MV -functors,

F, G : Mn → GradRMod.

A correspondence2 between these functors is a collection of R-module morphisms

φM =
⊕

n∈Z
φnM :

⊕
Fn(M) −→

⊕
Gn(M),

one morphism for each M ∈ Mn, such that, for any embedding M1
ϕ→֒ M2, the diagram

below is commutative

Fn(M2) Fn(M1)

Gn(M2) Gn(M1)

w

F(ϕ)

u

φM2

u

φM1

w

G(ϕ)

,

and, for anyM ∈Mn and anyMV -cover {U, V } ofM , the diagram below is commutative.

Fn(U ∩ V ) Fn+1(M)

Gn(U ∩ V ) Gn+1(M)

w

∂n

u

φU∩V

u

φM

w

∂n

The correspondence is said to be a natural equivalence if all the morphisms φM are iso-
morphisms. ⊓⊔

Theorem 7.1.41 (Mayer-Vietoris principle). Let F, G be two (contravariant) Mayer-
Vietoris functors on Mn and φ : F→ G a correspondence. If

φkRn : Fk(Rn)→ Gk(Rn)

is an isomorphism for any k ∈ Z, then φ is a natural equivalence. ⊓⊔
2Our notion of correspondence corresponds to the categorical notion of morphism of functors.
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Proof. The family of finite type manifolds Mn has a natural filtration

M1
n ⊂M2

n ⊂ · · · ⊂Mr
n ⊂ · · · ,

where Mr
n is the collection of all smooth manifolds which admit a good cover consisting

of at most r open sets. We will prove the theorem using an induction over r.
The theorem is clearly true for r = 1 by hypothesis. Assume φkM is an isomorphism

for all M ∈Mr−1
n . Let M ∈Mr

n and consider a good cover {U1, . . . , Ur} of M . Then

{U = U1 ∪ · · · ∪ Ur−1, Ur}
is an MV -cover of M . We thus get a commutative diagram

Fn(U)⊕ Fn(Ur) Fn(U ∩ Ur) Fn+1(M) Fn+1(U)⊕ Gn+1(Ur)

Gn(U)⊕ Gn(Ur) Gn(U ∩ Ur) Gn+1(M) Fn+1(U)⊕ Gn+1(Ur)
u

w

u

w

∂

u

w

u

w w

∂
w

The vertical arrows are defined by the correspondence φ. Note the inductive assumption
implies that in the above infinite sequence only the morphisms φM may not be isomor-
phisms. At this point we invoke the following technical result.

Lemma 7.1.42. (The five lemma.) Consider the following commutative diagram of
R-modules.

A−2 A−1 A0 A1 A2

B−2 B−1 B0 B1 B2

w

u

f−2

w

u

f−1

w

u

f0

w

u

f1

u

f2

w w w w

If fi is an isomorphism for any i 6= 0, then so is f0. ⊓⊔

Exercise 7.1.43. Prove the five lemma. ⊓⊔

The five lemma applied to our situation shows that the morphisms φM must be iso-
morphisms. ⊓⊔

Remark 7.1.44. (a) The Mayer-Vietoris principle is true for covariant MV -functors as
well. The proof is obtained by reversing the orientation of the horizontal arrows in the
above proof.

(b) The Mayer-Vietoris principle can be refined a little bit. Assume that F and G are
functors from Mn to the category of Z-graded R-algebras, and φ : F → G is a correspon-
dence compatible with the multiplicative structures, i.e., each of the R-module morphisms
φM are in fact morphisms of R-algebras. Then, if φRn are isomorphisms of Z-graded
R-algebras , then so are the φM ’s, for any M ∈Mn.

(c) Assume R is a field. The proof of the Mayer-Vietoris principle shows that if F is a
MV-functor and dimR F∗(Rn) <∞ then dimF∗(M) <∞ for all M ∈Mn.

(d) The Mayer-Vietoris principle is a baby case of the very general technique in alge-
braic topology called the acyclic models principle. ⊓⊔
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Corollary 7.1.45. Any finite type manifold has finite Betti numbers. ⊓⊔

7.1.7 The Künneth formula

We learned in principle how to compute the cohomology of a “union of manifolds”. We will
now use the Mayer-Vietoris principle to compute the cohomology of products of manifolds.

Theorem 7.1.46 (Künneth formula). Let M ∈ Mm and N ∈ Mn. Then there exists a
natural isomorphism of graded R-algebras

H•(M ×N) ∼= H•(M)⊗H∗(N) =
⊕

n≥0

( ⊕

p+q=n

Hp(M)⊗Hq(N)

)
.

In particular, we deduce

PM×N (t) = PM (t) · PN (t).

Proof. We construct two functors

F,G : Mm → GradRAlg,

F :M 7→
⊕

r≥0
Fr(M) =

⊕

r≥0

{ ⊕

p+q=r

Hp(M)⊗Hq(N)

}
,

and

G :M 7→
⊕

r≥0
Gr(M) =

⊕

r≥0
Hr(M ×N),

where

F(f) =
⊕

r≥0

( ⊕

p+q=r

f∗ |Hp(M2) ⊗1Hq(N)

)
, ∀f :M1 →֒M2,

and

G(f) =
⊕

r≥0
(f × 1N )∗ |Hr(M2×N), ∀f :M1 →֒M2.

We let the reader check the following elementary fact.

Exercise 7.1.47. F and G are contravariant MV -functors. ⊓⊔

For M ∈MM , define φM : F(M)→ G(N) by

φM (ω ⊗ η) = ω × η := π∗Mω ∧ π∗Nη (ω ∈ H•(M), η ∈ H•(M) ),

where πM (respectively πN ) are the canonical projections M × N → M (respectively
M ×N → N). The operation

× : H•(M)⊗H•(N)→ H•(M ×N) (ω ⊗ η) 7→ ω × η,

is called the cross product. The Künneth formula is a consequence of the following lemma.
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Lemma 7.1.48. (a) φ is a correspondence of MV-functors.
(b) φRm is an isomorphism.

Proof. The only nontrivial thing to prove is that for any MV-cover {U, V } of M ∈ Mm

the diagram below is commutative.

⊕p+q=rHp(U ∩ V )⊗Hq(N) ⊕p+q=rHp+1(M)⊗Hq(N)

Hr((U ×N) ∩ (V ×N)) Hr+1(M ×N)
u

φU∩V

w

∂

u

φM

w

∂′

We briefly recall the construction of the connecting morphisms ∂ and ∂′.
One considers a partition of unity {ϕU , ϕV } subordinated to the cover {U, V }. Then,

the functions ψU = π∗MϕU and ψV = π∗MϕV form a partition of unity subordinated to the
cover {

U ×N,V ×N
}

of M ×N . If ω ⊗ η ∈ H•(U ∩ V )⊗H•(N),

∂(ω ⊗ η) = ω̂ ⊗ η,

where
ω̂ |U= −d(ϕV ω) ω̂ = d(ϕUω).

On the other hand, φU∩V (ω ⊗ η) = ω × η, and ∂′(ω × η) = ω̂ × η. This proves (a).
To establish (b), note that the inclusion

 : N →֒ Rm ×N, x 7→ (0, x)

is a homotopy equivalence, with πN a homotopy inverse. Hence, by the homotopy invari-
ance of the DeRham cohomology we deduce

G(Rm) ∼= H•(N).

Using the Poincaré lemma and the above isomorphism we can identify the morphism φRm

with 1Rm . ⊓⊔

Example 7.1.49. Consider the n-dimensional torus, T n. By writing it as a direct product
of n circles we deduce from Künneth formula that

PTn(t) = {PS1(t)}n = (1 + t)n.

Thus

bk(T
n) =

(
n

k

)
, dimH∗(T n) = 2n,

and χ(T n) = 0.
One can easily describe a basis of H∗(T n). Choose angular coordinates (θ1, . . . , θn) on

T n. For each ordered multi-index I = (1 ≤ i1 < · · · < ik ≤ n) we have a closed, non-exact
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form dθI . These monomials are linearly independent (over R) and there are 2n of them.
Thus, they form a basis of H∗(T n). In fact, one can read the multiplicative structure
using this basis. We have an isomorphism of R-algebras

H•(T n) ∼= Λ•Rn. ⊓⊔

Exercise 7.1.50. Let M ∈ Mm and N ∈ Mn. Show that for any ωi ∈ H∗(M), ηj ∈
H∗(N), i, j = 0, 1, the following equality holds.

(ω0 × η0) ∧ (ω1 × η1) = (−1)deg η0 deg ω1(ω0 ∧ ω1)× (η0 ∧ η1). ⊓⊔

Exercise 7.1.51. (Leray-Hirsch). Let p : E → M be smooth bundle with standard
fiber F . We assume the following:

(a) Both M and F are of finite type.

(b) There exist cohomology classes e1, . . . , er ∈ H•(E) such that their restrictions to
any fiber generate the cohomology algebra of that fiber.

The projection p induces a H•(M)-module structure on H•(E) by

ω · η = p∗ω ∧ η, ∀ω ∈ H•(M), η ∈ H•(E).

Show that H•(E) is a free H•(M)-module with generators e1, . . . , er. ⊓⊔

7.2 The Poincaré duality

7.2.1 Cohomology with compact supports

Let M be a smooth n-dimensional manifold. Denote by Ωkcpt(M) the space of smooth
compactly supported k-forms. Then

0→ Ω0
cpt(M)

d→ · · · d→ Ωncpt(M)→ 0

is a cochain complex. Its cohomology is denoted by H•cpt(M), and it is called the DeR-
ham cohomology with compact supports. Note that when M is compact this cohomology
coincides with the usual DeRham cohomology.

Although it looks very similar to the usual DeRham cohomology, there are many
important differences. The most visible one is that if φ : M → N is a smooth map,
and ω ∈ Ω•cpt(N), then the pull-back φ∗ω may not have compact support, so this new
construction is no longer a contravariant functor from the category of smooth manifolds
and smooth maps, to the category of graded vector spaces.

On the other hand, if dimM = dimN , and φ is an embedding, we can identifyM with
an open subset of N , and then any η ∈ Ω•cpt(M) can be extended by 0 outside M ⊂ N .
This extension by zero defines a push-forward map

φ∗ : Ω
•
cpt(M)→ Ω•cpt(N).
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One can verify easily that φ∗ is a cochain map so that it induces a morphism

φ∗ : H
•
cpt(M)→ H•cpt(N).

In terms of our category Mn we see that H•cpt is a covariant functor from the category Mn,
to the category of graded real vector spaces. As we will see, it is a rather nice functor.

Theorem 7.2.1. H•cpt is a covariant MV -functor, and moreover

Hk
cpt(R

n) =

{
0 , k < n
R , k = n

.

The last assertion of this theorem is usually called the Poincaré lemma for compact
supports.

We first prove the Poincaré lemma for compact supports. The crucial step is the
following technical result that we borrowed from [11].

Lemma 7.2.2. Let E
p→ B be a rank r real vector bundle which is orientable in the sense

described in Subsection 3.4.5. Denote by p∗ the integration-along-fibers map

p∗ : Ω
•
cpt(E)→ Ω•−rcpt (B).

Then there exists a smooth bilinear map

m : Ωicpt(E)× Ωjcpt(E)→ Ωi+j−r−1cpt (E)

such that,

p∗p∗α ∧ β − α ∧ p∗p∗β = (−1)rd(m(α, β)) −m(dα, β) + (−1)deg αm(α, dβ).

Proof. Consider the ∂-bundle

π : E = I × (E ⊕ E)→ E, π : (t; v0, v1) 7→ (t; v0 + t(v1 − v0)).

Note that

∂E = ( {0} × (E ⊕ E) ) ⊔ ({1} × (E ⊕ E)) .

Define πt : E ⊕ E → E as the composition

E ⊕ E ∼= {t} ×E ⊕ E →֒ I × (E ⊕ E)
π→ E.

Observe that

∂π = π |∂E= (−π0) ⊔ π1.
For (α, β) ∈ Ω•cpt(E)× Ω•cpt(E) define α⊙ β ∈ Ω•cpt(E ⊕ E) by

α⊙ β := (π0)∗α ∧ (π1)∗β.
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(Verify that the support of α ⊙ β is indeed compact.) For α ∈ Ωicpt(E), and β ∈ Ωjcpt(E)
we have the equalities

p∗p∗α ∧ β = π1∗(α⊙ β) ∈ Ωi+j−rcpt (E), α ∧ p∗p∗β = π0∗(α⊙ β) ∈ Ωi+j−rcpt (E).

Hence

D(α, β) = p∗p∗α ∧ β − α ∧ p∗p∗β = π1∗(α⊙ β)− π0∗(α⊙ β) =
∫

∂E/E
α⊙ β.

We now use the fibered Stokes formula to get

D(α, β) =

∫

E/E
dET

∗(α⊙ β) + (−1)rdE
∫

E/E
T∗(α⊙ β),

where T is the natural projection E = I × (E ⊕ E)→ E ⊕ E. The lemma holds with

m(α, β) =

∫

E/E
T∗(α⊙ β). ⊓⊔

Proof of the Poincaré lemma for compact supports. Consider δ ∈ C∞0 (Rn) such
that

0 ≤ δ ≤ 1,

∫

Rn

δ(x)dx = 1.

Define the, closed, compactly supported n-form

τ := δ(x)dx1 ∧ · · · ∧ dxn.

We want to use Lemma 7.2.2 in which E is the rank n bundle over a point, i.e., E =
{pt} × Rn

p→ {pt}. The integration along fibers is simply the integration map.

p∗ : Ω
•
cpt(R

n)→ R, ω 7→ p∗ω =

{
0 , degω < n∫

Rn ω , degω = n.

If now ω is a closed, compactly supported form on Rn, we have

ω = (p∗p∗τ) ∧ ω.

Using Lemma 7.2.2 we deduce

ω − τ ∧ p∗p∗ω = (−1)ndm(τ, ω).

Thus any closed, compactly supported form ω on Rn is cohomologous to τ ∧ p∗p∗ω. The
latter is always zero if degω < n. When degω = n we deduce that ω is cohomologous to
(
∫
ω)τ . This completes the proof of the Poincaré lemma. ⊓⊔

To finish the proof of Theorem 7.2.1 we must construct a Mayer-Vietoris sequence.
Let M be a smooth manifold decomposed as an union of two open sets M = U ∪ V , The
sequence of inclusions

U ∩ V →֒ U, V →֒M,
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induces a short sequence

0→ Ω•cpt(U ∩ V )
i→ Ω•cpt(U)⊕Ω•cpt(V )

j→ Ω•cpt(M)→ 0,

where
i(ω) = (ω̂, ω̂), j(ω, η) = η̂ − ω̂.

The hatˆdenotes the extension by zero outside the support. This sequence is called the
Mayer-Vietoris short sequence for compact supports.

Lemma 7.2.3. The above Mayer-Vietoris sequence is exact.

Proof. The morphism i is obviously injective. Clearly, Range (i) = ker(j). We have to
prove that j is surjective.

Let (ϕU , ϕV ) a partition of unity subordinated to the cover {U, V }. Then, for any
η ∈ Ω∗cpt(M), we have

ϕUη ∈ Ω•cpt(U) and ϕV η ∈ Ω•cpt(V ).

In particular, η = j(−ϕUη, ϕV η), which shows that j is surjective. ⊓⊔

We get a long exact sequence called the long Mayer-Vietoris sequence for compact
supports.

· · · → Hk
cpt(U ∩ V )→ Hk

cpt(U)⊕Hk
cpt(V )→ Hk

cpt(M)
δ→ Hk+1

cpt → · · ·

The connecting homomorphism can be explicitly described as follows. If ω ∈ Ωkcpt(M) is
a closed form then

d(ϕUω) = d(−ϕV ω) on U ∩ V.
We set δω := d(ϕUω). The reader can check immediately that the cohomology class of δω
is independent of all the choices made.

If φ : N →֒M is a morphism ofMn then for any MV-cover of {U, V } of M {φ−1(U), φ−1(V )}
is an MV-cover of N . Moreover, we almost tautologically get a commutative diagram

Hk
cpt(N) Hk+1

cpt (φ−1(U ∩ V ))

Hk
cpt(M) Hk+1

cpt (U ∩ V )

u

φ∗

w

δ

u

φ∗

w

δ

This proves H•cpt is a covariant Mayer-Vietoris sequence. ⊓⊔

Remark 7.2.4. To be perfectly honest (from a categorical point of view) we should have
considered the chain complex ⊕

k≤0
Ω̃k =

⊕

k≤0
Ω−kcpt,

and correspondingly the associated homology

H̃• := H−•cpt .
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This makes the sequence

0← Ω̃−n ← · · · ← Ω̃−1 ← Ω̃0 ← 0

a chain complex ,and its homology H̃• is a bona-fide covariant Mayer-Vietoris functor
since the connecting morphism δ goes in the right direction H̃• → H̃•−1. However, the
simplicity of the original notation is worth the small formal ambiguity, so we stick to our
upper indices. ⊓⊔

From the proof of the Mayer-Vietoris principle we deduce the following.

Corollary 7.2.5. For any M ∈Mn, and any k ≤ n we have dimHk
cpt(M) <∞. ⊓⊔

7.2.2 The Poincaré duality

Definition 7.2.6. Denote by M+
n the category of n-dimensional, finite type, oriented

manifolds. The morphisms are the embeddings of such manifold. The MV functors on
M+
n are defined exactly as for Mn. ⊓⊔

Given M ∈M+
n , there is a natural pairing

〈•, •〉κ : Ωk(M)× Ωn−kcpt (M)→ R,

defined by

〈ω, η〉κ :=

∫

M
ω ∧ η.

This pairing is called the Kronecker pairing. We can extend this pairing to any (ω, η) ∈
Ω• × Ω•cpt as

〈ω, η〉κ =

{
0 , degω + deg η 6= n∫
M ω ∧ η , degω + deg η = n

.

The Kronecker pairing induces maps

D = Dk : Ωk(M)→ (Ωn−kcpt (M))∗, 〈D(ω), η〉 = 〈ω, η〉κ.

Above, 〈•, •〉 denotes the natural pairing between a vector space V and its dual V ∗,

〈•, •〉 : V ∗ × V → R.

If ω is closed, the restriction of D(ω) to the space Zn−kcpt of closed, compactly supported

(n − k)-forms vanishes on the subspace Bn−k
cpt = dΩn−k−1cpt (M). Indeed, if η = dη′, η′ ∈

Ωn−k−1cpt (M) then

〈D(ω), η〉 =
∫

M
ω ∧ dη′ Stokes= ±

∫

M
dω ∧ η′ = 0.

Thus, if ω is closed, the linear functional D(ω) defines an element of (Hn−k
cpt (M))∗. If

moreover ω is exact, a computation as above shows that D(ω) = 0 ∈ (Hn−k
cpt (M))∗. Hence

D descends to a map in cohomology

D : Hk(M)→ (Hn−k
cpt (M))∗.
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Equivalently, this means that the Kronecker pairing descends to a pairing in cohomology,

〈•, •〉κ : Hk(M)×Hn−k
cpt (M)→ R.

Theorem 7.2.7 (Poincaré duality). The Kronecker pairing in cohomology is a duality for
all M ∈M+

n .

Proof. The functor M+
n → Graded Vector Spaces defined by

M →
⊕

k

H̃k(M) =
⊕

k

(
Hn−k
cpt (M)

)∗

is a contravariant MV -functor. (The exactness of the Mayer-Vietoris sequence is pre-
served by transposition. This is where the fact that all the cohomology groups are finite
dimensional vector spaces plays a very important role).

For purely formal reasons which will become apparent in a little while, we re-define
the connecting morphism

H̃k(U ∩ V )
d̃→ H̃k+1(U ∪ V ),

to be (−1)kδ†, where Hn−k−1
cpt (U ∩ V )

δ→ Hn−k
cpt (U ∪ V ) denotes the connecting morphism

in the DeRham cohomology with compact supports, and δ† denotes its transpose.
The Poincaré lemma for compact supports can be rephrased

H̃k(Rn) =

{
R , k = 0
0 , k > 0

.

The Kronecker pairing induces linear maps

DM : Hk(M)→ H̃k(M).

Lemma 7.2.8.
⊕

kD
k is a correspondence of MV functors.

Proof. We have to check two facts.

Fact A. Let M
φ→֒ N be a morphism in M+

n . Then the diagram below is commutative.

Hk(N) Hk(M)

H̃k(N) H̃k(M)

u

DN

w

φ∗

u

DM

w

φ̃∗

.

Fact B. If {U, V } is an MV -cover of M ∈M+
n , then the diagram bellow is commutative

Hk(U ∩ V ) Hk+1(M)

H̃k(U ∩ V ) H̃k+1(M)

u

DU∩V

w

∂

u

DM

w

(−1)kδ†
.
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Proof of Fact A. Let ω ∈ Hk(N). Denoting by 〈•, •〉 the natural duality between a
vector space and its dual we deduce that for any η ∈ Hn−k

cpt (M) we have

〈
φ̃∗ ◦DN (ω), η

〉
=
〈
(φ∗)

†DN (ω), η
〉
=
〈
DN (ω), φ∗η

〉

=

∫

N
ω ∧ φ∗η =

∫

M →֒N
ω |M ∧η =

∫

M
φ∗ω ∧ η = 〈DM (φ∗ω), η〉.

Hence φ̃∗ ◦DN = DM ◦ φ∗.
Proof of Fact B. Let ϕU , ϕV be a partition of unity subordinated to the MV -cover
{U, V } of M ∈ M+

n . Consider a closed k-form ω ∈ Ωk(U ∩ V ). Then the connecting
morphism in usual DeRham cohomology acts as

∂ω =

{
d(−ϕV ω) on U
d(ϕUω) on V

.

Choose η ∈ Ωn−k−1cpt (M) such that dη = 0. We have

〈DM∂ω, η〉 =
∫

M
∂ω ∧ η =

∫

U
∂ω ∧ η +

∫

V
∂ω ∧ η −

∫

U∩V
∂ω ∧ η

= −
∫

U
d(ϕV ω) ∧ η +

∫

V
dϕUω) ∧ η +

∫

U∩V
d(ϕV ω) ∧ η.

Note that the first two integrals vanish. Indeed, over U we have the equality
(
d(ϕV ω)

)
∧ η = d (ϕV ω ∧ η ) ,

and the vanishing now follows from Stokes formula. The second term is dealt with in a
similar fashion. As for the last term, we have

∫

U∩V
d(ϕV ω) ∧ η =

∫

U∩V
dϕV ∧ ω ∧ η = (−1)deg ω

∫

U∩V
ω ∧ (dϕV ∧ η)

= (−1)k
∫

U∩V
ω ∧ δη = (−1)k〈DU∩V ω, δη〉 = 〈(−1)kδ†DU∩V ω, η〉.

This concludes the proof of Fact B. The Poincaré duality now follows from the Mayer-
Vietoris principle. ⊓⊔

Remark 7.2.9. Using the Poincaré duality we can associate to any smooth map f :M →
N between compact oriented manifolds of dimensionsm and respectively n a natural push-
forward or Gysin map

f∗ : H
•(M)→ H•+q(N), q := dimN − dimM = n−m)

defined by the composition

H•(M)
DM→ (Hm−•(M))∗

(f∗)†→ (Hm−•(N))∗
D−1

N→ H•+n−m(N),

where (f∗)† denotes the transpose of the pullback morphism. ⊓⊔
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Corollary 7.2.10. If M ∈M+
n then

H•cpt(M) ∼= (Hn−k(M))•.

Proof. Since Hk
cpt(M) is finite dimensional, the transpose

Dt
M : (Hn−k

cpt (M))∗∗ → (Hk(M))∗

is an isomorphism. On the other hand, for any finite dimensional vector space there exists
a natural isomorphism

V ∗∗ ∼= V. ⊓⊔

Corollary 7.2.11. Let M be a compact, connected, oriented, n-dimensional manifold.
Then the pairing

Hk(M)×Hn−k(M)→ R (ω, η) 7→
∫

M
ω ∧ η

is a duality. In particular, bk(M) = bn−k(M), ∀k. ⊓⊔

If M is connected H0(M) ∼= Hn(M) ∼= R so that Hn(M) is generated by any volume
form defining the orientation.

The symmetry of Betti numbers can be translated in the language of Poincaré poly-
nomials as

tnPM (
1

t
) = PM (t). (7.2.1)

Example 7.2.12. Let Σg denote the connected sum of g tori. We have shown that

χ(Σg) = b0 − b1 + b2 = 2− 2g.

Since Σg is connected, the Poincaré duality implies b2 = b0 = 1. Hence b1 = 2g i.e.

PΣg(t) = 1 + 2gt+ t2. ⊓⊔

Consider now a compact oriented smooth manifold such that dimM = 2k. The Kro-
necker pairing induces a non-degenerate bilinear form

I : Hk(M)×Hk(M)→ R I(ω, η) =

∫

M
ω ∧ η.

The bilinear form I is called the cohomological intersection form of M .

When k is even (so that n is divisible by 4) I is a symmetric form. Its signature is
called the signature of M , and it is denoted by σ(M).

When k is odd, I is skew-symmetric, i.e., it is a symplectic form. In particular,
H2k+1(M) must be an even dimensional space.

Corollary 7.2.13. For any compact manifold M ∈ M+
4k+2 the middle Betti number

b2k+1(M) is even. ⊓⊔
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Exercise 7.2.14. (a) Let P ∈ Z[t] be an odd degree polynomial with non-negative integer
coefficients such that P (0) = 1. Show that if P satisfies the symmetry condition (7.2.1)
there exists a compact, connected, oriented manifold M such that PM (t) = P (t).

(b) Let P ∈ Z[t] be a polynomial of degree 2k with non-negative integer coefficients.
Assume P (0) = 1 and P satisfies (7.2.1). If the coefficient of tk is even then there exists
a compact connected manifold M ∈M+

2k such that PM (t) = P (t).
Hint: Describe the Poincaré polynomial of a connect sum in terms of the polynomials of
its constituents. Combine this fact with the Künneth formula. ⊓⊔

Remark 7.2.15. The result in the above exercise is sharp. Using his intersection theorem
F. Hirzebruch showed that there exist no smooth manifolds M of dimension 12 or 20 with
Poincaré polynomials 1+ t6+ t12 and respectively 1+ t10+ t20. Note that in each of these
cases both middle Betti numbers are odd. For details we refer to J. P. Serre, “Travaux de
Hirzebruch sur la topologie des variétés”, Seminaire Bourbaki 1953/54,n◦ 88. ⊓⊔

7.3 Intersection theory

7.3.1 Cycles and their duals

Suppose M is a smooth manifold.

Definition 7.3.1. A k-dimensional cycle in M is a pair (S, φ), where S is a compact,
oriented k-dimensional manifold without boundary, and φ : S →M is a smooth map. We
denote by Ck(M) the set of k-dimensional cycles in M . ⊓⊔

Definition 7.3.2. (a) Two cycles (S0, φ0), (S1, φ1) ∈ Ck(M) are said to be cobordant,
and we write this (S0, φ0) ∼c (S1, φ1), if there exists a compact, oriented manifold with
boundary Σ, and a smooth map Φ : Σ→M such that the following hold.

(a1) ∂Σ = (−S0) ⊔ S1 where −S0 denotes the oriented manifold S0 equipped with the
opposite orientation, and “⊔” denotes the disjoint union.

(a2) Φ |Si= φi, i = 0, 1.
(b) A cycle (S, φ) ∈ Ck(M) is called trivial if there exists a (k + 1)-dimensional,

oriented manifold Σ with (oriented) boundary S, and a smooth map Φ : Σ → M such
that Φ|∂Σ = φ. We denote by Tk(M) the set of trivial cycles.

(c) A cycle (S, φ) ∈ Ck(M) is said to be degenerate if it is cobordant to a constant
cycle, i.e., a cycle (S′, φ′) such that φ′ is map constant on the components of S′. We
denote by Dk(M) the set of degenerate cycles. ⊓⊔

Exercise 7.3.3. Let (S0, φ0) ∼c (S1, φ1). Prove that (−S0 ⊔S1, φ0 ⊔φ1) is a trivial cycle.
⊓⊔

The cobordism relation on Ck(M) is an equivalence relation3, and we denote by Zk(M)
the set of equivalence classes. For any cycle (S, φ) ∈ Ck(M) we denote by [S, φ] its image
in Zk(M). Since M is connected, all the trivial cycles are cobordant, and they define an
element in Zk(M) which we denote by [0].

3We urge the reader to supply a proof of this fact.
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S0 S
1

Figure 7.1: A cobordism in R3

Given [S0, φ0], [S1, φ1] ∈ Zk(M) we define

[S0, φ0] + [S1, φ1] := [S0 ⊔ S1, φ0 ⊔ φ1],

where “⊔” denotes the disjoint union.

Proposition 7.3.4. Suppose M is a smooth manifold.
(a) Let [Si, φi], [S

′
i, φ
′
i] ∈ Ck(M), i = 0, 1. If [Si, φi] ∼c [S′i, φ′i], for i = 0, 1, then

[S0 ⊔ S1, φ0 ⊔ φ1] ∼c [S′0 ⊔ S′1, φ′0 ⊔ φ′1]

so that the above map + : Zk(M)× Zk(M)→ Zk(M) is well defined.
(b) The binary operation + induces a structure of Abelian group on Zk(M). The trivial

element is represented by the trivial cycles. Moreover,

−[S, φ] = [−S, φ] ∈ Hk(M). ⊓⊔

Exercise 7.3.5. Prove the above proposition. ⊓⊔

We denote by Hk(M) the quotient of Zk(M) modulo the subgroup generated by the
degenerate cycles. Let us point out that any trivial cycle is degenerate, but the converse
is not necessarily true.

Suppose M ∈M+
n . Any k-cycle (S, φ) defines a linear map Hk(M)→ R given by

Hk(M) ∋ ω 7→
∫

S
φ∗ω.

Stokes formula shows that this map is well defined, i.e., it is independent of the closed
form representing a cohomology class.

Indeed, if ω is exact, i.e., ω = dω′, then
∫

S
φ∗dω′ =

∫

S
dφ∗ω′ = 0.
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In other words, each cycle defines an element in (Hk(M) )∗. Via the Poincaré duality we
identify the vector space (Hk(M) )∗ with Hn−k

cpt (M). Thus, there exists δS ∈ Hn−k
cpt (M)

such that ∫

M
ω ∧ δS =

∫

S
φ∗ω ∀ω ∈ Hk(M).

The compactly supported cohomology class δS is called the Poincaré dual of (S, φ).
There exist many closed forms η ∈ Ωn−kcpt (M) representing δS . When there is no risk

of confusion, we continue denote any such representative by δS .

Figure 7.2: The dual of a point is Dirac’s distribution

Example 7.3.6. Let M = Rn, and S is a point, S = {pt} ⊂ Rn. pt is canonically a
0-cycle. Its Poincaré dual is a compactly supported n-form ω such that for any constant
λ (i.e. closed 0-form) ∫

Rn

λω =

∫

pt
λ = λ,

i.e., ∫

Rn

ω = 1.

Thus δpt can be represented by any compactly supported n-form with integral 1. In
particular, we can choose representatives with arbitrarily small supports. Their “profiles”
look like in Figure 7.2. “At limit” they approach Dirac’s delta distribution. ⊓⊔

Example 7.3.7. Consider an n-dimensional, compact, connected, oriented manifold M .
We denote by [M ] the cycle (M,1M ). Then δ[M ] = 1 ∈ H0(M). ⊓⊔

✍ For any differential form ω, we set (for typographical reasons), |ω| := degω.

Example 7.3.8. Consider the manifolds M ∈M+
m and N ∈M+

n . (The manifolds M and
N need not be compact.) To any pair of cycles (S, φ) ∈ Cp(M), and (T, ψ) ∈ Cq(N) we
can associate the cycle (S × T, φ × ψ) ∈ Cp+q(M × N). We denote by πM (respectively
πN ) the natural projection M ×N → M (respectively M ×N → N). We want to prove
the equality

δS×T = (−1)(m−p)qδS × δT , (7.3.1)
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where
ω × η := π∗Mω ∧ π∗Nη, ∀(ω, η) ∈ Ω•(M)× Ω•(N).

Pick (ω, η) ∈ Ω•(M)× Ω•(N) such that, degω + deg η = (m+ n)− (p + q). Then, using
Exercise 7.1.50

∫

M×N
(ω × η) ∧ (δS × δT ) = (−1)(m−p)|η|

∫

M×N
(ω ∧ δS)× (η ∧ δT ).

The above integral should be understood in the generalized sense of Kronecker pairing.
The only time when this pairing does not vanish is when |ω| = p and |η| = q. In this case
the last term equals

(−1)q(m−p)
(∫

S
ω ∧ δS

)(∫

T
η ∧ δT

)
= (−1)q(m−p)

(∫

S
φ∗ω

)(∫

T
ψ∗η

)

= (−1)q(m−p)
∫

S×T
(φ× ψ)∗(ω ∧ η).

This establishes the equality (7.3.1). ⊓⊔

Example 7.3.9. Consider a compact manifold M ∈M+
n . Fix a basis (ωi) of H

•(M) such
that each ωi is homogeneous of degree |ωi| = di, and denote by ωi the basis of H•(M)
dual to (ωi) with respect to the Kronecker pairing, i.e.,

〈ωi, ωj〉κ = (−1)|ωi|·|ωj|〈ωj, ωi〉κ = δij .

In M ×M there exists a remarkable cycle, the diagonal

∆ = ∆M :M →M ×M, x 7→ (x, x).

We claim that the Poincaré dual of this cycle is

δ∆ = δM =
∑

i

(−1)|ωi|ωi × ωi. (7.3.2)

Indeed, for any homogeneous forms α, β ∈ Ω•(M) such that |α|+ |β| = n, we have
∫

M×M
(α× β) ∧ δM =

∑

i

(−1)|ωi|
∫

M×M
(α× β) ∧ (ωi × ωi)

=
∑

i

(−1)|ωi|(−1)|β|·|ωi|
∫

M×M
(α ∧ ωi)× (β ∧ ωi)

=
∑

i

(−1)|ωi|(−1)|β|·|ωi|
(∫

M
α ∧ ωi

)(∫

M
β ∧ ωi

)
.

The i-th summand is nontrivial only when |β| = |ωi|, and |α| = |ωi|. Using the equality
|ωi|+ |ωi|2 ≡ 0(mod 2) we deduce

∫

M×M
(α× β) ∧ δM =

∑

i

(∫

M
α ∧ ωi

)(∫

M
β ∧ ωi

)
=
∑

i

〈α, ωi〉κ〈β, ωi〉κ.
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From the equalities

α =
∑

i

ωi〈ωi, α〉κ and β =
∑

j

〈β, ωj , 〉κωj

we conclude
∫

M
∆∗(α× β) =

∫

M
α ∧ β =

∫

M
(
∑

i

ωi〈ωi, α〉κ) ∧ (
∑

j

〈β, ωj〉κωj)

=

∫

M

∑

i,j

〈ωi, α〉κ〈β, ωj〉κωi ∧ ωj =
∑

i,j

〈ωi, α〉κ〈β, ωj〉κ〈ωi, ωj〉κ

=
∑

i

(−1)|ωi|(n−|ωi|)〈α, ωi〉κ(−1)|ωi|(n−|ωi|)〈β, ωi〉κ =
∑

i

〈α, ωi〉κ〈β, ωi〉κ.

Equality (7.3.2) is proved. ⊓⊔

Proposition 7.3.10. Let M ∈ M+
n be a manifold, and suppose that (Si, φi) ∈ Ck(M)

(i = 0, 1) are two k-cycles in M .

(a) If (S0, φ0) ∼c (S1, φ1), then δS0 = δS1 in Hn−k
cpt (M).

(b) If (S0, φ0) is trivial, then δS0 = 0 in Hn−k
cpt (M).

(c) δS0⊔S1 = δS0 + δS1 in Hn−k
cpt (M).

(d) δ−S0 = −δS0 in Hn−k
cpt (M).

Proof. (a) Consider a compact manifold Σ with boundary ∂Σ = −S0 ⊔ S1 and a smooth
map Φ : Σ→M such that Φ |∂Σ= φ0 ⊔ φ1. For any closed k-form ω ∈ Ωk(M) we have

0 =

∫

Σ
Φ∗(dω) =

∫

Σ
dΦ∗ω

Stokes
=

∫

∂Σ
ω =

∫

S1

φ∗1ω −
∫

S0

φ∗0ω.

Part (b) is left to the reader. Part (c) is obvious. To prove (d) consider Σ = [0, 1] × S0
and

Φ : [0, 1] × S0 →M, Φ(t, x) = φ0(x), ∀(t, x) ∈ Σ.

Note that ∂Σ = (−S0) ⊔ S0 so that

δ−S0 + δS0 = δ−S0⊔S0 = δ∂Σ = 0. ⊓⊔

The above proposition shows that the correspondence

Ck(M) ∋ (S, φ) 7→ δS ∈ Hn−k
cpt (M)

descends to a map

δ : Hk(M)→ Hn−k
cpt (M).

This is usually called the homological Poincaré duality. We are not claiming that δ is an
isomorphism.
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1

2

-1 1
1

1C

C2

Figure 7.3: The intersection number of the two cycles on T 2 is 1

7.3.2 Intersection theory

Consider M ∈ M+
n , and a k-dimensional compact oriented submanifold S of M . We

denote by ı : S →֒M inclusion map so that (S, ı) is a k-cycle.

Definition 7.3.11. A smooth map φ : T → M from an (n − k)-dimensional, oriented
manifold T is said to be transversal to S, and we write this S ⋔ φ, if the following hold.

(a) φ−1(S) is a finite subset of T;

(b) for every x ∈ φ−1(S) we have

φ∗(TxT ) + Tφ(x)S = Tφ(x)M (direct sum).

If S ⋔ Φ, then for each x ∈ φ−1(S) we define the local intersection number at x to be
(or = orientation)

ix(S, T ) =

{
1 , or (Tφ(x)S) ∧ or(φ∗TxT ) = or(Tφ(x)M)

−1 , or(Tφ(x)S) ∧ or(φ∗TxT ) = −or(Tφ(x)M)
.

Finally, we define the intersection number of S with T to be

S · T :=
∑

x∈φ−1(S)

ix(S, T ). ⊓⊔

Our next result offers a different description of the intersection number indicating how
one can drop the transversality assumption from the original definition.

Proposition 7.3.12. Let M ∈ M+
n . Consider a compact, oriented, k-dimensional sub-

manifold S →֒ M , and (T, φ) ∈ Cn−k(M) a (n − k)-dimensional cycle intersecting S
transversally, i.e., S ⋔ φ. Then

S · T =

∫

M
δS ∧ δT , (7.3.3)
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where δ• denotes the Poincaré dual of •.
The proof of the proposition relies on a couple of technical lemmata of independent

interest.

Lemma 7.3.13 (Localization lemma). Let M ∈M+
n and (S, φ) ∈ Ck(M). Then, for any

open neighborhood N of φ(S) in M there exists δNS ∈ Ωn−kcpt (M) such that

(a) δNS represents the Poincaré dual δS ∈ Hn−k
cpt (M);

(b) supp δNS ⊂ N.

Proof. Fix a Riemann metric on M . Each point p ∈ φ(S) has a geodesically convex open
neighborhood entirely contained in N. Cover φ(S) by finitely many such neighborhoods,
and denote by N their union. Then N ∈M+

n , and (S, φ) ∈ C+
k (N).

Denote by δNS the Poincaré dual of S in N . It can be represented by a closed form in
Ωn−kcpt (N) which we continue to denote by δNS . If we pick a closed form ω ∈ Ωk(M), then
ω |N is also closed, and ∫

M
ω ∧ δNS =

∫

N
ω ∧ δNS =

∫

S
φ∗ω.

Hence, δNS represents the Poincaré dual of S in Hn−k
cpt (M), and moreover, supp δNS ⊂ N. ⊓⊔

Definition 7.3.14. Let M ∈ M+
n , and S →֒ M a compact, k-dimensional, oriented

submanifold of M. A local transversal at p ∈ S is an embedding

φ : B ⊂ Rn−k →M, B = open ball centered at 0 ∈ Rm−k,

such that S ⋔ φ and φ−1(S) = {0}. ⊓⊔

Lemma 7.3.15. Let M ∈M+
n , S →֒ M a compact, k-dimensional, oriented submanifold

of M and (B,φ) a local transversal at p ∈ S. Then for any sufficiently “thin” closed
neighborhood N of S ⊂M we have

S · (B,φ) =
∫

B
φ∗δNS .

Proof. Using the transversality S ⋔ φ, the implicit function theorem, and eventually
restricting φ to a smaller ball, we deduce that, for some sufficiently “thin” neighborhood
N of S, there exist local coordinates (x1, . . . , xn) defined on some neighborhood U of
p ∈M diffeomorphic with the cube

{|xi| < 1, ∀i}

such that the following hold.

(i) S ∩ U = {xk+1 = · · · = xn = 0}, p = (0, . . . , 0).

(ii) The orientation of S ∩ U is defined by dx1 ∧ · · · ∧ dxk.
(iii) The map φ : B ⊂ Rn−k

(y1,...,yn−k)
→M is expressed in these coordinates as

x1 = 0, . . . , xk = 0, xk+1 = y1, . . . , xn = yn−k.



7.3. INTERSECTION THEORY 261

(iv) N ∩ U = {|xj | ≤ 1/2 ; j = 1, . . . , n}.
Let ǫ = ±1 such that ǫdx1 ∧ . . . ∧ dxn defines the orientation of TM . In other words,

ǫ = S · (B,φ).

For each ξ = (x1, . . . , xk) ∈ S ∩ U denote by Pξ the (n− k)-“plane”

Pξ = {(ξ;xk+1, . . . , xn) ; |xj | < 1 j > k}.

We orient each Pξ using the (n − k)-form dxk+1 ∧ · · · ∧ dxn, and set

v(ξ) :=

∫

Pξ

δNS .

Equivalently,

v(ξ) =

∫

B
φ∗ξδ

N
S ,

where φξ : B →M is defined by

φξ(y
1, . . . , yn−k) = (ξ; y1, . . . , yn−k).

To any function ϕ = ϕ(ξ) ∈ C∞(S ∩ U) such that

suppϕ ⊂ {|xi| ≤ 1/2 ; i ≤ k},

we associate the k-form

ωϕ := ϕdx1 ∧ · · · ∧ dxk = ϕdξ ∈ Ωkcpt(S ∩ U).

Extend the functions x1, . . . , xk ∈ C∞(U ∩N) to smooth compactly supported functions

x̃i ∈ C∞0 (M)→ [0, 1].

The form ωϕ is then the restriction to U ∩ S of the closed compactly supported form

ω̃ϕ = ϕ(x̃1, . . . , x̃k)dx̃1 ∧ · · · ∧ dx̃k.

We have ∫

M
ω̃ϕ ∧ δNS =

∫

U
ωϕ ∧ δNS =

∫

S
ωϕ =

∫

Rk

ϕ(ξ)dξ. (7.3.4)

The integral over U can be evaluated using the Fubini theorem. Write

δNS = fdxk+1 ∧ · · · ∧ dxn + ̺,

where ̺ is an (n− k)-form not containing the monomial dxk+1 ∧ · · · ∧ dxn. Then
∫

U
ωϕ ∧ δNS =

∫

U
fϕdx1 ∧ · · · ∧ dxn

= ǫ

∫

U
fϕ|dx1 ∧ · · · ∧ dxn| (|dx1 ∧ · · · ∧ dxn| = Lebesgue density)



262 CHAPTER 7. COHOMOLOGY

Fubini
= ǫ

∫

S∩U
ϕ(ξ)

(∫

Pξ

f |dxk+1 ∧ · · · ∧ dxn|
)
|dξ|

= ǫ

∫

S
ϕ(ξ)

(∫

Pξ

δNS

)
|dξ| = ǫ

∫

S
ϕ(ξ)v(ξ)|dξ|.

Comparing with (7.3.4), and taking into account that ϕ was chosen arbitrarily, we deduce
that ∫

B
φ∗δNS = v(0) = ǫ.

The local transversal lemma is proved. ⊓⊔

Proof of Proposition 7.3.12 Let

φ−1(S) = {p1, . . . , pm}.

The transversality assumption implies that each pi has an open neighborhood Bi diffeo-
morphic to an open ball such that φi = φ |Bi is a local transversal at yi = φ(pi). Moreover,
we can choose the neighborhoods Bi to be mutually disjoint. Then

S · T =
∑

i

S · (Bi, φi).

The compact set K := φ(T \∪Bi) does not intersect S so that we can find a “thin”, closed
neighborhood” N of S →֒M such that K ∩N = ∅. Then, φ∗δNS is compactly supported in
the union of the Bi’s and

∫

M
δNS ∧ δT =

∫

T
φ∗δNS =

∑

i

∫

Bi

φ∗i δ
N
S .

From the local transversal lemma we get

∫

Bi

φ∗δNS = S · (Bi, φ) = ipi(S, T ). ⊓⊔

Equality (7.3.3) has a remarkable feature. Its right-hand-side is an integer which is
defined only for cycles S, T such that S is embedded and S ⋔ T .

The left-hand-side makes sense for any cycles of complementary dimensions, but a
priori it may not be an integer. In any event, we have a remarkable consequence.

Corollary 7.3.16. Let (Si, φi) ∈ Ck(M) and ((Ti, ψi) ∈ Cn−k(M) where M ∈ M+
n , i =

0, 1. If

(a) S0 ∼c S1, T0 ∼c T1,

(b) the cycles Si are embedded, and

(c) Si ⋔ Ti,
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then

S0 · T0 = S1 · T1. ⊓⊔
Definition 7.3.17. The homological intersection pairing is the Z-bilinear map

I = IM : Hk(M)×Hn−k(M)→ R,

(M ∈M+
n ) defined by

I(S, T ) =

∫

M
δS ∧ δT . ⊓⊔

We have proved that in some special instances I(S, T ) ∈ Z. We want to prove that,
when M is compact, this is always the case.

Theorem 7.3.18. Let M ∈M+
n be compact manifold. Then, for any (S, T ) ∈ Hk(M)×

Hn−k(M), the intersection number I(S, T ) is an integer.

The theorem will follow from two lemmata. The first one will show that it suffices to
consider only the situation when one of the two cycles is embedded. The second one will
show that, if one of the cycles is embedded, then the second cycle can be deformed so that
it intersects the former transversally. (This is called a general position result.)

Lemma 7.3.19 (Reduction-to-diagonal trick). Let M , S and T as in Theorem 7.3.18.
Then

I(S, T ) = (−1)n−k
∫

M×M
δS×T ∧ δ∆,

where ∆ is the diagonal cycle ∆ : M → M × M , x 7→ (x, x). (It is here where the
compactness of M is essential, since otherwise ∆ would not be a cycle).

Proof. We will use the equality (7.3.1)

δS×T = (−1)n−kδS × δT .

Then

(−1)n−k =

∫

M×M
δS×T ∧ δ∆ =

∫

M×M
(δS × δT ) ∧ δ∆

=

∫

M
∆∗(δS × δT ) =

∫

M
δS ∧ δT . ⊓⊔

Lemma 7.3.20 (Moving lemma). Let S ∈ Ck(M), and T ∈ Cn−k(M) be two cycles in
M ∈M+

n . If S is embedded, then T is cobordant to a cycle T̃ such that S ⋔ T̃ .

The proof of this result relies on Sard’s theorem. For details we refer to [46], Chapter
3.

Proof of Theorem 7.3.18 Let (S, T ) ∈ Ck(M)× Cn−k(M). Then,

I(S, T ) = (−1)n−kI(S × T,∆).

Since ∆ is embedded we may assume by the moving lemma that (S × T ) ⋔ ∆, so that
I(S × T,∆) ∈ Z. ⊓⊔
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7.3.3 The topological degree

Consider two compact, connected, oriented smooth manifolds M , N having the same
dimension n. Any smooth map F :M → N canonically defines an n-dimensional cycle in
M ×N

ΓF :M →M ×N x 7→ (x, F (x)).

ΓF is called the graph of F.
Any point y ∈ N defines an n-dimensional cycle M × {y}. Since N is connected all

these cycles are cobordant so that the integer ΓF · (M × {y}) is independent of y.
Definition 7.3.21. The topological degree of the map F is defined by

degF := (M × {y}) · ΓF . ⊓⊔

Note that the intersections of ΓF with M × {y} correspond to the solutions of the
equation F (x) = y. Thus the topological degree counts these solutions (with sign).

Proposition 7.3.22. Let F :M → N as above. Then for any n-form ω ∈ Ωn(N)
∫

M
F ∗ω = degF

∫

N
ω.

Remark 7.3.23. The map F induces a morphism

R ∼= Hn(N)
F ∗

→ Hn(M) ∼= R

which can be identified with a real number. The above proposition guarantees that this
number is an integer. ⊓⊔

Proof of the proposition Note that if ω ∈ Ωn(N) is exact, then
∫

N
ω =

∫

M
F ∗ω = 0.

Thus, to prove the proposition it suffices to check it for any particular form which generates
Hn(N). Our candidate will be the Poincaré dual δy of a point y ∈ N . We have

∫

N
δy = 1,

while equality (7.3.1) gives

δM×{y} = δM × δy = 1× δy.

We can then compute the degree of F using Theorem 7.3.18

degF = degF

∫

N
δy =

∫

M×N
(1× δy) ∧ δΓF

=

∫

M
Γ∗F (1× δy) =

∫

M
F ∗δy. ⊓⊔

Corollary 7.3.24 (Gauss-Bonnet). Consider a connected sum of g-tori Σ = Σg embedded
in R3 and let GΣ : Σ→ S2 be its Gauss map. Then

deg GΣ = χ(Σ) = 2− 2g. ⊓⊔
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This corollary follows immediately from the considerations at the end of Subsection
4.2.4.

Exercise 7.3.25. Consider the compact, connected manifolds M0,M1, N ∈ M+
n and

the smooth maps Fi : Mi → N , i = 0, 1. Show that if F0 is cobordant to F1 then
degF0 = degF1. In particular, homotopic maps have the same degree. ⊓⊔

Exercise 7.3.26. Let A be a nonsingular n× n real matrix. It defines a smooth map

FA : Sn−1 → Sn−1, x 7→ Ax

|Ax| .

Prove that degFA = sign detA.

Hint: Use the polar decomposition A = P · O (where P is a positive symmetric matrix
and O is an orthogonal one) to deform A inside GL(n,R) to a diagonal matrix. ⊓⊔

Exercise 7.3.27. Let M
F→ N be a smooth map (M , N are smooth, compact oriented of

dimension n). Assume y ∈ N is a regular value of F , i.e., for all x ∈ F−1(y) the derivative

DxF : TxM → TyN

is invertible. For x ∈ F−1(y) define

deg(F, x) =

{
1 , DxF preserves orientations
−1 , otherwise

Prove that

degF =
∑

F (x)=y

deg(F, x). ⊓⊔

Exercise 7.3.28. Let M denote a compact oriented manifold, and consider a smooth
map F :M →M Regard H•(M) as a superspace with the obvious Z2-grading

H•(M) = Heven(M)⊕Hodd(M),

and define the Lefschetz number λ(F ) of F as the supertrace of the pull back

F ∗ : H•(M)→ H•(M).

Prove that λ(F ) = ∆ · ΓF , and deduce from this the Lefschetz fixed point theorem:
λ(F ) 6= 0 ⇒ F has a fixed point. ⊓⊔

Remark 7.3.29. For an elementary approach to degree theory, based only on Sard’s
theorem, we refer to the beautiful book of Milnor, [75]. ⊓⊔
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7.3.4 Thom isomorphism theorem

Let p : E → B be an orientable fiber bundle (in the sense of Definition 3.4.45) with
standard fiber F and compact, oriented basis B. Let dimB = m and dimF = r. The total
space E is a compact orientable manifold which we equip with the fiber-first orientation.

In this subsection we will extensively use the techniques of fibered calculus described
in Subsection 3.4.5. The integration along fibers

∫

E/B
= p∗ : Ω

•
cpt(E)→ Ω•−r(B)

satisfies
p∗dE = (−1)rdBp∗,

so that it induces a map in cohomology

p∗ : H
•
cpt(E)→ H•−r(B).

This induced map in cohomology is sometimes called the Gysin map.

Remark 7.3.30. If the standard fiber F is compact, then the total space E is also
compact. Using Proposition 3.4.48 we deduce that for any ω ∈ Ω•(E), and any η ∈ Ω•(B)
such that

degω + deg η = dimE,

we have
〈p∗(ω), η〉κ = 〈ω, p∗(η)〉k

If we denote by DM : Ω•(M) → ΩdimM−•(M)∗ the Poincaré duality isomorphism on a
compact oriented smooth manifold M , then we can rewrite the above equality as

〈DBp∗(ω), η〉 = 〈DEω, p
∗η〉 = 〈(p∗)†DEω, η〉 =⇒ DBp∗(ω) = (p∗)†DEω.

Hence
p∗ = D

−1
B (p∗)†DE ,

so that, in this case, the Gysin map coincides with the pushforward (Gysin) map defined
in Remark 7.2.9. ⊓⊔

Exercise 7.3.31. Consider a smooth map f : M → N between compact, oriented man-
ifolds M , N of dimensions m and respectively n. Denote by if the embedding of M in
M ×N as the graph of f

M ∋ x 7→ (x, f(x)) ∈M ×N.
The natural projection M ×N → N allows us to regard M ×N as a trivial fiber bundle
over N .

Show that the push-forward map f∗ : H•(M)→ H•+n−m(N) defined in Remark 7.2.9
can be equivalently defined by

f∗ = π∗ ◦ (if )∗,
where π∗ : H•(M ×N)→ H•−m(N) denotes the integration along fibers while

(if )∗ : H
•(M)→ H•+n(M ×N),

is the pushforward morphism defined by the embedding if . ⊓⊔
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Let us return to the fiber bundle p : E → B. Any smooth section σ : B → E defines
an embedded cycle in E of dimension m = dimB. Denote by δσ its Poincaré dual in
Hr
cpt(E).

Using the properties of the integration along fibers we deduce that, for any ω ∈ Ωm(B),
we have ∫

E
δσ ∧ p∗ω =

∫

B

(∫

E/B
δσ

)
ω.

On the other hand, by Poincaré duality we get

∫

E
δσ ∧ p∗ω = (−1)rm

∫

E
p∗ω ∧ δσ

= (−1)rm
∫

B
σ∗p∗ω = (−1)rm

∫

B
(pσ)∗ω = (−1)rm

∫

B
ω.

Hence

p∗δσ =

∫

E/B
δσ = (−1)rm ∈ Ω0(B).

Proposition 7.3.32. Let p : E → B a bundle as above. If it admits at least one section,
then the Gysin map

p∗ : H
•
cpt(E)→ H•−r(B)

is surjective.

Proof. Denote by τσ the map

τσ : H•(B)→ H•+rcpt (E) ω 7→ (−1)rmδσ ∧ p∗ω = p∗ω ∧ δσ .

Then τσ is a right inverse for p∗. Indeed

ω = (−1)rmp∗δσ ∧ ω = (−1)rmp∗(δσ ∧ p∗ω) = p∗(τσω). ⊓⊔

The map p∗ is not injective in general. For example, if (S, φ) is a k-cycle in F , then
it defines a cycle in any fiber π−1(b), and consequently in E. Denote by δS its Poincaré
dual in Hm+r−k

cpt (E). Then for any ω ∈ Ωm−k(B) we have

∫

B
(p∗δS) ∧ ω =

∫

E
δS ∧ p∗ω = ±

∫

D
φ∗p∗ω =

∫

S
(p ◦ φ)∗ω = 0,

since p ◦ φ is constant. Hence p∗δS = 0, and we conclude that that if F carries nontrivial
cycles ker p∗ may not be trivial.

The simplest example of standard fiber with only trivial cycles is a vector space.

Definition 7.3.33. Let p : E → B be an orientable vector bundle over the compact
oriented manifold B (dimB = m, rank (E) = r). The Thom class of E, denoted by τE is
the Poincaré dual of the cycle defined by the zero section ζ0 : B → E, b 7→ 0 ∈ Eb. Note
that τE ∈ Hr

cpt(E). ⊓⊔
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Theorem 7.3.34 (Thom isomorphism). Let p : E → B as in the above definition. Then
the map

τ : H•(B)→ H•+rcpt (E) ω 7→ τE ∧ p∗ω

is an isomorphism called the Thom isomorphism. Its inverse is the Gysin map

(−1)rmp∗ : H•cpt(E)→ H•−r(B).

Proof. We have already established that p∗τ = (−1)rm. To prove the reverse equality,
τp∗ = (−1)rm, we will use Lemma 7.2.2 of Subsection 7.2.1. For β ∈ Ω•cpt(E) we have

(p∗p∗τE) ∧ β − τE ∧ (p∗p∗β) = (−1)rd(m(τE , β)),

where m(τE, β) ∈ Ω•cpt(E). Since p∗p∗τE = (−1)rm, we deduce

(−1)rmβ = (τE ∧ p∗(p∗β) + exact form⇒ (−1)rmβ = τE ◦ p∗(β) in H•cpt(E). ⊓⊔

Exercise 7.3.35. Show that τE = ζ∗1, where ζ• : H•(M) → H•+dimM
cpt (E) is the push-

forward map defined by a section ζ :M → E. ⊓⊔

Remark 7.3.36. Suppose M ∈ M+
n , and S →֒ M is a compact, oriented, k-dimensional

manifold. Fix a Riemann metric g on M , and denote by NS the normal bundle of the
embedding S →֒M , i.e., the orthogonal complement of TN in (TM)|S .

The exponential map defined by the metric g defines a smooth map

exp : NS →M,

which induces a diffeomorphism from an open neighborhood O of S in NS , to an open
(tubular) neighborhood N of S in M . Fix a closed form δNS ∈ Ωn−k(M) with compact
support contained in N, and representing the Poincaré dual of (S, i), where i : S →֒ M
denotes the canonical inclusion.

Then exp∗ δNS is the Poincaré dual of the cycle (S, ζ) in NS, where ζ : S → NS denotes
the zero section. This shows that exp∗ δNS is a compactly supported form representing the
Thom class of the normal bundle NS .

Using the identification between O and N we obtain a natural submersive projection
π : N → S corresponding to the natural projection NS → S. In more intuitive terms, π
associates to each x ∈ N the unique point in S which closest to x. One can prove that the
Gysin map

i∗ : H
•(S)→ H

•+(n−k)
cpt (M),

is given by,

H•(S) ∋ ω 7−→ exp∗ δNS ∧ π∗ω ∈ H•+(n−k)
cpt (M). (7.3.5)

⊓⊔

Exercise 7.3.37. Prove the equality (7.3.5). ⊓⊔
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7.3.5 Gauss-Bonnet revisited

We now examine a very special type of vector bundle: the tangent bundle of a compact,
oriented, smooth manifold M . Note first the following fact.

Exercise 7.3.38. Prove that M is orientable if and only if TM is orientable as a bundle.
⊓⊔

Definition 7.3.39. Let E → M be a real orientable vector bundle over the compact,
oriented, n-dimensional, smooth manifold M . Denote by τE ∈ Hn

cpt(E) the Thom class of
E. The Euler class of E is defined by

e(E) := ζ∗0τE ∈ Hn(M),

where ζ0 :M → E denotes the zero section. e(TM) is called the Euler class of M , and it
is denoted by e(M). ⊓⊔

Note that the sections of TM are precisely the vector fields on M . Moreover, any such
section σ : M → TM tautologically defines an n-dimensional cycle in TM , and in fact,
any two such cycles are homotopic: try a homotopy, affine along the fibers of TM .

Any two sections σ0, σ1 : M → TM determine cycles of complementary dimension,
and thus the intersection number σ0 · σ1 is a well defined integer, independent of the two
sections. It is a number reflecting the topological structure of the manifold.

Proposition 7.3.40. Let σ0, σ1 :M → TM be two sections of TM . Then
∫

M
e(M) = σ0 · σ1.

In particular, if dimM is odd then
∫

M
e(M) = 0.

Proof. The section σ0, σ1 are cobordant, and their Poincaré dual in Hn
cpt(TM) is the Thom

class τM . Hence

σ0 · σ1 =
∫

TM
δσ0 ∧ δσ1 =

∫

TM
τM ∧ τM

=

∫

TM
τM ∧ δζ0 =

∫

M
ζ∗0τM =

∫

M
e(M).

If dimM is odd then
∫

M
e(M) = σ0 · σ1 = −σ1 · σ0 = −

∫

M
e(M). ⊓⊔

Theorem 7.3.41. Let M be a compact oriented n-dimensional manifold, and denote by
e(M) ∈ Hn(M) its Euler class. Then the integral of e(M) over M is equal to the Euler
characteristic of M , ∫

M
e(M) = χ(M) =

n∑

k=0

(−1)kbk(M).
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In the proof we will use an equivalent description of χ(M).

Lemma 7.3.42. Denote by ∆ the diagonal cycle ∆ ∈ Hn(M ×M). Then χ(M) = ∆ ·∆.

Proof. Denote by δM ∈ Hn
cpt(M ×M) the Poincaré dual of ∆. Consider a basis (ωj) of

H•(M) consisting of homogeneous elements. We denote by (ωi) the dual basis, i.e.,

〈ωi, ωj〉κ = δij . ∀i, j.
According to (7.3.2), we have

δM =
∑

i

(−1)|ωi|ωi × ωi.

Similarly, if we start first with the basis (ωi), then its dual basis is

(−1)|ωi|·|ωi|ωi,

so, taking into account that |ωj |+ |ωj | · |ωj| ≡ n|ωj| (mod 2), we also have

δM =
∑

i

(−1)n·|ωj |ωj × ωj.

Using Exercise 7.1.50 we deduce

∆ ·∆ =

∫

M×M
δM ∧ δM =

∫

M×M

(∑

i

(−1)|ωi|ωi × ωi
)
∧


∑

j

(−1)n|ωj |ωj × ωj



=

∫

M×M


∑

i,j

(−1)|ωi|+n·|ωj|(−1)|ωi|·|ωj|ωi ∧ ωj


×

(
ωi × ωj

)

=
∑

i,j

(−1)|ωi|+n·|ωj|(−1)|ωi|·|ωj|〈ωi, ωj〉κ 〈ωi, ωj〉κ.

In the last expression we now use the duality equations

〈ωi, ωj〉κ = (−1)|ωi|·|ωj |δji ,

and the congruences

n ≡ 0 mod 2, |ωi|+ n|ωi|+ |ωi|2 + |ωi| · |ωi| ≡ |ωi| mod 2,

to conclude that
∆ ·∆ =

∑

ωi

(−1)|ωi| = χ(M). ⊓⊔

Proof of theorem 7.3.41 The tangent bundle of M ×M restricts to the diagonal ∆
as a rank 2n vector bundle. If we choose a Riemann metric on M ×M then we get an
orthogonal splitting

T (M ×M) |∆= N∆ ⊕ T∆.
The diagonal map M → M ×M identifies M with ∆ so that T∆ ∼= TM . We now have
the following remarkable result.
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Lemma 7.3.43. N∆
∼= TM .

Proof Use the isomorphisms

T (M ×M) |∆∼= T∆⊕N∆
∼= TM ⊕N∆

and

T (M ×M) |∆= TM ⊕ TM. ⊓⊔

From this lemma we immediately deduce the equality of Thom classes

τN∆
= τM . (7.3.6)

At this point we want to invoke a technical result whose proof is left to the reader as an
exercise in Riemann geometry.

Lemma 7.3.44. Denote by exp the exponential map of a Riemann metric g on M ×M .
Regard ∆ as a submanifold in N∆ via the embedding given by the zero section. Then there
exists an open neighborhood U of ∆ ⊂ N∆ ⊂ T (M ×M) such that

exp |U: U→M ×M

is an embedding. ⊓⊔

Let U be a neighborhood of ∆ ⊂ N∆ as in the above lemma, and set N := exp(U).
Denote by δU∆ the Poincaré dual of ∆ in U, δU∆ ∈ Hn

cpt(U), and by δN∆ the Poincaré dual of

∆ in N, δN∆ ∈ Hn
cpt(N). Then

∫

U

δU∆ ∧ δU∆ =

∫

N

δN∆ ∧ δN∆ =

∫

M×M
δM ∧ δM = χ(M).

The cohomology class δU∆ is the Thom class of the bundle N∆ → ∆, which in view of
(7.3.6) means that δU∆ = τN∆

= τM . We get

∫

U

δU∆ ∧ δU∆ =

∫

∆
δU∆ =

∫

∆
ζ∗0τN∆

=

∫

M
ζ∗0τM =

∫

M
e(M).

Hence ∫

M
e(M) = χ(M). ⊓⊔

If M is a connected sum of g tori then we can rephrase the Gauss-Bonnet theorem as
follows.

Corollary 7.3.45. For any Riemann metric h on a connected sum of g-tori Σg we have

1

2π
ε(h) =

1

4π
shdvh = e(Σg) in H∗(Σg). ⊓⊔
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The remarkable feature of the Gauss-Bonnet theorem is that, once we choose a metric,
we can explicitly describe a representative of the Euler class in terms of the Riemann
curvature.

The same is true for any compact, oriented, even-dimensional Riemann manifold. In
this generality, the result is known as Gauss-Bonnet-Chern, and we will have more to say
about it in the next two chapters.

We now have a new interpretation of the Euler characteristic of a compact oriented
manifold M .

Given a smooth vector field X on M , its “graph” in TM ,

ΓX = {(x,X(x)) ∈ TxM ; x ∈M},

is an n-dimensional submanifold of TM . The Euler characteristic is then the intersection
number

χ(M) = ΓX ·M,

where we regard M as a submanifold in TM via the embedding given by the zero section.
In other words, the Euler characteristic counts (with sign) the zeroes of the vector fields
on M . For example if χ(M) 6= 0 this means that any vector field on M must have a zero
! We have thus proved the following result.

Corollary 7.3.46. If χ(M) 6= 0 then the tangent bundle TM is nontrivial. ⊓⊔

The equality χ(S2n) = 2 is particularly relevant in the vector field problem discussed
in Subsection 2.1.4. Using the notations of that subsection we can write

v(S2n) = 0.

We have thus solved “half” the vector field problem.

Exercise 7.3.47. Let X be a vector field over the compact oriented manifoldM . A point
x ∈M is said to be a non-degenerate zero of X if X(0) = 0 and

det

(
∂Xi

∂xj

)
|x=x0 6= 0.

for some local coordinates (xi) near x0 such that the orientation of T ∗x0M is given by
dx1 ∧ · · · ∧ dxn. Prove that the local intersection number of ΓX with M at x0 is given by

ix0(ΓX ,M) = sign det

(
∂Xi

∂xj

)
|x=x0 .

This is sometimes called the local index of X at x0, and it is denoted by i(X,x0). ⊓⊔

From the above exercise we deduce the following celebrated result.

Corollary 7.3.48 (Poincaré-Hopf). If X is a vector field along a compact, oriented man-
ifold M , with only non-degenerated zeros x1, . . . , xk, then

χ(M) =
∑

j

i(X,xj). ⊓⊔
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Exercise 7.3.49. Let X be a vector field on Rn and having a non-degenerate zero at the
origin.
(a) prove that for all r > 0 sufficiently small X has no zeros on Sr = {|x| = r}.
(b) Consider Fr : Sr → Sn−1 defined by

Fr(x) =
1

|X(x)|X(x).

Prove that i(X, 0) = degFr for all r > 0 sufficiently small.
Hint: Deform X to a linear vector field. ⊓⊔

7.4 Symmetry and topology

The symmetry properties of a manifold have a great impact on its global (topological)
structure. We devote this section to a more in depth investigation of the correlation
symmetry-topology.

7.4.1 Symmetric spaces

Definition 7.4.1. A homogeneous space is a smooth manifold M acted transitively by
a Lie group G called the symmetry group. ⊓⊔

Recall that a smooth left action of a Lie group G, on a smooth manifold M

G×M →M (g,m) 7→ g ·m,

is called transitive if, for any m ∈M , the map

Ψm : G ∋ g 7→ g ·m ∈M

is surjective. For any point x of a homogeneous space M we define the isotropy group at
x by

Ix = {g ∈ G ; g · x = x}.
Lemma 7.4.2. Let M be a homogeneous space with symmetry group G and x, y ∈ M .
Then
(a) Ix is a closed subgroup of G;
(b) Ix

∼= Iy.

Proof. (a) is immediate. To prove (b), choose g ∈ G such that y = g · x. Then note that
Iy = gIxg

−1. ⊓⊔

Remark 7.4.3. It is worth mentioning some fundamental results in the theory of Lie
groups which will shed a new light on the considerations of this section. For proofs we
refer to [45, 97].

Fact 1. Any closed subgroup of a Lie group is also a Lie group (see Remark 1.2.31). In
particular, the isotropy groups Ix of a homogeneous space are all Lie groups. They are
smooth submanifolds of the symmetry group.
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Fact 2. Let G be a Lie group, and H a closed subgroup. Then the space of left cosets,

G/H :=
{
g ·H; g ∈ G

}
,

can be given a smooth structure such that the map

G× (G/H)→ G/H (g1, g2H) 7→ (g1g2) ·H

is smooth. The manifold G/H becomes a homogeneous space with symmetry group G.
All the isotropy groups subgroups of G conjugate to H.

Fact 3. If M is a homogeneous space with symmetry group G, and x ∈ M , then M is
equivariantly diffeomorphic to G/Ix, i.e., there exists a diffeomorphism

φ :M → G/Ix,

such that φ(g · y) = g · φ(y). ⊓⊔

We will be mainly interested in a very special class of homogeneous spaces.

Definition 7.4.4. A symmetric space is a collection of data (M,h,G, σ, i) satisfying the
following conditions.
(a) (M,h) is a Riemann manifold.
(b) G is a connected Lie group acting isometrically and transitively on M

G×M ∋ (g,m) 7→ g ·m ∈M.

(c) σ :M ×M →M is a smooth map (m1,m2) 7→ σm1(m2) such that the following hold.

(c1) ∀m ∈M σm :M →M is an isometry, and σm(m) = m.

(c2) σm ◦ σm = 1M .

(c3) Dσm |TmM= −1TmM .

(c4) σgm = gσmg
−1.

(d) i :M ×G→ G, (m, g) 7→ img is a smooth map such that the following hold.

(d1) ∀m ∈M , im : G→ G is a homomorphism of G.

(d2) im ◦ im = 1G.

(d3) igm = gimg
−1, ∀(m, g) ∈M ×G.

(e) σmgσ
−1
m (x) = σmgσm(x) = im(g) · x, ∀m,x ∈M , g ∈ G. ⊓⊔

Remark 7.4.5. This may not be the most elegant definition of a symmetric space, and
certainly it is not the minimal one. As a matter of fact, a Riemann manifold (M,g) is
a symmetric space if and only if there exists a smooth map σ : M ×M → M satisfying
the conditions (c1),(c2) and (c3). We refer to [45, 51] for an extensive presentation of this
subject, including a proof of the equivalence of the two descriptions. Our definition has
one academic advantage: it lists all the properties we need to establish the topological
results of this section. ⊓⊔
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The next exercise offers the reader a feeling of what symmetric spaces are all about.
In particular, it describes the geometric significance of the family of involutions σm.

Exercise 7.4.6. Let (M,h) be a symmetric space. Denote by ∇ the Levi-Civita connec-
tion, and by R the Riemann curvature tensor.
(a) Prove that ∇R = 0.
(b) Fix m ∈M , and let γ(t) be a geodesic of M such that γ(0) = m. Show that

σmγ(t) = γ(−t). ⊓⊔

Example 7.4.7. Perhaps the most popular example of symmetric space is the round
sphere Sn ⊂ Rn+1. The symmetry group is SO(n+1), the group of orientation preserving
“rotations” of Rn+1. For eachm ∈ Sn+1 we denote by σm the orthogonal reflection through
the 1-dimensional space determined by the radius Om. We then set im(T ) = σmTσ

−1
m ,

∀T ∈ SO(n+ 1). We let the reader check that σ and i satisfy all the required axioms. ⊓⊔

Example 7.4.8. Let G be a connected Lie group and m a bi-invariant Riemann metric
on G. The direct product G×G acts on G by

(g1, g2) · h = g1hg
−1
2 .

This action is clearly transitive and since m is bi-invariant its is also isometric. Define

σ : G×G→ G σgh = gh−1g−1

and
i : G× (G×G)→ G×G ig(g1, g2) = (gg1g

−1, gg2g
−1).

We leave the reader to check that these data do indeed define a symmetric space structure
on (G,m). The symmetry group is G×G. ⊓⊔

Example 7.4.9. Consider the complex Grassmannian M = Grk(C
n). Recall that in

Example 1.2.22 we described Grk(C
n) as a submanifold of End+(V ) – the linear space of

selfadjoint n×n complex matrices, via the map which associates to each complex subspace
S, the orthogononal projection PS : Cn → Cn onto S.

The linear space End+(Cn) has a natural metric g0(A,B) = 1
2Re tr (AB∗) that restricts

to a Riemann metric g on M . The unitary group U(n) acts on End+(Cn) by conjugation,

U(n)× End+(Cn) ∋ (T,A) 7−→ T ⋆ A := TAT ∗.

Note that U(n) ⋆ M = M , and g0 is U(n)-invariant. Thus U(n) acts transitively, and
isometrically on M .

For each subspace S ∈M define

RS := PS − PS⊥ = 2PS − 1.

The operator RS is the orthogonal reflection through S⊥. Note that RS ∈ U(n), and
R2
S = 2. The map A 7→ RS ⋆A is an involution of End+(Cn). It descends to an involution

of M . We thus get an entire family of involutions

σ :M ×M →M, (PS1 , PS2) 7→ RS1 ⋆ PS2 .
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Define
i :M × U(n)→ U(n), iST = RSTRS .

We leave the reader to check that the above collection of data defines a symmetric space
structure on Grk(C

n). ⊓⊔

Exercise 7.4.10. Fill in the details left out in the above example. ⊓⊔

7.4.2 Symmetry and cohomology

Definition 7.4.11. Let M be a homogeneous space with symmetry group G. A differen-
tial form ω ∈ Ω∗(M) is said to be (left) invariant if ℓ∗gω = ω ∀g ∈ G, where we denoted
by

ℓ∗g : Ω
•(M)→ Ω•(M)

the pullback defined by the left action by g: m 7→ g ·m. ⊓⊔

Proposition 7.4.12. Let M be a compact homogeneous space with compact, connected
symmetry group G. Then any cohomology class of M can be represented by a (not neces-
sarily unique) invariant form.

Proof. Denote by dVG(g) the normalized bi-invariant volume form on G. For any form
ω ∈ Ω∗(M) we define its G-average by

ω =

∫

G
ℓ∗gω dVG(g).

The form ω is an invariant form on M . The proposition is a consequence of the following
result.

Lemma 7.4.13. If ω is a closed form on M then ω is closed and cohomologous to ω.

Proof. The form ω is obviously closed so we only need to prove it is cohomologous to ω.
Consider a bi-invariant Riemann metric m on G. Since G is connected, the exponential
map

exp : LG → G X 7→ exp(tX)

is surjective. Choose r > 0 sufficiently small so that the map

exp : Dr =
{
|X|m = r ; X ∈ LG

}
→ G

is an embedding. Set Br = expDr. We can select finitely many g1, . . . , gm ∈ G such that

G =

m⋃

j=1

Bj, Bj := gjBr.

Now pick a partition of unity (αj) ⊂ C∞(G) subordinated to the cover (Bj), i.e.,

0 ≤ αj ≤ 1, suppαj ⊂ Bj,
∑

j

αj = 1.
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Set

aj :=

∫

G
αj dVG(g).

Since the volume of G is normalized to 1, and
∑

j αj = 1, we deduce that
∑

j aj = 1. For
any j = 1, . . . ,m define Tj : Ω

∗(M)→ Ω∗(M) by

Tjω :=

∫

G
αj(g)ℓ

∗
gω dVG(g).

Note that
ω =

∑

j

Tjω and dTjω = Tjdω.

Each Tj is thus a cochain morphism. It induces a morphism in cohomology which we
continue to denote by Tj . The proof of the lemma will be completed in several steps.

Step 1. ℓ∗g = 1 on H∗(M), for all g ∈ G. Let X ∈ LG such that g = expX. Define

f : I ×M →M ft(m) := exp(tX) ·m = ℓexp(tX)m.

The map f is a homotopy connecting 1M with ℓ∗g. This concludes Step 1.

Step 2.
Tj = aj1H∗(M).

For t ∈ [0, 1], consider φj,t : Bj → G defined as the composition

Bj
g−1
j−→ Br

exp−1

−→ Dr
t·−−→ Dtr

exp−→ Btr
gj→֒ G.

Define Tj,t : Ω
∗(M)→ Ω∗(M) by

Tj,tω =

∫

G
αj(g)ℓ

∗
φj,t(t)

ω dVG(g) = Tjφ
∗
j,tω. (7.4.1)

We claim that Tj,0 is cochain homotopic to Tj,1.
To verify this claim set t := es, −∞ < s ≤ 0 and

gs = exp(es exp−1(g)) ∀g ∈ Br.

Then

Usω
def
= Tj,esω =

∫

Br

αj(gjg)ℓ
∗
gjgsω =

∫

Br

α(gjg)ℓ
∗
gsℓ
∗
gjω dVG(g).

For each g ∈ Br the map (s,m) 7→ Ψs(m) = gs(m) defines a local flow on M . We denote
by Xg its infinitesimal generator. Then

d

ds
(Usω) =

∫

Br

αj(gjg)LXgℓ
∗
gsℓ
∗
gjω dVG(g)

=

∫

Br

αj(gjg)(dM iXg + iXgdM )(ℓ∗gsℓ
∗
gjω) dVG(g).
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Consequently,
Tj,0ω − Tj,1ω = U−∞ω − U0ω

= −
∫ 0

−∞

(∫

Br

αj(gjg)(diXg + iXgd)(ℓ
∗
gsℓ
∗
gjω) dVG(g)

)
ds.

(An argument entirely similar to the one we used in the proof of the Poincaré lemma
shows that the above improper integral is pointwise convergent). From the above formula
we immediately read a cochain homotopy χ : Ω•(M)→ Ω•−1(M) connecting U−∞ to U0.
More precisely

{χ(ω)}|x∈M := −
∫ 0

−∞

(∫

Br

αj(gjg)
{
iXgℓ

∗
gsℓ
∗
gjω
}
|x dVG(g)

)
ds.

Now notice that

Tj,0ω =

(∫

Bj

αj(g)dVG(g)

)
= ajℓ

∗
gjω,

while Tj,1ω = Tjω. Taking into account Step 1, we deduce Tj,0 = aj · 1. Step 2 is
completed.

The lemma and hence the proposition follow from the equality

1H∗(M) =
∑

j

aj1H∗(M) =
∑

j

Tj = G− average. ⊓⊔

The proposition we have just proved has a greater impact when M is a symmetric space.

Proposition 7.4.14. Let (M,h) be an, oriented symmetric space with symmetry group
G. Then the following are true.
(a) Every invariant form on M is closed.
(b) If moreover M is compact, then the only invariant form cohomologous to zero is the
trivial one.

Proof. (a) Consider an invariant k-form ω. Fix m0 ∈ M and set ω̂ = σ∗m0
ω. We claim ω̂

is invariant. Indeed, ∀g ∈ G

ℓ∗gω̂ = ℓ∗gσ
∗
m0
ω = (σm0g)

∗ω = (gigσm0g)
∗ω = σ∗m0

ℓ∗i(g)ω = σ∗m0
ω = ω̂.

Since Dσm0 |Tm0M
= −1Tm0M

, we deduce that, at m0 ∈M , we have ω̂ = (−1)kω.
Both ω and ω̂ are G-invariant, and we deduce that the above equality holds at any

point m = g ·m0. Invoking the transitivity of the G-action we conclude that

ω̂ = (−1)kω onM.

In particular, dω̂ = (−1)kdω on M .

The (k+1)-forms dω̂ = σ∗m0
dω = d̂ω, and dω are both invariant and, arguing as above,

we deduce
dω̂ = d̂ω = (−1)k+1dω.

The last two inequalities imply dω = 0.
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(b) Let ω be an invariant form cohomologous to zero, i.e. ω = dα. Denote by ∗ the Hodge
∗-operator corresponding to the invariant metric h. Since G acts by isometries, the form
η = ∗ω is also invariant, so that dη = 0. We can now integrate (M is compact), and use
Stokes theorem to get

∫

M
ω ∧ ∗ω =

∫

M
dα∧ = ±

∫

M
α ∧ dη = 0.

This forces ω ≡ 0. ⊓⊔

From Proposition 7.4.12 and the above theorem we deduce the following celebrated
result of Élie Cartan ([20])

Corollary 7.4.15 (É. Cartan). Let (M,h) be a compact, oriented symmetric space with
compact, connected symmetry group G. Then the cohomology algebra H∗(M) of M is
isomorphic with the graded algebra Ω∗inv(M) of invariant forms on M . ⊓⊔

In the coming subsections we will apply this result to the symmetric spaces discussed
in the previous subsection: the Lie groups and the complex Grassmannians.

7.4.3 The cohomology of compact Lie groups

Consider a compact, connected Lie group G, and denote by LG its Lie algebra. According
to Proposition 7.4.12, in computing its cohomology, it suffices to restrict our considerations
to the subcomplex consisting of left invariant forms. This can be identified with the
exterior algebra Λ•L∗G. We deduce the following result.

Corollary 7.4.16. H•(G) ∼= H•(LG) ∼= Λ•invLG, where Λ•invLG denotes the algebra of
bi-invariant forms on G, while H•(LG) denotes the Lie algebra cohomology introduced in
Example 7.1.10. ⊓⊔

Using the Exercise 7.1.11 we deduce the following consequence.

Corollary 7.4.17. If G is a compact semisimple Lie group then H1(G) = 0. ⊓⊔

Proposition 7.4.18. Let G be a compact semisimple Lie group. Then H2(G) = 0.

Proof. A closed bi-invariant 2-form ω on G is uniquely defined by its restriction to LG,
and satisfies the following conditions.

dω = 0⇐⇒ ω([X0,X1],X2)− ω([X0,X2],X1) + ω([X1,X2],X0) = 0,

and (right-invariance)

(LX0ω)(X1,X2) = 0 ∀X0 ∈ LG ⇐⇒ ω([X0,X1],X2)− ω([X0,X2],X1) = 0.

Thus
ω([X0,X1],X2) = 0 ∀X0,X1,X2 ∈ LG.

On the other hand, since H1(LG) = 0 we deduce (see Exercise 7.1.11) LG = [LG,LG], so
that the last equality can be rephrased as

ω(X,Y ) = 0 ∀X,Y ∈ LG. ⊓⊔
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Definition 7.4.19. A Lie algebra is called simple if it has no nontrivial ideals. A Lie
group is called simple if its Lie algebra is simple. ⊓⊔

Exercise 7.4.20. Prove that SU(n) and SO(m) are simple. ⊓⊔

Proposition 7.4.21. Let G be a compact, simple Lie group. Then H3(G) ∼= R. Moreover,
H3(G) is generated by the Cartan form

α(X,Y,Z) = κ([X,Y ], Z),

where κ denotes the Killing pairing. ⊓⊔

The proof of the proposition is contained in the following sequence of exercises.

Exercise 7.4.22. Prove that a simple Lie algebra is necessarily semi-simple. ⊓⊔

Exercise 7.4.23. Let ω be a closed, bi-invariant 3-form on a Lie group G. Then

ω(X,Y, [Z, T ]) = ω([X,Y ], Z, T ) ∀X,Y,Z, T ∈ LG. ⊓⊔
Exercise 7.4.24. Let ω be a closed, bi-invariant 3-form on a compact, semisimple Lie
group.
(a) Prove that for any X ∈ LG there exists a unique left-invariant form ηX ∈ Ω1(G) such
that

(iXω)(Y,Z) = ηX([Y,Z]).

Moreover, the correspondence X 7→ ηX is linear. Hint: Use H1(G) = H2(G) = 0.
(b) Denote by A the linear operator LG → LG defined by

κ(AX,Y ) = ηX(Y ).

Prove that A is selfadjoint with respect to the Killing metric.
(c) Prove that the eigenspaces of A are ideals of LG. Use this to prove Proposition 7.4.21.

⊓⊔

Exercise 7.4.25. Compute ∫

SU(2)
α and

∫

SO(3)
α,

where α denotes the Cartan form. (These groups are oriented by their Cartan forms.)
Hint: Use the computation in the Exercise 4.1.61 and the double cover SU(2) → SO(3)
described in the Subsection 6.2.1. Pay very much attention to the various constants. ⊓⊔

7.4.4 Invariant forms on Grassmannians and Weyl’s integral formula

We will use the results of Subsection 7.4.2 to compute the Poincaré polynomial of the
complex Grassmannian Grk(C

n). Set ℓ = n− k.
As we have seen in the previous subsection, the Grassmannian Grk(C

n) is a symmet-
ric space with symmetry group U(n). It is a complex manifold so that it is orientable
(cf. Exercise 3.4.13). Alternatively, the orientability of Grk(C

n) is a consequence of the
following fact.
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Exercise 7.4.26. If M is a homogeneous space with connected isotropy groups, then M
is orientable. ⊓⊔

We have to describe the U(n)-invariant forms on Grk(C
n). These forms are completely

determined by their values at a particular point in the Grassmannian. We choose this point
to correspond to the subspace S0 determined by the canonical inclusion Ck →֒ Cn.

The isotropy of S0 is the group H = U(k) × U(ℓ). The group H acts linearly on the
tangent space V0 = TS0 Grk(C

n). If ω is an U(n)-invariant form, then its restriction to V0
is an H-invariant skew-symmetric, multilinear map

V0 × · · · × V0 → R.

Conversely, any H-invariant element of Λ•V ∗0 extends via the transitive action of U(n)
to an invariant form on Grk(C

n). Denote by Λ•inv the space of H-invariant elements of
Λ•V ∗0 . We have thus established the following result.

Proposition 7.4.27. There exists an isomorphism of graded R-algebras:

H•(Grk(C
n)) ∼= Λ•inv. ⊓⊔

We want to determine the Poincaré polynomial of the complexified Z-graded space,
Λ•inv ⊗ C

Pk,ℓ(t) =
∑

j

tj dimC Λjinv ⊗C = PGrk(Cn)(t).

Denote the action of H on V0 by

H ∋ h 7→ Th ∈ Aut (V0).

Using the equality (3.4.10) of Subsection 3.4.4 we deduce

Pk,ℓ(t) =

∫

H
|det(1V0 + tTh)|2dVH(h), (7.4.2)

where dVH denotes the normalized bi-invariant volume form on H.
At this point, the above formula may look hopelessly complicated. Fortunately, it can

be dramatically simplified using a truly remarkable idea of H. Weyl.
Note first that the function

H ∋ h 7→ ϕ(h) = |det(1V0 + tTh)|2

is a class function, i.e., ϕ(ghg−1) = ϕ(h), ∀g, h ∈ H.
Inside H sits the maximal torus T = Tk × Tℓ, where

Tk =
{
diag (eiθ1 , . . . , eiθk) ∈ U(k)

}
, and Tℓ = {diag (eiφ1 , . . . , eiφℓ) ∈ U(ℓ)}.

Each h ∈ U(k) × U(ℓ) is conjugate to diagonal unitary matrix, i.e., there exists g ∈ H
such that ghg−1 ∈ T.

We can rephrase this fact in terms of the conjugation action of H on itself

C : H ×H → H (g, h) 7→ Cg(h) = ghg−1.
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The class functions are constant along the orbits of this conjugation action, and each
such orbit intersects the maximal torus T. In other words, a class function is completely
determined by its restriction to the maximal torus. Hence, it is reasonable to expect
that we ought to be able to describe the integral in (7.4.2) as an integral over T. This is
achieved in a very explicit manner by the next result.

Define ∆k : T
k → C by

∆k(θ
1, . . . , θk) =

∏

1≤i<j≤n
(eiθ

i − eiθj), i =
√
−1.

On the unitary group U(k) we fix the bi-invariant metric m = mk such that at T1U(k) we
have

m(X,Y ) := Re tr(XY ∗).

If we think of X,Y as k × k matrices, then

m(X,Y ) = Re
∑

i,j

xij ȳij.

We denote by dvk the volume form induced by this metric, and by Vk the total volume

Vk :=

∫

U(k)
dvk.

Proposition 7.4.28 (Weyl’s integration formula). Consider a class function ϕ on the
group G = U(k1)× · · · × U(ks), denote by dg the volume form

dg = dvk1 ∧ · · · dvks ,

and by V the volume of G, V = Vk1 · · ·Vks. Then

1

V

∫

G
ϕ(g)dg =

1∏s
j=1 kj !

1

vol(T)

∫

T

ϕ(θ1, . . . ,θs)

s∏

j=1

|∆kj(θj)|2dθ1 ∧ · · · ∧ dθs,

=
1∏s

j=1(2π)
kjkj !

∫

T

ϕ(θ1, . . . ,θs)

s∏

j=1

|∆kj(θj)|2dθ1 ∧ · · · ∧ dθs

Above, for every j = 1, . . . , s, we denoted by θj the angular coordinates on Tkj ,

θj := (θ1j , . . . , θ
kj
j ),

while dθj denotes the bi-invariant volume on Tkj ,

dθj := dθ1j ∧ · · · ∧ dθ
kj
j .
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The remainder of this subsection is devoted to the proof of this proposition. The
reader may skip this part at the first lecture, and go directly to Subsection 7.4.5 where
this formula is used to produce an explicit description of the Poincaré polynomial of a
complex Grassmannian.

Proof of Proposition 7.4.28 To keep the main ideas as transparent as possible, we
will consider only the case s = 1. The general situation is entirely similar. Thus, G = U(k)
and T = Tk. In this case, the volume form dg is the volume form associated to metric mk.

We denote by Ad : G→ Aut(LG) the adjoint representation of G; see Example 3.4.30.
In this concrete case, Ad can be given the explicit description

Adg(X) = gXg−1, ∀g ∈ U(k), X ∈ u(k).

Denote the angular coordinates θ on T by θ = (θ1, . . . , θk). The restriction of the metric
m to T is described in these coordinates by

m|T = (dθ1)2 + · · ·+ (dθk)2.

To any class function ϕ : G→ C we associate the complex valued differential form

ωϕ := ϕ(g)dg.

Consider the homogeneous space G/T, and the smooth map

q : T×G/T→ G (t, gT ) = gtg−1.

Note that if g1T = g2T, then g1tg
−1
1 = g1tg

−1
2 , so the map q is well defined.

We have a m-orthogonal splitting of the Lie algebra LG

LG = LT ⊕ L⊥G.

The tangent space to G/T at 1 · T ∈ G/T can be identified with L⊥T . For this reason we
will write LG/T instead of L⊥T .

Fix x ∈ G/T. Any g ∈ G defines a linear map Lg : TxG/T → TgxG/T. Moreover, if
gx = hx = y, then Lg and Lh differ by an element in the stabilizer of x ∈ G/T. This
stabilizer is isomorphic to T, and in particular it is connected.

Hence, if ω ∈ detTxG/T, then Lgω ∈ detTyG/T and Lhω ∈ detTyG/T define the
same orientation of TyG/T. In other words, an orientation in one of the tangent spaces of
G/T “spreads” via the action of G to an orientation of the entire manifold. Thus, we can
orient G/T by fixing an orientation on LG/T.

We fix an orientation on LG, and we orient LT using the form dθ = dθ1 ∧ · · · ∧ dθk.
The orientation on LG/T will be determined by the condition

or(LG) = or(LT) ∧ or(LG/T).

The proof of Weyl’s integration formula will be carried out in three steps.

Step 1. ∫

G
ωϕ =

1

k!

∫

T×G/T
q∗ωϕ ∀ω.
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Step 2. We prove that there exists a positive constant Ck such that for any class
function ϕ on G we have

k!

∫

G
ωϕ =

∫

T×G/T
q∗ωϕ = Ck

∫

T

ϕ(θ)|∆k(θ)|2dθ.

Step 3. We prove that

Ck =
Vk

vol (T)
=

Vk
(2π)k

Step 1. We use the equality
∫

T×G/T
q∗ωϕ = deg q

∫

G
ωϕ,

so it suffices to compute the degree of q.
Denote by N(T) the normalizer of T in G, i.e.,

N(T) =
{
g ∈ G ; gTg−1 ⊂ T

}
,

and then form the Weyl group
W := N(T)/T.

Lemma 7.4.29. The Weyl group W is isomorphic to the group Sk of permutations of k
symbols.

Proof. This is a pompous rephrasing of the classical statement in linear algebra that two
unitary matrices are similar if and only if they have the same spectrum, multiplicities
included. The adjoint action of N(T) on T= diagonal unitary matrices simply permutes
the entries of a diagonal unitary matrix. This action descends to an action on the quotient
W so that W ⊂ Sk.

Conversely, any permutation of the entries of a diagonal matrix can be achieved by a
conjugation. Geometrically, this corresponds to a reordering of an orthonormal basis. ⊓⊔

Lemma 7.4.30. Let α1, . . . , αk) ∈ Rk such that 1, α
1

2π , . . . ,
αk

2π are linearly independent
over Q. Set τ := (exp(iα1), . . . , exp(iαk)) ∈ Tk. Then the sequence (τn)n∈Z is dense in
Tk. (The element τ is said to be a generator of Tk.)

For the sake of clarity, we defer the proof of this lemma to the end of this subsection.

Lemma 7.4.31. Let τ ∈ Tk ⊂ G be a generator of Tk. Then q−1(τ) ⊂ T×G/T consists
of |W| = k! points.

Proof.
q(s, gT ) = τ ⇐⇒ gsg−1 = τ ⇐⇒ gτg−1 = s ∈ T.

In particular, gτng−1 = sn ∈ T, ∀n ∈ Z. Since (τn) is dense in T, we deduce

gTg−1 ⊂ T⇒ g ∈ N(T).

Hence
q−1(τ) =

{
(g−1τg, gT ) ∈ T×G/T ; g ∈ N(T)

}
,
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and thus q−1(τ) has the same cardinality as the Weyl group W. ⊓⊔

The metric m on LG/T extends to a G-invariant metric on G/T. It defines a left-
invariant volume form dµ on G/T. Observe that the volume form on T induced by the
metric m is precisely

dθ = θ1 ∧ · · · ∧ dθk.

Lemma 7.4.32. q∗dg = |∆k(θ)|2dθ ∧ dµ. In particular, any generator τ of Tk ⊂ G is a
regular value of q since ∆k(σ) 6= 0, ∀σ ∈ q−1(τ).

Proof. Fix a point x0 = (t0, g0T) ∈ T×G/T. We can identify Tx0(T×G/T) with LT⊕LG/T
using the isometric action of T×G on T×G/T.

Fix X ∈ LT, Y ∈ LG/T. For every real number s consider

hs = q
(
t0 exp(sX) , g0 exp(sY )T

)
= g0 exp(sY )t0 exp(sX) exp(−sY )g−10 ∈ G.

We want to describe
d

ds
|s=0h

−1
0 hs ∈ T1G = LG.

Using the Taylor expansions

exp(sX) = 1 + sX +O(s2), and exp(sY ) = 1 + sY +O(s2),

we deduce

h−10 hs = g0t
−1
0 (1 + sY )t0(1 + sX)(1− sY )g−10 +O(s2)

= 1 + s
(
g0t
−1
0 Y t0g

−1
0 + g0Xg

−1
0 − g0Y g−10

)
+O(s2).

Hence, the differential

Dx0 : Tx0(T×G/T) ∼= LT ⊕LG/T → LT ⊕ LG/T
∼= LG,

can be rewritten as

Dx0q(X ⊕ Y ) = Adg0(Adt−1
0
− 1)Y +Adg0X,

or, in block form,

Dx0q = Adg0

[
1LT

0
0 Ad

t−1
0
− 1LG/T

]
.

The linear operator Adg is an m-orthogonal endomorphism of LG, so that detAdg = ±1.
On the other hand, since G = U(k) is connected, detAdg = detAd1 = 1. Hence,

detDx0q = det(Adt−1 − 1LG/T
).

Now observe that LG/T = L⊥T is equal to

{
X ∈ u(k) ; Xjj = 0 ∀j = 1, . . . , k

}
⊂ u(k) = LG.
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Given t = diag (exp(iθ1), . . . , exp(iθk)) ∈ Tk ⊂ U(k), we can explicitly compute the
eigenvalues of Adt−1 acting on LG/T. More precisely, they are

{
exp(−i(θi − θj)) ; 1 ≤ i 6= j ≤ k

}
.

Consequently
detDx0q = det(Adt−1 − 1) = |∆k(t)|2. ⊓⊔

Lemma 7.4.32 shows that q is an orientation preserving map. Using Lemma 7.4.31 and
Exercise 7.3.27 we deduce deg q = |W| = k!. Step 1 is completed.

Step 2 follows immediately from Lemma 7.4.32. More precisely, we deduce

∫

G
ωϕ =

1

k!

(∫

G/T
dµ

)

︸ ︷︷ ︸
=:Ck

∫

Tk

ϕ(θ)∆k(θ)dθ.

To complete Step 3, that is, to find the constant Ck, we apply the above equality in the
special case ϕ = 1. so that ωϕ = dvk. We deduce

Vk =
Ck
k!

∫

Tk

∆k(θ)dθ,

so that

Ck =
Vkk!∫

Tk ∆k(θ)dθ
.

Thus, we have to show that
∫

Tk

∆k(θ)dθ = k!vol (T) = (2π)kk!.

To compute the last integral we observe that ∆k(θ) can be expressed as a Vandermonde
determinant

∆k(θ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

eiθ
1

eiθ
2 · · · eiθ

k

e2iθ
1

e2iθ
2 · · · e2iθ

k

...
...

...
...

ei(k−1)θ
1

ei(k−1)θ
2 · · · ei(k−1)θ

k

∣∣∣∣∣∣∣∣∣∣∣∣

This shows that we can write ∆k as a trigonometric polynomial

∆k(θ) =
∑

σ∈Sk
ǫ(σ)eσ(θ),

where, for any permutation σ of {1, 2, . . . , k} we denoted by ǫ(σ) its signature, and by
eσ(θ) the trigonometric monomial

eσ(θ) = eσ(θ
1, . . . , θk) =

∏k
j=1 e

iσ(j)θj

∏k
j=1 e

iθj
.
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The monomials eσ are orthogonal with respect to the L2-metric on Tk, and we deduce

∫

Tk

|∆k(θ)|2dθ =
∑

σ∈Sk

∫ k

T

|eσ(θ)|2dθ = (2π)kk!.

This completes the proof of Weyl’s integration formula. ⊓⊔

Proof of Lemma 7.4.30 We follow Weyl’s original approach ([98, 99]) in a modern
presentation.

Let X = C(T,C) denote the Banach space of continuous complex valued functions on
T. We will prove that

lim
n→∞

1

n+ 1

n∑

j=0

f(τ j) =

∫

T
fdt, ∀f ∈ X. (7.4.3)

If U ⊂ T is an open subset and f is a continuous, non-negative function supported in U
(f 6≡ 0) then, for very large n,

1

n+ 1

n∑

j=0

f(τ j) ≈

∫

T
fdt 6= 0.

This means that f(τ j) 6= 0, i.e., τ j ∈ U for some j.
To prove the equality (7.4.3) consider the continuous linear functionals Ln, L : X → C

Ln(f) =
1

n+ 1

n∑

j=0

f(τ j), and L(f) =

∫

T
fdt.

We have to prove that
lim
n→∞

Ln(f) = L(f) f ∈ X. (7.4.4)

It suffices to establish (7.4.4) for any f ∈ S, where S is a subset of X spanning a dense
subspace. We let S be the subset consisting of the trigonometric monomials

eζ(θ
1, . . . , θk) = exp(iζ1θ

1) · · · exp(iζkθk), ζ = (ζ1, . . . , ζk) ∈ Zk.

The Weierstrass approximation theorem guarantees that this S spans a dense subspace.
We compute easily

Ln(eζ) =
1

n+ 1

n∑

j=0

ejζ(α) =
1

n+ 1

eζ(α)
n+1 − 1

eζ(α) − 1
.

Since 1, 1
2πα1, . . . ,

1
2παk are linearly independent over Q we deduce that eζ(α) 6= 1 for all

ζ ∈ Zk. Hence

lim
n→∞

Ln(eζ) = 0 =

∫

T
eζdt = L(eζ).

Lemma 7.4.30 is proved. ⊓⊔



288 Cohomology

7.4.5 The Poincaré polynomial of a complex Grassmannian

After this rather long detour we can continue our search for the Poincaré polynomial of
Grk(C

n).

Let S0 denote the canonical subspace Ck →֒ Cn. The tangent space of Grk(C
n) at S0

can be identified with the linear space E of complex linear maps Ck → Cℓ, ℓ = n− k. The
isotropy group at S0 is H = U(k)× U(ℓ).

Exercise 7.4.33. Prove that the isotropy group H acts on E = {L : Ck → Cℓ} by

(T, S) · L = SLT ∗ ∀L ∈ E, T ∈ U(k), S ∈ U(ℓ). ⊓⊔

Consider the maximal torus T k × T ℓ ⊂ H formed by the diagonal unitary matrices.
We will denote the elements of T k by

ε := (ε1, . . . , εk), εα = e2πiτ
α
,

and the elements of T ℓ by

e := (e1, . . . , eℓ), ej = exp(2πiθj),

The normalized measure on T k is then

dτ = dτ1 ∧ · · · ∧ dτk,

and the normalized measure on T ℓ is

dθ = dθ1 ∧ · · · ∧ dθℓ.

The element (ε, e) ∈ T k × T ℓ viewed as a linear operator on E has eigenvalues

{εαej ; 1 ≤ α ≤ k 1 ≤ j ≤ ℓ}.

Using the Weyl integration formula we deduce that the Poincaré polynomial of Grk(C
n)

is

Pk,ℓ(t) =
1

k!ℓ!

∫

T k×T ℓ

∏

α,j

|1 + tεαej |2|∆k(ε(τ ))|2|∆ℓ(e(θ))|2dτ ∧ dθ

=
1

k!ℓ!

∫

T k×T ℓ

∏

α,j

|εα + tej |2|∆k(ε(τ ))|2|∆ℓ(e(θ))|2dτ ∧ dθ.

We definitely need to analyze the integrand in the above formula. Set

Ik,ℓ(t) :=
∏

α,j

(εα + tej)∆k(ε)∆ℓ(e),

so that

Pk,ℓ(t) =
1

k!ℓ!

∫

T k×T ℓ

Ik,ℓ(t)Ik,ℓ(t)dτ ∧ dθ. (7.4.5)
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Figure 7.4: The conjugate of (6,5,5,3,1) is (5,4,4,3,3,1)

We will study in great detail the formal expression

Jk,ℓ(t;x; y) =
∏

α,j

(xα + tyj).

The Weyl group W = Sk × Sℓ acts on the variables (x; y) by separately permuting the
x-components and the y-components. If (σ, ϕ) ∈W then

Jk,ℓ(t;σ(x);ϕ(y)) = Jk,ℓ(t;x; y).

Thus we can write Jk,ℓ as a sum

Jk,ℓ(t) =
∑

d≥0
tdQd(x)Rd(y)

where Qd(x) and Rd(y) are symmetric polynomials in x and respectively y.

To understand the nature of these polynomials we need to introduce a very useful class
of symmetric polynomials, namely the Schur polynomials. This will require a short trip in
the beautiful subject of symmetric polynomials. An extensive presentation of this topic is
contained in the monograph [67].

A partition is a compactly supported, decreasing function

λ : {1, 2, . . .} → {0, 1, 2, . . .}.

We will describe a partition by an ordered finite collection (λ1, λ2, . . . , λn), where λ1 ≥
· · · ≥ λn ≥ λn+1 = 0. The length of a partition λ is the number

L(λ) := max{n ; λn 6= 0}.

The weight of a partition λ is the number

|λ| :=
∑

n≥1
λn.

Traditionally, one can visualize a partition using Young diagrams. A Young diagram
is an array of boxes arranged in left justified rows (see Figure 7.4). Given a partition
(λ1 ≥ · · · ≥ λn), its Young diagram will have λ1 boxes on the first row, λ2 boxes on the
second row etc.
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Any partition λ has a conjugate λ̂ defined by

λ̂n := #{j ≥ 0 ; λj ≥ n}.

The Young diagram of λ̂ is the transpose of the Young diagram of λ (see Figure 7.4).
A strict partition is a partition which is strictly decreasing on its support. Denote

by Pn the set of partitions of length ≤ n, and by P∗n the set of strict partitions λ of
length n − 1 ≤ L(λ) ≤ n. Clearly P∗n ⊂ Pn. Denote by δ = δn ∈ P∗n the partition
(n− 1, n − 2, . . . , 1, 0, . . .).

Remark 7.4.34. The correspondence Pn ∋ λ 7→ λ+ δn ∈ P∗n. is a bijection. ⊓⊔

To any λ ∈ P∗n we can associate a skew-symmetric polynomial

aλ(x1, . . . , xn) := det(xλij ) =
∑

σ∈Sn
ǫ(σ)xλiσ(i).

Note that aδn is the Vandermonde determinant

aδ(x1, . . . , xn) = det(xn−1−ii ) =
∏

i<j

(xi − xj) = ∆n(x).

For each λ ∈ Pn we have λ+ δ ∈ P∗n, so that aλ+δ is well defined and nontrivial.
Note that aλ+δ vanishes when xi = xj , so that the polynomial aλ+δ(x) is divisible by

each of the differences (xi − xj) and consequently, it is divisible by aδ. Hence

Sλ(x) :=
aλ+δ(x)

aδ(x)

is a well defined polynomial. It is a symmetric polynomial since each of the quantities
aλ+δ and aδ is skew-symmetric in its arguments. The polynomial Sλ(x) is called the
Schur polynomial corresponding to the partition λ. Note that each Schur polynomial Sλ
is homogeneous of degree |λ|. We have the following remarkable result.

Lemma 7.4.35.
Jk,ℓ(t) =

∑

λ∈Pk,ℓ

t|λ|Sλ̂(x)Sλ(y),

where
Pk,ℓ :=

{
λ ; λ1 ≤ k L(λ) ≤ ℓ

}
.

For each λ ∈ Pk,ℓ we denoted by λ the complementary partition

λ = (k − λℓ, k − λℓ−1, . . . , k − λ1).

Geometrically, the partitions in Pk,ℓ are precisely those partitions whose Young dia-
grams fit inside a ℓ× k rectangle. If λ is such a partition then the Young diagram of the
complementary of λ is (up to a 180◦ rotation) the complementary of the diagram of λ in
the ℓ× k rectangle (see Figure 7.5).
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Figure 7.5: The complementary of (6, 4, 4, 2, 1, 0) ∈ P7,6 is (7, 6, 5, 3, 3, 1) ∈ P6,7

For a proof of Lemma 7.4.35 we refer to [67], Section I.4, Example 5. The true essence
of the Schur polynomials is however representation theoretic, and a reader with a little
more representation theoretic background may want to consult the classical reference
[66], Chapter VI, Section 6.4, Theorem V, for a very exciting presentation of the Schur
polynomials, and the various identities they satisfy, including the one in Lemma 7.4.35.

Using (7.4.5), Lemma 7.4.35, and the definition of the Schur polynomials, we can
describe the Poincaré polynomial of Grk(C

n) as

Pk,ℓ(t) =
1

k!ℓ!

∫

T k×T ℓ

∣∣∣∣∣∣
∑

λ∈Pk,ℓ

t|λ|aλ̂+δk(ε)aλ+δℓ(e)

∣∣∣∣∣∣

2

dτ ∧ dθ. (7.4.6)

The integrand in (7.4.6) is a linear combination of trigonometric monomials εr11 · · · εrkk ·
es11 · · · esℓℓ , where the r-s and s-s are nonnegative integers.

Note that if λ, µ ∈ Pk,ℓ are distinct partitions, then the terms aλ̂+δ(ε) and aµ̂+δ(ε)
have no monomials in common. Hence∫

T k

aλ̂+δ(ε)aµ̂+δ(ε) dτ = 0.

Similarly, ∫

T ℓ

aλ+δ(e)aµ+δ(e)dθ = 0, if λ 6= µ.

On the other hand, a simple computation shows that
∫

T k

|aλ̂+δ(ε)|2dτ = k!,

and ∫

T ℓ

|aλ+δ(e)|2dθ = ℓ!.

In other words, the terms (
1

k!ℓ!

)1/2

aλ̂+δ(ε)aλ+δ(e)

form an orthonormal system in the space of trigonometric (Fourier) polynomials endowed
with the L2 inner product. We deduce immediately from (7.4.6) that

Pk,ℓ(t) =
∑

λ∈Pk,ℓ

t2|λ|. (7.4.7)
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l+1 l+1

Figure 7.6: The rectangles Rℓ+1 and Rk+1 are “framed” inside Rk+1
ℓ+1

The map

Pk,ℓ ∋ λ 7→ λ ∈ Pℓ,k,

is a bijection so that

Pk,ℓ(t) =
∑

λ∈Pℓ,k

t2|λ| = Pℓ,k(t). (7.4.8)

Computing the Betti numbers, i.e., the number of partitions in Pk,ℓ with a given weight
is a very complicated combinatorial problem, and currently there are no exact general
formulæ. We will achieve the next best thing, and rewrite the Poincaré polynomial as a
“fake” rational function.

Denote by bk,ℓ(w) the number of partitions λ ∈ Pℓ,k with weight |λ| = w. Hence

Pk,ℓ(t) =

kℓ∑

w=1

bk,ℓ(w)t
2w.

Alternatively, bk,ℓ(w) is the number of Young diagrams of weight w which fit inside a k× ℓ
rectangle.

Lemma 7.4.36.

bk+1,ℓ+1(w) = bk,ℓ+1(w) + bk+1,ℓ(w − ℓ− 1).

Proof. Look at the (k + 1)× ℓ rectangle Rk+1 inside the (k + 1)× (l + 1)-rectangle Rk+1
ℓ+1

(see Figure 7.6). Then

bk+1,ℓ+1(w) = #
{
diagrams of weight w which fit inside Rk+1

ℓ+1

}

= #
{
diagrams which fit inside Rk+1

}

+#
{
diagrams which do not fit inside Rk+1

}
.

On the other hand,

bk+1,ℓ = #
{
diagrams which fit inside Rk+1

}
.
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If a diagram does not fit inside Rk+1 this means that its first line consists of ℓ+ 1 boxes.
When we drop this line, we get a diagram of weight w − ℓ − 1 which fits inside the
k × (ℓ + 1) rectangle Rℓ+1 of Figure 7.6. Thus, the second contribution to bk+1,ℓ+1(w) is
bk,ℓ+1(w − ℓ− 1). ⊓⊔

The result in the above lemma can be reformulated as

Pk+1,ℓ+1(t) = Pk+1,ℓ(t) + t2(ℓ+1)Pk,ℓ+1(t).

Because the roles of k and ℓ are symmetric (cf. (7.4.8)) we also have

Pk+1,ℓ+1(t) = Pk,ℓ+1(t) + t2(k+1)Pk+1,ℓ(t).

These two equality together yield

Pk,ℓ+1(1− t2(ℓ+1) = Pk+1,ℓ(1− t2(k+1)).

Let m = k + ℓ + 1 and set Qd,m(t) = Pd,m−d(t) = PGd(m,C)(t). The last equality can be
rephrased as

Qk+1,m(t) = Qk,m ·
1− tm−k
1− t2(k+1)

,

so that

Qk+1,m(t) =
1− t2(m−k)
1− t2(k+1)

· 1− t
2(m−k+1)

1− t2k · · · 1− t
2(n−1)

1− t4 .

Now we can check easily that b1,m−1(w) = 1, i.e.,

Q1,m(t) = 1 + t2 + t4 + · · · + t2(m−1) =
1− t2m
1− t2 .

Hence

PGk(m,C)(t) = Qk,m(t) =
(1− t2(m−k+1)) · · · (1− t2m)

(1− t2) · · · (1− t2k)

=
(1− t2) · · · (1− t2m)

(1− t2) · · · (1− t2k)(1− t2) · · · (1− t2(m−k)) .

Remark 7.4.37. (a) The invariant theoretic approach in computing the cohomology
of Grk(C

n) was used successfully for the first time by C. Ehresmann[32]. His method
was then extended to arbitrary compact, oriented symmetric spaces by H. Iwamoto [50].
However, we followed a different avenue which did not require Cartan’s maximal weight
theory.
(b) We borrowed the idea of using the Weyl’s integration formula from Weyl’s classical
monograph [102]. In turn, Weyl attributes this line of attack to R. Brauer. Our strategy
is however quite different from Weyl’s. Weyl uses an equality similar to (7.4.5) to produce
an upper estimate for the Betti numbers (of U(n) in his case) and then produces by hand
sufficiently many invariant forms. The upper estimate is then used to established that
these are the only ones. We refer also to [93] for an explicit description of the invariant
forms on Grassmannians. ⊓⊔
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Exercise 7.4.38. Show that the cohomology algebra of CPn is isomorphic to the truncated
ring of polynomials

R[x]/(xn+1),

where x is a formal variable of degree 2 while (xn+1) denotes the ideal generated by xn+1.

Hint: Describe Λ•invCP
n explicitly. ⊓⊔

7.5 Čech cohomology

In this last section we return to the problem formulated in the beginning of this chapter:
what is the relationship between the Čech and the DeRham approach. We will see that
these are essentially two equivalent facets of the same phenomenon. Understanding this
equivalence requires the introduction of a new and very versatile concept namely, the
concept of sheaf. This is done in the first part of the section. The second part is a fast
paced introduction to Čech cohomology. A concise yet very clear presentation of these
topics can be found in [47]. For a very detailed presentation of the classical aspects of
subject we refer to [38]. For a modern presentation, from the point of view of derived
categories we refer to the monographs [49, 54].

7.5.1 Sheaves and presheaves

Consider a topological space X. The topology TX on X, i.e., the collection of open subsets,
can be organized as a category. The morphisms are the inclusions U →֒ V . A presheaf of
Abelian groups on X is a contravariant functor S : TX → Ab.

In other words, S associates to each open set an Abelian group S(U), and to each
inclusion U →֒ V , a group morphism rUV : S(V )→ S(U) such that, if U →֒ V →֒ W , then
rUW = rUV ◦ rVW . If s ∈ S(V ) then, for any U →֒ V , we set

s |U := rUV (s) ∈ S(U).

If f ∈ S(U) then we define dom f := U .

The presheaves of rings, modules, vector spaces are defined in an obvious fashion.

Example 7.5.1. Let X be a topological space. For each open set U ⊂ X we denote by
C(U) the space of continuous functions U → R. The assignment U 7→ C(U) defines a
presheaf of R-algebras on X. The maps rUV are determined by the restrictions |U : C(V )→
C(U).

If X is a smooth manifold we get another presheaf U 7→ C∞(U). More generally, the
differential forms of degree k can be organized in a presheaf Ωk(•). If E is a smooth vector
bundle, then the E-valued differential forms of degree k can be organized as a presheaf of
vector spaces

U 7→ ΩkE(U) = Ωk(E |U ).
IfG is an Abelian group equipped with the discrete topology, then the G-valued continuous
functions C(U,G) determine a presheaf called the constant G-presheaf which is denoted
by GX . ⊓⊔
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Definition 7.5.2. A presheaf S on a topological space X is said to be a sheaf if the
following hold.

(a) If (Uα) is an open cover of the open set U , and f, g ∈ S(U) satisfy f |Uα= g |Uα , ∀α,
then f = g.

(b) If (Uα) is an open cover of the open set U , and fα ∈ S(Uα) satisfy

fα |Uα∩Uβ
= fβ |Uα∩Uβ

∀Uα ∩ Uβ 6= ∅

then there exists f ∈ S(U) such that, f |Uα= fα, ∀α. ⊓⊔

Example 7.5.3. All the presheaves discussed in Example 7.5.1 are sheaves. ⊓⊔

Example 7.5.4. Consider the presheaf S over R defined by

S(U) := continuous, bounded functions f : U → R.

We let the reader verify this is not a sheaf since the condition (b) is violated. The reason
behind this violation is that in the definition of this presheaf we included a global condition
namely the boundedness assumption. ⊓⊔

Definition 7.5.5. Let X be a topological space, and R a commutative ring with 1. We
equip R with the discrete topology

(a) A space of germs over X (“espace étalé” in the French literature) is a topological space
E, together with a continuous map π : E→ X satisfying the following conditions.

(a1) The map π is a local homeomorphism that is, each point e ∈ E has a neighborhood
U such that π |U is a homeomorphism onto the open subset π(U) ⊂ X. For every
x ∈ X, the set Ex := π−1(x), is called the stalk at x.

(a2) There exist continuous maps

· : R× E→ E,

and

+ :
{
(u, v) ∈ E× E; π(u) = π(v)

}
→ E,

such that

∀r ∈ R, ∀x ∈ X, ∀u, v ∈ Ex we have r · u ∈ Ex, u+ v ∈ Ex,

and with respect to the operations +, ·, the stalk Ex is an R-module, ∀x ∈ X.

(b) A section of a space of germs π : E→ X over a subset Y ⊂ X is a continuous function
s : Y → E such that s(y) ∈ Ey, ∀y ∈ Y . The spaces of sections defined over Y will be
denoted by E(Y ). ⊓⊔
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Example 7.5.6. (The space of germs associated to a presheaf). Let S be a
presheaf of Abelian groups over a topological space X. For each x ∈ X define an equiva-
lence relation ∼x on

⊔

U∋x
S(U), U runs through the open neighborhoods of X,

by
f ∼x g ⇐⇒ ∃ open U ∋ x such thatf |U= g |U .

The equivalence class of f ∈ ⊔U∋x S(U) is denoted by [f ]x, and it is called the germ of f
at x. Set

Sx := {[f ]x ; dom f ∋ x}, and Ŝ :=
⊔

x∈X
Sx.

There exists a natural projection π : Ŝ → X which maps [f ]x to x. The “fibers” of this
map are π−1(x) = Sx – the germs at x ∈ X. Any f ∈ S(U) defines a subset

Uf =
{
[f ]u ; u ∈ U

}
⊂ Ŝ.

We can define a topology in Ŝ by indicating a basis of neighborhoods. A basis of open
neighborhoods of [f ]x ∈ Ŝ is given by the collection

{
Ug ; U ∋ x, g ∈ S(U) [g]x = [f ]x

}
.

We let the reader check that this collection of sets satisfies the axioms of a basis of
neighborhoods as discussed e.g. in [58].

With this topology, each f ∈ S(U) defines a continuous section of π over U

[f ] : U ∋ u 7→ [f ]u ∈ Su.

Note that each fiber Sx has a well defined structure of Abelian group

[f ]x + [g]x = [(f + g) |U ]x U ∋ x is open and U ⊂ dom f ∩ dom g.

(Check that this addition is independent of the various choices.) Since π : f(U)→ U is a

homeomorphism, it follows that π : Ŝ → X is a space of germs. It is called the space of
germs associated to the presheaf S. ⊓⊔

If the space of germs associated to a sheaf S is a covering space, we say that S is a
sheaf of locally constant functions (valued in some discrete Abelian group). When the
covering is trivial, i.e., it is isomorphic to a product X ×

{
discrete set

}
, then the sheaf is

really the constant sheaf associated to a discrete Abelian group.

Example 7.5.7. (The sheaf associated to a space of germs). Consider a space of
germs E

π→ X over the topological space X. For each open subset U ⊂ X, we denote by
E(U) the space of continuous sections U → E. The correspondence U 7→ E(U) clearly a
sheaf. E is called the sheaf associated to the space of germs. ⊓⊔
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Proposition 7.5.8. (a) Let E
π→ X be a space of germs. Then Ê = E.

(b) A presheaf S over the topological space X is a sheaf if and only if Ŝ = S. ⊓⊔

Exercise 7.5.9. Prove the above proposition. ⊓⊔

Definition 7.5.10. If S is a presheaf over the topological space X, then the sheaf Ŝ is
called the sheaf associated to S, or the sheafification of S. ⊓⊔

Definition 7.5.11. (a) Let A morphism between the (pre)sheaves of Abelian groups
(modules etc.) S and S̃ over the topological space X is a collection of morphisms of
Abelian groups (modules etc.) hU : S(U) → S̃(U), one for each open set U ⊂ X, such
that, when V ⊂ U , we have hV ◦ rVU = r̃VU ◦ hU . Above, rVU denotes the restriction
morphisms of S, while the r̃VU denotes the restriction morphisms of S̃. A morphism h is
said to be injective if each hU is injective.

(b) Let S be a presheaf over the topological space X. A sub-presheaf of S is a pair (T, ı),
where T is a presheaf over X, and ı : T → S is an injective morphism. The morphism ı is
called the canonical inclusion of the sub-presheaf. ⊓⊔

Let h : S→ T be a morphism of presheaves. The correspondence

U 7→ kerhU ⊂ S(U),

defines a presheaf called the kernel of the morphism h. It is a sub-presheaf of S.

Proposition 7.5.12. Let h : S → T be a morphism of presheaves. If both S and T are
sheaves, then so is the kernel of h. ⊓⊔

The proof of this proposition is left to the reader as an exercise.

Definition 7.5.13. (a) Let Ei
πi→ X (i = 0, 1) be two spaces of germs over the same

topological space X. A morphism of spaces of germs is a continuous map h : E0 → E1

satisfying the following conditions.

(a1) π1 ◦ h = π0, i.e., h(π
−1
0 (x)) ⊂ π−11 (x), ∀x ∈ X.

(a2) For any x ∈ X, the induced map hx : π−10 (x) → π−11 (x) is a morphism of Abelian
groups (modules etc.).

The morphism h is called injective if each hx is injective.

(b) Let E
π→ X be a space of germs. A subspace of germs is a pair (F, ), where F is a

space of germs over X and  : F → E is an injective morphism. ⊓⊔

Proposition 7.5.14. (a) Let h : E0 → E1 be a morphism between two spaces of germs

over X. Then h(E0)
π1→ X is a space of germs over X called the image of h. It is denoted

by Imh, and it is a subspace of E1. ⊓⊔

Exercise 7.5.15. Prove the above proposition. ⊓⊔
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Lemma 7.5.16. Consider two sheaves S and T, and let h : S→ T be a morphism. Then
h induces a morphism between the associated spaces of germs ĥ : Ŝ→ T̂. ⊓⊔

The definition of ĥ should be obvious. If f ∈ SU , and x ∈ U , then ĥ([f ]x) = [h(f)]x,
where h(f) is now an element of T(U). We let the reader check that ĥ is independent of
the various choices, and that it is a continuous map Ŝ→ T̂ with respect to the topologies
described in Example 7.5.6.

The sheaf associated to the space of germs Im ĥ is a subsheaf of T called the image of
h, and denoted by Imh.

Exercise 7.5.17. Consider a morphism of sheaves over X, h : S→ T. Let U ⊂ X be an
open set. Show that a section g ∈ T(U) belongs to (Imh)(U) if an only if, for every x ∈ X,
there exists an open neighborhood Vx ⊂ U , such that g |Vx= h(f), for some f ∈ S(Vx). ⊓⊔

☞ Due to Proposition 7.5.8(a), in the sequel we will make no distinction between sheaves
and spaces of germs.

Definition 7.5.18. (a) A sequence of sheaves and morphisms of sheaves,

· · · → Sn
hn→ Sn+1

hn+1→ Sn+2 → · · · ,

is said to be exact if Imhn = ker hn+1, ∀n.
(b) Consider a sheaf S over the space X. A resolution of S is a long exact sequence

0 →֒ S
ı→֒ S0

d0→ S1
d1→ · · · → Sn

dn→ Sn+1 → · · · . ⊓⊔

Exercise 7.5.19. Consider a short exact sequence of sheaves

0→ S−1 → S0 → S1 → 0.

For each open set U define S(U) = S0(U)/S−1(U).

(a) Prove that U 7→ S(U) is a presheaf.

(b) Prove that S1 ∼= ¯̂
S = the sheaf associated to the presheaf S. ⊓⊔

Example 7.5.20. (The DeRham resolution). Let M be a smooth n-dimensional
manifold. Using the Poincaré lemma and the Exercise 7.5.17 we deduce immediately that
the sequence

0 →֒ RM →֒ Ω0
M

d→ Ω1
M

d→ · · · d→ ΩnM → 0

is a resolution of the constant sheaf RM . ΩkM denotes the sheaf of k-forms on M while d
denotes the exterior differentiation. ⊓⊔
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7.5.2 Čech cohomology

Let U 7→ S(U) be a presheaf of Abelian groups over a topological space X. Consider
an open cover U = (Uα)α∈A of X. A simplex associated to U is a nonempty subset
A =

{
α0, . . . , αq

}
⊂ A, such that

UA :=

q⋂

0

Uαi 6= ∅.

We define dimA to be one less the cardinality of A, dimA = |A| − 1. The set of all
q-dimensional simplices is denoted by Nq(U). Their union,

⋃

q

Nq(U)

is denoted by N(U), and it is called the nerve of the cover.
For every nonnegative integer q we set ∆q := {0, . . . , q}, and we define an ordered

q-simplex to be a map σ : ∆q → A with the property that σ(∆q) is a simplex of N(U),

possibly of dimension < q. We will denote by ~Nq(U) the set of ordered q-simplices, and
we will use the symbol (α0, . . . , αq) to denote an ordered q-simplex σ : ∆q → A such that
σ(k) = αk.

Define
Cq(S,U) :=

∏

σ∈~Nq(U)

Sσ, Sσ := S(Uσ(∆q)).

The elements of Cq(S,U) are called Čech q-cochains subordinated to the cover U. In other
words, a q-cochain c associates to each ordered q-simplex σ an element 〈c, σ〉 ∈ Sσ.

We have face operators

∂j = ∂j : ~Nq(U)→ ~Nq−1(U), j = 0, . . . , q,

where for a ordered q-simplex σ = (α0, . . . , αq), we set

∂jσ = ∂jqσ = (α0, . . . , α̂j , . . . , αq) ∈ U(q−1),

and where a hat “̂” indicates a missing entry.

Exercise 7.5.21. Prove that ∂iq−1∂
j
q = ∂j−1q−1∂

i
q, for all j > i. ⊓⊔

We can now define an operator

δ : Cq−1(S,U)→ Cq(S,U),

which assigns to each (q−1)-cochain c, a q-cochain δc whose value on an ordered q-simplex
σ is given by

〈δc, σ〉 :=
q∑

j=0

(−1)j〈c, ∂jσ〉 |Uσ .

Using Exercise 7.5.21 above we deduce immediately the following result.
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Lemma 7.5.22. δ2 = 0 so that

0 →֒ C0(S,U)
δ→ C1(S,U)

δ→ · · · δ→ Cq(S,U)
δ→ · · ·

is a cochain complex.

The cohomology of this cochain complex is called the Čech cohomology of the cover U
with coefficients in the pre-sheaf S.

Example 7.5.23. Let U and S as above. A 0-cochain is a correspondence which associates
to each open set Uα ∈ U an element cα ∈ S(Uα). It is a cocycle if, for any pair (α, β) such
that Uα ∩ β 6= ∅, we have

cβ − cα = 0.

Observe that if S is a sheaf, then the collection (cα) determines a unique section of S.
A 1-cochain associates to each pair (α, β) such that Uαβ 6= ∅ an element

cαβ ∈ S(Uαβ).

This correspondence is a cocycle if, for any ordered 2-simplex (α, β, γ) we have

cβγ − cαγ + cαβ = 0.

For example, if X is a smooth manifold, and U is a good cover, then we can associate to
each closed 1-form ω ∈ Ω1(M) a Čech 1-cocycle valued in RX as follows.

First, select for each Uα a solution fα ∈ C∞(Uα) of

dfα = ω.

Since d(fα− fβ) ≡ 0 on Uαβ , we deduce there exist constants cαβ such that fα− fβ = cαβ .
Obviously this is a cocycle, and it is easy to see that its cohomology class is independent
of the initial selection of local solutions fα. Moreover, if ω is exact, this cocycle is a
coboundary. In other words we have a natural map

H1(X)→ H1
(
N(U),RX

)
.

We will see later this is an isomorphism. ⊓⊔

Definition 7.5.24. Consider two open covers U = (Uα)α∈A, and V = (Vβ)β∈B of the same
topological space X. We say V is finer than U, and we write this U ≺ V, if there exists a
map ̺ : B→ A, such that

Vβ ⊂ U̺(β) ∀β ∈ B.

The map ̺ is said to be a refinement map. ⊓⊔

Proposition 7.5.25. Consider two open covers U = (Uα)α∈A and V = (Vβ)β∈B of the
same topological space X such that U ≺ V. Fix a sheaf of Abelian groups S. Then the
following are true.
(a) Any refinement map ̺ induces a cochain morphism

̺∗ :
⊕

q

Cq(U, S)→
⊕

q

Cq(V, S).
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(b) If r : A → B is another refinement map, then ̺∗ is cochain homotopic to r∗. In
particular, any relation U ≺ V defines a unique morphism in cohomology

ıVU : H•(U, S)→ H•(V, S).

(c) If U ≺ V ≺W, then
ıWU = ıWV ◦ ıVU.

Proof. (a) We define ̺∗ : Cq(U)→ Cq(V) by

S(Vσ) ∋ 〈̺∗(c), σ〉 := 〈c, ̺(σ)〉 |Vσ ∀c ∈ Cq(U) σ ∈ V(q)),

where, by definition, ̺(σ) ∈ Aq is the ordered q-simplex (̺(β0), . . . , ̺(βq)). The fact that
̺∗ is a cochain morphism follows immediately from the obvious equality

̺ ◦ ∂jq = ∂jq ◦ ̺.

(b) We define hj : ~Nq−1(V)→ ~Nq(U) by

hj(β0, . . . , βq−1) = (̺(β0), . . . , ̺(βj), r(βj), · · · , r(βq−1)).

The reader should check that hj(σ) is indeed an ordered simplex of U for any ordered
simplex σ of V. Note that Vσ ⊂ Uhj(σ) ∀j. Now define

χ := χq : C
q(U)→ Cq−1(V)

by

〈χq(c), σ〉 :=
q−1∑

j=0

(−1)j〈c, hj(σ)〉 |Vσ ∀c ∈ Cq(U) ∀σ ∈ V(q−1).

We will show that

δ ◦ χq(c) + χq+1 ◦ δ(σ) = ̺∗(c)− r∗(c) ∀c ∈ Cq(U).

Let σ = (β0, . . . , βq) ∈ ~Nq(V), and set

̺(σ) := (λ0, . . . , λq), r(σ) = (µ0, . . . , µq) ∈ U(q),

so that,
hj(σ) = (λ0, . . . , λj , µj , . . . , µq).

Then
〈χ ◦ δ(c), σ〉 =

∑
(−1)j〈δc, hj(σ)〉 |Vσ

=

q∑

j=0

(−1)j(
q+1∑

k=0

(−1)k〈c, ∂kq+1hj(σ)〉 |Vσ )

=

q∑

j=0

(−1)j
(

j∑

k=0

(−1)k〈c, (λ0, . . . , λ̂j , . . . , λj , µj, . . . , µq)〉 |Vσ
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+

q∑

ℓ=j

(−1)ℓ+1〈c, (λ0, . . . , λj , µj, . . . , µ̂k, . . . , µq)〉 |Vσ




=

q∑

j=0

(−1)j
(
j−1∑

k=0

(−1)k〈c, (λ0, . . . , λ̂j , . . . , λj , µj, . . . , µq)〉 |Vσ

+

q∑

ℓ=j+1

(−1)ℓ+1〈c, (λ0, . . . , λj , µj , . . . , µ̂k, . . . , µq)〉 |Vσ




+

q∑

j=0

(−1)j
{
〈c, (λ0, . . . , λj−1, µj , . . . , µq)〉 |Vσ +〈c, (λ0, . . . , λj , µj+1, . . . , µq)〉 |Vσ

}
.

The last term is a telescopic sum which is equal to

〈c, (λ0, . . . , λq〉 |Vσ −〈c, (µ0, . . . , µq)〉 |Vσ= 〈̺∗c, σ〉 − 〈r∗c, σ〉.
If we change the order of summation in the first two term we recover the term 〈−δχc, σ〉.
Part (c) is left to the reader as an exercise. ⊓⊔

We now have a collection of graded groups
{
H•(U, S) ; U− open cover of X

}
,

and morphisms {
ıVU : H•(U, S)→ H•(V, S); U ≺ V

}
,

such that,
ıUU = 1 and ıWU = ıWV ◦ ıVU,

whenever U ≺ V ≺W. We can thus define the inductive (direct) limit

H•(X, S) := lim
U
H•(U, S).

The group H•(X, S) is called the Čech cohomology of the space X with coefficients in the
pre-sheaf S.

Let us briefly recall the definition of the direct limit. One defines an equivalence
relation on the disjoint union ∐

U

H•(U, S),

by
H•(U) ∋ f ∼ g ∈ H•(V)⇐⇒ ∃W ≻ U, V : ıWU f = ıWV g.

We denote the equivalence class of f by f . Then

lim
U
H•(U) =

(∐

U

H•(U, S)

)
/ ∼ .

Note that we have canonical morphisms,

ıU : H•(U, S)→ H•(X, S).
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Example 7.5.26. Let S be a sheaf over the space X. For any open cover U = (Uα),
a 0-cycle subordinated to U is a collection of sections fα ∈ S(Uα) such that, every time
Uα ∩ Uβ 6= ∅, we have

fα |Uαβ
= fβ |Uαβ

.

According to the properties of a sheaf, such a collection defines a unique global section
f ∈ S(X). Hence, H0(X, S) ∼= S(X). ⊓⊔

Proposition 7.5.27. Any morphism of pre-sheaves h : S0 → S1 over X induces a mor-
phism in cohomology

h∗ : H
•(X, S0)→ H•(X, S1).

Sketch of proof. Let U be an open cover of X. Define

h∗ : C
q(U, S0)→ Cq(U, S1),

by
〈h∗c, σ〉 = hU (〈c, σ〉) ∀c ∈ Cq(U, S0) σ ∈ U(q).

The reader can check easily that h∗ is a cochain map so it induces a map in cohomology

hU∗ : H•(U, S0)→ H•(U, S1)

which commutes with the refinements ıVU. The proposition follows by passing to direct
limits. ⊓⊔

Theorem 7.5.28. Let
0→ S−1

→ S0
p→ S1 → 0,

be an exact sequence of sheaves over a paracompact space X. Then there exists a natural
long exact sequence

· · · → Hq(X, S−1)
∗→ Hq(X, S0)

p∗→ Hq(X, S1)
δ∗→ Hq+1(X, S−1)→ · · · .

Sketch of proof. For each open set U ⊂ X define S(U) := S0(U)/S−1(U). Then the
correspondence U 7→ S(U) defines a pre-sheaf on X. Its associated sheaf is isomorphic
with S1 (see Exercise 7.5.19). Thus, for each open cover U we have a short exact sequence

0→ Cq(U, S−1)
→ Cq(U, S0)

π→ Cq(U, S)→ 0.

We obtain a long exact sequence in cohomology

· · · → Hq(U, S−1)→ Hq(U, S0)→ Hq(U, S)→ Hq+1(U,X)→ · · · .

Passing to direct limits we get a long exact sequence

· · · → Hq(X, S−1)→ Hq(X, S0)→ Hq(X, S)→ Hq+1(X, S−1)→ · · · .

To conclude the proof of the proposition we invoke the following technical result. Its proof
can be found in [89].
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Lemma 7.5.29. If two pre-sheaves S, S′ over a paracompact topological space X have
isomorphic associated sheaves then

H•(X, S) ∼= H•(X, S′). ⊓⊔

Definition 7.5.30. A sheaf S is said to be fine if, for any locally finite open cover U =
(Uα)α∈A there exist morphisms hα : S→ S with the following properties.

(a) For any α ∈ A there exists a closed set Cα ⊂ Uα, and hα(Sx) = 0 for x 6∈ Cα, where
Sx denotes the stalk of S at x ∈ X.

(b)
∑

α hα = 1S. This sum is well defined since the cover U is locally finite. ⊓⊔

Example 7.5.31. Let X be a smooth manifold. Using partitions of unity we deduce that
the sheaf ΩkX of smooth k-forms is fine. More generally, if E is a smooth vector bundle
over X then the space ΩkE of E-valued k-forms is fine. ⊓⊔

Proposition 7.5.32. Let S be a fine sheaf over a paracompact space X. Then Hq(X, S) ∼=
0 for q ≥ 1.

Proof. Because X is paracompact, any open cover admits a locally finite refinement. Thus,
it suffices to show that, for each locally finite open cover U = (Uα)α∈A, the cohomology
groups Hq(U, S) are trivial for q ≥ 1. We will achieve this by showing that the identity
map Cq(U, S) → Cq(U, S) is cochain homotopic with the trivial map. We thus need to
produce a map

χq : Cq(U, S)→ Cq−1(U, S),

such that
χq+1δq + δq−1χq = 1. (7.5.1)

Consider the morphisms hα : S→ S associated to the cover U postulated by the definition
of a fine sheaf. For every α ∈ A, σ ∈ ~Nq(U), and every f ∈ Cq(U, S), we construct
〈tα(f), σ〉 ∈ S(Uσ) as follows. Consider the open cover of Uσ

{
V = Uα ∩ Uσ, W := Uσ \ Cα

}
, (supphα ⊂ Cα).

Note that hαf |V ∩W= 0 and, according to the axioms of a sheaf, the section hα(f |V ) can
be extended by zero to a section 〈tα(f), σ〉 ∈ S(Uσ). Now, for every f ∈ Cq(U, S), define
χqf ∈ Cq−1(U, S) by

〈χq(f), σ〉 :=
∑

α

〈tα(f), σ〉.

The above sum is well defined since the cover U is locally finite. We let the reader check
that χq satisfies (7.5.1). ⊓⊔

Definition 7.5.33. Let S be a sheaf over a space X. A fine resolution is a resolution

0→ S →֒ S0
d→ S1

d→ · · · ,

such that each of the sheaves Sj is fine. ⊓⊔
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Theorem 7.5.34 (Abstract DeRham theorem). Let

0 →֒ S→ S0
d0→ S1

d1→ · · ·

be a fine resolution of the sheaf S over the paracompact space X. Then

0→ S0(X)
d0→ S1(X)

d1→ · · ·

is a cochain complex, and there exists a natural isomorphism

Hq(X, S) ∼= Hq(Sq(X)).

Proof. The first statement in the theorem can be safely left to the reader. For q ≥ 1,
denote by Zq the kernel of the sheaf morphism dq. We set for uniformity Z0 := S. We get
a short exact sequence of sheaves

0→ Zq → Sq → Zq+1 → 0 q ≥ 0. (7.5.2)

We use the associated long exact sequence in which Hk(X, Sq) = 0, for k ≥ 1, since Sq is
a fine sheaf. This yields the isomorphisms

Hk−1(X,Zq+1) ∼= Hk(X,Zq) k ≥ 2.

We deduce inductively that

Hm(X,Z0) ∼= H1(X,Zm−1) m ≥ 1. (7.5.3)

Using again the long sequence associated to (7.5.2), we get an exact sequence

H0(X,Zm−1)
dm−1
∗→ H0(X,Zm)→ H1(X,Zm−1)→ 0.

We apply the computation in Example 7.5.26, and we get

H1(X,Zm−1) ∼= Zm(X)/dm−1∗
(
Sm−1(X)

)
.

This is precisely the content of the theorem. ⊓⊔

Corollary 7.5.35. Let M be a smooth manifold. Then

H•(M,RM ) ∼= H•(M).

Proof. The manifold M is paracompact. We conclude using the fine resolution

0→ RM →֒ Ω0
M

d→ Ω1
M → · · · . ⊓⊔

Exercise 7.5.36. Describe explicitly the isomorphisms

H1(M) ∼= H1(M,RM ) and H2(M) ∼= H2(M,RM ). ⊓⊔
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Remark 7.5.37. The above corollary has a surprising implication. Since the Čech co-
homology is obviously a topological invariant, so must be the DeRham cohomology which
is defined in terms of a smooth structure. Hence if two smooth manifolds are homeo-
morphic they must have isomorphic DeRham groups, even if the manifolds may not be
diffeomorphic.

Such exotic situations do exist. In a celebrated paper [71], John Milnor has constructed
a family of nondiffeomorphic manifolds all homeomorphic to the sphere S7. More recently,
the work of Simon Donaldson in gauge theory was used by Michael Freedman to construct
a smooth manifold homeomorphic to R4 but not diffeomorphic with R4 equipped with the
natural smooth structure. (This is possible only for 4-dimensional vector spaces!) These
three mathematicians, J. Milnor, S. Donaldson and M. Freedman were awarded Fields
medals for their contributions. ⊓⊔

Theorem 7.5.38. (Leray) Let M be a smooth manifold and U = (Uα)α∈A a good cover
of M , i.e.,

Uσ ∼= RdimM .

Then
H•(U,RM ) ∼= H•(M).

Proof. Let Zk denote the sheaf of closed k-forms on M . Using the Poincaré lemma we
deduce

Zk(Uσ) = dΩk−1(Uσ).

We thus have a short exact sequence

0→ Cq(U,Zk)→ Cq(U,Ωk−1)
d∗→ Cq(U,Zk)→ 0.

Using the associated long exact sequence and the fact that Ωk−1 is a fine sheaf, we deduce
as in the proof of the abstract DeRham theorem that

Hq(U,RM ) ∼= Hq−1(U,Z1) ∼= · · ·

∼= H1(U,Zq−1) ∼= H0(U,Zq)/d∗H
0(U,Ωq−1) ∼= Zq(M)/dΩq−1(M) ∼= H•(M). ⊓⊔

Remark 7.5.39. The above result is a special case of a theorem of Leray: if S is a sheaf
on a paracompact space X, and U is an open cover such that

Hq(UA, S) = 0, ∀q ≥ 1 A ∈ N(U),

then H•(U, S) = H•(X, S). For a proof we refer to [38].
When GM is a constant sheaf, where G is an arbitrary Abelian group, we have a

Poincaré lemma (see [33], Chapter IX, Thm. 5.1.),

Hq(Rn, G) = 0 q ≥ 1.

Hence, for any good cover U

H•(M,GM ) = H•(U, GM ). ⊓⊔
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Remark 7.5.40. A combinatorial simplicial complex, or a simplicial scheme, is a collec-
tion K of nonempty, finite subsets of a set V with the property that any nonempty subset
B of a subset A ∈ K must also belong to the collection K, i.e.,

A ∈ K, B ⊂ A, B 6= ∅ =⇒ B ∈ K.

The set V is called the vertex set of K, while the subsets in K are called the (open) faces)
of the simplicial scheme. The nerve of an open cover is an example of simplicial scheme.

To any simplicial scheme K, with vertex set V , we can associate a topological space
|K| in the following way.

Denote by RV the vector space of all maps f : V → R with the property that f(v) = 0,
for all but finitely many v’s. In other words,

RV =
⊕

v∈V
R.

Note that RV has a canonical basis given by the Dirac functions

δv : V → R, δv(u) =

{
1 u = v

0 u 6= v.

We topologize RV by declaring a subset C ⊂ RV closed if the intersection of C with any
finite dimensional subspace of RV is a closed subset with respect to the Euclidean topology
of that finite dimensional subspace.

For any face F ⊂ K we denote by ∆F ⊂ RV the convex hull of the set
{
δv; v ∈ F

}
.

Note that ∆F is a simplex of dimension |F | − 1. Now set

|K| =
⋃

F∈K
∆F .

We will say that |K| is the geometric realization of the simplicial scheme K.
A result of Borsuk-Weil (see [14]) states that if U = (Uα)α∈A is a good cover of a com-

pact manifoldM , then the geometric realization of the nerve N(U) is homotopy equivalent
to M . Thus, the nerve of a good cover contains all the homotopy information about the
manifold. Since the DeRham cohomology is homotopy invariant, Leray’s theorem comes
as no suprise. What is remarkable is the explicit way in which one can extract the coho-
mological information from the combinatorics of the nerve.

While at this point, we should remark that any compact manifold admits finite good
covers. This shows that the homotopy type is determined by a finite, albeit very large,
set of data. ⊓⊔

Example 7.5.41. Let M be a smooth manifold and U = (Uα)α∈A a good cover of M . A
1-cocycle of RM is a collection of real numbers fαβ - one for each pair (α, β) ∈ A2 such
that Uαβ 6= ∅ satisfying

fαβ + fβγ + fγα = 0,

whenever Uαβγ 6= ∅. The collection is a coboundary if there exist the constants fα such
that fαβ = fβ − fα. This is precisely the situation encountered in Subsection 7.1.2. The
abstract DeRham theorem explains why the Čech approach is equivalent with the DeRham
approach. ⊓⊔
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Remark 7.5.42. Often, in concrete applications it is convenient to work with skew-
symmetric Čech cochains. A cochain c ∈ Cq(S,U) is skew-symmetric if for any ordered
q-simplex σ = (α0, . . . , αq), and for any permutation ϕ of ∆q we have

〈c, (α0, . . . , αq)〉 = ǫ(ϕ)〈c, (αϕ(0) , . . . , αϕ(q))〉.

One can then define a “skew-symmetric” Čech cohomology following the same strategy.
The resulting cohomology coincides with the cohomology described in this subsection. For
a proof of this fact we refer to [89]. ⊓⊔

Exercise 7.5.43. A sheaf of Abelian groups S on a paracompact space X is called soft if
for every closed subset C ⊂ X the restriction map S(X) → S(C) is surjective. The sheaf
S is called flabby if, for any open subset U ⊂ X, the restriction map S(X) → S(U) is
surjective.
(a) Prove that any flabby sheaf is also soft.
(b) Suppose 0→ S0 → S1 → S2 → 0 is a short exact sequence of sheaves on X. Show that
if S0 is a flabby sheaf, then the sequence of Abelian groups

0→ S0(X)→ S1(X)→ S2(X)→ 0

is exact. ⊓⊔

Exercise 7.5.44. Suppose X is a topological space and S is a sheaf of Abelian groups on
X.
(a) Prove that S admits a flabby resolution, i.e., there exists a sequence of flabby sheaves
over X, Sk, k ≥ 0, and morphisms of sheaves fk : Sk−1 → Sk, k = 0, 1, . . . , S−1 = S, such
that the sequence below is exacft

0→ S
f0−→ S0

f1−→ S1 −→ · · · .

(b) Prove that if

0→ S
f0−→ S0

f1−→ S1 −→ · · ·
is a flabby resolution of S, then the cohomology groups Hk(X, S) are isomorphic to the
cohomology groups of the cochain complex

S0(X)
f0−→ S1(X) −→ · · · . ⊓⊔



Chapter 8

Characteristic classes

We now have sufficient background to approach a problem formulated in Chapter 2: find a
way to measure the “extent of nontriviality” of a given vector bundle. This is essentially a
topological issue but, as we will see, in the context of smooth manifolds there are powerful
differential geometric methods which will solve a large part of this problem. Ultimately,
only topological techniques yield the best results.

8.1 Chern-Weil theory

8.1.1 Connections in principal G-bundles

In this subsection we will describe how to take into account the possible symmetries of a
vector bundle when describing a connection.

All the Lie groups we will consider will be assumed to be matrix Lie groups, i.e., Lie
subgroups of a general linear group GL(n,K) = GL(Kn).

This restriction is neither severe, nor necessary. It is not severe since, according to
a nontrivial result (Peter-Weyl theorem), any compact Lie group is isomorphic with a
matrix Lie group, and these groups are sufficient for most applications in geometry. It is
not necessary since all the results of this subsection are true for any Lie group. We stick
with this assumption since most proofs are easier to “swallow” in this context.

The Lie algebra g of a matrix Lie group G is a Lie algebra of matrices in which the
bracket is the usual commutator.

Let M be a smooth manifold. Recall that a principal G-bundle P over M can be
defined by an open cover (Uα) of M and a gluing cocycle

gαβ : Uαβ → G.

The Lie group G operates on its Lie algebra g via the adjoint action

Ad : G→ GL(g), g 7→ Ad(g) ∈ GL(g),

where

Ad(g)X := gXg−1, ∀X ∈ g, g ∈ G.

309
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We denote by Ad(P ) the vector bundle with standard fiber g associated to P via the
adjoint representation. In other words, Ad(P ) is the vector bundle defined by the open
cover (Uα), and gluing cocycle

Ad(gαβ) : Uαβ → GL(g).

The bracket operation in the fibers of Ad(P ) induces a bilinear map

[·, ·] : Ωk
(
Ad(P )

)
× Ωℓ

(
Ad(P )

)
→ Ωk+ℓ

(
Ad(P )

)
,

defined by

[ωk ⊗X, ηℓ ⊗ Y ] := (ωk ∧ ηℓ)⊗ [X,Y ], (8.1.1)

for all ωk ∈ Ωk(M), ηℓ ∈ Ωℓ(M), and X,Y ∈ Ω0
(
Ad(P )

)
.

Exercise 8.1.1. Prove that for any ω, η, φ ∈ Ω∗(Ad(P )) the following hold.

[ω, η] = −(−1)|ω|·|η|[η, ω], (8.1.2)

[ [ω, η], φ] = [ [ω, φ], η] + (−1)|ω|·|φ|[ω, [η, φ] ]. (8.1.3)

In other words,
(
Ω•
(
Ad(P )

)
, [ , ]

)
is a super Lie algebra. ⊓⊔

Using Proposition 3.3.5 as inspiration we introduce the following fundamental concept.

Definition 8.1.2. (a) A connection on the principal bundle P defined by the open cover
U = (Uα)α∈A, and the gluing cocycle gβα : Uαβ → G is a collection

Aα ∈ Ω1(Uα)⊗ g,

satisfying the transition rules

Aβ(x) = g−1αβ (x)dgαβ(x) + g−1αβ (x)Aα(x)gαβ(x)

= −( dgβα(x) )g−1βα (x) + gβα(x)Aα(x)g
−1
βα(x), ∀x ∈ Uαβ .

We will denote by A(U, g••) the set of connections defined by the open cover U and the
gluing cocycle g•• : U•• → G.

(b) The curvature of a connection A ∈ A(U, g••) is defined as the collection Fα ∈ Ω2(Uα)⊗g
where

Fα = dAα +
1

2
[Aα, Aα]. ⊓⊔

Remark 8.1.3. Given an open cover (Uα) of M , then two gluing cocycles

gβα, hβα : Uαβ → G,

define isomorphic principal bundles if and only if there exists smooth maps

Tα : Uα → G,
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such that
hβα(x) = Tβ(x)gβα(x)Tα(x)

−1, ,∀α, β, ∀x ∈ Uαβ.
If this happens, we say that the cocycles g•• and h•• are cohomologous.

Suppose (gαβ), (hαβ) are two such cohomologous cocycles. Then the maps Tα induce
a well defined correspondence

T : A(U, g••)→ A(U, h••)

given by

A(U, g••) ∋ (Aα)
T7−→
(
Bα := −(dTα)T−1α + TαAαT

−1
α

)
∈ A(U, h••).

The correspondence T is a bijection.
Suppose U = (Uα)α∈A and V = (Vi)i∈I are open covers, and gβα : Uαβ → G is a gluing

cocycle. Suppose that the open cover (Vi)i∈I is finer that the cover (Uα)α∈A, i.e., there
exists a map ϕ : I → A such that

Vi ⊂ Uϕ(i), ∀i ∈ I.

We obtain a new gluing cocycle gϕij : Vij → G given by

gϕij(x) = gϕ(i)ϕ(j)(x), ∀i, j ∈ I, x ∈ Vij.

This new cocycle defines a principal bundle isomorphic to the principal bundle defined by
the cocycle (gβα). If (Aα) is a connection defined by the open cover (Uα) and the cocycle
(gβα), then it induces a connection

Aϕi = Aϕ(i)|Vi
defined by the open cover (Vi), and the cocycle gij . We say that the connection Aϕ is the
V-refinement of the connection A. The correspondence

TVU : A(U, g••)→ A(V, gϕ••), A 7→ Aϕ

is also a bijection.
Finally, given two pairs (open cover, gluing cocycle), (U, g••) and (V, h••), both de-

scribing the principal bundle P → M , there exists an open cover W, finer that both U

and W, and cohomologous gluing cocycles ḡ••, h̄•• : W•• → G refining g•• and respectively
h••, such that the induced maps

A(U, g••) −→ A(W, ḡ••) −→ A(W, h̄••)←− A(V, h••)

are bijections.
For simplicity, we will denote by A(P ), any of these isomorphic spaces A(U, g••).
☞ All the constructions that we will perform in the remainder of this section are com-

patible with the above isomorphisms but, in order to keep the presentation as transparent
as possible, in our proofs we will not keep track of these isomorphisms. We are convinced
that the reader can easily supply the obvious, and repetitious missing details. ⊓⊔
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Proposition 8.1.4. Suppose P →M is a principal G-bundle described by an open cover
U = (Uα)α∈A, and gluing cocycle gβα : Uαβ → G.
(a) The set A(P ) of connections on P is an affine space modelled by Ω1(Ad(P ) ).
(b) For any connection A = (Aα) ∈ A(U, g••), the collection (Fα) defines a global Ad(P )-
valued 2-form. We will denote it by FA or F (A), and we will refer to it as the curvature
of the connection A.
(c) (The Bianchi identity.)

dFα + [Aα, Fα] = 0, ∀α. (8.1.4)

Proof. (a) If (Aα)α∈A, (Bα)α∈A ∈ A(P ), then their difference Cα = Aα −Bα satisfies the
gluing rules

Cβ = gβαCαg
−1
βα ,

so that it defines an element of Ω1(Ad(P )). Conversely, if (Aα) ∈ A(P ), and ω ∈
Ω1
(
Ad(P )

)
, then ω is described by a collection of g-valued 1-forms ωα ∈ Ω1(Uα) ⊗ g,

satisfying the gluing rules
ωβ|Uαβ

= gβαωα|Uαβ
g−1βα .

The collection A′α := Aα + ωα is then a connection on P . This proves that if A(P ) is
nonempty, then it is an affine space modelled by Ω1(Ad(P ) ).

To prove that A(P ) 6= ∅ we consider a partition of unity subordinated to the cover
Uα. More precisely, we consider a family of nonnegative smooth functions uα : M → R,
α ∈ A, such that suppuα ⊂ Uα, ∀α, and

∑

α

uα = 1.

For every α ∈ A we set

Bα :=
∑

γ

uγg
−1
γαdgγα ∈ Ω1(Uα)⊗ g.

Since gγα = g−1αγ we deduce g−1γαdgγα = −(dgαγ)g−1αγ , so that

Bα = −
∑

γ

uγ(dgαγ)g
−1
αγ .

Then, on the overlap Uαβ , we have the equality

Bβ − gβαBαg−1βα = −
∑

γ

uγ(dgβγ)g
−1
βγ +

∑

γ

uγgβα(dgαγ)g
−1
αγ g

−1
βα

The cocycle condition implies that

dgβγ = (dgβα)gαγ + gβα(dgαγ),

so that
(dgβγ)g

−1
βγ = (dgβγ)gγβ = (dgβα)gαβ + gβα(dgαγ)gγβ .
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Hence

−
∑

γ

uγ(dgβγ)g
−1
βγ = −(dgβα)gαβ −

∑

γ

uγgβα(dgαγ)gγβ .

Using the cocycle condition again, we deduce g−1αγ g
−1
βα = gγβ , so that

∑

γ

uγgβα(dgαγ)g
−1
αγ g

−1
βα =

∑

γ

uγgβα(dgαγ)gγβ .

Hence, on the overlap Uαβ we have

Bβ = −(dgβα)g−1βα + gβαBαg
−1
βα = gαβdgαβ + g−1αβBαgαβ .

This shows that the collection (Bα) defines a connection on P .

(b) We need to check that the forms Fα satisfy the gluing rules

Fβ = g−1Fαg,

where g = gαβ = g−1βα . We have

Fβ = dAβ +
1

2
[Aβ , Aβ ]

= d(g−1dg + g−1Aαg) +
1

2
[g−1dg + g−1Aαg, g

−1dg + g−1Aαg].

Set ̟ := g−1dg. Using (8.1.2) we get

Fβ = d̟ +
1

2
[̟,̟]

+d(g−1Aαg) + [̟, g−1Aαg] +
1

2
[g−1Aαg, g

−1Aαg]. (8.1.5)

We will check two things.

A. The Maurer-Cartan structural equations.

d̟ +
1

2
[̟,̟] = 0.

B.

d(g−1Aαg) + [̟, g−1Aαg] = g−1(dAα)g.

Proof of A. Let us first introduce a new operation. Let gl(n,K) denote the associative
algebra of K-valued n× n matrices. There exists a natural operation

∧ : Ωk(Uα)⊗ gl(n,K)× Ωℓ(Uα)⊗ gl(n,K)→ Ωk+ℓ(Uα)⊗ gl(n,K),

uniquely defined by

(ωk ⊗A) ∧ (ηℓ ⊗B) = (ωk ∧ ηℓ)⊗ (A · B), (8.1.6)
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where ωk ∈ Ωk(Uα), η
ℓ ∈ Ωℓ(Uα) and A,B ∈ gl(n,K) (see also Example 3.3.12). The

space gl(n,K) is naturally a Lie algebra with respect to the commutator of two matrices.
This structure induces a bracket

[•, •] : Ωk(Uα)⊗ gl(n,K)× Ωℓ(Uα)⊗ gl(n,K)→ Ωk+ℓ(Uα)⊗ gl(n,K)

defined as in (8.1.1). A very simple computation yields the following identity.

ω ∧ η =
1

2
[ω, η] ∀ω, η ∈ Ω1(Uα)⊗ gl(n,K). (8.1.7)

The Lie group lies inside GL(n,K), so that its Lie algebra g lies inside gl(n,K). We can
think of the map gαβ as a matrix valued map, so that we have

d̟ =d(g−1dg) = (dg−1) ∧ dg
=− (g−1 · dg · g−1)dg = −(g−1dg) ∧ (g−1dg)

=−̟ ∧̟ (8.1.7)
= −1

2
[̟,̟].

Proof of B. We compute

d(g−1Aαg) = (dg−1Aα) · g + g−1(dAα)g + g−1Aαdg

= −g−1 · dg · g−1 ∧Aα · g + g−1(dAα)g + (g−1Aαg) ∧ g−1dg
= −̟ ∧ g−1Aαg + g−1Aαg ∧̟ + g−1(dAα)g

(8.1.7)
= −1

2
[̟, g−1Aαg] +

1

2
[̟, g1Aαg] + g−1(dAα)g

(8.1.2)
= −[̟, g−1Aαg] + g−1(dAα)g.

Part (b) of the proposition now follows from A, B and (8.1.5).
(c) First, we let the reader check the following identity

d[ω, η] = [dω, η] + (−1)|ω|[ω, dη], (8.1.8)

where ω, η ∈ Ω∗(Uα)⊗ g. Using the above equality we get

d(Fα) =
1

2
{[dAα, Aα]− [Aα, dAα]}

(8.1.2)
= [dAα, Aα]

=[Fα, Aα]−
1

2
[[Aα, Aα], Aα]

(8.1.3)
= [Fα, Aα].

The proposition is proved. ⊓⊔

Exercise 8.1.5. Let ωα ∈ Ωk(Uα)⊗ g satisfy the gluing rules

ωβ = gβαωαg
−1
βα on Uαβ .

In other words, the collection ωα defines a global k-form ω ∈ Ωk(Ad(P )). Prove that the
collection

dωα + [Aα, ωα],

defines a global Ad(P )-valued (k + 1)-form on M which we denote by dAω. Thus, the
Bianchi identity can be rewritten as dAF (A) = 0, for any A ∈ A(P ). ⊓⊔
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Remark 8.1.6. Suppose P →M is a principalG-bundle given by the open cover U = (Uα)
and gluing cocycle gβα : Uαβ → G. A gauge transformation of P is by definition, a
collection of smooth maps

Tα : Uα → G

satisfying the gluing rules

Tβ(x) = gβα(x)Tα(x)gβα(x)
−1, ∀x ∈ Uαβ.

Observe that a gauge transformation is a section of the G-fiber bundle

G →֒ C(P )։M,

(see Definition 2.3.15) with standard fiber G, symmetry group G, where the symmetry
group G acts on itself by conjugation

G×G ∋ (g, h)
C7−→ Cg(h) := ghg1 ∈ G.

The set of gauge transformations forms a group with respect to the operation

(Sα) · (Tα) := (SαTα).

We denote by G(U, g••) this group. One can verify that if P is described the (open cover,
gluing cocycle)-pair (V, h••), then the groups G(U, g••) and G(V), h••) are isomorphic. We
denote by G(P ) the isomorphism class of all these groups.

The group G(U, g••) acts on A(U, g••) according to

G(P )×A(P ) ∋ (T,A) 7→ TAT−1 :=
(
−(dTα)T−1α + TαAαT

−1
α

)
∈ A(P ).

The group G(P ) also acts on the vector spaces Ω•
(
Ad(P )

)
and, for any A ∈ A(P ),

T ∈ G(P ) we have

FTAT−1 = TFAT
−1.

We say that two connections A0, A1 ∈ A(P ) are gauge equivalent if there exists T ∈ G(P )
such that A1 = TA0T−1. ⊓⊔

8.1.2 G-vector bundles

Definition 8.1.7. Let G be a Lie group, and E →M a vector bundle with standard fiber
a vector space V . A G-structure on E is defined by the following collection of data.

(a) A representation ρ : G→ GL(V ).

(b) A principal G-bundle P overM such that E is associated to P via ρ. In other words,
there exists an open cover (Uα) of M , and a gluing cocycle gαβ : Uαβ → G, such
that the vector bundle E can be defined by the cocycle

ρ(gαβ) : Uαβ → GL(V ).



316 CHAPTER 8. CHARACTERISTIC CLASSES

We denote a G-structure by the pair (P, ρ).
Two G-structures (Pi, ρi) on E, i = 1, 2, are said to be isomorphic, if the representa-

tions ρi are isomorphic, and the principal G-bundles Pi are isomorphic. ⊓⊔

Example 8.1.8. Let E → M be a rank r real vector bundle over a smooth manifold
M . A metric on E allows us to talk about orthonormal moving frames. They are easily
produced from arbitrary ones via the Gramm-Schimdt orthonormalization technique. In
particular, two different orthonormal local trivializations are related by a transition map
valued in the orthogonal group O(r), so that a metric on a bundle allows one to replace an
arbitrary collection of gluing data by an equivalent (cohomologous) one with transitions in
O(r). In other words, a metric on a bundle induces an O(r) structure. The representation
ρ is in this case the natural injection O(r) →֒ GL(r,R).

Conversely, an O(r) structure on a rank r real vector bundle is tantamount to choosing
a metric on that bundle.

Similarly, a Hermitian metric on a rank k complex vector bundle defines an U(k)-
structure on that bundle. ⊓⊔

Let E = (P, ρ, V ) be a G-vector bundle. Assume P is defined by an open cover (Uα),
and gluing cocycle

gαβ : Uαβ → G.

If the collection {Aα ∈ Ω1(Uα)⊗g} defines a connection on the principal bundle P , then the
collection ρ∗(Aα) defines a connection on the vector bundle E. Above, ρ∗ : g → End(V )
denotes the derivative of ρ at 1 ∈ G. A connection of E obtained in this manner is
said to be compatible with the G-structure. Note that if F (Aα) is the curvature of the
connection on P , then the collection ρ∗(F (Aα)) coincides with the curvature F (ρ∗(Aα))
of the connection ρ∗(Aα).

For example, a connection compatible with some metric on a vector bundle is com-
patible with the orthogonal/unitary structure of that bundle. The curvature of such a
connection is skew-symmetric which shows the infinitesimal holonomy is an infinitesimal
orthogonal/unitary transformation of a given fiber.

8.1.3 Invariant polynomials

Let V be a vector space over K = R, C. Consider the symmetric power

Sk(V ∗) ⊂ (V ∗)⊗k,

which consists of symmetric, multilinear maps

ϕ : V × · · · × V → K.

Note that any ϕ ∈ Sk(V ∗) is completely determined by

Pϕ(v) = ϕ(v, . . . , v).

This follows immediately from the polarization formula

ϕ(v1, . . . , vk) =
1

k!

∂k

∂t1 · · · ∂tk
Pϕ(t1v1 + · · ·+ tkvk).
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If dimV = n then, fixing a basis of V , we can identify Sk(V ∗) with the space of degree k
homogeneous polynomials in n variables.

Assume now that A is a K-algebra with 1. Starting with ϕ ∈ Sk(V ∗) we can produce
a K-multilinear map

ϕ = ϕA : (A⊗ V )× · · · × (A⊗ V )→ A,

uniquely determined by

ϕ(a1 ⊗ v1, . . . , ak ⊗ vk) = ϕ(v1, . . . , vk)a1a2 · · · ak ∈ A.

If moreover the algebra A is commutative, then ϕA is uniquely determined by the polyno-
mial

Pϕ(x) = ϕA(x, . . . , x) x ∈ A⊗ V.
Remark 8.1.9. Let us emphasize that when A is not commutative, then the above func-
tion is not symmetric in its variables. For example, if a1a2 = −a2a1, then

P (a1X1, a2X2, · · · ) = −P (a2X2, a1X1, · · · ).

For applications to geometry, A will be the algebra Ω•(M) of complex valued differential
forms on a smooth manifold M . When restricted to the commutative subalgebra

Ωeven(M) =
⊕

k≥0
Ω2k(M)⊗ C,

we do get a symmetric function. ⊓⊔

Example 8.1.10. Let V = gl(n,C). For each matrix T ∈ V we denote by ck(T ) the

coefficient of λk in the characteristic polynomial

cλ(T ) := det

(
1− λ

2πi
T

)
=
∑

k≥0
ck(T )λ

k, (i =
√
−1).

Then, ck(T ) is a degree k homogeneous polynomial in the entries of T . For example,

c1(T ) = −
1

2πi
trT, cn(T ) =

(
− 1

2πi

)n
detT.

Via polarization, ck(T ) defines an element of Sk(gl(n,C)∗).
If A is a commutative C-algebra with 1, then A ⊗ gl(n,C) can be identified with the

space gl(n,A) of n× n matrices with entries in A. For each T ∈ gl(n,A) we have

det

(
1− λ

2πi
T

)
∈ A[λ],

and ck(T ) continues to be the coefficient of λk in the above polynomial. ⊓⊔
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Consider now a matrix Lie group G. The adjoint action of G on its Lie algebra g

induces an action on Sk(g∗) still denoted by Ad. We denote by Ik(G) the Ad-invariant
elements of Sk(g∗). It consists of those ϕ ∈ Sk(g∗) such that

ϕ(gX1g
−1, . . . , gXkg

−1) = ϕ(X1, . . . ,Xk),

for all X1, . . . ,Xk ∈ g. Set

I•(G) :=
⊕

k≥0
Ik(G) and I••(G) :=

∏

k≥0
Ik(G).

The elements of I•(G) are usually called invariant polynomials. The space I••(G) can
be identified (as vector space) with the space of Ad-invariant formal power series with
variables from g∗.

Example 8.1.11. Let G = GL(n,C), so that g = gl(n,C). The map

gl(n,C) ∋ X 7→ tr exp(X),

defines an element of I••(GL(n,C)). To see this, we use the “Taylor expansion”

exp(X) =
∑

k≥0

1

k!
Xk,

which yields

tr exp(X) =
∑

k≥0

1

k!
trXk.

For each k, trXk ∈ Ik(GL(n,C)) since

tr (gXg−1)k = tr gXkg−1 = trXk. ⊓⊔

Proposition 8.1.12. Let ϕ ∈ Ik(G). Then for any X,X1, . . . ,Xk ∈ g we have

ϕ([X,X1],X2, . . . ,Xk) + · · ·+ ϕ(X1,X2, . . . , [X,Xk]) = 0. (8.1.9)

Proof. The proposition follows immediately from the equality

d

dt
|t=0 ϕ(e

tXX1e
−tX , . . . , etXXke

−tX) = 0. ⊓⊔

Let us point out a useful identity. If P ∈ Ik(g), U is an open subset of Rn, and

Fi = ωi ⊗Xi ∈ Ωdi(U)⊗ g, A = ω ⊗X ∈ Ωd(U)⊗ g

then

P (F1, . . . , Fi−1, [A,Fi], Fi+1 . . . , Fk)

= (−1)d(d1+···di−1)ωω1 · · ·ωkP (X1, · · · , [X,Xi], · · ·Xk).
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In particular, if F1, . . . , Fk−1 have even degree, we deduce that for every i = 1, . . . , k we
have

P (F1, . . . , Fi−1, [A,Fi], Fi+1, . . . , Fk) = ωω1 · · ·ωkP (X1, . . . , [X,Xi], . . . ,Xk).

Summing over i, and using the Ad-invariance of the polynomial P , we deduce

k∑

i=1

P (F1, . . . , Fi−1, [A,Fi], Fi+1, . . . , Fk) = 0, (8.1.10)

∀F1, . . . , Fk−1 ∈ Ωeven(U)⊗ g, Fk, A ∈ Ω•(U)⊗ g.

8.1.4 The Chern-Weil Theory

Let G be a matrix Lie group with Lie algebra g, and P →M be a principal G-bundle over
the smooth manifold M .

Assume P is defined by an open cover (Uα), and a gluing cocycle

gαβ : Uαβ → G.

Pick A ∈ A(P ) defined by the collection Aα ∈ Ω1(Uα) ⊗ g. Its curvature is then defined
by the collection

Fα = dAα +
1

2
[Aα, Aα].

Given φ ∈ Ik(G), we can define as in the previous section (with A = Ωeven(Uα), V = g)

Pφ(Fα) := φ(Fα, . . . , Fα) ∈ Ω2k(Uα).

Because φ is Ad-invariant, and Fβ = gβαFαg
−1
βα , we deduce

Pφ(Fα) = Pφ(Fβ) on Uαβ,

so that the locally defined forms Pφ(Fα) patch-up to a global 2k-form on M which we
denote by φ(FA).

Theorem 8.1.13 (Chern-Weil). (a) The form φ(FA) is closed, ∀A ∈ A(P ).
(b) If A0, A1 ∈ A(P ), then the forms φ(FA0), and φ(FA1) are cohomologous. In other
words, the closed form φ(FA) defines a cohomology class in H2k(M) which is independent
of the connection A ∈ A(P ).

Proof. We use the Bianchi identity dFα = −[Aα, Fα]. The Leibniz’ rule yields

dφ(Fα, . . . , Fα) = φ(dFα, Fα, . . . , Fα) + · · ·+ φ(Fα, . . . , Fα, dFα)

= −φ([Aα, Fα], Fα, . . . , Fα)− · · · − φ(Fα, . . . , Fα, [Aα, Fα])
(8.1.9)
= 0.

(b) Let Ai ∈ A(P ) (i = 0, 1) be defined by the collections

Aiα ∈ Ω1(Uα)⊗ g.
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Set Cα := A1
α −A0

α. For 0 ≤ t ≤ 1 we define Atα ∈ Ω1(Uα)⊗ g by Atα := A0
α + tCα.

The collection (Atα) defines a connection At ∈ A(P ), and t 7→ At ∈ A(P ) is an (affine)
path connecting A0 to A1. Note that

C = (Cα) = Ȧt.

We denote by F t = (F tα) the curvature of At. A simple computation yields

F tα = F 0
α + t(dCα + [A0

α, Cα]) +
t2

2
[Cα, Cα]. (8.1.11)

Hence,

Ḟ tα = dCα + [A0
α, Cα] + t[Cα, Cα] = dCα + [Atα, Cα].

Consequently,

φ(F 1
α)− φ(F 0

α) =

∫ 1

0

{
φ(Ḟ tα, F

t
α, . . . , F

t
α) + · · ·+ φ(F tα, . . . , F

t
α, Ḟ

t
α)
}
dt

=

∫ 1

0

{
φ(dCα, F

t
α, . . . , F

t
α) + · · ·+ φ(F tα, . . . , F

t
α, dCα)

}
dt

+

∫ 1

0

{
φ([Atα, Cα], F

t
α, . . . , F

t
α) + · · · + φ(F tα, . . . , F

t
α, [A

t
α, Cα])

}
dt.

Because the algebra Ωeven(Uα) is commutative, we deduce

φ(ωσ(1), . . . , ωσ(k)) = φ(ω1, . . . , ωk),

for all σ ∈ Sk and any ω1, . . . , ωk ∈ Ωeven(Uα)⊗ g. Hence

φ(F 1
α)− φ(F 0

α) = k

∫ 1

0
φ(F tα, . . . , F

t
α, dCα + [AtαCα])dt.

We claim that

φ(F tα, . . . , F
t
α, dCα + [Atα, Cα] ) = dφ(F tα, . . . , F

t
α, Cα ).

Using the Bianchi identity we get

dφ(F tα, . . . , F
t
α, Cα )

= φ(F tα, · · · , F tα, dCα) + φ(dF tα, · · · , F tα, Cα) + · · ·+ φ(F tα, · · · , dF tα, Cα)
= φ(F tα, . . . , F

t
α, dCα )

−φ(Cα, [Atα, F tα], F tα, . . . , F tα )− · · · − φ(Cα, F tα, . . . , F tα, [Atα, F tα] )
= φ(F tα, . . . , F

t
α, dCα + [Atα, Cα] )− φ(F tα, . . . , F tα, [Atα, Cα] )

−φ( [Atα, F tα], F tα, . . . , F tα, Cα )− · · · − φ(F tα, . . . , F tα, [Atα, F tα], Cα )
(8.1.10)

= φ(F tα, . . . , F
t
α, dCα + [Atα, Cα] ) = φ( dCα + [Atα, Cα], F

t
α, . . . , F

t
α ).
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Hence

φ(F 1
α)− φ(F 0

α) = d

∫ 1

0
kφ(Ȧtα, F

t
α, . . . , F

t
α)dt. (8.1.12)

We set

Tφ(A
1
α, A

0
α) :=

∫ 1

0
kφ(Ȧtα, F

t
α, . . . , F

t
α)dt.

Since Cβ = gβαCαg
−1
βα , and Fβ = gβαFαg

−1
βα on Uαβ, we conclude from the Ad-invariance of

φ that the collection Tφ(A
1
α, A

0
α) defines a global (2k− 1)-form on M which we denote by

Tφ(A
1, A0), and we name it the φ-transgression from A0 to A1. We have thus established

the transgression formula

φ(FA1)− φ(FA0)) = dTφ(A
1, A0). (8.1.13)

The Chern-Weil theorem is proved. ⊓⊔

Remark 8.1.14. Observe that for every Ad-invariant polynomial φ ∈ Ik(g), any principal
G-bundle P , any connection A ∈ A(P ), and any gauge transformation T ∈ G(P ) we have

φ
(
FA
)
= φ

(
FTAT−1

)
.

We say that the Chern-Weil construction is gauge invariant. ⊓⊔

Example 8.1.15. Consider a matrix Lie group G with Lie algebra g, and denote by P0

the trivial principal G-bundle over G, P0 = G×G. Denote by ̟ the tautological 1-form
̟ = g−1dg ∈ Ω1(G) ⊗ g. Note that for every left invariant vector field X ∈ g we have

̟(X) = X.

Denote by d the trivial connection on P0. Clearly d is a flat connection. Moreover, the
Maurer-Cartan equation implies that1 d + ̟ is also a flat connection. Thus, for any
φ ∈ Ik(G)

φ(Fd) = φ(F (d+̟) = 0.

The transgression formula implies that the form

τφ = Tφ(d+̟, d) = k

∫ 1

0
φ(̟,Fd+t̟, . . . , Fd+t̟)dt ∈ Ω2k−1(G)

is closed.
A simple computation using the Maurer-Cartan equations shows that

τφ =
k

2k−1

(∫ 1

0
(t2 − 1)k−1dt

)
· φ(̟, [̟,̟], · · · , [̟,̟])

= (−1)k−1 k

2k−1
22k−1k!(k − 1)!

(2k)!
φ(̟, [̟,̟], · · · , [̟,̟])

= (−1)k−1 2k(2k
k

) · φ(̟, [̟,̟], · · · , [̟,̟]).

1The connections d and d+̟ are in fact gauge equivalent.
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We thus have a natural map τ : I•(G) → Hodd(G) called transgression. The elements
in the range of τ are called transgressive. When G is compact and connected, then a
nontrivial result due to the combined efforts of H. Hopf, C. Chevalley, H. Cartan, A.
Weil and L. Koszul states that the cohomology of G is generated as an R-algebra by the
transgressive elements. We refer to [21] for a beautiful survey of this subject. ⊓⊔

Exercise 8.1.16. Let G = SU(2). The Killing form κ is a degree 2 Ad-invariant polyno-
mial on su(2). Describe τκ ∈ Ω3(G) and then compute

∫

G
τκ.

Compare this result with the similar computations in Subsection 7.4.3. ⊓⊔

Let us now analyze the essentials of the Chern-Weil construction.
Input: (a) A principal G-bundle P over a smooth manifold M , defined by an open cover
(Uα) ,and gluing cocycle gαβ : Uαβ → G.
(b) A connection A ∈ A(P ) defined by the collection

Aα ∈ Ω1(Uα)⊗ g,

satisfying the transition rules

Aβ = g−1αβdgαβ + g−1αβAαgαβ on Uαβ.

(c) φ ∈ Ik(G).
Output: A closed form φ(F (A)) ∈ Ω2k(M), whose cohomology class is independent of
the connection A. We denote this cohomology class by φ(P ).

Thus, the principal bundle P defines a map, called the Chern-Weil correspondence

cwP : I•(G)→ H•(M) φ 7→ φ(P ).

One can check easily the map cwP is a morphism of R-algebras.

Definition 8.1.17. Let M and N be two smooth manifolds, and F : M → N be a
smooth map. If P is a principal G-bundle over N defined by an open cover (Uα), and
gluing cocycle gαβ : Uαβ → G, then the pullback of P by F is the principal bundle F ∗(P )
over M defined by the open cover F−1(Uα), and gluing cocycle

F−1(Uαβ)
F→ Uαβ

gαβ→ G. ⊓⊔

The pullback of a connection on P is defined similarly. The following result should be
obvious.

Proposition 8.1.18. (a) If P is a trivial G-bundle over the smooth manifold M , then
φ(P ) = 0 ∈ H•(M), for any φ ∈ I•(G).
(b) Let M

F→ N be a smooth map between the smooth manifolds M and N . Then, for
every principal G-bundle over N , and any φ ∈ I•(G) we have

φ(F ∗(P )) = F ∗(φ(P )).
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Equivalently, this means the diagram below is commutative.

I•(G) H•(N)

H•(M)

w

cwP

'

'

')

cwF•(P )
u

F • ⊓⊔

Denote by PG the collection of smooth principal G-bundles (over smooth manifolds).
For each P ∈ PG we denote by BP the base of P . Finally, we denote by F a contravariant
functor from the category of smooth manifolds (and smooth maps) to the category of
Abelian groups.

Definition 8.1.19. An F-valued G-characteristic class is a correspondence

PG ∋ P 7→ c(P ) ∈ F(BP ),

such that the following hold.

(a) c(P ) = 0 if P is trivial.

(b) F(F )(c(P )) = c(F ∗(P )), for any smooth map F : M → N , and any principal G-
bundle P → N . ⊓⊔

Hence, the Chern-Weil construction is just a method of producing G-characteristic
classes valued in the DeRham cohomology.

Remark 8.1.20. (a) We see that each characteristic class provides a way of measuring
the nontriviality of a principal G-bundle.

(b) A very legitimate question arises. Do there exist characteristic classes (in the DeRham
cohomology) not obtainable via the Chern-Weil construction?

The answer is negative, but the proof requires an elaborate topological technology
which is beyond the reach of this course. The interested reader can find the details in the
monograph [76] which is the ultimate reference on the subject of characteristic classes.

(b) There exist characteristic classes valued in contravariant functors other then the
DeRham cohomology. E.g., for each Abelian group A, the Čech cohomology with coeffi-
cients in the constant sheaf A defines a contravariant functor H•(−, A), and using topo-
logical techniques, one can produce H•(−, A)-valued characteristic classes. For details we
refer to [76], or the classical [94]. ⊓⊔

8.2 Important examples

We devote this section to the description of some of the most important examples of
characteristic classes. In the process we will describe the invariants of some commonly
encountered Lie groups.
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8.2.1 The invariants of the torus T n

The n-dimensional torus T n = U(1) × · · · × U(1) is an Abelian Lie group, so that the
adjoint action on its Lie algebra tn is trivial. Hence

I•(T n) = S•((tn)∗).

In practice one uses a more explicit description obtained as follows. Pick angular coordi-
nates 0 ≤ θi ≤ 2π, 1 ≤ i ≤ n, and set

xj := −
1

2πi
dθj.

The x′js form a basis of (tn)∗, and now we can identify

I•(T n) ∼= R[x1, . . . , xn].

8.2.2 Chern classes

Let E be a rank r complex vector bundle over the smooth manifold M . We have seen
that a Hermitian metric on E induces an U(r)-structure (P, ρ), where ρ is the tautological
representation

ρ : U(r) →֒ GL(r,C).

Exercise 8.2.1. Prove that different Hermitian metrics on E define isomorphic U(r)-
structures. ⊓⊔

Thus, we can identify such a bundle with the tautological principal U(r)-bundle of uni-
tary frames. A connection on this U(r)-bundle is then equivalent with a linear connection
∇ on E compatible with a Hermitian metric 〈•, •〉, i.e.,

∇X〈λu, v〉 = λ{〈∇Xu, v〉+ 〈u,∇Xv〉},

∀λ ∈ C, u, v ∈ C∞(E), X ∈ Vect (M).

The characteristic classes of E are by definition the characteristic classes of the tauto-
logical principal U(r)-bundle. To describe these characteristic classes we need to elucidate
the structure of the ring of invariants I•(U(r)).

The ring I•(U(r)) consists of symmetric, r-linear maps

φ : u(r)× · · · × u(r)→ R,

invariant with respect to the adjoint action

u(r) ∋ X 7→ TXT−1 ∈ u(r), T ∈ U(r).

It is convenient to identify such a map with its polynomial form

Pφ(X) = φ(X, . . . ,X).
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The Lie algebra u(r) consists of r × r complex skew-hermitian matrices. Classical results
of linear algebra show that, for any X ∈ u(r), there exists T ∈ U(r), such that TXT−1 is
diagonal

TXT−1 = i diag(λ1, . . . , λr).

The set of diagonal matrices in u(r) is called the Cartan algebra of u(r), and we will denote
it by Cu(r). It is a (maximal) Abelian Lie subalgebra of u(r). Consider the stabilizer

SU(r) :=
{
T ∈ U(r) ; TXT−1 = X, ∀X ∈ Cu(r),

}
,

and the normalizer

NU(r) :=
{
T ∈ U(r); TCu(r)T

−1 ⊂ Cu(r),
}
.

The stabilizer SU(r) is a normal subgroup of NU(r), so we can form the quotient

WU(r) := NU(r)/SU(r)

called the Weyl group of U(r). As in Subsection 7.4.4, we see that the Weyl group is
isomorphic with the symmetric group Sr because two diagonal skew-Hermitian matrices are
unitarily equivalent if and only if they have the same eigenvalues, including multiplicities.

We see that Pφ is Ad-invariant if and only if its restriction to the Cartan algebra is
invariant under the action of the Weyl group.

The Cartan algebra is the Lie algebra of the (maximal) torus T n consisting of diagonal
unitary matrices. As in the previous subsection we introduce the variables

xj := −
1

2πi
dθj.

The restriction of Pφ to Cu(r) is a polynomial in the variables x1, . . . , xr. The Weyl
group Sr permutes these variables, so that Pφ is Ad-invariant if and only if Pφ(x1, . . . , xr)
is a symmetric polynomial in its variables. According to the fundamental theorem of
symmetric polynomials, the ring of these polynomials is generated (as an R-algebra) by
the elementary ones

c1 =
∑

j xj
c2 =

∑
i<j xixj

...
...

...
cr = x1 · · · xr

Thus
I•(U(r)) = R[c1, c2, . . . , cr].

In terms of matrices X ∈ u(r) we have

∑

k

ck(X)tk = det

(
1− t

2πi
X

)
∈ I•(U(r))[t].

The above polynomial is known as the universal rank r Chern polynomial, and its coeffi-
cients are called the universal, rank r Chern classes.
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Returning to our rank r vector bundle E, we obtain the Chern classes of E

ck(E) := ck(F (∇)) ∈ H2k(M),

and the Chern polynomial of E

ct(E) := det

(
1− t

2πi
F (∇)

)
∈ H•(M)[t].

Above, ∇ denotes a connection compatible with a Hermitian metric 〈•, •〉 on E, while
F (∇) denotes its curvature.
Remark 8.2.2. The Chern classes produced via the Chern-Weil method capture only
a part of what topologists usually refer to characteristic classes of complex bundles. To
give the reader a feeling of what the Chern-Weil construction is unable to capture we will
sketch a different definition of the first Chern class of a complex line bundle. The following
facts are essentially due to Kodaira and Spencer [62]; see also [41] for a nice presentation.

Let L→M be a smooth complex Hermitian line bundle over the smooth manifold M .
Upon choosing a good open cover (Uα) of M we can describe L by a collection of smooth
maps zαβ : Uαβ → U(1) ∼= S1 satisfying the cocycle condition

zαβzβγzγα = 1 ∀α, β, γ. (8.2.1)

If we denote by C∞(·, S1) the sheaf of multiplicative groups of smooth S1-valued functions,
we see that the family of complex line bundles on M can be identified with the Čech
group H1(M,C∞(·, S1)). This group is called the smooth Picard group of M . The group
multiplication is precisely the tensor product of two line bundles. We will denote it by
Pic∞ (M).

If we write zαβ = exp(2πiθαβ) (θβα = −θαβ ∈ C∞(Uαβ ,R)) we deduce from (8.2.1)
that ∀Uαβγ 6= ∅

θαβ + θβγ + θγα = nαβγ ∈ Z.

It is not difficult to see that, ∀Uαβγδ 6= ∅, we have

nβγδ − nαγδ + nαβδ − nαβγ = 0.

In other words, the collection nαβγ defines a Čech 2-cocycle of the constant sheaf Z.

On a more formal level, we can capture the above cocycle starting from the exact
sequence of sheaves

0→ Z →֒ C∞(·,R) exp(2πi·)−→ C∞(·, S1)→ 0.

The middle sheaf is a fine sheaf so its cohomology vanishes in positive dimensions. The
long exact sequence in cohomology then gives

0→ Pic∞ (M)
δ→ H2(M,Z)→ 0.

The cocycle (nαβγ ) represents precisely the class δ(L).
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The class δ(L), L ∈ Pic∞ (M) is called the topological first Chern class and is denoted
by ctop1 (L). This terminology is motivated by the following result of Kodaira and Spencer,
[62]:

The image of ctop1 (L) in the DeRham cohomology via the natural morphism

H∗(M,Z)→ H∗(M,R) ∼= H∗DR(M)

coincides with the first Chern class obtained via the Chern-Weil procedure.
The Chern-Weil construction misses precisely the torsion elements in H2(M,Z). For

example, if a line bundle admits a flat connection then its first Chern class is trivial. This
may not be the case with the topological one, because line bundle may not be topologically
trivial. ⊓⊔

8.2.3 Pontryagin classes

Let E be a rank r real vector bundle over the smooth manifold M . An Euclidean metric
on E induces an O(r) structure (P, ρ). The representation ρ is the tautological one

ρ : O(r) →֒ GL(r,R).

Exercise 8.2.3. Prove that two metrics on E induce isomorphic O(r)-structures. ⊓⊔

Hence, exactly as in the complex case, we can naturally identify the rank r-real vector
bundles equipped with metric with principal O(r)-bundles. A connection on the principal
bundle can be viewed as a metric compatible connection in the associated vector bundle.
To describe the various characteristic classes we need to understand the ring of invariants
I•(O(r)).

As usual, we will identify the elements of Ik(O(r)) with the degree k, Ad-invariant
polynomials on the Lie algebra o(r) consisting of skew-symmetric r× r real matrices. Fix
P ∈ Ik(O(r)). Set m = [r/2], and denote by J the 2× 2 matrix

J :=

[
0 −1
1 0

]
.

Consider the Cartan algebra

Co(r) =

{
{λ1J ⊕ · · · ⊕ λmJ ∈ o(r) ; λj ∈ R} , r = 2m
{λ1J ⊕ · · · ⊕ λmJ ⊕ 0 ∈ o(r) ; λj ∈ R} , r = 2m+ 1

The Cartan algebra Co(r) is the Lie algebra of the (maximal) torus

Tm =

{
Rθ1 ⊕ · · · ⊕Rθm ∈ O(r) , r = 2m

Rθ1 ⊕ · · · ⊕Rθm ⊕ 1R ∈ O(r) , r = 2m+ 1
,

where for each θ ∈ [0, 2π] we denoted by Rθ the 2× 2 rotation

Rθ :=

[
cos θ − sin θ
sin θ cos θ

]
.
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As in Subsection 8.2.1 we introduce the variables

xj = −
1

2π
dθj.

Using standard results concerning the normal Jordan form of a skew-symmetric matrix,
we deduce that, for every X ∈ o(r), there exists T ∈ O(r) such that TXT−1 ∈ Co(r).
Consequently, any Ad-invariant polynomial on o(r) is uniquely defined by its restriction
to the Cartan algebra.

Following the approach in the complex case, we consider

SO(r) =
{
T ∈ O(r); TXT−1 = X, ∀X ∈ Co(r),

}
,

NO(r) =
{
T ∈ O(r); TCo(r)T

−1 ⊂ Co(r),
}
.

The stabilizer SO(r) is a normal subgroup in N(O(r)), so we can form the Weyl group

WO(r) := NO(r)/SO(r).

Exercise 8.2.4. Prove that WO(r) is the subgroup of GL(m,R) generated by the involu-
tions

σij : (x1, . . . , xi, . . . , xj , . . . , xm) 7→ (x1, . . . , xj , . . . , xi, . . . , xm)

εj : (x1, . . . , xj , . . . , xm) 7→ (x1, . . . ,−xj , . . . , xm). ⊓⊔
The restriction of P ∈ Ik(O(r)) to Co(r) is a degree k homogeneous polynomial in the

variables x1, . . . , xm invariant under the action of the Weyl group. Using the above exercise
we deduce that P must be a symmetric polynomial P = P (x1, . . . , xm), separately even
in each variable. Invoking once again the fundamental theorem of symmetric polynomials
we conclude that P must be a polynomial in the elementary symmetric ones

p1 =
∑

j x
2
j

p2 =
∑

i<j x
2
ix

2
j

...
...

...
pm = x21 · · · x2m

.

Hence
I•(O(r)) = R[p1, . . . , p⌊r/2⌋].

In terms of X ∈ o(r) we have

pt(X) =
∑

j

pj(X)t2j = det

(
1− t

2π
X

)
∈ I•(O(r))[t].

The above polynomial is called the universal rank r Pontryagin polynomial, while its
coefficients pj(X) are called the universal rank r Pontryagin classes.

The Pontryagin classes p1(E), . . . , pm(E) of our real vector bundle E are then defined
by the equality

pt(E) =
∑

j

pj(E)t2j = det

(
1− t

2π
F (∇)

)
∈ H•(M)[t],

where ∇ denotes a connection compatible with some (real) metric on E, while F (∇)
denotes its curvature. Note that pj(E) ∈ H4j(M). The polynomial pt(E) ∈ H•(M)[t] is
called the Pontryagin polynomial of E.
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8.2.4 The Euler class

Let E be a rank r, real oriented vector bundle. A metric on E induces an O(r)-structure,
but the existence of an orientation implies the existence of a finer structure, namely an
SO(r)-symmetry.

The groups O(r) and SO(r) share the same Lie algebra so(r) = o(r). The inclusion

ı : SO(r) →֒ O(r),

induces a morphism of R-algebras

ı∗ : I•(O(r))→ I•(SO(r)).

Because so(r) = o(r) one deduces immediately that ı∗ is injective.

Lemma 8.2.5. When r is odd then ı∗ : I•(O(r))→ I•(SO(r)) is an isomorphism. ⊓⊔

Exercise 8.2.6. Prove the above lemma. ⊓⊔

The situation is different when r is even, r = 2m. To describe the ring of invariants
I•(SO(2m)), we need to study in greater detail the Cartan algebra

Co(2m) =
{
λ1J ⊕ · · · ⊕ λmJ ∈ o(2m)

}

and the corresponding Weyl group action. The Weyl group WSO(2m), defined as usual as
the quotient

WSO(2m) = NSO(2m)/SSO(2m),

is isomorphic to the subgroup of GL(Co(2m)) generated by the involutions

σij : (λ1, . . . , λi, . . . , λj , . . . , λm) 7→ (λ1, . . . , λj , . . . , λi, . . . , λm),

and
ε : (λ1, . . . , λm) 7→ (ε1λ1, . . . , εmλm),

where ε1, . . . , εm = ±1, and ε1 · · · εm = 1. (Check this!)
Set as usual xi := −λi/2π. The Pontryagin O(2m)-invariants

pj(x1, . . . , xm) =
∑

1≤i1<···<ij≤m
(xi1 · · · xij)2,

continue to be WSO(2m) invariants. There is however a new invariant,

∆(x1, . . . , xm) :=
∏

j

xj .

In terms of
X = λ1J ⊕ · · · ⊕ λmJ ∈ CSO(2m),

we can write

∆(X) =

(−1
2π

)m
Pf(X),

where Pf denotes the pfaffian of the skewsymmetric matrix X viewed as a linear map
R2m → R2m, when R2m is endowed with the canonical orientation. Note that pm = ∆2.
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Proposition 8.2.7.

I•(SO(2m)) ∼= R[Z1, Z2, . . . , Zm;Y ]/(Y 2 − Zm) (Zj = pj, Y = ∆)

where (Y 2 − Zm) denotes the ideal generated by the polynomial Y 2 − Zm.

Proof. We follow the approach used by H. Weyl in describing the invariants of the alternate
group ([102], Sec. II.2). The isomorphism will be established in two steps.
Step 1. The space I•(SO(2m)) is generated as an R-algebra by the polynomials
p1, · · · , pm,∆.
Step 2. The kernel of the morphism

R[Z1, . . . , Zm, ;Y ]
ψ→ I•(SO(2m))

defined by Zj 7→ pj , Y 7→ ∆ is the ideal (Y 2 − Zm).
Proof of Step 1. Note that WSO(2m) has index 2 as a subgroup in WO(2m). Thus
WSO(2m) is a normal subgroup, and

G = WO(2m)/WSO(2m) ∼= Z2.

The group G = {1, e} acts on I•(SO(2m)) by

(eF )(x1, x2, . . . , xm) = F (−x1, x2, . . . , xm) = · · · = F (x1, x2, . . . ,−xm),

and moreover,
I•(O(2m)) = ker(1− e).

For each F ∈ I•(SO(2m)) we define F+ := (1+ e)F , and we observe that F+ ∈ ker(1− e).
Hence

F+ = P (p1, . . . , pm).

On the other hand, the polynomial F− := (1−e)F is separately odd in each of its variables.
Indeed,

F−(−x1, x2, . . . , xm) = eF−(x1, . . . , xm)

= e(1− e)F (x1, . . . , xm) = −(1− e)F (x1, . . . , xm) = −F−(x1, . . . , xm).
Hence, F− vanishes when any of its variables vanishes so that F− is divisible by their
product ∆ = x1 · · · xm,

F− = ∆ ·G.
Since eF− = −F−, and e∆ = −∆ we deduce eG = G, i.e., G ∈ I•(O(2m)). Consequently,
G can be written as

G = Q(p1, . . . , pm),

so that
F− = ∆ ·Q(p1, . . . , pm).

Step 1 follows from

F =
1

2
(F+ + F−) =

1

2
(P (p1, . . . , pm) + ∆ ·Q(p1, . . . , pm)).



8.2. IMPORTANT EXAMPLES 331

Proof of Step 2. From the equality

detX = Pf(X)2 ∀X ∈ so(2m),

we deduce

(Y 2 − Zm) ⊂ kerψ,

so that we only need to establish the opposite inclusion.

Let P = P (Z1, Z2, . . . , Zm;Y ) ∈ kerψ. Consider P as a polynomial in Y with coef-
ficients in R[Z1, . . . , Zm]. Divide P by the quadratic polynomial (in Y ) Y 2 − Zm. The
remainder is linear

R = A(Z1, . . . , Zm)Y +B(Z1, . . . , Zm).

Since Y 2 − Zm, P ∈ kerψ, we deduce R ∈ kerψ. Thus

A(p1, . . . , pm)∆ +B(p1, . . . , pm) = 0.

Applying the morphism e we get

−A(p1, . . . , pm)∆ +B(p1, . . . , pm) = 0.

Hence A ≡ B ≡ 0 so that P is divisible by Y 2 − Zm. ⊓⊔

Let E be a rank 2m, real, oriented vector bundle over the smooth manifold M . As in
the previous subsection we deduce that we can use a metric to naturally identify E with a
principal SO(2m)-bundle and in fact, this principal bundle is independent of the metric.
Finally, choose a connection ∇ compatible with some metric on E.

Definition 8.2.8. (a) The universal Euler class is defined by

e = e(X) =
1

(2π)m
Pf(−X) ∈ Im(SO(2m)).

(b) The Euler class of E, is the cohomology class e(E) ∈ H2m(M) represented by the
Euler form

e(∇) = 1

(2π)m
Pf(−F (∇)) ∈ Ω2m(M).

(According to the Chern-Weil theorem this cohomology class is independent of the metric
and the connection.) ⊓⊔

Example 8.2.9. Let (Σ, g) be a compact, oriented, Riemann surface and denote by ∇g
the Levi-Civita connection. The the Euler form

ε(g) =
1

4π
s(g)dvg

coincides with the Euler form e(∇g) obtained via the Chern-Weil construction. ⊓⊔
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Remark 8.2.10. Let E be a rank 2m, real, oriented vector bundle over the smooth,
compact, oriented manifold M . We now have two apparently conflicting notions of Euler
classes.
A topological Euler class etop(E) ∈ H2m(M) defined as the pullback of the Thom class
via an arbitrary section of E.
A geometric Euler class egeom(E) ∈ H2m(M) defined via the Chern-Weil construction.

The most general version of the Gauss-Bonnet theorem, which will be established later
in this chapter, will show that these two notions coincide! ⊓⊔

8.2.5 Universal classes

In each of the situations discussed so far we defined characteristic classes for vector bundles
with a given rank. In this subsection we show how one can coherently present these facts
all at once, irrespective of rank. The algebraic machinery which will achieve this end is
called inverse limit. We begin by first describing a special example of inverse limit.

A projective sequence of rings is a a sequence of rings {Rn}n≥0, together with a sequence

of ring morphisms Rn
φn←− Rn+1. The inverse limit of a projective system (Rn, φn) is the

subring

lim
←
Rn ⊂

∏

n≥0
Rn

consisting of the sequences (x1, x2, . . .) such that φn(xn+1) = xn, ∀n ≥ 0.

Example 8.2.11. Let Rn = R[[X1, . . . ,Xn]] be the ring of formal power series in n
variables with coefficients in the commutative ring with unit R. (R0 = R.) Denote by
φn : Rn+1 → Rn the natural morphism defined by setting Xn+1 = 0. The inverse limit of
this projective system is denoted by R[[X1,X2, . . .]].

Given a sequence Fn ∈ R[[X]] (n ≥ 1) such that Fn(0) = 1, we can form the sequence
of products

(1, F1(X1), F1(X1)F2(X2), . . . , F1(X1) · · ·Fn(Xn), . . .),

which defines an element in R[[X1,X2, . . .]] denoted by F1(X1)F2(X2) · · · . When F1 =
F2 = · · ·Fn = · · · = F the corresponding elements is denoted by (F )∞.

Exercise 8.2.12. (a) Let R[[x]]♭ denote the set of formal power series F ∈ R[[x]] such
that F (0) = 1. Prove that (R[[x]]♭, ·) is an abelian group.
(b) Prove that ∀F,G ∈ R[[x]]♭

(F ·G)∞ = (F )∞ · (G)∞. ⊓⊔

Similarly, given Gn ∈ R[[x]], (n ≥ 1) such that Fn(0) = 0, we can from the sequence
of sums

(0, G1(X1), G1(X1) +G2(X2), . . . , G1(X1) + · · · ⊕Gn(Xn), . . .),

which defines an element in R[[X1,X2, . . .]] denoted by G1(X1) + G2(X2) + · · · . When
G1 = G2 = · · · = Fn = · · · = F we denote the corresponding element (G)∞. ⊓⊔
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In dealing with characteristic classes of vector bundles one naturally encounters the
increasing sequences

U(1) →֒ U(2) →֒ · · · (8.2.2)

(in the complex case) and (in the real case)

O(1) →֒ O(2) →֒ · · · . (8.2.3)

We will discuss these two situations separately.

The complex case. The sequence in (8.2.2) induces a projective sequence of rings

R← I••(U(1))← I••(U(2))← · · · . (8.2.4)

We know that I••(U(n)) = Sn[[xj ]]= the ring of symmetric formal power series in n
variables with coefficients in R. Set

S∞[[xj ]] := lim
←

Sn.

Given a rank n vector bundle E over a smooth manifold M , and φ ∈ I••(U(n)), the
characteristic class φ(E) is well defined since udimM+1 = 0, for any u ∈ Ω∗(M). Thus
we can work with the ring I••(U(n)) rather than I•(U(n)) as we have done so far. An
element

φ = (φ1, φ2, . . .) ∈ I••(U(∞)) := lim
←
I••(U(n)) = S∞[[xj ]]

is called universal characteristic class.
If E is a complex vector bundle, we set φ(E)” = φr(E), where r = rankE. More

precisely, to define φr(E) we need to pick a connection ∇ compatible with some Hermitian
metric on E, and then set

φ(E) = φr(F (∇)).

Example 8.2.13. We denote by c
(n)
k (n ≥ k) the elementary symmetric polynomial in n

variables

c
(n)
k =

∑

1≤i1<···<ik≤n
xi1 · · · xik .

Then the sequence

(0, . . . , 0, c
(k)
k , c

(k+1)
k , . . .)

defines an element in S∞[[xj ]] denoted by ck, which we call the universal k-th Chern class.
Formally, we can write

ck =
∑

1≤i1<···<ik<∞
xi1xi2 · · · xik .

We can present the above arguments in a more concise form as follows. Consider the
function F (x) = (1 + tx) ∈ R[[x]], where R = R[[t]] is the ring of formal power series in
the variable t. Then (F )∞ defines an element in R[[X1,X2, . . .]]. One sees immediately
that in fact, (F )∞ ∈ S∞[[xj ]] [[t]] and moreover

(F )∞(x1, x2, . . .) = (1 + tx1)(1 + tx2) · · · = 1 + c1t+ c2t
2 + · · · .
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We see that
ct :=

∏

j≥1
(1 + txj)

is the universal Chern polynomial. ⊓⊔

We can perform a similar operation with any F ∈ R[[x]] such that F (0) = 1. We get
a semigroup morphism

(R[[x]]♭, ·) ∋ F 7→ (F )∞ ∈ (S∞[[xj ]], ·).

(see Exercise 8.2.12.) One very important example is

F (x) =
x

1− e−x = 1 +
1

2
x+

1

12
x2 + · · · = 1 +

1

2
x+

∞∑

k=1

(−1)k−1 Bk
(2k)!

x2k ∈ R[[x]].

The coefficients Bk are known as the Bernoulli numbers. The product

(F )∞ =

(
x1

1− e−x1
)
·
(

x2
1− e−x2

)
· · · ,

defines an element in S∞[[xj ]] called the universal Todd class. We denote it by Td. Using
the fundamental theorem of symmetric polynomials we can write

Td = 1 +Td1 +Td2 + · · · ,

where Tdn ∈ S∞[[xj ]] is an universal symmetric, homogeneous “polynomial” of degree n,
hence expressible as a combination of the elementary symmetric “polynomials” c1, c2, . . ..
By an universal“polynomial” we understand element in the inverse limit

R[x1, x2, . . .] = lim
←

R[x1, x2, . . .].

An universal “polynomial” P is said to be homogeneous of degree d, if it can be represented
as a sequence

P = (P1, P2, . . .),

where Pm is a homogeneous polynomial of degree d in m variables, and

Pm+1(x1, x2, . . . , xm, 0) = Pm(x1, . . . xm).

For example,

Td1 =
1

2
c1, Td2 =

1

12
(c21 + c2), Td3 =

1

24
c1c2 etc.

Analogously, any function G ∈ R[[x]] such that G(0) = 0 defines an element

(G)∞ = G(x1) +G(x2) + · · · ∈ S∞[[xj ]].

We have two examples in mind. First, consider G(x) = xk. We get the symmetric function

sk = (xk)∞ = (G)∞ = xk1 + xk2 + · · · ,
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called the universal k-th power sum. We will denote these by sk.
Next, consider

G(x) = ex − 1 =
∑

m≥1

xm

m!
.

We have

(ex − 1)∞ =
∑

m≥1

1

m!
(xm)∞ =

∑

m=1

1

m!
sm ∈ S∞[[xj ]]

Given a complex vector bundle E we define

ch(E) = rankE + (ex − 1)∞(E).

The cohomology class ch(E) is called the Chern character of the bundle E. If ∇ is a
connection on E compatible with some Hermitian metric, then we can express the Chern
character of E as

ch(E) = tr
(
eF (∇)

)
= rank (E) +

∞∑

k=1

1

k!
tr (F (∇)∧k),

where ∧ is the bilinear map

Ωi(End (E))× Ωj(End (E))→ Ωi+j(End (E))

defined in Example 3.3.12.

Proposition 8.2.14. Consider two complex vector bundles E1, E2 over the same manifold
M . Then

ch(E1 ⊕ E2) = ch(E1) + ch(E2),

and
ch(E1 ⊗ E2) = ch(E1) ∧ ch(E2) ∈ H•(M).

Proof. Consider a connection ∇i on Ei compatible with some Hermitian metric hi, i = 1, 2.
Then ∇1⊕∇2 is a connection on E1⊕E2 compatible with the metric h1⊕h2, and moreover

F (∇1 ⊕∇2) = F (∇1)⊕ F (∇2).

Hence
exp(F (∇1 ⊕∇2)) = exp(F (∇1))⊕ exp(F (∇2)),

from which we deduce the first equality.
As for the second equality, consider the connection ∇ on E1 ⊗E2 uniquely defined by

the product rule

∇(s1 ⊗ s2) = (∇1s1)⊗ s2 + s1 ⊗ (∇2s2), si ∈ C∞(Ei),

where the operation
⊗ : Ωk(E1)× Ωℓ(E2)→ Ωk+ℓ(E1 ⊗ E2)
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is defined by

(ωk ⊗ s1)⊗ (ηℓs2) = (ωk ∧ ηℓ)⊗ (s1 ⊗ s2) (8.2.5)

∀si ∈ C∞(Ei), ∀ωk ∈ Ωk(M), and ∀ηℓ ∈ Ωℓ(M).

We compute the curvature of ∇ using the equality F (∇) = (d∇)2. If si ∈ C∞(Ei),
then

F (∇)(s1 ⊗ s2) = d∇{(∇1s1)⊗ s2 + s1 ⊗ (∇2s2)}

=
{
(F (∇1)s1)⊗ s2 − (∇1s1)⊗ (∇2s2) + (∇1s1)⊗ (∇2s2) + s1 ⊗ (F (∇2))

}

= F (∇1)⊗ 1E2 + 1E1 ⊗ F (∇2).

The second equality in the proposition is a consequence the following technical lemma.

Lemma 8.2.15. Let A (respectively B) be a skew-adjoint, n × n (respectively m × m)
complex matrix. Then

tr (exp(A⊗ 1Cm + 1Cn ⊗B)) = tr (exp(A)) · tr (exp(B)).

Proof. Pick an orthonormal basis (ei) of Cn and an orthonormal basis (fj) of Cm) such
that, with respect to these bases A = diag(λ1, . . . , λn) and B = diag(µ1, . . . , µm)). Then,
with respect to the basis (ei ⊗ fj) of Cn ⊗ Cm, we have

(A⊗ 1Cm + 1Cn ⊗B) = diag(λi + µj ).

Hence

exp(A⊗ 1Cm + 1Cn ⊗B) = diag(eλieµj ),

so that,

tr (A⊗ 1Cm + 1Cn ⊗B) =
∑

eλieµj = tr (eA) · tr (eB). ⊓⊔

The proposition is proved. ⊓⊔

Exercise 8.2.16. (Newton’s formulæ.) Consider the symmetric polynomials

ck =
∑

1≤i1≤···ik≤n
xi1 · · · xik ∈ R[x1, . . . , xn],

and (r ≥ 0)

sr =
∑

j

xrj ∈ R[x1, . . . , xn].

Set

f(t) :=

n∏

j=1

(1− xjt).

(a) Show that
f ′(t)
f(t)

= −
∑

r

srt
r−1.
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(b) Prove the Newton formulæ

r∑

j=1

(−1)jsr−jcj = 0 ∀1 ≤ r ≤ n.

(c) Deduce from the above formulae the following identities between universal symmetric
polynomials.

s1 = c1, s2 = c21 − 2c2, s3 = c31 − 3c1c2 + 3c3. ⊓⊔
The real case. The sequence (8.2.3) induces a projective system

I••(O(1))← I••(O(2))← · · · .
We have proved that I••(O(n)) = S⌊n/2⌋[[x2j ]] = the ring of even, symmetric power series
in ⌊n/2⌋ variables. The inverse limit of this system is

I• • (O(∞) = lim
←
I••(O(r)) = S∞[[x2j ]] := lim

←
Sm[[x2j ]].

As in the complex case, any element of this ring is called a universal characteristic class. In
fact, for any real vector bundle E and any φ ∈ S∞[[x2j ]] there is a well defined characteristic
class φ(E) which can be expressed exactly as in the complex case, using metric compatible
connections. If F ∈ R[[x]]♭ then (F (x2))∞ defines an element of S∞[[x2j ]].

In topology, the most commonly encountered situations are the following.
A.

F (x) =

√
x/2

sinh(
√
x/2)

= 1 +
∑

k≥1
(−1)k 22k−1 − 1

22k−1(2k)!
Bkx

k.

The universal characteristic class (F (x))∞ is denoted by Â, and it is called the Â-genus.
We can write

Â = 1 + Â1 + Â2 + · · · ,
where Ak are universal, symmetric, even, homogeneous “polynomials”, and as such they
can be described using universal Pontryagin classes

pm =
∑

1≤j1<···jm
x2j1 · · · x2jm.

The first couple of terms are

Â1 = −
p1
24
, Â2 =

1

27 · 32 · 5(−4p2 + 7p21) etc.

B. Consider

F (x) =

√
x

tanh
√
x
= 1 +

1

3
x+

1

45
x2 + · · · = 1 +

∑

k≥1
(−1)k−1 22k

(2k)!
Bkx

k.

The universal class (F (x2))∞ is denoted by L, and it is called the L-genus. As before, we
can write

L = 1 +L1 +L2 + · · · ,
where the Lj’s are universal, symmetric, even, homogeneous “polynomials”. They can be
expressed in terms of the universal Pontryagin classes. The first few terms are

L1 =
1

3
p1, L2 =

1

45
(7p2 − p21) etc.
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8.3 Computing characteristic classes

The theory of characteristic classes is as useful as one’s ability to compute them. In this
section we will describe some methods of doing this.

Most concrete applications require the aplication of a combination of techniques from
topology, differential and algebraic geometry and Lie group theory that go beyond the
scope of this book. We will discuss in some detail a few invariant theoretic methods and
we will present one topological result more precisely the Gauss-Bonnet-Chern theorem.

8.3.1 Reductions

In applications, the symmetries of a vector bundle are implicitly described through topo-
logical or geometric properties.

For example, if a rank r complex vector bundle E splits as a Whitney sum E = E1⊕E2

with rankEi = ri, then E, which has a natural U(r)- symmetry, can be given a finer
structure of U(r1)× U(r2) vector bundle.

More generally, assume that a given rank r complex vector bundle E admits a G-
structure (P, ρ), where G is a Lie group, P is a principal G bundle, and ρ : G→ U(r) is a
representation of G. Then we can perform two types of Chern-Weil constructions: using
the U(r) structure, and using the G structure. In particular, we obtain two collections
of characteristic classes associated to E. One natural question is whether there is any
relationship between them.

In terms of the Whitney splitting E = E1 ⊕ E2 above, the problem takes a more
concrete form: compute the Chern classes of E in terms of the Chern classes of E1 and
E2. Our next definition formalizes the above situations.

Definition 8.3.1. Let ϕ : H → G be a smooth morphism of (matrix) Lie groups.
(a) If P is a principal H-bundle over the smooth manifold M defined by the open cover
(Uα), and gluing cocycle

hαβ : Uαβ → H,

then the principal G-bundle defined by the gluing cocycle

gαβ = ϕ ◦ hαβ : Uαβ → G

is said to be the ϕ-associate of P , and it is denoted by ϕ(P ).
(b) A principal G-bundle Q over M is said to be ϕ-reducible, if there exists a principal
H-bundle P →M such that Q = ϕ(P ). ⊓⊔

The morphism ϕ : H → G in the above definition induces a morphism of R-algebras

ϕ∗ : I•(G)→ I•(H).

The elements of kerϕ∗ ⊂ I•(G) are called universal identities.
The following result is immediate.

Proposition 8.3.2. Let P be a principal G-bundle which can be reduced to a principal
H-bundle Q. Then for every η ∈ kerϕ∗ we have

η(P ) = 0 in H∗(M).
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Proof. Denote by LG (respectively LH) the Lie algebra of G (respectively H), and by ϕ∗
the differential of ϕ at 1 ∈ H,

ϕ∗ : LH → LG.

Pick a connection (Aα) on Q, and denote by (Fα) its curvature. Then the collection
ϕ∗(Aα) defines a connection on P with curvature ϕ∗(Fα). Now

η(ϕ∗(Fα)) = (ϕ∗η)(Fα) = 0. ⊓⊔

The above result should be seen as a guiding principle in proving identities between
characteristic classes, rather than a rigid result. What is important about this result is
the simple argument used to prove it.

We conclude this subsection with some simple, but very important applications of the
above principle.

Example 8.3.3. Let E and F be two complex vector bundles over the same smooth
manifold M of ranks r and respectively s. Then the Chern polynomials of E, F and
E ⊕ F are related by the identity

ct(E ⊕ F ) = ct(E) · ct(F ), (8.3.1)

where the “·” denotes the ∧-multiplication in Heven(M). Equivalently, this means

ck(E ⊕ F ) =
∑

i+j=k

ci(E) · cj(F ).

To check this, pick a Hermitian metric g on E and a Hermitian metric h on F . g ⊕ h is
a Hermitian metric on E ⊕ F . Hence, E ⊕ F has an U(r + s) structure reducible to an
U(r)× U(s) structure.

The Lie algebra of U(r)× U(s) is the direct sum u(r)⊕ u(s). Any element X in this
algebra has a block decomposition XE

X =

[
Xr 0
0 Xs

]
= Xr ⊕Xs,

where Xr (respectively Xs) is an r×r (respectively s×s) complex, skew-hermitian matrix.

Let ı denote the natural inclusion u(r)⊕ u(s) →֒ u(r+ s) and denote by c
(ν)
t ∈ I∗(U(ν))[t]

the Chern polynomial.

We have

ı∗(c(r+s)t )(Xr ⊕Xs) = det

(
1r+s −

t

2πi
Xr ⊕Xs

)

= det

(
1r −

t

2πi
Xr

)
· det

(
1s −

t

2πi
Xs

)
= c

(r)
t · c

(s)
t (s).

The equality (8.3.1) now follows using the argument in the proof of Proposition 8.3.2. ⊓⊔
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Remark 8.3.4. Consider the GrassmannianGrk(C
n) of complex k-dimensional subspaces

in Cn. The universal complex vector bundle Uk,n → Grk(C
n) is a subbundle of the trivial

bundle Cn → Grk(C
n). The trivial bundle Cn is equipped with a canonical Hermitian

metric. We denote by Qk,n the orthogonal complement of Uk,n in Cn so that we have an
isomorphism

Cn ∼= Uk,n ⊕ Qk,n.

From the above example we deduce that

ct
(
Uk,n

)
ct
(
Qk,n

)
= ct(C

n) = 1.

Denote by uj the j-th Chern class of Uk,n and by vℓ the ℓ-th Chern class of Qk,n. Then

ct
(
Uk,n

)
=

k∑

j=0

ujt
j, ct

(
Qk,n

)
=

n−k∑

ℓ=0

vℓt
ℓ.

One can then prove that the cohomology ringH•
(
Grk(C

n),R)
)
is generated by the classes

ui, vj , which are subject to the single relation above. More formally

H•
(
Grk(C

n),R)
) ∼= R[ui, vj ; 0 ≤ i ≤ k, 0 ≤ j ≤ n− k]/

(∑

i

ui)(
∑

j

vj) = 1
)
,

deg ui = 2i, deg vj = 2j. The proof requires a more sophisticated topological machinery.
For details we refer to [77], Chapter v3, Section 6. ⊓⊔

Exercise 8.3.5. Let E and F be two complex vector bundles over the same manifold M .
Show that

Td(E ⊕ F ) = Td(E) ·Td(F ). ⊓⊔
Exercise 8.3.6. Let E and F be two real vector bundles over the same manifold M .
Prove that

pt(E ⊕ F ) = pt(E) · pt(F ), (8.3.2)

where pt denotes the Pontryagin polynomials. ⊓⊔

Exercise 8.3.7. Let E and F be two real vector bundles over the same smooth manifold
M . Show that

L(E ⊕ F ) = L(E) ·L(F )

Â(E ⊕ F ) = Â(E) · Â(F ). ⊓⊔
Example 8.3.8. The natural inclusion Rn →֒ Cn induces an embedding ı : O(n) →֒ U(n).
(An orthogonal map T : Rn → Rn extends by complexification to an unitary map TC :
Cn → Cn). This is mirrored at the Lie algebra level by an inclusion

o(n) →֒ u(n).

We obtain a morphism ı∗ : I•(U(n))→ I•(O(n)), and we claim that

i∗(c2k+1) = 0, and ı∗(c2k) = (−1)kpk.
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Indeed, for X ∈ o(n) we have

ı∗(c2k+1)(X) =

(
− 1

2πi

)2k+1 ∑

1≤i1<···<i2k+1≤n
λi1(X) · · · λi2k+1

(X),

where λj(X) are the eigenvalues of X over C. Since X is, in effect, a real skew-symmetric
matrix we have

λj(X) = λj(X) = −λj(X).

Consequently,

ı∗(c2k+1)(X) = ı∗(c2k+1(X)) =

(
− 1

2πi

)2k+1 ∑

1≤i1<···<i2k+1≤n
λi1(X) · · · λi2k+1

(X)

= (−1)2k+1

(
− 1

2πi

)2k+1 ∑

1≤i1<···<i2k+1≤n
λi1(X) · · · λi2k+1

(X) = −ı∗(c2k+1)(X).

The equality ı∗(c2k) = (−1)kpk is proved similarly. ⊓⊔

From the above example we deduce immediately the following consequence.

Proposition 8.3.9. If E → M is a real vector bundle and E ⊗ C is its complexification
then

pk(E) = (−1)kc2k(E ⊗ C), k = 1, 2, . . . . (8.3.3)

In a more concentrated form, this means

pt(E) = p−t(E) = cit(E ⊗ C). ⊓⊔

Exercise 8.3.10. Let E →M be a complex vector bundle of rank r.

(a) Show that ck(E
∗) = (−1)kck(E), i. e.,

ct(E
∗) = c−t(E).

(b) One can also regard E as a real, oriented vector bundle ER. Prove that

pit(ER) =
∑

k

(−1)kt2kpk(ER) = ct(E) · c−t(E),

and

cr(E) = e(ER). ⊓⊔

Exercise 8.3.11. (a) The natural morphisms I••(U(r)) → I••(O(r)) described above
induce a morphism

Φ∞ : I••(U(∞))→ I••(O(∞)).
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As we already know, for any F ∈ R[[x]]♭, the product (F )∞ is an element of I••(U(∞)),
and if moreover F is even, then (F )∞ can be regarded as an element of I∗∗(O(∞)). Show
that for every F ∈ R[[x]]♭

Φ∞((F )∞) = (F · F−)∞ ∈ I••(O(∞)),

where F−(x) = F (−x).
(b) Let E be a real vector bundle. Deduce from part (a) that

Td(E ⊗ C) = Â(E)2. ⊓⊔

Exercise 8.3.12. For every square matrix X we set2

(1+X)1/2 =
∞∑

k=0

(−1)k
(
1/2

k

)
Xk,

(
r

k

)
:=

r(r − 1) · · · (r − k + 1)

k!
,

and det1/2(1+X) := det(1+X)1/2.

Suppose that E → M is a rank r real vector bundle, equipped with a metric and a
compatible connection ∇. The connection ∇ induces a Hermitian connection ∇c on the
complexification Ec := E ⊗R C. Prove that

L(∇) = det1/2

(
i
2πF (∇c)

tanh
(

i
2πF (∇c)

)
, Â(∇) = det1/2

(
i
4πF (∇c)

sinh( i
4πF (∇c)

)
. ⊓⊔

Example 8.3.13. Consider the inclusion

ı : SO(2k)× SO(2ℓ)) →֒ SO(2k + 2ℓ).

This induces a ring morphism

ı∗ : I•(SO(2k + 2ℓ)→ I•(SO(2k) × SO(2ℓ)).

Note that

I•(SO(2k) × SO(2ℓ)) ∼= I•(SO(2k)) ⊗R I
•(SO(2ℓ).

Denote by e(ν) the Euler class in I•(SO(2ν)). We want to prove that

ı∗(e(k+ℓ)) = e(k) ⊗ e(ℓ).

Let X = Xk ⊕Xℓ ∈ so(2k)⊕ so(2ℓ). Modulo a conjugation by (S, T ) ∈ SO(2k)× SO(2ℓ)
we may assume that

Xk = λ1J ⊕ · · · ⊕ λkJ and Xℓ = µ1J ⊕ · · · ⊕ µℓJ,
2We are not worried about convergence issues because the matrices for which we intend to apply the

formula have nilpotent entries.
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where J denotes the 2× 2 matrix

J =

[
0 −1
1 0

]
.

We have

ı∗(e(k+ℓ))(X) =

(
− 1

2π

)k+ℓ
λ1 · · ·λk · µ1 · · ·µℓ = e(k)(Xk) · e(ℓ)(Xℓ)

= e(k) ⊗ e(ℓ)(Xk ⊕Xℓ). ⊓⊔

The above example has an interesting consequence.

Proposition 8.3.14. Let E and F be two real, oriented vector bundle of even ranks over
the same manifold M . Then

e(E ⊕ F ) = e(E) · e(F ),

where · denotes the ∧-multiplication in Heven(M). ⊓⊔

Example 8.3.15. Let E be a rank 2k real, oriented vector bundle over the smooth
manifold M . We claim that if E admits a nowhere vanishing section ξ then e(E) = 0.

To see this, fix an Euclidean metric on E so that E is now endowed with an SO(2k)-
structure. Denote by L the real line subbundle of E generated by the section ξ. Clearly,
L is a trivial line bundle, and E splits as an orthogonal sum

E = L⊕ L⊥.

The orientation on E, and the orientation on L defined by ξ induce an orientation on L⊥,
so that L⊥ has an SO(2k − 1)-structure.

In other words, the SO(2k) structure of E can be reduced to an SO(1)×SO(2k−1) ∼=
SO(2k − 1)-structure. Denote by ı∗ the inclusion induced morphism

I∗(SO(2k))→ I∗(SO(2k − 1)).

Since ı∗(e(k)) = 0, we deduce from the Proposition 8.3.2 that e(E) = 0. ⊓⊔

The result proved in the above example can be reformulated more suggestively as
follows.

Corollary 8.3.16. Let E be a real oriented vector bundle of even rank over the smooth
manifold M . If e(E) 6= 0, then any section of E must vanish somewhere on M ! ⊓⊔
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8.3.2 The Gauss-Bonnet-Chern theorem

If E →M is a real oriented vector bundle over a smooth, compact, oriented manifold M
then there are two apparently conflicting notions of Euler class naturally associated to E.
• The topological Euler class

etop(E) = ζ∗0τE,

where τE is the Thom class of E and ζ0 :M → E is the zero section.
• The geometric Euler class

egeom(E) =

{ 1
(2π)r Pf(−F (∇)) if rank (E) is even

0 if rank (E) is odd
,

where ∇ is a connection on E compatible with some metric and 2r = rank (E). The next
result, which generalizes the Gauss-Bonnet theorem, will show that these two notions of
Euler class coincide.

Theorem 8.3.17 (Gauss-Bonnet-Chern). Let E
π→ M be a real, oriented vector bundle

over the compact oriented manifold M . Then

etop(E) = egeom(E).

Proof. We will distinguish two cases.
A. rank (E) is odd. Consider the automorphism of E

i : E → E u 7→ −u ∀u ∈ E.

Since the fibers of E are odd dimensional, we deduce that i reverses the orientation in the
fibers. In particular, this implies

π∗i
∗τE = −π∗τE = π∗(−τE),

where π∗ denotes the integration along fibers. Since π∗ is an isomorphism (Thom isomor-
phism theorem), we deduce

i∗τE = −τE.
Hence

etop(E) = −ζ∗0 i∗τE . (8.3.4)

On the other hand, notice that
ζ∗0 i
∗ = ζ0.

Indeed,
ζ∗0 i
∗ = (iζ0)

∗ = (−ζ0)∗ = (ζ)∗ (ζ0 = −ζ0).
The equality etop = egeom now follows from (8.3.4).

B. rank (E) = 2k. We will use a variation of the original argument of Chern, [22]. Let
∇ denote a connection on E compatible with a metric g. The strategy of proof is very
simple. We will explicitly construct a closed form ω ∈ Ω2k

cpt(E) such that
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(i) π∗ω = 1 ∈ Ω0(M).

(ii) ζ∗0ω = e(∇) = (2π)−k Pf(−F (∇)).

The Thom isomorphism theorem coupled with (i) implies that ω represents the Thom
class in H2k

cpt(E). The condition (ii) simply states the sought for equality etop = egeom.
Denote by S(E) the unit sphere bundle of E,

S(E) = {u ∈ E ; |u|g = 1}.

Then S(E) is a compact manifold, and

dimS(E) = dimM + 2k − 1.

Denote by π0 the natural projection S(E) → M , and by π∗0(E) → S(E) the pullback
of E to S(E) via the map π0. The vector bundle π∗0(E) has an SO(2k)-structure, and
moreover, it admits a tautological, nowhere vanishing section

Υ : S(Ex) ∋ e 7→ e ∈ Ex ≡ (π∗0(E)x)e (x ∈M).

Thus, according to Example 8.3.15 we must have

egeom(π
∗
0(E)) = 0 ∈ H2k(S(E)),

where egeom(π
∗
0E) denotes the differential form

egeom(π
∗
0∇) =

1

(2π)k
Pf(−F (π∗0∇)).

Hence there must exist ψ ∈ Ω2k−1(S(E)) such that

dψ = egeom(π
∗
0E).

The decisive step in the proof of Gauss-Bonnet-Chern theorem is contained in the following
lemma.

Lemma 8.3.18. There exists Ψ = Ψ(∇) ∈ Ω2k−1(S(E)) such that

dΨ(∇) = egeom(π
∗
0(E)) (8.3.5)

and ∫

S(E)/M
Ψ(∇) = −1 ∈ Ω0(M). (8.3.6)

The form Ψ(∇) is sometimes referred to as the global angular form of the pair (E,∇).
For the clarity of the exposition we will conclude the proof of the Gauss-Bonnet-Chern
theorem assuming Lemma 8.3.18 which will be proved later on.

Denote by r : E → R+ the norm function

E ∋ e 7→ |e|g
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If we set E0 = E \ { zero section }, then we can identify

E0 ∼= (0,∞) × S(E) e 7→ (|e|, 1

|e|e).

Consider the smooth cutoff function

ρ = ρ(r) : [0,∞)→ R,

such that ρ(r) = −1 for r ∈ [0, 1/4], and ρ(r) = 0 for r ≥ 3/4. Finally, define

ω = ω(∇) = −ρ′(r)dr ∧Ψ(∇)− ρ(r)π∗(e(∇)).

The differential form ω is well defined since ρ′(r) ≡ 0 near the zero section. Obviously ω
has compact support on E, and satisfies the condition (ii) since

ζ∗0ω = −ρ(0)ζ∗0π∗e(∇) = e(∇).

From the equality ∫

E/M
ρ(r)π∗e(∇) = 0,

we deduce
∫

E/M
ω = −

∫

E/M
ρ′(r)dr ∧Ψ(∇) = −

∫ ∞

0
ρ′(r)dr ·

∫

S(E)/M
Ψ(∇)

= −(ρ(1) − ρ(0))
∫

S(E)/M
Ψ(∇) (8.3.6)

= 1.

To complete the program outlined at the beginning of the proof we need to show that ω
is closed.

dω = ρ′(r)dr ∧ dΨ(∇)− ρ′(r) ∧ π∗e(∇)
(8.3.5)
= ρ′(r)dr ∧ {π∗0e(∇)− π∗e(∇)}.

The above form is identically zero since π∗0e(∇) = π∗e(∇) on the support of ρ′. Thus ω
is closed and the theorem is proved. ⊓⊔

Proof of Lemma 8.3.18 We denote by ∇ the pullback of ∇ to π∗0E. The tautological
section Υ : S(E)→ π∗0E can be used to produce an orthogonal splitting

π∗0E = L⊕ L⊥,

where L is the real line bundle spanned by Υ, while L⊥ is its orthogonal complement in
π∗0E with respect to the pullback metric g. Denote by

P : π∗0E → π∗0E

the orthogonal projection onto L⊥. Using P , we can produce a new metric compatible
connection ∇̂ on π∗0E by

∇̂ = (trivial connection on L)⊕ P∇P.
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We have an equality of differential forms

π∗0e(∇) = e(∇) = 1

(2π)k
Pf(−F (∇)).

Since the curvature of ∇̂ splits as a direct sum

F (∇̂) = 0⊕ F ′(∇̂),

where F ′(∇̂) denotes the curvature of ∇̂ |L⊥ , we deduce

Pf(F (∇̂)) = 0.

We denote by ∇t the connection ∇̂ + t(∇ − ∇̂), so that ∇0 = ∇̂, and ∇1 = ∇. If F t is
the curvature of ∇t, we deduce from the transgression formula (8.1.12) that

π∗0e(∇) = e(∇)− e(∇̂) = d

{(−1
2π

)k
k

∫ 1

0
Pf(∇− ∇̂, F t, . . . , F t)dt

}
.

We claim that the form

Ψ(∇) =
(−1
2π

)k
k

∫ 1

0
Pf(∇− ∇̂, F t, . . . , F t)dt

satisfies all the conditions in Lemma 8.3.18.
By construction,

dΨ(∇) = π∗0e(∇),
so all that we need to prove is

∫

S(E)/M
Ψ(∇) = −1 ∈ Ω0(M).

It suffices to show that for each fiber Ex of E we have
∫

Ex

Ψ(∇) = −1.

Along this fiber π∗0E is naturally isomorphic with a trivial bundle

π∗0E |Ex
∼= (Ex × Ex → Ex).

Moreover, the connection∇ restricts as the trivial connection. By choosing an orthonormal
basis of Ex we can identify π∗0E |Ex with the trivial bundle R2k over R2k. The unit sphere
S(Ex) is identified with the unit sphere S2k−1 ⊂ R2k. The splitting L ⊕ L⊥ over S(E)
restricts over S(Ex) as the splitting

R2k = ν ⊕ TS2k−1,

where ν denotes the normal bundle of S2k−1 →֒ R2k. The connection ∇̂ is then the direct
sum between the trivial connection on ν, and the Levi-Civita connection on TS2k−1.
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Fix a point p ∈ S2k−1, and denote by (x1, . . . , x2k−1) a collection of normal coordinates
near p, such that the basis (∂xi |p) is positively oriented. Set ∂i := ∂xi for i = 1, . . . , 2k−1.
Denote the unit outer normal vector field by ∂0. For α = 0, 1, . . . , 2k − 1 set fα = ∂α |p.
The vectors fα form a positively oriented orthonormal basis of R2k.

We will use Latin letters to denote indices running from 1 to 2k− 1, and Greek letters
indices running from 0 to 2k − 1.

∇i∂α = (∇i∂α)ν + (∇i∂α)τ ,

where the superscript ν indicates the normal component, while the superscript τ indicates
the tangential component. Since at p

0 = ∇̂i∂j = (∇i∂j)τ ,

we deduce
∇i∂j = (∇i∂j)ν at p.

Hence
∇i∂j = (∇i∂j , ∂0)∂0 = −(∂j,∇i∂0)∂0.

Recalling that ∇ is the trivial connection in R2k, we deduce

∇i∂0 |p=
(
∂

∂fi
∂0

)
|p= f i = ∂i |p .

Consequently,
∇i∂j = −δji∂0, at p.

If we denote by θi the local frame of T ∗S2k−1 dual to (∂i), then we can rephrase the above
equality as

∇∂j = −(θ1 + · · ·+ θ2k−1)⊗ ∂0.
On the other hand, ∇i∂0 = ∂i, i.e.,

∇∂0 = θ1 ⊗ ∂1 + · · ·+ θ2k−1 ⊗ ∂2k−1.

Since (x1, · · · , x2k−1) are normal coordinates with respect to the Levi-Civita connection
∇̂, we deduce that ∇̂∂α = 0, ∀α so that

A = (∇− ∇̂) |p=




0 −θ1 · · · −θ2k−1
θ1 0 · · · 0
θ2 0 · · · 0
...

...
...

...
θ2k−1 0 · · · 0



.

Denote by F 0 the curvature of ∇0 = ∇̂ at p. Then F 0 = 0 ⊕ R, where R denotes the
Riemann curvature of ∇̂ at p.

The computations in Example 4.2.19 show that the second fundamental form of the
embedding

S2k−1 →֒ R2k,
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coincides with the induced Riemann metric (which is the first fundamental form). Using
Teorema Egregium we get

〈R(∂i, ∂j)∂k, ∂ℓ〉 = δiℓδjk − δikδjℓ.

In matrix format we have
F 0 = 0⊕ (Ωij),

where Ωij = θi ∧ θj. The curvature F t at p of ∇t = ∇̂ + tA can be computed using the
equation (8.1.11) of subsection 8.1.4, and we get

F t = F 0 + t2A ∧A = 0⊕ (1− t2)F 0.

We can now proceed to evaluate Ψ(∇).

Ψ(∇) |p=
(−1
2π

)k
k

∫ 1

0
Pf(A, (1 − t2)F 0, · · · , (1− t2)F 0)dt

=

(−1
2π

)k
k

(∫ 1

0
(1− t2)k−1dt

)
Pf(A,F 0, F 0, . . . , F 0). (8.3.7)

We need to evaluate the pfaffian in the right-hand-side of the above formula. Set for
simplicity F := F 0.

Using the polarization formula and Exercise 2.2.65 in Subsection 2.2.4, we get

Pf(A,F, F, · · · , F ) = (−1)k
2kk!

∑

σ∈S2k
ǫ(σ)Aσ0σ1Fσ2σ3 · · ·Fσ2k−2σ2k−1

.

For i = 0, 1, define
Si = {σ ∈ S2k ; σi = 0}.

We deduce

2kk!Pf(A,F, · · · , F ) = (−1)k
∑

σ∈S0
ǫ(σ)(−θσ1) ∧ θσ2 ∧ θσ3 ∧ · · · ∧ θσ2k−2 ∧ θσ2k−1

+(−1)k
∑

σ∈S1
ǫ(σ)θσ0 ∧ θσ2 ∧ θσ3 ∧ · · · ∧ θσ2k−2 ∧ θσ2k−1 .

For each σ ∈ S0 we get a permutation

φ : (σ1, σ2, · · · , σ2k−1) ∈ S2k−1,

such that ǫ(σ) = ǫ(φ). Similarly, for σ ∈ S1, we get a permutation

φ = (σ0, σ2, · · · , σ2k−1) ∈ S2k−1,

such that ǫ(σ) = ǫ(φ). Hence

2kk!Pf(A,F, · · · , F ) = 2(−1)k+1
∑

φ∈S2k−1

ǫ(φ)θφ1 ∧ · · · · · · θφ2k−1
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= 2(−1)k+1(2k − 1)!θ1 ∧ · · · ∧ θ2k−1 = 2(−1)k+1dVS2k−1 ,

where dVS2k−1 denotes the Riemannian volume form on the unit sphere S2k−1.Using the
last equality in (8.3.7) we get

Ψ(∇) |p=
(−1
2π

)k
k

(∫ 1

0
(1− t2)k−1dt

)
· 2(−1)k+1(2k − 1)!dVS2k−1

= − (2k)!

(4π)kk!

(∫ 1

0
(1− t2)k−1dt

)
dVS2k−1 .

Using the Exercise 4.1.60 we get that

ω2k−1 =
∫

S2k−1

dVS2k−1 =
2πk

(k − 1)!
,

and consequently

∫

S2k−1

Ψ(∇) = −ω2k−1
(2k)!

(4π)kk!

(∫ 1

0
(1− t2)k−1dt

)

= − (2k)!

22k−1k!(k − 1)!

(∫ 1

0
(1− t2)k−1dt

)
.

The above integral can be evaluated inductively using the substitution t = cosϕ. We have

Ik =

(∫ 1

0
(1− t2)k−1dt

)
=

∫ π/2

0
(cosϕ)2k−1dϕ

= (cosϕ)2k−2 sinϕ|π/20 + (2k − 2)

∫ π/2

0
(cosϕ)2k−3(sinϕ)2dϕ

= (2k − 1)Ik−1 − (2k − 2)Ik

so that

Ik =
2k − 3

2k − 2
Ik−1.

One now sees immediately that
∫

S2k−1

Ψ(∇) = −1.

Lemma 8.3.18 is proved. ⊓⊔

Corollary 8.3.19 (Chern). Let (M,g) be a compact, oriented Riemann Manifold of
dimension 2n. If R denotes the Riemann curvature then

χ(M) =
1

(2π)n

∫

M
Pf(−R). ⊓⊔

The next exercises provide another description of the Euler class of a real oriented
vector bundle E →M over the compact oriented manifold M in terms of the homological
Poincaré duality. Set r = rankE, and let τE be a compactly supported form representing
the Thom class.
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Exercise 8.3.20. Let Φ : N → M be a smooth map, where N is compact and oriented.
We denote by Φ# the bundle map Φ∗E → E induced by the pullback operation. Show
that Φ∗τE := (Φ#)∗τE ∈ Ωr(Φ∗E) is compactly supported, and represents the Thom class
of Φ∗E. ⊓⊔

In the next exercise we will also assume M is endowed with a Riemann structure.

Exercise 8.3.21. Consider a nondegenerate smooth section s of E, i.e.,

(i) the set Z = s−1(0) is a codimension r smooth submanifold of M , and

(ii) there exists a connection ∇0 on E such that

∇0
Xs 6= 0 along Z

for any vector field X normal to Z (along Z).

(a) (Adjunction formula.) Let ∇ be an arbitrary connection on E, and denote by NZ

the normal bundle of the embedding Z →֒M . Show that the adjunction map

a∇ : NZ → E |Z,

defined by

X 7→ ∇Xs X ∈ C∞(NZ),

is a bundle isomorphism. Conclude that Z is endowed with a natural orientation.

(b) Show that there exists an open neighborhood N of Z →֒ NZ →֒ TM such that

exp : N→ exp(N)

is a diffeomorphism. (Compare with Lemma 7.3.44.) Deduce that the Poincaré dual of Z
in M can be identified (via the above diffeomorphism) with the Thom class of NZ.

(c) Prove that the Euler class of E coincides with the Poincaré dual of Z . ⊓⊔

The part (c) of the above exercise generalizes the Poincaré-Hopf theorem (see Corollary
7.3.48). In that case, the section was a nondegenerate vector field, and its zero set was a
finite collection of points. The local index of each zero measures the difference between two
orientations of the normal bundle of this finite collection of points: one is the orientation
obtained if one tautologically identifies this normal bundle with the restriction of TM to
this finite collection of points while, and the other one is obtained via the adjunction map.

In many instances one can explicitly describe a nondegenerate section and its zero set,
and thus one gets a description of the Euler class which is satisfactory for most topological
applications.

Example 8.3.22. Let U denote the tautological line bundle over the complex projective
space CPn. According to Exercise 8.3.10

c1(U) = e(U),
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when we view U as a rank 2 oriented, real vector bundle. Denote by [H] the (2n−2)-cycle
defined by the natural inclusion

ı : CPn−1 →֒ CPn, [z0, . . . , zn−1] 7→ [z0, . . . , zn−1, 0] ∈ CPn.

We claim that the (homological) Poincaré dual of c1(τn) is −[H]. We will achieve this by
showing that c1(U

∗) = −c1(U) is the Poincaré dual of [H].
Let P be a degree 1 homogeneous polynomial P ∈ C[z0, . . . , zn]. For each complex line

L →֒ Cn+1, the polynomial P defines a complex linear map L→ C, and hence an element
of L∗, which we denote by P |L. We thus have a well defined map

CPn ∋ L 7→ P |L∈ L∗ = U∗ |L,

and the reader can check easily that this is a smooth section of U∗, which we denote by
[P ]. Consider the special case P0 = zn. The zero set of the section [P0] is precisely the
image of [H]. We let the reader keep track of all the orientation conventions in Exercise
8.3.21, and conclude that c1(U

∗) is indeed the Poincaré dual of [H]. ⊓⊔

Exercise 8.3.23. Let US = S2 \ {north pole}, and UN = S2 \ {south pole} ∼= C. The
overlap UN ∩ US is diffeomorphic with the punctured plane C∗ = C \ {0}. For each map
g : C∗ → U(1) ∼= S1 denote by Lg the line bundle over S2 defined by the gluing map

gNS : UN ∩ US → U(1), gNS(z) = g(z).

Show that ∫

S2

c1(Lg) = deg g,

where deg g denotes the degree of the smooth map g |S1⊂C∗→ S1. ⊓⊔



Chapter 9

Classical Integral Geometry

Ultimately, mathematics is about solving problems, and we can trace the roots of most
remarkable achievements in mathematics to attempts of solving concrete problems which,
for various reasons, were deemed very interesting by the mathematical community.

In this chapter, we will present some very beautiful applications of the techniques
developed so far. In a sense, we are going against the natural course of things, since the
problems we will solve in this chapter were some of the catalysts for the discoveries of
many of the geometric results discussed in the previous chapters.

Integral geometry, also known as geometric probability, is a mixed breed subject.
The question it addresses have purely geometric formulations, but the solutions borrow
ideas from many mathematical areas, such as representation theory and probability. This
chapter is intended to wet the reader’s appetite for unusual questions, and make him/her
appreciate the power of the technology developed in the previous chapters.

9.1 The integral geometry of real Grassmannians

9.1.1 Co-area formulæ

As Gelfand and his school pointed out, the main trick of classical integral geometry is a
very elementary one, namely the change of order of summation. Let us explain the bare
bones version of this trick, unencumbered by various technical assumptions.

Consider a “roof”

X

A B

�

��

α [

[℄

β

where X
α→ A and X

β→ B are maps between finite sets. One should think of α and β as
defining two different fibrations with the same total space X.

Suppose we are given a function f : X → R. We define its “average” over X as the
“integral”

〈f〉X :=
∑

x∈X
f(x).

353
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We can compute the average 〈f〉X in two different ways, either summing first over the
fibers of α, or summing first over the fibers of β, i.e.

∑

a∈A

( ∑

α(x)=a

f(x)
)
= 〈f〉X =

∑

b∈B

( ∑

β(x)=b

f(x)
)
. (9.1.1)

We can reformulate the above equality in a more conceptual way by introducing the
functions

α∗(f) : A→ C, α∗(f)(a) =
∑

α(x)=a

f(x),

and

β∗(f) : B → C, β∗(f)(b) =
∑

β(x)=b

f(x).

The equality (9.1.1) implies that

〈
α∗(f)

〉
A
=
〈
β∗(f)

〉
B
.

All the integral geometric results that we will prove in this chapter will be of this form.
The reason such formulæ have captured the imagination of geometers comes from the fact
that the two sides 〈α∗(f)〉A and 〈β∗(f)〉B have rather unrelated interpretations.

The geometric situation we will investigate is a bit more complicated than the above
baby case, because in the geometric case the sets X,A,B are smooth manifolds, the maps
α and β define smooth fibrations, and the function f is not really a function, but an
object which can be integrated over X, i.e., a density. It turns out that the push forward
operations do make sense for densities resulting in formulas of the type

〈 f 〉X =
〈
α∗(f)

〉
A
.

These formulæ generalize the classical Fubini theorem and they are often referred to as
coarea formulæ for reasons which will become apparent a bit later. To produce such results
we need to gain a deeper understanding of the notion of density introduced in Subsection
3.4.1.

Suppose V is a finite dimensional real vector space. We denote by detV the top
exterior power of V . Given a real number s we define an s-density on V to be a map
λ : detV → R such that

λ(tΩ) = |t|sλ(Ω), ∀t ∈ R∗, Ω ∈ detV.

We denote by |Λ|s(V ) the one dimensional space of s-densities. Note that we have a
canonical identification |Λ|0(E) = R. We will refer to 1-densities simply as densities, and
we denote the corresponding space by |Λ|(V ).

We say that an s-density λ : detV → R is positive if

λ(detV \ 0) ⊂ (0,∞).

We denote by |Λ|+s (V ) the cone of positive densities.
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Note that any basis (v1, . . . , vn) of V defines linear isomorphisms

|Λ|sV → R, λ 7→ λ(v1 ∧ · · · ∧ vn).

In particular, we have a canonical identification

|Λ|s(Rn) ∼= R, λ 7→ λ(e1 ∧ · · · ∧ en),

where (e1, . . . , en) is the canonical basis of Rn.
If V0 and V1 are vector spaces of the same dimension n, and g : V0 → V1 is a linear

isomorphism then we get a linear map

g∗ : |Λ|s(V1)→ |Λ|s(V0), |Λ|s(V1) ∋ λ 7→ g∗λ,

where
(g∗λ) (∧ivi) = λ

(
∧i(gvi)

)
, ∀v1, · · · , vn ∈ V0.

If V0 = V1 = V so that g ∈ Aut(V ), then

g∗λ = |det g|sλ.

For every g, h ∈ Aut(V ) we gave (gh)∗ = h∗g∗, and thus we have a left action of Aut(V )
on |Λ|s(V )

Aut(V )× |Λ|s(V )→ |Λ|s(V ),

Aut(V )× |Λ|s(V ) ∋ (g, λ) 7→ g∗λ = (g−1)∗λ = |det g|−sλ.
We have bilinear maps

|Λ|s(V )⊗ |Λ|t(V )→ |Λ|s+t(V ), (λ, µ) 7→ λ · µ.

To any short exact sequence of vector spaces

0→ U
α→ V

β→W → 0, dimU = m, dimV = m, dimW = p

we can associate maps
\ : |Λ|+s (U)× |Λ|s(V )→ |Λ|s(W ),

/ : |Λ|s(V )× |Λ|+s (W )→ |Λ|s(U),

and
× : |Λ|s(U)× |Λ|s(W )→ |Λ|s(V )

as follows.

• Let µ ∈ |Λ|+s (U), λ ∈ |Λ|s(V ), and suppose (wj)1≤j≤p is a basis of W . Now choose
lifts vj ∈ V of wj , such that β(vj) = wj, and a basis (ui)1≤i≤m of U such that

{
α(u1), . . . , α(um), v1, . . . , vp,

}

is a basis of V . We set

(µ\λ)
(
∧jwj

)
:=

λ
(
(∧iα(ui) ) ∧ (∧jvj)

)

µ
(
∧iui

) .

It is easily seen that the above definition is independent of the choices of v’s and u’s.
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• Let λ ∈ |Λ|s(V ) and ν ∈ |Λ|+s (W ). Given a basis (ui)1≤i≤m of U , extend the linearly
independent set

(
α(ui)

)
⊂ V to a basis

{
α(u1), . . . , α(um), v1, · · · , vp,

}

of V and now define

(λ/ν)
(
∧iui

)
:=

λ
(
(∧iα(ui)) ∧ (∧jvj)

)

ν
(
∧jβ(vj)

) .

Again it is easily verified that the above definition is independent of the various
choices.

• Let µ ∈ |Λ|s(U) and ν ∈ |Λ|s(W ). To define µ× ν : detV → R it suffices to indicate
its value on a single nonzero vector of the line detV . Fix a basis (ui)1≤i≤m of U and
a basis (wj)1≤j≤p of W . Choose lifts (vj) of wj to V . Then we set

(µ× ν)
(
(∧iα(ui)) ∧ (∧jwj)

)
= µ(∧iui)ν(∧jvj).

Again one can check that this is independent of the various bases (ui) and (wj).

Exercise 9.1.1. Prove that the above constructions are indeed independent of the various
choices of bases. ⊓⊔

Remark 9.1.2. The constructions \, /, and × associated to a short exact sequence of
vector spaces

0→ U
α−→ V

β−→W → 0,

do depend on the maps α and β! For example if we replace α by αt = tα and β by βτ = τβ,
t, τ > 0, and if

µ ∈ |Λ|s(U), λ ∈ |Λ|s(V ), ν ∈ |Λ|s(W ),

then
µ\αt,βτ λ = (t/τ)sµ\α,β λ, λ/αt,βτ ν = (t/τ)sλ/α,β ν,

λ×αt,βτ ν = (t/τ)−sµ×α,β ν.
The next example illustrates this. ⊓⊔

Example 9.1.3. Consider the short exact sequence

0→ U = R
α−→ V = R2 β−→W = R→ 0

given by
α(s) = (4s, 10s), β(x, y) = 5x− 2y.

Denote by e the canonical basis of U , by (e1,e2) the canonical basis of V and by f the
canonical basis of W . We obtain canonical densities λU on U , λV on V and λW on W
given by

λU (e) = λV (e1 ∧ e2) = λW (f) = 1.
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We would like to describe the density λV /β
∗λW on V . Set

f1 = α(e) = (4, 10).

We choose f2 ∈ V such that β(f2) = f , for example, f2 = (1, 2). Then

λV /β
∗λW (e) = λV (f 1 ∧ f2)/λW (f) =

∣∣∣∣det
[

4 1
10 2

] ∣∣∣∣ = 2.

Hence λV /β
∗λW = 2λU . ⊓⊔

Suppose now that E →M is a real vector bundle of rank n over the smooth manifold
M . Assume that it is given by the open cover (Uα) and gluing cocycle

gβα : Uαβ → Aut(V ),

where V is a fixed real vector space of dimension n. Then the bundle of s-densities
associated to E is the real line bundle |Λ|sE given by the open cover (Uα) and gluing
cocycle

|det gβα|−s : Uαβ → Aut( |Λ|s(V ) ) ∼= R∗.

We denote by C∞(|Λ|sE ) the space of smooth sections of |Λ|sE. Such a section is given
by a collection of smooth functions λα : Uα → |Λ|s(V ) satisfying the gluing conditions

λβ(x) = (g−1βα )
∗λα(x) = |det gβα|−sλα(x), ∀α, β, x ∈ Uαβ .

Let us point out that if V = Rn, then we have a canonical identification |Λ|s(Rn) → R,
and in this case a density can be regarded as a collection of smooth functions λα : Uα → R

satisfying the above gluing conditions.
An s-density λ ∈ C∞(|Λ|sE) is called positive if for every x ∈ M we have λ(x) ∈

|Λ|+s (Ex).
If φ : N →M is a smooth map, and E →M is a smooth real vector bundle, then we

obtain the pullback bundle π∗E → N . We have canonical isomorphisms

|Λ|s π∗E ∼= π∗ |Λ|sE,

and a natural pullback map

φ∗ : C∞(|Λ|sE)→ C∞(π∗ |Λ|sE) ∼= C∞(|Λ|s π∗E).

Given a short exact sequence of vector bundles

0→ E0 → E1 → E2 → 0

over M , we obtain maps

\ : C∞(|Λ|+s E0)× C∞(|Λ|sE1)→ C∞(|Λ|sE2),

/ : C∞(|Λ|sE1)× C∞(|Λ|+s E2)→ C∞(|Λ|sE0),
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and

× : C∞(|Λ|sE0)× C∞(|Λ|sE2)→ C∞(|Λ|sE1).

Observe that for every positive smooth function f :M → (0,∞) we have

(fµ)\λ = (f−1(µ\λ), λ/(fν) = (f−1)(µ/λ).

In the sequel we will almost exclusively use a special case of the above construction, when
E is the tangent bundle of the smooth manifold M . We will denote by |Λ|s(M) the line
bundle |Λ|s(TM), and we will refer to its sections as (smooth) s-densities on M . When
s = 1, we will use the simpler notation |Λ|M to denote |Λ|1(M).

As explained in Subsection 3.4.1, an s-density on M is described by a coordinate atlas(
Uα, (xiα)

)
, and smooth functions λα : Uα → R satisfying the conditions

λβ = |dβα|−sλα, where dβα = det

(
∂xjβ
∂xiα

)

1≤i,j≤n
, n = dimM. (9.1.2)

We deduce that the smooth 0-densities on M are precisely the smooth functions.

Example 9.1.4. (a) Suppose ω ∈ Ωn(M) is a top degree differential form on M . Then
in a coordinate atlas (Uα, (xiα) ) this form is described by a collection of forms

ωα = λαdx
1
α ∧ · · · ∧ dxnα.

The functions λα satisfy the gluing conditions λβ = d−1βαλα, and we conclude that the
collection of functions |λα|s defines an s-density on M which we will denote by |ω|s.
Because of this fact, the s-densities are traditionally described as collections

λα|dxα|s, dxα := dx1α ∧ · · · ∧ dxnα.

(b) Suppose M is an orientable manifold. By fixing an orientation we choose an atlas
(Uα, (xiα) ) so that all the determinants dβα are positive. If ω is a top dimensional form
on M described locally by forms ωα = λαdxα, then the collection of functions λα defines
a density on M . Thus, a choice of orientation produces a linear map

Ωn(M)→ C∞(|Λ|(M) ).

As explained in Subsection 3.4.2, this map is a bijection.

(c) Any Riemann metric g on M defines a canonical density on M denoted by |dVg|
and called the volume density. It is locally described by the collection

√
|gα||dxα|,

where |gα| denotes the determinant of the symmetric matrix representing the metric g in
the coordinates (xiα). ⊓⊔
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The densities on a manifold serve one major purpose: they can be integrated. We
denote by C0(|Λ|(M) ) the space of continuous densities with compact support. Consider
the integration map defined in Subsection 3.4.1

∫

M
: C0(|Λ|(M) ) → R, |dµ| 7→

∫

M
|dµ|.

Note that if f is a continuous, compactly supported function on M , and |dµ| is a density,
then f |dµ| is a continuous compactly supported density, and thus there is a well defined
integral ∫

M
f |dµ|.

We obtain in this fashion a natural pairing

C0(M)× C(|Λ|M ), (f, |dµ|) 7→
∫

M
f |dµ|.

Let us observe that if |dρ| and |dτ | are two positive densities, then there exists a positive
function f such that

|dρ| = f |dτ |.
The existence of this function follows from the Radon-Nicodym theorem. For every x ∈M
we have

f(x) = lim
U→{x}

∫
U |dρ∫
U |dτ |

,

where the above limit is taken over open sets shrinking to x. We will use the notation

f :=
|dρ|
|dτ | ,

and we will refer to f as the jacobian of |dρ| relative to |dτ |. If φ : M → N is a diffeo-
morphism and |dρ| = (Uα, ρα|dyα|) is a density on N , then we define the pullback of |dρ|
by φ to be the density φ∗|dρ| on M defined by

φ∗|dρ| =
(
φ−1(Uα), ρα|dyα|), yiα = xiα ◦ φ.

The classical change in variables formula now takes the form
∫

N
|dρ| =

∫

M
φ∗|dρ|.

Example 9.1.5. Suppose φ : M → N is a diffeomorphism between two smooth m-
dimensional manifolds, ω ∈ Ωm(M), and |ω| is the associated density. Then

φ∗|ω| = |φ∗ω|. ⊓⊔

Suppose a Lie group G acts smoothly on M . Then for every g ∈ G, and any density
|dρ|, we get a new density g∗|dρ|. The density |dρ| is called G-invariant if

g∗|dρ| = |dρ|, ∀g ∈ G.

Note that a density isG-invariant if and only if the associated Borel measure isG-invariant.
A positive density is invariant if the jacobian g∗|dρ|

|dρ| is identically equal to 1, ∀g ∈ G.
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Proposition 9.1.6. Suppose |dρ| and |dτ | are two G-invariant positive densities. Then

the jacobian J = |dρ|
|dτ | is a G-invariant smooth, positive function on G.

Proof. Let x ∈M and g ∈ G. Then for every open neighborhood U of x we have

∫

U
|dρ| =

∫

g(U)
|dρ|,

∫

U
|dτ | =

∫

g(U)
|dτ | =⇒

∫
U |dτ |∫
U |dρ|

=

∫
g(U) |dτ |∫
g(U) |dρ|

,

and then letting U → {x} we deduce

J(x) = J(gx), ∀x ∈M,g ∈ G. ⊓⊔

Corollary 9.1.7. If G acts smoothly and transitively on the smooth manifold M then, up
to a positive multiplicative constant there exists at most one invariant positive density. ⊓⊔

Suppose Φ : M → B is a submersion. The kernels of the differentials of Φ form a
vector subbundle T VM →֒ TM consisting of the planes tangent to the fibers of Φ. We
will refer to it as the vertical tangent bundle. Since Φ is a submersion, we have a short
exact sequence of bundles over M .

0→ T VM →֒ TM
DΦ−→ Φ∗TB → 0.

Observe that any (positive) density |dν| on B defines by pullback a (positive) density
Φ∗|dν| associated to the bundle Φ∗TB → M . If λ is a density associated to the vertical
tangent bundle T VM , then we obtain a density λ× Φ∗|dν| on M .

Suppose |dµ| is a density on M such that Φ is proper on the support of |dµ|. Set
k := dimB, r := dimM − dimB. We would like to describe a density Φ∗|dµ| on B called
the pushforward of |dµ| by Φ. Intuitively, Φ∗|dµ| is the unique density on B such that for
any open subset U ⊂ B we have

∫

U
Φ∗|dµ| =

∫

Φ−1(U)
|dµ|.

Proposition 9.1.8 (The pushforward of a density). There exists a smooth density Φ∗|dµ|
on B uniquely characterized by the following condition. For every density |dν| on B we
have

Φ∗|dµ| = Vν |dν|,
where Vν ∈ C∞(B) is given by

Vν(b) :=

∫

Φ−1(b)
|dµ|/Φ∗|dν|.

Proof. Fix a positive density |dν| on B. Along every fiberMb = Φ−1(b) we have a density
|dµ|b/Φ∗|dν| ∈ C∞

(
|Λ|(Mb)

)
corresponding to the short exact sequence

0→ TMb → (TM)|Mb

DΦ−→ (Φ∗TB)|Mb
→ 0.
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To understand this density fix x ∈Mb. Then we can find local coordinates (yj)1≤j≤k near
b ∈ B, and smooth functions (xi)1≤i≤r defined in a neighborhood V of x in M such that
the collection of functions (xi, yj) defines local coordinates near x on M , and in these
coordinates the map Φ is given by the projection (x, y) 7→ y.

In the coordinates y on B we can write

|dν| = ρB(y)|dy| and |dµ| = ρM (x, y)|dx ∧ dy|.

Then along the fibers y = const we have

|dµ|b/Φ∗|dν| =
ρM (x, y)

ρB(y)
|dx|.

We set

Vν(b) :=

∫

Mb

|dµ|b/Φ∗|dν|

The function Vν : B → R is smooth function. We can associate to Vν the density Vν |dν|
which a priori depends on ν.

Observe that if |dν̂| is another density, then there exists a positive smooth function
w : B → R such that

|dν̂| = w|dν|.
Then

|dµ|b/Φ∗|dν̂| = w−1|dµ|b/Φ∗|dν|, Vν̂ = w−1Vν

so that
Vν̂ |dν̂| = Vν |dν|.

In other words, the density Vν |dν| on B is independent on ν. It depends only on |dµ|. ⊓⊔

Using partitions of unity and the classical Fubini theorem we obtain the Fubini formula
for densities ∫

Φ−1(U)
|dµ| =

∫

U
Φ∗|dµ|, for any open subset U ⊂ B. (9.1.3)

Remark 9.1.9. Very often the submersion Φ :M → B satisfies the following condition.

For every point on the base b ∈ B there exist an open neighborhood U of b in B, a
nowhere vanishing form ω ∈ Ωk(U), a nowhere vanishing form Ω ∈ Ωk+r(MU ), (MU :=
Φ−1(U)), and a form η ∈ Ωr(MU ) such that

Ω = η ∧ π∗ω.

Then we can write |dµ| = ρ|Ω|, for some ρ ∈ C∞(MU ). The form ω defines a density |ω|
on U , and we conclude that

|dµ|/f∗|ω| = ρ|η|, Φ∗|dµ| = f |ω|,

where for every u ∈ U ⊂ B we have

f(u) =

∫

Mu

|dµ|/f∗|ω| =
∫

Mu

ρ|Ω|/|f∗ω| =
∫

Mu

ρ|η|.



362 CHAPTER 9. CLASSICAL INTEGRAL GEOMETRY

In particular, using (9.1.3) we obtain the generalized coarea formula

∫

MU

|dµ| =
∫

MU

ρ|η ∧ π∗ω| =
∫

U
f(u)|ω| =

∫

U

(∫

Mu

ρ|η|
)
|ω|. ⊓⊔

Example 9.1.10. (The classical coarea formula). Suppose (M,g) is a Riemann
manifold of dimension m+1, and f :M → R is a smooth function without critical points.
For simplicity, we also assume that the level sets Mt = f−1(t) are compact.

On M we have a volume density |dVg|. We would like to compute the pushforward
density f∗|dVg| on R. We seek f∗|dVg| of the form

f∗|dVg| = v(t)|dt|,

where |dt| is the Euclidean volume density on R, and v is a smooth function.
For t ∈ R, the fiber Mt is a compact codimension 1 submanifold of M . We denote by

|dVt| the volume density on Mt defined by the induced metric gt := g|Mt . We denote by
∇f the g-gradient of f , and we set n := 1

|∇f |∇f .
Fix t0 ∈ R. For every point p ∈ Mt0 we have df(p) 6= 0, and from the implicit func-

tion theorem we deduce that we can find an open neighborhood U , and smooth function
x1, . . . , xm such that (f, x1, . . . , xm) are local coordinates on U . Then along U we can
write

|dVg| = ρ|df ∧ dx1 ∧ · · · ∧ dxm|,
where ρ is a smooth function. The vector field n is a unit normal vector field along
Mt0 ∩ U , so that we have the equality

|dVt0 | |U∩Mt0
= ρ
∣∣n (df ∧ dx1 ∧ · · · ∧ dxm) |U∩Mt0

∣∣
= ρ|∇f | ·

∣∣(dx1 ∧ · · · ∧ dxm) |U∩Mt0

∣∣

Now observe that along U we have

ρ(df ∧ dx1 ∧ · · · ∧ dxm) = ρ(f∗dt ∧ dx1 ∧ · · · ∧ dxm).

Hence
|dVg|/f∗|dt| = ρ|(dx1 ∧ · · · ∧ dxm)|,

so that

|dVt0 | |U∩Mt0
= |∇f | · |dVg|/f∗|dt| and |dVg|/f∗|dt| =

1

|∇f | |dVt0 | |U∩Mt0
.

Hence

f∗|dVg| = v(t)|dt|, v(t) =

∫

Mt

1

|∇f | |dVt|, (9.1.4)

and we obtain in this fashion the classical coarea formula

∫

M
|dVg| =

∫

R

(∫

Mt

1

|∇f | |dVt|
)
|dt|. (9.1.5)
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To see how this works in practice, consider the unit sphere Sn ⊂ Rn+1. We denote the
coordinates in Rn+1 by (t, x1, . . . , xn). We let P± ∈ Sn denote the poles given t = ±1.

We denote by |dVn| the volume density on Sn, and by π : Sn → R the natural projection
given by

(t, x1, . . . , xn) 7→ t.

The map π is a submersion on the complement of the poles, M = Sn \{P±}, and π(M) =
(−1, 1). We want to compute π∗|dVn|.

t0

p

1

1

t
θ

θ

p'

Figure 9.1: Slicing a sphere by hyperplanes

Observe that π−1(t) is the (n − 1)-dimensional sphere of radius (1 − t2)1/2. To find
the gradient ∇π observe that for every p ∈ Sn the tangent vector ∇π(p) is the projection
of the vector ∂t on the tangent space TpS

n, because ∂t is the gradient with respect to the
Euclidean metric on Rn+1 of the linear function π : Rn+1 → R, π(t, xi) = t.

We denote by θ the angle between ∂t and TpS
n, set p′ = π(p), and by t the coordinate

of p′ (see Figure 9.1). Then θ is equal to the angle at p between the radius [0, p] and the
segment [p, p′]. We deduce

cos θ = length [p, p′] = (1− t2)1/2.

Hence
|∇π(p)| = (1− t2)1/2,

and consequently,
∫

π−1(t)

1

|∇π| |dVt| = (1− t2)−1/2
∫

π−1(t)
|dVt| = σn−1(1− t2)

n−2
2 ,

where σm denotes the m-dimensional area of the unit m-dimensional sphere Sm. The last
formula implies

σn = 2σn

∫ 1

0
(1− t2)n−2

2 |dt| = σn−1

∫ 1

0
(1− s)n−2

2 s−1/2|ds| = σn−1B

(
1

2
,
n

2

)
,

where B denotes the Beta function

B(p, q) :=

∫ 1

0
sp−1(1− s)q−1ds, p, q > 0. (9.1.6)
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It is known (see [103], Section 12.41) that

B(p, q) =

∫ ∞

0

xp

(1 + x)p+q
· dx
x

=
Γ(p)Γ(q)

Γ(p+ q)
, (9.1.7)

where Γ(x) denotes Euler’s Gamma function

Γ(x) =

∫ ∞

0
e−ttx−1dt.

We deduce

σn =
2Γ(12)

n+1

Γ(n+1
2 )

. (9.1.8)

⊓⊔

9.1.2 Invariant measures on linear Grassmannians

Suppose that V is an Euclidean real vector space of dimension n. We denote by • the inner
product on V . For every subspace U ⊂ V we denote by PU the orthogonal projection onto
U . We would like to investigate a certain natural density on Grk(V ), the Grassmannian
of k dimensional subspaces of V . We are forced into considering densities rather than
forms because very often the Grassmannians Grk(V ) are not orientable. More precisely,
Grk(V ) is orientable if and only if dimV is even.

In Example 1.2.22 we have shown that, via the (orthogonal) projection map U 7→ PU ,
we can regard Grk(V ) as a submanifold of End+(V ), the vector space of symmetric
endomorphisms of V . The Euclidean metric (1.2.2) on End(V ), defined by

〈A,B〉 = 1

2
tr(AB†), ∀A,B ∈ End(V ),

induces a metric h = hn,k on Grk(V ).
Denote by O(V ) the group of orthogonal transformations of V . The group O(V ) acts

smoothly and transitively on Grk(V )

O(V )×Grk(V ) ∋ (g, L) 7→ g(L) ∈ Grk(V ).

Note that
PgL = gPLg

−1.

The action of O(V ) on End+(V ) by conjugation preserves the inner product on End+(V ),
and we deduce that the action of O(V ) on Grk(V ) preserves the metric h.

We would like to express this metric in the graph coordinates introduced in Example
1.2.22. Consider L ∈ Grk(V ), and S ∈ Hom(L,L⊥). Then, for every t ∈ R, we denote by
Ut the graph of the map tS : L→ L⊥,

Ut := ΓtS ∈ Grk(V,L).

If U̇0 denotes the tangent to the path t 7→ Ut at t = 0, then

h(U̇0, U̇0) =
1

2
tr(Ṗ 2

0 ), Ṗ0 :=
d

dt
|t=0PΓtS

,
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If we write Pt := PΓtS
we deduce from (1.2.5) that

Pt =

[
(1L + t2S∗S)−1 t(1L + t2S∗S)−1S∗

tS(1L + t2S∗S)−1 t2S(1L + t2S∗S)−1S∗

]
.

Hence

Ṗt=0 =

[
0 S∗

S 0

]
= S∗PL⊥ + SPL, (9.1.9)

so that

h(U̇0, U̇0) =
1

2

(
tr(SS∗) + tr(S∗S)

)
= tr(SS∗).

We can be even more concrete.
Let us choose an orthonormal basis (~ei)1≤i≤k of L, and an orthonormal basis (eα)k<α≤n

of L⊥. With respect to these bases, the map S : L → L⊥ is described by a matrix
(sαi)1≤i≤k<α≤n, and then

tr(SS∗) = tr(S∗S) =
∑

i,α

|sαi|2.

We can think of the collection (sαi) as defining local coordinates on the open subset
Grk(V,L) ⊂ Grk(V ) consisting of k-planes intersecting L⊥ transversally. Hence

h(U̇0, U̇0) =
∑

i,α

|sαi|2. (9.1.10)

In integral geometric computations we will find convenient to relate the above coor-
dinates to the classical language of moving frames. In the sequel we make the following
notational conventions.

• We will use lower case Latin letters i, j, ... to denote indices in the range {1, ..., k}.

• We will use lower case Greek letters α, β, γ, ... to denote indices in the range
{k + 1, . . . , n}.

• We will use upper case Latin letters A,B,C, ... to denote indices in the range
{1, · · · , n}.

Suppose we have a smooth 1-parameter family of orthonormal frames

(eA) = (eA(t)), |t| ≪ 1.

This defines a smooth path

t 7→ Lt = span (ei(t) ) ∈ Grk(V ).

We would like to compute ĥ(L̇0, L̇0).
Observe that we have a smooth path t 7→ gt ∈ O(V ), defined by

gteA(0) = eA(t).
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With respect to the fixed frame (eA(0) ), the orthogonal transformation gt is given by a
matrix ( sAB(t) ), where

sAB = eA(0) •
(
gteB(0)

)
.

Observe that g0 = 1V . Let Pt denote the projection onto Lt. Then

Pt = gtP0g
−1
t ,

so that, if we set X = d
dt |t=0gt, we have

Ṗ0 = [X,P0].

With respect to the decomposition V = L0 + L⊥0 the projector P0 has the block decom-
position

P0 =

[
1L0 0
0 0

]
.

The operator X is represented by a skew-symmetric matrix with entries

xAB = ṡAB = eA • ėB,

which has the block form

X =

[
XL0,L0 −X∗

L⊥
0 ,L0

XL⊥
0 ,L0

XL⊥
0 ,L

⊥
0

]
,

where XL⊥
0 ,L0

denotes a map L0 → L⊥0 etc. We deduce

[X,P0] =

[
0 X∗

L⊥
0 ,L0

XL⊥
0 ,L0

0

]
.

Hence

h(L̇0, L̇0) =
1

2
tr(Ṗ0, Ṗ0) = tr(XL⊥

0 ,L0
X∗
L⊥
0 ,L0

) =
∑

α,i

|ṡαi|2. (9.1.11)

We want to interpret this in the language of moving frames.
Suppose M is a smooth m-dimensional manifold and L : M → Grk(V ) is a smooth

map. Fix a point p0 ∈M and local coordinates (ui)1≤i≤m near p0 such that ui(p0) = 0.
The map Lt can be described near p0 via a moving frame, i.e., an orthonormal frame

(eA) of V , varying smoothly with (ui), such that

L(u) = span (ei(u) ).

The above computations show that the differential of L at p0 is described by the (n−k)×k
matrix of 1-forms on M

Dp0L = (θαi), θαi := eα • dei.
More precisely, this means that if X = (u̇a) ∈ Tp0M , and we let “ ˙ ” denote the differen-
tiation along the flow lines of X, then

Dp0L(X) = (xαi) ∈ TL(0) Grk(V ), xαi = eα • ėi =
∑

a

eα • dei(X). (9.1.12)
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If M happens to be an open subset of Grk(V ), then we can use the forms θαi to describe
the metric h. More precisely, the equalities (9.1.10) and (9.1.11) show that

h =
∑

α,i

θαi ⊗ θαi. (9.1.13)

In other words, the collection (θαi) is an orthonormal frame of the cotangent bundle
T ∗Grk(V ).

The metric h = hn,k is O(V )-invariant so that the associated Riemannian volume
defines an invariant density. We will denote this invariant density by |dγn,k|, where n =
dimV , and we will refer to it as the kinematic density on Grk(V ). Since the action of
the group O(V ) is transitive, we deduce that any other invariant density is equivalent to
a constant multiple of this metric density. We would like to give a local description of
|dγn,k|.

Set n := dimV . If O is a sufficiently small open subset of Grk(V ) then we can find
smooth maps

eA : O→ V, A = 1, · · · , n,
with the following properties.

• For every L ∈ O the collection
(
eA(L)

)
1≤A≤n is an orthonormal frame of V .

• For every L ∈ O the collection
(
ei(L)

)
1≤i≤k is an orthonormal frame of L.

For every 1 ≤ i ≤ k, and every k + 1 ≤ α ≤ 1, we have a 1-form

θαi ∈ Ω1(O), θαi = eα • dei = −deα • ei.

As explained above, the metric h is described along O by the symmetric tensor

h =
∑

α,i

θαi ⊗ θαi,

and the associated volume density is described by

|dγn,k| =
∣∣∏

α,i

θαi
∣∣ :=

∣∣∧

α,i

θαi
∣∣.

Example 9.1.11. To understand the above construction it is helpful to consider the
special case of the Grassmannian Gr1(R

2) of lines through the origin in R2. This space is
diffeomorphic to the real projective line RP1, which in turn, it is diffeomorphic to a circle.

A line L in R2 is uniquely determined by the angle θ ∈ [0, π] that it forms with the
x-axis. For such an angle θ, we denote by Lθ the corresponding line. The line Lθ is also
represented by the the orthonormal frame

e1(θ) = (cos θ, sin θ), e2(θ) = (− sin θ, cos θ), Lθ = span (e1(θ) ),

where the first vector e1(θ) gives the direction of the line. Then θ21 = e2 • de1 = dθ, and
|dγ2,1| = |dθ|. ⊓⊔
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We would like to compute the volumes of the Grassmannians Grk(V ), dimV = n with
respect to the kinematic density |dγn,k|, i.e., we would like to compute

Cn,k :=

∫

Grk(V )
|dγn,k|.

Denote by ωn the volume of the unit ball Bn ⊂ Rn, and by σn−1 the (n− 1)-dimensional
“surface area” of the unit sphere Sn−1, so that

σn−1 = nωn, and ωn =
Γ(1/2)n

Γ(1 + n/2)
=





πk

k!
, n = 2k,

22k+1πkk!

(2k + 1)!
, n = 2k + 1,

,

where Γ(x) is the Gamma function. We list below the values of ωn for small n.

n 0 1 2 3 4

ωn 1 2 π 4π
3

π2

2

.

To compute the volume of the Grassmannians we need to use yet another description of
the Grassmannians, as homogeneous spaces.

Note first that the group O(V ) acts transitively on Grk(V ). Fix L0 ∈ Grk(V ).
Then the stabilizer of L0 with respect to the action of O(V ) on Grk(V ) is the sub-
group O(L0) × O(L⊥0 ) and thus we can identify Grk(V ) with the homogeneous space of
left cosets O(V )/O(L0)×O(L⊥0 ).

The computation of Cn,k is carried out in three steps.

Step 1. We equip the orthogonal groups O(Rn) with a canonical invariant density |dγn|
called the kinematic density on O(n). Set

Cn :=

∫

O(Rn)
|dγn|.

Step 2. We show that

Cn,k =
Cn

CkCn−k
.

Step 3. We show that

Cn,1 =
1

2
σn−1 =

nωn
2
,

and then compute Cn inductively using the recurrence relation from Step 2

Cn+1 = (C1Cn,1)Cn,

and the initial condition

C2 = vol (O(2) ) = 2σ1.
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Step 1. The group O(V ) is a submanifold of End(V ) consisting of endomorphisms S
satisfying SS∗ = S∗S = 1V . We equip End(V ) with the inner product

〈A,B〉 = 1

2
tr(AB∗).

This metric induces an invariant metric h on O(V ). We would like to give a more concrete
description of this metric.

Denote by End−(V ) the subspace of End(V ) consisting of skew-symmetric operators.
For any S0 ∈ O(V ) we have a map

expS0
: End−(V )→ O(V ), End−(V ) 7−→ S0 · exp(X).

This defines a diffeomorphism from a neighborhood of 0 in End−(V ) to a neighborhood
of S0 in O(V ). Two skew-symmetric endomorphisms X,Y ∈ End−(V ) define paths

γX , γY : R→ O(V ), γX(t) = S0 exp(tX), γY (t) = S0 exp(tY ),

originating at S0. We set

Ẋ := γ̇X(0) ∈ TS0O(V ) ⊂ End(V ), Ẏ := γ̇Y (0) ∈ TS0O(V ) ⊂ End(V ).

Then Ẋ = S0X, Ẏ = S0Y , and

h(Ẋ, Ẏ ) =
1

2
tr
(
(S0X)(S0Y )∗

)
=

1

2
tr
(
S0XY

∗S∗0
)
=

1

2
tr
(
S∗0S0XY

∗ )

=
1

2
tr
(
XY ∗

)

If we choose an orthonormal basis (eA) of V so that X and Y are given by the skew
symmetric matrices (xAB), (yAB), then we deduce

h(Ẋ, Ẏ ) =
∑

A>B

xAByAB.

If we set fA(t) := exp(tX)eA, then we deduce

xAB = eA • ḟB(0) = fA(0) • ḟB(0).

More generally, if we define

fA : O(V )→ V, fA(S) := SeA,

then we obtain the angular forms θAB := fA • dfB . The above metric metric has the
description

h =
∑

A>B

θAB ⊗ θAB .

The associated volume density is

|dγn| =
∣∣∣
∧

A>B

θAB

∣∣∣.
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Step 2. Fix an orthonormal frame (eA) of V such that L0 = span (ei; 1 ≤ i ≤ k). We
can identify V with Rn, O(V ) with O(n), and L0 with the subspace

Rk ⊕ 0n−k ⊂ Rn.

An orthogonal n × n matrix T is uniquely determined by the orthonormal frame (TeA)
via the equalities

TAB = eA • TeB.
Define

p : O(n)→ Grk(R
n), p(T ) = T (L0).

More explicitly, we have

p(T ) = span (Tei)1≤i≤k.

We will prove that we have a principal fibration

O(k)×O(n− k) O(n)

Grk(R
n)

y w

u

p ,

and that

p∗|dγn| = CkCn−k|dγn,k|.
Once we have this we deduce from the Fubini formula (9.1.3) that

Cn = CkCn−kCn,k.

Let us prove the above facts.

For every sufficiently small open subset U ⊂ Grk(V ) we can find a smooth section

φ : U → O(n)

of the map p : O(n) → Grk(R
n). The section can be identified with a smooth family of

orthonormal frames (φA(L), L ∈ U)1≤A≤n of Rn, such that

L = span (φi(L); 1 ≤ i ≤ k).

To such a frame we associate the orthogonal matrix φ(L) ∈ O(n) which maps the fixed
frame

(
eA
)
to the frame

(
φB
)
. It is a given by a matrix with entries

φ(L)AB = eA • φB .

Then we have a smooth map

Ψ : O(k)×O(n− k)× U → p−1(U),

defined as follows.



9.1. THE INTEGRAL GEOMETRY OF REAL GRASSMANNIANS 371

• Given (s, t, L) ∈ O(k) × O(n − k) × U , express s as a k × k matrix s = (sij), and t
as a (n− k)× (n − k) matrix (tαβ).

• Define the orthonormal frame of Rn

(fA ) := (φB) ∗ (s, t),

via the equalities

f i = f i(s, L) =
∑

j

sjiφj(L) ∈ L, 1 ≤ i ≤ k, (9.1.14)

fα = fα(t, L) =
∑

β

tβαφβ(L) ∈ L⊥, k + 1 ≤ α ≤ n. (9.1.15)

• Now define Ψ = Ψ(s, t, L) to be the orthogonal transformation of Rn which maps
the frame (eA) to the frame (fB), i.e.

fA = ΨeA, ∀A.

The map Ψ is a homeomorphism with inverse

O(n) ∋ T 7→ Ψ−1(T ) = (s, t;L) ∈ O(k)×O(n− k)× L

defined as follows. We set fA = fA(T ) := TeA, 1 ≤ A ≤ n. Then

L = LT = span (f i)1≤i≤k,

while the matrices (sij) and (tαβ) are obtained via (9.1.14) and (9.1.15). More precisely, we
have

sij = φi(LT ) • f j , sαβ = φα(LT ) • fβ.
Observe that, ∀s0, s1 ∈ O(k), t0, t1 ∈ O(n− k), we have

(
(φB) ∗ (s0, t0)

)
∗ (s1, t1) = (φB) ∗ (s0s1, t0t1).

This means that Ψ is equivariant with respect to the right actions of O(k)×O(n− k) on
O(k)×O(n− k)× U and O(n). We have a commutative diagram

O(k)×O(n− k)× U p−1(U)

U ⊂ Grk(R
n)

w

Ψ

h

h

h

h

hjπ

'

'

'

'

'*

p

In particular, this shows that p defines a principal O(k)×O(n− k)-bundle.
Observe now that p∗|dγn| is an invariant density on Grk(R

n), and thus there exists a
constant c such that

p∗|dγn| = c|dγn,k|.
This constant is given by the integral of the density |dγn|/p∗|dγn,k| along the fiber p−1(L0).
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Hence

Cn =

∫

O(n)
|dγn| =

∫

Grk(Rn)
p∗|dγn| = c

∫

Grk(Rn)
|dγn,k| = cCn,k.

Recall that if we define fA : O(n)→ Rn by fA(T ) := TeA, and θAB := fA • dfB , then

|dγn| = |
∧

A>B

θAB|.

We write this as ∣∣∣
(∧

i>j

θij

)
∧
(∧

α>β

θαβ

)
∧
(∧

α,i

θα,i

)∣∣∣.

The form
(∧

α,i θα,i

)
is the pullback of a nowhere vanishing form defined in a neighborhood

of L0 in Grk(R
n), whose associated density is |dγn,k|. We now find ourselves in the

situation described in Remark 9.1.9. We deduce

c =

∫

p−1(L0)

∣∣∣
(∧

i>j

θij

)
∧
(∧

α>β

θαβ

)∣∣∣

=
(∫

O(k)
|dγk|

)(∫

O(n−k)
|dγn−k|

)
= CkCn−k.

Hence

Cn,k =
Cn

CkCn−k
.

Step 3. Fix an orthonormal basis {eA} of V , and denote by Sn−1+ the open hemisphere

Sn−1+ =
{
~v ∈ V ; |~v| = 1, ~v • e1 > 0

}
.

Note that Gr1(V ) ∼= RPn−1 is the Grassmannian of lines in V . The set of lines that do
not intersect Sn−1+ is a smooth hypersurface of Gr1(V ) diffeomorphic to RPn−2 and thus
has kinematic measure zero. We denote by Gr1(V )∗ the open subset consisting of lines
intersecting Sn−1+ . We thus have a map

ψ : Gr∗1(V )→ Sn−1+ , ℓ 7→ ℓ ∩ Sn−1+ .

This map is a diffeomorphism, and we have

Cn,1 =

∫

Gr1(V )
|dγn,1| =

∫

Gr∗1(V )
|dγn,1| =

∫

Sn−1
+

(ψ−1)∗|dγn,1|.

Now observe that ψ is in fact an isometry, and thus we deduce

Cn,1 =
1

2
area (Sn−1) =

σn−1
2

=
nωn
2
.

Hence
Cn+1 = CnC1Cn+1,1 = σnCn,
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which implies inductively that

Cn = σn−1 · · ·σ2C2 = 2

n−1∏

k=1

σk =

n−1∏

j=0

σj.

In particular, we deduce the following result.

Proposition 9.1.12. For every 1 ≤ k < n we have

Cn,k =

∫

Grk(Rn)
|dγn,k| =

∏n−1
j=0 σj(∏k−1

i=0 σi
)
·
(∏n−k−1

j=0 σj
)

=

(
n

k

) ∏n
j=1ωj(∏k

i=1 ωi
)
·
(∏n−k

j=1 ωj

) .

⊓⊔

Following [60], we set

[n] :=
1

2

σn−1
ωn−1

=
nωn

2ωn−1
, [n]! :=

n∏

k=1

[k] =
ωnn!

2n
,

[
n

k

]
:=

[n]!

([k]!)([n − k]!) =

(
n

k

)
ωn

ωkωn−k
. (9.1.16)

Denote by |dνn,k| the unique invariant density on Grk(V ), dimV = n such that

∫

Grk(V )
|dνn,k| =

[
n

k

]
. (9.1.17)

We have

|dνn,k| =
[n
k

]

Cn,k
|dγnk

|.

Example 9.1.13. Using the computation in Example 9.1.11 we deduce

|dγ2,1| = |dθ|, 0 ≤ θ < π,

which implies that

C2,1 =

∫ π

0
|dθ| = 2

ω2

ω2
1

,

as predicted by Proposition 9.1.12. We have

[
2

1

]
= 2

ω2

ω2
1

= C2,1,

so that |dν2,1| = |dγ2,1|. ⊓⊔
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9.1.3 Affine Grassmannians

We denote by Graffk(V ) the set of k-dimensional affine subspaces of V . We would like
to describe a natural structure of smooth manifold on Graffk(V ).

We have the tautological vector bundle U = Un,k → Grk(V ). It is naturally a subbun-
dle of the trivial vector bundle V = V ×Grk(V )→ Grk(V ) whose fiber over L ∈ Grk(V )
is the vector subspace L. The trivial vector bundle V is equipped with a natural metric,
and we denote by U⊥ → Grk(V ) the orthogonal complement of U in V .

The fiber of U⊥ over L ∈ Grk(V ) is canonically identified with the orthogonal com-
plement L⊥ of L in V . The points of U⊥ are pairs (~c, L), where L ∈ Grk(V ), and ~c is a
vector in L⊥.

We have a natural map A : U⊥ → Graffk(V ) given by

(~c, L) 7−→ ~c+ L.

This map is a bijection with inverse

Graffk(V ) ∋ S 7→ (S ∩ [S]⊥, [S]),

where [S] ∈Grk(V ) denotes the affine subspace through the origin parallel to S,

[S] = S − S =
{
s1 − s2; s1, s2 ∈ S

}
.

We set
~c(S) := S ∩ [S]⊥,

and we say that ~c(S) is the center of the affine plane S.
We equip Graffk(V ) with the structure of smooth manifold which makes A a diffeo-

morphism. Thus, we identify Graffk(V ) with a vector subbundle of the trivial bundle
V ×Grk(V ) described by

U⊥ =
{
(~c, L) ∈ V ×Grk(V ); PL~c = 0

}
,

where PL denotes the orthogonal projection onto L.
The projection π : U⊥ → Grk(V ) is a submersion. The fiber of this submersion over

L ∈ Grk(V ) is canonically identified with the vector subspace L⊥ ⊂ V . As such, it
is equipped with a volume density |dVL⊥ |. We obtain in this fashion a density |dVL⊥ |
associated to the vertical subbundle kerDπ ⊂ TU⊥.

The base Grk(V ) of the submersion π : Graffk(V ) → Grk(V ) is equipped with a
density |dγn,k|, and thus we obtain a density π∗|dγn,k| associated to the bundle

π∗T Grk(V )→ Graffk(V ).

Using the short exact sequence of vector bundles over Graffk(V ),

0→ kerDπ −→ T Graffk(V ) −→ π∗T Grk(V )→ 0,

we obtain a density |γ̃n,k| on Graffk(V ) given by

|dγ̃n,k| = |dVL⊥ | × π∗|dγn,k|.
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Let us provide a local description for this density.

Fix a small open subset O ⊂ Grk(V ), and denote by Õ its preimage in Graffk(V ) via
the projection π. Then we can find smooth maps

eA : O→ V, ~r : Õ→ V

with the following properties.

• For every S ∈ Õ, (eA(S) ) is an orthonormal frame of V , and

[L] = span
(
ei([L])

)
.

• For every S ∈ Õ we have

S = ~r(S) + [S].

We rewrite the last equality as

S = S(~r, ei).

Observe that the center of this affine plane is the projection of ~r onto [S]⊥

~c(S) =
∑

α

(eα • ~r )eα.

Following the tradition we introduce the (locally defined) 1-forms

θα := eα • d~r, θαi := eα • dei.

For fixed L ∈ Grk(V ) the density on the fiber U⊥L = L⊥ is given by

|dVL⊥ | =
∣∣∣
∧
θα

∣∣∣.

The volume density on Graffk(V ) is described along Õ by

|dγ̃n,k| =
∣∣∣
(∧

α

θα

)
∧
(∧

α,i

θαi

) ∣∣∣.

The Fubini formula for densities (9.1.3) implies the following result.

Theorem 9.1.14. Suppose f : Graffk(V )→ R is a compactly supported |dγ̂n,k|-integrable
function. Then

∫

Graffk(V )
f(S)|dγ̃n,k(S)| =

∫

Grk(V )

(∫

L⊥

f(p+ L)|dVL⊥(p)|
)
|dγn,k(L)|,

where |dVL⊥ | denotes the Euclidean volume density on L⊥. ⊓⊔
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Denote by Iso(V ) the group of affine isometries of V , i.e., the subgroup of the group of
affine transformations generated by translations, and by the rotations about a fixed point.
Any affine isometry T : V → V is described by a unique pair (t, S) ∈ V ×O(V ) so that

T (v) = Sv + t, ∀v ∈ V.
The group Iso(V ) acts in an obvious fashion on Graffk(V ), and a simple computation
shows that the associated volume density |dγ̃n,k| is Iso(V ) invariant.

If instead of the density |dγn,k| on Grk(V ) we use the density |dνn,k|, we obtain a
density |dν̃n,k| on Graffk(V ) which is a constant multiple of |dγ̃n,k|.

|dν̃n,k| =
[
n
k

]

Cn,k
|dγ̃nk

|. (9.1.18)

Example 9.1.15. Let us unravel the above definition in the special case Graff1(R
2), the

Grassmannians of affine lines in R2. Such a line L is determined by two quantities: the
angle θ ∈ [0, π) is makes with the x-axis, and the signed distance ρ ∈ (−∞,∞) from the
origin. More precisely, for every ρ ∈ R and θ ∈ [0, π) we denote by Lθ,ρ the line is given
in Euclidean coordinates by the equation

x sin θ − y cos θ = ρ

As a manifold, the GrassmannianGraff1(R
2) is diffeomorphic to the interior of the Möbius

band. The Fubini formula in Theorem 9.1.14 can now be rewritten
∫

Graff1(R2)
f(L) |dγ̃2,1|(L) =

∫ ∞

−∞

(∫ π

0
f(Lθ,ρ)|dθ|

)
|dρ|,

∀f ∈ C∞cpt(Graff1(R
2) ). ⊓⊔

9.2 Gauss-Bonnet again?!?

The Grassmannians enter into the study of the geometry of a submanifold via a fundamen-
tal observation going back to Gauss. To understand the shape of a submanifoldM →֒ Rn,
m = dimM , it is very productive to understand how a tangent plane TpM varies, as p
varies along M .

Observe that if M is flat, i.e., it is an open subset of an affine subspace, then the
tangent plane TpM does not vary as p moves around M . However, if M is curved, this
tangent plane changes its location in the Grassmannian Grm(R

n), and in fact, “the more
curved is M , the faster will the tangent plane move inside this Grassmannian”.

In Example 4.2.20 we have seen this heuristic principle at work in the case of a hy-
persurface in R3, where the variation of the unit normal along the surface detects the
Riemann curvature of the surface. Note that the tangent plane is uniquely determined by
the unit normal.

The goal of this section is to analyze in great detail the map

M ∋ p 7→ TpM ∈ Grm(R
n),

which, for obvious reasons, is named the Gauss map of the submanifold M .
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9.2.1 The shape operator and the second fundamental form of a sub-

manifold in Rn

Suppose M is a smooth submanifold M of Rn, and set m := dimM . To minimize the
notational burden we will use the following conventions.

• We will use lower case Latin letters i, j, . . . to denote indices in the range

1 ≤ i, j, . . . ≤ m = dimM.

• We will use lower case Greek letters α, β, . . . to denote indices in the range

m < α, β, . . . ≤ n.

• We will use the capital Latin letters A,B,C to denote indices in the range

1 ≤ A,B,C ≤ n.

• We will use Einstein’s summation convention.

The Euclidean metric of Rn induces a metric g on M . In Subsection 4.2.4 we ex-
plained how to determine the Levi-Civita connection ∇M of g using Cartan’s moving
frame method. Let us recall this construction using notations more appropriate for the
applications in this chapter.

Denote by D the Levi-Civita connection of the Euclidean metric on Rn. Every vector
field on Rn can be regarded as an n-uple of functions

X =



X1

...
Xn


 .

Then

DX =



dX1

...
dXn


 = dX.

The restriction to M of the tangent bundle TRn admits an orthogonal decomposition

(TRn)|M = TM ⊕ (TM)⊥.

Correspondingly, a section X of (TRn)|M decomposes into a tangential part Xτ , and a
normal part Xν . Fix a a point p0 ∈ M , an open neighborhood U of p0 in Rn, and a
local orthonormal frame (eA) of TRn along U such that the collection (ei|M ) is a local
orthonormal frame of TM along U ∩M . We denote by (θA) the dual coframe of (eA),
i.e.,

θA(eB) = eA • eB = δAB .
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If X is a section of TRn
∣∣
M

then

Xτ = θi(X)ei, Xν = θα(X)eα.

We denote by ΘA
B the 1-forms associated to D by the frame (eA). They satisfy Cartan’s

equations

dθA = −ΘA
B ∧ θB, DeB = ΘA

BeA, ΘA
B = −ΘB

A .

If we write

φA := θA|M , ΦAB := ΘA
B|M ,

then, as explained Subsection 4.2.4, we deduce that (Φij) are the 1-forms associated to the

Levi-Civita connection ∇M by the local orthonormal frame (ei|M ). This implies that

∇Mej = Φijei = the tangential component of ΦAj eA = Dej,

and thus,

∇MX Y = (DX Y )τ , ∀X,Y ∈ Vect (M).

Consider the Gauss map

G = GM :M → Grm(R
n), x 7→ TxM.

The shape operator of the submanifold M →֒ Rn is, by definition, the differential of the
Gauss map. Intuitively, the shape operator measures how fast the tanget plane changes
its location as a point in a Grassmannian.

We denote the shape operator by SM , and we would like to relate it to the structural
coefficients ΦAB.

As explained in Subsection 9.1.2, in the neighborhood U of p0, the “moving plane”
x 7→ TxM can be represented by the orthonormal frame (eA) which has the property
that the first m vectors e1(x), . . . ,em(x) span TxM . The differential of the Gauss map at
x ∈ U ∩M is a linear map

DG : TxM → TG(x)Grm(R
m) = Hom(TxM, (TxM)⊥).

As explained in (9.1.12), this differential described by the (n−m)×m matrix of 1-forms

(
eα • dej,

)
α,i

=
(
eα •Dej,

)
α,i

On the other hand, Dej = ΦAj eA, so that eα •Dej = Φαj . Define

ΦAij := ei ΦAj ∈ Ω0(M ∩ U),

so that

ΦAj = ΦAij ∧ φi.

We have thus obtained the following result.
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Proposition 9.2.1. The shape operator of M , that is the differential of the Gauss map,
is locally described by the matrix of 1-forms (Φαi )1≤i≤m<α<n. More precisely the operator

SM (ei) ∈ Hom(TxM, (TxM)⊥)

is given by
SM (ei)ej = (Dei ej)

ν = Φαijeα, ∀i, j. ⊓⊔

In Subsection 4.2.4 we have defined the second fundamental form of the submanifold
M to be the C∞(M)-bilinear and symmetric map

SM : Vect (M)×Vect (M)→ C∞
(
(TM)⊥

)
, (X,Y ) 7→ (DX Y )ν .

Note that
SM (ei,ej) = φα(Dei ej)eα = Φαijeα = SM (ei)ej . (9.2.1)

The equality (4.2.10) can be rewritten as

ej • (Dei eα) = −(Dei ej) • eα = −eα • SM (ei,ej), ∀i, j, α. (9.2.2)

Theorema Egregium states that the Riemann curvature tensor of M is completely deter-
mined by the second fundamental form. We recall this result below.

Theorem 9.2.2. Suppose M is a submanifold of Rn. We denote by g the induced metric
on M and by SM the second fundamental form of the embedding M →֒ Rn. Denote by R
the Riemann curvature ofM with the induced metric. Then for any X1, . . . ,X4 ∈ Vect (M)
we have

g(X1, R(X3,X4)X2) = SM(X3,X1) • SM (X4,X2)− SM (X3,X2) • SM(X4,X1),

where • denotes the inner product in Rn. ⊓⊔

9.2.2 The Gauss-Bonnet theorem for hypersurfaces of an Euclidean space.

The results in the previous subsection have very surprising consequences. SupposeM is a
compact, orientable1 hypersurface of Rm+1, i.e., an orientable submanifold of codimension
1. If we fix an orientation on M , then we obtain a normal vector field

n :M → Rm+1, n(x) ⊥ TxM, |n(x)| = 1, ∀x ∈M.

If we choose an oriented, local orthonormal frame e1, . . . ,em of TM , then the ordered set
{n(x),e1(x), . . . ,em} is an oriented, local orthonormal frame of Rm+1. In this case we
can identify the second fundamental form with a genuine symmetric bilinear form

SM ∈ C∞
(
T ∗M⊗2

)
, SM (X,Y ) = n • (DX Y ).

1The orientability assumption is superfluous. It follows from the Alexander duality theorem with Z/2
coefficients that a compact hypersurface of a vector space is the boundary of a compact domain, and in
particular, it is orientable.
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The Gauss map GM : M → Grm(R
m+1) of the embedding M →֒ Rm+1 can be given the

description,

M ∋ x 7→ 〈n(x)〉⊥ := the vector subspace orthogonal to n(x).

On the other hand, we have an oriented Gauss map

~GM :M → Sm, x→ n(x),

and a double cover
π : Sm → Grm(R

m+1), Sm ∋ ~u 7→ 〈~u〉⊥,
so that the diagram below is commutative

M Sm

Grm(R
m+1)

w

~G

'

'

')

G u

π

We fix an oriented orthonormal frame (~f0, ~f1, . . . , ~fm) of Rm+1, and we orient the unit
sphere Sm ⊂ Rm+1 so that the orientation of T~f0S

m is given by the ordered frame

(~f1, . . . , ~fm).

In the remainder of this subsection we will assume that m is even, m = 2h.
Denote by dAm ∈ Ωm(Sm) the “area” form on the unit m-dimensional sphere Sm.

Recall that σm denotes the “area” of Sm,

σ2h = (2h+ 1)ω2r+1 =⇒
σ2h

2
=

22hπhh!

(2h)!
. (9.2.3)

Hence ∫

Sm

1

σm
dAm = 1,

so that
1

σm

∫

M

~G∗MdAm = degGM .

Denote by g the induced metric on M , and by R the curvature of g. We would like to
prove that the integrand ~G∗MdAm has the form

~G∗MdAm = P (RM )dVM ,

where dVM denotes the metric volume form on M and P (RM ) is a universal polynomial
of degree m

2 in the curvature R of M .
Fix a positively oriented orthonormal frame ~e = (e1, . . . ,em) of TM defined on some

open set U ⊂M , and denote by ~θ = (θ1, . . . ,θm) the dual coframe. Observe that

dVM = θ1 ∧ · · · ∧ θm.
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We set
Sij := SM(ei,ej) • n, Rijkℓ := g

(
ei, R(ek,eℓ)ej

)
.

Theorem 9.2.2 implies that

Rijkℓ = SikSjℓ − SiℓSjk =
∣∣∣∣
Sik Siℓ
Sjk Sjℓ

∣∣∣∣ . (9.2.4)

Observe that Rijkℓ 6= 0 =⇒ i 6= j, k 6= ℓ, and in this case the matrix

[
Sik Siℓ
Sjk Sjℓ

]

is the 2 × 2 submatrix of S = (Sij)1≤i,j≤m lieing at the intersection of the i, j-rows with
the k, ℓ-columns. We can rephrase the equality (9.2.4) in a more convenient form.

First, we regard the curvature Rijkℓ at a point x ∈M as a linear map

Λ2TxM → Λ2T ∗xM, R(ek ∧ eℓ) =
∑

i<j

Rijkℓθ
i ∧ θj .

Next, regard S as a linear map

S : TxM → T ∗M, Sej = Sijθ
i.

Then S induces linear maps

ΛpS : ΛkTxM → ΛpT ∗M,

defined by

S(ei1 ∧ · · · ∧ eip) = (Sei1) ∧ · · · ∧ (Seip), ∀1 ≤ i1 < · · · < ip ≤ m.

The equality (9.2.4) can now be rephrased as

R = Λ2S. (9.2.5)

Along U we have the equality

(~G∗MdAM ) |U= ΛmS(e1 ∧ · · · ∧ em) = (detS)θ1 ∧ · · · ∧ θm = (detS)dVM .

We want to prove that detS can be described in terms of Λ2S. To see this observe that

(Λ2hS)(e1 ∧ e2 ∧ · · · e2h−1 ∧ e2h) = (Λ2S)(e1 ∧ e2) ∧ · · · ∧ (Λ2S)(e2h−1 ∧ e2h)

=

h∧

s=1

(∑

i<j

Rij,2s−1,2sθ
i ∧ θj

)
=
∑

ϕ∈S′m

ǫ(ϕ)
( h∏

s=1

Rϕ(2s−1)ϕ(2s),2s−1,2s
)
dVM ,

where S′m denotes the set of permutations ϕ of {1, 2, . . . ,m = 2h} such that

ϕ(1) < ϕ(2), . . . , ϕ(2h − 1) < ϕ(2h),
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and ǫ(ϕ) = ±1 denotes the signature of a permutation. Observe that

#S′m =

(
2h

2

)
·
(
2h− 2

2

)
· · ·
(
2

2

)
=

(2h)!

2h
. (9.2.6)

We would like to give an alternate description of detS using the concept of pfaffian.
The Riemann curvature, like the curvature of any metric connection, can be regarded

as a 2-form with coefficients in the bundle of skew-symmetric endomorphisms of TM . It
is locally described by a m×m skew-symmetric matrix

Θ = Θg :=
(
Θij

)
1≤i,j≤m

whose entries are 2-forms on U ,

Θij =
∑

k<ℓ

Rijkℓθ
k ∧ θℓ =

1

2

∑

k,ℓ

Rijkℓθ
k ∧ θℓ = Λ2S(ei ∧ ej) ∈ Ω2(U).

Recall from Subsection 8.2.4 that the pfaffian of Θ is the differential form

Pf(Θ) :=
(−1)h
2hh!

∑

ϕ∈Sm
ǫ(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h) ∈ Ω2h(U),

where Sm denotes the group of permutations of {1, 2, . . . ,m}. Observe that

Pf(Θ) =
(−1)h
h!

∑

ϕ∈S′m

ǫ(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h),

We can simplify this some more if we introduce the set S′′m consisting of permutations
ϕ ∈ S′m such that

ϕ(1) < ϕ(3) < · · · < ϕ(2h− 1).

Observe that

#S′m = (#S′′m)h! =⇒ #S′′m =
S′M
h!

=
(2h)!

2hh!
= 1 · 3 · · · (2h− 1) =: γ(2h).

Then
Pf(Θ) = (−1)h

∑

ϕ∈S′′m

ǫ(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h).

We have

Pf(−Θ) =
1

h!

∑

(σ,ϕ)∈S′m×S′m

ǫ(σϕ)
( h∏

j=1

Rϕ(2j−1)ϕ(2j)σ(2j−1)σ(2j)
)
dVM .

On the other hand,
(Λ2hS)(e1 ∧ e2 ∧ · · · ∧ e2h−1 ∧ e2h)

=
1

#S′m

∑

ϕ∈S′m

ǫ(ϕ)ΛmS(eϕ(1) ∧ eϕ(2) ∧ · · · ∧ eϕ(2h−1) ∧ eϕ(2h))



9.2. GAUSS-BONNET AGAIN?!? 383

=
1

#S′m

∑

ϕ∈S′m

ǫ(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h)

=
1

(#S′m)

∑

(σ,ϕ)∈S′m×S′m

ǫ(σϕ)
( h∏

j=1

Rϕ(2j−1)ϕ(2j)σ(2j−1)σ(2j)
)
dVM =

h!

#S′m
Pf(−Θ).

Hence
~G∗MdAM = (Λ2hS)(e1 ∧ e2 ∧ · · · ∧ e2h−1 ∧ e2h) =

h!

#S′m
Pf(−Θ),

so that

~G∗M
( 2

σ2h
dAM

)
=

2

σ2h

h!

#S′m
Pf(−Θ)

(9.2.3)
=

h!

#S′m

(2h)!

22hπhh!
Pf(−Θ)

(9.2.6)
=

1

(2π)h
Pf(−Θ)

The last form is the Euler form e(∇M ) associated to the Levi-Civita connection ∇M .
Using the Gauss-Bonnet-Chern theorem we obtain the following result.

Theorem 9.2.3. If M2h ⊂ R2h+1 is a compact, oriented hypersurface, and g denotes the
induced metric, then

2

σm
~G∗MdAm = e(∇M ) =

1

(2π)h
Pf(−Θg),

and

2 deg ~GM =
1

(2π)h

∫

M
e(∇M ) = χ(M).

Moreover, if (e1, . . . ,e2h) is a local, positively oriented orthonormal frame of TM , then

Pf(−Θg) =
1

h!

∑

(σ,ϕ)∈S′2h×S′m

ǫ(σϕ)
( h∏

j=1

Rϕ(2j−1)ϕ(2j)σ(2j−1)σ(2j)
)
dVM (9.2.7a)

=
∑

ϕ∈S′′2h

ǫ(ϕ)Θϕ(1)ϕ(2) ∧ · · · ∧Θϕ(2h−1)ϕ(2h), (9.2.7b)

where S′2h denotes the set of permutations ϕ of {1, . . . , 2h} such that

ϕ(2j − 1) < ϕ(2j), ∀1 ≤ j ≤ h,

S′′m denotes the set of permutations ϕ ∈ S′m such that

ϕ(1) < ϕ(3) < · · · < ϕ(2h− 1),

and
Θij =

∑

k<ℓ

Rijkℓθ
k ∧ θℓ. ⊓⊔
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Example 9.2.4. (a) If dimM = 2 then

Pf(−Θg) = R1212dVM = (the Gaussian curvature of M)× dVM

(b) If dimM = 4, then S′′4 consists of 3 permutations

1, 2, 3, 4, ǫ = 1 −→ Θ1212Θ3434,

1, 3, 2, 4, ǫ = −1 −→ −Θ1312Θ2434

1, 4, 2, 3, ǫ = 1 −→ Θ1412Θ2334

We deduce

Pf(−Θg) = Θ12 ∧Θ34 −Θ13 ∧Θ24 +Θ14 ∧Θ23

=
1

4
(R12ijθ

i ∧ θj) ∧ (R34kℓθ
k ∧ θℓ)− 1

4
(R13ijθ

i ∧ θj) ∧ (R24kℓθ
k ∧ θℓ)

+
1

4
(R14ijθ

i ∧ θj) ∧ (R23kℓθ
k ∧ θℓ)

Each of the three exterior products above in involves only six nontrivial terms, because
θi ∧ θj = 0, when i = j. Thus the total number of terms in the above expression is 36.
However, there are many repetitions due to the symmetries of the Riemann tensor

Rijkℓ = Rkℓij = −Rijℓk.

We have

(R12ijθ
i ∧ θj) ∧ (R34kℓθ

k ∧ θℓ)

=
(
R1212R3434 +R1213R3442 +R1214R3423

+R1223R3414 +R1242R3413 +R1234R3412

)
dVM , etc.

(c) We can choose the positively oriented local orthonormal frame (e1, . . . ,em) so that it
diagonalizes SM at a given point x ∈ M . Then the eigenvalues of SM at x are called the
principal curvatures at x and are denoted by κ1(x), . . . , κm(x). Then

Pf(−Θ) = ρdVM , ρ ∈ C∞(M),

where

ρ(x) = (2h − 1)!!
m∏

k=1

κi(x), ∀x ∈M. ⊓⊔

9.2.3 Gauss-Bonnet theorem for domains in an Euclidean space

Suppose D is a relatively compact open subset of an Euclidean space Rm+1 with smooth
boundary ∂D. We denote by n the outer normal vector field along the boundary. It
defines an oriented Gauss map

~GD : ∂D → Sm.
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We denote by dAm the area form on the unit sphere Sm so that

deg ~GD =
1

σm

∫

∂D

~G∗DdAm.

If m is even then the Gauss-Bonnet theorem for the hypersurface ∂D implies

1

σm

∫

∂D

~G∗DdAm =
1

2
χ(∂D).

Using the Poincaré duality for the oriented manifold with boundaryD we deduce χ(∂D) =
2χ(D), so that

1

σm

∫

∂D

~G∗DdAm = χ(D), m ∈ 2Z.

We want to prove that the above equality holds even when m is odd. Therefore in the
remainder of this section we assume m is odd.

We first describe the integrand ~G∗DdAm. Let SD denote the second fundamental form
of the hypersurface

SD(X,Y ) = n • (DX Y ) = −X • (DY n), ∀X,Y ∈ Vect (∂D).

We deduce
1

σm
~G∗DdAm =

1

σm
det(−SD)dV∂D,

where dV∂D denotes the volume form on ∂D.
A smooth vector field on D̄,

X : D̄ → Rm+1

is called admissible if along the boundary it points towards the exterior of D,

X • n > 0, on ∂D.

For an admissible vector field X we define

X̄ : ∂D → Sm, X̄(p) :=
1

|X(p)|X(p), ∀p ∈ ∂D.

Let us observe that the map X̄ is homotopic to the map ~GD. Indeed, for t ∈ [0, 1], define

Yt : ∂D → Sm, Yt(p) =
1

|(1 − t)n+ tX̄|((1 − t)n + tX̄

Observe that this map is well defined since

|(1− t)n+ tX̄|2 = t2 + (1− t)2 + 2t(1 − t)(n • X̄) > 0.

Hence
deg ~GD = deg X̄,

for any admissible vector field X.
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Suppose X is a nondegenerate admissible vector field. This means that X has a finite
number of stationary points,

ZX = {p1, . . . , pν}, X(pi) = 0,

and all of them are nondegenerate, i.e., for any p ∈ ZX , the linear map

AX,p : TpR
m+1 → TpR

m+1, TpR
m+1 ∋ v 7→ (DvX)(p)

is invertible. Define

ǫX : ZX → {±1}, ǫ(p) = sign detAX,p.

For any ε > 0 sufficiently small the closed balls of radius ε centered at the points in ZX

are disjoint. Set

Dε = D \
⋃

p∈ZX

Bε(p).

The vector field X does not vanish on Dε, and we obtain a map

X̄ : D̄ε → Sm−1, X̄ =
1

|X|X.

Set

Ω :=
1

σm
X̄∗dAm.

Observe that

dΩ =
1

σm
X̄∗d(dAm) = 0 on Dε.

Stokes’ theorem then implies that

∫

∂Dε

Ω =

∫

Dε

dΩ = 0 =⇒ deg ~GD =

∫

∂D
Ω =

∑

p∈ZX

∫

∂Bε(p)
Ω,

where the spheres ∂Bε(p) are oriented as boundaries of the balls Bε(p). If we let ε → 0
we deduce

deg~GD =
∑

p∈ZX

ǫX(p), (9.2.8)

for any nondegenerate admissible vector field X.
To give an interpretation of the right-hand side of the above equality, consider the

double of D. This is the smooth manifold D̂ obtained by gluing D along ∂D to a copy of
itself equipped with the opposite orientation,

D̂ = D ∪∂D (−D).

The manifold without boundary D̂ is equipped with an orientation reversing involution
ϕ : D̂ → D̂ whose fixed point set is ∂D. In particular, along ∂D ⊂ D̂ we have a ϕ-invariant
decomposition

TD̂|∂D = T∂D ⊕ L,
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where L is a real line bundle along which the differential of ϕ acts as −1L. The normal
vector field n defines a basis of L. If X is a vector field on D which is equal to n along
∂D, then we obtain a vector field X̂ on D̂ by setting

X̂ :=

{
X on D

−ϕ∗(X) on −D.

If X is nondegenerate, then so is X̂, where the nondegeneracy of X̂ is defined in terms of
an arbitrary connection on TD̂. More precisely, if ∇ is a connection on TD̂, and q ∈ ZX̂ ,
then q is nondegenerate if the map

A
X̂,q

: TqD̂ → TqD̂, v 7→ ∇vX̂
is an isomorphism. This map is independent of the connection ∇, and we denote by ǫX̂(q)
the sign of its determinant. Moreover

ZX̂ = ZX ∪ ϕ(ZX),
and, because m is odd, the map

ǫX̂ : ZX̂ → {±1}
satisfies

ǫX(p) = ǫ
X̂
(ϕ(p)).

Hence ∑

q∈Z
X̂

ǫX̂(q) = 2
∑

p∈ZX

ǫX(q)
(9.2.8)
= 2deg ~GD.

On the other hand, the general Poincaré-Hopf theorem (see Corollary 7.3.48) implies that
∑

q∈Z
X̂

ǫX̂(q) = χ(D̂).

Using the Mayer-Vietoris theorem we deduce

χ(D̂) = 2χ(D)− χ(∂D).

Since ∂D is odd dimensional and oriented we deduce that χ(∂D) = 0, and therefore

2χ(D) = χ(D̂) = 2
∑

p∈ZX

ǫX(q) = 2deg ~GD.

We have thus proved the following result.

Theorem 9.2.5 (Gauss-Bonnet for domains). Suppose D is a relatively compact open
subset of Rm+1 with smooth boundary ∂D. We denote by ~GD the oriented Gauss map

~GD : ∂D → Sm, ∂D ∋ p 7→ n(p) = unit outer normal,

and by SD the second fundamental form of ∂D,

SD(X,Y ) = n • (DX Y ), ∀X,Y ∈ Vect (∂D).

Then
1

σm

∫

∂D
det(−SD)dV∂D = deg ~GD = χ(D). ⊓⊔
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9.3 Curvature measures

In this section we introduce the main characters of classical integral geometry, the so called
curvature measures, and we describe several probabilistic interpretations of them known
under the common name of Crofton formulæ.

We will introduce these quantities trough the back door, via the beautiful tube formula
of Weyl, which describes the volume of a tube of small radius r around a compact sub-
manifold of an Euclidean space as a polynomial in r whose coefficients are these geometric
measures. Surprisingly, these coefficients depend only on the Riemann curvature of the
induced metric on the submanifold.

The Crofton Formulæ state that these curvature measures can be computed by slicing
the submanifold with affine subspaces of various codimensions, and averaging the Euler
characteristics of such slices. To keep the geometric ideas as transparent as possible, and
the analytical machinery to a minimum, we chose to describe these facts in the slightly
more restrictive context of tame geometry.

9.3.1 Tame geometry

The category of tame spaces and tame maps is sufficiently large to include all the compact
triangulable spaces, yet sufficiently restrictive to rule out pathological situations such as
Cantor sets, Hawaiian rings, or nasty functions such as sin(1/t).

We believe that the subject of tame geometry is one mathematical gem which should
be familiar to a larger geometric audience, but since this is not yet the case, we devote
this section to a brief introduction to this topic. Unavoidably, we will have to omit many
interesting details and contributions, but we refer to [24, 29, 30] for more systematic
presentations. For every set X we will denote by P(X) the collection of all subsets of X.

An R-structure2 is a collection S = {Sn}n≥1, Sn ⊂ P(Rn), with the following properties.

E1. Sn contains all the real algebraic subsets of Rn, i.e., the subsets described by finitely
many polynomial equations.

E2. Sn contains all the closed affine half-spaces of Rn.

P1. Sn is closed under boolean operations, ∪, ∩ and complement.

P2. If A ∈ Sm, and B ∈ Sn, then A×B ∈ Sm+n.

P3. If A ∈ Sm, and T : Rm → Rn is an affine map, then T (A) ∈ Sn.

Example 9.3.1. (Semialgebraic sets). Denote by Snalg the collection of semialgebraic
subsets of Rn, i.e., the subsets S ⊂ Rn which are finite unions

S = S1 ∪ · · · ∪ Sν ,
2This is a highly condensed and special version of the traditional definition of structure. The model

theoretic definition allows for ordered fields, other than R, such as extensions of R by “infinitesimals”.
This can come in handy even if one is interested only in the field R.
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where each Sj is described by finitely many polynomial inequalities. The Tarski-Seidenberg
theorem (see [15]) states that Salg is a structure.

To appreciate the strength of this theorem we want to discuss one of its many conse-
quences. Consider the real algebraic set

Zn :=
{
(x, a0, . . . , an−1) ∈ Rn+1; a0 + a1x+ · · · an−1xn−1 + xn = 0

}
.

The Tarski-Seidenberg theorem implies that the projection of Zn on the subspace with
coordinates (ai) is a semialgebraic set

Rn :=
{
~a = (a0, . . . , an−1) ∈ Rn; ∃x ∈ R, P~a(x) = 0

}
,

where
P~a(x) = a0 + a1x+ · · · an−1xn−1 + xn.

In other words, the polynomial P~a has a real root if and only if the coefficients ~a satisfy at
least one system of polynomial inequalities from a finite, universal, collection of systems
of polynomial inequalities.

For example, when n = 2, the resolvent set R2 is described by the well known inequality
a21 − 4a0 ≥ 0.

When n = 3, we can obtain a similar conclusion using Cardano’s formulæ. For n ≥ 5,
we know that there cannot exist any algebraic formulæ describing the roots of a degree n
polynomial, yet we can find algebraic inequalities which can decide if such a polynomial
has at least one real root. ⊓⊔

Suppose S is a structure. We say that a set is S-definable if it belongs to one of the
Sn’s. If A,B are S-definable then a function f : A→ B is called S-definable if its graph

Γf :=
{
(a, b) ∈ A×B; b = f(a)

}

is S-definable. The reason these sets are called definable has to do with mathematical
logic.

A formula3 is a property defining a certain set. For example, the two different looking
formulas {

x ∈ R; x ≥ 0},
{
x ∈ R; ∃y ∈ R : x = y2},

describe the same set, [0,∞).
Given a collection of formulas, we can obtain new formulas, using the logical operations

∧,∨,¬, and quantifiers ∃, ∀. If we start with a collection of formulas, each describing
an S-definable set, then any formula obtained from them by applying the above logical
transformations will describe a definable set.

To see this, observe that the operators ∧,∨,¬ correspond to the boolean operations,
∩,∪, and taking the complement. The existential quantifier corresponds to taking a
projection. For example, suppose we are given a formula φ(a, b), (a, b) ∈ A × B, A,B
definable, describing a definable set C ⊂ A×B. Then the formula

{
a ∈ A; ∃b ∈ B : φ(a, b)

}

3We are deliberately vague on the meaning of formula.
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describes the image of the subset C ⊂ A×B via the canonical projection A×B → A. If
A ⊂ Rm, B ⊂ Rn, then the projection A×B → A is the restriction to A×B of the linear
projection Rm ×Rn → Rm and P3 implies that the image of C is also definable. Observe
that the universal quantifier can be replaced with the operator ¬∃¬.

Example 9.3.2. (a) The composition of two definable functionsA
f→ B

g→ C is a definable
function because

Γg◦f =
{
(a, c) ∈ A× C;∃b ∈ B : (a, b) ∈ Γf , (b, c) ∈ Γg

}
.

Note that any polynomial with real coefficients is a definable function.

(b) The image and the preimage of a definable set via a definable function is a definable
set.

(c) Observe that Salg is contained in any structure S. In particular, the Euclidean norm

| • | : Rn → R, |(x1, . . . , xn)| =
( n∑

i=1

x2i

)1/2

is S-definable.

Observe that any Grassmannian Grk(R
n) is a semialgebraic subset of the Euclidean

space End+(R) of symmetric operators Rn → Rn because it is defined by the system of
algebraic (in)equalities

Grk(R
n) =

{
P ∈ End+(Rn); P 2 = P, ΛkP 6= 0, ΛmP = 0, ∀m > k

}
,

where ΛjP denotes the endomorphism of ΛjRn induced by the linear map P ∈ End(Rn).
In the above description, to the orthogonal projection P of rank k, we associate its range,
which is a vector subspace of dimension k.

Similarly, the affine Grassmannian Graffk(R
n) is a semialgebraic set because its is

described by

Graffk(R
n) =

{
(x, P ) ∈ Rn ×Grk(R

n); Px = 0
}
.

In the above description, to the pair (x, P ) we associate the affine plane x+Range (P ).

(d) Any compact, affine simplicial complex K ⊂ Rn is S-definable because it is a finite
union of affine images of finite intersections of half-spaces.

(e) Suppose A ⊂ Rn is S-definable. Then its closure cl(A) is described by the formula

{
x ∈ Rn; ∀ε > 0, ∃a ∈ A : |x− a| < ε

}
,

and we deduce that cl(A) is also S-definable. Let us examine the correspondence between
the operations on formulas and operations on sets on this example.

We rewrite this formula as

∀ε
(
(ε > 0)⇒ ∃a(a ∈ A) ∧ (x ∈ Rn) ∧ (|x− a| < ε)

)
.

In the above formula we see one free variable x, and the set described by this formula
consists of those x for which that formula is a true statement.
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The above formula is made of the “atomic” formulæ,

(a ∈ A), (x ∈ Rn), (|x− a| < ε), (ε > 0),

which all describe definable sets. The logical connector ⇒ can be replaced by ∨¬. Finally,
we can replace the universal quantifier to rewrite the formula as a transform of atomic
formulas via the basic logical operations.

¬
{
∃ε¬

(
(ε > 0)⇒ ∃a(a ∈ A) ∧ (x ∈ Rn) ∧ (|x− a| < ε)

)}
.

Arguing in a similar fashion we deduce that the interior of an S-definable set is an S-
definable set. ⊓⊔

Given an R-structure S, and a collection A = (An)n≥1, An ⊂ P(Rn), we can form a
new structure S(A), which is the smallest structure containing S and the sets in An. We
say that S(A) is obtained from S by adjoining the collection A.

Definition 9.3.3. An R-structure S is called tame, or o-minimal (order minimal) if it
satisfies the property

T. Any set A ∈ S1 is a finite union of open intervals (a, b), −∞ ≤ a < b ≤ ∞, and
singletons {r}. ⊓⊔

Example 9.3.4. (a) The collection of real semialgebraic sets Salg is a tame structure.

(b)(Gabrielov-Hironaka-Hardt) A restricted real analytic function is a function f : Rn → R

with the property that there exists a real analytic function f̃ defined in an open neigh-
borhood U of the cube Cn := [−1, 1]n such that

f(x) =

{
f̃(x) x ∈ Cn
0 x ∈ Rn \ Cn.

we denote by San the structure obtained from Salg by adjoining the graphs of all the
restricted real analytic functions. For example, all the compact, real analytic submanifolds
of Rn belong to San. The structure San is tame.

(c)(Wilkie, van den Dries, Macintyre, Marker) The structure obtained by adjoining to
San the graph of the exponential function R→ R, t 7→ et, is a tame structure.
(d)(Khovanski-Speissegger) There exists a tame structure S′ with the following properties

(d1) San ⊂ S′.

(d2) If U ⊂ Rn is open, connected and S′-definable, F1, . . . , Fn : U × R → R are S′-
definable and C1, and f : U → R is a C1 function satisfying

∂f

∂xi
= Fi(x, f(x)), ∀x ∈ R, , i = 1, . . . , n, (9.3.1)

then f is S′-definable.
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The smallest structure satisfying the above two properties, is called the pfaffian closure4

of San, and we will denote it by Ŝan.

Observe that if f : (a, b)→ R is C1, Ŝan-definable, and x0 ∈ (a, b) then the antideriva-
tive F : (a, b)→ R

F (x) =

∫ x

x0

f(t)dt, x ∈ (a, b),

is also Ŝan-definable. ⊓⊔

The definable sets and functions of a tame structure have rather remarkable tame
behavior which prohibits many pathologies. It is perhaps instructive to give an example
of function which is not definable in any tame structure. For example, the function
x 7→ sinx is not definable in a tame structure because the intersection of its graph with
the horizontal axis is the countable set πZ which violates the o-minimality condition T.

We will list below some of the nice properties of the sets and function definable in a
tame structure S. Their proofs can be found in [24, 29].

• (Piecewise smoothness of tame functions and sets.) Suppose A is an S-definable set, p is
a positive integer, and f : A→ R is a definable function. Then A can be partitioned into
finitely many S definable sets S1, . . . , Sk, such that each Si is a C

p-manifold, and each of
the restrictions f |Si is a C

p-function. The dimension of A is then defined as max dimSi.

• (Dimension of the boundary.) If A is an S-definable set, then dim(cl(A) \ A) < dimA.

• (Closed graph theorem.) Suppose X is a tame set and f : X → Rn is a tame bounded
function. Then f is continuous if and only if its graph is closed in X × Rn.

• (Curve selection.) If A is an S-definable set, k > 0 an integer, and x ∈ cl(A) \ A, then
there exists an S-definable Ck-map γ : (0, 1)→ A such that x = limt→0 γ(t).

• (Triangulability.) For every compact definable set A, and any finite collection of defin-
able subsets {S1, . . . , Sk}, there exists a compact simplicial complex K, and a definable
homeomorphism

Φ : K → A

such that all the sets Φ−1(Si) are unions of relative interiors of faces of K.

• Any definable set has finitely many connected components, and each of them is definable.

• (Definable selection.) Suppose A,Λ are S-definable. Then a definable family of subsets
of A parameterized by Λ is a subset

S ⊂ A× Λ.

We set

Sλ :=
{
a ∈ A; (a, λ) ∈ S

}
,

and we denote by ΛS the projection of S on Λ. Then there exists a definable function
s : ΛS → S such that

s(λ) ∈ Sλ, ∀λ ∈ ΛS .

4Our definition of pfaffian closure is more restrictive than the original one in [59, 92], but it suffices for
many geometric applications.
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• (Definability of dimension.) If (Sλ)λ∈Λ is a definable family of definable sets, then the
function

Λ ∋ λ 7→ dimSλ ∈ R

is definable. In particular, its range must be a finite subset of Z.

• (Definability of Euler characteristic.) Suppose (Sλ)λ∈Λ is a definable family of compact
tame sets. Then the map

Λ ∋ λ 7→ χ(Sλ) = the Euler characteristic of Sλ ∈ Z

is definable. In particular, the set
{
χ(Sλ); λ ∈ Λ,

}
⊂ Z is finite.

•(Scissor equivalence.) If A and B are two compact definable sets, then there exists a
definable bijection ϕ : A → B if and only if A and B have the same dimensions and the
same Euler characteristics. (The map ϕ need not be continuous.)

• (Definable triviality of tame maps.) We say that a tame map Φ : X → S is definably
trivial if there exists a definable set F , and a definable homeomorphism τ : X → F × S
such that the diagram below is commutative

X S × F

S

[

[

[℄

Φ

w

τ

�

�
��

πS
.

If Ψ : X → Y is a definable map, and p is a positive integer, then there exists a partition
of Y into definable Cp-manifolds Y1, . . . , Yk such that each the restrictions

Ψ : Ψ−1(Yk)→ Yk

is definably trivial. ⊓⊔

Definition 9.3.5. A subset A of some Euclidean space Rn is called tame if it is definable
within a tame structure S. ⊓⊔

Exercise 9.3.6. Suppose S is a tame structure and Suppose ϕ : [0, 1] → R2 is an S-
definable map.

(a) Prove that ϕ is differentiable on the complement of a finite subset of [0, 1].

(b) Prove that the set

{
(t,m) ∈ [0, 1] × R2; ϕ is differentiable at t and m = ϕ′(t)

}

is S-definable.

(c) Prove that the curve

C =
{
(t, ϕ(t) ); t ∈ [0, 1]

}

has finitely many components, and each of them has finite length. ⊓⊔
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9.3.2 Invariants of the orthogonal group

In the proof of the tube formula we will need to use H.Weyl’s characterization of polyno-
mials invariant under the orthogonal group.

Suppose V is a finite dimensional Euclidean space with metric (−,−). We denote by
〈−,−〉 the canonical pairing

〈−,−〉 : V ∗ × V → R, 〈λ, v〉 = λ(v), ∀v ∈ V, λ ∈ V ∗ = Hom(V,R).

We denote by O(V ) the group of orthogonal transformations of the Euclidean space V .

Recall that an O(V )-module is a pair (E, ρ), where E is a finite dimensional real vector
space, while ρ is a group morphism

ρ : O(V )→ Aut(E), g 7→ ρ(g).

A morphism of O(V )-modules (Ei, ρi), i = 0, 1, is a linear map A : E0 → E1 such that for
every g ∈ O(V ) the diagram below is commutative

E0 E1

E0 E1

w

A

u

ρ0(g)
u

ρ1(g)

w

A

We will denote by HomO(V )(E0, E1) the spaces of morphisms of O(V )-modules.

The vector space V has a tautological structure of O(V )-module given by

τ : O(V )→ Aut(V ), τ(g)v = gv, ∀g ∈ O(V ), v ∈ V.

It induces a structure of O(V )-module on V ∗ = Hom(V,R) given by

ρ† : O(V )→ Aut(V ∗), g 7→ ρ†(g),

where

〈ρ†(g)λ,v〉 = 〈λ, g−1v〉,∀λ ∈ V ∗,v ∈ V.
Equivalently, ρ†(g) = ρ(g−1)†, where ρ(h)† denotes the transpose of ρ(h). We obtain an
action on (V ∗)⊗n,

(ρ†)
⊗n : O(V )→ Aut

(
(V ∗)⊗n

)
, g 7→ ρ†(g)

⊗n.

We denote by (V ∗)⊗nO(V ) the subspace consisting of invariant tensors,

ω ∈ (V ∗)⊗nO(V ) ⇐⇒
(
ρ†(g)

)⊗n
ω = ω, ∀g ∈ O(V ).

Observe that (V ∗)⊗n can be identified with the vector space of multi-linear maps

ω : V n = V × · · · × V︸ ︷︷ ︸
n

→ R,
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so that (V ∗)⊗nO(V ) can be identified with the subspace of O(V )-invariant multilinear maps
V n → R.

Hermann Weyl has produced in his classic monograph [102] an explicit description
of (V ∗)⊗nO(V ). We would like to present here, without proof, this beautiful result of Weyl
since it will play an important role in the future. We follow the elegant and more modern
presentation in Appendix I of [6] to which we refer for proofs.

Observe first that the metric duality defines a natural isomorphism of vector spaces

D : V → V ∗, v 7→ v†,

defined by

〈v†,u〉 = (v,u), ∀u,v ∈ V.
This isomorphism induces an isomorphism of O(V )-modules

D : (V, ρ)→ (V ∗, ρ†).

We conclude that for ever nonnegative integers r, s we have isomorphisms of G-modules

(V ∗)⊗(r+s) ∼= (V ∗⊗r)⊗ V ⊗s ∼= Hom(V ⊗r, V ⊗s)

In particular,

(
(V ∗)⊗(r+s)

)
O(V )

∼=
(
Hom(V ⊗r, V ⊗s)

)
O(V )

= HomO(V )(V
⊗r, V ⊗s).

Let us observe that if we denote by Sr the group of permutations of {1, . . . , r}, then for
every ϕ ∈ Sr we obtain a morphism of O(V )-modules

Tφ ∈ HomO(V )(V
⊗r, V ⊗r), Tϕ(v1 ⊗ · · · ⊗ vr) = vϕ(1) ⊗ · · · ⊗ vϕ(r).

Weyl’s First Main Theorem of Invariant Theory states that

HomO(V )(V
⊗r, V ⊗s) 6= 0⇐⇒ r = s,

and that

HomO(V )(V
⊗r, V ⊗r) = R[Sr] :=

{ ∑

ϕ∈Sr
cϕTϕ; cϕ ∈ R,

}
.

We can translate this result in terms of invariant multi-linear forms. Thus

(V ∗)⊗nO(V ) 6= 0⇐⇒ n = 2r, r ∈ Z≥0,

and (V ∗)⊗2rO(V ) is spanned by the multilinear forms

Pϕ : V 2r → R, (ϕ ∈ Sr),

defined by

Pϕ(u1, . . . ,ur,v1, . . . ,vr) =
(
u1,vϕ(1)

)
· · ·
(
ur,vϕ(r)

)
.
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The above result has an immediate consequence. Suppose we have a map

f : V × · · · × V︸ ︷︷ ︸
n

→ R, (v1, . . . ,vn) 7→ f(v1, . . . ,vn),

which is a homogeneous polynomial of degree di in the variable vi, ∀i = 1, . . . , n. This
form determines a multilinear form

Polf : V d1 × · · · × V dn → R

obtained by polarization in each variables separately,

Polf (u
1
1, . . . ,u

d1
1 ; . . . ;v1

n, . . . ,v
dn
n )

= the coefficient of the monomial t11t12 · · · t1d1 · · · tn1 · · · tndn in the polynomial

Pf (t11, t12, . . . , t1d1 , . . . , tn1, . . . , tndn) = f
( d1∑

j=1

tiju
j
1, . . . ,

dn∑

j=1

tnju
j
n

)
.

Observe that
f(v1, . . . ,vn) = Polf (v1, . . . ,v1︸ ︷︷ ︸

d1

, . . . ,vn, . . . ,vn︸ ︷︷ ︸
dn

),

and f is O(V )-invariant if and only if Polf is O(V ) invariant.
Note that every function

f : V × · · · × V︸ ︷︷ ︸
n

→ R

which is polynomial in each of the variables is a linear combination of functions which is
polynomial and homogeneous in each of the variables. For every 1 ≤ i ≤ j ≤ n we define

qij : V × · · · × V︸ ︷︷ ︸
n

→ R, qij(v1, . . . ,vn) := (vi,vj).

Theorem 9.3.7 (Weyl). If f : V × · · · × V → R is a polynomial map then f is O(V )-
invariant if and only if there exists a polynomial P in the

(
n+1
2

)
variables qij such that

f(v1, . . . ,vn) = P ( qij(v1, . . . ,vn)1≤i≤j≤n ). ⊓⊔

Example 9.3.8. (a) Consider the space E = V ⊗k. Observe that a degree n homogeneous
polynomial P on E can by identified with an element in the symmetric tensor product

Symd(E
∗) ⊂ (V ∗)⊗2kn.

The polynomial P is called a degree n orthogonal invariant of tensors T ∈ V ⊗k if it is
invariant as an element of (V ∗)⊗kn. For example, Weyl’s theorem implies that the only
degree 1 invariant of a tensor

T =
∑

i,j

Tijei ⊗ ej ∈ V ⊗2
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is the trace

tr(T ) =
∑

i,j

Ti,jei ⊗ ej =
∑

i

Tii.

The space of degree 2 invariants is spanned by the polynomials

(tr(T ))2, Q(T ) =
∑

ij

T 2
ij, Q̃(T ) =

∑

i,j

TijTji. ⊓⊔

Here is briefly how to find a basis of the space of degree k invariant polynomials

P : V ⊗h → R.

First of all, such polynomials exist if and only if hk is even, hk = 2m. Fix an orthonormal
basis {e1, · · · ,ed} of V . A tensor T ∈ V ⊗h decomposes as

T =
∑

1≤i1,...,ih≤d
Ti1...ihei1 ⊗ · · · ⊗ eih .

A degree k polynomial P : V ⊗h → R is then a polynomial in the dh variables Ti1...ih .
We will construct a bijection between a basis of invariant polynomials and certain

combinatorial structures called matchings.

A matching on the set Ihk := {1, . . . , hk} is an equivalence relation ∼ with the property
that each equivalence class consists of two elements. Thus to produce a matching we need
to choose a subset A ⊂ Ihk of cardinality m = hk

2 , and then a bijection ϕ : A → Ihk \ A.
Observing that the matching associated to (A,ϕ) is the same as the matching associated
to (Ihk \ A,ϕ−1), we deduce that the number of matchings is

1

2
(m!) ·

(
2m

m

)
=

(2m)!

2(m!)
.

Denote by F∼ the set of functions

µ : Ihk → {1, 2, . . . , d}

such that i ∼ j =⇒ µ(i) = µ(j). Equivalently, F∼, can be identified with the set of
functions µ : Ihk/ ∼→ {1, . . . , d}, so there are dm such functions.

For any matching ∼ define

P∼(T ) =
∑

µ∈F∼

Tµ(1)...µ(h) · · ·Tµ(hk−h+1)...µ(hk).

The collection {
P∼; ∼ is a matching of Ihk

}

is a basis of the space of degree k invariant polynomials V ⊗h → R.
For example, the space of degree 1 invariant polynomials in tensors of order 4 has

dimension 4!
2(2!) = 6. Each polynomial in a basis constructed as above is a sum of d2

terms. We see that things are getting “hairy” pretty fast. ⊓⊔
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9.3.3 The tube formula and curvature measures

Suppose that M is an m-dimensional submanifold of Rn. We set

c := codimM = n−m.

In this section we will assume that M is compact and without boundary, but we will not
assume that it is orientable.

For r > 0 we define the tube of radius r around M to be the closed set

Tr(M) :=
{
x ∈M ; dist (x,M) ≤ r

}
,

and we denote by V (M, r) its volume.

Note that a first approximation for V (M, r) is

V (M, r) ≈ vol (M) · ωcrc,

where ωcr
c is the volume of a ball of dimension c and radius r.

We want to prove that there exists a polynomial

PM (r) = pcr
c + · · · + pnr

n,

such that, for all sufficiently small r, we have

• V (M, r) = PM (r),

• pc = ωc · vol (M),

• all the coefficients of PM are described, up to some universal multiplicative constants,
by certain integral, intrinsic geometric invariants of M .

Let N(M) denote the orthogonal complement of TM in (TRn)|M , and we will call it
the normal bundle of M →֒ Rn. We define

Dr(R
n) := {(v, p); p ∈ Rn, v ∈ TpRn, |v| ≤ r

}
⊂ TRn,

and we set

Nr(M) := N(M) ∩Dr(R
n).

The manifold with boundary Dr(R
n) is a bundle of n-dimensional disks over Rn, while

Nr(M) is a bundle of c-dimensional disks over M .

The exponential map E : TRn → Rn restricts to an exponential map

EM : N(M)→ Rn.

Observe that because M is compact, there exists r0 = r0(M) > 0 such that, for every
r ∈ (0, r0), the exponential map EM induces a diffeomorphism

EM : Nr(M)→ Tr(M).
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If we denote by |dVn| the Euclidean volume density on Rn we deduce

V (M, r) = vol
(
Tr(M)

)
=

∫

Tr(M)
|dVn| =

∫

Nr(M)
E∗M |dVn|.

If π : Nr(M)→M denotes the canonical projection, then we deduce from Fubini’s theorem
that

V (M, r) =

∫

M
π∗E

∗
M |dVn|. (9.3.2)

We want to give a more explicit description of the density π∗E∗M |dVn|. We will continue
to use the indexing conventions we have used in Subsection 9.2.1.

Fix a local orthonormal frame (eA) of (TR
n)|M defined in a neighborhood U ⊂ M of

a point p0 ∈M such that for all 1 ≤ i ≤ m vector field ei is tangent to U . We define

Dc
r :=

{
~t = (tα) = (tm+1, . . . , tn) ∈ Rc;

∑

α

|tα|2 ≤ r
}
.

Note that we have a diffeomorphism

Dc
r × U −→ Nr(U) := Nr(M)|U , (~t, x) 7→ (tαeα(x), x) ∈ Nr(M),

and thus we can identify Dc
r × U with the open subset π−1(U) ⊂ Nr(M), and we can use

x ∈M and ~t ∈ Dc
r as local coordinates on π−1(U). Define

Tr(U) := EM(Nr(U) ) ⊂ Rn,

and
ẽA : Tr(U)→ Rn by ẽA(x+ tαeα) = eA(x).

We have thus extended in a special way the local frame (eA) of (TR
n)|U to a local frame

of (TRn)|Tr(U) so that
Dẽα ẽA = 0, ∀α,A. (9.3.3)

We denote by (θA) the coframe of Tr(U) dual to ẽA.
Over Dc

r × U we have a local frame (∂tα ,ei) with dual coframe (φA) defined by

φi = π∗θi, φα = dtα.

Consider the 1-forms ΘA
B ∈ Ω1

(
Tr(U)

)
associated to the Levi-Civita connection D by

the frame (ẽA) on Tr(U), and set

ΘA
CB = ẽC ΘA

B, ∀i,

so that
DeC eB = ΘA

CBeA.

Using (9.3.3) we deduce
ΘA
αB = 0, ∀α =⇒ ΘA

B = ΘA
iBθ

i. (9.3.4)

Finally set

ΦAB = π∗(ΘA
B |M ) ∈ Ω1(Nr(U)), ΦAiB := π∗(ΘA

iB |U ) ∈ C∞(Nr(U) ).
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The equalities (9.3.4) imply
ΦAB = ΦAiBφ

i.

On Nr(M)|U we use (~t, x) as coordinates and we have

EM (tαeα(x), x) = x+ tαeα.

We have
E∗MθA =

∑

i

(eA •Dei EM)φi +
∑

α

(eA • ∂tαEM )dtα

=
∑

i

eA • (ei + tαDei eα)φ
i +
∑

α

δAαdt
α = δAiφ

i + tαΦAiαφ
i + δAαdt

α.

Hence
E∗Mθj = φj + tαΦjiαφ

i = φj −
∑

α

tαΦαijφ
i, E∗Mθβ = dtβ.

We find it convenient to set

Φij = (Φm+1
ij , . . . ,Φnij) : U → Rc,

so that
E∗Mθj = φj −

∑

i

(~t • Φij)φi.

Define the m×m symmetric matrix

S := S(~t, x) =
(
~t • Φij(x)

)
1≤i,j≤m

Note that the volume density on Rn is

|dVn| = |θm+1 ∧ · · · ∧ θn ∧ θ1 ∧ · · · ∧ θm.|

E∗MdVn = |det(1− S(~t, x)
)
| |d~t ∧ dφ| = det(1− S(~t, x)

)
|d~t ∧ dφ|, (9.3.5)

d~t = dtm+1 ∧ · · · ∧ dtn, dφ = dφ1 ∧ · · · ∧ dφm.
Recalling that | ∧i dθi|M | is the metric volume density |dVM | on M , we deduce

E∗M |dVn| = det(1− S(~t, x)
)
|d~t| × π∗|dVM |,

where |d~t| denotes the volume density on Rc. For simplicity we write |dVM | instead of
π∗|dVM |. Now set

ρ := |~t|, ω :=
1

ρ
~t,

and denote by |dω| the area density on the unit sphere in Rc. Then

E∗M |dVn| = det(1− ρS(ω, x)
)
ρc−1|dρ| × |dω| × |dVM |. (9.3.6)

Observe that

det(1− ρS(ω, x)
)
=

m∑

ν=0

(−1)νρνPν
(
Φij(x) • ω

)
,
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where Pν denotes a homogeneous polynomial of degree ν in the m2 variables

uij ∈ Rc, 1 ≤ i, j ≤ m.

We set

P ν
(
Φij(x)

)
:=

∫

Sc−1

Pν
(
Φij(x) • ω

)
|dω|.

Above, P ν
(
uij
)
is an O(c)-invariant, homogeneous polynomial of degree ν in the variables

uij ∈ Rc, 1 ≤ i, j ≤ m. We conclude,

π∗E
∗
M |dVn| =

m∑

ν=0

(−1)ν
c+ ν

rc+νP ν
(
Φij(x)

)
|dVM (x)|. (9.3.7)

We would like to determine the invariant polynomials P ν
(
uij
)
.

Theorem 9.3.7 on invariants of the orthogonal group O(c) implies that P ν must be a
polynomial in the quantities

qi,j,k,ℓ := uik • ujℓ.
Because these quantities are homogeneous of degree 2 in the variables uij we deduce
P ν = 0 if ν is odd. Assume therefore ν = 2h, h ∈ Z≥0.

For every ~t ∈ Rc = span (em+1, . . . ,em+c) we form the linear operator

U(~t) = U(uij,~t) : R
m → Rm

given by the m×m matrix (uij •~t )1≤i,j≤m. We deduce that

(−1)νPν(uij •~t ) = tr ΛνU(uij,~t)

= the sum of all the ν × ν minors of U(~t) symmetric with respect to the diagonal.

These minors are parametrized by the subsets I ⊂ {1, . . . ,m} of cardinality #I = ν. For
every ω ∈ Rc we denote by µI(uij • ω ) the corresponding minor of U(ω), and by µI its
average,

µI(uij) :=

∫

Sc−1

µI(uij • ω )dω.

Note that µI is an O(c)-invariant polynomial in the variables {uij}i,j∈I .
Let

I = {1 ≤ i1 < i2 < · · · < i2h ≤ m} ⊂ {1, . . . ,m},
and denote by SI the group of permutations of I. For ϕ ∈ SI we set

ϕj := ϕ(ij), ∀j = 1, . . . , 2h.

For any σ, ϕ ∈ SI we denote by ǫ(σ, ϕ) the signature of the permutation σ ◦ ϕ−1, and by
Qσ,ϕ the invariant polynomial

QI,σ,ϕ =
h∏

j=1

qϕ2j−1,ϕ2j ,σ2j−1,σ2j =
h∏

j=1

uϕ2j−1σ2j−1 • uϕ2jσ2j .
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Lemma 9.3.9. There exists a constant ξ = ξm,ν,c depending only on m, ν and c such that

µ̄I = ξQI , QI :=
∑

ϕ,σ∈SI
ǫ(σ, ϕ)QI,σ,ϕ.

Proof. We regard µI as a function on the vector space of (2h) × (2h) matrices U with
entries in Rc

U = [uij ]i,j∈I .

We observe that µI satisfies the following determinant like properties.

• µI changes sign if we switch two rows (or columns).

• µI is separately linear in each of the variables uij.

• µI is a homogeneous polynomial of degree h in the variables qi,j,k,ℓ.

We deduce that µI is a linear combination of monomials of the form

qk1,k2,ℓ1,ℓ2 · · · qk2h−1k2h,ℓ2h−1,ℓ2h ,

where
{k1, . . . , k2h} and {ℓ1, . . . , ℓ2h}

are permutations of I. The skew-symmetry of µI with respect to the permutations of rows
and columns now implies that µI must be a multiple of QI .

⊓⊔

The constant ξ satisfies

ξm,ν,c =
µI(uij)

QI(uij)
, ∀uij ∈ Rc

so it suffices to compute the numerator and denominator of the above fraction for some
special values of uij . We can assume I = {1, 2, . . . , 2h} and we choose

uij =




1
0
...
0


 ∈ Rc.

Then, if we set

~t =




t1

t2

...
tc


 ∈ Rc, ω =

1

|~t|
~t

we deduce

U(uij ,~t) =




t1 0 · · · 0
0 t1 · · · 0
...

...
. . .

...
0 0 · · · t1


 , µI(uij •~t) = |t1|ν .
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Hence

µI(uij) =

∫

Sc−1

|ω1|2h|dω|. (9.3.8)

On the other hand, we have

QI,σ,ϕ =
h∏

j=1

uϕ2j−1σ2j−1 • uϕ2jσ2j ,

which is nonzero if and only if σ = ϕ. We conclude that for this particular choice of uij
we have

QI = (2h)!.

Hence

ξm,ν,c =
1

(2h)!

∫

Sc−1

|ω1|2h|dω|.

At this point we invoke the following result whose proof is deferred to the end of this
subsection.

Lemma 9.3.10. For any even, nonnegative integers 2h1, . . . , 2hc we have

∫

Sc−1

|ω1|2h1 · · · |ωc|2hc |dω| = 2Γ(2h1+1
2 ) · · ·Γ(2hc+1

2 )

Γ( c+2h
2 )

,

where h = h1 + · · · + hc.

We deduce

ξm,2h,c =
2Γ(2h+1

2 )Γ(1/2)c−1

(2h)!Γ( c+2h
2 )

, (9.3.9)

and
P ν(uij) = ξm,2h,c

∑

#I=ν

QI(uij). (9.3.10)

We denote by S2 the group of permutations of a linearly ordered set with two elements.
We observe that every element

τ = (τ1, . . . , τh) ∈ G = S2 × · · · × S2︸ ︷︷ ︸
h

defines a permutation of I by regarding τ1 as a permutation of {i1, i2}, τ2 as a permutation
of {i3, i4} etc. Thus G is naturally a subgroup of SI . The space Sk/G of left cosets of
this group can be identified with the subset S′I ⊂ SI consisting of bijections ϕ : I → I
satisfying the conditions

ϕ1 < ϕ2, ϕ3 < ϕ4, . . . , ϕ2h−1 < ϕ2h.

We deduce that if uij = Sij(x), then for every σ ∈ SI we have

∑

ϕ∈SI
ǫ(σ, ϕ)QI,σ,ϕ =

∑

ϕ∈S′I ,τ∈G
ǫ(σ, ϕτ)QI,σ,ϕτ
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=
∑

ϕ∈S′I

ǫ(σ, ϕ)

h∏

j=1

(
qϕ2j−1,ϕ2j ,σ2j−1,σ2j − qϕ2j ,ϕ2j−1,σ2j−1,σ2j

)

=
∑

ϕ∈S′I

ǫ(σ, ϕ)

h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

Using the skew-symmetry Rijkℓ = −Rijℓk we deduce

∑

σ,ϕ∈SI
ǫ(σ, ϕ)QI,σ,ϕ =

∑

σ∈SI

∑

ϕ∈S′I

ǫ(σ, ϕ)

h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

=
∑

σ∈S′I ,τ∈G
ǫ(στ, ϕ)

h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

= 2h
∑

σ,ϕ∈S′I

ǫ(σ, ϕ)
h∏

j=1

Rϕ2j−1ϕ2jσ2j−1σ2j

︸ ︷︷ ︸
=:QI(R)

We conclude that
P ν(ψij) = 2hξm,2h,c

∑

#I=2h

QI(R). (9.3.11)

Using (9.3.2) and (9.3.7) we deduce that

V (M, r) = vol (Tr(M)) =

⌊m/2⌋∑

h=0

ωc+2hr
c+2h 2hξm,2h,c

(c+ 2h)ωc+2h

∫

M
Qh(R)|dVM |.

Let us observe that the constant
2hξm,2h,c

(c+ 2h)ωc+2h

is independent of the codimension c. It depends only on h. Indeed, we have

2hξm,2h,c
(c+ 2h)ωc+2h

=
2hξm,2h,c
σc+2h−1

=
2h

σc+2h−1

2Γ(2h+1
2 )Γ(1/2)c−1

(2h)!Γ( c+2h
2 )

=
2hΓ(h+ 1/2)

Γ(1/2)1+2h(2h)!
=

γ(2h)

πh(2h)!
=

1

(2π)hh!
.

We have thus obtained the following celebrated result of Hermann Weyl, [101].

Theorem 9.3.11 (Tube formula). Suppose M is a closed, compact submanifold of Rn,
dimM = m, c = n −m. Denote by R the Riemann curvature of the induced metric on
M . Then for all r > 0 sufficiently small we have

V (M, r) = vol (Tr(M)) =

⌊m/2⌋∑

h=0

ωc+2hr
c+2hµm−2h(M),
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µm−2h(M) =
1

(2π)hh!

∫

M
Qh(R)|dVM |,

where Qh is a polynomial of degree h in the curvature. By choosing a local, orthonormal
frame (e1, . . . ,em) of TM we can express the polynomial Qh(R) as

Qh(R) :=
∑

#I=2h

QI(R),

where for every I = {i1 < i2 < · · · < i2h} ⊂ {1, . . . ,m} we define

QI(R) =
∑

σ,ϕ∈S′I

ǫ(σ, ϕ)
h∏

j=1

Rϕ(i2j−1)ϕ(i2j )σ(i2j−1)σ(i2j ). ⊓⊔

Example 9.3.12. (a) If h = 0 then

µm(M) = vol (M).

(b) Assume now that m is even, m = 2h, and oriented. Then c+ 2h = m+ c = n and

µ0(M) =
1

(2π)h

∫

M

1

h!
Qh(R)dVM .

Comparing the definition of Qh(R) with (9.2.7a) we deduce that the top dimensional form

1

(2π)h
1

h!
Qh(R)dVM ∈ Ω2h(M)

is precisely the Euler form associated with the orientation of M and the induced metric,
so that

µ0(M,g) =

∫

M
e(M,g). (9.3.12)

(c) Suppose now that M is a hypersurface in Rm+1. Consider the second fundamental
form

S = (Sij)1≤i,j≤m, Sij = (Dei ej) • em+1,

where we recall that em+1 is in fact the oriented unit normal vector field along M . Fix
a point x0 ∈ M and assume that at this point the frame (e1, . . . ,em) diagonalizes the
second fundamental form so that

Sij = κiδij .

The eigenvalues κ1, . . . , κm are the principal curvatures at the point x0. We denote by
cν(κ) the elementary symmetric polynomial of degree ν in the variables κi. In this case
c = 1, and we have

E∗MdVRm+1 = det(1− tS)dt ∧ dVM =

m∑

ν=0

(−1)νtνcν(κ)dt ∧ dVM

π∗E
∗
MdVRm+1 =

m∑

ν=0

(∫ r

−r
tνdt

)
cν(κ)dVM = 2

⌊m/2⌋∑

h=0

r2h+1

2h+ 1
c2h(κ)dVM
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so that

⌊m/2⌋∑

h=0

ω1+2hr
1+2hµm−2h(M) = V (M, r) = 2

⌊m/2⌋∑

h=0

r2h+1

2h+ 1

∫

M
c2h(κ)dVM .

We conclude that

µm−2h(M) =
2

σ2h

∫

M
c2h(κ)dVM , σ2h = (2h + 1)ω1+2h.

If M = Sm →֒ Rm+1 is the unit sphere then κi = 1 and we deduce that

µm−2h(S
m) = 2

σm

σ2h

(
m

2h

)
. (9.3.13)

(d) Using the definition of the scalar curvature we deduce that for any m-dimensional
submanifold Mm →֒ Rn we have

µm−2(M,g) = constm

∫

M
sg|dVg|,

where s denotes the scalar curvature of the induced metric g, and constm is an universal
constant, depending only on m. We see that the map g → µm−2(M,g) is precisely the
Hilbert-Einstein functional we discussed in Subsection 4.2.5, Definition 4.2.22.

To find the constm we compute µm−2(M) when M = Sm. Using (9.3.13) we deduce

2σm
σ2

(
m

2

)
= constm

∫

M
sround|dVSm |,

where sround denotes the scalar curvature of the round metric on the unit sphere.
Observe that the Grassmannian of oriented codimension one subspaces of Rm+1 can be

identified with the unit sphere Sm. Hence, the oriented Gauss map of the unit sphere Sm

is the identity. In particular, the shape operator of Sm →֒ Rm+1 is the identity operator
From Theorema Egregium we deduce that all the sectional curvatures of Sn are equal to
one. Using the equalities (4.2.1) we deduce

sround =
∑

i,j

Rijij =
∑

i,j

1 = 2

(
m

2

)
.

Hence
2σm
σ2

(
m

2

)
= 2σm

(
m

2

)
constm

=⇒ constm =
1

σ2
=

1

4π
=⇒ µm−2(M,g) =

1

4π

∫

M
sg|dVg|.

(e) The polynomial Q2 still has a “reasonable form”

Q2(R) =
∑

#I=4

QI
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Then #S′I = 6 and

QI =
∑

σ,ϕ∈S′I

ǫ(σ, ϕ)Rσ1σ2ϕ1ϕ2Rσ3σ4ϕ3ϕ4

=
∑

σ∈S′I

Rσ1σ2σ1σ2Rσ3σ4σ3σ4 +
∑

σ 6=ϕ∈S′I

ǫ(σ, ϕ)Rσ1σ2ϕ1ϕ2Rσ3σ4ϕ3ϕ4 .

The first sum has only three different monomials, each of them appearing twice is them
sum. The second sum has

(6
2

)
different monomials (corresponding to subsets of cardinality

2 of S′I) and each of them appears twice. ⊓⊔

Definition 9.3.13. If (M,g) is a closed, compact, oriented, Riemann manifold, m =
dimM , and w is nonnegative integer. If m−w is odd we set

µw(M) = 0.

If m− w is an even, nonnegative integer, m− w = 2h, then we set

µw(M,g) =
1

(2π)hh!

∫

M
Qh(R)|dVM |.

We will say that µw(M,g) is the weight w curvature measure of (M,g). We set

|dµw| :=
1

(2π)hh!
Qh(R)|dVM |,

and we will refer to it as the (weight w) curvature density. ⊓⊔

Remark 9.3.14. (a) Let us observe that for any Riemann manifold M , orientable or not,
the quantities |dµw| are indeed well defined, i.e. independent of the choice of local frames
used in their definition. The fastest way to argue this is by invoking Nash embedding
theorem which implies that any compact manifold is can be isometrically embedded in an
Euclidean space. For submanifolds of Rn, the proof of the tube formula then implies that
these densities are indeed well defined.

We can prove this by more elementary means by observing that, for any finite set I,
the relative signature ǫ(σ, ϕ) of two permutations ϕ, σ : I → I is defined by choosing a
linear ordering on I, but it is independent of this choice.
(b) The weight of the curvature density has a very intuitive meaning. Namely, we should
think of µw(M,g) as a quantity measured in meterw. ⊓⊔

Proof of Lemma 9.3.10. Consider the integral

I(h1, . . . , hc) =

∫

Rc

e−|
~t|2 |t1|2h1 · · · |tc|2hc |dt|.

We have e−|~t|
2
= e−|t+1|2 · · · e−|tc|2 so that

I(h1, . . . , hc) =
c∏

j=1

(∫ ∞

−∞
e−s

2
s2hjds

)
= 2c

c∏

j=1

(∫ ∞

0
e−s

2
s2hjds

)
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(u = s2)

=

c∏

j=1

(∫ ∞

0
e−uthj−1/2du

)
=

c∏

j=1

Γ
(2hj + 1

2

)
.

On the other hand, using spherical coordinates, ρ = |~t|, ω = 1
|~t|
~t, and recalling that

h = h1 + · · ·+ hc, we deduce that

I(h1, . . . , hc) =
(∫

Sc−1

|ω1|2h1 · · · |ωc|2hcdω
)(∫ ∞

0
e−ρ

2
ρ2h+c−1dρ

)

(u = ρ2)

=
1

2

(∫

Sc−1

|ω1|2h1 · · · |ωc|2hcdω
) ∫ ∞

0
e−uu

c+2h
2
−1du

=
1

2
Γ
(c+ 2h

2

)(∫

Sc−1

|ω1|2h1 · · · |ωc|2hcdω
)
. ⊓⊔

9.3.4 Tube formula =⇒ Gauss-Bonnet formula for arbitrary submani-

folds

Suppose Mm ⊂ Rn is a closed, compact submanifold of Rn. We do not assume that M is
orientable. As usual, set c = n −m, and we denote by g the induced metric on M . For
every sufficiently small positive real number r we set

Mr := {x ∈ Rn; dist (x,M) = r} = ∂Tr(M).

The closed set Mr is a compact hypersurface of Rn, and we denote by gr the induced
metric. Observe that for r and ε sufficiently small we have

Tε(Mr) = Tr+ε(M)− Tr−ε(M)

so that,

V (Mr, ε) = V (M, r + ε)− V (M, r − ε),
which implies that ∑

h≥0
ω1+2hε

1+2hµn−1−2h(Mr, gr)

=
∑

k≥0
ωc+2k

{
(r + ε)c+2k − (r − ε)c+2k

}
µn−c−2k(M,g).

We deduce

µn−1−2h(Mr, gr) =
2

ω1+2h

∑

k≥0
ωc+2k

(
c+ 2k

1 + 2h

)
rc−1+2k−2hµn−c−2k(M,g).

We make a change in variables. We set

p := n− 1− 2h, w := n− c− 2k = m− 2k.
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Then c+2k = n−w, 1 + 2h = n− p, c+2k− 1− 2h = p−w, so that we can rewrite the
above formula as

µp(Mr, gr) = 2

m∑

w=0

(
n− w
n− p

)
ωn−w
ωn−p

rp−wµw(M,g). (9.3.14)

In the above equality it is understood that µw(M) = 0 if m−w is odd. In particular, we
deduce that if the codimension of M is odd then

lim
r→0

µp(Mr, gr) = 2µp(M,g), ∀0 ≤ p ≤ m = dimM. (9.3.15)

If in the formula (9.3.14) we assume that the manifold M is a point, then we deduce that
Mr is the (n − 1)-dimensional sphere of radius r, Mr = Sn−1r , and we conclude that

µp(S
n−1
r ) = 2

(
n

p

)
ωn

ωn−p
rp = 2ωp

[
n

p

]
rp, n− p ≡ 1 mod 2, (9.3.16)

where
[n
p

]
is defined by (9.1.16). The last equality agrees with our previous computation

(9.3.13).
If in the formula (9.3.14) we let p = 0 we deduce

µ0(Mr, gr) = 2µ0(M,g), ∀0 < r ≪ 1, if codim M is odd.

Observe that the tube Tr(M) is naturally oriented, even though the manifold M may not
be orientable. The Gauss-Bonnet theorem for oriented hypersurfaces implies

χ(Mr) = µ0(Mr, gr)

so that

µ0(M,g) =
1

2
χ(Mr), ∀0 < r ≪ 1. (9.3.17)

Theorem 9.3.15 (Gauss-Bonnet). Suppose M is a closed, compact submanifold of an
Euclidean space Rn. Denote by g the induced metric. Then

µ0(M,g) = χ(M).

Proof. Ifm = dimM is odd, then both χ(M) and µ0(M) are equal to zero and the identity
is trivial. Assume therefore that m is even. If the dimension n of the ambient space is
odd, then the Poincaré duality for the oriented n-dimensional manifold with boundary
Tr(M) implies

χ(Mr) = χ( ∂Tr(M) ) = 2χ(Tr(M) ) = 2χ(M),

and the theorem follows from (9.3.17).
If n is even, we apply the above argument to the embedding

M →֒ Rn →֒ Rn+1,

where we observe that the metric induced by the embedding M →֒ Rn+1 coincides with
the metric induced by the original embedding M →֒ Rn. ⊓⊔
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Remark 9.3.16. (a) We want emphasize again that in the above theorem we did not
require that M be orientable which is the traditional assumption in the Gauss-Bonnet
theorem.
(b) By invoking the Nash embedding theorem, we deduce that the tube formula implies
the Gauss-Bonnet formula for any compact Riemann manifold, orientable or not. ⊓⊔

Let us record for later use the following corollary of the above proof.

Corollary 9.3.17. For every closed compact, smooth submanifold M of an Euclidean
space V such that dimV − dimM is odd we have

χ(M) = 2χ( ∂Tr(M) ), ∀0 < r≪ 1. ⊓⊔

9.3.5 Curvature measures of domains in an Euclidean space

The second fundamental form of a submanifold is in fact a bilinear form with values in
the normal bundle. If the submanifold happens to be the boundary of a domain, then the
normal bundle admits a canonical trivialization, and the second fundamental form will be
a scalar valued form. The next definition formalizes this observation.

Definition 9.3.18. For any relatively compact open subset D of an Euclidean space V ,
with smooth boundary ∂D, we define the co-oriented second fundamental form of D to
be the symmetric bilinear map

SD : Vect (∂D)×Vect (∂D)→ C∞(∂D),

SD(X,Y ) = (DX Y ) • n, X, Y ∈ Vect (∂D),

where n : ∂D → V denotes the outer unit normal vector field along ∂D. ⊓⊔

Suppose D ⊂ Rm+1 is an open, relatively compact subset with smooth boundary
M := ∂D. We denote by n the unit outer normal vector field along M := ∂D, and by
S = SD the co-oriented second fundamental form of D. For every symmetric bilinear form
B on an Euclidean space V we define trj(B) the j-th elementary symmetric polynomial
in the eigenvalues of B, i.e.,

∑

j≥0
zj trj(B) = det(1V + zB).

Equivalently,
trj B = tr

(
ΛjB : ΛjV → ΛjV

)
.

We define the tube of radius r around D to be

Tr(D) :=
{
x ∈ Rm+1; dist (x,D) ≤ r

}
.

We denote by EM the exponential map

EM : (TRm+1)|M → Rm+1,
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(X, p) 7−→ EM (X, p) = p+X, p ∈M, X ∈ TpRm+1.

For r > 0 we denote by ∆r ⊂ (TRm+1)|M the closed set

∆r :=
{
(tn(p), p); p ∈M, t ∈ [0, r]

}
.

For sufficiently small r the map EM defines a diffeomorphism

EM : ∆r → Tr(D) \D,

so that

vol (Tr(D) ) = vol (D) +

∫

∆r

E∗MdVRm+1 .

Fix p0 ∈M and a local, positively oriented local orthonormal frame

(e1, . . . ,em)

of TM defined in a neighborhood U of p0 in M , such that, for every p ∈ U , the collection

(n(p),e1(p), . . . ,em(p))

is a positively oriented, orthonormal frame of Rn. We obtain a dual coframe θ,θ1, . . . ,θn.

As in the previous section, the pullback of E∗MdVRm+1 to ∆r has the description

E∗MdVRm+1 = det
(
1− tSM

)
dt ∧ dθ1 ∧ · · · ∧ θm

=




m∑

j=1

trj(−SM )tj


 dt ∧ dθ1 ∧ · · · ∧ θm.

We deduce ∫

∆r

E∗MdVRm+1 =

m∑

j=0

rj+1

j + 1

(∫

M
trj(−SM)dVM

)
.

Define

µm−j(D) :=
1

σj

(∫

M
trj(−SM )dVM

)
, 0 ≤ j ≤ m,

and

µm+1(D) := vol (D)

so that using the equality σj = (j + 1)ωj+1 we deduce the tube formula for domains,

vol
(
Tr(D)

)
=

m+1∑

k=0

ωm+1−kr
m+1−kµk(D). (9.3.18)

Theorem 9.2.5 shows that, just as in the case of submanifolds, we have µ0(D) = χ(D).
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Definition 9.3.19. Suppose D is a relatively compact domain with smooth boundary of
an Euclidean space V , dimV = n. Then the curvature densities of D are the densities
|dµj | on ∂D defined by

|dµj | :=
1

σn−j
trn−j(−SD)|dV∂D|,

where |dV∂D| denotes the volume density on ∂D induced by the Euclidean metric on V ,
and SD denotes the co-oriented second fundamental form of ∂D. ⊓⊔

We denote by Dm+1
r the ball of radius r in Rm+1. Then,

Tε(D
m+1
r ) = Dm+1

r+ε ,

so that

ωm+1(r + ε)m+1 =
∑

k≥0
ωm+1−kε

m+1−kµk(D
m+1
r ).

We conclude

µk(D
m+1
r ) =

ωm+1

ωm+1−k

(
m+ 1

k

)
rk = ωk

[
m+ 1

k

]
rk. (9.3.19)

Suppose X →֒ Rm+1 is a closed, compact smooth submanifold. Then for every suffi-
ciently small r > 0, the tube Dr := Tr(X) is a compact domain with smooth boundary
and

Tε(Dr) = Tr+ε(X).

The tube formula for X implies that

∑

j≥0
ωjε

jµm+1−j(Dr) =
∑

k≥0
ωk
(
r + ε)kµm+1−k(X).

We deduce that

µm+1−j(Dr) =
1

ωj

∑

k≥j
ωk

(
k

j

)
rk−jµm+1−k(X)

We set n := m+ 1 and we make the change in variables

p := n− j, w := n− k.

Then k − j = p− w, and we obtain the following generalization of the tube formula

µp
(
Tr(X)

)
=

1

ωn−p

∑

w

ωn−w

(
n− w
n− p

)
rp−wµw(X)

=
∑

w

ωp−w

[
n− w
p− w

]
rp−wµw(X).

(9.3.20)

In particular, we have

lim
r→0

µp
(
Tr(X)

)
= µp(X), ∀0 ≤ p ≤ dimX. (9.3.21)
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9.3.6 Crofton Formulæ for domains of an Euclidean space

Suppose D is an open, relatively compact subset of the Euclidean space Rn with smooth
boundaryM = ∂D. We denote by g the induced metric on M , by Grc the Grassmannian
of linear subspaces of Rn of codimension c, and by Graff c the affine Grassmannian of
codimension c affine subspaces of Rn.

Recall that onGrc we have a natural metric with volume density |dγc| and total volume

Vc :=

∏n−1
j=0 σj(∏c−1

i=0 σi
)
·
(∏m−1−c

j=0 σj
) .

We rescale this volume density as in (9.1.17) to obtain a new volume density |dνc| with
total volume ∫

Grc
|dνc| =

[
n

c

]
. (9.3.22)

As explained in Subsection 9.1.3, these two densities produce two invariant densities |dγ̃c|
and |dν̃c| on Graff c which differ by a multiplicative constant.

Theorem 9.3.20 (Crofton Formula). Let 1 ≤ p ≤ n− c, and consider the function

f : Graff c → R, f(L) = µp(L ∩D).

If the function f is |dν̃|-integrable, then
[
p+ c

p

]
µp+c(D) =

∫

Graffc
µp(L ∩D)|dν̃c(L)|.

Proof. For simplicity, we set V = Rn, m = n − 1 = dimM . We will carry out the proof
in several steps.

Step 1. We will prove that there exists a constant ξm,c,p, depending only on m, c, and p
such that

ξn,c,pµp+c(D) =

∫

Graffc
µp(L ∩D)|dν̃c(L)|.

Step 2. We will show that the constant ξ is equal to
[p+c
p

]
by explicitly computing both

sides of the above equality in the special case D = Dm+1.

Step 1. We will rely on a basic trick in integral geometry. For every S ∈ Graff c we
denote by [S] ∈ Grc the parallel translate of S containing the origin, [S] = S − S. We
introduce the incidence relation

I =
{
(v, S) ∈ V ×Graff c; v ∈ S

}
⊂ V ×Graff c .

Observe that we have a diffeomorphism

I→ V ×Grc, I ∋ (v, S) 7−→ (v, [S]) ∈ V ×Grc,

with inverse
V ×Grc(V ) ∋ (v, L) 7−→ (v, v + L) ∈ I.
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We obtain a double fibration

I

V Graff c

[

[

[̂

ℓ '

')

r

and we set
I(M) := ℓ−1(M) =

{
(v, S) ∈ V ×Graff c; v ∈ S ∩M

}
.

Since dim I = dimV + dimGrc = n+ c(n− c) we deduce

dim I(M) = n+ c(n − c)− codimM = n+ c(n− c).

Again we have a diagram

I(M)

M Graff c

[

[

[̂

ℓ
'

'
')

r

The map r need not be a submersion. Fortunately, Sard’s theorem shows that r fails to
be a surjection on a rather thin set.

Denote byGraff c(M) the set of codimension c affine planes which intersectM transver-
sally. The set Graff c(M) is an open subset of Graff c, and Sard’s theorem implies that
its complement has measure zero. We set

I(M)∗ := r−1
(
Graff c(M)

)
.

The set I(M)∗ is an open subset of I(M), and we obtain a double fibration

I(M)∗

M Graff c(M)

A

A

AD

ℓ 






�

r
(9.3.23)

The fiber of r over L ∈ Graff c is the slice ML := L ∩M which is the boundary of the
domain DL := (L ∩D) ⊂ L.

The vertical bundle of the fibration r : I∗(M)→ Graff c(M) is equipped with a natural
density given along a fiber L ∩M by the curvature density |dµk| of the domain DL. We
will denote this density by |dµLk |. As explained in Subsection 9.1.1, using the pullback
r∗|dγ̃c| we obtain a density

|dλ| := |dµLp | × r∗|dγ̃c|
on I∗(M) satisfying,

∫

I∗(M)
|dλ| =

∫

Graffc(M)

(∫

L∩M
|dµLp |

)
|dγ̃c(L)| =

∫

Graffc
µp(L ∩D)|dγ̃c(L)|.

To complete Step 1 in our strategy it suffices to prove that there exists a constant ξ,
depending only on m and c such that

ℓ∗|dλ| = ξ|dµc|,
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where the curvature density is described in Definition 9.3.13.
Set h := (m− c). The points in I(M) are pairs (x,L), where x ∈M , and L is an affine

plane of dimension h + 1. Suppose (x0, L0) ∈ I∗(M). Then we can parametrize a small
open neighborhood of (x0, L0) in I∗(M) by a family

(x,e0(S),e1(S), . . . ,eh(S),eh+1(S), . . . ,em(S)),

where x runs in a small neighborhood of x0 ∈ M , S runs in a small neighborhood U0 of
[L0] in Grc so that the following hold for every S.

• The collection

{e0(S),e1(S), . . . ,eh(S),eh+1(S), . . . ,em(S)}
is an orthonormal frame of Rn.

• The collection {e0,e1, . . . ,eh} is a basis of S.

• The collection span {e1, . . . ,eh} is a basis of Tx0M ∩ S.

• The above condition imply that e0 is a normal vector to the boundary of the domain
D ∩ L ⊂ L. We require that e0 is the outer normal.

A neighborhood of (x0, L0) in I is parametrized by the family

(
~r,e0(S),e1(S), . . . ,eh(S),eh+1(S), . . . ,em(S)

)
,

where ~r runs in a neighborhood of x0 in the ambient space V .

We denote by SD, the co-oriented second fundamental form of D, by SL the co-oriented
second fundamental form of DL ⊂ L, and by |dVL∩M | the metric volume density on L∩M .
Then, if we set k = dimL− p = m− c− p, we deduce

|dµLp | =
1

σk
trk(−SL)|dVL∩M |.

In the sequel we will use the following conventions.

• i, j, k denote indices running in the set {0, . . . , h}.

• α, β, γ denote indices running in the set {h+ 1, . . . ,m}.

• A,B,C denote indices running in the set {0, 1, . . . ,m}.

We denote by (θA) the dual coframe of (eA), and set

θAB := eA • (D eB).

Then, the volume density of the natural metric on Grc is

|dγc| =
∣∣∣
∧

α,i

θαi

∣∣∣.
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Then
|dγ̃c| =

∣∣∣
∧

α

D ~r • eα
∣∣∣× |dγc| =

∣∣∣
∧

α

θα
∣∣∣× |dγc|,

and

|dλ| = |dµLp | × |dγ̃c| =
1

σk
det(−SL∩M )|dVL∩M | ×

∣∣∣
∧

α

θα
∣∣∣× |dγc|. (9.3.24)

The fiber of ℓ : I(M)→M over x0 is described by

Gx0 :=
{
(~r,eA(S)) ∈ I(M), ~r = x0

}
.

We set
G∗x0 := Gx0 ∩ I∗(M).

G∗x0(M) can be identified with the space of linear subspaces S of codimension c such that
Tx0M + S = V , i.e., the affine subspace x0 + S intersects M transversally at x0.

Denote by n a smooth unit normal vector field defined in a neighborhood of x0 in M ,
i.e.,

n(x) ⊥ TxM, |n(x)| = 1.

Lemma 9.3.21. Suppose x0 + S intersects M transversally at x0. We set eA := eA(S).
Then at the point x0 ∈M we have

|(n • e0)| · |dVM | = |θ1 ∧ · · · ∧ θm|,

i.e., for any X1, . . . ,Xm ∈ Tx0M we have

|(n • e0)| · |dVM |(X1, . . . ,Xm) = |θ1 ∧ · · · ∧ θm|(X1, . . . ,Xm).

Proof. It suffices to verify this for one basis X1, . . . ,Xm of Tx0M which we can choose to
consists of the orthogonal projections f1, . . . ,fm of e1, . . . ,em. These projections form a
basis since S intersects Tx0M transversally.

Observe that
f i = ei, ∀1 ≤ i ≤ h, fα = eα − (eα • n)n.

Then
|dVM |(f1, . . . ,fm)

2 = det(fA • fB)1≤A,B≤m
We observe that

f i • f j = δij , f i • fα = 0, ∀1 ≤ i, j ≤ 2h < α

fα • fβ = δαβ − nαnβ, nα := n • eα.
We deduce

|dVM |(f1, . . . ,fm)
2 = det(1−A),

where A denotes the c× c symmetric matrix with entries nαnβ, h+1 ≤ α, β ≤ m = h+ c.
If we denote by ~u the vector

~u =



nh+1
...

nh+c


 ∈ Rc,
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which we also regard as a c× 1 matrix, then we deduce that A = ~u~u†.
This matrix has a c− 1 dimensional kernel corresponding to vectors orthogonal to ~u.

The vector ~u itself is an eigenvector of A, and the corresponding eigenvalue λ is obtained
from the equality

λ~u = |~u|2~u =⇒ λ = |~u|2 =
∑

α

n2α = |n|2 − |n • e0|2 = 1− |n • e0|2.

We conclude that

det(1−A) = |n • e0|2 =⇒ |dVM |(f1, . . . ,fm) = |n • e0|.

On the other hand,

|θ1 ∧ · · · ∧ θm|(f1, . . . ,fm) = |det(eA • fB)1≤A,B≤m|.

We have again

ei • f j = δij , ei • fα = 0, ∀1 ≤ i, j ≤ h < α,

eα • fβ = δαβ − nαnβ,
so that

|θ1 ∧ · · · ∧ θm|(f1, . . . ,fm) = |n • e0|2.
The lemma is now proved. ⊓⊔

Lemma 9.3.22 (Euler-Meusnier). Suppose L ∈ Graff c intersects M transversally, and
x0 ∈ L ∩M . If n is a unit vector perpendicular to Tx0M , then

SL = (n • e0)SD|Tx0∩[L],

that is,

SL(ei,ej) = (n • e0)SD(ei,ej), ∀1 ≤ i, j ≤ 2h.

Proof. We have

SL(ei,ej) = e0 • (Dei ej).

Let us now observe that the vector (Dei ej) is parallel with the plane L because the vectors
ei and ej lie in this plane. Thus, Dei ej decomposes into two components, one component
parallel to e0, and another component, (Deeiej)

τ , tangent to L ∩M . Hence

Dei ej = SL(ei,ej)e0 +

h∑

k=1

Skijek.

Taking the inner product with n we deduce

SD(ei,ej) = (Dei ej) • n = SL(ei,ej)(e0 • n). ⊓⊔
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From the above lemma we deduce

trk(−SL|x0) = |n • e0|k trk(−SD|Tx0M∩[L]),

for any (x0, L) ∈ I∗(M). In a neighborhood of (x0, L0) ∈ I∗(M) we have

|dλ|(x,L) = 1

σk
trk(−SL)|dVL∩M | ×

∣∣∣
∧

α

θα
∣∣∣× |dγc|

=
1

σk
|n • e0|k

(
trk(−SD|TxM∩[L])

)∣∣∣
m∧

A=1

θA
∣∣∣× |dγc|

(use Lemma 9.3.21)

=
1

σk
|n • e0|k+1

(
trk(−SD|TxM∩[L])

)
|dVM | × |dγc|.

This proves that along the fiber G∗x0 we have

|dλ|/|dVM | =
1

σk
|n • e0|k+1

(
trk(−SD|Tx0M∩[L])

)
|dγc|([L]).

If we denote by θ([L], Tx0M) the angle between [L] and the hyperplane Tx0M we deduce

|dλ|/|dVM | =
1

σk
· | cos θ([L], Tx0M)|k+1

(
trk(−SD|Tx0M∩[L])

)
|dγc|([L]).

The map G∗x0 ∋ (x0, L) 7−→ [L] ∈ Grc identifies G∗x0 with an open subset of Grc whose
complement has measure zero. We now have the following result.

Lemma 9.3.23. Suppose that V is an Euclidean space, dimV = m + 1, H ⊂ V is a
hyperplane through the origin, and B : H ×H → R a symmetric bilinear map. Denote by
O(H) the subgroup of orthogonal transformations of V which map H to itself and suppose
that

f : Grc → R

is an O(H)-invariant function. Define

GrcH :=
{
S ∈Grc; S intersects H trasversally

}
.

Then, for every 0 ≤ k ≤ m− c, there exists a constant ξ = ξm,c,k, depending only on m,
c and k, such that

Ik(f,B) :=

∫

GrcH

f(S) trk(B|H∩S)|dγc|(S) = ξm,c,k trk(B)

∫

Grc
f |dγc|(S).
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Proof. Observe that, for fixed f , the map B 7→ Ik(f,B) is an O(H)-invariant homogeneous
polynomial of degree k in the entries of B. We can therefore express it as a polynomial

Ik(f,B) = Pf
(
tr1(B), . . . , trk(B)

)

= ξf trk(B) +Qf
(
tr1(B), . . . , trk−1(B)

)
.

Let us prove that Qf ≡ 0. To do this, we apply the above formula to a symmetric bilinear
form B such that

dimkerB > m− k.
Thus, at least m− k + 1 of the m eigenvalues of B vanish, so that trk(B) = 0. For such
forms we have

Ik(f,B) = Q
(
tr1(B), . . . , trk−1(B)

)
.

On the other hand, for almost all S ∈ GrcH we have

dimS ∩ kerB > m− c− k.

The restriction of B to S ∩ H has m − c eigenvalues, and from the above inequality we
deduce that at least m− c− k of them are trivial. Hence

Ik(f,B) = 0, ∀B, dimkerB > m− k =⇒ Qf = 0.

Now choose B to be the bilinear form corresponding to the inner product on H. Then

trk(B) =

(
m

k

)
and trk(B|H∩S) =

(
m− c
k

)
, ∀S ∈ GrcH ,

and we conclude that (
m− c
k

)∫

Grc
f |dγc|(S) = ξf

(
m

k

)
. ⊓⊔

Now apply the above lemma in the special case

H = Tx0M, B = −SD, f(S) =
1

σk
| cos θ(S,H)|k+1

to conclude that
ℓ∗|dλ| = ξ trk(−SD)|dVM | = ξ|dµp+c|

so that

ξµp+c(D) =

∫

M
ℓ∗|dλ| =

∫

I∗(M)
|dλ|

=

∫

Graffc(M)
r∗|dλ| =

∫

Graffc(M)
µp(L ∩D)|dγ̃c|(L).

Thus, rescaling |dγ̃c| to |dν̃c|, we deduce that there exists a constant ξ depending only on
m and c such that

ξµp+c(D) =

∫

Graffc(M)
µp(L ∩D)|dν̃c|(L).
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Step 2. To determine the constant ξ in the above equality we apply it in the special case
D = Dm+1. Using (9.3.19) we deduce

ξµp+c(D
m+1) = ξωp+c

[
m+ 1

p+ c

]
= ξ

ωm+1

ωm+1−c−p

(
m+ 1

p+ c

)
.

Now observe that for L ∈ Graff c we set r = r(L) = dist (L, 0). Then L ∩ Dm+1 is empty
if r > 1, and it is a disk of dimension (m+ 1− c) = dimL and radius (1− r2)1/2 if r < 1.
We conclude that

µp(L ∩ Dm+1) = µp(D
m+1−c)×

{
(1− r2)p/2 r < 1

0 p > 1.

We set

µm,c,p := µp(D
m+1−c) = ωp

[
m+ 1− c

p

]
=

ωm+1−c
ωm+1−c−p

(
m+ 1− c

p

)
.

Using Theorem 9.1.14 we deduce

∫

Graffc
µp(L ∩ Dm+1)|dν̃c|(L)

=

∫

Grc

(∫

[L]⊥
µp
(
Dm+1 ∩ (x+ [L])

)
|dV[L]⊥ |(x)

)
|dνc|([L])

= µm,c,p

∫

Grc

(∫

x∈[L]⊥, |x|<1
(1− |x|2)p/2|dV[L]⊥ |(x)

)

︸ ︷︷ ︸
=:Ic,p

|dνc|([L])

= µm,c,pIc,p

∫

Grc
|dνc(S)|

(9.3.22)
= µm,c,pIc,p

[
m+ 1

c

]
.

Hence

ξ
ωm+1

ωm+1−c−p

(
m+ 1

p+ c

)
=

ωm+1−c
ωm+1−c−p

(
m+ 1− c

p

)
Ic,p

[
m+ 1

c

]
.

Using spherical coordinates on Rc we deduce

Ic,p =

∫

Rc

(1− |x|2)p/2dVRc = σc−1

∫ 1

0
rc−1(1− r2)p/2dr

s=r2
=

σc−1
2

∫ 1

0
s

c−2
2 (1− s)p/2ds

(9.1.6)
=

σc−1
2

B
( c
2
,
p

2
+ 1
)

(9.1.7)
=

σc−1
2

Γ( c2)Γ(1 +
p
2 )

Γ(1 + c
2 +

p
2)

(9.1.8)
= Γ(1/2)c

Γ(1 + p
2)

Γ(1 + c
2 +

p
2)

=
ωp+c

ωp
.
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Hence

ξωm+1

(
m+ 1

p+ c

)
=

ωm+1−cωp+c

ωp

[
m+ 1

c

](
m+ 1− c

p

)

=
ωm+1ωp+c

ωpωc

(
m+ 1

c

)(
m+ 1− c

p

)
.

We deduce

ξ =
ωp+c

ωpωc

(m+1
c

)
(
m+1
p+c

)(
m+1−c

p

) =
ωp+c

ωpωc

(
p+ c

p

)
=

[
p+ c

p

]
.

⊓⊔

We now describe a simple situation when the function Graff c ∋ L 7→ µ0(L ∩M) is
integrable.

Proposition 9.3.24. If the bounded domain D ⊂ Rn with smooth boundary is tame, then
the function

Graff c ∋ L 7→ χ(L ∩D) = µ0(L ∩D)

is bounded and has compact support. In particular, it is integrable and

µc(D) =

∫

Graffc
χ(L ∩D) |dν̃|(L).

Proof. We know that there exists a tame structure S such that D ∈ Sn. In particular,
M = ∂D ∈ Sn. Since the Grassmannian Graff c is semialgebraic, we deduce that Graff c

is also S-definable. Hence, the incidence set

I =
{
((x,L) ∈M ×Graff c; x ∈ L

}

is also S-definable, and so is the map

π : I→ Graff c, (x,L) 7→ L.

The fiber of π over L is the intersection L∩M . From the definability of Euler characteristic
we deduce that the map

Graff c ∋ L 7→ χ(L ∩M) ∈ Z

is definable. Its range is a definable subset of Z, i.e., a finite set. To see that it has
compact support it suffices to observe that since M is compact, an affine plane which is
too far from the origin cannot intersect M . ⊓⊔

Definition 9.3.25. For any compact tame subset S ⊂ Rn, and for every integer 0 ≤ p ≤ n
we define

µ̂p(S) :=

∫

Graffp(Rn)
χ(L ∩D) |dν̃|(L). ⊓⊔
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The proof of Proposition 9.3.24 shows that the integral in the above definition is well
defined and finite. This proposition also shows that

µ̂p(D) = µp(D)

if D ⊂ Rn is a tame domain with smooth boundary.
The above definition has a “problem”: a priori, the quantity µ̂p(S) depends on the

dimension of the ambient space Rn ⊃ S. The next exercise asks the reader to prove that
this is not the case.

Exercise 9.3.26. Fix tame structure S, and suppose S ⊂ Rn is a compact, S-definable
set. Let N > n and suppose i : Rn → RN is an affine, isometric embedding.
(a) Prove that

∫

Graffp(Rn)
χ(L ∩ S) |dν̃|(L) =

∫

Graffp(RN )
χ(U ∩ i(S) ) |dν̃ |(U),

so that µ̂p(S) is independent of the dimension of the ambient space.
(b) Prove that for every real number λ we have

µ̂p(λS) = |λ|pµ̂p(S).
(c) Suppose S1, S2 ⊂ Rn are two compact S-definable sets. Prove that

µ̂p(S1 ∪ S2) = µ̂p(S1) + µ̂2(S2)− µ̂p(S1 ∩ S2).
(d) Suppose T ⊂ Rn is a triangle, i.e., the convex hull of three non collinear points.
Compute µ̂p(T ), ∀p ≥ 0. ⊓⊔

Proposition 9.3.27. Fix a tame structure S. Suppose K ⊂ Rn is a compact, S-definable
set, Λ is an arbitrary S-definable set, and A ⊂ K × Λ is a closed S-definable subset of
K × Λ. For every λ ∈ Λ we set

Aλ :=
{
a ∈ K; (a, λ) ∈ A

}
.

Then the function Λ ∋ λ 7−→ fp(λ) := µ̂p(Aλ) ∈ R is bounded and Borel measurable.

Proof. Denote byGraffp(K) the set of affine planes of codimension p in Rn which intersect
K. This is a compact, definable subset of Graffp. Define

F : Λ×Graffp(K)→ Z, (λ,L) 7→ χ(Aλ ∩ L) ∈ Z.

Since the family
{
Aλ ∩ L

}
λ,L

is definable, we deduce that the function F is definable.

Hence, its range must be a finite (!?!) subset of Z. In particular, this also shows that F
is measurable and bounded.

Now observe that

fp(λ) =

∫

Graffp(K)
F (λ,L) |dν̃ |(L).

The measurability follows from the classical Fubini theorem. The boundedness is obvious.
⊓⊔

The above result has the following immediate corollary.
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Corollary 9.3.28. Suppose the bounded domain D ⊂ Rn is tame and has smooth bound-
ary. Denote by Graff c

D the set of affine planes of codimension c which intersect ∂D
transversally. Then for any integer, 0 ≤ p ≤ n the function

Graff c
D ∋ L 7→ µp(L ∩D)

is bounded, measurable, and has compact support. In particular, it is integrable, and
[
p+ c

c

]
µp+c(D) =

∫

Graffc
D

µp(L ∩D) |dν̃(L)| =
∫

Graffc
µ̂p(L ∩D)|dν̃|(L).

Proof. The set Graff c
D is a tame open and dense subset of Graff c so that its complement

has measure zero. Moreover

µp(L ∩D) = µ̂p(L ∩D), ∀L ∈Graff c
D,

while, by Proposition 9.3.27, the function L 7→ µ̂p(L ∩ D) is bounded and measurable.
This function has compact support because the planes too far from the origin cannot
intersect D. ⊓⊔

9.3.7 Crofton formulæ for submanifolds of an Euclidean space

In this last subsection we fix a tame structure S, and we assume that M is a closed,
compact, smooth, S-definable submanifold of dimension m of the Euclidean space Rn. We
continue to denote by Graff c the Grassmannian of affine planes in Rn of codimension c.
We want to prove the following result.

Theorem 9.3.29 (Crofton Formula. Part 1.). Denote by Graffc(M) the subset of Graff c

consisting of affine planes which intersect M transversally. Then

µc(M) =

∫

Graffc(M)
µ0(L ∩M)|dν̃|(L) =

∫

Graffc
µ0(L ∩M)|dν̃(L)|,

that is,
µ̂c(M) = µc(M).

Proof. We can assume that k = codimM < 1. For every x ∈ Rn set d(x) := dist (x,M).
Fix R > 0 such that for any x such that d(x) ≤ R there exists a unique point x̄ ∈M such
that

|x− x̄| = d(x).

For every r < R consider the tube of radius r, around M ,

Dr := Tr(M),

and set Mr = ∂Tr(M). For uniformity, we set D0 =M . From (9.3.15) we deduce

µc(M) = lim
r→0

µc(Dr).
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The tube Dr is a tame domain with smooth boundary, and Theorem 9.3.20 implies

µc(Dr) =

∫

Graffc
χ(L ∩Dr)|dν|(L).

Thus it suffices to show that

lim
r→0

∫

Graffc
χ(L ∩Dr)|dν|(L) =

∫

Graffc
χ(L ∩M).

For r ∈ [0, R) we define

fr : Graff c → R, fr(L) = χ(L ∩Dr).

Lemma 9.3.30. There exists C > 0 such that

|fr(L)| ≤ C, ∀L ∈Graff c, r ∈ [0, R).

Proof. This follows from Proposition 9.3.27. ⊓⊔

Let
Graff c(Mr) :=

{
L ⊂ Graff c; L intersects Mr transversally

}
.

Observe that Graff c(M) is an open subset of Graff c with negligible complement. For
every r > 0 we set

Xr =
{
L ∈ Graff c(M); L ∈Graff c(Ms); χ(L ∩Ds) = χ(L ∩M), ∀s ∈ (0, r]

}

Observe that
Graff c(M, r1) ⊂ Graff c(M, r0), ∀r1 ≥ r0.

To proceed further we need the following technical result, whose proof will presented at
the end of this subsection.

Lemma 9.3.31. The sets Xr are measurable in Graff c and

⋃

r>0

Xr = Graff c(M).

Set
Graff c

∗ :=
{
L ∈ Graff c; L ∩DR 6= ∅

}
.

The region Graff c
∗(M) is a relatively compact subset of Graff c, and thus it has finite

measure. Define
X∗r := Xr ∩Graff c

∗, Y∗r := Graff c
∗ \X∗r .

For 0 < r < R we have

µc(Dr) =

∫

Graffc
fr(L)|dν̃c|(L) =

∫

Grc∗

fr(L)|dν̃c|(L)
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=

∫

X∗
r

fr(L)|dν̃c|+
∫

Y∗
r

fr(L)|dν̃c| = 2

∫

X∗
r

f0(L)|dν̃c|+
∫

Y∗
r

fr(L)|dν̃c|

Hence ∣∣∣∣∣µc(Mr)−
∫

X∗
r

f0(L)|dν̃c|
∣∣∣∣∣ ≤

∫

Y∗
r

|fr(L)||dν̃c| ≤ Cvol (Y∗r).

We now let r → 0, and since vol (Y∗r)→ 0 we conclude that

µc(M) = lim
r→0

µc(Dr) = lim
r→0

∫

X∗
r

f0(L)|dν̃c| =
∫

Graffc
f0(L)|dν̃c|.

This concludes the proof of Theorem 9.3.29. ⊓⊔

Proof of Lemma 9.3.31. We will prove that for any given L0 ∈ Graff c(M) there exists
and ρ = ρ(L0) such that

L0 ∈ Xρ.

The measurability follows from the fact that Xr is described using countably many boolean
operations on measurable sets.

Consider the normal bundle

N := (TM)⊥ →M.

For x in M we denote by Nx the fiber of N over x.
Let y ∈ L0 ∩M . We denote by N0

y the orthogonal complement in L0 of Ty(L0 ∩M),

N0
y = L0 ∩

(
Ty(L0 ∩M)

)⊥
.

We think of N0
y as an affine subspace of Rn containing y. Because L0 intersects M

transversally we have
dimNy = dimN0

y = k = codimM.

For every r > 0 we set N0
y (r) := N0

y ∩Dr; see Figure 9.2.
The collection (N0

y )y∈L0∩M forms a vector subbundle N0 → L0 ∩M of (TRn)|L0∩M .
The exponential map on TRn restricts to a map

EL0∩M : N0 → L0.

Denote by δ the pullback to N0 of the distance function x 7→ d(x) = dist (x,M),

δL0 = d ◦ EL0∩M : N0 → R.

For every y ∈ L0 ∩M , the restriction to N0
y of the Hessian of d at y is positive definite.

Hence, there exists ρ = ρ(L0) > 0 such that the map

EL0∩M :
{
x ∈ N0; δ(x) ≤ ρ

}
→ L0 ∩Dρ

is a diffeomorphism. We deduce that we have a natural projection

π : L0 ∩Dρ → L0 ∩M,
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L0

M

y

N (r)y
0

rD

Figure 9.2: Slicing the tube Dr around the submanifold M by a plane L0.

which is continuous and defines a locally trivial fibration with fibers N0
y (ρ).

For every y ∈ L0 ∩M , the fiber N0
y (ρ) is homeomorphic to a disk of dimension k.

Thus, L0 ∩Dρ is homeomorphic to a tube in L0 around L0 ∩M ⊂ L0, so that

χ(L0 ∩Dρ) = χ(L0 ∩M).

The downward gradient flow of the restriction to L0 ∩ Dρ of the distance function d(x)
produces diffeomorphisms of manifolds with boundary

L0 ∩Dρ
∼= L0 ∩Dr, ∀r ∈ (0, ρ).

Hence

χ(L0 ∩Dr) = χ(L0 ∩Dρ) = χ(L0 ∩M), ∀r ∈ (0, ρ].

Since the restriction to L0 ∩Dρ of the distance function d(x) has no critical points other
than the minima y ∈ L0 ∩M , we deduce that L0 is transversal to the level sets

{ d(x) = r } =Mr, ∀r ∈ (0, ρ].

This proves L0 ∈ Xρ. ⊓⊔

Corollary 9.3.32. Suppose C ⊂ R2 is a smooth, closed, compact tame curve. For every
line L ∈ Gr1(R

2) = Gr1(R2) we set

nC(L) := #(L ∩C).

Then the function L 7→ nC(L) belongs to L∞(Gr1(R
2), |dν̃|2,1), has compact support and

length (C) =

∫

Gr1(R2)
nC(L)|dν̃2,1|(L). ⊓⊔
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Remark 9.3.33. Theorem 9.3.29 offers a strange interpretation to the Hilbert-Einstein
functional. SupposeM is a tame, compact, orientable submanifold of the Euclidean space
Rn. Let m = dimM , and denote by h the induced metric on M . Then

µm−2(M,h) =
1

2π
EM (h),

where EM (h) is the Hilbert-Einstein functional

EM (h) =

∫

M
s(h)dVM (h).

Denote by Graffm−2(M) = Graff(M) the set of codimension (m− 2) affine planes in Rn

which intersect M along a nonempty subset, and by Graffm−2
∗ (M) ⊂ Graffm−2(M) the

subset consisting of those planes intersectingM transversally. For every L ∈Graffm−2
∗ (M),

the intersection L ∩M is a, possible disconnected, smooth, orientable Riemann surface.
By Sard’s theorem the complement of Graffm−2

∗ (M) in Graffm−2(M) has zero measure.
For every R > 0 we denote by Graffm−2(R) the set of codimension (m − 2) planes

in Rn which intersect the disk DnR of radius R and centered at 0. Note that since M is
compact, there exists R0 > 0 such that

Graffm−2(M) ⊂ Graffm−2(R), ∀R > R0.

We set

c(R) =

∫

Graffm−2(R)
|dν̃(L)|, c(M) :=

∫

Graffm−2(M)
|dν̃(L)|.

Using Crofton’s formula in Proposition 9.3.24 and the simple observation that

χ(L ∩ DnR) = 1, ∀L ∈ Graffm−2(R),

we deduce that

c(R) = µm−2(D
n
R) =

[
n

m− 2

]
ωm−2R

m−2.

Observe now that 1
c(R) |dν̃(L)| is a probability measure onGraffm−2(R), and we can regard

the correspondence
Graffm−2(R) ∋ L 7−→ χ(L ∩M) ∈ Z

as a random variable ξR whose expectation is

〈ξR〉 :=
1

c(R)
µm−2(M) =

1

2πc(R)
EM (h).

We deduce

EM (h) = 2π

[
n

m− 2

]
ωm−2R

m−2〈ξR〉 = 2π

[
n

m− 2

]
ωm−2 lim

R→∞
Rm−2〈ξR〉. ⊓⊔

Theorem 9.3.34 (Crofton Formula. Part 2.). Denote by Graffc(M) the subset of Graff c

consisting of affine planes which intersect M transversally. Then, for every 0 ≤ p ≤ m− c
we have[

p+ c

p

]
µp+c(M) =

∫

Graffc(M)
µp(L ∩M)|dν̃|(L) =

∫

Graffc
µ̂p(L ∩M)|dν̃(L)|.
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Proof. We continue to use the same notations we used in the proof of Theorem 9.3.29.
From (9.3.15) we deduce

µp+c(M) = lim
r→0

µp+c(Dr).

The set Dr is a tame domain with smooth boundary, and Corollary 9.3.28 implies

[
p+ c

c

]
µp+c(Dr) =

∫

Graffc
µp(L ∩Dr)|dν̃|(L) =

∫

Graffc
µ̂p(L ∩Dr)|dν̃|(L).

Thus it suffices to show that

lim
r→0

∫

Graffc
µ̂p(L ∩Dr)|dν̃(L)| =

∫

Graffc
µ̂p(L ∩M)|dν̃(L)|.

For r ∈ [0, R) we define

gr : Graff c → R, gr(L) = µ̂p(L ∩Dr).

From Proposition 9.3.27 we deduce that

∃C > 0 : |gr(L)| ≤ C, ∀L ∈ Graff c, r ∈ [0, R). (9.3.25)

Lemma 9.3.35.

lim
rց0

gr(L) = g0(L),

for all L ∈ Graff c(M).

Proof. Let L ∈ Graff c(M) and set Sr := L ∩Dr. We have to prove that

lim
rց0

µ̂p(Sr) = µ̂p(S0).

Denote by Graffp(S0) the set of codimension p affine planes in Rn which intersect S0
transversally. The set Graffp(S0) is an open subset of Graffp, and its complement has
measure zero. Then,

gr(L) = µ̂(Sr) =

∫

Graffp
χ(U ∩ Sr)|dν̃p(U)| =

∫

Graffp(S0)
χ(U ∩ Sr)|dν̃p(U)|. (9.3.26)

From Proposition 9.3.27 we deduce that the function

Graffp×[0, R) ∋ (U, r) 7→ χ(U ∩ Sr) ∈ Z

is definable, and thus bounded.

Arguing exactly as in the proof of Lemma 9.3.31 we deduce that, for every U ∈
Graffp(S0), there exists ρ ∈ (0, R) such that, for every r ∈ (0, ρ), the set U ∩ Sr is
homotopy equivalent to U ∩ S0. Hence

lim
rց0

χ(U ∩ Sr) = χ(U ∩ S0), ∀U ∈Graffp(S0).
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If we let r go to zero in (9.3.26), we deduce from the dominated convergence theorem that

lim
rց0

gr(L) =

∫

Graffp
χ(U ∩ S0)|dν̃p(U)| = µ̂p(S0).

Using the fact that S0 is a smooth, compact tame manifold we deduce from Theorem
9.3.29 that

µ̂p(S0) = µp(S0) = g0(L). ⊓⊔
Using (9.3.25) and Lemma 9.3.35, we deduce from the dominated convergence theorem
that

lim
rց0

∫

Graffc
µ̂p(L ∩Dr)|dν̃(L)| =

∫

Graffc
µ̂p(L ∩M)|dν̃(L)|

=

∫

Graffc(M)
µp(L ∩M)|dν̃(L)|. ⊓⊔

Remark 9.3.36. (a) The tameness assumption in the Crofton formulaæ is not really
needed, and they are true in much more general situations; see [34], Sect. 2.10, 3.2.

We have chosen to work in this more restrictive context for two reasons. First, the
tameness assumption eliminates the need for sophisticated analytical arguments. Second,
we believe that geometers should become more familiar with tame context in which the
geometric intuition is not distracted by analytical caveats.

(b) The subject of integral geometry owes a great deal to the remarkable work of S.S.
Chern who was the first to have reformulated the main problems from a modern point of
view, and push our understanding of this subject to remarkable heights.

It was observed by Chern that the Crofton formulæ that we have proved in this section
are only special cases of the so called kinematic formulæ which explain how to recover
information about a submanifold of a homogeneous space such as Rn, by intersecting it
with a large family of simpler shapes. In the Euclidean space, these other simpler shapes
could be affine planes, spheres of a given radius, balls of a given radius.

For example, given a compact, m-dimensional submanifold M ⊂ Rn, and a radius R,
we can ask what is the value of the integral

∫

Rn

χ(M ∩BR(x) )|dx|,

where BR(x) denotes the ball BR(x) = { y ∈ Rn; |y − x| ≤ R }. One of the kinematic
formulæ states that

∫

Rn

χ(M ∩BR(x) ) =
n∑

i=0

cm,n,iµi(M)Rn−i,

where cm,n,i are universal constants, independent of M .
The above equality is strikingly similar to the tube formula. To see the origin of this

similarity note that BR(x) ∩M 6= ∅ ⇐⇒ x ∈ TR(M). If R is sufficiently small, the above
formula does indeed specialize to the tube formula, but the kinematic formula extends
beyond the range of applicability of the tube formula.

A detailed presentation of these ideas will send us too far, and instead of pursuing
further this line of thought, we recommend to the reader to open the classical, yet very
much alive monograph of L. Santaló [86], for a more in depth look at this subject. ⊓⊔



Chapter 10

Elliptic Equations on Manifolds

Almost all the objects in differential geometry are defined by expressions involving partial
derivatives. The curvature of a connection is the most eloquent example.

Many concrete geometric problems lead to studying such objects with specific prop-
erties. For example, we inquired whether on a given vector bundle there exist flat con-
nections. This situation can be dealt with topologically, using the Chern-Weil theory of
characteristic classes.

Very often, topological considerations alone are not sufficient, and one has look into
the microstructure of the problem. This is where analysis comes in, and more specifically,
one is led to the study of partial differential equations. Among them, the elliptic ones
play a crucial role in modern geometry.

This chapter is an introduction to this vast and dynamic subject which has numerous
penetrating applications in geometry and topology.

10.1 Partial differential operators: algebraic aspects

10.1.1 Basic notions

We first need to introduce the concept of partial differential operator (p.d.o. for brevity)
on a smooth manifold M . To understand the forthcoming formalism, it is best that we
begin with the simplest of the situations, M = RN .

Perhaps the best known partial differential operator is the Laplacian,

∆ : C∞(RN )→ C∞(RN ), ∆u := −
∑

i

∂i
2u,

where, as usual, ∂i := ∂xi . This is a scalar operator in the sense that it acts on scalar
valued functions. Note that our definition of the Laplacian differs from the usual one by
a sign. The Laplacian defined as above is sometimes called the geometers’ Laplacian.

Next in line is the exterior derivative

d : Ωk(RN )→ Ωk+1(RN ).

This is a vectorial operator in the sense it acts on vector valued functions. A degree k
form ω on RN can be viewed as a collection of

(
N
k

)
smooth functions or equivalently, as a

430
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smooth function ω : RN → R(
N
k ). Thus d can be viewed as an operator

d : C∞
(
RN ,R(

N
k )
)
→ C∞

(
RN ,R(

N
k+1)

)
.

It is convenient to think of C∞(RN ,Rν) as the space of smooth sections of the trivial
bundle Rν over RN .

For any smooth K = R,C-vector bundles E, F over a smooth manifold M we denote
by Op(E,F ) the space of K-linear operators

C∞(E)→ C∞(F ).

The space Op(E,E) is an associative K-algebra.
The spaces of smooth sections C∞(E) and C∞(F ) are more than just K-vector spaces.

They are modules over the ring of smooth functions C∞(M). The partial differential
operators are elements of Op which interact in a special way with the above C∞(M)-
module structures. First define

PDO0(E,F ) := Hom(E,F ).

Given T ∈ PDO0, u ∈ C∞(E), and f ∈ C∞(M), we have T (fu)−f(Tu) = 0 or, in terms
of commutators,

[T, f ]u = T (fu)− f(Tu) = 0. (10.1.1)

Each f ∈ C∞(M) defines a map

ad(f) : Op (E,F )→ Op (E,F ),

by
ad(f)T := T ◦ f − f ◦ T = [T, f ], ∀T ∈ Op(E,F ).

Above, f denotes the C∞(M)-module multiplication by f . We can rephrase the equality
(10.1.1) as

PDO0(E,F ) = {T ∈ Op (E,F ), ad(f)T = 0 ∀f ∈ C∞(M)} =: ker ad .

Define

PDO(m)(E,F ) := ker adm+1

=
{
T ∈ Op(E,F ); T ∈ ker ad(f0) ad(f1) · · · ad(fm), ∀fi ∈ C∞(M)

}
.

The elements of PDO(m) are called partial differential operators of order ≤ m. We set

PDO(E,F ) :=
⋃

m≥0
PDO(m)(E,F ).

Remark 10.1.1. Note that we could have defined PDO(m) inductively as

PDO(m) = {T ∈ Op ; [T, f ] ∈ PDO(m−1), ∀f ∈ C∞(M)}.

This point of view is especially useful in induction proofs. ⊓⊔
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Example 10.1.2. Denote by R the trivial line bundle over RN . The sections of R are
precisely the real functions on RN . We want to analyze PDO(1) = PDO(1)(R,R).

Let L ∈ PDO(1), u, f ∈ C∞(RN ). Then [L, f ]u = σ(f) · u, for some smooth function
σ(f) ∈ C∞(RN ). On the other hand, for any f, g ∈ C∞(RN )

σ(fg)u = [L, fg]u = [L, f ](gu) + f([L, g]u) = σ(f)g · u+ fσ(g) · u.

Hence σ(fg) = σ(f)g + fσ(g). In other words, the map f 7→ σ(f) is a derivation of
C∞(RN ), and consequently (see Exercise 3.1.9) there exists a smooth vector field X on
RN such that

σ(f) = X · f, ∀f ∈ C∞(RN ).
Let µ := L(1) ∈ C∞(RN ). Then, for all u ∈ C∞(RN ), we have

Lu = L(u · 1) = [L, u] · 1 + u · L(1) = X · u+ µ · u. ⊓⊔

Lemma 10.1.3. Any L ∈ PDO(m)(E,F ) is a local operator, i.e., ∀u ∈ C∞(E),

suppLu ⊂ suppu.

Proof. We argue by induction over m. For m = 0 the result is obvious. Let L ∈
PDO(m+1), and u ∈ C∞(E). For every f ∈ C∞(M) we have

L(fu) = [L, f ]u+ fLu.

Since [L, f ] ∈ PDO(m) we deduce by induction

suppL(fu) ⊂ suppu ∪ supp f, ∀f ∈ C∞(M).

For any open set O such that O ⊃ suppu we can find f ≡ 1 on suppu and f ≡ 0 outside
O so that fu ≡ u). This concludes the proof of the lemma. ⊓⊔

The above lemma shows that, in order to analyze the action of a p.d.o., one can work
in local coordinates. Thus, understanding the structure of an arbitrary p.d.o. boils down
to understanding the action of a p.d.o. in PDO(m)(Kp,Kq), where Kp, and Kq are trivial
K-vector bundles over RN . This is done in the exercises at the end of this subsection.

Proposition 10.1.4. Let E, F, G be smooth K-vector bundles over the same manifold
M . If P ∈ PDO(m)(F,G) and Q ∈ PDO(n)(E,F ) then P ◦Q ∈ PDO(m+n)(E,G).

Proof. We argue by induction over m+n. For m+n = 0 the result is obvious. In general,
if f ∈ C∞(M), then

[P ◦Q, f ] = [P, f ] ◦Q+ P ◦ [Q, f ].
By induction, the operators in the right-hand-side have orders≤ m+n−1. The proposition
is proved. ⊓⊔
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Corollary 10.1.5. The operator

L =
∑

|α|≤m
aα(x)∂

α : C∞(RN )→ C∞(RN ),

α = (α1, . . . , αN ) ∈ ZN≥0, |α| =
∑

i

αi, ∂α = ∂α1
1 · · · ∂αN

N ,

is a p.d.o. of order ≤ m.

Proof. According to the computation in Example 10.1.2, each partial derivative ∂i is a 1st
order p.d.o. According to the above proposition, multiple compositions of such operators
are again p.d.o.’s. ⊓⊔

Lemma 10.1.6. Let E,F → M be two smooth vector bundles over the smooth manifold
M . Then for any P ∈ PDO (E,F ), and any f, g ∈ C∞(M)

ad(f) · (ad(g)P ) = ad(g) · (ad(f)P ).

Proof.

ad(f) · (ad(g)P ) = [[P, g], f ] = [[P, f ], g] + [P, [f, g] = [[P, f ], g] = ad(g) · (ad(f)P ).

⊓⊔

From the above lemma we deduce that if P ∈ PDO(m) then, for any f1, . . . , fm ∈
C∞(M), the bundle morphism

ad(f1) ad(f2) · · · ad(fm)P

does not change if we permute the f ’s.

Proposition 10.1.7. Let P ∈ PDO(m)(E,F ), fi, gi ∈ C∞(M) (i = 1, . . . ,m) such that,
at a point x0 ∈M ,

dfi(x0) = dgi(x0) ∈ T ∗x0M, ∀i = 1, . . . ,m.

Then
{ad(f1) ad(f2) · · · ad(fm)P}|x0= {ad(g1) ad(g2) · · · ad(gm)P}|x0 .

In the proof we will use the following technical result which we leave to the reader as an
exercise.

Lemma 10.1.8. For each x0 ∈M consider the ideals of C∞(M)

mx0 =
{
f ∈ C∞(M); f(x0) = 0

}
,

Jx0 =
{
f ∈ C∞(M); f(x0) = 0, df(x0) = 0,

}

Then Jx0 = m2
x0, i.e., any function f which vanishes at x0 together with its derivatives

can be written as
f =

∑

j

gjhj gj , hj ∈ mx0 . ⊓⊔
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Exercise 10.1.9. Prove the above lemma. ⊓⊔

Proof. Let P ∈ PDO(m) and fi, gi ∈ C∞(M) such that

dfi(x0) = dgi(x0) ∀i = 1, . . . ,m.

Since ad(const) = 0, we may assume (eventually altering the f ’s and the g’s by additive
constants) that

fi(x0) = gi(x0) ∀i.
We will show that

{ ad(f1) ad(f2) · · · ad(fm)P }|x0= { ad(g1) ad(f2) · · · ad(fm)P }|x0 .
Iterating we get the desired conclusion.

Let φ = f1 − g1, and set Q := ad(f2) · · · ad(fm)P ∈ PDO(1). We have to show that

{ad(φ)Q}|x0= 0. (10.1.2)

Note that φ ∈ Jx0 so, according to the above lemma, we can write

φ =
∑

j

αjβj , αj , βj ∈ mx0 .

We have

{ad(φ)Q}|x0=
{∑

j

ad(αjβj)Q
}
|x0=

∑

j

{[Q,αj ]βj}|x0 +
∑

j

{αj [Q,βj ]}|x0= 0.

This proves the equality (10.1.2), and hence the proposition. ⊓⊔

The proposition we have just proved has an interesting consequence. Given P ∈
PDO(m)(E,F ), x0 ∈M , and fi ∈ C∞(M) (i = 1, . . . ,m), the linear map

{ 1

m!
ad(f1) · · · ad(fm)P}|x0 : Ex0 → Fx0

depends only on the quantities ξi := dfi(x0) ∈ T ∗x0M . Hence, for any ξi ∈ T ∗x0M (i =
1, . . . ,m), the above expression unambiguously induces a linear map

σ(P )(ξ1, . . . , ξm) : Ex0 → Fx0 ,

that is symmetric in the variables ξi. Using the polarization trick of Chapter 8, we see
that this map is uniquely determined by the polynomial

σ(P )(ξ) := σm(P )(ξ) = σ(P )(ξ, . . . , ξ︸ ︷︷ ︸
m

).

If we denote by π : T ∗M →M the natural projection then, for each P ∈ PDO(m)(E,F ),
we have a well defined map

σm(P )(·) ∈ Hom (π∗E, π∗F ),

where π∗E and π∗F denote the pullbacks of E and F to T ∗M via π. Along the fibers
of T ∗M the map ξ 7→ σm(P )(ξ) looks like a degree m homogeneous “polynomial” with
coefficients in Hom (Ex0 , Fx0).



10.1. PARTIAL DIFFERENTIAL OPERATORS: ALGEBRAIC ASPECTS 435

Proposition 10.1.10. Let P ∈ PDO(m)(E,F ) and Q ∈ PDO(n)(F,G). Then

σm+n(Q ◦ P ) = σn(Q) ◦ σm(P ). ⊓⊔

Exercise 10.1.11. Prove the above proposition. ⊓⊔

Definition 10.1.12. A p.d.o. P ∈ PDO(m) is said to have order m if σm(P ) 6≡ 0. In
this case σm(P ) is called the (principal) symbol of P . The set of p.d.o.’s of order m will
be denoted by PDOm. ⊓⊔

Definition 10.1.13. The operator P ∈ PDOm(E,F ) is said to be elliptic if, for any
x ∈M , and any ξ ∈ T ∗xM \ {0}, the map

σm(P )(ξ) : Ex → Fx

is a linear isomorphism. ⊓⊔

The following exercises provide a complete explicit description of the p.d.o.’s on RN .

Exercise 10.1.14. Consider the scalar p.d.o. on RN described in Corollary 10.1.5

L =
∑

|α|≤m
aα(x)∂

α.

Show that
σm(L)(ξ) =

∑

|α|=m
aα(x)ξ

α =
∑

|α|=m
aα(x)ξ

α1
1 · · · ξαN

N . ⊓⊔

Exercise 10.1.15. Let L : C∞(RN ) → C∞(RN ) be a p.d.o. of order m. Its principal
symbol has the form

σm(L)(ξ) =
∑

|α|=m
aα(x)ξ

α.

Show that L−∑|α|=m aα(x)∂α is a p.d.o. of order ≤ m− 1, and conclude that the only

scalar p.d.o.-s on RN are those indicated in Corollary 10.1.5. ⊓⊔

Exercise 10.1.16. Let L ∈ PDO(m)(E,F ) and u ∈ C∞(E). Show the operator

C∞(M) ∋ f 7−→ [L, f ]u ∈ C∞(F )

belongs to PDO(m)(RM , F ). ⊓⊔

Exercise 10.1.17. Let Kp and Kq denote the trivial K-vector bundles over RN of rank p
and respectively q. Show that any L ∈ PDO(m)(Kp,Kq) has the form

L =
∑

|α|≤m
Aα(x)∂

α,

where Aα ∈ C∞(RN ,Hom (Kp,Kq)) for any α .
Hint: Use the previous exercise to reduce the problem to the case p = 1. ⊓⊔
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10.1.2 Examples

At a first glance, the notions introduced so far may look too difficult to “swallow”. To
help the reader get a friendlier feeling towards them, we included in this subsection a
couple of classical examples which hopefully will ease this process. More specifically, we
will compute the principal symbols of some p.d.o.’s that we have been extensively using
in this book.

In the sequel, we will use the notation “ f · ” to denote the operation of multiplication
by the smooth scalar function f .

Example 10.1.18. (The Euclidean Laplacian). This is the second order p.d.o.,

∆ : C∞(RN )→ C∞(RN ), ∆ = −
∑

i

∂i
2, ∂i = ∂xi .

Let f ∈ C∞(RN ). Then

ad(f)(∆) = −
∑

i

ad(f) (∂i)
2 = −

∑

i

{ad(f)(∂i) ◦ ∂i + ∂i ◦ ad(f)(∂i)}

= −
∑

i

{fxi · ∂i + ∂i(fxi ·)} = −
∑

i

{fxi · ∂i + fxixi ·+fxi · ∂i}

= (∆f) · −2
∑

i

fxi · ∂i.

Hence

ad(f)2(∆) = ad(f)(∆f) · −2
∑

i

fxi · ad(f) (∂i) = −2
∑

i

(fxi)
2· = −2|df |2 · .

If we set ξ := df in the above equality, we deduce

σ2(∆)(ξ) = −|ξ|2 · .

In particular, this shows that the Laplacian ∆ is an elliptic operator. ⊓⊔

Example 10.1.19. (Covariant derivatives). Consider a vector bundle E → M over
the smooth manifold M , and a connection ∇ on E. We can view ∇ as a p.d.o.

∇ : C∞(E)→ C∞(T ∗M ⊗ E).

Its symbol can be read from ad(f)∇, f ∈ C∞(M). For any u ∈ C∞(E)

(ad(f)∇)u = ∇(fu)− f(∇u) = df ⊗ u.

By setting ξ = df we deduce σ1(∇)(ξ) = ξ⊗, i.e., the symbol is the tensor multiplication
by ξ. ⊓⊔

Example 10.1.20. (The exterior derivative.) Let M be a smooth manifold. The
exterior derivative

d : Ω•(M)→ Ω•+1(M)
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is a first order p.d.o. To compute its symbol, consider ω ∈ Ωk(M), and f ∈ C∞(M).
Then (

ad(f)d
)
ω = d(fω)− fdω = df ∧ ω.

If we set ξ = df , we deduce σ1(d) = e(ξ) = the left exterior multiplication by ξ. ⊓⊔

Example 10.1.21. Consider an oriented, n-dimensional Riemann manifold (M,g). As in
Chapter 4, we can produce an operator

δ = ∗d∗ : Ω•(M)→ Ω•−1(M),

where ∗ is the Hodge ∗-operator

∗ : Ω•(M)→ Ωn−•(M).

The operator δ is a first order p.d.o., and moreover

σ1(δ) = ∗σ1(d)∗ = ∗e(ξ) ∗ .

This description can be further simplified.
Fix ξ ∈ T ∗xM , and denote by ξ∗ ∈ TxM its metric dual. For simplicity we assume

|ξ| = |ξ∗| = 1. Include ξ in an oriented orthonormal basis (ξ1, . . . , ξn) of T ∗xM , ξ1 = ξ,
and denote by ξi the dual basis of TxM .

Consider a monomial ω = dξI ∈ ΛkT ∗xM , where I = (i1, . . . , ik) denotes as usual an
ordered multi-index. Note that if 1 6∈ I, then

σ1(ξ
1)ω = 0. (10.1.3)

If 1 ∈ I, e.g., I = (1, . . . , k), then

∗e(ξ)(∗ω) = ∗(ξ1 ∧ ξk+1 ∧ · · · ∧ ξn) = (−1)(n−k)(k−1)ξ2 ∧ · · · ∧ ξk

= −(−1)νn,k i(ξ∗)ω, (10.1.4)

where νn,k = nk+n+1 is the exponent introduced in Subsection 4.1.5 while i(ξ∗) denotes
the interior derivative along ξ∗. Putting together (10.1.3) and (10.1.4) we deduce

σ1(δ)(ξ) = −(−1)νn,k i(ξ∗). (10.1.5)

⊓⊔

Example 10.1.22. (The Hodge-DeRham operator). Let (M,g) be as in the above
example. The Hodge-DeRham operator is

d+ d∗ : Ω•(M)→ Ω•(M),

where d∗ = (−1)νn,kδ. Hence d+ d∗ is a first order p.d.o., and moreover,

σ(d+ d∗)(ξ) = σ(d)(ξ) + σ(d∗)(ξ) = e(ξ)− i(ξ∗).
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The Hodge Laplacian is the operator (d+ d∗)2. We call it Laplacian since

σ
(
(d+ d∗)2

)
(ξ) =

{
σ(d+ d∗)(ξ)

}2
=
(
e(ξ)− i(ξ∗)

)2
,

while Exercise 2.2.55 shows

(
e(ξ)− i(ξ∗)

)2
= −

(
e(ξ)i(ξ∗) + i(ξ∗)e(ξ)

)
= −|ξ|2g · .

Notice that d+ d∗ is elliptic since the square of its symbol is invertible. ⊓⊔

Definition 10.1.23. Let E →M be a smooth vector bundle over the Riemann manifold
(M,g). A second order p.d.o.

L : C∞(E)→ C∞(E)

is called a generalized Laplacian if σ2(L)(ξ) = −|ξ|2g. ⊓⊔

☞ Observe that all the generalized Laplacians are elliptic operators.

10.1.3 Formal adjoints

For simplicity, all the vector bundles in this subsection will be assumed complex, unless
otherwise indicated.

Let E1, E2 → M be vector bundles over a smooth oriented manifold. Fix a Riemann
metric g on M and Hermitian metrics 〈·, ·〉i on Ei, i = 1, 2. We denote by dVg = ∗1 the
volume form on M defined by the metric g. Finally, C∞0 (Ei) denotes the space of smooth,
compactly supported sections of Ei.

Definition 10.1.24. Let P ∈ PDO(E1, E2). The operator Q ∈ PDO(E2, E1) is said to
be a formal adjoint of P if, ∀u ∈ C∞0 (E1), and ∀v ∈ C∞0 (E2) we have

∫

M
〈Pu, v〉2dVg =

∫

M
〈u,Qv〉1dVg. ⊓⊔

Lemma 10.1.25. Any P ∈ PDO (E1, E2) admits at most one formal adjoint.

Proof. Let Q1, Q2 be two formal adjoints of P . Then, ∀v ∈ C∞0 (E2), we have

∫

M
〈u, (Q1 −Q2)v〉1dVg = 0 ∀u ∈ C∞0 (E1).

This implies (Q1 − Q2)v = 0 ∀v ∈ C∞0 (E2). If now v ∈ C∞(E2) is not necessarily
compactly supported then, choosing a partition of unity (α) ⊂ C∞0 (M), we conclude
using the locality of Q = Q1 −Q2 that

Qv =
∑

αQ(αv) = 0. ⊓⊔

The formal adjoint of a p.d.o. P ∈ PDO (E1, E2), whose existence is not yet guaran-
teed, is denoted by P ∗. It is worth emphasizing that P ∗ depends on the choices of g and
〈·, ·〉i.
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Proposition 10.1.26. (a) Let L0 ∈ PDO (E0, E1) and L1 ∈ PDO (E1, E2) admit for-
mal adjoints L∗i ∈ PDO (Ei+1, Ei) (i = 0, 1), with respect to a metric g on the base, and
metrics 〈·, ·〉j on Ej , j = 0, 1, 2. Then L1L0 admits a formal adjoint, and

(L1L0)
∗ = L∗0L

∗
1.

(b) If L ∈ PDO(m)(E0, E1), then L
∗ ∈ PDO(m)(E1, E0).

Proof. (a) For any ui ∈ C∞0 (Ei) we have

∫

M
〈L1L0u0, u2〉2dVg =

∫

M
〈L0u0, L

∗
1u0〉1dVg =

∫

M
〈u0, L∗0L∗1u2〉0dVg.

(b) Let f ∈ C∞(M). Then

(ad(f)L)∗ = (L ◦ f − f ◦ L)∗ = −[L∗, f ] = − ad(f)L∗.

Thus

ad(f0) ad(f1) · · · ad(fm)L∗ = (−1)m+1(ad(f0)ad(f1) · · · ad(fm)L)∗ = 0. ⊓⊔

The above computation yields the following result.

Corollary 10.1.27. If P ∈ PDO(m) admits a formal adjoint, then

σm(P
∗) = (−1)mσm(P )∗,

where the ∗ in the right-hand-side denotes the conjugate transpose of a linear map. ⊓⊔

Let E be a Hermitian vector bundle over the oriented Riemann manifold (M,g).

Definition 10.1.28. A p.d.o. L ∈ PDO (E,E) is said to be formally selfadjoint if
L = L∗. ⊓⊔

The above notion depends clearly on the various metrics

Example 10.1.29. Using the integration by parts formula of Subsection 4.1.5, we deduce
that the Hodge-DeRham operator

d+ d∗ : Ω•(M)→ Ω•(M),

on an oriented Riemann manifold (M,g) is formally selfadjoint with respect with the
metrics induced by g in the various intervening bundles. In fact, d∗ is the formal adjoint
of d. ⊓⊔

Proposition 10.1.30. Let (Ei, 〈·, ·〉i), i = 1, 2, be two arbitrary Hermitian vector bundle
over the oriented Riemann manifold (M,g). Then any L ∈ PDO (E1, E2) admits at least
(and hence exactly) one formal adjoint L∗.
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Sketch of proof We prove this result only in the case when E1 and E2 are trivial vector
bundles over RN . However, we do not assume that the Riemann metric over RN is the
Euclidean one. The general case can be reduced to this via partitions of unity and we
leave the reader to check it for him/her-self.

Let E1 = Cp and E2 = Cq. By choosing orthonormal moving frames, we can assume
that the metrics on Ei are the Euclidean ones. According to the exercises at the end of
Subsection 10.1.1, any L ∈ PDO(m)(E1, E2) has the form

L =
∑

|α|≤m
Aα(x)∂

α,

where Aα ∈ C∞(RN ,Mq×p(C)). Clearly, the formal adjoint of Aα is the conjugate trans-
pose

A∗α = A
t
α.

To prove the proposition it suffices to show that each of the operators ∂i ∈ PDO1(E1, E1)
admits a formal adjoint. It is convenient to consider the slightly more general situation.

Lemma 10.1.31. Let X = Xi∂i ∈ Vect (RN ), and denote by ∇X the first order p.d.o.

∇Xu = Xi∂iu u ∈ C∞0 (Cp).

Then

∇X = −∇X − divg(X),

where divg(X) denotes the divergence of X with respect to the metric g, i.e., the scalar
defined by the equality

LX(dVg) = divg(X) · dVg.

Proof. Let u, v ∈ C∞0 (RN ,Cp). Choose R ≫ 0 such that the Euclidean ball BR of radius
R centered at the origin contains the supports of both u and v. From the equality

X · 〈u, v〉 = 〈∇Xu, v〉+ 〈u,∇Xv〉,

we deduce ∫

RN

〈∇Xu, v〉dVg =
∫

BR

〈∇Xu, v〉dVg

=

∫

BR

X · 〈u, v〉dVg −
∫

BR

〈u,∇Xv〉dVg. (10.1.6)

Set f := 〈u, v〉 ∈ C∞0 (RN ,C), and denote by α ∈ Ω1(RN ) the 1-form dual to X with
respect to the Riemann metric g, i.e.,

(α, β)g = β(X) ∀β ∈ Ω1(RN ).

Equivalently,

α = gijX
idxj.



10.1. PARTIAL DIFFERENTIAL OPERATORS: ALGEBRAIC ASPECTS 441

The equality (10.1.6) can be rewritten

∫

BR

〈∇Xu, v〉dVg =
∫

BR

df(X)dVg −
∫

RN

〈u,∇Xv〉dVg

=

∫

BR

(df, α)gdVg −
∫

RN

〈u,∇Xv〉dVg.

The integration by parts formula of Subsection 4.1.5 yields

∫

BR

(df, α)gdVg =

∫

∂BR

(df ∧ ∗gα) |∂BR
+

∫

BR

fd∗αdVg.

Since f ≡ 0 on a neighborhood of ∂BR, we get

∫

BR

(df, α)gdvg =

∫

BR

〈u, v〉d∗α dVg.

Since d∗α = −divg(X), (see Subsection 4.1.5) we deduce

∫

BR

X · 〈u, v〉dVg = −
∫

BR

〈u, v〉divg(X)dVg =

∫

BR

〈u,−divg(X)v〉dVg .

Putting together all of the above we get

∫

RN

〈∇Xu, v〉dVg =
∫

RN

〈u, (−∇X − divg(X))v〉dVg ,

i.e.,

∇∗X = −∇X − divg(X) = −∇X −
1√
|g|
∑

i

∂i(
√
|g|Xi). (10.1.7)

The lemma and consequently the proposition is proved. ⊓⊔

Example 10.1.32. Let E be a rank r smooth vector bundle over the oriented Riemann
manifold (M,g), dimM = m. Let 〈·, ·〉 denote a Hermitian metric on E, and consider a
connection ∇ on E compatible with this metric. The connection ∇ defines a first order
p.d.o.

∇ : C∞(E)→ C∞(T ∗M ⊗ E).

The metrics g and 〈·, ·〉 induce a metric on T ∗M ⊗ E. We want to describe the formal
adjoint of ∇ with respect to these choices of metrics.

As we have mentioned in the proof of the previous proposition, this is an entirely local
issue. We fix x0 ∈M , and we denote by (x1, . . . ,xm) a collection of g-normal coordinates
on a neighborhood U of x0. We set

∇i := ∇∂
x
i
.

Next, we pick a local synchronous frame of E near x0, i.e., a local orthonormal frame (eα)
such that, at x0, we have

∇ieα = 0 ∀i = 1, . . . ,m.
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The adjoint of the operator

dxk⊗ : C∞(E |U )→ C∞(T ∗U ⊗ E |U ),

is the interior derivative (contraction) along the vector field g-dual to the 1-form dxk, i.e.,

(dxk⊗)∗ = Ck := gjk · i∂
x
j
).

Since ∇ is a metric connection, we deduce as in the proof of Lemma 10.1.31 that

∇k∗ = −∇k − divg(∂xk).

Hence,

∇∗ =
∑

k

∇k∗ ◦ Ck =
∑

k

(
−∇k − divg(∂xk)

)
◦ Ck

= −
∑

k

(∇k + ∂xk

(
log(

√
|g|)

)
◦ Ck. (10.1.8)

In particular, since at x0 we have ∂xkg = 0, we get

∇∗ |x0= −
∑

k

∇k ◦ Ck.

The covariant Laplacian is the second order p.d.o.

∆ = ∆∇ : C∞(E)→ C∞(E), ∆ = ∇∗∇.

To justify the attribute Laplacian we will show that ∆ is indeed a generalized Laplacian.
Using (10.1.8) we deduce that over U (chosen as above) we have

∆ = −
{∑

k

(
∇k + ∂xk log

√
|g|
)
◦ Ck

}
◦




∑

j

dxj ⊗∇j





= −
{∑

k

(
∇k + ∂xk log

√
|g|
) }
◦
(
gkj · ∇j

)

= −
∑

k,j

{
gkj∇k + ∂xkgkj + gkj∂xk

(
log
√
|g|
) }
◦ ∇j

= −
∑

k,j

{
gkj∇k∇j +

1√
|g|
∂xk

(√
|g|gkj

)
· ∇j

}
.

The symbol of ∆ can be read easily from the last equality. More precisely,

σ2(∆)(ξ) = −gjkξjξk = −|ξ|2g.

Hence ∆ is indeed a generalized Laplacian. ⊓⊔

In the following exercise we use the notations in the previous example.
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Exercise 10.1.33. (a) Show that

gkℓΓikℓ = −
1√
|g|
∂xk(

√
|g|gik ),

where Γikℓ denote the Christoffel symbols of the Levi-Civita connection associated to the
metric g.
(b) Show that

∆∇ = − tr2g(∇T
∗M⊗E∇E),

where ∇T ∗M⊗E is the connection on T ∗M ⊗ E obtained by tensoring the Levi-Civita
connection on T ∗M and the connection ∇E on E, while

tr2g : C
∞(T ∗M⊗2 ⊗E)→ C∞(E)

denotes the double contraction by g,

tr2g(Sij ⊗ u) = gijSiju. ⊓⊔

Proposition 10.1.34. Let E and M as above, and suppose that L ∈ PDO2(E) is a
generalized Laplacian. Then, there exists a unique metric connection ∇ on E and R =
R(L) ∈ End (E) such that

L = ∇∗∇+ R.

The endomorphism R is known as the Weitzenböck remainder of the Laplacian L.

Exercise 10.1.35. Prove the above proposition.
Hint Try ∇ defined by

∇fgrad(h)u =
f

2
{(∆gh)u− (ad(h)L)u} f, h ∈ C∞(M), u ∈ C∞(E). ⊓⊔

Exercise 10.1.36. (General Green formula). Consider a compact Riemannian man-
ifold (M,g) with boundary ∂M . Denote by ~n the unit outer normal along ∂M . Let
E,F → M be Hermitian vector bundles over M and suppose L ∈ PDOk (E,F ). Set
g0 = g |∂M , E0 = E |∂M and F0 = F |∂M . The Green formula states that there exists a
sesquilinear map

BL : C∞(E)× C∞(F )→ C∞(∂M),

such that ∫

M
〈Lu, v〉dv(g) =

∫

∂M
BL(u, v)dv(g0) +

∫

M
〈u,L∗v〉dv(g).

Prove the following.
(a) If L is a zeroth order operator, then BL = 0.
(b) If L1 ∈ PDO(F,G), and L2 ∈ PDO(E,F ), then

BL1L2(u, v) = BL1(L2u, v) +BL2(u,L
∗
1v).

(c)
BL∗(v, u) = −BL(u, v).
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(d) Suppose ∇ is a Hermitian connection on E, and X ∈ Vect (M). Then

B∇X
(u, v) = 〈u, v〉g(X,~n), B∇(u, v) = 〈u, i~nv〉E ,

where i~n denotes the contraction by ~n.

(e) Denote by ~ν the section of T ∗M |∂M g-dual to ~n. Suppose L is a first order p.d.o., and
set J := σL(~ν). Then

BL(u, v) = 〈Ju, v〉F .
(f) Using (a)-(e) show that, for all u ∈ C∞(E), v ∈ C∞(F ), and any x0 ∈ ∂M , the
quantity BL(u, v)(x0) depends only on the jets of u, v at x0 of order at most k − 1. In
other words, if all the partial derivatives of u up to order (k − 1), with respect to some
connection, vanish along the boundary, then BL(u, v) = 0. ⊓⊔

10.2 Functional framework

The partial differential operators are linear operators in infinite dimensional spaces, and
this feature requires special care in dealing with them. Linear algebra alone is not suffi-
cient. This is where functional analysis comes in.

In this section we introduce a whole range of functional spaces which are extremely
useful for most geometric applications.

The presentation assumes the reader is familiar with some basic principles of functional
analysis. As a reference for these facts we recommend the excellent monograph [18], or
the very comprehensive [31, 105].

10.2.1 Sobolev spaces in RN

Let D denote an open subset of RN . We denote by L1
loc(D) the space of locally integrable

real functions on D, i.e., Lebesgue measurable functions f : RN → K such that, ∀α ∈
C∞0 (RN ), the function αf is Lebesgue integrable, αf ∈ L1(RN ).

Definition 10.2.1. Let f ∈ L1
loc(D), and 1 ≤ k ≤ N . A function g ∈ L1

loc(D) is said to
be the weak k-th partial derivative of f , and we write this g = ∂kf weakly, if

∫

D
gϕdx = −

∫

D
f∂kϕdx, ∀ϕ ∈ C∞0 (D). ⊓⊔

Lemma 10.2.2. Any f ∈ L1
loc(D) admits at most one weak partial derivative. ⊓⊔

The proof of this lemma is left to the reader.

☞ Not all locally integrable functions admit weak derivatives.

Exercise 10.2.3. Let f ∈ C∞(D), and 1 ≤ k ≤ N . Prove that the classical partial
derivative ∂kf is also its weak k-th derivative. ⊓⊔

Exercise 10.2.4. Let H ∈ L1
loc(R) denote the Heaviside function, H(t) ≡ 1, for t ≥ 0,

H(t) ≡ 0 for t < 0. Prove that H is not weakly differentiable. ⊓⊔
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Exercise 10.2.5. Let f1, f2 ∈ L1
loc(D). If ∂kfi = gi ∈ L1

loc weakly, then ∂k(f1 + f2) =
g1 + g2 weakly. ⊓⊔

The definition of weak derivative can be generalized to higher order derivatives as
follows. Consider a scalar p.d.o. L : C∞(D)→ C∞(D), and f, g ∈ L1

loc(D). Then we say
that Lf = g weakly if

∫

D
gϕdx =

∫

D
fL∗ϕdx ∀ϕ ∈ C∞0 (D).

Above, L∗ denotes the formal adjoint of L with respect to the Euclidean metric on RN .

Exercise 10.2.6. Let f, g ∈ C∞(D). Prove that

Lf = g classically ⇐⇒ Lf = g weakly. ⊓⊔

Definition 10.2.7. Let k ∈ Z+, and p ∈ [1,∞]. The Sobolev space Lk,p(D) consists of
all the functions f ∈ Lp(D) such that, for any multi-index α satisfying |α| ≤ k, the mixed
partial derivative ∂αf exists weakly, and moreover, ∂αf ∈ Lp(D). For every f ∈ Lk,p(D)
we set

‖f‖k,p := ‖f‖k,p,D =


∑

|α|≤k

∫

D
|∂αf |pdx




1/p

,

if p <∞, while if p =∞
‖f‖k,∞ =

∑

|α|≤k
ess sup |∂αf |.

When k = 0 we write ‖f‖p instead of ‖f‖0,p. ⊓⊔

Definition 10.2.8. Let k ∈ Z+ and p ∈ [1,∞]. Set

Lk,ploc(D) :=
{
f ∈ L1

loc(D) ; ϕf ∈ Lk,p(D) ∀ϕ ∈ C∞0 (D)
}
. ⊓⊔

Exercise 10.2.9. Let f(t) = |t|α, t ∈ R, α > 0. Show that for every p > 1 such that
α > 1− 1

p , we have

f(t) ∈ L1,p
loc(R). ⊓⊔

Theorem 10.2.10. Let k ∈ Z+ and 1 ≤ p ≤ ∞. Then

(a) (Lk,p(RN ), ‖ · ‖k,p) is a Banach space.

(b) If 1 ≤ p <∞ the subspace C∞0 (RN ) is dense in Lk,p(RN ).

(c) If 1 < p <∞ the Sobolev space Lk,p(RN ) is reflexive.

The proof of this theorem relies on a collection of basic techniques frequently used in
the study of partial differential equations. This is why we choose to cover the proof of
this theorem in some detail. We will consider only the case p < ∞, leaving the p = ∞
situation to the reader.
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Proof. Using the Exercise 10.2.5, we deduce that Lk,p is a vector space. From the classical
Minkowski inequality,

(
ν∑

i=1

|xi + yi|p
)1/p

≤
(

ν∑

i=1

|xi|p
)1/p

+

(
ν∑

i=1

|yi|p
)1/p

,

we deduce that ‖ · ‖k.p is a norm. To prove that Lk,p is complete, we will use the well
established fact that Lp is complete.

✍ To simplify the notations, throughout this chapter all the extracted subsequences will
be denoted by the same symbols as the sequences they originate from.

Let (fn) ⊂ Lk,p(RN ) be a Cauchy sequence, i.e.,

lim
m,n→∞

‖fm − fn‖k,p = 0.

In particular, for each multi-index |α| ≤ k, the sequence (∂αfn) is Cauchy in Lp(RN ), and
thus,

∂αfn
Lp

→ gα, ∀|α| ≤ k.
Set f = limn fn. We claim that ∂αf = gα weakly.

Indeed, for any ϕ ∈ C∞0 (RN ) we have

∫

RN

∂αfnϕdx = (−1)|α|
∫

RN

fn∂
αϕ.

Since ∂αfn → gα, fn → f in Lp, and ϕ ∈ Lq(RN ), where 1/q = 1− 1/p, we conclude

∫

RN

gα · ϕdx = lim
n

∫

RN

∂αfn · ϕdx

= lim
n
(−1)|α|

∫

RN

fn · ∂αϕdx = (−1)|α|
∫

RN

f · ∂αϕdx.

Part (a) is proved.
To prove that C∞0 (RN ) is dense we will use mollifiers. Their definition uses the

operation of convolution. Given f, g ∈ L1(RN ), we define

(f ∗ g)(x) :=
∫

RN

f(x− y)g(y)dy.

We let the reader check that f ∗ g is well defined, i.e., y 7→ f(x− y)g(y) ∈ L1, for almost
all x.

Exercise 10.2.11. (Young’s Inequality). If f ∈ Lp(RN ), and g ∈ Lq(RN ), 1 ≤ p, q ≤
∞, then f ∗ g is well defined, f ∗ g ∈ Lr(RN ), 1

r = 1
p +

1
q − 1, and

‖f ∗ g‖r ≤ ‖f‖p · ‖g‖q . (10.2.1)

⊓⊔
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To define the mollifiers one usually starts with a function ρ ∈ C∞0 (RN ), such that

ρ ≥ 0, suppρ ⊂
{
|x| < 1

}
, and

∫

RN

ρ dx = 1.

Next, for each δ > 0, we define

ρδ(x) := δ−Nρ(x/δ).

Note that

suppρδ ⊂
{
|x| < δ

}
and

∫

RN

ρδdx = 1.

The sequence (ρδ) is called a mollifying sequence. The next result describes the main use
of this construction.

Lemma 10.2.12. (a) For any f ∈ L1
loc(R

N ) the convolution ρδ ∗f is a smooth1 function!
(b) If f ∈ Lp(RN ) (1 ≤ p <∞) then

ρδ ∗ f Lp

→ f as δ → 0.

Proof. Part (a) is left to the reader as an exercise in the differentiability of integrals with
parameters.

To establish part (b), we will use the fact that C∞0 (RN ) is dense in Lp(RN ). Fix ε > 0,
and choose g ∈ C∞0 (RN ) such that,

‖f − g‖p ≤ ε/3.

We have
‖ρδ ∗ f − f‖p ≤ ‖ρδ ∗ (f − g)‖p + ‖ρδ ∗ g − g‖p + ‖g − f‖p.

Using the inequality (10.2.1) we deduce

‖ρδ ∗ f − f‖p ≤ 2‖f − g‖p + ‖ρδ ∗ g − g‖p. (10.2.2)

We need to estimate ‖ρδ ∗ g − g‖p. Note that

ρδ ∗ g (x) =
∫

RN

ρ(z)g(x − δz) dz and g(x) =

∫

RN

ρ(z)g(x)dz.

Hence

|ρδ ∗ g (x)− g(x)| ≤
∫

RN

ρ(z)|g(x − δz) − g(x)|dz ≤ δ sup |dg|.

Since
suppρδ ∗ g ⊂

{
x+ z ; x ∈ supp g ; z ∈ suppρδ

}
,

there exists a compact set K ⊂ RN such that,

supp(ρδ ∗ g − g) ⊂ K ∀δ ∈ (0, 1).

1This explains the term mollifier: ρδ smoothes out the asperities.
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We conclude that

‖ρδ ∗ g − g‖p ≤
(∫

K
δp(sup |dg|)pdx

)1/p

= vol (K)1/pδ sup |dg|.

If now we pick δ such that
vol (K)1/pδ sup |dg| ≤ ε/3,

we conclude from (10.2.2) that

‖ρδ ∗ f − f‖p ≤ ε.
The lemma is proved. ⊓⊔

The next auxiliary result describes another useful feature of the mollification technique,
especially versatile in as far as the study of partial differential equations is concerned.

Lemma 10.2.13. Let f, g ∈ L1
loc(R

N ) such that ∂kf = g weakly. Then ∂k(ρδ ∗f) = ρδ ∗g.
More generally, if

L =
∑

|α|≤m
aα∂

α

is a p.d.o with constant coefficients aα ∈ R, and Lf = g weakly, then

L(ρδ ∗ f) = ρδ ∗ g classically.

Proof. It suffices to prove only the second part. We will write Lx to emphasize that L
acts via derivatives with respect to the variables x = (x1, . . . , xN ). Note that

L(ρδ ∗ f) =
∫

RN

(Lxρδ(x− y))f(y)dy. (10.2.3)

Since

∂xiρδ(x− y) = −
∂

∂yi
ρδ(x− y),

and ∂i
∗ = −∂i, we deduce from (10.2.3) that

L(ρδ ∗ f) =
∫

RN

(L∗yρδ(x− y))f(y)dy =

∫

RN

ρδ(x− y)Lyf(y) dy

=

∫

RN

ρδ(x− y)g(y)dy = ρδ ∗ g. ⊓⊔

Remark 10.2.14. The above lemma is a commutativity result. It shows that if L is a
p.d.o. with constant coefficients, then

[L, ρδ∗]f = L(ρδ ∗ f)− ρδ ∗ (Lf) = 0.

This fact has a fundamental importance in establishing regularity results for elliptic op-
erators. ⊓⊔
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After this rather long detour, we return to the proof of Theorem 10.2.10. Let f ∈
Lk,p(RN ). We will construct fn ∈ C∞0 (RN ) such that fn → f in Lk,p using two basic
techniques: truncation and mollification (or smoothing).

Truncation. The essentials of this technique are contained in the following result.

Lemma 10.2.15. Let f ∈ Lk,p(RN ). Consider for each R > 0 a smooth function ηR ∈
C∞0 (RN ) such that η(x) ≡ 1 for |x| ≤ R, ηR(x) ≡ 0 for |x| ≥ R+ 1, and |dηR(x)| ≤ 2 ∀x.
Then ηR · f ∈ Lk,p(RN ), ∀R ≥ 0, and moreover

ηR · f Lk,p

−→ f as R→∞.

Proof. We consider only the case k = 1. The general situation can be proved by induction.
We first prove that ∂i(ηRf) exists weakly and as expected

∂i(ηR · f) = (∂iηR) · f + ηR · ∂if.

Let ϕ ∈ C∞0 (RN ). Since ηRϕ ∈ C∞0 (RN ), we have

∫

RN

(∂iηR)ϕ+ ηR · ∂iϕdx =

∫

RN

∂i(ηRϕ)f = −
∫

RN

ηRϕ∂ifdx.

This confirms our claim. Clearly (∂iηR)f + ηR∂if ∈ Lp(RN ), so that ηRf ∈ L1.p(RN ).
Note that ∂iηR ≡ 0 for |x| ≤ R and |x| ≥ R+ 1. In particular, we deduce

(∂iηR)f → 0 a.e.

Clearly |(∂iηR)f | ≤ 2|f(x)|, so that by the dominated convergence theorem we conclude

(∂iηR) · f Lp

→ 0 as R→∞.

Similarly
ηR∂if → ∂if a.e.,

and |ηR∂if | ≤ |∂if |, which implies ηR∂if → ∂if in Lp. The lemma is proved. ⊓⊔

According to the above lemma, the space of compactly supported Lk,p-functions is
dense in Lk,p(RN ). Hence, it suffices to show that any such function can be arbitrarily
well approximated in the Lk,p-norm by smooth, compactly supported functions.

Let f ∈ Lk,p(RN ), and assume

ess supp f ⊂ {|x| ≤ R}.

Mollification. The sequence ρδ ∗ f converges to f in the norm of Lk,p as δ ց 0.
Note that each ρδ ∗ f is a smooth function, supported in { |x| ≤ R+ δ }. According to

Lemma 10.2.13, we have

∂α(ρδ ∗ f) = ρδ ∗ (∂αf) ∀|α| ≤ k.

The desired conclusion now follows using Lemma 10.2.12.
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To conclude the proof of Theorem 10.2.10, we need to show that Lk,p is reflexive if
1 < p <∞. We will use the fact that Lp is reflexive for p in this range.

Note first that Lk,p(RN ) can be viewed as a closed subspace of the direct product

∏

|α|≤k
Lp(RN ),

via the map,

T : Lk,p(RN )→
∏

|α|≤k
Lp(RN ), f 7→ (∂αf)|α|≤k,

which is continuous, one-to-one, and has closed range. Indeed, if ∂αfn
Lp

→ fα, then, arguing
as in the proof of completeness, we deduce that

fα = ∂αf0 weakly,

where f0 = lim fn. Hence (fα) = Tf0. We now conclude that Lk,p(RN ) is reflexive as a
closed subspace of a reflexive space. Theorem 10.2.10 is proved. ⊓⊔

Remark 10.2.16. (a) For p = 2 the spaces Lk,2(RN ) are in fact Hilbert spaces. The
inner product is given by

〈u, v〉k =

∫

RN


∑

|α|≤k
∂αu · ∂αvdx


 dx.

(b) If D ⊂ RN is open, then Lk,p(D) is a Banach space, reflexive if 1 < p < ∞. However
C∞0 (D), is no longer dense in Lk,p(D). The closure of C∞0 (D) in Lk,p(D) is denoted by

Lk,p0 (D). Intuitively, Lk,p0 (D) consists of the functions u ∈ Lk,p(D) such that

∂ju

∂νj
= 0 on ∂D, ∀j = 0, 1, . . . , k − 1,

where ∂/∂ν denotes the normal derivative along the boundary. The above statement
should be taken with a grain of salt since at this point it is not clear how one can define
u |∂D when u is defined only almost everywhere. We refer to [3] for a way around this
issue.

The larger space C∞(D)∩Lk,p(D) is dense in Lk,p(D), provided that the boundary of
D is sufficiently regular. We refer again to [3] for details. ⊓⊔

Exercise 10.2.17. Prove that the following statements are equivalent.
(a) u ∈ L1,p(RN ).
(b) There exists a constant C > 0 such that, for all ϕ ∈ C∞(RN ), we have

∣∣∣∣
∫

RN

u
∂ϕ

∂xi

∣∣∣∣ ≤ C‖ϕ‖Lp′ , ∀i = 1, . . . , N,

where p′ = p/(p − 1).
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(c) There exists C > 0 such that, for all h ∈ RN , we have

‖∆hu‖Lp ≤ C|h|,

where ∆hu(x) = u(x+ h)− u(x). ⊓⊔

Exercise 10.2.18. Let f ∈ L1,p(RN ), and φ ∈ C∞(R), such that

|dφ| ≤ const,

and φ(f) ∈ Lp. Then φ(f) ∈ L1,p(RN ), and

∂iφ(f) = φ′(f) · ∂if. ⊓⊔

Exercise 10.2.19. Let f ∈ L1,p(RN ). Show that |f | ∈ L1,p(RN ), and

∂i|f | =
{

∂if a.e. on {f ≥ 0}
−∂if a.e. on {f < 0}

Hint: Show that fε := (ε2 + f2)1/2 converges to f in L1,p as ε→ 0. ⊓⊔

10.2.2 Embedding theorems: integrability properties

The embedding theorems describe various inclusions between the Sobolev spaces Lk,p(RN ).
Define the “strength” of the Sobolev space Lk,p(RN ) as the quantity

σ(k, p) := σN (k, p) = k −N/p.

The “strength” is a measure of the size of a Sobolev size. Loosely speaking, the bigger the
strength, the more regular are the functions in that space, and thus it consists of “fewer”
functions.

Remark 10.2.20. The origin of the quantities σN (k, p) can be explained by using the
notion of conformal weight. A function u : RN → R can be thought of as a dimensionless
physical quantity. Its conformal weight is 0. Its partial derivatives ∂iu are physical quanti-
ties measured in meter−1= variation per unit of distance, and they have conformal weight
−1. More generally, a mixed partial ∂αu has conformal weight −|α|. The quantities |∂α|p
have conformal weight −p|α|. The volume form dx is assigned conformal weight N : the
volume is measured in meterN . The integral of a quantity of conformal weight w is a
quantity of conformal weight w +N . For example, the quantity

∫

RN

|∂αu|p dx

has conformal weight N − p|α|. In particular the quantity



∫ { ∑

|α|=k
|∂αu|p

}
dx




1/p



452 CHAPTER 10. ELLIPTIC EQUATIONS ON MANIFOLDS

has conformal weight (N − kp)/p = −σN (k, p). Geometrically, the conformal weight is
captured by the behavior under the rescalings x = λy.

If we replace the Euclidean metric g on Rn with the metric gλ = λ2g, λ > 0, then,

dVgλ = λndVg, |du|gλ = λ−1|du|g, ∀u ∈ C∞(RN ).

Equivalently, if we introduce the new linear variables yi related to the canonical Euclidean
variables xi by xi = λyi, then

∂xi = λ−1∂yi , dx1 ∧ · · · ∧ dxN = λNdy1 ∧ · · · ∧ dyN . ⊓⊔

Theorem 10.2.21 (Sobolev). If

σN (k, p) = σN (m, q) < 0 and k > m

then,
Lk,p(RN ) →֒ Lm,p(RN ),

and the natural inclusion is continuous, i.e., there exists C = C(N, k,m, p, q) > 0 such
that

‖f‖m,q ≤ C‖f‖k,p ∀f ∈ Lk,p(RN ).

Proof. We follow the approach of [82] which relies on the following elementary, but inge-
nious lemma.

Lemma 10.2.22 (Gagliardo-Nirenberg). Let N ≥ 2 and f1, . . . , fN ∈ LN−1(RN−1). For
each x ∈ RN , and 1 ≤ i ≤ N define

ξi = (x1, . . . , x̂i, . . . , , xN ) ∈ RN−1.

Then
f(x) = f1(ξ1)f2(ξ2) · · · fN (ξN ) ∈ L1(RN ),

and moreover,

‖f‖1 ≤
N∏

i=1

‖fi‖N−1. ⊓⊔

Exercise 10.2.23. Prove Lemma 10.2.22. ⊓⊔

We first prove the theorem in the case k = 1, p = 1, which means m = 0, and
q = N/(N − 1). We will show that

∃C > 0 : ‖u‖N/(N−1) ≤ C‖ |du| ‖1 ∀u ∈ C∞0 (RN ),

where |du|2 = |∂1u|2 + · · · + |∂Nu|2. This result then extends by density to any u ∈
L1,1(RN ).

We have

|u(x1, . . . , xN )| ≤
∫ x1

−∞
|∂iu(x1, . . . , xi−1, t, xi+1, . . . , xN )|dt def= gi(ξi).
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Note that gi ∈ L1(RN−1), so that

fi(ξi) = gi(ξi)
1/(N−1) ∈ LN−1(RN−1).

Since
|u(x)|N/(N−1) ≤ f1(ξ1) · · · fN (ξN ),

we conclude from Lemma 10.2.22 that u(x) ∈ LN/(N−1)(RN ), and

‖u‖N/(N−1) ≤
(

N∏

1

‖gi(ξi)‖1
)1/N

= (

(
N∏

1

‖∂iu‖1
)1/N

.

Using the classical arithmetic-geometric means inequality, we conclude

‖u‖N/(N−1) ≤
1

N

N∑

1

‖∂iu‖1 ≤
const.

N

N∑

1

‖ |du| ‖1.

We have thus proved that L1,1(RN ) embeds continuously in LN/(N−1)(RN ).
Now let 1 < p < ∞ such that σN (1, p) = 1 −N/p < 0, i.e., p < N . We have to show

that L1,p(RN ) embeds continuously in Lp
∗
(RN ), where

p∗ =
Np

N − p.

Let u ∈ C∞0 (RN ). Set v = |v|r−1v, where r > 1 will be specified later. The inequality

‖v‖N/(N−1) ≤
(

N∏

1

‖∂iv‖1
)1/N

implies

‖u‖rrN/(N−1) ≤ r
(

N∏

1

‖ |u|r−1∂iu‖1
)1/N

.

If q = p/(p − 1) is the conjugate exponent of p, then using the Hölder inequality we get

‖ |u|r−1∂iu‖ ≤ ‖u‖r−1q(r−1)‖∂iu‖p.

Consequently,

‖u‖rrN/(N−1) ≤ r‖u‖r−1q(r−1)

(
N∏

1

‖∂iu‖p
)1/N

.

Now choose r such that rN/(N − 1) = q(r − 1). This gives

r = p∗
N − 1

N
,

and we get

‖u‖p∗ ≤ r
(

N∏

1

‖∂iu‖p
)1/N

≤ C(N, p)‖ |du| ‖p.
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This shows L1,p →֒ Lp
∗
if 1 ≤ p < N . The general case

Lk,p →֒ Lm,q if σN (k, p) = σN (m, q) < 0 k > m

follows easily by induction over k. We let the reader fill in the details. ⊓⊔

Theorem 10.2.24 (Rellich-Kondrachov). Let (k, p), (m, q) ∈ Z+ × [1,∞) such that

k > m and 0 > σN (k, p) > σN (m, q).

Then any bounded sequence (un) ⊂ Lk,p(RN ) supported in a ball BR(0), R > 0 has a
subsequence strongly convergent in Lm,q(RN ).

Proof. We discuss only the case k = 1, so that the condition σN (1, p) < 0 imposes 1 ≤
p < N . We follow the elegant presentation in [18, Chap. IX]. The proof will be carried
out in several steps.

Step 1. For every h ∈ Rn we define the translation operator

τh : Lq(RN )→ Lq(Rn), τhf(x) = f(x+ h), ∀f ∈ Lq(RN ), x ∈ RN .

Fix q ∈ [1, p∗), p∗ = Np/(N − p) and a radius R > 0. Let α ∈ (0, 1] be defined by

1

q
= α+

1− α
p∗

. (10.2.4)

Then there exists a positive constant C, depending only on R, p, q,N such that

∀|h| ≤ 1, ∀u ∈ L1,p(Rn) : ‖τhu− u‖q,BR
≤ C|h|α‖u‖L1,p(RN ). (10.2.5)

Indeed, if u is a smooth function then

|τhu(x)− u(x)| ≤ |h|
∫ 1

0
|du(x+ th)|dt.

Hence

‖τhu− u‖L1(BR)

∫

BR

|τhu(x)− u(x)| ≤ |h|
∫ 1

0

( ∫

BR

|du(x+ th)|dx
)
dt

= |h|
∫ 1

0

( ∫

th+BR

|du(y)|pdy
)1/p

vol(BR+1)
1−1/p ≤ C|h|‖u‖1,p,RN ,

where C = C(R, p, q,N). Finally, using (10.2.4) and Hölder’s inequality we deduce

‖τhu− u‖Lq(BR) ≤ ‖τhu− u‖αL1(BR)‖τhu− u‖1−αLp∗ (BR)
≤ C|h|α‖u‖1,p,RN .

This proves the inequality (10.2.5) for smooth functions. The general case is obtained by
passing to the limit in the L1,p-norm.
Step 2. Let U ⊂ L1,p(RN ) be a bounded subset a such that

ess suppu ⊂ {|x| ≤ R} ∀u ∈ U
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We will prove that, for every ε > 0 there exists 0 < δ = δ(ε) < 1, such that

‖ρδ ∗ u− u‖q,BR
≤ ε, ∀δ ≤ δ(ε), ∀u ∈ U. (10.2.6)

Let u ∈ U. We have

|ρδ ∗ u(x)− u(x)| ≤
∫

Bδ

|τ−yu(x)− u(x)|ρδ(y)dy

Using the convexity of the function s 7→ sq, s ≥ 0 and the fact that ρδ(y)dy is a probability
measure we deduce

(∫

Bδ

|τ−yu(x)− u(x)|ρδ(y)dy
)q
≤
(∫

Bδ

|τ−yu(x)− u(x)|qρδ(y)dy
)

we deduce

|ρδ ∗ u(x)− u(x)|q ≤
∫

Bδ

|τ−yu(x)− u(x)|qρδ(y)dy,

so that

‖ρδ ∗ un − un‖q,BR
≤
(∫

Bδ

‖τ−yun − un‖qq,BR
ρδ(y)dy

)1/q (10.2.5)
≤ C‖u‖1,p,Rnδα.

We now choose δ(ε) such that

Cδ(ε)α sup
u∈U
‖u‖1,p,Rn < ε.

Step 3. Conclusion Suppose U ⊂ L1,p(Rn) is a bounded of functions with supports
contained in BR. We need to prove that for any ε > 0 we can find a finite cover of U with
Lq(BR)-balls of radius ε.

To prove this, we set
Uδ = {uδ := ρδ ∗ u; u ∈ U},

and we show that Uδ is precompact in C0(BR+1). To achieve this we invoke the Arzéla-
Ascoli theorem and we will show that for any δ > 0 there exists C = C(δ) > 0, such
that

|ρδu(x)| < C ∀u ∈ U, ∀|x| ≤ R+ 1,

|uδ(x1)− uδ(x2)| ≤ C|x1 − x2| ∀u ∈ U, ∀|x1|, |x2| ≤ R+ 1.

Indeed,

|ρδ ∗ u (x)| ≤ δ−N
∫

|y−x|≤δ
ρ

(
x− y
δ

)
|u(y)|dy ≤ δ−N

∫

Bδ(x)
|u(y)|dy

≤ C(N, p)δ−N‖u‖p∗ · vol (Bδ)(p
∗−1)/p∗

≤ C(δ)‖u‖1,p by the Sobolev embedding theorem).

Similarly,

|uδ(x1)− uδ(x2)| ≤
∫

BR+1

|ρδ(x1 − y)− ρδ(x2 − y)| · |u(y)|dy
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≤ C(δ) · |x1 − x2|
∫

BR+1

|u(y)|dy ≤ C(δ) · |x1 − x2| · ‖u‖1,p.

Now let δ ≤ δ(ε/2), where δ(ε/2) is defined by (10.2.6). Then the family Uδ is relatively
compact in C0(Br+1) and thus it can be covered by finitely many Lq(BR+1) balls of radius
ε/2. Using (10.2.6) we see that we can cover U with finitely many Lq(BR+1)-balls of radius
ε. The compactness theorem is proved. ⊓⊔

10.2.3 Embedding theorems: differentiability properties

A priori, the functions in the Sobolev spaces Lk,p are only measurable, and are defined
only almost everywhere. However, if the strength σN (k, p) is sufficiently large, then the
functions of Lk,p have a built-in regularity: each can be modified on a negligible set to
become continuous, and even differentiable.

To formulate our next results we must introduce another important family of Banach
spaces, namely the spaces of Hölder continuous functions.

Let α ∈ (0, 1). A function u : D ⊂ RN → R is said to be α-Hölder continuous if

[u]α := sup
0<R<1,z∈D

R−αosc (u; BR(z) ∩D) <∞,

where for any set S ⊂ D, we denoted by osc (u; S) the oscillation of u on S, i.e.,

osc (u; S) := sup {|u(x) − u(y)| ; x, y ∈ S}.

Set
‖u‖∞,D := sup

x∈D
|u(x)|,

and define
C0,α(D) :=

{
u : D → R ; ‖u‖0,α,D := ‖u‖∞ + [u]α <∞

}
.

More generally, for every integer k ≥ 0, define

Ck,α(D) :=
{
u ∈ Cm(D); ∂βu ∈ C0,α(D), ∀|β| ≤ k,

}
.

The space Ck,α(D) is a Banach space with respect to the norm,

‖u‖k,α :=
∑

|β|≤k
‖∂βu‖∞,D +

∑

|β|=k
[∂βu]α,D.

Define the strength of the Hölder space Ck,α as the quantity

σ(k, α) := k + α.

Theorem 10.2.25 (Morrey). Consider (m, p) ∈ Z+ × [1,∞] and (k, α) ∈ Z+ × (0, 1)
such that m > k and σN (m, p) = σ(k, α) > 0. Then Lm,p(RN ) embeds continuously in
Ck,α(RN ).

Proof. We consider only the case k = 1, and (necessarily) m = 0. The proof relies on the
following elementary observation.
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Lemma 10.2.26. Let u ∈ C∞(BR) ∩ L1,1(BR) and set

u :=
1

vol (BR)

∫

BR

u(x)dx.

Then

|u(x)− u| ≤ 2N

σN−1

∫

BR

|du(y)|
|x− y|N−1 dy. (10.2.7)

In the above inequality σN−1 denotes the “area” of the unit (N − 1)-dimensional round
sphere SN−1 ⊂ RN .

Proof.

u(x)− u(y) = −
∫ |x−y|

0

∂

∂r
u(x+ rω)dr (ω = − x− y

|x− y|).

Integrating the above equality with respect to y we get,

vol (BR)(u(x) − u) = −
∫

BR

dy

∫ |x−y|

0

∂

∂r
u(x+ rω)dr.

If we set |∂ru(x+ rω)| = 0 for |x+ rω| > R, then

vol (BR)|u(x)− u| ≤
∫

|x−y|≤2R
dy

∫ ∞

0
|∂ru(x+ rω)|dr.

If we use polar coordinates (ρ, ω) centered at x, then dy = ρN−1dρdω, where ρ = |x− y|,
and dω denotes the Euclidean “area” form on the unit round sphere. We deduce

vol (BR)|u(x)− u| ≤
∫ ∞

0
dr

∫

SN−1

dω

∫ 2R

0
|∂ru(x+ rω)|ρN−1dρ

=
(2R)N

N

∫ ∞

0
dr

∫

SN−1

|∂r(x+ rω)|dωdr

=
(2R)N

N

∫ ∞

0
rN−1dr

∫

SN−1

1

rN−1
|∂ru(x+ rω)|dω

(z = x+ rω) =
(2R)N

N

∫

BR

|∂ru(z)|
|x− z|N−1 ≤

(2R)N

N

∫

BR

|du(z)|
|x− z|N−1 dy. ⊓⊔

We want to make two simple observations.

1. In the above lemma, we can replace the round ball BR centered at origin by any
other ball, centered at any other point. In the sequel for any R > 0, and any x0 ∈ RN

we set

ux0,R :=
1

vol (BR(x0))

∫

BR(x0)
u(y)dy.

2. The inequality (10.2.7) can be extended by density to any u ∈ L1,1(BR).
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We will complete the proof of Morrey’s theorem in three steps.

Step 1. L∞-estimates. We will show there exists C > 0 such that, ∀u ∈ L1,p(RN ) ∩
C1(RN )

‖u‖∞ ≤ C‖u‖1,p.
For each x ∈ RN , denote by B(x) the unit ball centered at x, and set ux := ux,1. Using
(10.2.7) we deduce

|u(x)| ≤ |ux|+ CN

∫

B(x)

|du(y)|
|x− y|N−1dy ≤ C

(
‖u‖p +

∫

B(x)

|du(y)|
|x− y|N−1dy

)
. (10.2.8)

Since σN (1, p) > 0, we deduce that p > N , so that its conjugate exponent q satisfies

q =
p

p− 1
<

N

N − 1
.

In particular, the function y 7→ |x− y|−(N−1) lies in Lq(B(x)), and

∫

B(x)

1

|x− y|q(N−1) dy ≤ C(N, q),

where C(N, q) is a universal constant depending only on N , and q. Using the Hölder
inequality in (10.2.8) we conclude

|u(x)| ≤ C‖u‖1,p ∀x.

Step 2. Oscillation estimates. We will show there exists C > 0 such that for all u ∈
L1,p(RN ) ∩ C1(RN )

[u]α ≤ C‖u‖1,p.
Indeed, from the inequality (10.2.7) we deduce that, for any ball BR(x0), and any x ∈
BR(x0),

|u(x) − ux0,R| ≤ C
∫

BR(x0)

|du(y)|
|x− y|N−1

(q = p
p−1)

(Hölder)
≤ C‖ |du| ‖p ·

(∫

BR(x0)

1

|x− y|q(N−1) dy
)1/q

≤ C‖ |du| ‖pRν ,

where

ν =
1

q

(
N − q(N − 1)

)
= 1− N

p
= α.

Hence

|u(x) − ux0,R| ≤ CRα ∀x ∈ BR(x0),
and consequently,

osc (u;BR(x0)) ≤ CRα.
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Step 2 is completed.

Step 3:. Conclusion. Given u ∈ L1,p(RN ) we can find (un) ∈ C∞0 (RN ) such that

un → u in L1,p and almost everywhere.

The estimates established at Step 1 and 2 are preserved as n → ∞. In fact, these es-
timates actually show that the sequence (un) converges in the C0,α-norm to a function
v ∈ C0,α(RN ) which agrees almost everywhere with u. ⊓⊔

Exercise 10.2.27. Let u ∈ L1,1(RN ) satisfy a (q, ν)-energy estimate, i.e.

∃C > 0 :
1

rN

∫

Br(x)
|du(y)|qdy ≤ C1r

−ν ∀x ∈ RN , 0 < r < 2,

where 0 ≤ ν < q and q > 1. Show that (up to a change on a negligible set) the function
u is α-Hölder continuous, α = 1− ν/q, and moreover

[u]α ≤ C2,

where the constant C2 depends only on N, q, ν and C1.

Hint: Prove that ∫

Br(x)

|du(y)|
|x− y|N−1 ≤ Cr

α,

and then use the inequality (10.2.7). ⊓⊔

Remark 10.2.28. The result in the above exercise has a suggestive interpretation. If u
satisfies the (q, ν)-energy estimate then although |du| may not be bounded, on average, it
“explodes” no worse that rα−1 as r → 0. Thus

|u(x)− u(0)| ≈ C
∫ |x|

0
tα−1dt ≈ C|x|α.

The energy estimate is a very useful tool in the study of nonlinear elliptic equations. ⊓⊔

The Morrey embedding theorem can be complemented by a compactness result. Let
(k, p) ∈ Z+ × [1,∞] and (m,α) ∈ Z+ × (0, 1) such that

σN (k, p) > σ(m,α) k > m.

Then a simple application of the Arzela-Ascoli theorem shows that any bounded sequence
in Lk,p(RN ) admits a subsequence which converges in the Cm,α norm on any bounded
open subset of RN .

The last results we want to discuss are the interpolation inequalities. They play an
important part in applications, but we chose not to include their long but elementary
proofs since they do not use any concept we will need later. The interested reader may
consult [3] or [12] for details.
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Theorem 10.2.29 (Interpolation inequalities). For each R > 0 choose a smooth, cutoff
function ηR ∈ C∞0 (RN ) such that

ηR ≡ 1 if |x| ≤ R,

ηR ≡ 0 if |x| ≥ R+ 1,

and
|dηR(x)| ≤ 2 ∀x ∈ RN .

Fix (m, p) ∈ Z+ × [1,∞), and (k, α) ∈ Z+ × (0, 1).
(a) For every 0 < r ≤ R+1, there exists C = C(r,R,m, p) such that, for every 0 ≤ j < m,
ε > 0 and for all u ∈ Lm,p(RN ), we have

‖ηRu‖j,p,RN ≤ Cε‖ηRu‖m,p,RN + Cε−j(m−j)‖ηRu‖p,Br .

(b) For every 0 < r ≤ R+1, there exists C = C(r,R, k, α) such that, for every 0 ≤ j < k,
ε > 0, and for all u ∈ Ck,α(RN ), we have

‖ηRu‖j,α,RN ≤ Cε‖ηRu‖k,α,RN + Cε−j(m−j)‖ηRu‖0,α,Br . ⊓⊔

The results in this, and the previous section extend verbatim to slightly more general
situations, namely to functions f : RN → H, where H is a finite dimensional complex
Hermitian space.

10.2.4 Functional spaces on manifolds

The Sobolev and the Hölder spaces can be defined over manifolds as well. To define these
spaces we need three things: an oriented Riemann manifold (M,g), a K-vector bundle
π : E →M endowed with a metric h = 〈•, •〉, and a connection ∇ = ∇E compatible with
h. The metric g = (•, •) defines two important objects.

(i) The Levi-Civita connection ∇g.

(ii) A volume form dVg = ∗1. In particular, dVg defines a Borel measure on M . We de-
note by Lp(M,K) the space of K-valued p-integrable functions on (M,dVg) (modulo
the equivalence relation of equality almost everywhere).

Definition 10.2.30. Let p ∈ [1,∞]. An Lp-section of E is a Borel measurable map
ψ : M → E, i.e., ψ−1(U) is Borel measurable for any open subset U ⊂ E) such that the
following hold.

(a) π ◦ ψ(x) = x, for almost all x ∈M except possibly a negligible set.

(b) The function x 7→ |ψ(x)|ph is integrable with respect to the measure defined by dVg.
⊓⊔

The space of Lp-sections of E (modulo equality almost everywhere) is denoted by
Lp(E). We let the reader check the following fact.
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Proposition 10.2.31. Lp(E) is a Banach space with respect to the norm

‖ψ‖p,E =

{ (∫
M |ψ(x)|pdvg(x)

)1/p
if p <∞

ess supx|ψ(x)| if p =∞ . ⊓⊔

Note that if p, q ∈ [1,∞] are conjugate, 1/p+1/q = 1, then the metric h : E×E → KM

defines a continuous pairing

〈•, •〉 : Lp(E)× Lq(E)→ L1(M,K),

i.e., ∣∣∣∣
∫

M
〈ψ, φ〉dVg

∣∣∣∣ ≤ ‖ψ‖p,E · ‖φ‖q,E

This follows immediately from the Cauchy inequality

|h(ψ(x), φ(x)| ≤ |ψ(x)| · |φ(x)| a.e. on M,

and the usual Hölder inequality.

Exercise 10.2.32. Let Ei →M (i = 1, . . . , k) be vector bundles with metrics and consider
a multilinear bundle map

Ξ : E1 × · · · × Ek → KM .

We regard Ξ as a section of E∗1 ⊗ · · · ⊗ E∗k . If

Ξ ∈ Lp0(E∗1 ⊗ · · · ⊗ E∗k),

then for every p1, . . . , pk ∈ [1,∞], such that

1− 1/p0 = 1/p1 + · · ·+ 1/pk,

and ∀ψj ∈ Lpj(Ej), j = 1, . . . , k

∫

M

∣∣∣Ξ(ψ1, . . . , ψk)
∣∣∣dVg ≤ ‖Ξ‖p0 · ‖ψ1‖p1 · · · ‖ψk‖pk . ⊓⊔

For each m = 1, 2, . . ., define ∇m as the composition

∇m : C∞(E)
∇E

→ C∞(T ∗M ⊗ E)
∇T∗M⊗E

−→ · · · ∇→ C∞(T ∗M⊗m ⊗ E),

where we used the symbol ∇ to generically denote the connections in the tensor products
T ∗M⊗j⊗E induced by ∇g and ∇E

The metrics g and h induce metrics in each of the tensor bundles T ∗M⊗m⊗E, and in
particular, we can define the spaces Lp(T ∗M⊗m ⊗ E).

Definition 10.2.33. (a) Let u ∈ L1
loc(E) and v ∈ L1

loc(T
∗M⊗m ⊗ E). We say that

∇mu = v weakly if
∫

M
〈v, φ〉dVg =

∫
〈u, (∇m)∗φ〉dVg ∀u ∈ C∞0 (T ∗M⊗m ⊗E).
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(b) Define Lm,p(E) as the space of sections u ∈ Lp(E) such that, ∀j = 1, . . . ,m, there
exist vj ∈ Lp(T ∗M⊗j ⊗ E), such that ∇ju = vj weakly. We set

‖u‖m,p := ‖u‖m,p,E =

p∑

j=1

‖∇ju‖p. ⊓⊔

☞ A word of warning. The Sobolev space Lm,p(E) introduced above depends on several
choices: the metrics on M and E and the connection on E. When M is non-compact this
dependence is very dramatic and has to be seriously taken into consideration.

Example 10.2.34. Let (M,g) be the space RN endowed with the Euclidean metric. The
trivial line bundle E = RM is naturally equipped with the trivial metric and connection.
Then, Lp(RM ) = Lp(M,R).

Denote by D the Levi-Civita connection. Then, for every u ∈ C∞(M), and m ∈ Z+,
we have

Dmu =
∑

|α|=m
dx⊗α ⊗ ∂αu,

where for every multi-index α we denoted by dx⊗α the monomial

dxα1 ⊗ · · · ⊗ dxαN .

The length of Dmu(x) is 
 ∑

|α|=m
|∂αu(x)|2




1/2

.

The space Lm,p(RM ) coincides as a set with the Sobolev space Lk,p(RN ). The norm
‖ • ‖m,p,RM

is equivalent with the norm ‖ • ‖m,p,RN introduced in the previous sections. ⊓⊔

Proposition 10.2.35. (Lk,p(E), ‖ · ‖k,p,E) is a Banach space which is reflexive if 1 < p <
∞. ⊓⊔

The proof of this result is left to the reader as an exercise.
The Hölder spaces can be defined on manifolds as well. If (M,g) is a Riemann manifold,

then g canonically defines a metric space structure onM , (see Chapter 4) and in particular,
we can talk about the oscillation of a function u : M → K. On the other hand, defining
the oscillation of a section of some bundle over M requires a little more work.

Let (E, h,∇) as before. We assume that the injectivity radius ρM of M is positive. Set
ρ0 := min{1, ρM}. If x, y ∈ M are two points such that distg(x, y) ≤ ρ0, then they can
be joined by a unique minimal geodesic γx,y starting at x, and ending at y. We denote by
Tx,y : Ey → Ex the ∇E-parallel transport along γx,y. For each ξ ∈ Ex, and η ∈ Ey we set

|ξ − η| := |ξ − Tx,yη|x = |η − Ty,xξ|y.

If u :M → E is a section of E, and S ⊂M has the diameter < ρ0, we define

osc (u; S) := sup
{
|u(x)− u(y)|; x, y ∈ S

}
.
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Finally set

[u]α,E := sup
{
r−αosc (u; Br(x)); 0 < r < ρ0, x ∈M

}
.

For any k ≥ 0, we define

‖u‖k,α,E :=
k∑

j=0

‖∇ju‖∞,E + [∇mu]α,T ∗M⊗m⊗E,

and we set

Ck,α(E) :=
{
u ∈ Ck(E); ‖u‖k,α <∞

}
.

Theorem 10.2.36. Let (M,g) be a compact, N -dimensional, oriented Riemann mani-
fold, and E a vector bundle over M equipped with a metric h, and compatible connection
∇. Then the following are true.

(a) The Sobolev space Lm,p(E), and the Hölder spaces Ck,α(E) do not depend on the
metrics g, h and on the connection ∇. More precisely, if g1 is a different metric on M ,
and ∇1 is another connection on E compatible with some metric h1 then

Lm,p(E, g, h,∇) = Lm,p(E, g1, h1,∇1) as sets of sections,

and the identity map between these two spaces is a Banach space is continuous. A similar
statement is true for the Hölder spaces.

(b) If 1 ≤ p <∞, then C∞(E) is dense in Lk,p(E).

(c) If (ki, pi) ∈ Z+ × [1,∞) (i = 0, 1) are such that

k0 ≥ k1 and σN (k0, p0) = k0 −N/p0 ≥ k1 −N/p1 = σN (k1, p1),

then Lk0,p0(E) embeds continuously in Lk1,p1(E). If moreover,

k0 > k1 and k0 −N/p0 > k1 −N/p1,

then the embedding Lk0,p0(E) →֒ Lk1,p1(E) is compact, i.e., any bounded sequence of
Lk0,p0(E) admits a subsequence convergent in the Lk1,p1-norm.

(d) If (m, p) ∈ Z+ × [1,∞), (k, α) ∈ Z+ × (0, 1) and

m−N/p ≥ k + α,

then Lm,p(E) embeds continuously in Ck,α(E). If moreover

m−N/p > k + α,

then the embedding is also compact. ⊓⊔

We developed all the tools needed to prove this theorem, and we leave this task to the
reader. The method can be briefly characterized by two key phrases: partition of unity
and interpolation inequalities. We will see them at work in the next section.
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10.3 Elliptic partial differential operators: analytic aspects

This section represents the analytical heart of this chapter. We discuss two notions that
play a pivotal role in the study of elliptic partial differential equations. More precisely, we
will introduce the notion of weak solution, and a priori estimates.

Consider the following simple example. Suppose we want to solve the partial differen-
tial equation

∆u+ u = f ∈ L2(S2,R), (10.3.1)

where ∆ denotes the Laplace-Beltrami operator on the round sphere, ∆ = d∗d. Riemann
suggested that one should look for the minima of the energy functional

u 7−→ E(u) :=

∫

S2

{1
2
(|du|2 + u2)− fu

}
dVg.

If u0 is a minimum of E, i.e.,
E(u0) ≤ E(u), ∀u,

then

0 =
d

dt
|t=0 E(u0 + tv) =

∫

S2

{
(du0, dv)g + u0 · v − f · v

}
dVg ∀v. (10.3.2)

Integrating by parts we get
∫

S2

(d∗du0 + u0 − f) · v dVg = 0 ∀v,

so that necessarily,
∆u0 + u0 = f.

There are a few grey areas in this approach, and Weierstrass was quick to point them
out: what is the domain of E, u0 may not exist, and if it does, it may not be C2, so that
the integration by parts is illegal etc. This avenue was abandoned until the dawns of the
twentieth century, when Hilbert reintroduced them into the spotlight, and emphasized the
need to deal with these issues.

His important new point of view was that the approach suggested by Riemann does
indeed produce a solution of (10.3.1) “provided if need be that the notion of solution be
suitable extended ”. The suitable notion of solution is precisely described in (10.3.2).
Naturally, one asks when this extended notion of solution coincides with the classical one.
Clearly, it suffices that u of (10.3.2) be at least C2, so that everything boils down to a
question of regularity.

Riemann’s idea was first rehabilitated in Weyl’s famous treatise [100] on Riemann
surfaces. It took the effort of many talented people to materialize Hilbert’s program
formulated as his 19th and 20th problem in the famous list of 27 problems he presented
at the Paris conference at the beginning of the 20th century. We refer the reader to [1]
for more details.

This section takes up the issues raised in the above simple example. The key fact which
will allow us to legitimize Riemann’s argument is the ellipticity of the partial differential
operator involved in this equation.
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10.3.1 Elliptic estimates in RN

Let E = Cr denote the trivial vector bundle over RN . Denote by 〈•, •〉 the natural
Hermitian metric on E, and by ∂, the trivial connection. The norm of Lk,p(E) (defined
using the Euclidean volume) will be denoted by ‖ • ‖k,p. Consider an elliptic operator of
order m

L =
∑

|α|≤m
Aα(x)∂

α
x : C∞(E)→ C∞(E).

For any k ∈ Z+, and any R > 0 define

‖L‖k,R =
∑

|α|≤m,|β|≤k+m−|α|
sup
BR(0)

‖∂βx (Aα(x))‖.

In this subsection we will establish the following fundamental result.

Theorem 10.3.1 (Interior elliptic estimates). (a) Let (k, p) ∈ Z+ × (1,∞), and R > 0.
Then, there exists C = C(‖L‖k+1,R, k, p,N,R) > 0 such that, ∀u ∈ C∞0 (E |BR(0)), we have

‖u‖k+m,p ≤ C
(
‖Lu‖k,p + ‖u‖p

)
. (10.3.3)

(b) Let (k, α) ∈ Z+×(0, 1), and R > 0. Then, there exists C = C(‖L‖k+1,R, k, α,N,R) > 0
such that, ∀u ∈ C∞0 (E |BR(0)), we have

‖u‖k+m,α ≤ C
(
‖Lu‖k,α + ‖u‖0,α

)
. (10.3.4)

Proof. The proof consists of two conceptually distinct parts. In the first part we establish
the result under the supplementary assumption that L has constant coefficients. In the sec-
ond part, the general result is deduced from the special case using perturbation techniques
in which the interpolation inequalities play an important role. Throughout the proof we
will use the same letter C to denote various constants C = C(‖L‖k+1,R, k, p,N,R) > 0

Step 1. Constant coefficients case. We assume L has the form

L =
∑

|α|=m
Aα∂

α
x ,

where Aα are r × r complex matrices , independent of x ∈ RN . We set

‖L‖ :=
∑
‖Aα‖.

We will prove the conclusions of the theorem hold in this special case. We will rely on a
very deep analytical result whose proof goes beyond the scope of this book.

For each f ∈ L1(RN ,C) denote by f̂(ξ) its Fourier transform

f̂(ξ) :=
1

(2π)N/2

∫

RN

exp(−ix · ξ)dx.
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Theorem 10.3.2 (Calderon-Zygmund). Let m : SN−1 → C be a smooth function, and
define

m(ξ) : RN \ {0} → C

by

m(ξ) = m

(
ξ

|ξ|

)
.

Then the following hold.

(a) There exist Ω ∈ C∞(SN−1,C), and c ∈ C, such that

(a1)
∫
SN−1 ΩdvSN−1 = 0.

(a2) For any u ∈ C∞0 (RN ), the limit

(Tu)(x) = lim
εց0

∫

|y|≥ε

Ω(y)

|y|N u(x− y)dy

exists for almost every x ∈ RN , and moreover

cu(x) + Tu(x) =
1

(2π)N/2

∫

RN

exp(ix · ξ)m(ξ)û(ξ)dξ.

(b) For every 1 < p <∞ there exists C = C(p, ‖m‖∞) > 0 such that,

‖Tu‖p ≤ C‖u‖p ∀u ∈ C∞0 (RN ).

(c)(Korn-Lichtenstein). For every 0 < α < 1, and any R > 0, there exists C =
C(α, ‖m‖0,α, R) > 0 such that ,∀u ∈ C0,α

0 (BR)

[Tu]α ≤ C‖u‖0,α,BR
. ⊓⊔

For a proof of part (a) and (b) we refer to [95], Chap II §4.4. Part (c) is “elementary”
and we suggest the reader to try and prove it. In any case a proof, of this inequality can
be found in [12], Part II.5.

Let us now return to our problem. Assuming L has the above special form we will
prove (10.3.3). The proof of (10.3.4) is entirely similar and is left to the reader. We discuss
first the case k = 0.

Let u ∈ C∞0 (E |BR
). The function u can be viewed as a collection

u(x) = (u1(x), . . . , ur(x)),

of smooth functions compactly supported in BR. Define

û(ξ) := (û1(ξ), . . . , ûr(ξ)).

If we set v = Lu, then for any multi-index β such that |β| = m, we have

L∂βu = ∂βLu = ∂βv,
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because L has constant coefficients. We Fourier transform the above equality, and we get

(−i)m
∑

|α|=m
Aαξ

α∂̂βu(ξ) = (−i)mξβ v̂(ξ). (10.3.5)

Note that since L is elliptic, the operator

σ(L)(ξ) = A(ξ) =
∑

|α|=m
Aαξ

α : Cr → Cr

is invertible for any ξ 6= 0. From (10.3.5) we deduce

∂̂βu(ξ) = ξβB(ξ) ˆv(ξ) ∀ξ 6= 0,

where B(ξ) = A(ξ)−1. Note that B(ξ) is homogeneous of degree −m, so that M(ξ) =
ξβB(ξ) is homogeneous of degree 0. Thus, we can find functions mij(ξ) ∈ C∞(Rn \ {0}),
which are homogeneous of degree 0, and such that

∂̂βui(ξ) =
∑

j

mij(ξ)v̂
j(ξ).

Using Theorem 10.3.2 (a) and (b) we deduce

‖∂βu‖p ≤ C‖v‖p = C‖Lu‖p.

This proves (10.3.3) when L has this special form.

Step 2. The general case. Suppose now that L is an arbitrary elliptic operator of order
m. Let r > 0 sufficiently small (to be specified later). Cover BR by finitely many balls
Br(xν), and consider ην ∈ C∞0 (Br(xν)), such that each point in BR is covered by at most
10N of these balls, and

ην ≥ 0,
∑

ν

ην = 1,

‖∂βην‖ ≤ Cr−|β| ∀|β| ≤ m.

If u ∈ C∞0 (BR), then

v = Lu = L

(∑

ν

ηνu

)
=
∑

ν

L(ηνu).

Set uν := ηνu, and

Lν :=
∑

|α|=m
Aα(xν)∂

α.

We rewrite the equality vν
def
= Luν as

Lνuν = (Lν − L)uν + vν =
∑

|α|=m
εα,ν(x)∂

αuν −
∑

|β|<m
Aβ(x)∂

βuν + vν ,
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where εα,ν(x) = Aα(xν)−Aα(x). Using (10.3.3) we deduce

‖uν‖m,p ≤ C(‖uν‖p,Br(xν) + ‖vν‖p,Br(xν) +
∑

|α|=m
‖εα,ν(x)∂αu‖p,Br(xν) + ‖u‖m−1,p,Br(xν)).

Since |εα,ν(x)| ≤ Cr on Br(xν), where C = C(‖L‖1,R), we deduce

‖uν‖m,p,Br(xν) ≤ C(r‖uν‖p,Br(xν) + ‖uν‖p,Br(xν) + ‖vν‖p,Br(xν)).

We can now specify r > 0 such that Cr < 1/2 in the above inequality. Hence

‖uν‖m,p,Br(xν) ≤ C(‖uν‖p,Br(xν) + ‖vν‖p,Br(xν)).

We need to estimate ‖vν‖p. We use the equality

vν = L(ηνu) = ηνLu+ [L, ην ]u,

in which [L, ην ] = ad(ην)L is a p.d.o. of order m− 1, so that

‖[L, ην ]u‖p,Br(xν) ≤ Cr−(m−1)‖u‖m−1,p,Br(xν).

Hence

‖vν‖p,Br(xν) ≤ C(‖ηνLu‖p,Br(xν) + r−(m−1)‖u‖m−1,p,Br(xν)),

so that
‖uν‖m,p,Br(xν) ≤ C(‖Lu‖p,BR

+ r−(m−1)‖u‖m−1,p,BR
).

We sum over ν, and taking into account that the number of spheres Br(xν) is O((R/r)N )
we deduce

‖u‖m,p,BR
≤
∑

ν

‖uν‖m,p ≤ CRN(r−N‖Lu‖p,BR
+ r−(m+N−1)‖u‖m−1,p,BR

).

Note that r depends only on R, p, ‖L‖1,R, so that

‖u‖m,p,BR
≤ C(‖Lu‖p,BR

+ ‖u‖m−1,p,BR
),

where C is as in the statement of Theorem 10.3.1.
We still need to deal with the term ‖u‖m−1,p,BR

in the above inequality. It is precisely
at this point that the interpolation inequalities enter crucially.

View u as a section of C∞0 (E |B2R
). If we pick η ∈ C∞0 (B2R) such that η ≡ 1 on BR,

we deduce from the interpolation inequalities that there exists C > 0 such that

‖u‖m−1,BR
≤ ε‖u‖m,p,R + Cε−(m−1)‖u‖p,BR

.

Hence
‖u‖m,p,BR

≤ C(‖Lu‖p,BR
+ ε‖u‖m,p,BR

+ ε−(m−1)‖u‖p,BR
).

If now we choose ε > 0 sufficiently small we deduce the case k = 0 of the inequality
(10.3.3).
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To establish this inequality for arbitrary k we argue by induction. Consider a multi-
index |β| = k. If u ∈ C∞0 (E |BR

), and Lu = v then

L(∂βu) = ∂βLu+ [L, ∂β ]u = ∂βv + [L, ∂β ]u.

The crucial observation is that [L, ∂β ] is a p.d.o. of order ≤ m+ k − 1. Indeed,

σm+k([L, ∂
β ]) = [σm(L), σk(∂

β)] = 0.

Using (10.3.3) with k = 0, we deduce

‖∂βu‖m,p,BR
≤ C(‖∂βv‖p,BR

+ ‖[L, ∂β ]u‖p,BR
+ ‖∂βu‖p,BR

)

≤ C(‖v‖k,p,BR
+ ‖u‖m+k−1,p,BR

+ ‖u‖k,p,BR
).

The term ‖u‖m+k−1,p,BR
+ ‖u‖k,p,BR

can be estimated from above by

ε‖u‖m+k,p,BR
+ C‖u‖p,BR

,

using the interpolation inequalities as before. The inequality (10.3.3) is completely proved.
The Hölder case is entirely similar. It is left to the reader as an exercise. Theorem 10.3.1
is proved. ⊓⊔

Using the truncation technique and the interpolation inequalities we deduce the fol-
lowing consequence.

Corollary 10.3.3. Let L as in Theorem 10.3.1, and fix 0 < r < R. Then, for every
k ∈ Z+, 1 < p <∞, and α ∈ (0, 1), there exists C = C(k, p, α,N, ‖L‖k+1,R, R, r) > 0 such
that, ∀u ∈ C∞(E)

‖u‖k+m,p,Br ≤ C
(
‖Lu‖k,p,BR

+ ‖u‖p,BR

)
,

and

‖u‖k+m,α,Br ≤ C
(
‖Lu‖k,α,BR

+ ‖u‖0,α,BR

)
. ⊓⊔

Exercise 10.3.4. Prove the above corollary. ⊓⊔

10.3.2 Elliptic regularity

In this subsection we continue to use the notations of the previous subsection.

Definition 10.3.5. Let u, v : RN → Cr be measurable functions.

(a) The function u is a classical solution of the partial differential equation

Lu =
∑

|β|≤m
Aα(x)∂

αu (x) = v(x) (10.3.6)

if there exists α ∈ (0, 1) such that, v ∈ C0,α
loc (R

N ), u ∈ Cm,αloc (RN ), and (10.3.6) holds
everywhere.
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(b) The function u is said to be an Lp-strong solution of (10.3.6) if u ∈ Lm,ploc (R
N ), v ∈

Lploc(R
N ), and (10.3.6) hold almost everywhere. (The partial derivatives of u should be

understood in generalized sense.)

(c) The function u is said to be an Lp-weak solution if u, v ∈ Lploc(RN ) and
∫

RN

〈u,L∗φ〉dx =

∫

RN

〈v, φ〉 dx, ∀φ ∈ C∞0 (E). ⊓⊔

Note the following obvious inclusion

{Lp − weak solutions} ⊃ {Lp − strong solutions}.

The principal result of this subsection states that when L is elliptic the above inclusion is
an equality.

Theorem 10.3.6. Let p ∈ (1,∞) and suppose that L : C∞(E) → C∞(E) is an elliptic
operator of order m, with smooth coefficients. If u ∈ Lploc and Lu ∈ L

p
loc then u ∈ L

m,p
loc (E).

Remark 10.3.7. Loosely speaking the above theorem says that if a “clever” (i.e. elliptic)
combination of mixed partial derivatives can be defined weakly, then any mixed partial
derivative (up to a certain order) can be weakly defined as well. ⊓⊔

Proof. 2 We prove only two special special cases of the theorem. Namely we assume that
L has either constant coefficients or it is a first order operator. The essential ingredient in
the proof is the technique of mollification. For each δ > 0 we denote by Tδ the operator
of convolution with ρδ. Fix a radius R > 0 and a partial differential operator S of order
m > 0. We first prove that there exists a constant C > 0 depending only on R,N, p, S
such that

‖ [S, Tδ ]u ‖p,BR+δ
≤ C‖u‖m−1,p,BR+1

, ∀u ∈ C∞0 (BR+1). (10.3.7)

Using the equality

[S1S2, Tδ] = [S1, Tδ ]S2 + S1[S2, Tδ]

we deduce that if (10.3.7) holds for the operators S1 and S2 of positive orders then it also
holds for their product S1S2. Clearly (10.3.7) is trivially satisfied for operators S with
constant coefficients because in this case [S, Tδ] = 0. Thus, it suffices to verify (10.3.7) for
first order operators of the form a(x)∂i + b(x).

Denote by Mb : C∞0 → C∞0 the operator of multiplication of by the smooth bundle
morphism b(x). Then

[Mb, Tδ ]u(x) =

∫

RN

ρδ(x− y)( b(x)− b(y) )u(y)dy,

and the smoothness of b implies that there exists a constant C > 0 independent of δ > 0
such that

‖ [Mb, Tδ ] ‖p,BR+δ
≤ C‖u‖p,BR+1

, ∀u ∈ C∞0 (BR+1).

2I would like to thank my friend Weimin Chen for pointing out a subtle error in the original proof.
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Next observe that

[a∂i, Tδ]u(x) = a(x)∂xi

∫

Rn

ρδ(x− y)u(u)dy −
∫

Rn

ρδ(x− y)a(y)∂yiu(y)dy

=
1

δN+1

∫

Rn

∂xiρ

(
x− y
δ

)
a(x)u(y)dy

+
1

δN+1

∫

RN

∂yiρ

(
x− y
δ

)
a(x)u(y)dy +

∫

RN

ρδ(x− y)∂yia(y)u(y)dy

(∂xiρ(x− y) = −∂yiρ(x− y))

=
1

δN+1

∫

|x−y|<δ
∂yiρ

(
x− y
δ

)(
a(x)− a(y)

)
u(y)dy +

∫

|x−y|<δ
ρδ(x− y)∂yia(y)u(y)dy.

The inequality (10.3.7) follows by observing that |a(x)− a(y)| = O(δ) when x, y ∈ BR+1,
|x− y| < δ.

We deduce that if L is a first order operator or L has constant coefficients there exists
a constant C > 0 depending only on R,N, q, L such that

‖ [Tδ , L∗]u ‖q,BR+δ
≤ C‖u‖q,BR+1

, ∀u ∈ C∞0 (BR+1). (10.3.8)

Suppose that u ∈ Lploc and v = Lu ∈ Lploc. Then for any φ ∈ C∞0 (BR+1) we have

∫

BR+1

〈LTδu, φ 〉dV =

∫

BR+1

〈Tδu,L∗φ〉dV

=

∫

BR+1

〈u, TδL∗φ〉dV =

∫

BR+1

〈u,L∗Tδφ〉dV +

∫

BR+1

〈
u, [Tδ , L

∗]φ
〉

=

∫

BR+1

〈v, Tδφ〉dV +

∫

BR+1

〈
u, [Tδ , L

∗]φ
〉
.

Let q ∈ (1,∞)such that 1
p +

1
q = 1. Using (10.3.8) and Hölder inequality we deduce

∣∣∣∣∣

∫

BR+1

〈LTδu, φdV
∣∣∣∣∣ ≤ ‖v‖p,BR+1

‖Tδφ‖q,BR+1
+ C‖u‖q,BR+1

‖φ‖q,BR+1

≤ C(‖u‖p,BR+1
+ ‖v‖p,BR+1

)
‖‖φ‖q,BR+1

,

for some constant C depending only on R,N, q, L. This implies that LTδu is bounded in
Lp(BR+1). From the elliptic estimates we deduce that the familiy Tδu it is bounded in
Lm,p(BR) as δ → 0. Since the space Lm,p(BR) is reflexive we deduce that a subsequence
Tδnu converges weakly as δn → 0 to a section u0 ∈ Lm,p(BR). On the other hand, from the
Rellich-Kondrachov compactness theorem we deduce that Tδnu converges in the Lp-norm
to u0. This implies that u0 = u so that u ∈ Lm,ploc . ⊓⊔
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Remark 10.3.8. The proof of the general case of the regularity theorem requires consid-
erable more analytic work than we are willing to include in a geometry book. However,
the general idea is easy to describe.

Using the theory of pseudo-differential operators, one can construct a parametrix for
any elliptic operator L on RN T . This is an integral operator T : C∞0 (RN ) → C∞(RN )
which serves as a sort of inverse for L, i.e., the operators Sr = LT −1 and Sℓ = TL−1 are
smoothing operators. This means that they map locally integrable functions (and more
generally, distributions) to smooth functions. The convolution with ρδ is a prime example
of smoothing operator, while the convolution with the function |x|2−N is the parametrix
of the (geometers’) Laplacian on RN .

If Lu = v weakly then

Tv = TLu = u+ Sℓu.

Thus Tv − u is a smooth function, and thus it suffices to prove that Tv ∈ Lm,ploc . This is
achieved, again using the theory of pseudo-differential operators, the Calderon-Zygmund
inequality, and the special case of Theorem 10.3.6 when L is a constant coefficients oper-
ator. For details we refer to [96]. ⊓⊔

Corollary 10.3.9. If u ∈ Lploc(E) is weak Lp-solution of Lu = v, 1 < p < ∞, and

v ∈ Lk,ploc (E), then u ∈ Lk+m,ploc (E), and for every 0 < r < R we have

‖u‖m+k,p,Br ≤ C(‖v‖k,p,BR
+ ‖u‖p,BR

),

where as usual C = C(‖L‖k+m+1,R, R, r, . . .).

Proof. To prove that u ∈ Lk+m,ploc (E) we argue by induction on k. The case k = 0 is

settled by Theorem 10.3.6. For the inductive step assume that u ∈ Lploc and Lu ∈ L
k−1,p
loc

implies that u ∈ Lk−1+m,ploc . We want to prove that u ∈ Lploc and Lu ∈ L
k,p
loc implies that

u ∈ Lk+m,ploc . Set v = Lu. The elliptic regularity implies that ∂iu ∈ Lploc. Moreover we
have the weak equality

∂iv = ∂iLu = L∂iu+ [∂i, L]u,

i.e.,

〈∂iv, φ〉 = 〈u, (L∂+i)
∗φ〉+ 〈u, [∂i, L]∗φ〉, ∀φ ∈ C∞0 .

To put it differently, the section ∂iu is a Lp-weak solution the equation

L(∂iu) = ∂iv − [∂i, L]u.

Observe that [∂i, L] is a p.d.o. of order ≤ m which means that the right hand side of

the above equality is in Lk−1,ploc since the inductive assumption implies that u ∈ Lk−1+m,ploc .

Invoking the inductive assumption again we deduce that ∂iu ∈ Lk−1+m,ploc , ∀i, i.e., u ∈
Lk+m,ploc .

To prove the elliptic estimate pick a sequence un ∈ C∞0 (E) such that

un → u strongly in Lk+m,ploc (E).



Analytic aspects 473

Then

Lun → Lu strongly in Lk+m,ploc (E),

and

‖un‖m+k,p,Br ≤ C(‖un‖0,p,BR
+ ‖Lun‖k,p,BR

).

The desired estimate is obtained by letting n→∞ in the above inequality. ⊓⊔

Corollary 10.3.10 (Weyl Lemma). If u ∈ Lploc(E) is an Lp-weak solution of Lu = v, and
v is smooth, then u must be smooth.

Proof. Since v is smooth we deduce v ∈ Lk,ploc ∀k ∈ Z+. Hence u ∈ Lk+m,ploc ∀k. Using
Morrey embedding theorem we deduce that u ∈ Cm,αloc ∀m ≥ 0. ⊓⊔

The results in this, and the previous subsection are local, and so extend to the more
general case of p.d.o. on manifolds. They take a particularly nice form for operators on
compact manifolds.

Let (M,g) be a compact, oriented Riemann manifold and E, F → M be two metric
vector bundles with compatible connections. Denote by L ∈ PDOm(E,F ) an elliptic
operator of order m.

Theorem 10.3.11. (a) Let u ∈ Lp(E) and v ∈ Lk,p(F ), 1 < p <∞, such that

∫

M
〈v, φ〉F dvg =

∫

M
〈u,L∗φ〉EdVg ∀φ ∈ C∞0 (F ).

Then u ∈ Lk+m,p(E), and

‖u‖k+mp,E ≤ C(‖v‖k,p,F + ‖u‖p,E),

where C = C(L, k, p).

(b) If u ∈ Cm,α(E) and v ∈ Ck,α(F ) (0 < α < 1) are such that Lu = v, then u ∈
Cm+k,α(E), and

‖u‖k+m,α,E ≤ C(‖u‖0,α,E + ‖v‖k,α,F ),

where C = C(L, k, α).

Remark 10.3.12. The regularity results and the a priori estimates we have established
so far represent only the minimal information one needs to become an user of the elliptic
theory. Regrettably, we have mentioned nothing about two important topics: equations
with non-smooth coefficients, and boundary value problems. For generalized Laplacians
these topics are discussed in great detail in [37] and [80]. The boundary value problems
for first order elliptic operators require a more delicate treatment. We refer to [16] for a
very nice presentation of this subject. ⊓⊔

Exercise 10.3.13. (Kato’s inequalities). Let (M,g) denote a compact oriented
Riemann manifold without boundary. Consider a metric vector bundle E →M equipped
with a compatible connection ∇.
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(a) Show that for every u ∈ L1,2(E), the function x 7→ |u(x)| is in L1,2(M), and moreover

|d |u(x)| | ≤ |∇u(x)|,

for almost all x ∈M .
(b) Set ∆E = ∇∗∇, and denote by ∆M the scalar Laplacian. Show that, for all u ∈
L2,2(E), we have

∆M (|u|2) = 2〈∆Eu, u〉E − 2|∇u|2.
Conclude that ∀φ ∈ C∞(M) such that φ ≥ 0, we have

∫

M
(d|u|, d(φ|u|) )g dVg ≤

∫

M
〈∆Eu, u〉EφdVg,

i.e.,
|u(x)|∆M (|u(x)|) ≤ 〈∆Eu(x), u(x)〉E weakly. ⊓⊔

Exercise 10.3.14. (Local estimates). Suppose (M,g) is a connected, oriented, Rie-
mann manifolds of dimension m, not necessarily, E0, E1 → M are two smooth hermitian
vector bundles on M , and ∇i, i = 0, 1 are Hermitian connection on Ei.

Suppose that L : C∞(E0) → C∞(E1) is an elliptic operator of order ν with smooth
coefficients. Prove that for any compact subset K ⊂ M , any relatively compact open
neighborhood U of K, and any p ∈ (1,∞), ℓ ∈ Z≥0, there exists a positive constat C
depending only on K,U, p, ℓ,∇0,∇1, and the coefficients of L such that, ∀u ∈ C∞(E0),
we have

‖u‖Lℓ+ν,p(K,E0) ≤ C
(
‖Lu‖Lℓ,p(U,E1) + ‖u‖Lp(U,E0)

)
,

where the above Sobolev norms are defined in terms of the connections ∇i. ⊓⊔

10.3.3 An application: prescribing the curvature of surfaces

In this subsection we will illustrate the power of the results we proved so far by showing how
they can be successfully used to prove an important part of the celebrated uniformization
theorem. In the process we will have the occasion to introduce the reader to some tricks
frequently used in the study of nonlinear elliptic equations. We will consider a slightly
more general situation than the one required by the uniformization theorem.

Let (M,g) be a compact, connected, oriented Riemann manifold of dimension N .
Denote by ∆ = d∗d : C∞(M) → C∞(M) the scalar Laplacian. We assume for simplicity
that

volg(M) =

∫

M
dVg = 1,

so that the average of any integrable function ϕ is defined by

ϕ =

∫

M
ϕ(x)dVg(x).

We will study the following partial differential equation.

∆u+ f(u) = s(x), (10.3.9)
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where f : R→ R, and s ∈ C∞(M) satisfy the following conditions.
(C1) The function f is smooth and strictly increasing.
(C2) There exist a > 0 and b ∈ R, such that

f(t) ≥ at+ b ∀t ∈ R.

Set

F (u) =

∫ u

0
f(t)dt.

We assume
(C3) lim|t|→∞(F (t)− st) =∞, where s denotes the average of s,

s =

∫

M
s(x)dVg.

Theorem 10.3.15. Let f and s(x) satisfy the conditions (C1), (C2), C3). Then there
exists a unique u ∈ C∞(M) such that

∆u (x) + f(u(x)) = s(x) ∀x ∈M.

Proof. The proof of this theorem will be carried out in two steps.

Step 1. Existence of a weak solution. A weak solution of (10.3.9) is a function u ∈ L1,2(M)
such that f(u(x)) ∈ L2(M), and

∫

M
{(du, dφ) + f(u)φ}dVg =

∫

M
s(x)φ(x)dVg(x), ∀φ ∈ L1,2(M).

Step 2. Regularity. We show that a weak solution is in fact a classical solution.

Proof of Step 1. We will use the direct method of the calculus of variations outlined at
the beginning of the current section. Consider the energy functional

I : L1,2(M)→ R, I(u) =

∫

M

{ 1

2
|du(x)|2 + F (u(x)) − g(x)u(x)

}
dVg(x).

This functional is not quite well defined, since there is no guarantee that F (u) ∈ L1(M)
for all u ∈ L1,2(M).

Leaving this issue aside for a moment, we can perform a formal computation à la
Riemann. Assume u is a minimizer of I, i.e.,

I(u) ≤ I(v), ∀v ∈ L1,2(M).

Thus, for all φ ∈ L1,2(M)
I(u) ≤ I(u+ tφ) ∀t ∈ R.

Hence t = 0 is a minimum of hφ(t) = I(u+tφ), so that h′φ(0) = 0 ∀φ. A simple computation
shows that

h′φ(0) =
∫

M
{(du, dφ) + f(u)φ− s(x)φ(x)}dVg = 0,

so that a minimizer of I is a weak solution provided that we deal with the integrability
issue raised at the beginning of this discussion. Anyway, the lesson we learn from this
formal computation is that minimizers of I are strong candidates for solutions of (10.3.9).

We will circumvent the trouble with the possible non-integrability of F (u) by using a
famous trick in elliptic partial differential equations called the maximum principle.
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Lemma 10.3.16. Let h : R → R be a continuous, strictly increasing function and u, v ∈
L1,2(M) such that
(i) h(u), h(v) ∈ L2(M).
(ii) ∆u+ h(u) ≥ ∆v + h(v) weakly i.e.

∫

M
{(du, dφ) + h(u)φ}dVg ≥

∫

M
{dv, dφ) + h(v)φ}dVg (10.3.10)

∀φ ∈ L1,2(M) such that φ ≥ 0 a.e. M . Then u ≥ v a.e. on M .

Proof. Let

(u− v)− = min{u− v, 0) = 1

2
{(u− v)− |u− v|}.

According to the Exercise 10.2.19 we have (u− v)− ∈ L1,2(M), and

d(u− v)− =

{
d(u− v) a.e. on {u < v}

0 a.e. on {u ≥ v}

Using φ = −(u− v) in (10.3.10) we deduce

−
∫

M

{ (
d(u− v), d(u − v)−

)
+
(
h(u)− h(v)

)(
u− v

)− }
dVg ≥ 0.

Clearly (
d(u− v), d(u − v)−

)
= |d(u− v)−|2,

and since h is nondecreasing,

(h(u) − h(v))(u − v)− ≥ 0.

Hence, ∫

M
|d(u− v)−|2 dVg ≤ −

∫

M
(h(u) − h(v) )(u − v)− dVg ≤ 0,

so that
|d(u− v)−| ≡ 0.

Since M is connected, this means (u− v)− ≡ c ≤ 0. If c < 0, then

(u− v) ≡ (u− v)− ≡ c,

so that u = v + c < v. Since h is strictly increasing we conclude
∫

M
h(u) dVg <

∫

M
h(v)dVg.

On the other hand, using φ ≡ 1 in (10.3.10), we deduce
∫

M
h(u)dVg ≥

∫

M
h(v)dVg !

Hence c cannot be negative, so that (u − v)− ≡ 0 which is another way of saying u ≥ v.
The maximum principle is proved. ⊓⊔
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Exercise 10.3.17. Assume h in the above lemma is only non-decreasing, but u and v
satisfy the supplementary condition

u ≥ v.
Show the conclusion of Lemma 10.3.16 continues to hold. ⊓⊔

We now return to the equation (10.3.9). Note first that if u and v are two weak
solutions of this equation, then

∆u+ f(u) ≥ (≤)∆v + h(v) weakly,

so that by the maximum principle u ≥ (≤) v. This shows the equation (10.3.9) has at
most one weak solution.

To proceed further we need the following a priori estimate.

Lemma 10.3.18. Let u be a weak solution of (10.3.9). If C is a positive constant such
that

f(C) ≥ sup
M

s(x),

then u(x) ≤ C a.e. on M .

Proof. The equality f(C) ≥ sup s(x) implies

∆C + f(C) ≥ s(x) = ∆u+ f(u) weakly

so the conclusion follows from the maximum principle. ⊓⊔

Fix C0 > 0 such that f(C0) ≥ sup s(x). Consider a strictly increasing C2-function
f̃ : R→ R such that

f̃(u) = f(u) for u ≤ C0,

f̃(u) is linear for u ≥ C0 + 1.

The conditions (C1) and (C2) imply that there exist A, B > 0 such that

|f̃(u)| ≤ A|u|+B. (10.3.11)

Lemma 10.3.19. If u is a weak solution of

∆u+ f̃(u) = s(x) (10.3.12)

then u is also a weak solution of (10.3.9).

Proof. We deduce as in the proof of Lemma 10.3.18 that u ≤ C0, which is precisely the
range where f coincides with f̃ . ⊓⊔

The above lemma shows that instead of looking for a weak solution of (10.3.9), we
should try to find a weak solution of (10.3.12). We will use the direct method of the
calculus of variations on a new functional

Ĩ(u) =

∫

M

{ 1

2
|du(x)|2 + F̃ (u(x))− s(x)u(x)

}
dVg(x),
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where

F̃ (u) :=

∫ u

0
f̃(t)dt.

The advantage we gain by using this new functional is clear. The inequality (10.3.11)
shows F̃ has at most quadratic growth, so that F̃ (u) ∈ L1(M), for all u ∈ L2(M). The
existence of a minimizer is a consequence of the following fundamental principle of the
calculus of variations.

Proposition 10.3.20. Let X be a reflexive Banach space and J : X → R a convex,
weakly lower semi-continuous, coercive functional, i.e., the sublevel sets

Jc = {x ; J(x) ≤ c}

are respectively convex, weakly closed and bounded in X. Then J admits a minimizer, i.e.,
there exists x0 ∈ X such that

J(x0) ≤ J(x) ∀x ∈ X.

Proof. Note that

inf
X
J(x) = inf

Jc
J(x)

Consider xn ∈ Jc such that

lim
n
J(xn) = inf J.

Since X is reflexive, and Jc is convex, weakly closed and bounded in the norm of X, we
deduce that Jc is weakly compact. Hence a (generalized) subsequence (xν) of xn converges
weakly to some x0 ∈ Jc. Using the lower semi-continuity of J we deduce

J(x0) ≤ lim inf
ν

J(xν) = inf J.

Hence x0 is a minimizer of J . The proposition is proved. ⊓⊔

The next result will conclude the proof of Step 1.

Lemma 10.3.21. Ĩ is convex, weakly lower semi-continuous and coercive (with respect to
the L1,2-norm).

Proof. The convexity is clear since F̃ is convex on account that f̃ is strictly increasing.
The functionals

u 7→ 1

2

∫

M
|du|2dVg and u 7→ −

∫

M
s(x)u(x)dVg(x)

are clearly weakly lower semi-continuous. We need to show the functional

u 7→
∫

M
F̃ (u)dVg

is also weakly lower semi-continuous.
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Since F̃ is convex, we can find α > 0, β ∈ R such that

F̃ (u)− αu− β ≥ 0.

If un → u strongly in L1,2(M) we deduce using the Fatou lemma that

∫

M
{F̃ (u)− αu− β}dVg ≤ lim inf

n→∞

∫

M
{F̃ (un)− αun − β}dVg.

On the other hand,

lim
n

∫

M
αun + βdVg =

∫

M
αu+ βdVg,

which shows that ∫

M
F̃ (u)dVg ≤ lim inf

n

∫
F̃ (un)dVg.

This means that the functional

L1,2(M) ∋ u 7→
∫

M
F̃ (u)dVg

is strongly lower semi-continuous. Thus, the sublevel sets

{
u;

∫

M
F̃ (u)dVg ≤ c

}
,

are both convex and strongly closed. The Hahn-Banach separation principle can now be
invoked to conclude these level sets are also weakly closed. We have thus established that
Ĩ is convex and weakly lower semi-continuous.

Remark 10.3.22. We see that the lower semi-continuity, and the convexity conditions
are very closely related. In some sense they are almost equivalent. We refer to [25] for
a presentation of the direct method of the calculus of variations were the lower semi-
continuity issue is studied in great detail. ⊓⊔

The coercivity will require a little more work. The key ingredient will be a Poincaré
inequality. We first need to introduce some more terminology.

For any u ∈ L2(M) we denoted by u its average. Now set

u⊥(x) = u(x)− u.

Note the average of u⊥ is 0. This choice of notation is motivated by the fact that u⊥ is
perpendicular (with respect to the L2(M)-inner product) to the kernel of the Laplacian
∆ which is the 1-dimensional space spanned by the constant functions.

Lemma 10.3.23 (Poincaré inequality). There exists C > 0 such that

∫

M
|du|2dVg ≥ C

∫

M
|u⊥|2dVg, ∀u ∈ L1,2(M).
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Proof. We argue by contradiction. Assume that for any ε > 0 there exists uε ∈ L1,2(M),
such that ∫

M
|u⊥ε |2dVg = 1, and

∫

M
|duε|2dVg ≤ ε.

The above two conditions imply that the family (u⊥ε ) is bounded in L1,2(M). Since L1,2(M)
is reflexive, we deduce that, on a subsequence

u⊥ε ⇀ v, weakly in L1,2(M).

The inclusion L1,2(M) →֒ L2(M) is compact, (Rellich-Kondrachov) so that, on a subse-
quence

u⊥ε → v strongly in L2(M).

This implies v 6= 0, since
∫

M
|v|2dVg = lim

ε

∫

M
|u⊥ε |2dVg = 1.

On the other hand,
duε = du⊥ε → 0, strongly in L2.

We conclude
∫

M
(dv, dφ) dVg = lim

ε

∫

M
(duε, dφ) dVg = 0 ∀φ ∈ L1,2(M).

In particular, ∫

M
(dv, dv) dVg = 0,

so that dv ≡ 0. Since M is connected, we deduce v ≡ c = const. Moreover,

c =

∫

M
v(x)dVg(s) = lim

ε

∫

M
u⊥ε dVg = 0.

This contradicts the fact that v 6= 0. The Poincaré inequality is proved. ⊓⊔

We can now establish the coercivity of Ĩ(u). Let κ > 0, and u ∈ L1,2(M) such that
∫

M

{1
2
|du(x)|2 + F̃ (u(x)) − s(x)u(x)

}
dVg(x) ≤ κ. (10.3.13)

Since ∫

M
|du|2 dVg =

∫

M
|du⊥|2dVg and

∫

M
|u|2 = |u|2 +

∫

M
|u⊥|2dVg,

it suffices to show that the quantities

u,

∫

M
|u⊥|2dVg,

∫

M
|du⊥|dVg

are bounded. In view of the Poincaré inequality, the boundedness of
∫

M
|du⊥|2dVg
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implies the boundedness of ‖u⊥‖2,M , so that we should concentrate only on u and ‖du⊥‖2.
The inequality (10.3.13) can be rewritten as

∫

M

{1
2
|du⊥|2 + F̃ (u)− s⊥u⊥

}
dVg − s · u ≤ c.

The Poincaré and Cauchy inequalities imply

C‖u⊥‖22 − ‖s⊥‖2 · ‖u⊥‖2 +
∫

M
F̃ (u)dVg − s · u ≤ κ.

Since volg(M) = 1, and F̃ is convex, we have a Jensen-type inequality

F̃

(∫

M
udVg

)
≤
∫

M
F̃ (u)dVg,

so that

C‖u⊥‖22 − ‖s⊥‖2 · ‖u⊥‖2 + F̃ (u)− s · u ≤ κ. (10.3.14)

Set P (t) := Ct2 − ‖s⊥‖2t, and let m = inf P (t). From the inequality (10.3.14) we deduce

F̃ (u)− s · u ≤ κ−m.

Using condition (C3) we deduce that |u| must be bounded. Feed this information back
in (10.3.14). We conclude that P (‖u⊥‖2) must be bounded. This forces ‖u⊥‖2 to be
bounded. Thus Ĩ is coercive, and Lemma 10.3.21 is proved. ⊓⊔

Step 2. The regularity of the minimizer. We will use a technique called bootstrapping,
which blends the elliptic regularity theory, and the Sobolev embedding theorems, to grad-
ually improve the regularity of the weak solution.

Let u be the weak solution of (10.3.12). Then u(x) is a weak L2 solution of

∆u = h(x) on M,

where h(x) = −f̃(u(x))− s(x). Note that since the growth of f̃ is at most linear, we have
f̃(u(x)) ∈ L2(M). The elliptic regularity theory implies that u ∈ L2,2(M). Using Sobolev
(or Morrey) embedding theorem we can considerably improve the integrability of u. We
deduce that

(i) either u ∈ Lq(M) if −N/q ≤ 2−N/2 ≤ 0 (dimM = N),

(ii) or u is Hölder continuous if 2−N/2 > 0.

In any case, this shows u(x) ∈ Lq1(M), for some q1 > 2, which implies h(x) ∈ Lq1(M).
Using again elliptic regularity we deduce u ∈ L2,q1 and Sobolev inequality implies that
u ∈ Lq2(M) for some q2 > q1.

After a finite number of steps we conclude that h(x) ∈ Lq(M), for all q > 1. Elliptic
regularity implies u ∈ L2,q(M), for all q > 1. This implies h(x) ∈ L2,q(M) ,for all q > 1.
Invoking elliptic regularity again we deduce that u ∈ L4,q(M), for any q > 1. (At this
point it is convenient to work with f , rather than with f̃ which was only C2). Feed this
back in h(x), and regularity theory improves the regularity of u two orders at a time. In
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view of Morrey embedding theorem the conclusion is clear: u ∈ C∞(M). The proof of
Theorem 10.3.15 is complete. ⊓⊔

From the theorem we have just proved we deduce immediately the following conse-
quence.

Corollary 10.3.24. Let (M,g) be a compact, connected, oriented Riemann manifold and
s(x) ∈ C∞(M). Assume volg(M) = 1. Then the following two conditions are equivalent.
(a) s =

∫
M s(x)dVg > 0

(b) For every λ > 0 there exists a unique u = uλ ∈ C∞(M) such that

∆u+ λeu = s(x). (10.3.15)

Proof. (a) ⇒ (b) follows from Theorem 10.3.15.
(b) ⇒ (a) follows by multiplying (10.3.15) with v(x) ≡ 1, and then integrating by parts
so that

s̄ = λ

∫

M
eu(x)dVg(x) > 0. ⊓⊔

Although the above corollary may look like a purely academic result, it has a very
nice geometrical application. We will use it to prove a special case of the celebrated
uniformization theorem.

Definition 10.3.25. Let M be a smooth manifold. Two Riemann metrics g1 and g2 are
said to be conformal if there exists f ∈ C∞(M), such that g2 = efg1. ⊓⊔

Exercise 10.3.26. Let (M,g) be an oriented Riemann manifold of dimension N and
f ∈ C∞(M). Denote by g̃ the conformal metric g̃ = efg. If s(x) is the scalar curvature of
g and s̃ is the scalar curvature of g̃ show that

s̃(x) = e−f{s(x) + (N − 1)∆gf −
(N − 1)(N − 2)

4
|df(x)|2g}

where ∆g denotes the scalar Laplacian of the metric g while | · |g denotes the length
measured in the metric g. ⊓⊔

Remark 10.3.27. A long standing problem in differential geometry, which was only
relatively recently solved, is the Yamabe problem:

“If (M,g) is a compact oriented Riemann manifold, does there exist a metric conformal
to g whose scalar curvature is constant?”

In dimension 2 this problem is related to the uniformization problem of complex anal-
ysis.

The solution of the Yamabe problem in its complete generality is due to the combined
efforts of T. Aubin, [8, 9] and R. Schoen [87]. For a very beautiful account of its proof we
recommend the excellent survey of J. Lee and T.Parker, [64]. One can formulate a more
general question than the Yamabe problem.

Given a compact oriented Riemann manifold (M,g) decide whether a smooth function
s(x) on M is the scalar curvature of some metric on M conformal to g.
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This problem is known as the Kazdan-Warner problem. The case dimM = 2 is com-
pletely solved in [57]. The higher dimensional situation dimM > 2 is far more complicated,
both topologically and analytically. ⊓⊔

Theorem 10.3.28 (Uniformization Theorem). Let (Σ, g) be a compact, oriented Riemann
manifold of dimension 2. Assume volg(Σ) = 1. If χ(Σ) < 0 (or equivalently if its genus
is ≥ 2) then there exists a unique metric g̃ conformal to g such that

s(g̃) ≡ −1.

Proof. We look for g̃ of the form g̃ = eug. Using Exercise 10.3.26 we deduce that u should
satisfy

−1 = e−u{s(x) + ∆u},

i.e.

∆u+ eu = −s(x),

where s(x) is the scalar curvature of the metric g. The Gauss-Bonnet theorem implies
that

s = 4πχ(Σ) < 0

so that the existence of u is guaranteed by Corollary 10.3.24. The uniformization theorem
is proved. ⊓⊔

On a manifold of dimension 2 the scalar curvature coincides up to a positive factor
with the sectional curvature. The uniformization theorem implies that the compact ori-
ented surfaces of negative Euler characteristic admit metrics of constant negative sectional
curvature. Now, using the Cartan-Hadamard theorem we deduce the following topological
consequence.

Corollary 10.3.29. The universal cover of a compact, oriented surface Σ of negative
Euler characteristic is diffeomorphic to C. ⊓⊔

Remark 10.3.30. The “inverse” of the covering projection π : C→ Σ is classically called
a uniformizing parameter. It is very similar to the angular coordinate θ on the circle
S1. This is a uniformizing parameter on the circle, which is an “inverse” of the universal
covering map R ∋ θ 7→ eiθ ∈ S1. ⊓⊔

In the following exercises (M,g) denotes a compact, oriented Riemann manifold with-
out boundary.

Exercise 10.3.31. Fix c > 0. Show that for every f ∈ L2(M) the equation

∆u+ cu = f

has an unique solution u ∈ L2,2(M). ⊓⊔
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Exercise 10.3.32. Consider a smooth function f :M×R→ R such that for every x ∈M
the function u 7→ f(x, u) is increasing. Assume that the equation

∆gu = f(x, u) (10.3.16)

admits a pair of comparable sub/super-solutions, i.e., there exist functions u0, U0 ∈ L1,2(M)∩
L∞(M) such that

U0(x) ≥ u0(x), a.e. onM,

and

∆gU0 ≥ f(x,U0(x)) ≥ f(x, u0(x)) ≥ ∆gu0, weakly in L1,2(M).

Fix c > 0, and define (un)n≥1 ⊂ L2,2(M) inductively as the unique solution of the equation

∆un(x) + cun(x) = cun−1(x) + f(x, un−1(x)).

(a) Show that

u0(x) ≤ u1(x) ≤ u2(x) ≤ · · · ≤ un(x) ≤ · · · ≤ U0(x) ∀x ∈M.

(b) Show that un converges uniformly on M to a solution u ∈ C∞(M) of (10.3.16) satis-
fying

u0 ≤ u ≤ U0.

(c) Prove that the above conclusions continue to hold, even if the monotonicity assumption
on f is dropped. ⊓⊔

10.4 Elliptic operators on compact manifolds

The elliptic operators on compact manifolds behave in many respects as finite dimensional
operators. It is the goal of this last section to present the reader some fundamental analytic
facts which will transform the manipulation with such p.d.o. into a less painful task.

The main reason why these operators are so “friendly” is the existence of a priori
estimates. These estimates, coupled with the Rellich-Kondratchov compactness theorem,
are the keys which will open many doors.

10.4.1 The Fredholm theory

Throughout this section we assume that the reader is familiar with some fundamental facts
about unbounded linear operators. We refer to [18] Ch.II for a very concise presentation
of these notions. An exhaustive presentation of this subject can be found in [56].

Definition 10.4.1. (a) Let X, Y be two Hilbert spaces over K = R, C, and

T : D(T ) ⊂ X → Y

be a linear operator, not necessarily continuous, defined on the linear subspace D(T ) ⊂ X.
The operator T is said to be densely defined if its domain D(T ) is dense in X.
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The operator T is said to be closed if its graph,

ΓT :=
{
(x, Tx) ∈ D(T )× Y ⊂ X × Y

}
,

is a closed subspace in X × Y .
(b) Let T : D(T ) ⊂ X → Y be a closed, densely defined linear operator. The djoint of T
is the operator T ∗ : D(T ∗) ⊂ Y → X defined by its graph

ΓT ∗ = {(y∗, x∗) ∈ Y ×X ; 〈x∗, x〉 = 〈y∗, Tx〉 ∀x ∈ D(T ),

where 〈·, ·〉 : Z × Z → K denotes the inner product3 in a Hilbert space Z.
(c) A closed, densely defined operator T : D(T ) ⊂ X → X is said to be selfadjoint if
T = T ∗. ⊓⊔

Remark 10.4.2. (a) In more concrete terms, the operator T : D(T ) ⊂ X → Y is closed if,
for any sequence (xn) ⊂ D(T ), such that (xn, Txn)→ (x, y), it follows that (i) x ∈ D(T ),
and (ii) y = Tx.

(b) If T : X → Y is a closed operator, then T is bounded (closed graph theorem).
Also note that if T : D(T ) ⊂ X → Y is a closed, densely defined operator, then kerT is a
closed subspace of X.

(c) One can show that the adjoint of any closed, densely defined operator, is a closed,
densely defined operator.

(d) The closed, densely defined operator T : D(T ) ⊂ X → X is selfadjoint if the
following two conditions hold.

• 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ D(T ) and

• D(T ) =
{
y ∈ X; ∃C > 0, |〈Tx, y〉| ≤ C|x|, ∀x ∈ D(T )

}
.

If only the first condition is satisfied the operator T is called symmetric. ⊓⊔

Let (M,g) be a compact, oriented Riemann manifold, E,F two metric vector bundles
with compatible connections, and L ∈ PDOk = PDOk(E,F ), a k-th order elliptic p.d.o.
We will denote the various L2 norms by ‖ · ‖, and the Lk,2-norms by ‖ · ‖k.
Definition 10.4.3. The analytical realization of L is the linear operator

La : D(La) ⊂ L2(E)→ L2(E), D(La) = Lk,2(E),

given by u 7→ Lu for all u ∈ Lk,2(E). ⊓⊔

Proposition 10.4.4. (a) The analytical realization La of L is a closed, densely defined
linear operator.
(b) If L∗ : C∞(F )→ C∞(E) is the formal adjoint of L then

(L∗)a = (La)
∗.

3When K = C, we use the convention that the inner product 〈 ·, · 〉 is conjugate linear in the second
variable, i.e., 〈z1, λz2〉 = λ̄〈z1, z2〉, ∀λ ∈ C, z1, z2 ∈ Z.
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Proof. (a) Since C∞(E) ⊂ D(La) = Lk,2(E) is dense in L2(E) , we deduce that La is
densely defined. To prove that La is also closed, consider a sequence (un) ⊂ Lk,2(E) such
that

un → u strongly in L2(E), and Lun → v strongly in L2(F ).

From the elliptic estimates we deduce

‖un − um‖k ≤ C
(
‖Lun − Lum‖+ ‖un − um‖

)
→ 0 as m,n→∞.

Hence (un) is a Cauchy sequence in Lk,2(E), so that un → u in Lk,2(E). It is now clear
that v = Lu.
(b) From the equality

∫

M
〈Lu, v〉dVg =

∫

M
〈u,L∗v〉dVg, ∀u ∈ Lk,2(E), v ∈ Lk,2(F ),

we deduce
D
(
(La)

∗ ) ⊃ D
(
(L∗)a

)
= Lk,2(F ),

and (La)
∗ = (L∗)a on Lk,2(F ). To prove that

D
(
(La)

∗ ) ⊂ D
(
(L∗)a

)
= Lk,2(F )

we need to show that if v ∈ L2(F ) is such that ∃C > 0 with the property that

∣∣∣∣
∫

M
〈Lu, v〉dVg

∣∣∣∣ ≤ C‖u‖, ∀u ∈ Lk,2(E),

then v ∈ Lk,2(F ). Indeed, the above inequality shows that the functional

u 7→
∫

M
〈Lu, v〉dVg

extends to a continuous linear functional on L2(E). Hence, there exists φ ∈ L2(E) such
that ∫

M

〈
(L∗)∗u, v

〉
dVg =

∫

M
〈u, φ〉dVg ∀u ∈ Lk,2(E).

In other words, v is a L2-weak solution of the elliptic equation L∗v = φ. Using elliptic
regularity theory we deduce v ∈ Lk,2(M). The proposition is proved. ⊓⊔

Following the above result we will not make any notational distinction between an
elliptic operator (on a compact manifold) and its analytical realization.

Definition 10.4.5. (a) Let X and Y be two Hilbert spaces over K = R, C and suppose
that T : D(T ) ⊂ X → Y is a closed, densely defined linear operator. The operator T is
said to be semi-Fredholm if the following hold.

(i) dimker T <∞ and

(ii) The range R (T ) of T is closed.
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(b) The operator T is called Fredholm if both T and T ∗ are semi-Fredholm. In this case,
the integer

indT := dimK ker T − dimK ker T ∗

is called the Fredholm index of T . ⊓⊔

Remark 10.4.6. The above terminology has its origin in the work of Ivar Fredholm at
the twentieth century. His result, later considerably generalized by F. Riesz, states that
if K : H → H is a compact operator from a Hilbert space to itself, then 1H + K is a
Fredholm operator of index 0. ⊓⊔

Consider again the elliptic operator L of Proposition 10.4.4.

Theorem 10.4.7. The operator La : D(La) ⊂ L2(E)→ L2(F ) is Fredholm.

Proof. The Fredholm property is a consequence of the following compactness result.

Lemma 10.4.8. Any sequence (un)n≥0 ⊂ Lk,2(E) such that
{
‖un‖ + ‖Lun‖

}
n≥0 is

bounded contains a subsequence strongly convergent in L2(E).

Proof. Using elliptic estimates we deduce that

‖un‖k ≤ C(‖Lun‖+ ‖un‖) ≤ const.

Hence (un) is also bounded in Lk,2(E). On the other hand, since M is compact, the space
Lk,2(E) embeds compactly in L2(E). The lemma is proved. ⊓⊔

We will first show that dimkerL <∞. In the proof we will rely on the classical result
of F. Riesz which states that a Banach space is finite dimensional if and only if its bounded
subsets are precompact (see [18], Chap. VI).

Note first that, according to Weyl’s lemma kerL ⊂ C∞(E). Next, notice that kerL is
a Banach space with respect to the L2-norm since according to Remark 10.4.2 (a) kerL
is closed in L2(E). We will show that any sequence (un) ⊂ kerL which is also bounded
in the L2-norm contains a subsequence convergent in L2. This follows immediately from
Lemma 10.4.8 since ‖un‖+ ‖Lun‖ = ‖un‖ is bounded.

To prove that the range R (T ) is closed, we will rely on the following very useful
inequality, a special case of which we have seen at work in Subsection 9.3.3.

Lemma 10.4.9 (Poincaré inequality). There exists C > 0 such that

‖u‖ ≤ C‖Lu‖,

for all u ∈ Lk,2(E) which are L2-orthogonal to kerL, i.e.,

∫

M
〈u, φ〉dVg = 0 ∀φ ∈ kerL.
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Proof. We will argue by contradiction. Denote by X ⊂ Lk,2(E) the subspace consisting
of sections L2-orthogonal to kerL. Assume that for any n > 0 there exists un ∈ X such
that

‖un‖ = 1 and ‖Lun‖ ≤ 1/n.

Thus, ‖Lun‖ → 0, and in particular, ‖un‖ + ‖Lun‖ is bounded. Using Lemma 10.4.8 we
deduce that a subsequence of (un) is convergent in L2(E) to some u. Note that ‖u‖ = 1.
It is not difficult to see that in fact u ∈ X. We get a sequence

(un, Lun) ⊂ ΓL = the graph of L,

such that (un, Lun) → (u, 0). Since L is closed, we deduce u ∈ D(L) and Lu = 0. Hence
u ∈ kerL ∩X = {0}. This contradicts the condition ‖u‖ = 1. ⊓⊔

We can now conclude the proof of Theorem 10.4.7. Consider a sequence (vn) ⊂ R(L)
such that vn → v in L2(F ). We want to show v ∈ R(L).

For each vn we can find a unique un ∈ X = (kerL)⊥ such that

Lun = vn.

Using the Poincaré inequality we deduce

‖un − um‖ ≤ C‖vn − vm‖.

When we couple this inequality with the elliptic estimates we get

‖un − um‖k ≤ C(‖Lun − Lum‖+ ‖un − um‖) ≤ C‖vn − vm‖ → 0 as m,n→∞.

Hence (un) is a Cauchy sequence in Lk,2(E) so that un → u in Lk,2(E). Clearly Lu = v,
so that v ∈ R(L).

We have so far proved that kerL is finite dimensional, and R (L) is closed, i.e. La is
semi-Fredholm. Since (La)

∗ = (L∗)a, and L∗ is also an elliptic operator, we deduce (La)
∗

is also semi-Fredholm. This completes the proof of Theorem 10.4.7. ⊓⊔

Using the closed range theorem of functional analysis we deduce the following impor-
tant consequence.

Corollary 10.4.10 (Abstract Hodge decomposition). Any k-th order elliptic operator L :
C∞(E)→ C∞(F ) over the compact manifoldM defines natural orthogonal decompositions
of L2(E) and L2(F ),

L2(E) = kerL⊕ R(L∗) and L2(F ) = kerL∗ ⊕ R(L). ⊓⊔

Corollary 10.4.11. If kerL∗ = 0 then for every v ∈ L2(F ) the partial differential equation
Lu = v admits at least one weak L2-solution u ∈ L2(E). ⊓⊔

The last corollary is really unusual. It states the equation Lu = v has a solution
provided the dual equation L∗v = 0 has no nontrivial solution. A nonexistence hypothesis
implies an existence result! This partially explains the importance of the vanishing results
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in geometry, i.e., the results to the effect that kerL∗ = 0. With an existence result in
our hands presumably we are more capable of producing geometric objects. In the next
chapter we will describe one powerful technique of producing vanishing theorems based
on the so called Weitzenböck identities.

Corollary 10.4.12. Over a compact manifold

kerL = kerL∗L and kerL∗ = kerLL∗.

Proof. Clearly kerL ⊂ kerL∗L. Conversely, let ψ ∈ C∞(E) such that L∗Lψ = 0. Then

‖Lψ‖2 =

∫

M
〈LψLψ〉dVg =

∫

M
〈L∗Lψ,ψ〉dVg = 0. ⊓⊔

The Fredholm property of an elliptic operator has very deep topological ramifications
culminating with one of the most beautiful results in mathematics: the Atiyah-Singer
index theorems. Unfortunately, this would require a lot more extra work to include it
here. However, in the remaining part of this subsection we will try to unveil some of the
natural beauty of elliptic operators. We will show that the index of an elliptic operator
has many of the attributes of a topological invariant.

We stick to the notations used so far. Denote by Ellk(E,F ) the space of elliptic
operators C∞(E) → C∞(F ) of order k. By using the attribute space when referring to
Ellk we implicitly suggested that it carries some structure. It is not a vector space, it
is not an affine space, it is not even a convex set. It is only a cone in the linear space
PDO(m), but it carries a natural topology which we now proceed to describe.

Let L1, L2 ∈ Ellk(E,F ). We set

δ(L1, L2) = sup
{
‖L1u− L2u‖; ‖u‖k = 1,

}
.

Define
d(L1, L2) = max

{
δ(L1, L2), δ(L

∗
1, L

∗
2),
}
.

We let the reader check that (Ellk, d) is indeed a metric space. A continuous family of
elliptic operators (Lλ)λ∈Λ, where Λ is a topological space, is then a continuous map

Λ ∋ λ 7→ Lλ ∈ Ellk .

Roughly speaking, this means that the coefficients of Lλ, and their derivatives up to order
k depend continuously upon λ.

Theorem 10.4.13. The index map

ind : Ellk(E,F )→ Z, L 7→ ind (L)

is continuous.

The proof relies on a very simple algebraic trick which requires some analytical foun-
dation.

Let X, Y be two Hilbert spaces. For any Fredholm operator L : D(L) ⊂ X → Y denote
by ıL : kerL → X (respectively by PL : X → kerL) the natural inclusion kerL →֒ X
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(respectively the orthogonal projection X → kerL). If Li : D(Li) ⊂ X → Y (i = 0, 1) are
two Fredholm operators define

RL0(L1) : D(L1)⊕ kerL∗0 ⊂ X ⊕ kerL∗0 → Y ⊕ kerL0

by
RL0(L1)(u, φ) = (L1u+ ıL∗

0
φ, PL0u), u ∈ D(L1), φ ∈ kerL∗0.

In other words, the operator RL0(L1) is given by the block decomposition

RL0(L1) =

[
L1 ıL∗

0

PL0 0

]
.

We will call RL0(L1) is the regularization of L1 at L0. The operator L0 is called the center
of the regularization. For simplicity, when L0 = L1 = L, we write

RL = RL(L).

The result below lists the main properties of the regularization.

Lemma 10.4.14. (a) RL0(L1) is a Fredholm operator.
(b) R∗L0

(L1) = RL∗
0
(L∗1).

(c) RL0 is invertible (with bounded inverse). ⊓⊔

Exercise 10.4.15. Prove the above lemma. ⊓⊔

We strongly recommend the reader who feels less comfortable with basic arguments of
functional analysis to try to provide the no-surprise proof of the above result. It is a very
good “routine booster”.

Proof of Theorem 10.4.13 Let L0 ∈ Ellk(E,F ). We have to find r > 0 such that,
∀L ∈ Ellk(E,F ) satisfying d(L0, L) ≤ r, we have

ind (L) = ind (L0).

We will achieve this in two steps.

Step 1. We will find r > 0 such that, for any L satisfying d(L0, L) < r, the regularization
of L at L0 is invertible, with bounded inverse.

Step 2. We will conclude that if d(L,L0) < r, where r > 0 is determined at Step 1, then
ind (L) = ind (L0).

Step 1. Since RL0(L) is Fredholm, it suffices to show that both RL0(L), and RL∗
0
(L∗)

are injective, if L is sufficiently close to L0. We will do this only for RL0(L), since the
remaining case is entirely similar.

We argue by contradiction. Assume that there exists a sequence (un, φn) ⊂ Lk,2(E)×
kerL∗0, and a sequence (Ln) ⊂ Ellk(E,F ) such that

‖un‖k + ‖φn‖ = 1, (10.4.1)

RL0(Ln)(un, φn) = (0, 0), (10.4.2)
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and

d(L0, Ln) ≤ 1/n. (10.4.3)

From (10.4.1) we deduce that (φn) is a bounded sequence in the finite dimensional space
kerL∗0. Hence it contains a subsequence strongly convergent in L2, and in fact in any
Sobolev norm. Set φ := limφn. Note that ‖φ‖ = limn ‖φn‖. Using (10.4.2) we deduce

Lnun = −φn,

i.e., the sequence (Lnun) is strongly convergent to −φ in L2(F ). The condition (10.4.3)
now gives

‖L0un − Lnun‖ ≤ 1/n,

i.e.,

lim
n
Lnun = lim

n
L0un = −φ ∈ L2(F ).

Since un ⊥ kerL0 (by (10.4.2)) we deduce from the Poincaré inequality combined with
the elliptic estimates that

‖un − um‖k ≤ C‖L0un − L0um‖ → 0 as m,n→∞.

Hence the sequence un strongly converges in Lk,2 to some u. Moreover,

lim
n
‖un‖k = ‖u‖k and ‖u‖k + ‖φ‖ = 1.

Putting all the above together we conclude that there exists a pair (u, φ) ∈ Lk,2(E)×kerL∗0,
such that

‖u‖k + ‖φ‖ = 1,

L0u = −φ and u ⊥ kerL. (10.4.4)

This contradicts the abstract Hodge decomposition which coupled with (10.4.4) implies
u = 0 and φ = 0. Step 1 is completed.

Step 2. Let r > 0 as determined at Step 1, and L ∈ Ellk(E,F ). Hence

RL0(L) =

[
L ıL∗

0

PL0 0

]

is invertible. We will use the invertibility of this operator to produce an injective operator

kerL∗ ⊕ kerL0 →֒ kerL⊕ kerL∗0.

This implies dimkerL∗ + dimkerL0 ≤ dimkerL+ dimkerL∗0, i.e.,

ind (L0) ≤ ind(L).

A dual argument, with L replaced by L∗, and L0 replaced by L∗0, will produce the opposite
inequality, and thus finish the proof of Theorem 10.4.13. Now let us provide the details.
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First, we orthogonally decompose

L2(E) = (kerL)⊥ ⊕ kerL and L2(F ) = (kerL∗)⊥ ⊕ kerL∗.

Set U := kerL⊕ kerL∗0, and V := kerL∗ ⊕ kerL0. We will regard RL0(L) as an operator

RL0(L) : (kerL)
⊥ ⊕ U → (kerL∗)⊥ ⊕ V.

As such, it has a block decomposition

RL0(L) =

[
T A
B C

]
,

where

T : Lk,2(E) ∩ (kerL)⊥ ⊂ (kerL)⊥ → (kerL∗)⊥ = Range (L)

denotes the restriction of L to (kerL)⊥. The operator T is invertible and its inverse is
bounded.

Since RL0(L) is invertible, for any v ∈ V we can find a unique pair (φ, u) ∈ (kerL)⊥⊕
U , such that

RL0(L)

[
φ
u

]
=

[
0
v

]
.

This means

Tφ+Au = 0 and Bφ+Cu = v.

We can view both φ and u as (linear) functions of v, φ = φ(v) and u = u(v). We claim
the map v 7→ u = u(v) is injective.

Indeed, if u(v) = 0 for some v, then Tφ = 0, and since T is injective φ must be zero.
From the equality v = Bφ+ Cu we deduce v = 0. We have thus produced the promised
injective map V →֒ U . Theorem 10.4.13 is proved. ⊓⊔

The theorem we have just proved has many topological consequences. We mention
only one of them.

Corollary 10.4.16. Let L0, L1 ∈ Ellk(E,F ) if σk(L0) = σk(L1) then ind (L0) = ind (L1).

Proof. For every t ∈ [0, 1] Lt = (1 − t)L0 + tL1 is a k-th order elliptic operator depend-
ing continuously on t. (Look at the symbols). Thus ind (Lt) is an integer depending
continuously on t so it must be independent of t. ⊓⊔

This corollary allows us to interpret the index as as a continuous map from the elliptic
symbols to the integers. The analysis has vanished! This is (almost) a purely algebraic-
topologic object. There is one (major) difficulty. These symbols are “polynomials with
coefficients in some spaces of endomorphism”.

The deformation invariance of the index provides a very powerful method for com-
puting it by deforming a “complicated” situation to a “simpler” one. Unfortunately, our
deformation freedom is severely limited by the “polynomial” character of the symbols.
There aren’t that many polynomials around. Two polynomial-like elliptic symbols may
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be homotopic in a larger classes of symbols which are only positively homogeneous along
the fibers of the cotangent bundle).

At this point one should return to analysis, and try to conceive some operators that
behave very much like elliptic p.d.o. and have more general symbols. Such objects ex-
ist, and are called pseudo-differential operators. We refer to [63, 91] for a very efficient
presentation of this subject. We will not follow this path, but we believe the reader who
reached this point can complete this journey alone.

Exercise 10.4.17. Let L ∈ Ellk(E,F ). A finite dimensional subspace V ⊂ L2(F ) is
called a stabilizer of L if the operator

SL,V : Lk,2(E) ⊕ V → L2(F ) SL,V (u⊕ v) = Lu+ v

is surjective.
(a) Show that any subspace V ⊂ L2(F ) containing kerL∗ is a stabilizer of L. More gener-
ally, any finite dimensional subspace of L2(F ) containing a stabilizer is itself a stabilizer.
Conclude that if V is a stabilizer, then

indL = dimkerSL,V − dimV. ⊓⊔

Exercise 10.4.18. Consider a compact manifold Λ and L : Λ→ Ellk(E,F ) a continuous
family of elliptic operators.
(a) Show that the family L admits an uniform stabilizer, i.e., there exists a finite dimen-
sional subspace V ⊂ L2(F ), such that V is a stabilizer of each operator Lλ in the family
L.
(b) Show that if V is an uniform stabilizer of the family L, then the family of subspaces
kerSLλ,V defines a vector bundle over Λ.
(c) Show that if V1 and V2 are two uniform stabilizers of the family L, then we have a
natural isomorphism vector bundles

kerSL,V1 ⊕ V 2
∼= kerSL,V2 ⊕ V1.

In particular, we have an isomorphism of line bundles

det kerSL,V1 ⊗ detV ∗1 ∼= det kerSL,V2 ⊗ detV ∗2 .

Thus the line bundle det kerSL,V ⊗ detV ∗ → Λ is independent of the uniform stabilizer
V . It is called the determinant line bundle of the family L and is denoted by det ind(L).

⊓⊔

10.4.2 Spectral theory

We mentioned at the beginning of this section that the elliptic operators on compact
manifold behave very much like matrices. Perhaps nothing illustrates this feature better
than their remarkable spectral properties. This is the subject we want to address in this
subsection.

Consider as usual, a compact, oriented Riemann manifold (M,g), and a complex vec-
tor bundle E → M endowed with a Hermitian metric 〈•, •〉 and compatible connection.
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Throughout this subsection L will denote a k-th order, formally selfadjoint elliptic operator
L : C∞(E)→ C∞(E). Its analytical realization

La : L
k,2(E) ⊂ L2(E)→ L2(E),

is a selfadjoint, elliptic operator, so its spectrum spec(L) is an unbounded closed subset of
R. Note that for any λ ∈ R the operator λ−La is the analytical realization of the elliptic
p.d.o. λ1E − L, and in particular, the operator λ− La is a Fredholm, so that

λ ∈ spec(L)⇐⇒ ker(λ− L) 6= 0.

Thus, the spectrum of L consists only of eigenvalues of finite multiplicities. The main
result of this subsection states that one can find an orthonormal basis of L2(E) which
diagonalizes La.

Theorem 10.4.19. Let L ∈ Ellk(E) be a formally selfadjoint elliptic operator. Then the
following are true.
(a) The spectrum spec(L) is real, spec(L) ⊂ R, and for each λ ∈ spec(L) , the subspace
ker(λ− L) is finite dimensional and consists of smooth sections.
(b) The spectrum spec(L) is a closed, countable, discrete, unbounded set.
(c) There exists an orthogonal decomposition

L2(E) =
⊕

λ∈spec(L)
ker(λ− L).

(d) Denote by Pλ the orthogonal projection onto ker(λ− L). Then

Lk,2(E) = D(La) =
{
ψ ∈ L2(E) ;

∑

λ

λ2‖Pλψ‖2 <∞
}
.

Part (c) of this theorem allows one to write

1 =
∑

λ

Pλ and L =
∑

λ

λPλ.

The first identity is true over the entire L2(E) while part (d) of the theorem shows the
domain of validity of the second equality is precisely the domain of L.

Proof. (a) We only need to show that ker(λ− L) consists of smooth sections. In view of
Weyl’s lemma this is certainly the case since λ− L is an elliptic operator.
(b)&(c) We first show spec(L) is discrete.

More precisely, given λ0 ∈ spec(L), we will find ε > 0 such that ker(λ − L) = 0,
∀|λ− λ0|, ε, λ 6= λ0. Assume for simplicity λ0 = 0.

We will argue by contradiction. Thus there exist λn → 0 and un ∈ C∞(E), such that

Lun = λnun, ‖un‖ = 1.

Clearly un ∈ R(L) = (kerL∗)⊥ = (kerL)⊥, so that the Poincaré inequality implies

1 = ‖un‖ ≤ C‖Lun‖ = Cλn → 0.
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Thus spec(L) must be a discrete set.

Now consider t0 ∈ R \ σ(L). Thus t0 − L has a bounded inverse

T = (t0 − L)−1.

Obviously T is a selfadjoint operator. We claim that T is also a compact operator.

Assume (vn) is a bounded sequence in L2(E). We have to show un = Tvn admits a
subsequence which converges in L2(E). Note that un is a solution of the partial differential
equation

(t0 − L)un = t0un − Lun = vn.

Using the elliptic estimates we deduce

‖un‖k ≤ C(‖un‖+ ‖vn‖).

Obviously un = Tvn is bounded in L2(E), so the above inequality implies ‖un‖k is
also bounded. The desired conclusion follows from the compactness of the embedding
Lk,2(E)→ L2(E).

Thus T is a compact, selfadjoint operator. We can now use the spectral theory of such
well behaved operators as described for example in [18], Chap. 6. The spectrum of T is a
closed, bounded, countable set with one accumulation point, µ = 0. Any µ ∈ spec(T )\{0}
is an eigenvalue of T with finite multiplicity, and since kerT = 0,

L2(E) =
⊕

µ∈spec(T )\{0}
ker(µ − T ).

Using the equality L = t0 − T−1 we deduce

σ(L) = {t0 − µ−1 ; µ ∈ spec(T ) \ {0}}.

This proves (b)&(c).

To prove (d), note that if ψ ∈ Lk,2(E), then Lψ ∈ L2(E), i.e.,

‖
∑

λ

λPλψ‖2 =
∑

λ

λ2‖Pλψ‖2 <∞.

Conversely, if ∑

λ

λ2‖Pλψ‖2 <∞,

consider the sequence of smooth sections

φn =
∑

|λ|≤n
λPλψ

which converges in L2(E) to

φ =
∑

λ

λPλψ.



496 Elliptic equations on manifolds

On the other hand, φn = Lψn, where

ψn =
∑

|λ|≤n
Pλψ

converges in L2(E) to ψ. Using the elliptic estimates we deduce

‖ψn − ψm‖k ≤ C(‖ψn − ψm‖+ ‖φn − φm‖)→ 0 as n,m→∞.
Hence ψ ∈ Lk,2(E) as a Lk,2-limit of smooth sections. The theorem is proved. ⊓⊔

Example 10.4.20. Let M = S1, E = CM and

L = −i ∂
∂θ

: C∞(S1,C)→ C∞(S1,C).

The operator L is clearly a formally selfadjoint elliptic p.d.o. The eigenvalues and the
eigenvectors of L are determined from the periodic boundary value problem

−i∂u
∂θ

= λu, u(0) = u(2π),

which implies
u(θ) = C exp(iλθ) and exp(2πλi) = 1.

Hence
spec(L) = Z and ker(n− L) = spanC{exp(inθ)}.

The orthogonal decomposition

L2(S1) =
⊕

n

ker(n− L)

is the usual Fourier decomposition of periodic functions. Note that

u(θ) =
∑

n

un exp(inθ) ∈ L1,2(S1)

if and only if ∑

n∈Z
(1 + n2)|un|2 <∞. ⊓⊔

The following exercises provide a variational description of the eigenvalues of a formally
selfadjoint elliptic operator L ∈ Ellk(E) which is bounded from below i.e.

inf
{∫

M
〈Lu, u〉dvg; u ∈ Lk,2(E), ‖u‖ = 1

}
> −∞.

Exercise 10.4.21. Let V ∈ Lk,2(E) be a finite dimensional invariant subspace of L, i.e.
L(V ) ⊂ V . Show that
(a) The space V consists only of smooth sections.
(b) The quantity

λ(V ⊥) = inf
{∫

M
〈Lu, u〉dvg ; u ∈ Lk,2(E) ∩ V ⊥, ‖u‖ = 1

}

is an eigenvalue of L. (V ⊥ denotes the orthogonal complement of V in L2(E)). ⊓⊔
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Exercise 10.4.22. Set V0 = 0, and denote λ0 = λ(V ⊥0 ), According to the previous
exercise λ0 is an eigenvalue of L. Pick φ0 an eigenvector corresponding to λ0 such that
‖φ0‖ = 1 and form V1 = V0⊕ span {φ0}. Set λ1 = λ(V ⊥1 ) and iterate the procedure. After
m steps we have producedm+1 vectors φ0, φ1, . . . , φm corresponding to m+1 eigenvalues
λ0, λ1 ≤ · · ·λm of L. Set Vm+1 = spanC{φ0, φ1, . . . , φm} and λm+1 = λ(V ⊥m+1) etc.
(a) Prove that the set

{φ1, . . . , φm, . . .}
is a Hilbert basis of L2(E), and

spec(L) = {λ1 ≤ · · · ≤ λm · · · }.

(b) Denote by Grm the Grassmannian of m-dimensional subspaces of Lk,2(E). Show that

λm = inf
V ∈Grm

max
{∫

M
〈Lu, u〉dvg; u ∈ V ‖u‖ = 1

}
. ⊓⊔

Exercise 10.4.23. Use the results in the above exercises to show that if L is a bounded
from below, k-th order formally selfadjoint elliptic p.do. over an N -dimensional manifold
then

λm(L) = O(mk/N ) as m→∞,
and

d(Λ) = dim⊕λ≤Λ ker(λ− L) = O(ΛN/k) as Λ→∞. ⊓⊔
Remark 10.4.24. (a) When L is a formally selfadjoint generalized Laplacian then the
result in the above exercise can be considerably sharpened. More precisely H.Weyl showed
that

lim
Λ→∞

Λ−N/2d(Λ) =
rank (E) · volg(M)

(4π)N/2Γ(N/2 + 1)
. (10.4.5)

The very ingenious proof of this result relies on another famous p.d.o., namely the heat
operator ∂t + L on R×M . For details we refer to [11], or [91].

(b) Assume L is the scalar Laplacian ∆ on a compact Riemann manifold (M,g) of
dimension M . Weyl’s formula shows that the asymptotic behavior of the spectrum of ∆
contains several geometric informations about M : we can read the dimension and the
volume of M from it. If we think of M as the elastic membrane of a drum then the
eigenvalues of ∆ describe all the frequencies of the sounds the “drum” M can produce.
Thus “we can hear” the dimension and the volume of a drum. This is a special case of
a famous question raised by V.Kac in [52]: can one hear the shape of a drum? In more
rigorous terms this question asks how much of the geometry of a Riemann manifold can
be recovered from the spectrum of its Laplacian. This is what spectral geometry is all
about.

It has been established recently that the answer to Kac’s original question is negative.
We refer to [39] and the references therein for more details. ⊓⊔

Exercise 10.4.25. Compute the spectrum of the scalar Laplacian on the torus T 2 equipped
with the flat metric, and then use this information to prove the above Weyl asymptotic
formula in this special case. ⊓⊔



498 Elliptic equations on manifolds

Exercise 10.4.26. Denote by ∆Sn−1 the scalar Laplacian on the unit sphere Sn−1 ⊂ Rn

equipped with the induced metric. We assume n ≥ 2. A polynomial p = p(x1, . . . , xn) is
called harmonic if ∆Rnp = 0.

(a) Show that if p is a homogenous harmonic polynomial of degree k, and p̄ denotes its
restriction to the unit sphere Sn−1 centered at the origin, then

∆Sn−1 p̄ = n(n+ k − 2)p̄.

(b) Show that a function ϕ : Sn → R is an eigenfunction of ∆Sn−1 if and only if there
exists a homogeneous harmonic polynomial p such that ϕ = p̄.

(c) Set λk := n(n+ k − 2). Show that

dimker
(
λk −∆Sn−1

)
=

(
k + n− 1

n

)
−
(
k + n− 3

n− 2

)
.

(d) Prove Weyl’s asymptotic estimate (10.4.5) in the special case of the operator ∆Sn−1 .
⊓⊔

10.4.3 Hodge theory

We now have enough theoretical background to discuss the celebrated Hodge theorem. It
is convenient to work in a slightly more general context than Hodge’s original theorem.

Definition 10.4.27. Let (M,g) be an oriented Riemann manifold. An elliptic complex
is a sequence of first order p.d.o.’s

0→ C∞(E0)
D0→ C∞(E1)

D1→ · · · Dm−1→ C∞(Em)→ 0

satisfying the following conditions.

(i) (C∞(Ei),Di) is a cochain complex, i.e., DiDi−1 = 0, ∀1 ≤ i ≤ m.

(ii) For each (x, ξ) ∈ T ∗M \ {0} the sequence of principal symbols

0→ (E0)x
σ(D0)(x,ξ)−→ (E1)x → · · ·

σ(Dm−1)(x,ξ)−→ (Em)x → 0

is exact. ⊓⊔

Example 10.4.28. The DeRham complex (Ω∗(M), d) is an elliptic complex. In this case,
the associated sequence of principal symbols is (e(ξ) = exterior multiplication by ξ)

0→ R
e(ξ)−→ T ∗xM

e(ξ)−→ · · · e(ξ)−→ det(T ∗xM)→ 0

is the Koszul complex of Exercise 7.1.23 of Subsection 7.1.3 where it is shown to be exact.
Hence, the DeRham complex is elliptic. We will have the occasion to discuss another
famous elliptic complex in the next chapter. ⊓⊔
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Consider an elliptic complex (C∞(E·,D·)) over a compact oriented Riemann manifold
(M,g). Denote its cohomology by H•(E·,D·). A priori these may be infinite dimensional
spaces. We will see that the combination ellipticity + compactness prevents this from
happening. Endow each Ei with a metric and compatible connection. We can now talk
about Sobolev spaces and formal adjoints D∗i . Form the operators

∆i = D∗iDi +Di−1D
∗
i−1 : C

∞(Ei)→ C∞(Ei).

We can now state and prove the celebrated Hodge theorem.

Theorem 10.4.29 (Hodge). Assume thatM is compact and oriented. Then the following
are true.
(a) H i(E·,D·) ∼= ker∆i ⊂ C∞(Ei), ∀i.
(b) dimH i(E·,D·) <∞ ∀i.
(c) (Hodge decomposition). There exists an orthogonal decomposition

L2(Ei) = ker∆i ⊕ R(Di−1)⊕ R(D∗i ),

where we view both Di−1, and Di as bounded operators L1,2 → L2.

Proof. Set

E = ⊕Ei, D = ⊕Di, D∗ = ⊕D∗i , ∆ = ⊕∆i, D̂ = D +D∗.

Thus D,D∗,∆ ∈ PDO(E,E). Since DiDi−1 = 0, we deduce D2 = (D∗)2 = 0 which
implies

∆ = D∗D +DD∗ = (D +D∗)2 = D̂2.

We now invoke the following elementary algebraic fact which is a consequence of the
exactness of the symbol sequence.

Exercise 10.4.30. The operators D̂ and ∆ are elliptic, formally selfadjoint p.d.o. (Hint:
Use Exercise 7.1.22 in Subsection 7.1.3.) ⊓⊔

Note that according to Corollary 10.4.12 we have ker∆ = ker D̂, so that we have an
orthogonal decomposition

L2(E) = ker∆⊕ R(D̂). (10.4.6)

This is precisely part (c) of Hodge’s theorem.
For each i denote by Pi the orthogonal projection L2(Ei)→ ker∆i. Set

Zi =
{
u ∈ C∞(Ei); Diu = 0

}
and Bi = Di−1(C

∞(Ei−1)),

so that
H i(E·,D·) = Zi/Bi.

We claim that the map Pi : Z
i → ker∆i descends to an isomorphism H i(E·,D·)→ ker∆i.

This will complete the proof of Hodge theorem. The above claim is a consequence of
several simple facts.
Fact 1. ker∆i ⊂ Zi. This follows from the equality ker∆ = ker D̂.
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Fact 2. If u ∈ Zi then u− Piu ∈ Bi. Indeed, using the decomposition (10.4.6) we have

u = Piu+ D̂ψ ψ ∈ L1,2(E).

Since u − Piu ∈ C∞(Ei), we deduce from Weyl’s lemma that ψ ∈ C∞(E). Thus, there
exist v ∈ C∞(Ei−1) and w ∈ C∞(Ei) such that ψ = v ⊕ w and

u = Piu+Di−1v +D∗iw.

Applying Di on both sides of this equality we get

0 = Diu = DiPiu+DiDi−1u+DiD
∗
iw = DiD

∗
iw.

Since kerD∗i = kerDiD
∗
i , the above equalities imply

u− Piu = Di−1v ∈ Bi.

We conclude that Pi descends to a linear map ker∆i → H i(E·,D·). Thus

Bi ⊂ R(D̂) = (ker∆)⊥,

and we deduce that no two distinct elements in ker∆i are cohomologous since otherwise
their difference would have been orthogonal to ker∆i. Hence, the induced linear map
Pi : ker∆i → H i(E·,D·) is injective. Fact 1 shows it is also surjective so that

ker∆i
∼= H i(E·,D·).

Hodge theorem is proved. ⊓⊔

Let us apply Hodge theorem to the DeRham complex on a compact oriented Riemann
manifold

0→ Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)→ 0, n = dimM.

We know that the formal adjoint of d : Ωk(M)→ Ωk+1(M) is

d∗ = (−1)νn,k ∗ d∗,

where νn,k = nk + n + 1, and ∗ denotes the Hodge ∗-operator defined by the Riemann
metric g and the fixed orientation on M . Set

∆ = dd∗ + d∗d.

Corollary 10.4.31 (Hodge). Any smooth k-form ω ∈ Ωk(M) decomposes uniquely as

ω = [ω]g + dη + d∗ζ, η ∈ Ωk−1(M), ζ ∈ Ωk+1(M),

and [ω]g ∈ Ωk(M) is g-harmonic, i.e.,

∆[ω]g = 0 ⇐⇒ d[ω]g = 0 and d∗[ω]g = 0.

The form [ω]g is called the g-harmonic part of ω.
If moreover ω is closed, then d∗ζ = 0, and this means any cohomology class [z] ∈

Hk(M) is represented by a unique harmonic k-form. ⊓⊔
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Denote by Hk(M,g) the space of g-harmonic k-forms on M . The above corollary
shows

Hk(M,g) ∼= Hk(M)

for any metric g.

Corollary 10.4.32. The Hodge ∗-operator defines a bijection

∗ : Hk(M,g)→ Hn−k(M,g).

Proof. If ω is g-harmonic, then so is ∗ω since

d ∗ ω = ± ∗ d ∗ ω = 0,

and
∗d ∗ (∗ω) = ± ∗ (dω) = 0.

The Hodge ∗-operator is bijective since ∗2 = (−1)k(n−k). ⊓⊔

Using the L2-inner product on Ω•(M) we can identify Hn−k(M,g) with its dual, and
thus we can view ∗ as an isomorphism

Hk ∗→ (Hn−k)∗.

On the other hand, the Poincaré duality described in Chapter 7 induces another isomor-
phism

Hk PD−→ (Hn−k)∗,

defined by

〈PD(ω), η〉0 =

∫

M
ω ∧ η,

where 〈·, ·〉0 denotes the natural pairing between a vector space and its dual.

Proposition 10.4.33. PD = ∗, i.e.
∫

M
〈∗ω, η〉gdvg =

∫

M
ω ∧ η ∀ω ∈ Hk η ∈ Hn−k.

Proof. We have

〈∗ω, η〉gdvg = 〈η, ∗ω〉gdvg = η ∧ ∗2ω = (−1)k(n−k)η ∧ ω = ω ∧ η. ⊓⊔

Exercise 10.4.34. Let ω0 ∈ Ωk(M) be a harmonic k form and denote by Cω0 its coho-
mology class. Show that

∫

M
|ω0|2gdvg ≤

∫

M
|ω|2gdvg ∀ω ∈ Cω0 ,

with equality if and only if ω = ω0. ⊓⊔

Exercise 10.4.35. Let G denote a compact connected Lie group equipped with a bi-
invariant Riemann metric h. Prove that a differential form on G is h-harmonic if and only
if it is bi-invariant. ⊓⊔



Chapter 11

Dirac Operators

We devote this last chapter to a presentation of a very important class of first order
elliptic operators which have numerous applications in modern geometry. We will first
describe their general features, and then we will spend the remaining part discussing some
frequently encountered examples.

11.1 The structure of Dirac operators

11.1.1 Basic definitions and examples

Consider a Riemann manifold (M,g), and a smooth vector bundle E →M .

Definition 11.1.1. A Dirac operator is a first order p.d.o.

D : C∞(E)→ C∞(E),

such that D2 is a generalized Laplacian, i.e.,

σ(D2)(x, ξ) = −|ξ|2g1Ex ∀(x, ξ) ∈ T ∗M.

The Dirac operator is said to be graded if E splits as E = E0 ⊕ E1, and D(C∞(Ei)) ⊂
C∞(E(i+1)mod 2). In other words, D has a block decomposition

D =

[
0 A
B 0

]
. ⊓⊔

Note that the Dirac operators are first order elliptic p.d.o.-s.

Example 11.1.2. (Hamilton-Floer). Denote by E the trivial vector bundle R2n over
the circle S1. Thus C∞(E) can be identified with the space of smooth functions

u : S1 → R2n.

Let J : C∞(E) → C∞(E) denote the endomorphism of E which has the block decompo-
sition

J =

[
0 −1Rn

1Rn 0

]

502
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with respect to the natural splitting R2n = Rn ⊕ Rn. We define the Hamilton-Floer
operator

F : C∞(E)→ C∞(E), Fu = J
du

dθ
∀u ∈ C∞(E).

Clearly, F2 = − d2

dθ2
is a generalized Laplacian. ⊓⊔

Example 11.1.3. (Cauchy-Riemann). Consider the trivial bundleC2 over the complex
plane C equipped with the standard Euclidean metric. The Cauchy-Riemann operator is
the first order p.d.o. D : C2 → C2 defined by

[
u
v

]
7−→ 2

[
0 −∂z
∂z̄ 0

]
·
[
u
v

]
,

where z = x+ yi, and

∂z =
1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y).

A simple computation shows that D is a Dirac operator. ⊓⊔

Example 11.1.4. Suppose E is a vector bundle over the Riemann manifold (M,g), and
D : C∞(M)→ C∞(M) is a Dirac operator. Denote by M̂ the cylinder R ×M , and by ĝ
the cylindrical metric ĝ = dt2 + g on M̂ , where t denotes the coordinate along the factor
R.

We have a natural projection π : M̂ → M , (t, x) 7→ x, and we set Ê := π∗E, the
pullback of E to M̂ via π. A section û of Ê is then a smooth 1-parameter family of
sections u(t) of E, t ∈ R. In particular, we can define unambiguously

∂tû(t0, x0) = lim
h→0

1

h

(
u(t0 + h, x0)− u(t0, x0)

)
,

where the above limit is in the t-independent vector space Ex0 . Now define

D̂ : C∞(Ê ⊕ Ê)→ C∞(Ê ⊕ Ê),

by [
u(t)
v(t)

]
=

[
0 −∂t +D

∂t +D 0

] [
u(t)
v(t)

]
.

Then D̂ is a Dirac operator called the suspension of D. Note that the Cauchy-Riemann
operator is the suspension of the Hamilton-Floer operator. ⊓⊔

Example 11.1.5. (Hodge-DeRham). Let (M,g) be an oriented Riemann manifold.
Then, according to the computations in the previous chapter, the Hodge-DeRham operator

d+ d∗ : Ω•(M)→ Ω•(M).

is a Dirac operator. ⊓⊔
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Let D : C∞(E) → C∞(E) be a Dirac operator over the oriented Riemann manifold
(M,g). Its symbol is an endomorphism σ(D) : π∗E → π∗E, where π : T ∗M →M denotes
the natural projection. Thus, for any x ∈M , and any ξ ∈ T ∗xM , the operator

c(ξ) := σ(D)(ξ, x)

is an endomorphism of Ex depending linearly upon ξ. Since D2 is a generalized Laplacian
we deduce that

c(ξ)2 = σ(D2)(x, ξ) = −|ξ|2g1Ex .

To summarize, we see that each Dirac operator induces a bundle morphism

c : T ∗M ⊗ E → E (ξ, e) 7→ c(ξ)e,

such that c(ξ)2 = −|ξ|2. From the equality

c(ξ + η)2 = −|ξ + η|2 ∀ξ, η ∈ T ∗xM, x ∈M

we conclude that
{c(ξ), c(η)} = −2g(ξ, η)1Ex ,

where for any linear operators A, B we denoted by {A,B} their anticommutator

{A,B} := AB +BA.

Definition 11.1.6. (a) A Clifford structure on a vector bundle E over a Riemann man-
ifold (M,g) is a smooth bundle morphism c : T ∗M ⊗ E → E, such that

{c(ξ), c(η)} = −2g(ξ, η)1E , ∀ξ, η ∈ Ω1(M),

where for every 1-form α we denoted by c(α) the bundle morphism c(α) : E → E given
by

c(α)u = c(α, u), ∀u ∈ C∞(E).

The morphism c is usually called the Clifford multiplication of the (Clifford) structure. A
pair (vector bundle, Clifford structure) is called a Clifford bundle.
(b) A Z2-grading of a Clifford bundle E → M is a splitting E = E+ ⊕ E− such that,
∀α ∈ Ω1(M), the Clifford multiplication by α is an odd endomorphism of the superspace
C∞(E+)⊕ C∞(E−), i.e., c(α)C∞(E±) ⊂ C∞(E∓). ⊓⊔

Proposition 11.1.7. Let E →M be a smooth vector bundle over the Riemann manifold
(M,g). Then the following conditions are equivalent.
(a) There exists a Dirac operator D : C∞(E)→ C∞(E).
(b) The bundle E admits a Clifford structure.

Proof. We have just seen that (a)⇒(b). To prove the reverse implication let

c : T ∗M ⊗ E → E

be a Clifford multiplication. Then, for every connection

∇ : C∞(E)→ C∞(T ∗M ⊗ E),
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the composition

D = c ◦ ∇ : C∞(E)
∇→ C∞(T ∗M ⊗ E)

c→ C∞(E)

is a first order p.d.o. with symbol c. Clearly D is a Dirac operator. ⊓⊔

Example 11.1.8. Let (M,g) be a Riemann manifold. For each x ∈ M , and ξ ∈ T ∗xM
define

c(ξ) : Λ•T ∗xM → Λ•T ∗xM

by
c(ξ)ω = (eξ − iξ)ω,

where eξ denotes the (left) exterior multiplication by ξ, while iξ denotes the interior
differentiation along ξ∗ ∈ TxM - the metric dual of ξ. The Exercise 2.2.55 of Section 2.2.4
shows that c defines a Clifford multiplication on Λ•T ∗M . If ∇ denotes the Levi-Civita
connection on Λ•T ∗M , then the Dirac operator c◦∇ is none other than the Hodge-DeRham
operator. ⊓⊔

Exercise 11.1.9. Prove the last assertion in the above example. ⊓⊔

The above proposition reduces the problem of describing which vector bundles admit
Dirac operators to an algebraic-topological one: find the bundles admitting a Clifford
structure. In the following subsections we will address precisely this issue.

11.1.2 Clifford algebras

The first thing we want to understand is the object called Clifford multiplication.
Consider a real finite dimensional, Euclidean space (V, g). A Clifford multiplication

associated with (V, g) is then a pair (E, ρ), where E is a K-vector space, and ρ : V →
End (E) is an R-linear map such that

{ρ(u), ρ(v)} = −2g(u, v)1E , ∀u, v ∈ V.

If (ei) is an orthonormal basis of V , then ρ is completely determined by the linear operators
ρi = ρ(ei) which satisfy the anti-commutation rules

{ρi, ρj} = −2δij1E .

The collection (ρi) generates an associative subalgebra in End (E), and it is natural to try
to understand its structure. We will look at the following universal situation.

Definition 11.1.10. Let V be a real, finite dimensional vector space, and

q : V × V → R

a symmetric bilinear form. The Clifford algebra Cl(V, q) is the associative R–algebra with
unit, generated by V , and subject to the relations

{u, v} = uv + vu = −2q(u, v) · 1 ∀u, v ∈ V. ⊓⊔
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Proposition 11.1.11. The Clifford algebra Cl(V, q) exists, and is uniquely defined by
its universality property: for every linear map  : V → A such that A is an associative
R-algebra with unit, and {(u), (v)} = −2q(u, v) · 1, there exists an unique morphism of
algebras Φ : Cl(V, q)→ A such that the diagram below is commutative.

V Cl(V, q)

A

w

ı

[

[

[

[℄
u

Φ

ı denotes the natural inclusion V →֒ Cl(V, q).

Sketch of proof Let A = ⊕k≥0V ⊗k (V ⊗0 = R) denote the free associative R–algebra
with unit generated by V . Set

Cl(V, q) = A/I,
where I is the ideal generated by

{
u⊗ v + v ⊗ u+ 2q(u, v) ⊗ 1; u, v ∈ V

}
.

The map ı is the composition V →֒ A → Cl(V, q) where the second arrow is the natural
projection. We let the reader check the universality property. ⊓⊔

Exercise 11.1.12. Prove the universality property. ⊓⊔

Remark 11.1.13. (a) When q ≡ 0 then Cl(V, 0) is the exterior algebra Λ•V .
(b) In the sequel the inclusion V →֒ Cl(V, q) will be thought of as being part of the
definition of a Clifford algebra. This makes a Clifford algebra a structure richer than
merely an abstract R–algebra: it is an algebra with a distinguished real subspace. Thus
when thinking of automorphisms of this structure one should really concentrate only on
those automorphisms of R–algebras preserving the distinguished subspace. ⊓⊔

Corollary 11.1.14. Let (Vi, qi) (i = 1, 2) be two real, finite dimensional vector spaces
endowed with quadratic forms qi : V → R. Then, any linear map T : V1 → V2 such
that q2(Tv) = q1(v), ∀v ∈ V1 induces a unique morphism of algebras T# : Cl(V1, q1) →
Cl(V2, q2) such that T#(V1) ⊂ V2, where we view Vi as a linear subspace in Cl(Vi, qi).

The correspondence T 7→ T# constructed above is functorial, i.e., (1Vi)# = 1Cl(Vi,qi),
and (S ◦ T )# = S# ◦ T#, for all admissible S, and T .

The above corollary shows that the algebra Cl(V, q) depends only on the isomorphism
class of the pair (V, q)= vector space + quadratic form. It is known from linear algebra
that the isomorphism classes of such pairs are classified by some simple invariants:

(dimV, rank q, sign q).

We will be interested in the special case when dimV = rank q = sign q = n, i.e., when q
is an Euclidean metric on the n-dimensional space V . In this case, the Clifford algebra
Cl(V, q) is usually denoted by Cl(V ), or Cln. If (ei) is an orthonormal basis of V , then we
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can alternatively describe Cln as the associative R–algebra with 1 generated by (ei), and
subject to the relations

eiej + ejei = −2δij .

Using the universality property of Cln, we deduce that the map

V → Cl(V ), v 7→ −v ∈ Cl(V )

extends to an automorphism of algebras α : Cl(V ) → Cl(V ). Note that α is involutive,
i.e., α2 = 1. Set

Cl0(V ) := ker(α− 1), Cl1(V ) = ker(α + 1).

Note that Cl(V ) = Cl0(V )⊕ Cl1(V ), and moreover

Clε(V ) · Clη(V ) ⊂ Cl(ε+η) mod 2(V ),

i.e., the automorphism α naturally defines a Z2-grading of Cl(V ). In other words, the
Clifford algebra Cl(V ) is naturally a super-algebra.

Let (C̃l(V ),+, ∗) denote the opposite algebra of Cl(V ). Then C̃l(V ) coincides with
Cl(V ) as a vector space, but its multiplication ∗ is defined by

x ∗ y := y · x ∀x, y ∈ C̃l(V ),

where “·” denotes the usual multiplication in Cl(V ). Note that for any u, v ∈ V

u · v + v · u = u ∗ v + v ∗ u,

so that, using the universality property of Clifford algebras, we conclude that the natural
injection V →֒ C̃l(V ) extends to a morphism of algebras Cl(V ) → C̃l(V ). This may as
well be regarded as an antimorphism Cl(V )→ Cl(V ) which we call the transposition map,
x 7→ x♭. Note that

(u1 · u2 · · · ur)♭ = ur · · · u1, ∀ui ∈ V.

For x ∈ Cl(V ) we set

x† := (α(x))♭ = α(x♭).

The element x† is called the adjoint of x.

For each v ∈ V define c(v) ∈ End (Λ•V ) by

c(v)ω := (ev − iv)ω ∀ω ∈ Λ•V,

where as usual ev denotes the (left) exterior multiplication by v, while iv denotes the
interior derivative along the metric dual of v. Invoking again the Exercise 2.2.55 we
deduce

c(v)2 = −|v|2g,

so that, by the universality property of the Clifford algebras, the map c extends to a
morphism of algebras c : Cl(V )→ End (Λ•V ).
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Exercise 11.1.15. Prove that ∀x ∈ Cl(V ) we have

c(x†) = c(x)∗,

where the ∗ in the right-hand-side denotes the adjoint of c(x) viewed as a linear operator
on the linear space Λ•V endowed with the metric induced by the metric on V . ⊓⊔

For each x ∈ Cl(V ), we set σ(x) := c(x)1 ∈ Λ•V . This is an element of Λ•V , called
the symbol of x. The resulting linear map

Cl(V ) ∋ x 7→ σ(x) ∈ Λ•V,

is called the symbol map. If (ei) is an orthonormal basis, then

σ(ei1 · · · eik) = ei1 ∧ · · · ∧ eik ∀eij .

This shows that the symbol map is bijective since the ordered monomials

{ei1 · · · eik ; 1 ≤ i1, · · · ik ≤ dimV }

form a basis of Cl(V ). The inverse of the symbol map is called the quantization map and
is denoted by q : Λ•V → Cl(V ).

Exercise 11.1.16. Show that q(Λeven/oddV ) = Cleven/odd(V ). ⊓⊔

Definition 11.1.17. (a) A K(=R-,C)-vector space E is said to be a K- Clifford module
if there exists a morphism of R–algebras

ρ : Cl(V )→ EndK(E).

(b) A K-superspace E is said to be a K-Clifford s-module if there exists a morphism of
s-algebras

ρ : Cl(V )→ ÊndK(E).

(c) Let (E, ρ) be a K-Clifford module, ρ : Cl(V ) → EndK(E). The module (E, ρ) is said
to be selfadjoint if there exists a metric on E (Euclidean if K = R, Hermitian if K = C)
such that

ρ(x†) = ρ(x)∗ ∀x ∈ Cl(V ). ⊓⊔

We now see that what we originally called a Clifford structure is precisely a Clifford
module.

Example 11.1.18. Λ•V is a selfadjoint, real Cl(V ) super-module. ⊓⊔

In the following two subsections we intend to describe the complex Clifford modules.
The real theory is far more elaborate. For more information we refer the reader to the
excellent monograph [63].
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11.1.3 Clifford modules: the even case

In studying complex Clifford modules it is convenient to work with the complexified Clif-
ford algebras

Cln = Cln⊗RC.

The (complex) representation theory of Cln depends on the parity of n so that we will
discuss each case separately. The reader may want to refresh his/her memory of the
considerations in Subsection 2.2.5.

Let n = 2k, and consider an n-dimensional Euclidean space (V, g) . The decisive step
in describing the complex Cl(V )-modules is the following.

Proposition 11.1.19. There exists a complex Cl(V )-module S = S(V ) such that

Cl(V ) ∼= EndC(S) as C−algebras.

(The above isomorphism is not natural; it depends on several auxiliary choices.)

Proof. Consider a complex structure on V , i.e., a skew-symmetric operator J : V → V
such that J2 = −1V . Such a J exists since V is even dimensional. Let

{e1, f1, . . . , ek, fk}

be an orthonormal basis of V such that Jei = fi, ∀i.
Extend J by complex linearity to V ⊗R C. We can now decompose V ⊗ C into the

eigenspaces of J

V = V 1,0 ⊕ V 0,1,

where V 1,0 = ker(i − J) and V 0,1 = ker(i + J). Alternatively,

V 1,0 = spanC(ej − ifj), V 0,1 = spanC(ej + ifj).

The metric on V defines a Hermitian metric on the complex vector space (V, J)

h(u, v) = g(u, v) + ig(u, Jv),

(see (2.2.15) of Subsection 2.2.5) which allows us to identify

V 0,1 ∼=C (V, J) ∼=C V
∗
c
∼=C (V 1,0)∗.

(Above, V ∗c denotes the complex dual of the complex space (V, J)). With respect to this
Hermitian metric the collection

{
εj :=

1√
2
(ej − ifj); 1 ≤ j ≤ k

}

is an orthonormal basis of V 1,0, while the collection

{
εj =

1√
2
(ej + ifj); 1 ≤ j ≤ k

}
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is an orthonormal basis of V 0,1. Set

S2k := Λ•V 1,0 = Λ•,0V.

A morphism of algebras c : Cl(V )→ End (S2k) is uniquely defined by its restriction to

V ⊗ C = V 1,0 ⊕ V 0,1.

Hence, we have to specify the action of each of the components V 1,0 and V 0,1.
The elements w ∈ V 1,0 will act by exterior multiplication

c(w)ω =
√
2e(w)ω =

√
2w ∧ ω, ∀ω ∈ Λ•,0V.

The elements w ∈ V 0,1 can be identified with complex linear functionals on V 1,0, and as
such, they will act by interior differentiation

c(w)w1 ∧ · · · ∧ wℓ = −
√
2i(w)(w1 ∧ · · · ∧wℓ)

=
√
2

ℓ∑

j=1

(−1)jgC(wj , w)w1 ∧ · · · ∧ ŵj ∧ · · · ∧ wℓ,

where gC denotes the extension of g to (V ⊗ C)× (V ⊗ C) by complex linearity.
To check that the above constructions do indeed define an action of Cl(V ) we need to

check that, ∀v ∈ V , we have
c(v)2 = −1S2k .

This boils down to verifying the anticommutation rules

{c(ei), c(fj)} = 0, {c(ei), c(ej)} = −2δij = {c(fi), c(fj)}.

We have

ei =
1√
2
(εi + εi), fj =

i√
2
(εj − εj),

so that,

c(ei) = e(εi)− i(εi), c(fj) = i(e(εj) + i(εj)).

The anti-commutation rules follow as in the Exercise 2.2.55 using the equalities

gC(εi, εj) = δij.

This shows S2k is naturally a Cl(V )-module. Note that dimC S2k = 2k so that

dimC EndC(S) = 2n = dimCCl(V ).

A little work (left to the reader) shows the morphism c is injective. This completes the
proof of the proposition. ⊓⊔

Definition 11.1.20. The Cl(V )-module S(V ) is known as the (even) complex spinor
module. ⊓⊔
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Using basic algebraic results about the representation theory of the algebra of endo-
morphisms of a vector space we can draw several useful consequences. (See [90] for a very
nice presentation of these facts.)

Corollary 11.1.21. There exists an unique (up to isomorphism) irreducible complex Cl2k-
module and this is the complex spinor module S2k. ⊓⊔

Corollary 11.1.22. Any complex Cl2k-module has the form S2k ⊗ W , where W is an
arbitrary complex vector space. The action of Cl2k on S2k ⊗W is defined by

v · (s ⊗w) = c(v)s ⊗ w.

The vector space W is called the twisting space of the given Clifford module. ⊓⊔

Remark 11.1.23. Given a complex Cl2k-module E, its twisting space can be recovered
as the space of morphisms of Clifford modules

W = HomCl2k(S2k, E). ⊓⊔

Assume now that (V, g) is an oriented, 2k-dimensional Euclidean space. For any posi-
tively oriented orthonormal basis e1, . . . , e2k we can form the element

Γ = ike1 · · · e2k ∈ Cl(V ).

One can check easily this element is independent of the oriented orthonormal basis, and
thus it is an element intrinsically induced by the orientation. It is called the chirality
operator defined by the orientation. Note that

Γ2 = 1 and Γx = (−1)deg xΓ ∀x ∈ Cl0(V ) ∪ Cl1(V ).

Let S = S(V ) denote the spinor module of Cl(V ). The chirality operator defines an
involutive endomorphism of S, and thus defines a Z2-grading on S

S = S+ ⊕ S− (S± = ker(±1− Γ)),

and hence a Z2-grading of End(S). Since {v,Γ} = 0, ∀v ∈ V , we deduce the Clifford mul-
tiplication by v is an odd endomorphism of S. This means that any algebra isomorphism
Cl(V )→ End (S(V )) is an isomorphism of Z2-graded algebras.

Exercise 11.1.24. Let J be a complex structure on V . This produces two things: it
defines an orientation on V and identifies S = S(V ) ∼= Λ∗,0V . Prove that with respect to
these data the chiral grading of S is

S+/− ∼= Λeven/odd,0V. ⊓⊔
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The above considerations extend to arbitrary Clifford modules. The chirality operator
introduces a Z2-grading in any complex Clifford module which we call the chiral grading.
However this does not exhaust the family of Clifford s-modules. The family of s-modules
can be completely described as

{
S⊗̂W ; W complex s− space

}
,

where ⊗̂ denotes the s-tensor product. The modules endowed with the chiral grading form
the subfamily in which the twisting s-space W is purely even.

Example 11.1.25. Let (V, g) be a 2k-dimensional, oriented, Euclidean space. Then
Λ•RV ⊗ C is naturally a Clifford module. Thus, it has the form

Λ•RV ⊗ C ∼= S⊗W.

To find the twisting space, we pick a complex structure on V whose induced orientation
agrees with the given orientation of V . This complex structure produces an isomorphism

Λ•RV ⊗R C ∼= Λ•,0V ⊗ Λ0,•V ∼= S⊗ (Λ•,0V )∗ ∼= S⊗R S∗.

This shows the twisting space is S∗.
On the other hand, the chirality operator defines Z2 gradings on both S, and S∗, so

that Λ•RV ⊗C can be given two different s-structures: the chiral superstructure, in which
the grading of S∗ is forgotten, and the grading as a super-tensor product S⊗̂S∗. Using
Exercise 11.1.24 we deduce that the second grading is precisely the degree grading

Λ•RV ⊗ C = ΛevenV ⊗ C⊕ ΛoddV ⊗ C.

To understand the chiral grading we need to describe the action of the chiral operator on
Λ•RV ⊗ C. This can be done via the Hodge ∗-operator. More precisely we have

Γ · ω = ik+p(p−1) ∗ ω ∀ω ∈ ΛpV ⊗ C. (11.1.1)

⊓⊔

Exercise 11.1.26. Prove the equality 11.1.1. ⊓⊔

In order to formulate the final result of this subsection we need to extend the automor-
phism α, and the anti-automorphism ♭ to the complexified Clifford algebra Cl(V ). The
automorphism α can be extended by complex linearity

α(x⊗ z) = α(x) ⊗ z, ∀x ∈ Cl(V ),

while ♭ extends according to the rule

(x⊗ z)♭ = x♭ ⊗ z.

As in the real case, we set y† := α(y♭) = α(y)♭, ∀y ∈ Cl(V ).
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Proposition 11.1.27. Let S(V ) denote the spinor module of the 2k-dimensional Eu-
clidean space (V, g). Then for every isomorphism of algebras

ρ : Cl(V )→ EndC(S(V ))

there exists a Hermitian metric on S(V ) such that

ρ(y†) = ρ(y)∗, ∀y ∈ Cl(V ).

Moreover, this metric is unique up to a multiplicative constant.

Sketch of proof Choose an orthonormal basis {e1, . . . , e2k} of V , and denote by G the
finite subgroup of Cl(V ) generated by the basic vectors ei.

Pick a Hermitian metric h on S(V ) and, for each g ∈ G, denote by hg the pulled-back
metric

hg(s1, s2) := h(ρ(g)s1, ρ(g)s2), ∀s1, s2 ∈ S.

We can now form the averaged metric,

hG :=
1

|G|
∑

g∈G
hg.

Each ρ(g) is an unitary operator with respect to this metric. We leave the reader to check
that this is the metric we are after. The uniqueness follows from the irreducibility of S(V )
using Schur’s lemma. ⊓⊔

Corollary 11.1.28. Let (V, g) as above, and ρ : Cl(V )→ EndC(E) be a complex Clifford
module. Then E admits at least one Hermitian metric with respect to which ρ is selfadjoint.

Proof. Decompose E as S ⊗ W , and ρ as ∆ ⊗ 1W , for some isomorphism of algebras
∆ : Cl(V ) → End(S). The sought for metric is a tensor product of the canonical metric
on S, and some metric on W . ⊓⊔

11.1.4 Clifford modules: the odd case

The odd dimensional situation can be deduced using the facts we have just established
concerning the algebras Cl2k. The bridge between these two situations is provided by the
following general result.

Lemma 11.1.29. Clm ∼= Clevenm+1.

Proof. Pick an orthonormal basis {e0, e1, . . . , em} of the standard Euclidean space Rm+1.
These generate the algebra Clm+1. We view Clm as the Clifford algebra generated by
{e1, . . . , em}. Now define

Ψ : Clm → Clevenm+1, Ψ(x0 + x1) = x0 + e0 · x1,

where x0 ∈ Clevenm , and x1 ∈ Cloddm . We leave the reader to check that this is indeed an
isomorphism of algebras. ⊓⊔
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Proposition 11.1.30. Let (V, g) be a (2k + 1)-dimensional Euclidean space. Then there
exist two complex, irreducible Cl(V )-modules S+(V ) and S−(V ) such that

Cl(V ) ∼= EndC(S
+)⊕ EndC(S

−) as ungraded algebras.

The direct sum S(V ) = S+(V )⊕ S−(V ) is called the (odd) spinor module.

Proof. Fix an orientation on V and a positively oriented orthonormal basis e1, e2, . . . , e2k+1.
Denote by S2k+2 the spinor module of Cl(V ⊕ R), where V ⊕ R is given the direct sum
Euclidean metric and the orientation

or(V ⊕ R) = or ∧ or(R).

Choose an isomorphism
ρ : Cl(V ⊕ R)→ EndC(S2k+2).

Then S2k+2 becomes naturally a super Cl2k+2-module

S2k+2 = S+2k+2 ⊕ S−2k+2,

and we thus we get the isomorphisms of algebras

Cl(V ) ∼= Cl(V ⊕ R)even ∼= Endeven(S2k+2) ∼= End (S+2k+2)⊕ End (S−2k+2). ⊓⊔

As in the previous section, we can choose Hermitian metrics on S±(V ) such that the
morphism

ρ : Cl(V )→ EndC
(
S(V )

)

is selfadjoint, i.e.,
ρ(u†) = ρ(u)∗, ∀u ∈ Cl(V ).

The above result can be used to describe the complex (super)modules of Cl2k+1. We will
not present the details since the applications we have in mind do not require these facts.
For more details we refer to [63].

11.1.5 A look ahead

In this heuristic section we interrupt a little bit the flow of arguments to provide the
reader a sense of direction. The next step in our story is to glue all the pointwise data
presented so far into smooth families (i.e. bundles). To produce a Dirac operator on an
n-dimensional Riemann manifold (M,g) one needs several things.

(a) A bundle of Clifford algebras C→M such that Cx ∼= Cln or Cln, ∀x ∈M .

(b) A fiberwise injective morphism of vector bundles ı : T ∗M →֒ C such that, ∀x ∈M

{ı(u), ı(v)}C = −2g(u, v), ∀u, v ∈ T ∗xM.

(c) A bundle of Clifford modules, i.e. a vector bundle E→M , together with a morphism
c : C→ End (E) whose restrictions to the fibers are morphisms of algebras.
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(d) A connection on E.

The above collection of data can be constructed from bundles associated to a common
principal bundle. The symmetry group of this principal bundle has to be a Lie group with
several additional features which we now proceed to describe.

Let (V, g) denote the standard fiber of T ∗M , and denote by AutV the group of auto-
morphisms φ of Cl(V ) such that φ(V ) ⊂ V . The group AutcV is defined similarly, using
the complexified algebra Cl(V ) instead of Cl(V ). For brevity, we discuss only the real
case.

We need a Lie group G which admits a smooth morphism ρ : G → AutV . Tautologi-
cally, ρ defines a representation ρ : G→ GL(V ), which we assume is orthogonal.

We also need a Clifford module c : Cl(V ) → End (E), and a representation µ : G →
GL(E), such that, for every v ∈ V , and any g ∈ G, the diagram below is commutative.

E E

E E
u

g

w

c(v)

u

g

w

c(g·v)

(11.1.2)

This commutativity can be given an invariant theoretic interpretation as follows.
View the Clifford multiplication c : V → End (E) as an element c ∈ V ∗⊗E∗⊗E. The

group G acts on this tensor product, and the above commutativity simply means that c
is invariant under this action.

In concrete applications E comes with a metric, and we also need to require that µ is
an orthogonal/unitary representation.

To produce all the data (a)-(d) all we now need is a principal G-bundle P →M such
that the associated bundle P ×ρ V is isomorphic with T ∗M . (This may not be always
feasible due to possible topological obstructions). Any connection ∇ on P induces by
association metric connections ∇M on1 T ∗M and ∇E on the bundle of Clifford modules
E = P ×µ E. With respect to these connections, the Clifford multiplication is covariant
constant, i.e.,

∇E(c(α)u) = c(∇Mα) + c(α)∇Eu, ∀α ∈ Ω1(M), u ∈ C∞(E).

This follows from the following elementary invariant theoretic result.

Lemma 11.1.31. Let G be a Lie group, and ρ : G→ Aut (E) be a linear representation of
G. Assume that there exists e0 ∈ E such that ρ(g)e0 = e0, ∀g ∈ G. Consider an arbitrary
principal G-bundle P → X, and an arbitrary connection ∇ on P . Then e0 canonically
determines a section u0 on P ×ρE which is covariant constant with respect to the induced
connection ∇E = ρ∗(∇), i.e.,

∇Eu0 = 0. ⊓⊔

Exercise 11.1.32. Prove the above lemma. ⊓⊔
1In practice one requires a little more namely that ∇M is precisely the Levi-Civita connection on T ∗M .

This leads to significant simplifications in many instances.
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Apparently, the chances that a Lie group G with the above properties exists are very
slim. The very pleasant surprise is that all these, and even more, happen in many geo-
metrically interesting situations.

Example 11.1.33. Let (V, g) be an oriented Euclidean space. Using the universality
property of Clifford algebras we deduce that each g ∈ SO(V ) induces an automorphism
of Cl(V ) preserving V →֒ Cl(V ). Moreover, it defines an orthogonal representation on the
canonical Clifford module

c : Cl(V )→ End (Λ•V ),

such that

c(g · v)(ω) = g · (c(v)(g−1 · ω)), ∀g ∈ SO(V ), v ∈ V, ω ∈ Λ•V,

i.e., SO(V ) satisfies the equivariance property (11.1.2).
If (M,g) is an oriented Riemann manifold, we can now build our bundle of Clifford

modules starting from the principal SO bundle of its oriented orthonormal coframes. As
connections we can now pick the Levi-Civita connection and its associates. The corre-
sponding Dirac operator is the Hodge-DeRham operator. ⊓⊔

The next two sections discuss two important examples of Lie groups with the above
properties. These are the spin groups Spin(n) and its “complexification” Spinc(n). It
turns out that all the groups one needs to build Dirac operators are these three classes:
SO, Spin, and Spinc.

11.1.6 The spin group

Let (V, g) be a finite dimensional Euclidean space. The group of automorphisms of the
Clifford algebra Cl(V ) contains a very rich subgroup consisting of the interior ones. These
have the form

ϕx : Cl(V )→ Cl(V ) u 7→ ϕx(u) = x · u · x−1, ∀u ∈ Cl(V ),

where x is some invertible element in Cl(V ).
The candidates for the Lie groups with the properties outlined in the previous subsec-

tion will be sought for amongst subgroups of interior automorphisms. It is thus natural
to determine the subgroup

{
x ∈ Cl(V )⋆; x · V · x−1 ⊂ V

}
,

where Cl(V )⋆ denotes the group of invertible elements. We will instead try to understand
the Clifford group

Γ(V ) =
{
x ∈ Cl⋆(V ) α(x) · V · x−1 ⊂ V

}
,

where α : Cl(V ) → Cl(V ) denotes the involutive automorphism of Cl(V ) defining its
Z2-grading.

In general, the map
Cl(V ) ∋ u ρx7−→ α(x)ux−1 ∈ Cl(V )
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is not an automorphism of algebras, but as we will see by the end of this subsection, if
x ∈ Γ(V ), then ρx = ±ϕx, and hence a posteriori this alteration has no impact. Its impact
is mainly on the æsthetics of the presentation which we borrowed from the elegant paper
[7].

By construction, the Clifford group Γ(V ) comes equipped with a tautological repre-
sentation

ρ : Γ(V )→ GL(V ) ρ(x) : v 7→ α(x) · v · x−1.

Proposition 11.1.34. ker ρ = (R∗, ·) ⊂ Cl(V )⋆.

Proof. Clearly R∗ ⊂ ker ρ. To establish the opposite inclusion choose an orthonormal
basis (ei) of V , and let x ∈ ker ρ. The element x decomposes into even/odd components

x = x0 + x1,

and the condition α(x)eix
−1 = ei translates into

(x0 − x1)ei = ei(x0 + x1), ∀i.

This is equivalent with the following two conditions

[x0, ei] = x0ei − eix0 = x1ei + eix1 = {x1, ei} = 0, ∀i.

In terms of the s-commutator, the above two equalities can be written as one

[ei, x]s = 0 ∀i.

Since [·, x] is a superderivation of Cl(V ) we conclude that

[y, x]s = 0, ∀y ∈ Cl(V ).

In particular, the even part x0 lies in the center of Cl(V ). We let the reader check the
following elementary fact.

Lemma 11.1.35. The center of the Clifford algebra is the field of scalars R ⊂ Cl(V ). ⊓⊔

Note that since {x1, ei} = 0, then x1 should be a linear combination of elementary
monomials ej1 · · · ejs none of which containing ei as a factor. Since this should happen for
every i this means x1 = 0, and this concludes the proof of the proposition. ⊓⊔

Definition 11.1.36. The spinorial norm is the map

N : Cl(V )→ Cl(V ) N(x) = x♭x. ⊓⊔

Proposition 11.1.37. (a) N(Γ(V )) ⊂ R∗.
(b) The map N : Γ(V )→ R∗ is a group morphism.
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Proof. Let x ∈ Γ(V ). We first prove that x♭ ∈ Γ(V ). Since α(x)vx−1 ∈ V , ∀v ∈ V , we
deduce that

α({α(x) · v · x−1}♭) = −α(x) · v · x−1 ∈ V.
Using the fact that x 7→ x♭ is an anti-automorphism, we deduce

α( (x♭)−1 · v · α(x♭) ) ∈ V,

so that,
α((x♭)−1) · v · x♭ ∈ V,

that is, (x♭)−1 ∈ Γ(V ). Hence x† ∈ Γ(V ), ∀x ∈ Γ(V ). In particular, since α(Γ(V )) ⊂ Γ(V ),
we deduce N(Γ(V )) ⊂ Γ(V ).

For any v ∈ V we have

α(N(x)) · v · (N(x))−1 = α(x♭x) · v · (x♭x)−1 = α(x♭) · {α(x) · v · x−1} · (x♭)−1.

On the other hand, y = α(x) · v · x−1 is an element in V , which implies y† = α(y♭) = −y.
Hence

α(N(x)) · v · (N(x))−1 = −α(x♭) · y† · (x♭)−1

= −α(x♭) · α(x♭)−1 · v† · x♭ · (x♭)−1 = −v† = v.

This means N(x) ∈ ker ρ = R∗.
(b) If x, y ∈ Γ(V ), then

N(x · y) = (xy)♭(xy) = y♭x♭xy = y♭N(x)y = N(x)y♭y = N(x)N(y). ⊓⊔

Theorem 11.1.38. (a) For every x ∈ Γ(V ), the transformation ρ(x) of V is orthogonal.
(b) There exists a short exact sequence of groups

1→ R∗ →֒ Γ(V )
ρ→ O(V )→ 1.

(c) Every x ∈ Γ(V ) can be written (in a non-unique way) as a product x = v1 · · · vk,
vj ∈ V . In particular, every element of Γ(V ) is Z2-homogeneous, i.e., it is either purely
even, or purely odd.

Proof. (a) Note that, ∀v ∈ V , we have N(v) = −|v|2g. For every x ∈ Γ(V ) we get

N(ρ(x)(v)) = N(α(x)vx−1) = N(α(x))N(v)N(x−1) = N(α(x))N(x)−1N(v).

On the other hand, x2 = α(x2) = α(x)2 so we conclude that

N(x)2 = N(α(x))2.

Hence, N(ρ(x)(v)) = ±N(v). Since both N(v) and N(ρx(v)) are negative numbers, we
deduce that the only possible choice of signs in the above equality is +. This shows that
ρ(x) is an orthogonal transformation.
(b) & (c) We only need to show ρ(Γ(V )) = O(V ). For x ∈ V with |x|g = 1 we have

α(x) = −x = x−1.
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If we decompose v ∈ V as λx+ u, where λ ∈ R and u ⊥ x, then we deduce

ρ(x)v = −λx+ u.

In other words, ρ(x) is the orthogonal reflection in the hyperplane through origin which
is perpendicular to x. Since any orthogonal transformation of V is a composition of such
reflections (Exercise), we deduce that for each T ∈ O(V ) we can find v1, . . . , vk ∈ V such
that

T = ρ(v1) · · · ρ(vk).
Incidentally, this also establishes (c). ⊓⊔

Exercise 11.1.39. Suppose V is a finite dimensional Euclidean space. Prove that any
orthogonal operator T ∈ O(V ) is a product of at most dimV reflections. ⊓⊔

Set
Γ0(V ) := Γ(V ) ∩ Cleven .

Note that
ρ(Γ0(V )) ⊂ SO(V ) =

{
T ∈ O(V ); detT = 1

}
.

Hence, we have a short exact sequence

1→ R∗ →֒ Γ0(V )
ρ→ SO(V )→ 1.

Definition 11.1.40. Set

Pin(V ) :=
{
x ∈ Γ(V ); |N(x)| = 1

}
,

and
Spin(V ) :=

{
x ∈ Γ(V ); N(x) = 1

}
= Pin(V ) ∩ Γ0(V ). ⊓⊔

The results we proved so far show that Spin(V ) can be alternatively described by the
following “friendlier” equality

Spin(V ) = {v1 · · · v2k ; k ≥ 0, vi ∈ V, |vi| = 1, ∀i = 1. . . . 2k}.

In particular, this shows that Spin(V ) is a compact topological group. Observe that
Spin(V ) is a closed subgroup of the Lie group GL(Cl(V ) ). This implies (see Remark
1.2.31 and [45, 97]) that Spin(V ) is in fact a Lie group, and the map Spin(V ) →֒ Cl(V ) is
a smooth embedding. The proof of the following result is left to the reader.

Proposition 11.1.41. There exist short exact sequences

1→ Z2 → Pin(V )→ O(V )→ 1

1→ Z2 → Spin(V )→ SO(V )→ 1. ⊓⊔
Proposition 11.1.42. The morphism ρ : Spin(V ) → SO(V ) is a covering map. More-
over, the group Spin(V ) is connected if dimV ≥ 2, and simply connected if dimV ≥ 3. In
particular, Spin(V ) is the universal cover of SO(V ), when dimV ≥ 3.
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Proof. The fact that ρ : Spin(V )→ SO(V ) is a covering map is an elementary consequence
of the following simple observations.

(i) The map ρ is a group morphism ;

(ii) The map ρ is continuous, and proper;

(iii) The subgroup ker ρ is discrete.

Since SO(V ) is connected if dimV ≥ 2, the fact that Spin(V ) is connected would
follow if we showed that any points in the same fiber of ρ can be connected by arcs. It
suffices to look at the fiber ρ−1(1) = {−1, 1}.

If u, v ∈ V are such that |u| = |v| = 1, u ⊥ v, then the path

γ(t) = (u cos t+ v sin t)(u cos t− v sin t), 0 ≤ t ≤ π/2

lies inside Spin(V ), because |u cos t± v sin t| = 1, and moreover

γ(0) = −1, γ(π/2) = 1.

To prove that Spin(V ) is simply connected, we argue by induction on dimV .
If dimV = 3, then Spin(V ) is isomorphic to the group of unit quaternions (see Example

11.1.55), and in particular, it is homeomorphic to the sphere S3 which is simply connected.
Note that if V is an Euclidean space, and U is a subspace, the natural inclusion U →֒ V

induces morphisms

Cl( U) →֒ Cl(V ), SO(U) →֒ SO(V ), Spin(U) →֒ Spin(V ),

such that the diagrams below are commutative

Spin(V ) SO(V )

Spin(U) SO(U)

w

ρ

u

y

i

w

ρ

u

y

,

Spin(V ) Cl(V )

Spin(U) Cl(U)

y w

u

y

w

u

y

Hence, it suffices to show that if dimV > 3, then for every smooth, closed path

û : [0, 1]→ Spin(V ), û(0) = û(1) = 1,

there exists a codimension one subspace U →֒ V such that û is homotopic to a loop in
Spin(U). Fix a unit vector e ∈ V , set u(t) := ρû(t) ∈ SO(V ), and define v(t) := u(t)e ∈ V .

The correspondence t 7→ v(t) is a smooth, closed path on the unit sphere SdimV−1 ⊂ V .
Using Sard’s theorem we deduce that there exists a vector x ∈ SdimV−1, such that

v(t) 6= ±x, ∀t ∈ [0, 1].

In particular, the vectors v(t) and x are linearly independent, for any t. Denote by f(t)
the vector obtained by applying the Gramm-Schmidt orthonormalization process to the
ordered linearly independent set {x, v(t)}. In other words,

f(t) :=
1

|f0(t)|
f0(t), f0(t) := v(t)− (v(t) • x)x,
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where we denoted the inner product in V by •. We can find a smooth map

θ : [0, 1]→ [0, 2π),

such that,

θ(0) = θ(1) = 0, v(t) = x cos 2θ(t) + f(t) sin 2θ(t).

Set

σ(t) := cos θ + xf sin θ ∈ Cl(V ).

Note that

σ(t) =
(
x cos

θ

2
− f sin

θ

2

)(
−x cos

θ

2
− f sin

θ

2

)
,

so that σ(t) ∈ Spin(V ).

On the other hand,

σ(t)−1(t) = cos θ − xf sin θ,

and

σ(t)xσ(t)−1 = (x cos θ + f sin θ)(cos θ − xf sin θ) = x cos 2θ + f sin 2θ = e0.

In other words,

ρσ(t)x = v(t).

For every s ∈ [0, 1] define

σs(t) := ûs(t) = cos sθ + xf sin sθ, ûs(t) := σs(t)
−1û(t)σs(t),

and

us(t) := ρ−1σs(t)u(t)ρσs(t) ∈ SO(V ).

Observe that for s = 0 we have û0(t) = û(t). On the other hand, for s = 1 we have

u1(t)x = ρ−1
σs(t)

u(t)ρσs(t)x = ρσs(t)−1v(t) = x.

If we denote by U the orthogonal complement of x in V , we deduce that u1(t) ∈ Spin(U),
∀t ∈ [0, 1]. ⊓⊔

We can view Spin(V ) as a submanifold of Cl(V ), and as such we can identify its Lie
algebra spin(V ) with a linear subspace of Cl(V ). The next result offers a more precise
description.

Proposition 11.1.43. Consider the quantization map q : Λ∗V → Cl(V ). Then

spin(V ) = q(Λ2V ).

The Lie bracket is given by the commutator in Cl(V ).
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Proof. The group Γ(V ) is a Lie group as a closed subgroup of the group of linear trans-
formations of Cl(V ). Since the elements of Γ(V ) are either purely even, or purely odd, we
deduce that the tangent space at 1 ∈ Γ(V ) is a subspace of

E =
{
x ∈ Cleven(V ); xv − vx ∈ V, ∀v ∈ V

}
.

Fix x ∈ E, and let e1, . . . , en be an orthonormal basis of V . We can decompose x as

x = x0 + e1x1,

where x0 ∈ Cl(V )even, and x1 ∈ Cl(V )odd are linear combinations of monomials involving
only the vectors e2, . . . , en. Since [x0, e1] = 0, and {x1, e1} = 0, we deduce

e1x1 =
1

2
[e1, x1] =

1

2
[e1, x] ∈ V.

In particular this means x1 ∈ R⊕ V ∈ Cl(V ).
Repeating the same argument with every vector ei we deduce that

E ⊂ R⊕ span{ei · ej ; 1 ≤ i < j ≤ dimV } = R⊕ q(Λ2V ).

Thus,
T1Γ

0(V ) ⊂ R⊕ q(Λ2V ).

The tangent space to Spin(V ) satisfies a further restriction obtained by differentiating the
condition N(x) = 1. This gives

spin(V ) ⊂ {x ∈ R⊕ q(Λ2V ) ; x♭ + x = 0} = q(Λ2V ).

Since dim spin(V ) = dim so(V ) = dimΛ2V we conclude that the above inclusion is in fact
an equality of vector spaces.

Now consider two smooth paths x, y : (−ε, ε) → Spin(V ) such that x(0) = y(0) = 1.
The Lie bracket of ẋ(0) and ẏ(0) is then found (using the Exercise 3.1.21) from the equality

x(t)y(t)x(t)−1y(t)−1 = 1 + [ẋ(0), ẏ(0)]t2 +O(t3) (as t→ 0),

where the above bracket is the commutator of ẋ(0) and ẏ(0) viewed as elements in the
associative algebra Cl(V ). ⊓⊔

To get a more explicit picture of the induced morphism of Lie algebras

ρ∗ : spin(V )→ so(V ),

we fix an orientation on V , and then choose a positively oriented orthonormal basis
{e1, . . . , en} of V , (n = dimV ). For every x ∈ spin(V ), the element ρ∗(x) ∈ spin(V )
acts on V according to

ρ∗(x)v = x · v − v · x.
If

x =
∑

i<j

xijeiej ,
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then

ρ∗(x)ej = −2
∑

i

xijei, (xij = −xji).

Note the following often confusing fact. If we identify as usual so(V ) ∼= Λ2V by

so(n) ∋ A 7→ ωA =
∑

i<j

g(Aei, ej)ei ∧ ej = −
∑

i<j

g(ei, Aej)ei ∧ ej ,

then the Lie algebra morphism ρ∗ takes the form

ωρ∗(x) = −
∑

i<j

g(ei, ρ∗(x)ej)ei ∧ ej = 2
∑

i<j

xijei ∧ ej = 2σ(x) ∈ Λ2V,

where σ : Cl(V )→ Λ•V is the symbol map, eiej 7→ ei ∧ ej . In particular, this shows ρ∗ is
an isomorphism, and that the map ρ : Spin(V )→ SO(V ) is also a submersion.

☞ A word of warning. If A ∈ so(V ) has the matrix description

Aej =
∑

i

aijei

with respect to an oriented orthonormal basis {e1, . . . , en}, (n = dimV ), then the 2-form
associated to A has the form

ωA = −
∑

i<j

aijei ∧ ej,

so that

ρ−1∗ (A) = −1

2

∑

i<j

aijeiej = −
1

4

∑

i,j

aijeiej. (11.1.3)

The above negative sign is essential, and in many concrete problems it makes a world of
difference. ⊓⊔

Any Clifford module φ : Cl(V )→ EndK (E) defines by restriction a representation

φ : Spin(V )→ GLK(E).

The (complex) representation theory described in the previous sections can be used to
determine the representations of Spin(V ).

Example 11.1.44. (The complex spinor representations). Consider a finite dimen-
sional oriented Euclidean space (V, g). Assume first that dimV is even. The orientation
on V induces a Z2-grading on the spinor module S = S+⊕S−. Since Spin(V ) ⊂ Cleven(V )
we deduce that each of the spinor spaces S± is a representation space for Spin(V ). They
are in fact irreducible, nonisomorphic complex Spin(V )-modules. They are called the
positive/negative complex spin representations.

Assume next that dimV is odd. The spinor module S(V )

S(V ) = S+(V )⊕ S−(V ).
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is not irreducible as a Cl(V ) modules. Each of the modules S±(V ) is a representation
space for Spin(V ). They are irreducible but also isomorphic as Spin(V )-modules. If we
pick an oriented orthonormal basis e1, · · · , e2n+1 of V then the Clifford multiplication by
ω = e1 · · · e2n+1 intertwines the ± components. This is a Spin(V ) isomorphism since ω
lies in the center of Cl(V ). ⊓⊔

✍ Convention. For each positive integer n we will denote by Sn the Spin(n)-module
defined by

S2k ∼= S+(R2k)⊕ S−(R2k) if n = 2k,

and
S2k+1

∼= S+(R2k+1) ∼=Spin(2k+1) S
−(R2k+1) if n = 2k + 1.

The module Sn will be called the fundamental complex spinor module of Spin(n). ⊓⊔

Exercise 11.1.45. Let (V, g) be a 2k-dimensional Euclidean space and J : V → V a
complex structure compatible with the metric g. Thus we have an explicit isomorphism

∆ : Cl(V )→ End (Λ•,0V ).

Choose u ∈ V such that |u|g = 1 and then for each t ∈ R set

q = q(t) = cos t+ u · v sin t, v = Jv.

Note that q ∈ Spin(V ) so that ∆(q) preserves the parities when acting on Λ∗,0(V ). Hence
∆(q) = ∆+(q) ⊕∆−(q) where ∆+/−(q) acts on Λeven/odd,0V . Compute tr (∆+/−(q)) and

then conclude that Λeven,/odd,0V are non-isomorphic Spin(V )-modules. ⊓⊔

Proposition 11.1.46. Let φ : Cl(V ) → End (E) be a selfadjoint Clifford module. Then
the induced representation of Spin(V ) is orthogonal (unitary).

Exercise 11.1.47. Prove the above proposition. ⊓⊔

Exercise 11.1.48. Prove that the group Spin(V ) satisfies all the conditions discussed in
Subsection 10.1.5. ⊓⊔

11.1.7 The complex spin group

The considerations in the previous case have a natural extension to the complexified
Clifford algebra Cln. The canonical involutive automorphism

α : Cln → Cln

extends by complex linearity to an automorphism of Cln, while the anti-automorphism
♭ : Cln → Cln extends to Cln according to the rule

(v ⊗ z)♭ = v ⊗ z.

As in the real case set x† := α(x)♭, and N(x) = x♭ · x.
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Let (V, g) be an Euclidean space. The complex Clifford group Γc(V ) is defined by

Γc(V ) = {x ∈ Cl(V )⋆;α(x) · v · x−1 ∈ V ∀v ∈ V }.
We denote by ρc the tautological representation ρc : Γc(V ) → GL(V,R). As in the real
case one can check that

ρc(Γc(V )) = O(V ), ker ρc = C∗.

The spinorial norm N(x) determines a group morphism N : Γc(V )→ C∗. Define

Pinc(V ) = {x ∈ Γc(V ) ; |N(x)| = 1}.
We let the reader check the following result.

Proposition 11.1.49. There exists a short exact sequence

1→ S1 → Pinc(V )→ O(V )→ 1. ⊓⊔
Corollary 11.1.50. There exists a natural isomorphism

Pinc(V ) ∼= (Pin(V )× S1)/ ∼,
where “∼” is the equivalence relation

(x, z) ∼ (−x,−z) ∀(x, z) ∈ Pin(V )× S1.

Proof. The inclusions Pin(V ) ⊂ Cl(V ), S1 ⊂ C induce an inclusion

(Pin(V )× S1)/ ∼→ Cl(V ).

The image of this morphism lies obviously in Γc(V )∩{|N | = 1} so that (Pin(V )×S1)/ ∼
can be viewed as a subgroup of Pinc(V ). The sought for isomorphism now follows from
the exact sequence

1→ S1 → (Pin(V )× S1)/ ∼→ O(V )→ 1. ⊓⊔
We define Spinc(V ) as the inverse image of SO(V ) via the morphism

ρc : Pinc(V )→ O(V ).

Arguing as in the above corollary we deduce

Spinc(V ) ∼= (Spin(V )× S1)/ ∼∼= (Spin(V )× S1)/Z2.

Exercise 11.1.51. Prove Spinc(V ) satisfies all the conditions outlined in Subsection
10.1.5. ⊓⊔

Assume now dimV is even. Then, any any isomorphism mCl(V ) ∼= EndC(S(V ))
induces a complex unitary representation

Spinc(V )→ Aut (S(V ))

called the complex spinorial representation of Spinc. It is not irreducible since, once we fix
an orientation on V , the space End (S(V )) has a natural superstructure and, by definition,
Spinc acts through even automorphism. As in the real case, S(V ) splits into a direct sum
of irreducible representations S±(V ).

Fix a complex structure J on V . This complex structure determines two things.
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(i) A canonical orientation on V .

(ii) A natural subgroup

U(V, J) = {T ∈ SO(V ) ; [T, J ] = 0} ⊂ SO(V ).

Denote by ıJ : U(V, J)→ SO(V ) the inclusion map.

Proposition 11.1.52. There exists a natural group morphism U(V, J)
ξJ−→ Spinc(V ) such

that the diagram below is commutative.

U(V, J) Spinc(V )

SO(V )

w

ξJ

'

'

'

')

ıJ

u

ρc

Proof. Let ω ∈ U(V ), and consider a path γ : [0, 1] → U(V ) connecting 1 to ω. Via the
inclusion U(V ) →֒ SO(V ) we may regard γ as a path in SO(V ). As such, it admits a
unique lift γ̃ : [0, 1]→ Spin(V ) such that γ̃(0) = 1.

Using the double cover S1 → S1, z 7→ z2, we can find a path t 7→ δ(t) ∈ S1 such that

δ(0) = 1 and δ2(t) = det γ(t).

Define ξ(ω) to be the image of (γ̃(1), δ(1)) in Spinc(V ). We have to check two things.

(i) The map ξ is well defined.

(ii) The map σ is a smooth group morphism.

To prove (i), we need to show that if η : [0, 1] → U(V ) is a different path connecting
1 to ω, and λ : [0, 1]→ S1 is such that λ(0) = 1 and λ(t) = det η(t)2, then

(η̃(1), λ(1)) = (γ̃(1), δ(1)) in Spinc(V ).

The elements γ̃(1) and η̃(1) lie in the same fiber of the covering Spin(V )
ρ→ SO(V ) so

that they differ by an element in ker ρ. Hence

γ̃(1) = ǫη̃(1), ǫ = ±1.

We can identify ǫ as the holonomy of the covering Spin(V )→ SO(V ) along the loop γ ∗η−
which goes from 1 to ω along γ, and then back to 1 along η−(t) = η(1 − t).

The map det : U(V ) → S1 induces an isomorphism between the fundamental groups
(see Exercise 6.2.35 of Subsection 6.2.5). Hence, in describing the holonomy ǫ it suffices
to replace the loop γ ∗ η− ⊂ U(V ) by any loop ν(t) such that

det ν(t) = det(γ ∗ η−) = ∆(t) ∈ S1.

Such a loop will be homotopic to γ ∗ η−1 in U(V ), and thus in SO(V ) as well. Select ν(t)
of the form

ν(t)e1 = ∆(t)e1, ν(t)ei = ei ∀i ≥ 2,
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where (ei) is a complex, orthonormal basis of (V, J). Set fi = Jei. With respect to the
real basis (e1, f1, e2, f2, . . . ) the operator ν(t) (viewed as an element of SO(V )) has the
matrix description 


cos θ(t) − sin θ(t) · · ·
sin θ(t) cos θ(t) · · ·

...
... 1


 ,

where θ : [0, 1]→ R is a continuous map such that ∆(t) = eiθ(t).
The lift of ν(t) to Spin(V ) has the form

ν̃(t) =
(
cos

θ(t)

2
− e1f1 sin

θ(t)

2

)
.

We see that the holonomy defined by ν̃(t) is nontrivial if and only if the holonomy of the

loop t 7→ δ(t) in the double cover S1 z2→ S1 is nontrivial. This means that δ(1) and λ(1)
differ by the same element of Z2 as γ̃(1) and η̃(1). This proves ξ is well defined. We leave
the reader to check that ξ is indeed a smooth morphism of groups. ⊓⊔

11.1.8 Low dimensional examples

In low dimensions the objects discussed in the previous subsections can be given more
suggestive interpretations. In this subsection we will describe some of these interpretations.

Example 11.1.53. (The case n = 1). The Clifford algebra Cl1 is isomorphic with
the field of complex numbers C. The Z2-grading is ReC ⊕ ImC. The group Spin(1) is
isomorphic with Z2. ⊓⊔

Example 11.1.54. (The case n = 2). The Clifford algebra Cl2 is isomorphic with the
algebra of quaternions H. This can be seen by choosing an orthonormal basis {e1, e2} in
R2. The isomorphism is given by

1 7→ 1, e1 7→ i, e2 7→ j, e1e2 7→ k,

where i, j, and k are the imaginary units in H. Note that

Spin(2) = {a+ bk ; a, b ∈ R, a2 + b2 = 1} ∼= S1.

The natural map Spin(1)→ SO(2) ∼= S1 takes the form eiθ 7→ e2iθ. ⊓⊔

Example 11.1.55. (The case n = 3). The Clifford algebra Cl3 is isomorphic, as an
ungraded algebra, to the direct sum H ⊕ H. More relevant is the isomorphism Cleven3

∼=
Cl2 ∼= H given by

1 7→ 1, e1e2 7→ i, e2e3 7→ j, e3e1 7→ k,

where {e1, e2, e3} is an orthonormal basis in R3. Under this identification the operation
x 7→ x♭ coincides with the conjugation in H

x = a+ bi+ cj + dk 7→ x = a− bi− cj − dk.
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In particular, the spinorial norm coincides with the usual norm on H

N(a+ bi+ cj + dk) = a2 + b2 + c2 + d2.

Thus, any x ∈ Cleven3 \{0} is invertible, and

x−1 =
1

N(x)
x♭.

Moreover, a simple computation shows that xR3x−1 ⊂ R3, ∀x ∈ Cleven3 \{0}, so that

Γ0(R3) ∼= H \ {0}.

Hence
Spin(3) ∼= {x ∈ H; |x| = 1 } ∼= SU(2).

The natural map Spin(3)→ SO(3) is precisely the map described in the Exercise 6.2.8 of
Subsection 6.2.1.

The isomorphism Spin(3) ∼= SU(2) can be visualized by writing each q = a+bi+cj+dk
as

q = u+ jv, u = a+ bi, v = (c− di) ∈ C.

To a quaternion q = u+ jv one associates the 2× 2 complex matrix

Sq =

[
u −v̄
v ū

]
∈ SU(2).

Note that Sq̄ = S∗q , ∀q ∈ H. For each quaternion q ∈ H we denote by Lq (respectively Rq)
the left (respectively right) multiplication. The right multiplication by i defines a complex
structure on H. Define T : H→ C2 by

q = u+ jv 7→ Tq =

[
u
v

]
.

A simple computation shows that T (Riq) = iTq, i.e., T is a complex linear map. Moreover,
∀q ∈ Spin(3) ∼= S3, the matrix Sq is in SU(2), and the diagram below is commutative.

H C2

H C2

w

T

u

Lq
u

Sq

w

T

In other words, the representation

Spin(3) ∋ q 7→ Lq ∈ GLC(H)

of Spin(3) is isomorphic with the tautological representation of SU(2) on C2.
On the other hand, the correspondences

e1e2 7→ Si ⊕ Si ∈ End (C2)⊕ End (C2)
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e2e3 7→ Sj ⊕ Sj ∈ End (C2)⊕ End (C2)

e3e1 7→ Sk ⊕ Sk ∈ End (C2)⊕ End (C2)

e1e2e3 7→ R = 1C2 ⊕ (−1C2) ∈ End (C2)⊕ End (C2)

extend to an isomorphism of algebras Cl3 → End (C2) ⊕ End (C2). This proves that the
tautological representation of SU(2) is precisely the complex spinorial representation S3.

From the equalities

[Rj , Lq] = {Rj , Ri} = 0,

we deduce that Rj defines an isomorphism of Spin(3)-modules

Rj : S3 → S3.

This implies there exists a Spin(3)-invariant bilinear map

β : S3 × S3 → C.

This plays an important part in the formulation of the recently introduced Seiberg-Witten
equations (see [104]). ⊓⊔

Exercise 11.1.56. The left multiplication by i introduces a different complex structure
on H. Prove the representation Spin(3) ∋ q 7→ (Rq : H→ H) is

(i) complex with respect to the above introduced complex structure on H, and

(ii) it is isomorphic with complex spinorial representation described by the left multi-
plication.

⊓⊔

Example 11.1.57. (The case n = 4). The Clifford algebra Cl4 can be realized as the
algebra of 2× 2 matrices with entries in H. To describe this isomorphism we have to start
from a natural embedding R4 →֒M2(H) given by the correspondence

H ∼= R4 ∋ x 7→
[

0 −x
x 0

]

A simple computation shows that the conditions in the universality property of a Clifford
algebra are satisfied, and this correspondence extends to a bona-fide morphism of algebras
Cl4 →M2(H). We let the reader check this morphism is also injective. A dimension count
concludes it must also be surjective. ⊓⊔

Proposition 11.1.58. Spin(4) ∼= SU(2) × SU(2).
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Proof. We will use the description of Spin(4) as the universal (double-cover) of SO(4) so
we will explicitly produce a smooth 2 : 1 group morphism SU(2) × SU(2)→ SO(4).

Again we think of SU(2) as the group of unit quaternions. Thus each pair (q1, q2) ∈
SU(2)× SU(2) defines a real linear map

Tq1,q2 : H→ H, x 7→ Tq1,q2x = q1xq2.

Clearly |x| = |q1| · |x| · |q2| = |Tq1,q2x| ∀x ∈ H, so that each Tq1,q2 is an orthogonal
transformation of H. Since SU(2)×SU(2) is connected, all the operators Tq1,q2 belong to
the component of O(4) containing 1, i.e,. T defines an (obviously smooth) group morphism

T : SU(2) × SU(2)→ SO(4).

Note that ker T = {1,−1}, so that T is 2 : 1. In order to prove T is a double cover it
suffices to show it is onto. This follows easily by noticing T is a submersion (verify this! ),
so that its range must contain an entire neighborhood of 1 ∈ SO(4). Since the range
of T is closed (verify this!) we conclude that T must be onto because the closure of the
subgroup (algebraically) generated by an open set in a connected Lie group coincides with
the group itself (see Subsection 1.2.3). ⊓⊔

The above result shows that

so(4) ∼= spin(4) ∼= su(2)⊕ su(2) ∼= so(3) ⊕ so(3).

Exercise 11.1.59. Using the identification Cl4 ∼= M2(H) show that Spin(4) corresponds
to the subgroup {

diag (p, q); p, q ∈ H, |p| = |q| = 1
}
⊂M2(H). ⊓⊔

Exercise 11.1.60. Let {e1, e2, e3, e4} be an oriented orthonormal basis of R4. Let ∗ denote
the Hodge operator defined by the canonical metric and the above chosen orientation. Note
that

∗ : Λ2R4 → Λ2R4

is involutive, ∗2 = 1, so that we can split Λ2 into the ±1 eigenspaces of ∗

Λ2R4 = Λ2
+R

4 ⊕ Λ2
−R

4.

(a) Show that

Λ2
± = spanR

{
η±1 , η

±
2 , η

±
3

}
,

where

η±1 =
1√
2
(e1 ∧ e2 ± e3 ∧ e4), η±2 =

1√
2
(e1 ∧ e3 ± e4 ∧ e2),

η±3 =
1√
2
(e1 ∧ e4 ± e2 ∧ e3).

(b) Show that the above splitting of Λ2R4 corresponds to the splitting so(4) = so(3)⊕so(3)
under the natural identification Λ2R4 ∼= so(4). ⊓⊔
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To obtain an explicit realization of the complex spinorial representations S±4 we need
to describe a concrete realization of the complexification Cl4. We start from the morphism
of R-algebras

H ∋ x = u+ jv 7→ Sx =

[
u −v̄
v u

]

This extends by complexification to an isomorphism of C-algebras

H⊗R C ∼=M2(C).

(Verify this!) We now use this isomorphism to achieve the identification.

EndH(H⊕H)⊗R C ∼=M2(H)⊗R C ∼= EndC(C
2 ⊕ C2).

The embedding R4 → Cl4 now takes the form

H ∼= R4 ∋ x 7→ Tx =

[
0 −Sx̄
Sx 0

]
∈ End (C2 ⊕ C2). (11.1.4)

Note that the chirality operator Γ = −e1e2e3e4 is represented by the canonical involution

Γ 7→ 1C2 ⊕ (−1C2).

We deduce the S±4 representations of Spin(4) = SU(2)× SU(2) are given by

S+4 : SU(2)× SU(2) ∋ (p, q) 7→ p ∈ GL(2;C),

S−4 : SU(2)× SU(2) ∋ (p, q) 7→ q ∈ GL(2;C).
Exactly as in the case of Spin(3), these representations can be given quaternionic descrip-
tions.

Exercise 11.1.61. The space R4 ∼= H has a canonical complex structure defined by Ri

which defines (following the prescriptions in §10.1.3) an isomorphism

c : Cl4 → End (Λ•C2).

Identify C2 in the obvious way with Λ1C2ΛoddC2, and with ΛevenC2 via the map

e1 7→ 1 ∈ Λ0C2, e2 7→ e1 ∧ e2.

Show that under these identifications we have

c(x) = Tx ∀x ∈ R4 ∼= (H, Ri) ∼= C2,

where Tx is the odd endomorphism of C2 ⊕ C2 defined in (11.1.4). ⊓⊔

Exercise 11.1.62. Let V be a 4-dimensional, oriented Euclidean space. Denote by

q : Λ•V → Cl(V )

the quantization map, and fix an isomorphism ∆ : Cl(V )→ End (S(V )) of Z2-graded alge-
bras. Show that for any η ∈ Λ2

+(V ), the image ∆◦q(η) ∈ End (S(V )) is an endomorphism
of the form T ⊕ 0 ∈ End (S+(V ))⊕ End (S−(V )). ⊓⊔
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Exercise 11.1.63. Denote by V a 4-dimensional oriented Euclidean space.
(a) Show that the representation S+4 ⊗S+4 of Spin(4) descends to a representation of SO(4)
and moreover

S+(V )⊗C S+(V ) ∼= (Λ0(V )⊕ Λ2
+(V ))⊗R C

as SO(4) representations.
(b) Show that S+(V ) ∼= S̄+(V ) as Spin(4) modules.
(c)The above isomorphism defines an element φ ∈ S+(V ) ⊗C S+(V ). Show that via the
correspondence at (a) the isomorphism φ spans Λ0(V ). ⊓⊔

11.1.9 Dirac bundles

In this subsection we discuss a distinguished class of Clifford bundles which is both fre-
quently encountered in applications and it is rich in geometric information. We will touch
only the general aspects. The special characteristics of the most important concrete exam-
ples are studied in some detail in the following section. In the sequel all Clifford bundles
will be assumed to be complex.

Definition 11.1.64. Let E →M be a Clifford bundle over the oriented Riemann manifold
(M,g). We denote by c : Ω1(M)→ End(E) the Clifford multiplication.
(a) A Dirac structure on E is a pair (h,∇) consisting of a Hermitian metric h on E,
and a Clifford connection, i.e., a connection ∇ on E compatible with h and satisfying the
following conditions.

(a1) For any α ∈ Ω1(M), the Clifford multiplication by α is a skew-Hermitian endomor-
phism of E.

(a2) For any α ∈ Ω1(M), X ∈ Vect (M), u ∈ C∞(E)

∇X(c(α)u) = c(∇MX α)u+ c(α)(∇Xu),

where ∇M denotes the Levi-Civita connection on T ∗M . (This condition means that
the Clifford multiplication is covariant constant).

A pair (Clifford bundle, Dirac structure) will be called a Dirac bundle.

(b) A Z2-grading on a Dirac bundle (E, h,∇) is a Z2 grading of the underlying Clifford
structure E = E0 ⊕ E1, such that h = h0 ⊕ h1, and ∇ = ∇0 ⊕∇1, where hi (respectively
∇i ) is a metric (respectively a metric connection) on Ei. ⊓⊔

The next result addresses the fundamental consistency question: do there exist Dirac
bundles?

Proposition 11.1.65. Let E →M be a Clifford bundle over the oriented Riemann man-
ifold (M,g). Then there exist Dirac structures on E.

Proof. Denote by D the (possible empty) family of Dirac structure on E. Note that if
(hi,∇i) ∈ D, i = 1, 2, and f ∈ C∞(M), then

(fh1 + (1− f)h2, f∇1 + (1− f)∇2) ∈ D.
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This elementary fact shows that the existence of Dirac structures is essentially a local
issue: local Dirac structures can be patched-up via partitions of unity.

Thus, it suffices to consider only the case when M is an open subset of Rn, and E is
a trivial vector bundle. On the other hand, we cannot assume that the metric g is also
trivial (Euclidean) since the local obstructions given by the Riemann curvature cannot be
removed. We will distinguish two cases.
A. n = dimM is even. The proof will be completed in three steps.

Step 1. A special example. Consider the (complex) spinor module (representation)

c : Cln → End (Sn),

We can assume that c is selfadjoint, i.e.,

c(u†) = c(u)∗, ∀u ∈ Cln .

We will continue to denote by c the restriction of the Clifford multiplication to Spin(n) →֒
Cln.

Fix a global, oriented, orthonormal frame (ei) of TM , and denote by (ej) its dual
coframe. Denote by ω = (ωij) the connection 1-form of the Levi-Civita connection on
T ∗M with respect to this moving frame, i.e.,

∇ej = ωej =
∑

i

ωij ⊗ ei, ω ∈ Ω1(M)⊗ so(n).

Using the canonical isomorphism ρ∗ : spin(n)→ so(n) we define

ω̃ := ρ−1∗ (ω) = −1

2

∑

i<j

ωijei · ej ∈ Ω1(M)⊗ spin(n).

This defines a connection ∇S on the trivial vector bundle SM = Sn ×M given by

∇Su = du− 1

2

∑

i<j

ωij ⊗ c(ei) · c(ej)u, ∀u ∈ C∞(SM).

The considerations in §10.1.5 show that ∇S is indeed a Clifford connection so that SM is
a Dirac bundle.

Step 2. Constructing general Dirac bundles. Fix a Dirac bundle (E, hE ,∇E) over M . For
any Hermitian vector bundle (W,hW ) equipped with a Hermitian connection ∇W we can
construct the tensor product E ⊗W equipped with the metric hE ⊗ hW and the product
connection ∇E⊗W . These two data define a Dirac structure on E ⊗W (Exercise 11.1.68
at the end of this subsection).

The representation theory of the Clifford algebra Cln with n even shows that any
Clifford bundle over M must be a twisting SM ⊗ W of the spinor bundle SM . This
completes the proof of the proposition when dimM is even.

Step 3 Conclusion. The odd case is dealt with similarly using the different representation
theory of the Cl2k+1. Now instead of one generating model S there are two, but the proof
is conceptually identical. The straightforward details are left to the reader. ⊓⊔
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Denote by (E, h,∇) a Dirac bundle over the oriented Riemann manifold (M,g). There
exists a Dirac operator on E canonically associated to this structure given by

D = c ◦ ∇ : C∞(E)
∇→ C∞(T ∗M ⊗ E)

c→ C∞(E).

A Dirac operator associated to a Dirac structure is said to be a geometric Dirac operator.

Proposition 11.1.66. Any geometric Dirac operator is formally selfadjoint.

Proof. The assertion in the above proposition is local so we can work with local orthonor-
mal moving frames. Fix x0 ∈ M , and denote by (xi) a collection of normal coordinates
near x0. Set ei = ∂xi . Denote by (ei) the dual coframe of (ei). If (h,∇) is a Dirac structure
on the Clifford bundle E, then at x0 the associated Dirac operator can be described as

D =
∑

i

c(ei)∇i (∇i = ∇ei).

We deduce

D∗ = (∇i)∗c(ei)∗.

Since the connection ∇ is compatible with h and divg(ei) |x0= 0, we deduce

(∇i)∗ = −∇i.

Since the Clifford multiplication is skew-Hermitian, c(ei)∗ = −c(ei), we deduce that at x0
we have

D∗ =
∑

i

∇i ◦ c(ei) =
∑

i

[∇i, c(ei)] +D.

On the other hand, the Clifford multiplication is covariant constant, and (∇Mi ei) |x0= 0
so we conclude

[∇i, c(ei)] |x0= 0 ∀i. ⊓⊔

Let D be a geometric operator associated to the Dirac bundle (E, h,∇). By definition,
D2 is a generalized Laplacian, and according to Proposition 10.1.34 we must have an
equality of the form

D2 = ∇̃∗∇̃+ R,

where ∇̃ is a connection on E, and R is the Weitzenböck remainder which is an endo-
morphism of E. For geometric Dirac operators, ∇̃ = ∇, and this remainder can be given
a very explicit description with remarkable geometric consequences. To formulate it we
need a little bit of foundational work.

Let (E, h,∇) be a Dirac bundle over the oriented Riemann manifold (M,g). Denote
by Cl(T ∗MM)→M the bundle of Clifford algebras generated by (T ∗M,g).

The curvature F (∇) of ∇ is a section of Λ2T ∗M ⊗ End (E). Using the quantization
map q : Λ•T ∗M → Cl(T ∗M) we get a section

q(F ) ∈ Cl(T ∗M)⊗ End (E).
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On the other hand, the Clifford multiplication c : Cl(T ∗M) → End (E) defines a linear
map

Cl(T ∗M)⊗ End (E)→ End(E), ω ⊗ T 7→ c(ω) ◦ T.
This map associates to the element q(F ) an endomorphism of E which we denote by c(F ).
If (ei) is a local, oriented, orthonormal moving frame for T ∗M , then we can write

F (∇) =
∑

i<j

ei ∧ ej ⊗ Fij ,

and

c(F ) =
∑

i<j

c(ei)c(ej)Fij =
1

2

∑

i,j

c(ei)c(ej)Fij .

Theorem 11.1.67 (Bochner-Weitzenböck)). Let D be the geometric Dirac operator
associated to the Dirac bundle (E, h,∇) over the oriented Riemann manifold (M,g). Then

D2 = ∇∗∇+ c(F (∇)).

Proof. Fix x ∈ M , and then choose an oriented, local orthonormal moving frame (ei) of
TM near x such that

[ei, ej ] |x= (∇Mei) |x= 0,

where ∇M denotes the Levi-Civita connection. Such a choice is always possible because
the torsion of the Levi-Civita connection is zero. Finally, denote by (ei) the dual coframe
of (ei). Then

D2 |x=
∑

i

c(ei)∇i


∑

j

c(ej)∇j


 .

Since [∇i, c(ej)] |x= 0 we deduce

D2 |x=
∑

i,j

c(ei)c(ej)∇i∇j = −
∑

i

∇2
i +

∑

i 6=j
c(ei)c(ej)∇i∇j

= −
∑

i

∇2
i +

∑

i<j

c(ei)c(ej)[∇i,∇j] = −
∑

i

∇2
i +

∑

i<j

c(ei)c(ej)Fij(∇).

We want to emphasize again the above equalities hold only at x. The theorem now follows
by observing that

(∇∗∇) |x= −
(∑

i

∇2
i

)
|x . ⊓⊔

Exercise 11.1.68. Let (E, h,∇) be a Dirac bundle over the oriented Riemann manifold
(M,g) with associated Dirac operator D. Consider a Hermitian bundle W → M and a
connection ∇W compatible with the Hermitian metric hW .
(a) Show that (E ⊗W,h ⊗ hW , ∇̂ = ∇ ⊗ 1W + 1E ⊗ ∇W ) defines a Dirac structure on
E ⊗W in which the Clifford multiplication by α ∈ Ω1(M) is defined by

c(α)(e ⊗ w) = (c(α)e) ⊗ w, e ∈ C∞(E), w ∈ C∞(W ).
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We denote by DW the corresponding geometric Dirac operator.

(b) Denote by cW (F (∇W )) the endomorphism of E ⊗W defined by the sequence

F (∇W ) ∈ C∞(Λ2T ∗M ⊗ End (W ))
q7→ C∞(Cl(T ∗M)⊗ End (W ))

c7→ C∞(End (E ⊗W )).

Show that

D2
W = ∇̂∗∇̂+ c(F (∇)) + cW (F (∇W )). ⊓⊔

11.2 Fundamental examples

This section is entirely devoted to the presentation of some fundamental examples of
Dirac operators. More specifically we will discuss the Hodge-DeRham operator, the Dol-
beault operator the spin and spinc Dirac. We will provide more concrete descriptions of
the Weitzenböck remainder presented in Subsection 10.1.9 and show some of its uses in
establishing vanishing theorems.

11.2.1 The Hodge-DeRham operator

Let (M,g) be an oriented Riemann manifold and set

Λ•CT
∗M := Λ•T ∗M ⊗ C.

For simplicity we continue to denote by Ω•(M) the space of smooth differential forms on
M with complex coefficients. We have already seen that the Hodge-DeRham operator

d+ d∗ : Ω•(M)→ Ω•(M)

is a Dirac operator. In fact, we will prove this operator is a geometric Dirac operator.

Continue to denote by g the Hermitian metric induced by the metric g on the com-
plexification Λ•CT

∗M . We will denote by ∇g all the Levi-Civita connection on the tensor
bundles of M . When we want to be more specific about which Levi-Civita connection we
are using at a given moment we will indicate the bundle it acts on as a superscript. E.g.,
∇T ∗M is the Levi-Civita connection on T ∗M .

Proposition 11.2.1. The pair (g,∇g) defines a Dirac structure on the Clifford bundle
ΛCT

∗M and d+ d∗ is the associated Dirac operator.

Proof. In Subsection 4.1.5 we have proved that d can be alternatively described as the
composition

C∞(Λ•T ∗M)
∇→ C∞(T ∗M ⊗ Λ•T ∗M)

ε→ C∞(Λ•T ∗M),

where ε denotes the exterior multiplication map. Thus

d+ d∗ = ε ◦ ∇+∇∗ ◦ ε∗.
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If X1, · · · ,Xn is a local orthonormal frame of TM , and θ1, · · · , θn is its dual coframe, then
for any ordered multi-index I we have

ε∗(θI) =
∑

j

iXjθ
I .

Thus, for any ω ∈ C∞(Λ•T ∗M) we have

(∇∗ ◦ ε∗)ω = −
(∑

k

∇Xk
iXk

+ divg(Xk)iXk

)
ω.

Fortunately, we have the freedom to choose the frame (Xk) in any manner we find conve-
nient.

Fix an arbitrary point x0 ∈ M and choose (Xk) such that, at x0, we have Xk =
∂xk , where (xk) denotes a collection of normal coordinates near x0. With such a choice
divg(Xk) = 0 at x0, and thus

d∗ω |x0= −
∑

k

i∂k∇∂kω.

This shows d+ d∗ can be written as the composition

C∞(Λ•T ∗M)
∇→ C∞(T ∗M ⊗ Λ•T ∗M)

c→ C∞(Λ•T ∗M),

where c denotes the usual Clifford multiplication on an exterior algebra. We leave the
reader to verify that the Levi-Civita connection on Λ•T ∗M is indeed a Clifford connection,
i.e., the Clifford multiplication is covariant constant. Passing to the complexification
Λ•CT

∗M we deduce that d+ d∗ is a geometric Dirac operator. ⊓⊔

We want to spend some time elucidating the structure of the Weitzenböck remainder.
First of all, we need a better description of the curvature of ∇g viewed as a connection on
Λ•T ∗M .

Denote by R the Riemann curvature tensor, i.e., the curvature of the Levi-Civita
connection

∇g : C∞(TM)→ C∞(T ∗M ⊗ TM).

Thus R is a bundle morphism

R : C∞(TM)→ C∞(Λ2T ∗M ⊗ TM).

We have a dual morphism

R̃ : C∞(T ∗M)→ C∞(Λ2T ∗M ⊗ T ∗M),

uniquely determined by the equality

(R̃(Y,Z)α)(X) = −α(R(Y,Z)X) ∀α ∈ Ω1(M) X, Y, Z ∈ Vect (M).

Lemma 11.2.2. R̃ is the curvature of the Levi-Civita connection ∇T ∗M .
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Proof. The Levi-Civita connection on T ∗M is determined by the equalities

(∇T ∗M
Z α)(X) = Z · α(X) − α(∇TMZ X) ∀α ∈ Ω1(M), X, Z ∈ Vect (M).

Derivating along Y ∈ Vect (M) we get

(∇Y∇Zα)(X) = Y · (∇Zα)(X) − (∇Zα)(∇YX)

= Y · Z · α(X) − Y · α(∇ZX)− Z · α(∇YX)− α(∇Z∇YX).

Similar computations give ∇Z∇Y α and ∇[Y,Z] and we get

(RT
∗M (Y,Z)α)(X) = −α(RTM (Y,Z)X). ⊓⊔

The Levi-Civita connection ∇g = ∇T ∗M extends as an even derivation to a connection on
Λ•T ∗M . More precisely, for every X ∈ Vect (M), and any α1, . . . , αk ∈ Ω1(M), we define

∇gX(α1 ∧ · · · ∧ αk) = (∇gXα1) ∧ · · · ∧ αk + · · ·+ α1 ∧ · · · ∧ (∇gXαk).

Lemma 11.2.3. The curvature of the Levi-Civita connection on Λ•T ∗M is defined by

RΛ•T ∗M (X,Y )(α1 ∧ · · · ∧ αk)
= (R̃(X,Y )α1) ∧ · · · ∧ αk + · · ·+ α1 ∧ · · · ∧ (R̃(X,Y )αk),

for any vector fields X,Y , and any 1-forms α1, . . . , αk. ⊓⊔

Exercise 11.2.4. Prove the above lemma. ⊓⊔

The Weitzenböck remainder of the Dirac operator d + d∗ is c(RΛ•T ∗M ). To better
understand its action we need to pick a local, oriented, orthonormal moving frame (ei) of
TM . We denote by (ei) its dual coframe. The Riemann curvature tensor can be expressed
as

R =
∑

i<j

ei ∧ ejRij ,

where Rij is the skew-symmetric endomorphism Rij = R(ei, ej) : TM → TM . Thus

c(RΛ•T ∗M ) =
∑

i<j

c(ei)c(ej)RΛ•T ∗M (ei, ej) =
1

2

∑

i,j

c(ei)c(ej)RΛ•T ∗M (ei, ej),

where c(ej) = e(ej)− i(ej).
Note that since both ∇∗∇, and (d + d∗)2 preserve the Z-grading of Λ•CT

∗M , so does
the Weitzenböck remainder, and consequently it must split as

c(RΛ•T ∗M ) = ⊕k≥0Rk.

Since R0 ≡ 0, the first interesting case is R1. To understand its form, pick normal
coordinates (xi) near x0 ∈M . Set ei = ∂xi |x0∈ Tx0M and ei = dxi |x0∈ T ∗x0

M .
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At x0 the Riemann curvature tensor R has the form

R =
∑

k<ℓ

ek ∧ eℓR(ek, eℓ)

where R(ek, eℓ)ej = Rijkℓei = Rijkℓei. Using Lemma 11.2.2 we get

R̃(ek, eℓ)e
j = Rijkℓe

i.

Using this in the expression of R1 at x0 we get

R1(
∑

j

αje
j) =

1

2

∑

k,ℓ

∑

i,j

αjRijkℓc(e
k)c(eℓ)ei.

We need to evaluate the Clifford actions in the above equality. We have

c(eℓ)ei = eℓ ∧ ei − δiℓ,

and

c(ek)c(eℓ)ei = ek ∧ eℓ ∧ ei − δiℓek − δkℓei + δike
ℓ.

Hence

R1(
∑

j

αje
j) =

1

2

∑

i,j,k,ℓ

αjRijkℓ(e
k ∧ eℓ ∧ ei − δiℓek − δkℓei + δike

ℓ).

Using the first Bianchi identity we deduce that

∑

i,k,ℓ

Rijkℓe
k ∧ eℓ ∧ ei = −

∑

i,k,ℓ

Rjikℓe
i ∧ ek ∧ eℓ = 0, ∀j.

Because of the skew-symmetry Rijkℓ = −Rijℓk we conclude that

∑

ijkℓ

αjRijkℓδkℓe
i = 0.

Hence

R1(
∑

j

αje
j) =

1

2

∑

i,j,k,ℓ

αjRijkℓ(δike
ℓ − δiℓek)

=
1

2

∑

i,j,ℓ

αjRijiℓe
ℓ − 1

2

∑

i,j,k

αjRijkie
k =

∑

i,j,k

αjRijike
k =

∑

jk

αj Ricjk e
k,

where Ricjk =
∑

iRijik denotes the Ricci tensor at x0. Hence

R1 = Ric . (11.2.1)

In the above equality, the Ricci tensor Ric is regarded (via the metric duality) as a
selfadjoint endomorphism of T ∗M .

The identity (11.2.1) has a beautiful consequence.
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Theorem 11.2.5 (Bochner). Let (M,g) be a compact, connected, oriented Riemann man-
ifold.

(a) If the Ricci tensor is non-negative definite, then b1(M) ≤ dimM .

(b) If Ricci tensor is non-negative definite, but it is somewhere strictly positive definite
then b1(M) = 0.

(Recall that b1(M) denotes the first Betti number of M).

The above result is truly remarkable. The condition on the Ricci tensor is purely
local, but it has global consequences. We have proved a similar result using geodesics (see
Myers Theorem, Subsection 5.2.2 , 6.2.4 and 6.2.5). Under more restrictive assumptions
on the Ricci tensor (uniformly positive definite) one deduces a stronger conclusion namely
that the fundamental group is finite. If the uniformity assumption is dropped then the
conclusion of the Myers theorem no longer holds (think of the flat torus).

This result gives yet another explanation for the equality H1(G) = 0, where G is
a compact semisimple Lie group. Recall that in this case the Ricci curvature is 1

4 ×
{the Killing metric}.

Proof. (a) Let ∆1 denote the metric Laplacian

∆1 = dd∗ + d∗d : Ω1(M)→ Ω1(M).

Hodge theory asserts that b1(M) = dimker∆1 so that, to find the first Betti number, we
need to estimate the “number” of solutions of the elliptic equation

∆1η = 0, η ∈ Ω1.

Using the Bochner-Weitzenböck theorem and the equality (11.2.1) we deduce that if η ∈
ker∆1, then

∇∗∇η +Ric η = 0, on M.

Taking the L2-inner product by η, and then integrating by parts, we get

∫

M
|∇η|2dvg +

∫

M
(Ric η, η)dvg = 0. (11.2.2)

Since Ric is non-negative definite we deduce ∇η = 0, so that any harmonic 1-form must be
covariant constant. In particular, sinceM is connected, the number of linearly independent
harmonic 1-forms is no greater than the rank of T ∗M which is dimM .

(b) Using the equality (11.2.2) we deduce that any harmonic 1-form η must satisfy

(Ric(x)ηx, ηx)x = 0 ∀x ∈M.

If the Ricci tensor is positive at some x0 ∈ M , then η(x0) = 0. Since η is also covariant
constant, and M is connected, we conclude that η ≡ 0. ⊓⊔

Remark 11.2.6. For a very nice survey of some beautiful applications of this technique
we refer to [10]. ⊓⊔
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11.2.2 The Hodge-Dolbeault operator

This subsection introduces the reader to the Dolbeault operator which plays a central
role in complex geometry. Since we had almost no contact with this beautiful branch
of geometry we will present only those aspects concerning the “Dirac nature” of these
operators. To define this operator we need a little more differential geometric background.

Definition 11.2.7. (a) Let E → M be a smooth real vector bundle over the smooth
manifold M . An almost complex structure on E is an endomorphism J : E → E such
that J2 = −1E.
(b) An almost complex structure on a smooth manifold M is an almost complex structure
J on the tangent bundle. An almost complex manifold is a pair (manifold, almost complex
structure). ⊓⊔

Note that any almost complex manifold is necessarily even dimensional and orientable,
so from the start we know that not any manifold admits almost complex structures. In
fact, the existence of such a structure is determined by topological invariants finer than
the dimension and orientability.

Example 11.2.8. (a) A complex manifold M is almost complex. Indeed, the manifold
M is locally modelled by Cn, and the transition maps are holomorphic maps Cn → Cn.
The multiplication by i defines a real endomorphism on R2n ∼= Cn, and the differential
of a holomorphic map Cn → Cn commutes with the endomorphism of TCn given by
multiplication by i in the fibers. Hence, this endomorphism induces the almost complex
structure on TM .
(b) For any manifold M , the total space of its tangent bundle TM can be equipped in
many different ways with an almost complex structure.

To see this, denote by E the tangent bundle of TM , E = T (TM). The bundle E has
a natural subbundle V, the vertical subbundle, which is the kernel of the differential of the
canonical projection π : TM →M .

If x ∈ M , v ∈ TxM , then a tangent vector in T(v,x)TM is vertical if and only if it
is tangent to a smooth path which entirely the fiber TxM ⊂ TM . Note that we have a
canonical identification

V(v,x)
∼= TxM.

Fix a Riemann metric h on the manifold TM , and denote by H ⊂ E, the subbundle of E
which is the orthogonal complement of V in E. For every (v, x) ∈ TM , the differential of
π induces an isomorphism

π∗ : H(v,x) → TxM ∼= Vv,x.

Thus, π∗ induces a bundle isomorphism A : H → V. Using the direct sum decomposition
E = H⊕ V we define the endomorphism J of E in the block form

J =

[
0 −A−1
A 0

]
. ⊓⊔

Exercise 11.2.9. Prove that a smooth manifold M of dimension 2n admits an almost
complex structure if an only if there exists a 2-form ω ∈ Ω2(M) such that the top exterior
power ωn is a volume form on M . ⊓⊔
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Let (M,J) be an almost complex manifold. Using the results of Subsection 2.2.5 we
deduce that the complexified tangent bundle TM ⊗ C splits as

TM ⊗ C = (TM)1,0 ⊗ (TM)0,1.

The complex bundle TM1,0 is isomorphic (over C) with (TM, J).
By duality, the operator J induces an almost complex structure in the cotangent bundle

T ∗M , and we get a similar decomposition

T ∗M ⊗ C = (T ∗M)1,0 ⊕ (T ∗M)0,1.

In turn, this defines a decomposition

Λ•CT
∗M =

⊕

p,q

Λp,qT ∗M.

We set Ωp,q(M) := C∞(Λp,qT ∗M).

Example 11.2.10. LetM be a complex manifold. If (zj = xj+iyj) are local holomorphic
coordinates on M , then (TM)1,0 is generated (locally) by the complex tangent vectors

∂zj =
1

2

(
∂xj − i∂yj

)
,

while (T ∗M)1,0 is locally generated by the complex 1-forms dzj = dxj + iyj.
The bundle (TM)1,0 is also known as the holomorphic tangent space, while (T ∗M)1,0 is

called the holomorphic cotangent space. The space (T ∗M)0,1 is called the anti-holomorphic
cotangent space, and it is locally spanned by the complex 1-forms dz̄j = dxj − iyj .

Note that any (p, q)-form η ∈ Ωp,q(M) can be locally described as

η =
∑

|A|=p,|B|=q
ηA,Bdz

A ∧ dz̄B , ηA,B ∈ C∞(M,C),

where we use capital Latin letters A,B,C . . . to denote ordered multi-indices, and for each
such index A we set

dzA =: dzA1 ∧ · · · ∧ dzAp .

The differential form dz̄B is defined similarly. ⊓⊔

Exercise 11.2.11. Let (M,J) be an arbitrary smooth almost complex manifold.
(a) Prove that

dΩp,q(M) ⊂ Ωp+2,q−1(M)⊕ Ωp+1,q(M)⊕ Ωp,q+1(M)Ωp−1,q+2(M).

(b) Show that if M is a complex manifold then

dΩp,q(M) ⊂ Ωp+1,q(M)⊕ Ωp,q+1(M). (11.2.3)

(The converse is also true, and it is known as the Newlander-Nirenberg theorem. Its proof
is far from trivial. For details we refer to the original paper [81]). ⊓⊔
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Definition 11.2.12. An almost complex structure on a smooth manifold is called in-
tegrable if it can derived from a holomorphic atlas, i.e. an atlas in which the transition
maps are holomorphic. ⊓⊔

Thus, the Newlander-Nirenberg theorem mentioned above states that the condition
(11.2.3) is necessary and sufficient for an almost complex structure to be integrable.

Exercise 11.2.13. Assuming the Newlander-Nirenberg theorem prove that an almost
complex structure J on the smooth manifold M is integrable if and only if the Nijenhuis
tensor N ∈ C∞(T ∗M⊗2 ⊗ TM) defined by

N(X,Y ) = [JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ] ∀X,Y ∈ Vect (M)

vanishes identically. ⊓⊔

In the sequel we will exclusively consider only complex manifolds. Let M be such a
manifold. The above exercise shows that the exterior derivative

d : ΩkC(M)→ Ωk+1
C (M)

splits as a direct sum d = ⊕p+q=kdp,q, where

dp,q = {d : Ωp,q(M)→ Ωp+1,q(M)⊕ Ωp,q+1(M)}.

The component Ωp,q → Ωp+1,q is denoted by ∂ = ∂p,q, while the component Ωp,q → Ωp,q+1

is denoted by ∂̄ = ∂̄p,q.

Example 11.2.14. In local holomorphic coordinates (zi) the action of the operator ∂̄ is
described by

∂̄


∑

A,B

ηABdz
A ∧ dz̄B


 =

∑

j,A,B

(−1)|A|∂ηAB
∂z̄j

dzA ∧ dz̄j ∧ dz̄B . ⊓⊔

It is not difficult to see that

∂̄p,q+1 ◦ ∂̄p,q = 0 ∀p, q.

In other words, for any 0 ≤ p ≤ dimCM , the sequence

0→ Ωp,0(M)
∂̄−→ Ωp,1(M)

∂̄−→ · · ·

is a cochain complex known as the p-th Dolbeault complex of the complex manifold M .
Its cohomology groups are denoted by Hp,q

∂̄
(M).

Lemma 11.2.15. The Dolbeault complex is an elliptic complex.



544 CHAPTER 11. DIRAC OPERATORS

Proof. The symbol of ∂̄p,q is very similar to the symbol of the exterior derivative. For any
x ∈M and any ξ ∈ T ∗X

σ(∂̄p,q)(ξ) : Λp,qT ∗xM → Λp,q+1T ∗xM

is (up to a multiplicative constant) the (left) exterior multiplication by ξ0,1, where ξ0,1

denotes the (0, 1) component of ξ viewed as an element of the complexified tangent space.
More precisely,

ξ0,1 =
1

2
(ξ + iJ0ξ),

where J0 : T
∗
xM → T ∗xM denotes the canonical complex structure induced on T ∗xM by the

holomorphic charts. The sequence of symbols is the cochain complex

0→ Λp,0 ⊗ Λ0,0 1⊗(−1)pξ0,1∧−→ Λp,0 ⊗ Λp,0 ⊗ Λ0,1 1⊗(−1)pξ0,1∧−→ · · · .

This complex is the (Z-graded) tensor product of the trivial complex

0→ Λp,0
1→ Λp,0 → 0,

with the Koszul complex

0→ Λ0,0 (−1)pξ0,1∧−→ Λ0,1 (−1)pξ0,1∧−→ · · · .

Since ξ0,1 6= 0, for any ξ 6= 0, the Koszul complex is exact (see Subsection 7.1.3) . This
proves that the Dolbeault complex is elliptic. ⊓⊔

To study the Dirac nature of this complex we need to introduce a Hermitian metric
h on TM . Its real part is a Riemann metric g on M , and the canonical almost complex
structure on TM is a skew-symmetric endomorphism with respect to this real metric. The
associated 2-form Ωh = −Imh is nondegenerate in the sense that Ωn (n = dimCM) is
a volume form on M . According to the results of Subsection 2.2.5 the orientation of M
defined by Ωn coincides with the orientation induced by the complex structure.

We form the Hodge-Dolbeault operator

∂̄ + ∂̄∗ : Ωp,•(M)→ Ωp,•(M).

Proposition 11.2.16. The Hodge-Dolbeault operator
√
2(∂̄ + ∂̄∗) is a Dirac operator.

Proof. We need to show that

(
σ(∂̄)(ξ)− σ(∂̄)(ξ)∗

)2
= −1

2
|ξ|21, ∀ξ ∈ T ∗M.

Denote by J the canonical complex structure on T ∗M and set η = Jξ. Note that ξ ⊥ η
and |ξ| = |η|. Then

σ(∂̄)(ξ) = (−1)p 1
2
e(ξ + iη) =

1

2
(e(ξ) + ie(η)),
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where as usual e(·) denotes the (left) exterior multiplication. The adjoint of σ(∂̄)(ξ) is

(−1)pσ(∂̄)(ξ)∗ = 1

2

(
ξ∗ −iη∗ ),

where ξ∗ (respectively η∗) denotes the metric dual of ξ (respectively η), and ξ∗ denotes
the contraction by ξ∗. We set

c(ξ) := e(ξ)− ξ∗ , c̃(η) := e(η) + η∗ ,

and we deduce

(
σ(∂̄)(ξ)− σ(∂̄)(ξ)∗

)2
=

1

4
{ e(ξ) + ie(η)− ξ∗ +iη∗ }2

=
1

4

{(
e(ξ) − ξ∗

)
+ i
(
e(η) + η∗

)}2
=

1

4

{
c(ξ) + ic̃(η)

}2

=
1

4

{
c(ξ)2 − c̃(η)2 + i

(
c(ξ)c̃(η) + c(η)c(ξ)

)}
.

Note that

c(ξ)2 = −
(
e(ξ)ξ∗ +ξ∗ e(ξ)

)
= −|ξ|2,

and

c̃(η)2 = e(η)η∗ +η∗ e(η) = |η|2.
On the other hand, since ξ ⊥ η, we deduce as above that

c(ξ)c̃(η) + c̃(η)c(ξ) = 0.

(Verify this!) Hence

{
σ(∂̄)(ξ)− σ(∂̄)(ξ)∗

}2
= −1

4
(|ξ|2 + |η|2) = −1

2
|η|2. ⊓⊔

A natural question arises as to when the above operator is a geometric Dirac oper-
ator. Note first that the Clifford multiplication is certainly skew-adjoint since it is the
symbol of a formally selfadjoint operator. Thus all we need to inquire is when the Clifford
multiplication is covariant constant. Since

c(ξ) =
(−1)p√

2

(
e(ξ) + ie(η)− ξ∗ −iη∗

)
,

where η = Jξ, we deduce the Clifford multiplication is covariant constant if ∇gJ = 0.

Definition 11.2.17. Let M be a complex manifold, and h a Hermitian metric on TM
(viewed as a complex bundle). Then h is said to be a Kähler metric if ∇J = 0, where ∇
denotes the Levi-Civita connection associated to the Riemann metric Re h, and J is the
canonical almost complex structure on TM . A pair (complex manifold, Kähler metric) is
called a Kähler manifold. ⊓⊔
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Exercise 11.2.18. Let (M,J) be an almost complex manifold and h a Hermitian metric
on TM . Let Ω = −Imh. Using the exercise 11.2.13 show that if dΩh = 0, then the
almost complex is integrable, and the metric h is Kähler.

Conversely, assuming that J is integrable, and h is Kähler show that dΩ = 0. ⊓⊔

We see that on a Kähler manifold the above Clifford multiplication is covariant con-
stant. In fact, a more precise statement is true.

Proposition 11.2.19. LetM be a complex manifold and h a Kähler metric on TM . Then
the Levi-Civita induced connection on Λ0,•T ∗M is a Clifford connection with respect to the
above Clifford multiplication, and moreover, the Hodge-Dolbeault operator

√
2(∂̄ + ∂̄∗) is

the geometric Dirac operator associated to this connection. ⊓⊔

Exercise 11.2.20. Prove the above proposition. ⊓⊔

Example 11.2.21. Let (M,g) be an oriented 2-dimensional Riemann manifold (surface).
The Hodge ∗-operator defines an endomorphism

∗ : TM → TM,

satisfying ∗2 = −1TM , i.e., the operator ∗ is an almost complex structure on M . Us-
ing the Exercise 11.2.18 we deduce this almost complex structure is integrable since, by
dimensionality

dΩ = 0,

where Ω is the natural 2-form Ω(X,Y ) = g(∗X,Y ) X,Y ∈ Vect (M). This complex
structure is said to be canonically associated to the metric. ⊓⊔

Example 11.2.22. Perhaps the favorite example of Kähler manifold is the complex
projective space Cn. To describe this structure consider the tautological line bundle
L1 → CPn. It can be naturally viewed as a subbundle of the trivial bundle Cn+1 → CPn.

Denote by h0 the canonical Hermitian metric on Cn+1, and by ∇0 the trivial connec-
tion. If we denote by P : Cn+1 → L1 the orthogonal projection, then ∇ = P ◦ ∇0 |L1

defines a connection on L1 compatible with h1 = h |L1 . Denote by ω the first Chern form
associated to this connection

ω =
i

2π
F (∇),

and set

hFS(X,Y )x := −ωx(X,JY ) + iω(X,Y ) ∀x ∈M, X, Y ∈ TxM.

Then hFS is a Hermitian metric on CPn (verify!) called the Fubini-Study metric. It is
clearly a Kähler metric since (see the Exercise 11.2.18) dΩh = −dω = −dc1(∇) = 0. ⊓⊔

Exercise 11.2.23. Describe hFS in projective coordinates, and then prove that h is indeed
a Hermitian metric, i.e. it is positive definite). ⊓⊔
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Remark 11.2.24. Any complex submanifold of a Kähler manifold is obviously Kähler.
In particular, any complex submanifold of CPn is automatically Kähler.

A celebrated result of Chow states that any complex submanifold of CPn is auto-
matically algebraic, i.e., it can be defined as the zero set of a family of homogeneous
polynomials. Thus, all complex nonsingular algebraic varieties admit a natural Kähler
structure. It is thus natural to ask whether there exist Kähler manifolds which are not
algebraic.

The answer is positive, and a very thorough resolution of this problem is contained in
the famous Kodaira embedding theorem which provides a simple necessary and sufficient
condition for a compact complex manifold to be algebraic.

For this work, Kodaira was awarded the Fields medal in 1954. His proofs rely essen-
tially on some vanishing results deduced from the Weitzenböck formulæ for the Dolbeault
operator ∂̄ + ∂̄∗, and its twisted versions. A very clear presentation of this subject can be
found in the beautiful monograph [41]. ⊓⊔

11.2.3 The spin Dirac operator

Like the Dolbeault operator, the spin Dirac operator exists only on manifolds with a bit
of extra structure. We will first describe this new structure.

Let (Mn, g) be an n-dimensional, oriented Riemann manifold. In other words, the
tangent bundle TM admits an SO(n) structure so that it can be defined by an open cover
(Uα), and transition maps

gαβ : Uαβ → SO(n)

satisfying the cocycle condition.
The manifold is said to spinnable if there exist smooth maps

g̃αβ : Uαβ → Spin(n)

satisfying the cocycle condition, and such that

ρ(g̃αβ) = gαβ ∀α, β,

where ρ : Spin(n) → SO(n) denotes the canonical double cover. The collection g̃αβ as
above is called a spin structure. A pair (manifold, spin structure) is called a spin manifold.

Not all manifolds are spinnable. To understand what can go wrong, let us start with
a trivializing cover U = (Uα) for TM , with transition maps gαβ , and such that all the
multiple intersection Uαβ···γ are contractible. In other words, U is a good cover.

Since each of the overlaps Uαβ is contractible, each map gαβ : Uαβ → SO(n) admits
at least one lift

g̃αβ : Uαβ → Spin(n).

From the equality ρ(g̃αβ g̃βγ g̃γα) = gαβgβγgγα = 1 we deduce

ǫαβγ = g̃αβ g̃βγ g̃γα ∈ ker ρ = Z2.

Thus, any lift of the gluing data gαβ to Spin(n) produces a degree 2 Čech cochain of the
trivial sheaf Z2, namely the 2-cochain

(ǫ•) : Uαβγ 7→ ǫαβγ .
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Note that for any α, β, γ, δ such that Uαβγδ 6= ∅, we have

ǫβγδ − ǫαγδ + ǫαβδ − ǫαβγ = 0 ∈ Z2.

In other words, ǫ• defines a Čech 2-cocycle, and thus defines an element in the Čech
cohomology group H2(M,Z2).

It is not difficult to see that this element is independent of the various choices: the
cover U, the gluing data gαβ , and the lifts g̃αβ . This element is intrinsic to the tangent
bundle TM . It is called the second Stiefel-Whitney class of M , and it is denoted by
w2(M). We see that if w2(M) 6= 0 then M cannot admit a spin structure. In fact, the
converse is also true.

Proposition 11.2.25. An oriented Riemann manifold M admits a spin structure if and
only if w2(M) = 0. ⊓⊔

Exercise 11.2.26. Prove the above result. ⊓⊔

Remark 11.2.27. The usefulness of the above proposition depends strongly on the ability
of computing w2. This is a good news/bad news situation. The good news is that algebraic
topology has produced very efficient tools for doing this. The bad news is that we will not
mention them since it would lead us far astray. See [63] and [76] for more details. ⊓⊔

Remark 11.2.28. The definition of isomorphism of spin structures is rather subtle (see
[73]). More precisely, two spin structures defined by the cocycles g̃•• and h̃•• are isomorphic
if there exists a collection εα ∈ Z2 ⊂ Spin(n) such that the diagram below is commutative
for all x ∈ Uαβ

Spin(n) Spin(n)

Spin(n) Spin(n)

w

εα

u

g̃βα(x)
u

h̃βα(x)

w

εβ

The group H1(M,Z2) acts on Spin(M) as follows. Take an element ε ∈ H1(M,Z2)
represented by a Čech cocycle, i.e., a collection of continuous maps εαβ : Uαβ → Z2 ⊂
Spin(n) satisfying the cocycle condition

εαβ · εβγ · εγα = 1.

Then the collection ε•• · g̃•• is a Spin(n) gluing cocycle defining a spin structure that we
denote by ε · σ.

It is easy to check that the isomorphism class of ε · σ is independent of the various
choice, i.e, the Čech representatives for ε and σ. Clearly, the correspondence

H1(M,Z2)× Spin(M) ∋ (ε, σ) 7→ ε · σ ∈ Spin(M)

defines a left action of H1(M,Z2) on Spin(M). This action is transitive and free. ⊓⊔

Exercise 11.2.29. Prove the statements in the above remark. ⊓⊔
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Exercise 11.2.30. Describe the only two spin structures on S1. ⊓⊔

Example 11.2.31. (a) A simply connected Riemann manifold M of dimension ≥ 5 is
spinnable if and only if every compact orientable surface embedded in M has trivial
normal bundle.

(b) A simply connected four-manifold M is spinnable if and only if the normal bundle NΣ

of any embedded compact, orientable surface Σ has even Euler class, i.e.,

∫

Σ
e(NΣ)

is an even integer.

(c) Any compact oriented surface is spinnable. Any sphere Sn admits a unique spin
structure. The product of two spinnable manifolds is canonically a spinnable manifold.

(d) w2(RP
n) = 0 if and only if n ≡ 3 (mod 4), while CPn admits spin structures if and

only if n is odd. ⊓⊔

Let (Mn, g) be a spin manifold. Assume the tangent bundle TM is defined by the
open cover (Uα), and transition maps

gαβ : Uαβ → SO(n).

Moreover assume the spin structure is given by the lifts

g̃αβ : Uαβ → Spin(n).

As usual, we regard the collection gαβ as defining the principal SO(n)-bundle of oriented
frames of TM . We call this bundle PSO(M).

The collection g̃αβ defines a principal Spin(n)-bundle which we denote by PSpin(M).
We can regard PSO(M) as a bundle associated to PSpin(M) via ρ : Spin(n)→ SO(n). Using
the unitary spinorial representation

∆n : Spin(n)→ Aut (Sn)

we get a Hermitian vector bundle

S(M) = PSpin(M) ×∆n Sn

called the complex spinor bundle. Its sections are called (complex) spinors. Let us
pont out that when M is even dimensional, the spinor bundle is equipped with a natural
Z/2-grading

S(M) = S+(M)⊕ S−(M).

From Lemma 11.1.31 we deduce that S(M) is naturally a bundle of Cl(TM) modules.
Then, the natural isomorphism Cl(TM) ∼= Cl(T ∗M) induces on S(M) a structure of
Cl(T ∗M)-module,

c : Cl(TM)→ EndC(S(M) ).
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Moreover, when M is even dimensional, the above morphism is compatible with the Z/2-
gradings of Cl(TM) and EndC(S(M) ) As it turns out, the bundle S(M) has a natural
Dirac structure whose associated Dirac operator is the spin Dirac operator on M . We will
denote it by D.

Since ∆n is a unitary representation, we can equip the spinor bundle S(M) with a
natural metric with respect to which the Clifford multiplication

c : Cl(TM)→ EndC(S(M) )

is self-adjoint, i.e.,

c(u†) = c(u)∗, ∀u ∈ C∞(Cl(TM)).

Since Cl(TM) is locally generated as an algebra by Vect (M), we can equivalently rewrite
the selfadjointness condition as

c(X) = −c(X)∗, ∀X ∈ Vect (M) ⊂ C∞(Cl(T ) ).

All we now need is to describe a natural connection on S(M) with respect to which the
Clifford multiplication is covariant constant.

We start with the Levi-Civita connection ∇g which we can regard as a connection on
the principal bundle PSO(M). Alternatively, ∇g can be defined by a collection of so(n)-
valued 1-forms ωα ∈ Ω1(Uα)⊗ so(n) such that

ωβ = g−1αβdgαβ + g−1αβωαgαβ on Uαβ .

Consider the canonical isomorphism of Lie algebras

ρ∗ : spin(n)→ so(n).

Then the collection ω̃α = ρ−1∗ (ωα) defines a connection ∇̂ on the principal bundle PSpin(M),

and thus via the representation ∆n it defines a connection ∇ = ∇S on the spinor bundle
S(M).

The above construction can be better visualized if we work in local coordinates. Choose
a local, oriented orthonormal frame (ei) of TM |Uα , and denote by (ej) is dual coframe.
The Levi-Civita connection has the form

∇ej = ek ⊗ ωikjei,

so that ωα = ek⊗(ωjki), where for each k the collection (ωjki)i,j is a skew-symmetric matrix.

Using the concrete description of ρ−1∗ given in (11.1.3) we deduce

ω̃α = −
∑

k

ek ⊗ (
1

2

∑

i<j

ωikjeiej) = −
1

4

∑

i,j,k

ωikje
k ⊗ eiej .

Lemma 11.2.32. The connection ∇̂ is a Clifford connection on S(M) so that (S(M), ∇̂)
is a Dirac bundle called the bundle of complex spinors.
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Proof. Use Lemma 11.1.31. ⊓⊔

We denote by D = DM the geometric Dirac operator associated to the bundle of
complex spinors S. When the manifold M is even dimensional, this operator is graded.
We recall that this means that, with respect to the decomposition S = S+⊕S−, the Dirac
operator D has the block form

D =

[
0 6D∗
6D 0

]
,

where 6D : C∞(S+) → C∞(S−) is a first order operator whose symbol is given by the
Clifford multiplication.

We now want to understand the structure of the Weitzenböck remainder of the geo-
metric Dirac operator D. If

R =
∑

k<ℓ

ek ∧ eℓRkℓ Rkℓ = (Rijkℓ) = (Rijkℓ)

is the Riemann curvature tensor, (in the above trivializations over Uα) we deduce that the
curvature of ∇̂ is

R̃ =
∑

k<ℓ

ek ∧ eℓ ⊗ ρ−1∗ (Rkℓ) = −
1

4

∑

k<ℓ

∑

ij

ek ∧ eℓ ⊗Rijkℓeiej .

From this we obtain

c(F (∇̂)) = −1

8

∑

ijkℓ

Rijkℓc(e
i)c(ej)c(ek)c(eℓ).

In the above sum, the terms corresponding to indices (i, j, k, ℓ) such that i = j or k = ℓ
vanish due to the corresponding skew-symmetry of the Riemann tensor. Thus, we can
write

c(F (∇̂)) = −1

8

∑

i 6=j

∑

k 6=ℓ
Rijkℓc(e

i)c(ej)c(ek)c(eℓ)

Using the equalities c(ei)c(ej)+c(ej)c(ei) = −2δij we deduce that the monomial c(ei)c(ej)
anti-commutes with c(ek)c(eℓ) if the two sets{i, j} and {k, ℓ} have a unique element in
common. Such pairs of monomials will have no contributions in the above sum due to the
curvature symmetry

Rijkℓ = Rkℓij.

Thus, we can split the above sum into two parts

c(F (∇̂)) = −1

4

∑

i,j

Rijijc(e
i)c(ej)c(ei)c(ej) +

∑

i,j,k,ℓdistinct

Rijklc(e
i)c(ej)c(ek)c(eℓ).

Using the first Bianchi identity we deduce that the second sum vanishes. The first sum is
equal to

−1

4

∑

i,j

Rijij(c(e
i)c(ej))2 =

1

4

∑

i,j

Rijij =
s

4
,

where s denotes the scalar curvature of M . We have thus proved the following result, [65].
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Theorem 11.2.33 (Lichnerowicz).

D2 = ∇∗∇+
1

4
s. ⊓⊔

A section ψ ∈ C∞(S(M)) such that D2ψ = 0 is called a harmonic spinor. Lichnerowicz
theorem shows that a compact spin manifold with positive scalar curvature admits no
harmonic spinors.

Exercise 11.2.34. Consider an oriented 4-dimensional Riemann spin manifold (M,g)
and W →M a Hermitian vector bundle equipped with a Hermitian connection ∇. Form
the twisted Dirac operator

DW : C∞
(
(S+(M)⊕ S−(M))⊗W

)
→ C∞

(
(S+(M)⊕ S−(M))⊗W

)

defined in Exercise 11.1.68. The operator DW is Z2-graded, and hence it has a block
decomposition

DW =

[
0 6D∗W,+
6DW,+ 0

]
,

where 6DW,+ : C∞(S+(M)⊗W )→ C∞(S−(M)⊗W ). Show that

6D∗W,+ 6DW,+ = ∇̃∗∇̃+
s

4
+ c
(
F+(∇)

)
,

where ∇̃ denotes the product connection of S(M)⊗W , and

F+(∇) =
1

2

(
F (∇) + ∗F (∇)

)
,

denotes the self-dual part of the curvature of the bundle (W,∇). ⊓⊔

Exercise 11.2.35. The torus T 3 = S1 × S1 × S1 equipped with the product metric (of
volume (2π)3) has eight spin structures. Since T 3 is also a Lie group, its tangent bundle
admits a canonical trivialization. We denote by σ0 the spin structure determined by this
trivialization. Using the free and transitive action of H1(T 3,Z2) on Spin(T 3) we deduce
that we have a canonical bijection

H1(T 3,Z2)→ Spin(T 3), H1(T 3,Z2) ∋ ǫ 7→ σǫ := ǫ · σ0.

Compute the spectrum of the spin Dirac operator Dǫ determined by the spin structure
σǫ. ⊓⊔

11.2.4 The spinc Dirac operator

Our last example of Dirac operator generalizes both the spin Dirac operator, and the
Hodge-Dolbeault operator. The common ingredient behind both these examples is the
notion of spinc structure. We begin by introducing it to the reader.

Let (Mn, g) be an oriented, n-dimensional Riemann manifold. As in the previous
section we can regard the tangent bundle as associated to the principal bundle PSO(M) of
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oriented orthonormal frames. Assume PSO(M) is defined by a good open cover U = (Uα)
and transition maps

gαβ : Uαβ → SO(n).

The manifold M is said to posses a spinc structure (or complex spin structure) if there
exists a principal Spinc(n) -bundle PSpinc such that PSO(M) is associated to PSpinc via the
natural morphism ρc : Spinc(n)→ SO(n):

PSO(M) = PSpinc ×ρc SO(n).

Equivalently, this means there exist smooth maps g̃αβ : Uαβ → Spinc(n), satisfying the
cocycle condition, such that

ρc(g̃αβ) = gαβ .

As for spin structures, there are obstructions to the existence spinc structures, but they are
less restrictive. Let us try to understand what can go wrong. We stick to the assumption
that all the overlaps Uαβ···γ are contractible.

Since Spinc(n) = (Spin(n) × S1)/Z2, lifting the SO(n) structure (gαβ) reduces to
finding smooth maps

hαβ : Uαβ → Spin(n) and zαβ : Uαβ → S1,

such that

ρ(hαβ) = gαβ ,

and

(ǫαβγ , ζαβγ) :=
(
hαβhβγhγα , zαβzβγzγα

)
∈
{
(−1,−1), (1, 1)

}
. (11.2.4)

If we set λαβ := z2αβ : Uαβ → S1, we deduce from (11.2.4) that the collection (λαβ) should

satisfy the cocycle condition. In particular, it defines a principal S1-bundle over M , or
equivalently, a complex Hermitian line bundle2 L. This line bundle should be considered
as part of the data defining a spinc structure.

The collection (ǫαβγ) is an old acquaintance: it is a Čech 2-cocycle representing the
second Stieffel-Whitney class.

As in Subsection 8.2.2, we can represent the cocycle λαβ as

λαβ = exp(iθαβ).

The collection

nαβγ =
1

2π

(
θαβ + θβγ + θγα

)
,

defines a 2-cocycle of the constant sheaf Z representing the topological first Chern class
of L. The condition (11.2.4) shows that

nαβγ = ǫαβγ (mod 2).

2In this subsection, by complex Hermitian line bundle we understand a complex line bundle equipped
with a U(1)-structure.
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To summarize, we see that the existence of a spinc structure implies the existence of a
complex Hermitian line bundle L such that

ctop1 (L) = w2(M) (mod 2).

It is not difficult to prove the above condition is also sufficient. In fact, one can be more
precise.

Denote by Spinc(M) the collection of isomorphism classes of spinc structures on the
manifold M . Any σ ∈ Spinc(M) is defined by a lift (hαβ , zαβ) as above. We denote by
detσ the complex Hermitian line bundle defined by the gluing data (zαβ). We have seen
that

ctop1 (det σ) ≡ w2(M) (mod 2).

Denote by LM ⊂ H2(M,Z) the “affine ” subspace consisting of those cohomology classes
satisfying the above congruence modulo 2. We thus have a map

Spinc(M)→ LM , σ 7→ ctop1 (det σ).

Proposition 11.2.36. The above map is a surjection. ⊓⊔

Exercise 11.2.37. Complete the proof of the above proposition. ⊓⊔

The smooth Picard group Pic∞(M) of isomorphisms classes of complex line bundles
(with group operation given by the tensor product) acts on Spinc(M) by

Spinc(M)× Pic∞(M) ∋ (σ,L) 7→ σ ⊗ L.

More precisely, if σ ∈ Spinc(M) is given by the cocycle

σ = [hαβ , zαβ ] : Uαβ → Spin (n)× S1/ ∼,

and L is given by the S1 cocycle ζαβ : Uαβ → S1, then σ ⊗ L is given by the cocycle
[hαβ , zαβζαβ ]. Note that

det(σ ⊗ L) = detσ ⊗ L2,

so that
ctop1

(
det(σ ⊗ L)

)
= ctop1 (det σ) + 2ctop1 (L).

Proposition 11.2.38. The above action of Pic∞(M) on Spinc(M) is free and transitive.

Proof. Consider two spinc structures σ1 and σ2 defined by the good cover (Uα), and the
gluing cocycles

[h
(i)
αβ , z

(i)
αβ ], i = 1, 2.

Since ρc(h
(1)
αβ) = ρc(h

(2)
αβ) = gαβ , we can assume (eventually modifying the maps h

(2)
αβ by a

sign) that

h
(1)
αβ = h

(2)
αβ .

This implies that the collection

ζαβ = z
(2)
αβ /z

(1)
αβ
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is an S1-cocycle defining a complex Hermitian line bundle L. Obviously σ2 = σ1 ⊗ L.
This shows the action of Pic∞(M) is transitive. We leave the reader verify this action is
indeed free. The proposition is proved. ⊓⊔

Given two spinc structures σ1 and σ2 we can define their “difference” σ2/σ1 as the
unique complex Hermitian line bundle L such that σ2 = σ1 ⊗ L. This shows that the
collection of spinc structures is (non-canonically) isomorphic with H2(M,Z) ∼= Pic∞(M).

It is a sort of affine space modelled on H2(M,Z) in the sense that the “difference ”
between two spinc structures is an element in H2(M,Z), but there is no distinguished
origin of this space. A structure as above is usually called a H2(M,Z)-torsor.

The set Spinc(M) is equipped with a natural involution

Spinc(M) ∋ σ 7→ σ̄ ∈ Spinc(M),

defined as follows. If σ is defined by the cocycle [g̃αβ , zαβ ], then σ̄ is defined by the cocycle
[g̃αβ , zαβ

−1]. Observe that
σ/σ̄ = det σ.

Without sufficient background in algebraic topology the above results may look of very
little help in detecting spinc structures. This is not the case, and to convince the reader
we will list below (without proofs) some examples of spinc manifolds.

Example 11.2.39. (a) Any spin manifold admits a spinc structure.
(b) Any almost complex manifold has a natural spinc structure.
(c) (Hirzebruch-Hopf, [48]; see also [80]) Any oriented manifold of dimension ≤ 4 admits
a spinc structure. ⊓⊔

Let us analyze the first two examples above. If M is a spin manifold, then the lift

g̃αβ : Uαβ → Spin(n)

of the SO-structure to a spin structure canonically defines a spinc structure via the trivial
morphism

Spin(n)→ Spinc(n)×Z2 S
1, g 7→ (g, 1) mod the Z2 − action.

We see that in this case the associated complex line bundle is the trivial bundle. This is
called the canonical spinc structure of a spin manifold. We thus have a map

Spin(M)→ Spinc(M).

Suppose we have fixed a spin structure on M given by a Spin-lift g̃βα of an SO-gluing
cocycle gβα.

To any complex Hermitian line bundle L defined by the S1-cocycle (zαβ) we can
associate the spinc structure σ ⊗ L defined by the gluing data

{
(g̃αβ , zαβ)

}
.

The complex Hermitian line bundle detσ⊗L associated to this structure is detσ⊗L = L⊗2.
Since the topological Picard group Pic∞(M) acts freely and transitively on Spinc(M), we
deduce that to any pair (ǫ, σ) ∈ Spin(M) × Spinc(M) we can canonically associate a
complex line bundle L = Lǫ,σ such that L⊗2 ∼= det σ, i.e., Lǫ,σ is a “square root of detσ.
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Exercise 11.2.40. Show that for any σ ∈ Spinc(M) there exists a natural bijection
between the set Spin(M), and the set of isomorphisms of complex line bundles L such
that L⊗2 ∼= det σ. ⊓⊔

Exercise 11.2.41. Prove that the image of the natural map Spin(M)→ Spinc(M) coin-
cides with the fixed point set of the involution σ 7→ σ̄. ⊓⊔

Exercise 11.2.42. The torus T 3 is the base of a principal bundle

Z3 →֒ R3 → T 3,

so that, to any group morphism ρ : Z3 → U(1) we can associate a complex line bundle
Lρ → T 3.
(a) Prove that Lρ1·ρ2 ∼= Lρ1 ⊗ Lρ2 , ∀ρ1, ρ1 ∈ Hom(Z3, S1), and use this fact to describe
the first Chern class of Lρ by explicitly producing a Hermitian connection on Lρ.
(b) Prove that any complex line bundle on T 3 is isomorphic to a line bundle of the form
Lρ, for some morphism ρ ∈ Hom(Z3, S1). .
(c) Show that the image of the map Spin(T 3)→ Spinc(T 3) consists of a single point. ⊓⊔

Exercise 11.2.43. Prove that Spin(RP3) consists of precisely two isomorphisms classes
of spin structures and moreover, the natural map

Spin(RP3)→ Spinc(RP3)

is a bijection. ⊓⊔

To understand why an almost complex manifold admits a canonical spinc structure it
suffices to recall the natural morphism U(k)→ SO(2k) factors through a morphism

ξ : U(k)→ Spinc(2k).

The U(k)-structure of TM , defined by the gluing data

hαβ : Uαβ → U(k),

induces a spinc structure defined by the gluing data ξ(hαβ). Its associated line bundle is
given by the S1-cocycle

detC(hαβ) : Uαβ → S1,

and it is precisely the determinant line bundle

detCT
1,0M = Λk,0TM.

The dual of this line bundle, detC(T
∗M)1,0 = Λk,0T ∗M plays a special role in algebraic

geometry. It usually denoted by KM , and it is called the canonical line bundle. Thus the

line bundle associated to this spinc structure is K−1M
def
= K∗M .

From the considerations in Subsection 11.1.5 and 11.1.7 we see that many (complex)
vector bundles associated to the principal Spinc bundle of a spinc manifold carry natural



11.2. FUNDAMENTAL EXAMPLES 557

Clifford structures, and in particular, one can speak of Dirac operators. We want to discuss
in some detail a very important special case.

Assume that (M,g) is an oriented, n-dimensional Riemann manifold. Fix σ ∈ Spinc(M)
(assuming there exist spinc structures). Denote by (gαβ) a collection of gluing data defin-
ing the SO structure PSO(M) onM with respect to some good open cover (Uα). Moreover,
we assume σ is defined by the data

hαβ : Uαβ → Spinc(n).

Denote by ∆c
n the fundamental complex spinorial representation defined in Subsection

11.1.6,
∆n : Spinc(n)→ Aut (Sn).

We obtain a complex Hermitian vector bundle

Sσ(M) = PSpinc ×∆n Sn,

which has a natural Clifford structure. This is called the bundle of complex spinors
associated to σ.

Example 11.2.44. (a) AssumeM is a spin manifold. We denote by σ0 the spin
c structure

corresponding to the fixed spin structure. The corresponding bundle of spinors S0(M)
coincides with the bundle of pure spinors defined in the previous section. Moreover for
any complex line bundle L we have

SL := Sσ ∼= S0 ⊗ L,

where σ = σ0 ⊗ L. Note that in this case L2 = det σ so one can write

Sσ ∼= S0 ⊗ (detσ)1/2.

(b) Assume M is an almost complex manifold. The bundle of complex spinors associated
to the canonical spinc structure σ (such that det σ = K−1M ) is denoted by SC(M). Note
that

SC(M) ∼= Λ0,•T ∗M. ⊓⊔
We will construct a natural family of Dirac structures on the bundle of complex spinors

associated to a spinc structure.
Consider the warm-up case when TM is trivial. Then we can assume gαβ ≡ 1, and

hαβ = (1, zαβ) : Uαβ → Spin(n)× S1 → Spinc(n).

The S1-cocycle (z2αβ) defines the complex Hermitian line bundle det σ. In this case some-
thing more happens.

The collection (zαβ) is also an S1-cocycle defining a complex Hermitian line bundle L̂,

such that L̂2 ∼= detσ. Traditionally, L̂ is denoted by (det σ)1/2, though the square root
may not be uniquely defined.

We can now regard Sσ(M) as a bundle associated to the trivial Spin(n)-bundle PSpin,
and as such, there exists an isomorphism of complex Spin(n) vector bundles

Sσ(M) ∼= S(M)⊗ (detσ)1/2.
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As in the exercise 11.1.68 of Subsection 11.1.9, we deduce that twisting the canonical
connection on the bundle of pure spinors S0(M) with any U(1)-connection on det σ1/2 we
obtain a Clifford connection on Sσ(M). Notice that if the collection

{
ωα ∈ u(1)⊗ Ω1(Uα)

}

defines a connection on detσ, i.e.,

ωβ =
dz2αβ
z2αβ

+ ωα over Uαβ ,

then the collection

ω̂α =
1

2
ωα

defines a Hermitian connection on L̂ = detσ1/2. Moreover, if F denotes the curvature of
(ω·), then the curvature of (ω̂·) is given by

F̂ =
1

2
F. (11.2.5)

Hence any connection on detσ defines in a unique way a Clifford connection on Sσ(M).

Assume now that TM is not necessarily trivial. We can however cover M by open sets
(Uα) such that each TUα is trivial. If we pick from the start a Hermitian connection on
detσ, this induces a Clifford connection on each Sσ(Uα). These can be glued back to a
Clifford connection on Sσ(M) using partitions of unity. We let the reader check that the
connection obtained in this way is independent of the various choices.

Here is an equivalent way of associating a Clifford connection on Sσ to any Hermitian
connection on detσ. Fix an open cover (Uα) of M consisting of geodesically convex
open sets. The restriction of TM to any Uα is trivializable. Fixing such (orthogonal)
trivializations leading to the gluing cocycle

gβα : Uαβ → SO(n), n := dimM.

We can describe the Levi-Civita connection on TM as a collection

Aα ∈ Ω1(Uα)⊗ so(n),

satisfying the transition rules

Aβ = −(dgβα)g−1βα + gβαAαg
−1
βα .

The spinc structure σ is described by a gluing cocycle

hβα : Uαβ → Spinc(n), hβα = [ĝβα, zβα] ∈ Spin(n)× U(1)/{±1},

such that, if ρ : Spin(n)→ SO(n) denotes the natural 2 : 1 morphism, then

gβα = ρ(ĝβα).
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Define Âα ∈ Ω1(Uα)⊗ spin(n) by setting

Âα(x) = ρ−1∗
(
Aα(x)

)
,

where ρ∗ : spin(n)→ so(n) is the natural Lie algebra isomorphism described in (11.1.3).

The collection (Âα) satisfies the transition rules

Âβ = −(dĝβα)ĝ−1βα + ĝβαÂαĝ
−1
βα .

Observe that although ĝ•• is only defined up to a ±1 ambiguity, this ambiguity is lost in
the above equality.

Consider now a connection ω on the Hermitian line bundle det σ defined by the gluing
cocycle (z2••). It is defined by a collection

ωα ∈ Ω1(Uα)⊗ u(1) = Ω1(Uα)⊗ iR,

satisfying the transition rules

ωβ = −2dzβα
zβα

+ ωα.

The collection

Aωα := Âα ⊕
1

2
ωα ∈ Ω1(Uα)⊗

(
spin(n)⊕ u(1)

)
= Ω1(Uα)⊗ spinc(n)

defines a connection Aω on the principal Spinc(n)-bundle P σSpinc →M determined by the
spinc-structure σ. In induces a connection ∇ω on the associated vector bundle Sσ, and as
in the previous subsection one can verify that ∇ω is a Clifford connection.

Example 11.2.45. Assume (M,g) is both complex and spin. Then a choice of a spin
structure canonically selects a square root KM

−1/2 of the line bundle K−1M because K−1M
is the line bundle associated to the spinc structure determined by the complex structure
on M . Then

SC ∼= S0 ⊗KM
−1/2.

Any Hermitian connection on KM induces a connection of SC. IfM happens to be Kähler,
then the Levi-Civita connection induces a complex Hermitian connection KM and thus a
Clifford connection on SC(M) ∼= Λ0,•T ∗M . ⊓⊔

Let ω be a connection on detσ. Denote by ∇ω the Clifford connection it induces
on Sσ(M) and by Dω the associated geometric Dirac operator. Since the Weitzenböck
remainder of this Dirac operator is a local object so to determine its form we may as well
assume Sσ = S⊗ detσ1/2. Using the computation of Exercise 11.1.68 and the form of the
Weitzenböck remainder for the spin operator we deduce

D2
σ,ω = (∇ω)∗∇ω +

1

4
s+

1

2
c(Fσ(ω) ), (11.2.6)

where Fσ denotes the curvature of the connection ω on det σ, and c(Fσ) denotes the
Clifford multiplication by the purely imaginary 2-form Fσ.
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Exercise 11.2.46. Consider the torus T 3 = S1 × S1 × S1 equipped with the product
round metric

g = (dθ1)2 + (dθ2)2 + (dθ3)2,

where for j = 1, 2, 3, θj ∈ [0, 2π) denotes the angular coordinate on the j-th circle.
Denote by σ0 the unique spin

c structure on T 3, such that det σ0 is a trivial line bundle.
As in the Exercise 11.2.42, for every morphism ρ : Z3 → S1, we denote by Lρ the associated
complex line bundle. We set σρ := σ ⊗ Lρ, and we fix a Hermitian metric on Lρ. The
spinc structure σρ, and a Hermitian connection ∇ on Lρ determines spinc Dirac operator
Dρ(∇).
(a) Prove that if is a Hermitian a unitary automorphism of Lρ then

Dρ(γ∇γ−1) = γDρ(∇)γ−1.

In particular, the operators Dρ(γ∇γ−1) and Dρ(∇) have the same spectrum.
(b)∗ We say that two Hermitian connections ∇,∇′ on Lρ are gauge equivalent if and only
if there exists a unitary automorphism γ of L such that ∇′ = γ∇γ−1. Prove that two
connections ∇ and ∇′ are gauge equivalent if and only if

1

2π

∫

T 3

dθj ∧
(
F (∇′)− F (∇)

)
∈ 2πiZ, ∀j = 1, 2, 3.

(c) Fix a Hermitian connection ∇ on Lρ. Describe the spectrum of Dρ(∇) in terms of the
real numbers

sj =
1

2πi

∫

T 3

dθj ∧ F (∇), j = 1, 2, 3. ⊓⊔
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antipodal points, 13

atlas, 6

maximal, 7

berezinian, 61

Bernoulli numbers, 334

Beta function, 363

Betti number, 228

Bianchi identity, 107, 165

bootstrap, 482

bundle, 27

G-fiber, 76

canonical line -, 557

determinant line, 69

Clifford, 505

complex spinor, 550

cotangent, 70

determinant line, 111, 115

Dirac, 533

fiber, 74, 75

frame, 77

Hopf, 78

line, 34, 37

tautological, 37, 351

universal, 37

principal, 77, 309

connection on, 310

pullback of a, 322

tangent, 28

vector, 34, 37

rank of a, 34

ample, 39

automorphism, 36

base of a, 34

dual, 69

endomorphism, 36

framed, 40

map, 36

morphism, 36

pullback, 39

section, 35

tautological, 38

total space of a, 34

trivial, 40, 107

trivializable, 40, 115

trivialized, 40

universal, 38

Cartan

algebra, 325, 327, 329

form, 163, 280

Lemma, 174

structural equations, 173

categories, 213

Cayley transform, 18, 141

character, 130

characteristic class, 323

2nd Stiefel-Whitney, 549

universal, 333, 337

charts, 6

Chern

classes, 326

universal, 333

universal rank r, 325

polynomial, 326, 334

universal rank r, 325

Chern-Weil correspondence, 322

Christoffel symbols, 109, 143, 164

circle, 21

class function, 130

Clifford

algebra, 506

connection, 533

module, 509

multiplication, 505, 506

s-module, 509

structure, 505, 533

coboundary, 229

cochain homotopy, 230

cochain morphism, 230

cocycle, 229

cohomologous, 229

condition, 34

cohomology

Čech, 302

Čech , 300

DeRham, 227

compact supports, 246

complex

chain, 228
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cochain, 228

acyclic, 229

DeRham, 229

Dolbeault, 544

Koszul, 545

complex structure, 66

configuration space, 3

conjugate points, see geodesic

connection, 96, 310

flat, 104

gauge equivalence, 315

Levi-Civita, 142

symmetric, 109

connection 1-form, 98

conormal, 124

inner, 124

outer, 124

contraction, 46, 55, 73, 89

convolution, 447

coordinates, 1

Cartesian system, 2

local, 6

polar, 2

coordinatization, 1, 3

covariant derivative, see connection

covering space, 214

sheets of a, 214

universal, 219

critical

point, 29

value, 29

critical point, 30

curvature, 102, 312

Gauss, 169

Ricci, 166, 205, 540

Riemann, 164

scalar, 167

sectional, 168, 204

cycle, 254

degenerate, 254

transversal, 259

cycles

cobordant, 254

deck transformation, 216

densities, 111

jacobian, 359

pullback of, 359

pushforward of, 360

density bundle, 111

DeRham

cohomology, 229

complex, 229

derivative, 4

Fréchet, 4

Frechet, 4

diffeomorphism, 7

of manifolds with boundary, 123

differential, 28

differential form, 70

closed, 222

exact, 222

duality, 57

Hodge, 62

metric, 57

natural, 57

symplectic, 57

Dynkin polynomials, 88

Einstein

convention, 46

equation, 180

manifold, 180

tensor, 181

elliptic complex, 499

embedding, 32

Euler

characteristic, 52, 184, 228, 234, 239,
269

class, 269, 331

geometric, 332

topological, 332

universal, 331

form, 169, 178, 331

Euler-Lagrange equation, 189

exponential map see manifold 147

exterior, 49

algebra, 49

derivative, 89

product, 49
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extremal, 189

five lemma, 243
flow, 79

infinitesimal generator of a, 80
local, 79, 81

formula
co-area, 362
Crofton, 413, 423, 428
Euler-Meusnier , 417
Fubini, 361
Gauss, 175
Green, 162, 444
Künneth, 244
Stokes, 124

Fréchet derivative, 3
framing, 40, 71
Fredholm index, 488
function, 3

Ck, 3
Fréchet differentiable, 3
harmonic, 162
smooth, 3, 7

functors, 213
contravariant, 213
covariant, 213

Gamma function, 163, 364, 368
gauge equivalence, see connection
gauge transformation, 36, 315
Gauss

curvature, 169, 179
lemma, 150
map, 178, 378

Gelfand-Leray
residue, 136

genus, 184
geodesic, 143

flow, 144
conjugate points, 202
index of a, 204
nondegenerate, 202

global angular form, 345
gluing cocycle, 35, 310
gluing condition, 36
Grassmannian, 13, 38, 280

complex, 13, 275, 280
real, 13

group, 18, 40
action, 74
effective, 74
free, 74
orbit, 74

Clifford, 517
complex Clifford, 526
connected, 20
fundamental, 210
left translation in a, 18
Lie, 18, 40, 87, 127, 144, 168, 279, 309,

319
exponential map of a, 87
representation, 75

linear representation, 127
irreducible, 128

orthogonal, 18
Picard, 326
right translation in a, 40
special orthogonal, 19
special unitary, 19
unitary, 19

Gysin map, 252, 266

Hessian, 199
Hilbert-Einstein functional, 180, 406, 427
Hodge ∗-operator, see operator
holonomy, 107
homogeneous space, 273
homotopy, 235

immersion, 32
injectivity radius, 148
integral curve, 80
interior derivation, 55, 89
intersection

form, 253
number, 259

invariant
form, 276
forms, 279, 281
integration, 121
polynomials, 318
tensor field, 87
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isometry, 139

isotropy, 273

Jacobi

equation, 201
field, 201, 204
identity, 55

jacobian
relative, 359

Killing
pairing, 146, 230, 280
vector field, 160

kinematic density, 368
Kronecker

pairing, 250

symbol, 44

lagrangian, 188

invariant, 195
Laplacian, 162, 439

covariant, 443
least action, see Euler-Lagrange
Lefschetz number, 265

Lie
bracket, 82
derivative, 81

group, see group
Lie algebra, 55, 85, 87, 121

simple, 280

semisimple, 146, 230, 280

Möbius band, 115

manifold
with boundary, 122
almost complex, 542

complex, 13
connect sum, 21
connected sum, 11

direct product, 11
finite type, 240
Kähler, 546

orientable, 21, 115
orientation of a, 116

oriented, 115, 116
Riemann, 139

convex sets in a, 153

exponential map of a, 147

geodesically complete, 144

smooth, 6

spinnable, 548
manifolds, 3, 10

with boundary

diffeomorphism of, 123

map, see function

differential of, 28

gluing, 13
cochain

cone of a, 233

cylinder of a, 233

covering, 214

degree of a, 264

homotopic, 209
lift of a, 216

quantization, 522

transition, 6, 34

cohomologous, 37

transversal, 33

matching, 397
matrix, 4

invertible, 4

Jacobian, 4

orthogonal, 18

skew-Hermitian, 19

skew-symmetric, 18
unitary, 19

maximum principle, 476

Mayer-Vietoris

cover, 241

functors, 241

correspondence of, 242
long sequence, 237, 249

principle, 242

short sequence, 237, 249

metric, 64, 70

Hermitian, 64

conformal, 483
Kähler, 546

Riemann, 70

metric volume, 156

module
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G-, 127
irreducible, 128
morphism, 127

mollifier, 447

mollifying sequence, 448
monodromy, 212, 218
moving frame, 97

negligible set, 29
nerve, 299
Newton formulæ, 337
normal coordinates, 148

operator, 3
Hodge ∗, 62, 157, 501, 547
boundary, 228
Cauchy-Riemann, 504
chirality, 512
closed, 486
Fredholm, 488
selfadjoint, 486
semi-Fredholm, 487

symmetric, 486
coboundary, 228
Dirac, 503
suspension of, 504

Fredholm, 488
geometric Dirac, 535
Hamilton-Floer, 504
Hodge-DeRham, 504
Hodge-Dolbeault, 545
linear, 3

transpose of a, 43
partial differential, see p.d.o.

orientation, 59
bundle, 119
canonical, 68
cover, 216
relative signature, 60

orientation cover, 216
orientationsee vector space 59
outer normal, 160

p.d.o., 431, 432
elliptic, 436
formal adjoint, 439

formally selfadjoint, 440
symbol of a , 436

pairing, 57
Hodge, 62

parallel transport, 100
parametrix, 473
partition, 289

conjugate of a, 290
length of a, 289
weight of a, 289

partition of unity, 9
pfaffian, 61, 329
Picard group, 326, 555
Poincaré

duality, 251, 258
inequality, 480, 488
lemma, 223
polynomial, 227
series, 52

polynomial
Ad-invariant, 318
Chern, 326
Pontryagin, 328

Pontryagin

classes, 328
universal rank r, 328

polynomial
universal rank r, 328

presheaf, 294
projection, 10

stereographic, 10
projection formula, 135
projective plane, see space
pullback, 72

pushforward, 252, 266

quantization map, 509
quaternions, 146

representation, 127
Ricci tensor, see curvature
Riemann metric, 139

Schur
lemma, 129
polynomial, 290
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second fundamental form, see submanifold

shape operator, 378, 406

sheaf, 295

fine, 304

resolution, 298
fine, 304

sheafification, 297

simplicial scheme, 307

smooth, see function

structure, 6

space
Banach, 3

complex projective, 13

locally compact, 6

real projective, 11

second countable, 6

simply connected, 211
Sobolev, 446

tangent, 23, 27

space of germs, 295

morphism, 297

section of, 295

stalk, 295
sphere, 10

sphere bundle, 78

spin structure, 548

spinc structure, 554

spinor, 550

bundle, 550
harmonic, 553

module, 511, 515, 534

split coordinates, 133

structural equations, 171

structure, 388

o-minimal, 388
tame, 388

submanifold, 9

2nd fundamental form, 175, 379

codimension of a, 9

submersion, 32

super, 53
algebra, 53

commutative, 53

commutator, 53

derivation, 54

Lie algebra, 55

space, 53

tensor product, 56

supertrace, 56

surface, 21

doughnut-shaped, 21

symbol map, 509

symmetric space, 274

symmetry, 18

tame geometry, 388

tensor, 42

product, 42

algebra, 45

contravariant, 45

covariant, 45

field, 70

left invariant, 87

right invariant, 87

product

universality property of, 42

skew-symmetric, 47

exterior product of, 47

symmetric, 47

type (r,s), 45

theorem, 3

Fubini, 31, 354

Nash embedding, 407, 410

Banach fixed point, 4

Bochner vanishing, 541

Bochner-Weitzenböck, 536

Calderon-Zygmund, 467

Cartan, 279

Cartan-Hadamard, 215

Chern-Weil, 319

Clairaut, 197

dominated convergence, 429

Fubini, 135

Gauss-Bonnet, 179, 240, 265, 383, 409

Gauss-Bonnet-Chern, 344, 383

Hodge, 499–501

Hopf-Rinow, 154

implicit function, 5

inverse function, 4

Leray-Hirsch, 246
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Mayer-Vietoris, 237

Morrey, 457

Myers, 205

Noether, 196

Poincaré-Hopf, 272

Rellich-Kondrachov compactness, 455

Sard, 30, 263, 414, 521

Sobolev embedding, 453

Stokes, 124

Tarski-Seidenberg, 389

uniformization, 484

Weyl, 221

Theorema egregium, 175, 379

Thom class, 267

Todd class

universal, 334

torsion, 109

torsor, 556

torus, 11, 18

maximal, 281

trace, 46, 50

transform, 18

Fourier, 466

transpose, 43

transversal, 33

trivializing cover, 33

tube formula, 404

unit outer normal, 160

variation, 190, 198

geodesic, 201

infinitesimal, 198

vector, 24

field, 35

space, 25, 41

Z-graded, 52

determinant line of a, 49, 59

dual, 43

orientation of a, 59

oriented, 59

volume form in a, 59

tangent , 24

vector bundle, see bundle

volume form, 115

weak derivative, 445
Weitzenböck

remainder, 444, 538, 552
Weyl

group, 284, 325, 328
integral formula, 282
lemma, 474
unitary trick, 128

Whitney sum, 69

Young diagram, 289
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