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Introduction

Shape is a fascinating and intriguing subject which has stimulated the imagination of
many people. It suffices to look around to become curious. Euclid did just that and came
up with the first pure creation. Relying on the common experience, he created an abstract
world that had a life of its own. As the human knowledge progressed so did the ability of
formulating and answering penetrating questions. In particular, mathematicians started
wondering whether Euclid’s “obvious” absolute postulates were indeed obvious and/or
absolute. Scientists realized that Shape and Space are two closely related concepts and
asked whether they really look the way our senses tell us. As Felix Klein pointed out
in his Erlangen Program, there are many ways of looking at Shape and Space so that
various points of view may produce different images. In particular, the most basic issue
of “measuring the Shape” cannot have a clear cut answer. This is a book about Shape,
Space and some particular ways of studying them.

Since its inception, the differential and integral calculus proved to be a very versatile
tool in dealing with previously untouchable problems. It did not take long until it found
uses in geometry in the hands of the Great Masters. This is the path we want to follow
in the present book.

In the early days of geometry nobody worried about the natural context in which the
methods of calculus “feel at home”. There was no need to address this aspect since for the
particular problems studied this was a non-issue. As mathematics progressed as a whole
the “natural context” mentioned above crystallized in the minds of mathematicians and
it was a notion so important that it had to be given a name. The geometric objects which
can be studied using the methods of calculus were called smooth manifolds. Special cases
of manifolds are the curves and the surfaces and these were quite well understood. B.
Riemann was the first to note that the low dimensional ideas of his time were particular
aspects of a higher dimensional world.

The first chapter of this book introduces the reader to the concept of smooth manifold
through abstract definitions and, more importantly, through many we believe relevant
examples. In particular, we introduce at this early stage the notion of Lie group. The
main geometric and algebraic properties of these objects will be gradually described as we
progress with our study of the geometry of manifolds. Besides their obvious usefulness in
geometry, the Lie groups are academically very friendly. They provide a marvelous testing
ground for abstract results. We have consistently taken advantage of this feature through-
out this book. As a bonus, by the end of these lectures the reader will feel comfortable
manipulating basic Lie theoretic concepts.

To apply the techniques of calculus we need “things to derivate and integrate”. These
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“things” are introduced in Chapter 2. The reason why smooth manifolds have many
differentiable objects attached to them is that they can be locally very well approximated
by linear spaces called tangent spaces . Locally, everything looks like traditional calculus.
Each point has a tangent space attached to it so that we obtain a “bunch of tangent spaces”
called the tangent bundle. We found it appropriate to introduce at this early point the
notion of vector bundle. It helps in structuring both the language and the thinking.

Once we have “things to derivate and integrate” we need to know how to explicitly
perform these operations. We devote the Chapter 3 to this purpose. This is perhaps
one of the most unattractive aspects of differential geometry but is crucial for all further
developments. To spice up the presentation, we have included many examples which
will found applications in later chapters. In particular, we have included a whole section
devoted to the representation theory of compact Lie groups essentially describing the
equivalence between representations and their characters.

The study of Shape begins in earnest in Chapter 4 which deals with Riemann manifolds.
We approach these objects gradually. The first section introduces the reader to the notion
of geodesics which are defined using the Levi-Civita connection. Locally, the geodesics
play the same role as the straight lines in an Euclidian space but globally new phenomena
arise. We illustrate these aspects with many concrete examples. In the final part of this
section we show how the Euclidian vector calculus generalizes to Riemann manifolds.

The second section of this chapter initiates the local study of Riemann manifolds.
Up to first order these manifolds look like Euclidian spaces. The novelty arises when we
study “second order approximations ” of these spaces. The Riemann tensor provides the
complete measure of how far is a Riemann manifold from being flat. This is a very involved
object and, to enhance its understanding, we compute it in several instances: on surfaces
(which can be easily visualized) and on Lie groups (which can be easily formalized). We
have also included Cartan’s moving frame technique which is extremely useful in concrete
computations. As an application of this technique we prove the celebrated Theorema
Egregium of Gauss. This section concludes with the first global result of the book, namely
the Gauss-Bonnet theorem. We present a proof inspired from [26] relying on the fact
that all Riemann surfaces are Finstein manifolds. The Gauss-Bonnet theorem will be a
recurring theme in this book and we will provide several other proofs and generalizations.

One of the most fascinating aspects of Riemann geometry is the intimate correlation
“local-global”. The Riemann tensor is a local object with global effects. There are cur-
rently many techniques of capturing this correlation. We have already described one in
the proof of Gauss-Bonnet theorem. In Chapter 5 we describe another such technique
which relies on the study of the global behavior of geodesics. We felt we had the moral
obligation to present the natural setting of this technique and we briefly introduce the
reader to the wonderful world of the calculus of variations. The ideas of the calculus of
variations produce remarkable results when applied to Riemann manifolds. For example,
we explain in rigorous terms why “very curved manifolds” cannot be “too long” .

In Chapter 6 we leave for a while the “differentiable realm” and we briefly discuss the
fundamental group and covering spaces. These notions shed a new light on the results
of Chapter 5. As a simple application we prove Weyl’s theorem that the semisimple Lie
groups with definite Killing form are compact and have finite fundamental group.

Chapter 7 is the topological core of the book. We discuss in detail the cohomology
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of smooth manifolds relying entirely on the methods of calculus. In writing this chapter
we could not, and would not escape the influence of the beautiful monograph [17], and
this explains the frequent overlaps. In the first section we introduce the DeRham coho-
mology and the Mayer-Vietoris technique. Section 2 is devoted to the Poincaré duality, a
feature which sets the manifolds apart from many other types of topological spaces. The
third section offers a glimpse at homology theory. We introduce the notion of (smooth)
cycle and then present some applications: intersection theory, degree theory, Thom iso-
morphism and we prove a higher dimensional version of the Gauss-Bonnet theorem at the
cohomological level. The fourth section analyzes the role of symmetry in restricting the
topological type of a manifold. We prove Elie Cartan’s old result that the cohomology
of a symmetric space is given by the linear space of its bi-invariant forms. We use this
technique to compute the lower degree cohomology of compact semisimple Lie groups. We
conclude this section by computing the cohomology of complex grassmannians relying on
Weyl’s integration formula and Schur polynomials. The chapter ends with a fifth section
containing a concentrated description of Cech cohomology.

Chapter 8 is a natural extension of the previous one. We describe the Chern-Weil
construction for arbitrary principal bundles and then we concretely describe the most im-
portant examples: Chern classes, Pontryagin classes and the Euler class. In the process,
we compute the ring of invariant polynomials of many classical groups. Usually, the con-
nections in principal bundles are defined in a global manner, as horizontal distributions.
This approach is geometrically very intuitive but, at a first contact, it may look a bit
unfriendly in concrete computations. We chose a local approach build on the reader’s ex-
perience with connections on vector bundles which we hope will attenuate the formalism
shock. In proving the various identities involving characteristic classes we adopt an invari-
ant theoretic point of view. The chapter concludes with the general Gauss-Bonnet-Chern
theorem. Our proof is a variation of Chern’s proof.

Chapter 9 is the analytical core of the book. Many objects in differential geometry
are defined by differential equations and, among these, the elliptic ones play an important
role. This chapter represents a minimal introduction to this subject. After presenting
some basic notions concerning arbitrary partial differential operators we introduce the
Sobolev spaces and describe their main functional analytic features. We then go straight
to the core of elliptic theory. We provide an almost complete proof of the elliptic a
priori estimates (we left out only the proof of the Calderon-Zygmund inequality). The
regularity results are then deduced from the a priori estimates via a simple approximation
technique. As a first application of these results we consider a Kazhdan-Warner type
equation which recently found applications in solving the Seiberg-Witten equations on
a Kahler manifold. We adopt a variational approach. The uniformization theorem for
compact Riemann surfaces is then a nice bonus. This may not be the most direct proof but
it has an academic advantage. It builds a circle of ideas with a wide range of applications.
The last section of this chapter is devoted to Fredholm theory. We prove that the elliptic
operators on compact manifolds are Fredholm and establish the homotopy invariance of the
index. These are very general Hodge type theorems. The classical one follows immediately
from these results. We conclude with a few facts about the spectral properties of elliptic
operators.

The last chapter is entirely devoted to a very important class of elliptic operators
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namely the Dirac operators. The important role played by these operators was singled
out in the works of Atiyah and Singer and, since then, they continue to be involved in the
most dramatic advances of modern geometry. We begin by first describing a general notion
of Dirac operators and their natural geometric environment, much like in [11]. We then
isolate a special subclass we called geometric Dirac operators. Associated to each such
operator is a very concrete Weitzenbock formula which can be viewed as a bridge between
geometry and analysis, and which is often the source of many interesting applications. The
abstract considerations are backed by a full section describing many important concrete
examples.

In writing this book we had in mind the beginning graduate student who wants to
specialize in global geometric analysis in general and gauge theory in particular. The
second half of the book is an extended version of a graduate course in differential geometry
we taught at the University of Michigan during the winter semester of 1996.

The minimal background needed to successfully go through this book is a good knowl-
edge of vector calculus and real analysis, some basic elements of point set topology and
linear algebra. A familiarity with some basic facts about the differential geometry of
curves of surfaces would ease the understanding of the general theory, but this is not a
must. Some parts of Chapter 9 may require a more advanced background in functional
analysis.

The theory is complemented by a large list of exercises. Quite a few of them contain
technical results we did not prove so we would not obscure the main arguments. There
are however many non-technical results which contain additional information about the
subjects discussed in a particular section. We left hints whenever we believed the solution
is not straightforward.

Personal note It has been a great personal experience writing this book, and I sincerely
hope I could convey some of the magic of the subject. Having access to the remarkable
science library of the University of Michigan and its computer facilities certainly made my
job a lot easier and improved the quality of the final product.

I learned differential equations from Professor Viorel Barbu, a very generous and en-
thusiastic person who guided my first steps in this field of research. He stimulated my
curiosity by his remarkable ability of unveiling the hidden beauty of this highly technical
subject. My thesis advisor, Professor Tom Parker, introduced me to more than the funda-
mentals of modern geometry. He played a key role in shaping the manner in which I regard
mathematics. In particular, he convinced me that behind each formalism there must be
a picture, and uncovering it, is a very important part of the creation process. Although
I did not directly acknowledge it, their influence is present throughout this book. I only
hope the filter of my mind captured the full richness of the ideas they so generously shared
with me.

My friends Louis Funar and Gheorghe Ionesei' read parts of the manuscript. I am
grateful to them for their effort, their suggestions and for their friendship. I want to thank
Arthur Greenspoon for his advice, enthusiasm and relentless curiosity which boosted my
spirits when I most needed it. Also, I appreciate very much the input I received from the

'He passed away in 2006. He was the ultimate poet of mathematics.
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graduate students of my “Special topics in differential geometry” course at the University
of Michigan which had a beneficial impact on the style and content of this book.

At last, but not the least, I want to thank my family who supported me from the
beginning to the completion of this project.

Ann Arbor, 1996.
Preface to the second edition

Rarely in life is a man given the chance to revisit his “youthful indiscretions”. With
this second edition I have been given this opportunity, and I have tried to make the best
of it.

The first edition was generously sprinkled with many typos, which I can only attribute
to the impatience of youth. In spite of this problem, I have received very good feedback
from a very indulgent and helpful audience from all over the world.

In preparing the new edition, I have been engaged on a massive typo hunting, supported
by the wisdom of time, and the useful comments that I have received over the years from
many readers. I can only say that the number of typos is substantially reduced. However,
experience tells me that Murphy’s Law is still at work, and there are still typos out there
which will become obvious only in the printed version.

The passage of time has only strengthened my conviction that, in the words of Isaac
Newton, “in learning the sciences examples are of more use than precepts”. The new
edition continues to be guided by this principle. I have not changed the old examples, but
I have polished many of my old arguments, and I have added quite a large number of new
examples and exercises.

The only major addition to the contents is a new chapter on classical integral geometry.
This is a subject that captured my imagination over the last few years, and since the first
edition of this book developed all the tools needed to understand some of the juiciest
results in this area of geometry, I could not pass the chance to share with a curious reader
my excitement about this line of thought.

One novel feature in our presentation of integral geometry is the use of tame geometry.
This is a recent extension of the better know area of real algebraic geometry which allowed
us to avoid many heavy analytical arguments, and present the geometric ideas in as clear
a light as possible.

Notre Dame, 2007.
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Chapter 1

Manifolds

1.1 Preliminaries

1.1.1 Space and Coordinatization

Mathematics is a natural science with a special modus operandi. It replaces concrete
natural objects with mental abstractions which serve as intermediaries. One studies the
properties of these abstractions in the hope they reflect facts of life. So far, this approach
proved to be very productive.

The most visible natural object is the Space, the place where all things happen. The
first and most important mathematical abstraction is the notion of number. Loosely
speaking, the aim of this book is to illustrate how these two concepts, Space and Number,
fit together.

It is safe to say that geometry as a rigorous science is a creation of ancient Greeks.
Euclid proposed a method of research that was later adopted by the entire mathematics.
We refer of course to the axiomatic method. He viewed the Space as a collection of points,
and he distinguished some basic objects in the space such as lines, planes etc. He then
postulated certain (natural) relations between them. All the other properties were derived
from these simple axioms.

Euclid’s work is a masterpiece of mathematics, and it has produced many interesting
results, but it has its own limitations. For example, the most complicated shapes one
could reasonably study using this method are the conics and/or quadrics, and the Greeks
certainly did this. A major breakthrough in geometry was the discovery of coordinates
by René Descartes in the 17th century. Numbers were put to work in the study of Space.

Descartes’ idea of producing what is now commonly referred to as Cartesian coor-
dinates is familiar to any undergraduate. These coordinates are obtained using a very
special method (in this case using three concurrent, pairwise perpendicular lines, each one
endowed with an orientation and a unit length standard. What is important here is that
they produced a one-to-one mapping

Euclidian Space — R3, P — (z(P),y(P), z(P)).

We call such a process coordinatization. The corresponding map is called (in this case)
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le

Figure 1.1: Polar coordinates

Cartesian system of coordinates. A line or a plane becomes via coordinatization an alge-
braic object, more precisely, an equation.
In general, any coordinatization replaces geometry by algebra and we get a two-way
correspondence
Study of Space «+— Study of Equations.

The shift from geometry to numbers is beneficial to geometry as long as one has efficient
tools do deal with numbers and equations. Fortunately, about the same time with the
introduction of coordinates, Isaac Newton created the differential and integral calculus
and opened new horizons in the study of equations.

The Cartesian system of coordinates is by no means the unique, or the most use-
ful coordinatization. Concrete problems dictate other choices. For example, the polar
coordinates represent another coordinatization of (a piece of the plane) (see Figure 1.1).

P~ (r(P),0(P)) € (0,00) x (—m, 7).
This choice is related to the Cartesian choice by the well known formulae
x=rcosf y=rsinb. (1.1.1)

A remarkable feature of (1.1.1) is that x(P) and y(P) depend smoothly upon r(P) and
o(P).

As science progressed, so did the notion of Space. One can think of Space as a configu-
ration set, i.e., the collection of all possible states of a certain phenomenon. For example,
we know from the principles of Newtonian mechanics that the motion of a particle in the
ambient space can be completely described if we know the position and the velocity of the
particle at a given moment. The space associated with this problem consists of all pairs
(position, velocity) a particle can possibly have. We can coordinatize this space using six
functions: three of them will describe the position, and the other three of them will de-
scribe the velocity. We say the configuration space is 6-dimensional. We cannot visualize
this space, but it helps to think of it as an Euclidian space, only “roomier”.
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There are many ways to coordinatize the configuration space of a motion of a particle,
and for each choice of coordinates we get a different description of the motion. Clearly, all
these descriptions must “agree” in some sense, since they all reflect the same phenomenon.
In other words, these descriptions should be independent of coordinates. Differential ge-
ometry studies the objects which are independent of coordinates.

The coordinatization process had been used by people centuries before mathematicians
accepted it as a method. For example, sailors used it to travel from one point to another
on Earth. Each point has a latitude and a longitude that completely determines its
position on Earth. This coordinatization is not a global one. There exist four domains
delimited by the Equator and the Greenwich meridian, and each of them is then naturally
coordinatized. Note that the points on the Equator or the Greenwich meridian admit two
different coordinatizations which are smoothly related.

The manifolds are precisely those spaces which can be piecewise coordinatized, with
smooth correspondence on overlaps, and the intention of this book is to introduce the
reader to the problems and the methods which arise in the study of manifolds. The next
section is a technical interlude. We will review the implicit function theorem which will
be one of the basic tools for detecting manifolds.

1.1.2 The implicit function theorem

We gather here, with only sketchy proofs, a collection of classical analytical facts. For
more details one can consult [27].

Let X and Y be two Banach spaces and denote by L(X,Y) the space of bounded
linear operators X — Y. For example, if X = R™, Y = R™, then L(X,Y") can be identified
with the space of m x n matrices with real entries. For any set S we will denote by 1g
the identity map S — S.

Definition 1.1.1. Let F': U C X — Y be a continuous function (U is an open subset of
X). The map F is said to be (Fréchet) differentiable at u € U if there exists T' € L(X,Y)
such that

| F'(uo + h) — F(ug) — Thlly = o(||h]|x) as h — 0. 0

Loosely speaking, a continuous function is differentiable at a point if, near that point,
it admits a “ best approximation ” by a linear map.

When F is differentiable at ug € U, the operator T in the above definition is uniquely
determined by

d .1

We will use the notation 7" = D,,,F' and we will call T the Fréchet derivative of F' at ug.

Assume that the map F': U — Y is differentiable at each point w € U. Then F' is said
to be of class C!, if the map u — D, F € L(X,Y) is continuous. F is said to be of class
C? if uw + D, F is of class C'. One can define inductively C* and C™ (or smooth) maps.

Example 1.1.2. Consider F' : U C R"™ — R™. Using Cartesian coordinates = =
(z',...,2") in R” and v = (u',...,u™) in R™ we can think of F' as a collection of
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m functions on U

wt =tz 2, ™ =™ (et ).

The map F is differentiable at a point p = (p',...,p") € U if and only if the functions u’
are differentiable at p in the usual sense of calculus. The Fréchet derivative of F' at p is
the linear operator D,F : R" — R™ given by the Jacobian matriz

- Oul oul oul e
o) gz - o)
a(ul...um) ou? ou? Hu2
8 77; 8 77; ’ 6 '"’;
L 8721 (p) 31;2 (p) to aqfvn (p) |
The map F is smooth if and only if the functions u’(z) are smooth. O

Exercise 1.1.3. (a) Let U C L(R™, R"™) denote the set of invertible n x n matrices. Show
that U is an open subset of L(R™,R"™).

(b) Let F : U — U be defined as A — A~!. Show that DoF(H) = —A"'HA™! for any
n X n matrix H.

(c) Show that the Fréchet derivative of the map det : L(R™",R") — R, A — det A, at
A = 1gn € L(R™,R") is given by tr H, i.e.,

d
Eh:o det(1gn +tH) =tr H, YH € L(R",R"). O

Theorem 1.1.4 (Inverse function theorem). Let X, Y be two Banach spaces, U C X open
and F: U C X =Y a smooth map. If at a point uy € U the derivative Dy, F € L(X,Y)
is invertible, then there exits an open neighborhood Uy of uy in U such that F(Uy) is an
open neighborhood of vo = F(up) in'Y and F : Uy — F(U;) is bijective, with smooth
muverse. O

The spirit of the theorem is very clear: the invertibility of the derivative D, F" “prop-
agates” locally to F' because D, F' is a very good local approximation for F'.
More formally, if we set T'= D, F', then

F(up + h) = F(ug) + Th+r(h),

where 7(h) = o(||h||) as h — 0. The theorem states that, for every v sufficiently close to
vp, the equation F'(u) = v has a unique solution u = ug + h, with h very small. To prove
the theorem one has to show that, for ||[v — vg||y sufficiently small, the equation below

vo+Th+rh)=v

has a unique solution. We can rewrite the above equation as Th = v — vy — r(h) or,
equivalently, as h = T~!(v — vg — r(h)). This last equation is a fixed point problem that
can be approached successfully via the Banach fixed point theorem.
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Theorem 1.1.5 (Implicit function theorem). Let X, Y, Z be Banach spaces, % C X,
YV CY open sets and
F:UxV —Z

a smooth map. Let (xo,y0) € % XV, and zo := F(xo,yo). Set
BV = Z, Faly) = F(o,y).

Assume that Dy, Fy € L(Y, Z) is invertible. Then there exist open neighborhoods U C %
of xg in X,V C ¥ of yo inY, and a smooth map G : U — V such that the set S of
solution (x,y) of the equation F(x,y) = zp which lie inside U x V' can be identified with
the graph of G, i.e.,

{(z,9) eUxV; Flz,y) =20} ={(2,G(z)) e UxV; ze€U}.

In pre-Bourbaki times, the classics regarded the coordinate y as a function of x defined
implicitly by the equality F(x,y) = 2.

Proof. Consider the map
H:XXY = XxZ, &= (x,y)— (x,F(z,y)).

The map H is a smooth map, and at & = (xo, o) its derivative D¢, H : X xY — X x Z
has the block decomposition

1x 0

De H = .
€ D¢, Fy De, F

H

0

Above, DF; (respectively DFy) denotes the derivative of x — F(x,10) (respectively the
derivative of y — F(x0,y)). The linear operator D¢ H is invertible, and its inverse has
the block decomposition

1x 0
(D 1) = B .
_(D60F2) O(D&)Fl) (D&)F?)

Thus, by the inverse function theorem, the equation (z, F(z,y)) = (z,2¢) has a unique
solution (&, %) = H~'(z, 29) in a neighborhood of (zg, yo). It obviously satisfies & = = and
F(%,7) = 2. Hence, the set {(z,y) ; F(z,y) = 20} is locally the graph of x — H~!(z, z9).

d

1.2 Smooth manifolds

1.2.1 Basic definitions

We now introduce the object which will be the main focus of this book, namely, the
concept of (smooth) manifold. It formalizes the general principles outlined in Subsection
1.1.1.
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Figure 1.2: Transition maps

Definition 1.2.1. A smooth manifold of dimension m is a locally compact, second count-
able! Hausdorff space M together with the following collection of data (henceforth called
atlas or smooth structure) consisting of the following.

(a) An open cover {U;},.; of M;

(b) A collection of homeomorphisms {\IJZ U = U (U;) CcR™; del } (called charts
or local coordinates) such that, ¥;(U;) is open in R™, and if U; N U; # 0, then the
transition map

\I/j ) \I/Z_l : \I/Z(UZ M UJ) (- Rm — \I/](UZ N U]) C Rm

is smooth. (We say that the various charts are smoothly compatible; see Figure 1.2).0

Remark 1.2.2. (a) Each chart ¥; : U; — R™ can be viewed as a collection of m functions
(x',...,2™) on U;,

w;(p)
Ui(p) = ’ (p)
2™ (p)
Similarly, we can view another chart ¥, as another collection of functions (y*,...,y™).

The transition map ¥; o \I’i_l can then be interpreted as a collection of maps

(..., 2™) — (yl(xl,...,xm),...,ym(:nl,...,:nm)).

LA second countable space admits a countable basis of open sets.
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(b) Since a manifold is a second countable space we can always work with atlases that are
at most countable. 0

The first and the most important example of manifold is R” itself. The natural smooth
structure consists of an atlas with a single chart, 1g» : R® — R™. To construct more
examples we will use the implicit function theorem .

Definition 1.2.3. (a) Let M, N be two smooth manifolds of dimensions m and respec-
tively n. A continuous map f : M — N is said to be smooth if, for any local charts ¢
on M and ¢ on N, the composition ¢ o f o $~! (whenever this makes sense) is a smooth
map R™ — R™,

(b) A smooth map f: M — N is called a diffeomorphism if it is invertible and its inverse
is also a smooth map. O
Example 1.2.4. The map t — e’ is a diffeomorphism (—o00,00) — (0,00). The map
t — t3 is a homeomorphism R — R, but it is not a diffeomorphism! a

If M is a smooth m-dimensional manifold, we will denote by C'°°(M) the linear space
of all smooth functions f : M — R. Let us point out a simple procedure that we will use
frequently in the sequel. Suppose that f : M — R is a smooth function. If (U, V) is a
local chart on M so ¥(U) is an open subset of R™, then, by definition, the composition
fo¥~l: ¥(U) — R is a smooth function on the open set ¥(U) C R". If we denote
by z',...,2™ the canonical Euclidean coordinates on R™, then 1 o ™! is a function
depending on the m variables z!, ..., 2™ and we will use the notation f (a;l, . ,xm) when
referring to this function.

Remark 1.2.5. Let U be an open subset of the smooth manifold M (dim M = m) and
v:U—R™

a smooth, one-to-one map with open image and smooth inverse. Then ¥ defines local
coordinates over U compatible with the existing atlas of M. Thus (U, V) can be added
to the original atlas and the new smooth structure is diffeomorphic with the initial one.
Using Zermelo’s Axiom we can produce a mazimal atlas (no more compatible local chart
can be added to it). 0

Our next result is a general recipe for producing manifolds. Historically, this is how
manifolds entered mathematics.

Proposition 1.2.6. Let M be a smooth manifold of dimension m and fi,...,fr €
C*(M). Define

Z=2(f1,--, fx)={peM; fip)=--- = fulp) =0}.

Assume that the functions f1,..., fr are functionally independent along Z, i.e., for each
p € Z, there exist local coordinates (x',... x™) defined in a neighborhood of p in M such



8 CHAPTER 1. MANIFOLDS

that ' (p) =0, i =1,...,m, and the matriz

af" oxl  0zx2 o™
8_:E|p = : : : :
of 0f . Ok
ozl 022 Oz d pl—..—gm—0

has rank k. Then Z has a natural structure of smooth manifold of dimension m — k.

Proof. Step 1: Constructing the charts. Let py € Z, and denote by (z?,...,2™) local
coordinates near py such that z°(pg) = 0. One of the k x k minors of the matrix

of 9f ... 9N
a]? ozl 022 dx™
8_:1?"’ = : : : :
%f W ox™m pl=...=gm=0

is nonzero. Assume this minor is determined by the last k& columns (and all the k lines).
We can think of the functions f,..., fr as defined on an open subset U of R". Split
R™ as R™ % x R¥, and set

, 2= (a;m_kH, ooz,
We are now in the setting of the implicit function theorem with

X =R™* vy =R Z=RF
and F': X XY — Z given by

fi(x)
T : € RF.

fu(@)

In this case, DF, = ( gf,) : R¥ — R* is invertible since its determinant corresponds to
our nonzero minor. Thus, in a product neighborhood Uy, = U, x U, of po, the set Z is
the graph of some function

LT7! —k " k
g:U,, CR" — U, CR",

i.e.,
20Uy, =1{(2/,9())) e R"F x RF; 2/ € Uy, 2| small }.

We now define v, : Z N U,, — R™F by
(2, g(z")) m e Rm7K,
The map 1, is a local chart of Z near py.

Step 2. The transition maps for the charts constructed above are smooth. The details
are left to the reader. O
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Exercise 1.2.7. Complete Step 2 in the proof of Proposition 1.2.6. O

Definition 1.2.8. Let M be a m-dimensional manifold. A codimension k submanifold
of M is a subset S C M locally defined as the common zero locus of k functionally
independent functions fi,...,fr € C°°(M). More precisely, this means that, for any
po € S, there exists an open neighborhood U of py € M and k functionally independent
smooth functions

fl,...,fk:U%R

such that p € U N S if and only if fi(p) =--- = fr(p) =0. a

Proposition 1.2.6 shows that any submanifold N C M has a natural smooth structure
so it becomes a manifold per se. Moreover, the inclusion map i : N < M is smooth.

Exercise 1.2.9. Suppose that M is a smooth m-dimensional manifold. Prive that S C M
is a codimension k-submanifold of M if and only if, for any pyg € M, there exists a
coordinate chart (U, ¥) with local coordinates (x!,...,2™) such that py € U and

UnsS={peU; xl(p):"':xk(p)zo}. 0

1.2.2 Partitions of unity

This is a very brief technical subsection describing a trick we will extensively use in this
book. Recall that manifolds are locally compact, second countable topological spaces. As
such, they are paracompact so they admit continuous partitions of unity; see [23, §3.7]. A
much more precise result is in fact true.

Definition 1.2.10. Let M be a smooth manifold and (U,)aeca an open cover of M. A
(smooth) partition of unity subordinated to this cover is a family (fg)ges C C(M)
satisfying the following conditions.

(1) 0< fa<1.
(ii) 3¢ : B — A such that supp fz C Uygs)-

(iii) The family (supp fg) is locally finite, i.e., any point € M admits an open neigh-
borhood intersecting only finitely many of the supports supp f3.

(iv) >2p fa(x) =1 for all x € M. 0

We include here for the reader’s convenience the basic existence result concerning
partitions of unity. For a proof we refer to [97].

Proposition 1.2.11. (a) For any open cover U = (Uy)aca of a smooth manifold M there
ezists at least one smooth partition of unity (fg)ses subordinated to U such that supp fz
is compact for any 3.

(b) If we do not require compact supports, then we can find a partition of unity in which
B=Aand ¢ = 14. a
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Exercise 1.2.12. Let M be a smooth manifold and S C M a closed submanifold, i.e.,
S is a closed subset of M. Prove that the restriction map

r:C®°(M) = C®(S) frfls

is surjective. Deduce that for any finite set X C M and any function g : ' — R there
exists a smooth, compactly supported gunction f : M — R such that f(z) = g(z), Vo € X.
|

1.2.3 Examples

Manifolds are everywhere, and in fact, to many physical phenomena which can be modelled
mathematically one can naturally associate a manifold. On the other hand, many problems
in mathematics find their most natural presentation using the language of manifolds. To
give the reader an idea of the scope and extent of modern geometry, we present here a
short list of examples of manifolds. This list will be enlarged as we enter deeper into the
study of manifolds.

Example 1.2.13. (The n-dimensional sphere). This is the codimension 1 submanifold
of R™*! given by the equation
n
lz? = Z($Z)2 =72 z=(2%...,2") e R"",
=0

One checks that, along the sphere, the differential of |z|? is nowhere zero, so by Proposition
1.2.6, S™ is indeed a smooth manifold. In this case one can explicitly construct an atlas
(consisting of two charts) which is useful in many applications. The construction relies on
stereographic projections.

Let N and S denote the North and resp. South pole of S™ (N = (0,...,0,1) € R**!,
S =(0,...,0,—1) € R*™!). Consider the open sets Uy = S™\ {N} and Ug = S™\ {S}.
They form an open cover of S™. The stereographic projection from the North pole is the
map oy : Uy — R"™ such that, for any P € Uy, the point on(P) is the intersection of the
line NP with the hyperplane {z" = 0} = R".

The stereographic projection from the South pole is defined similarly.

e For P € Uy we denote by (y*(P),...,y"(P)) the coordinates of on(P).
e For Q € Ug we denote by (2'(Q),...,2"(Q)) the coordinates of og(Q).
A simple argument shows the map

(y'(P),...,y"(P)) =~ (Z(P),...,z"(P)), P€UnnNUs,

is smooth (see the exercise below). Hence {(Un,on), (Us,0s)} defines a smooth structure
on S". O

Exercise 1.2.14. Show that the functions 4, 2/ constructed in the above example satisfy

7
i vi=1,..n O

(Zawr?)
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Example 1.2.15. (The n-dimensional torus). This is the codimension n submanifold
of the vector space R?" with Cartesian coordinates (x1,¥1; ...;Zn,yn), defined by the
equalities

iyl = =an Aty =1

Note that T is diffeomorphic with the 1-dimensional sphere S1 (unit circle). As a set T"
is a direct product of n circles (see Figure 1.3)

T":{x%—i—y%:l}x{x%—kyg:l}:Sl><---><Sl. 0

Figure 1.3: The 2-dimensional torus

The above example suggests the following general construction.

Example 1.2.16. Let M and N be smooth manifolds of dimension m and respectively
n. Then their topological direct product has a natural structure of smooth manifold of
dimension m + n. O

Example 1.2.17. (The connected sum of two manifolds). Let M; and Ms be two
manifolds of the same dimension m. Pick p; € M; (i = 1,2), choose small open neighbor-
hoods U; of p; in M; and then local charts v; identifying each of these neighborhoods with
B(0), the ball of radius 2 in R™.

Let V; C U; correspond (via ;) to the annulus {1/2 < |z| < 2} € R™. Consider

¢:{1/2<z] <2} = {1/2< 2| <2}, ‘W):ﬁ‘

The action of ¢ is clear: it switches the two boundary components of {1/2 < |z| < 2},
and reverses the orientation of the radial directions.

Now “glue” Vi to V3 using the “prescription” given by 1y Yooy : Vi — Va. In this
way we obtain a new topological space with a natural smooth structure induced by the
smooth structures on M;. Up to a diffeomeorphism, the new manifold thus obtained is
independent of the choices of local coordinates ([19]), and it is called the connected sum
of My and Ms and is denoted by M;# M, (see Figure 1.4). a

Example 1.2.18. (The real projective space RP"). As a topological space RP" is
the quotient of R"*! modulo the equivalence relation

x~y<d—if>5|)\6R*: x = \y.



12 CHAPTER 1. MANIFOLDS

Figure 1.4: Connected sum of tori

The equivalence class of x = (2°,...,2") € R**1\ {0} is usually denoted by [z°,..., 2"].
Alternatively, RP™ is the set of all lines (directions) in R™*!. Traditionally, one attaches
a point to each direction in R™*1, the so called “point at infinity” along that direction, so
that RP™ can be thought as the collection of all points at infinity along all the directions
in R**1

The space RP™ has a natural structure of smooth manifold. To describe it consider
the sets

Up={[2"....2"| eRP"; 2" £0}, k=0,...,n
Now define

U Up = RY [20 .. 2" s (a0/a®, . 2kt ek okt gk ey,

The maps v, define local coordinates on the projective space. The transition map on the
overlap region Uy N U, = {[z°,...,2"] ; 2F2™ # 0} can be easily described. Set

wk([xow e 7xn]) = (517 cee 7§n)7 1/1m([$07- e 7xn]) = (7717 cee 77771)’
The equality

[‘Toa"wxn] = [617”’7€k—1717€k7”’7§n] = [7717'"777m—171777ma"'777n]

immediately implies (assume k < m)

S=m/m s &h—1 =1/,  Ek+1 ="k
&k = Met1 /M - Em—2 = Dm—1/Mks  Em—1 = 1/1 (1.2.1)
gm = DMk, ey gn :nn/"?k
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This shows the map 1, o ¢! is smooth and proves that RP" is a smooth manifold. Note
that when n = 1, RP! is diffeomorphic with S'. One way to see this is to observe that
the projective space can be alternatively described as the quotient space of S™ modulo the
equivalence relation which identifies antipodal points . a

Example 1.2.19. (The complex projective space CP"). The definition is formally
identical to that of RP™. CP" is the quotient space of C"*1\ {0} modulo the equivalence
relation
def, *
r~y<—=IANeC*: z=\y.

The open sets Uy, are defined similarly and so are the local charts ¥y, : Uy — C™. They
satisfy transition rules similar to (1.2.1) so that CP" is a smooth manifold of dimension
2n. O

Exercise 1.2.20. Prove that CP! is diffeomorphic to S2. O

In the above example we encountered a special (and very pleasant) situation: the
gluing maps not only are smooth, they are also holomorphic as maps ¥ o9t : U — V
where U and V are open sets in C™. This type of gluing induces a “rigidity” in the
underlying manifold and it is worth distinguishing this situation.

Definition 1.2.21. (Complex manifolds). A complex manifold is a smooth, 2n-
dimensional manifold M which admits an atlas {(U;, 1;) : U; — C"} such that all transition
maps are holomorphic. a

The complex projective space is a complex manifold. Our next example naturally
generalizes the projective spaces described above.

Example 1.2.22. (The real and complex Grassmannians Gry(R"), Gri(C")).

Suppose V is a real vector space of dimension n. For every 0 < k < n we denote by
Gry (V) the set of k-dimensional vector subspaces of V. We will say that Gry(V) is the
linear Grassmannian of k-planes in E. When V = R" we will write Gry, ,,(R) instead of
Gri(R™).

We would like to give several equivalent descriptions of the natural structure of smooth
manifold on Grg (V). To do this it is very convenient to fix an Euclidean metric on V.

Any k-dimensional subspace L C V is uniquely determined by the orthogonal projec-
tion onto L which we will denote by Pr. Thus we can identify Gry (V') with the set of
rank k projectors

Proj,(V):={P:V - V; P*=P=P? rankP=k}.
Let use observe that the rank of an orthogonal projector is determined by the equality
rank P = tr P.
We have a natural map

P: Grg(V) — Proj,(V), L~ P
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with inverse P — Range (P).
The set Proj, (V') is a subset of the vector space of symmetric endomorphisms

End"(V):={A€End(V), A*=A}.
The space End™ (V) is equipped with a natural inner product
1
(A, B) := 3 tr(AB), VA, B € End™ (V). (1.2.2)
We denote by || — || the norm on End™* (V') induced by this inner product,
2 1 2
[A[]" = 5 tr(A%).
2
Note that the subset Proj, (V) C End* (V) can alternatively be described by the equalities
P’=P trP=k.

This proves that Proj, (V) is a closed subset of End™ (V). From the equality

1 1 k
|P|?> = gtrP2 =gtP =g, VPe Proj.(V)

we deduce that Proj, (V) is also bounded subset of End™ (V). The bijection
P:Grg(V) — Proj,(V), L~ Py

induces a topology on Gry(V'), and with this topology Gry (V') is a compact metric space.
We want to show that Gry (V') has a natural structure of smooth manifold compatible
with this topology. To see this, we define for every L C Gry (V) the set

Gry(V,L):=={U € Gry(V); UNL-=0}.
Lemma 1.2.23. (a) Let L € Gry (V). Then
UNL*=0<=1—-P,+Py:V =V is an isomorphism. (1.2.3)
(b) The set Gry(V, L) is an open subset of Gri(V).
Proof. (a) Note first that a dimension count implies that
UNL"=0<=U+L "=V U"NnL=0.

Let us show that U N L+ = 0 implies that 1 — Py, + Py, is an isomorphism. It suffices to
show that
ker(]l — Pr+ PU) =0.

Suppose v € ker(1 — P, + Py). Then

0=Py(1—P,+Py)v=P,Pyv=0= Ppoe UNkerP,=UNL"=0.
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Hence Pyv = 0, so that v € UL, From the equality (1 — Py, — Py)v = 0 we also deduce
(I — Pr)v =0 so that v € L. Hence

veUNL=0.

Conversely, we will show that if 1 — P, + Py = P;1 + Py is onto, then U + L+ = V.
Indeed, let v € V. Then there exists « € V such that

v=P x+ Pyre Lt +U.
(b) We have to show that, for every K € Gry(V, L), there exists € > 0 such that any U

satisfying
||PU — PKH <e

intersects Lt trivially. Since K € Gry(V, L) we deduce from (a) that the map 1— Py, — Py :
V — V is an isomorphism. Note that

(1 — P — Px)—(1— P, — Py)l =Pk — Pull

The space of isomorphisms of V' is an open subset of End(V'). Hence there exists € > 0
such that, for any subspace U satisfying || Py — Pk|| < €, the endomorphism (1 — Pr, — FPyy)
is an isomorphism. We now conclude using part (a). a

Since L € Gry(V, L), VL € Gry(V), the collection
{Grv.L) Leanv) ]
is an open cover of Gry (V). Note that for every L € Grg(V) we have a natural map
I': Hom(L, L") — Gry(V, L), (1.2.4)
that associates to each linear map S : L — L' its graph (see Figure 1.5)
Ts={z+SreL+L+=V; zcL}

The map (1.2.4) is obviously injective. We claim that it is in fact a bijection.
Indeed, if U € Grg(V, L), then the restriction of Py, to U is injective since

Unker P, =UNL"=0.

Thus, the linear map PL‘U :U — L, U 3 Uu — Pru is a linear isomorphism because
dimU = dim L = k. Denote by Hy its inverse, Hy : L — U. It is easy to see that U is
the graph of the linear map

S:L— LY Sr= P, Hyz.

We will show that the bijection (1.2.4) is a homeomorphism. We first prove that it is
continuous by providing an explicit description of the orthogonal projection Prg
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Sef— - - - L

Figure 1.5: Subspaces as graphs of linear operators.

Observe first that the orthogonal complement of I'g is the graph of —S* : L+ — L.

More precisely,
I =T_g- :{y—S*yELl+L:V; yGLl}.

Let v=Prv+ Priv=wvr +vp+ € V (see Figure 1.5). Then
Prov=x+Sz, 1€ L<=>v—(zx+Sr)cls

rz+ S*y = v

<= 3z e L, ye L+ such that {
Sr—y = v

Consider the operator 8 : L @& L+ — L @ L which has the block decomposition

1, s
5—[5 —ﬂi]‘

Then the above linear system can be rewritten as

s[5 1= Lo |

Now observe that

S? — 1+ S5*S 0
N 0 1,0 +55* |
Hence 8 is invertible, and
g1 — (1, + S*S)~t 0 8
o 0 (]].LL + SS*)_I

[ (@p+s9)7t (1 +S*S)"ts*

o (]].LJ_ +SS*)_1S —(]ILJ_ +SS*)_1
We deduce

z=(1p+5*S) Yoy + (1 +5*S)"1S* v, 1
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and,

T
PFS,U_|:S(£:|'

Hence Prg has the block decomposition

Prg = [ ]lsL ] [(1p+85*9)7h (1p+5*S) 71 S*]

(]1L+S*S)_1 (]lL—i-S*S)_IS*
= . (1.2.5)
S(1z +59)"1 S(1; + §*)~Ls*

This proves that the map
Hom(L, L) 3 S+ Prg € Grp(V, L)

is continuous. Note that if U € Grg(V, L), then with respect to the decomposition V =
L + L+ the projector Py has the block form

P; Pyl PLPUILL

el p)
PLLPUIL PLLPUILL

where for every subspace K < V we denoted by I : K — V the canonical inclusion,
then U =T'g. If U =T'g, then (1.2.5) implies

PPyl = A(U) = (1L + S*S)™Y, PpPyl;. =C(U)=S(1g +S*S)™ 1,

so S = CA!. Since A and C depend continuously on Py we deduce shows that the
inverse of the graph map

Hom(L, L) 3 S+ T's € Gry(V)

is also continuous. Moreover, the above formulee show that if U € Gry(V, Lo)NGr(V, L1),
then we can represent U in two ways,

U=Ts, =T, S;cHom(L;, L), i=0,1,

and the correspondence Sy — Sp is smooth. This shows that Gry(V) has a natural
structure of smooth manifold of dimension

dim Gry(V) = dim Hom(L, L) = k(n — k).

Gr(C™) is defined as the space of complex k-dimensional subspaces of C™. It can be
structured as above as a smooth manifold of dimension 2k(n — k). Note that Gr;(R") =
RP" ! and Gr;(C") = CP""!. The Grassmannians have important applications in many

classification problems. a
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Exercise 1.2.24. Show that Gry(C") is a complex manifold of complex dimension k(n —

k)). 0

Example 1.2.25. (Lie groups). A Lie group is a smooth manifold G together with a
group structure on it such that the map

GxG—=G (g,h)—g-h!

is smooth. These structures provide an excellent way to formalize the notion of symmetry.

(a) (R™, +) is a commutative Lie group.

(b) The unit circle S' can be alternatively described as the set of complex numbers of
norm one and the complex multiplication defines a Lie group structure on it. This is a
commutative group. More generally, the torus 7" is a Lie group as a direct product of n
circles?.

(c) The general linear group GL(n,K) defined as the group of invertible n x n matrices
with entries in the field K = R, C is a Lie group. Indeed, GL(n,K) is an open subset (see
Exercise 1.1.3) in the linear space of n x n matrices with entries in K. It has dimension
dgn?, where di is the dimension of K as a linear space over R. We will often use the
alternate notation GL(K"™) when referring to GL(n, K).

(d) The orthogonal group O(n) is the group of real n x n matrices satisfying
T-T'=1.

To describe its smooth structure we will use the Cayley transform trick as in [85] (see also
the classical [102]). Set

M,(R)# :={T € M,(R); det(L+T) #0}.

The matrices in M, (R)# are called non exceptional. Clearly 1 € O(n)* = O(n)N M, (R)#
so that O(n)” is a nonempty open subset of O(n). The Cayley transform is the map
4 . My (R)#* — M, (R) defined by

A A% = (1 - A)(14 AL

The Cayley transform has some very nice properties.

(i) A% € M, (R)# for every A € M, (R)#.

(ii) # is involutive, i.e., (A%)# = A for any A € M, (R)?.

(iii) For every 7' € O(n)* the matrix 7% is skew-symmetric, and conversely, if A €
M, (R)# is skew-symmetric then A% € O(n).

Thus the Cayley transform is a homeomorphism from O(n)# to the space of non-
exceptional, skew-symmetric, matrices. The latter space is an open subset in the linear
space of real n x n skew-symmetric matrices, o(n).

Any T € O(n) defines a self-homeomorphism of O(n) by left translation in the group

Lr:0(n)—0(Mn) Sw— Lp(S)=T"-5.

2One can show that any connected commutative Lie group has the from 7" x R™.
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We obtain an open cover of O(n):

om)= |J T-0mn?.
TeO(n)

Define Ur : T - O(n)” — o(n) by S+ (T~! - S)#. One can show that the collection

(T -O(m)*, ¥r ) T€O(n)

defines a smooth structure on O(n). In particular, we deduce
dimO(n) =n(n —1)/2.
Inside O(n) lies a normal subgroup (the special orthogonal group)
SO(n)={T €0(n); detT = 1}.

The group SO(n) is a Lie group as well and dim SO(n) = dim O(n).
(e) The unitary group U(n) is defined as

U(n) ={T € GL(n,C); T-T* = 1},

where T* denotes the conjugate transpose (adjoint) of 7. To prove that U(n) is a manifold
one uses again the Cayley transform trick. This time, we coordinatize the group using the
space u(n) of skew-adjoint (skew-Hermitian) n x n complex matrices (A = —A*). Thus
U(n) is a smooth manifold of dimension

dimU(n) = dimu(n) = n?.

Inside U(n) sits the normal subgroup SU(n), the kernel of the group homomorphism
det : U(n) — S'. SU(n) is also called the special unitary group. This a smooth manifold
of dimension n? — 1. In fact the Cayley transform trick allows one to coordinatize SU(n)
using the space

su(n) ={A cu(n); trA=0}. 0

Exercise 1.2.26. (a) Prove the properties (i)-(iii) of the Cayley transform, and then show
that (7- O(n)¥, \IIT)TGO(n) defines a smooth structure on O(n).

(b) Prove that U(n) and SU(n) are manifolds.

(¢) Show that O(n), SO(n), U(n), SU(n) are compact spaces.

(d) Prove that SU(2) is diffeomorphic with S (Hint: think of S% as the group of unit
quaternions.) O

Exercise 1.2.27. Let SL(n;K) denote the group of n x n matrices of determinant 1 with
entries in the field K = R, C. Use the implicit function theorem to show that SL(n;K) is
a smooth manifold of dimension dg(n? — 1), where dx = dimg K. O
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Exercise 1.2.28. (Quillen). Suppose V), V; are two real, finite dimensional Euclidean
space, and T': Vi — Vi is a linear map. We denote by T is adjoint, T* : V1 — Vj, and by
I'r the graph of T,

I'r = {(1)0,1)1) ceVodVi; v = T’Uol}.

We form the skew-symmetric operator

, vo | _ | O T" ] | v
X: VooV VeV, X [vl]_{—T 0} [m}

We denote by Cr the Cayley transform of X,
Cr=(1-X)(1+X),
and by Ry : Vo @ Vi — Vy & Vi the reflection

[1y O
RO_[ 0 —nvl]'

Show that Ry = Cr Ry is an orthogonal involution, i.e.,
R} =1, Ry =Rr,

and ker(1 — Ryp) = I'py. In other words, Ry is the orthogonal reflection in the subspace
FTu
Ry =2Pr, — 1,

where Pr, denotes the orthogonal projection onto I'z. O

Exercise 1.2.29. Suppose G is a Lie group, and H is an abstract subgroup of G. Prove
that the closure of H is also a subgroup of G.

Exercise 1.2.30. (a) Let G be a connected Lie group and denote by U a neighborhood
of 1 € G. If H is the subgroup algebraically generated by U show that H is dense in G.
(b) Let G be a compact Lie group and g € G. Show that 1 € G lies in the closure of

{g"; neZ\{0}}. O

Remark 1.2.31. If G is a Lie group, and H is a closed subgroup of GG, then H is in fact
a smooth submanifold of G, and with respect to this smooth structure H is a Lie group.
For a proof we refer to [45, 97]. In view of Exercise 1.2.29, this fact allows us to produce
many examples of Lie groups. O

1.2.4 How many manifolds are there?

The list of examples in the previous subsection can go on for ever, so one may ask whether
there is any coherent way to organize the collection of all possible manifolds. This is too
general a question to expect a clear cut answer. We have to be more specific. For example,
we can ask
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Question 1: Which are the compact, connected manifolds of a given dimension d?

For d = 1 the answer is very simple: the only compact connected 1-dimensional man-
ifold is the circle S'. (Can you prove this?)

We can raise the stakes and try the same problem for d = 2. Already the situation is
more elaborate. We know at least two surfaces: the sphere S? and the torus 72. They
clearly look different but we have not yet proved rigorously that they are indeed not
diffeomorphic. This is not the end of the story. We can connect sum two tori, three tori
or any number g of tori. We obtain doughnut-shaped surface as in Figure 1.6

Figure 1.6: Connected sum of 3 tori

Again we face the same question: do we get non-diffeomorphic surfaces for different
choices of g7 Figure 1.6 suggests that this may be the case but this is no rigorous argument.

We know another example of compact surface, the projective plane RP?, and we nat-
urally ask whether it looks like one of the surfaces constructed above. Unfortunately,
we cannot visualize the real projective plane (one can prove rigorously it does not have
enough room to exist inside our 3-dimensional Universe). We have to decide this question
using a little more than the raw geometric intuition provided by a picture. To kill the
suspense, we mention that RP? does not belong to the family of donuts. One reason is
that, for example, a torus has two faces: an inside face and an outside face (think of a car
rubber tube). RP? has a weird behavior: it has “no inside” and “no outside”. It has only
one side! One says the torus is orientable while the projective plane is not.

We can now connect sum any numbers of RP?’s to any donut an thus obtain more
and more surfaces, which we cannot visualize and we have yet no idea if they are pairwise
distinct. A classical result in topology says that all compact surfaces can be obtained in
this way (see [69]), but in the above list some manifolds are diffeomorphic, and we have
to describe which. In dimension 3 things are not yet settled® and, to make things look
hopeless, in dimension > 4 Question 1 is algorithmically undecidable .

We can reconsider our goals, and look for all the manifolds with a given property X.
In many instances one can give fairly accurate answers. Property X may refer to more
than the (differential) topology of a manifold. Real life situations suggest the study of
manifolds with additional structure. The following problem may give the reader a taste
of the types of problems we will be concerned with in this book.

Question 2 Can we wrap a planar piece of canvas around a metal sphere in a one-
to-one fashion? (The canvas is flexible but not elastic).

3Things are still not settled in 2007, but there has been considerable progress due to G. Perelman’s
proof of the Poincaré conjecture.
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A simple do-it-yourself experiment is enough to convince anyone that this is not pos-
sible. Naturally, one asks for a rigorous explanation of what goes wrong. The best ex-
planation of this phenomenon is contained in the celebrated Theorema Egregium (Golden
Theorem) of Gauss. Canvas surfaces have additional structure (they are made of a special
material), and for such objects there is a rigorous way to measure “how curved” are they.
One then realizes that the problem in Question 2 is impossible, since a (canvas) sphere is
curved in a different way than a plane canvas.

There are many other structures Nature forced us into studying them, but they may
not be so easily described in elementary terms.

A word to the reader. The next two chapters are probably the most arid in geometry
but, keep in mind that, behind each construction lies a natural motivation and, even if we
do not always have the time to show it to the reader, it is there, and it may take a while
to reveal itself. Most of the constructions the reader will have to “endure” in the next two
chapters constitute not just some difficult to “swallow” formalism, but the basic language
of geometry. It might comfort the reader during this less than glamorous journey to carry
in the back of his mind Hermann Weyl’s elegantly phrased advise.

“It is certainly regrettable that we have to enter into the purely formal aspect
in such detail and to give it so much space but, nevertheless, it cannot be
avoided. Just as anyone who wishes to give expressions to his thoughts with
ease must spend laborious hours learning language and writing, so here too the
only way we can lessen the burden of formule is to master the technique of
tensor analysis to such a degree that we can turn to real problems that concern
us without feeling any encumbrance, our object being to get an insight into
the nature of space [...]. Whoever sets out in quest of these goals must possess
a perfect mathematical equipment from the outset.”

H. Weyl: Space, Time, Matter.



Chapter 2

Natural Constructions on
Manifolds

The goal of this chapter is to introduce the basic terminology used in differential geometry.
The key concept is that of tangent space at a point which is a first order approximation of
the manifold near that point. We will be able to transport many notions in linear analysis
to manifolds via the tangent space.

2.1 The tangent bundle

2.1.1 Tangent spaces

We begin with a simple example which will serve as a motivation for the abstract defini-
tions.

Example 2.1.1. Consider the sphere
(8?2 +y* +22=1 inR3

We want to find the plane passing through the North pole N(0,0,1) that is “closest” to
the sphere. The classics would refer to such a plane as an osculator plane.

The natural candidate for this osculator plane would be a plane given by a linear
equation that best approximates the defining equation z? + 42+ 22 = 1 in a neighborhood
of the North pole. The linear approximation of 22 4+ y? + 22 near N seems like the best
candidate. We have

4y 22 —1=2(2-1)+0(2),

where O(2) denotes a quadratic error. Hence, the osculator plane is z = 1, Geometrically,
it is the horizontal affine plane through the North pole. The linear subspace {z = 0} C R?
is called the tangent space to S? at N.

The above construction has one deficiency: it is not intrinsic, i.e., it relies on objects
“outside” the manifold S2. There is one natural way to fix this problem. Look at a smooth
path (t) on S? passing through N at t = 0. Hence, t +— v(t) € R3, and

Iy = 1. (2.1.1)

23
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If we differentiate (2.1.1) at t = 0 we get (¥(0),v(0)) = 0, i.e., 7(0) L v(0), so that ¥(0) lies
in the linear subspace z = 0. We deduce that the tangent space consists of the tangents
to the curves on S? passing through N.

This is apparently no major conceptual gain since we still regard the tangent space
as a subspace of R3, and this is still an extrinsic description. However, if we use the
stereographic projection from the South pole we get local coordinates (u,v) near N, and
any curve 7(t) as above can be viewed as a curve t — (u(t),v(t)) in the (u,v) plane. If
¢(t) is another curve through N given in local coordinates by t — (u(t),v(t)), then

7(0) = $(0) < ((0),5(0)) = (@(0),9(0)).

The right hand side of the above equality defines an equivalence relation ~ on the set of
smooth curves passing trough (0,0). Thus, there is a bijective correspondence between the
tangents to the curves through NV, and the equivalence classes of “~”. This equivalence
relation is now intrinsic modulo one problem: “~” may depend on the choice of the local
coordinates. Fortunately, as we are going to see, this is a non-issue. O

Definition 2.1.2. Let M™ be a smooth manifold and py a point in M. Two smooth
paths «, 3 : (—¢,e) — M such that «(0) = 5(0) = po are said to have a first order contact

at po if there exist local coordinates (x) = (x!,...,2™) near pg such that

ta(0) = #5(0),

where
a(t) = (za(t)) = (25(t),. ., 22 (1)),
and
Bt) = (zp(t) = (w5(t), ..., 2F(t))
We write this a ~1 3. O

Lemma 2.1.3. ~q is an equivalence relation.

Sketch of proof. The binary relation ~q is obviously reflexive and symmetric, so we
only have to check the transitivity. Let o ~; 8 and 8 ~j «. Thus there exist local

coordinates (z) = (z!,...,2™) and (y) = (y,...,%™) near pg such that

(#a(0)) = (#5(0)) and (§5(0)) = (,(0))-

The transitivity follows from the equality

35,0 Z 97 (U @%(0) = 54,(0). O
J

Definition 2.1.4. A tangent vector to M at p is a first-order-contact equivalence class
of curves through p. The equivalence class of a curve a(t) such that a(0) = p will be
temporarily denoted by [&(0)]. The set of these equivalence classes is denoted by T,M,
and is called the tangent space to M at p. O
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Lemma 2.1.5. T,M has a natural structure of vector space.

Proof. Choose local coordinates (z',...,2™) near p such that x%(p) = 0, Vi, and let o and
B be two smooth curves through p. In the above local coordinates the curves «, 3 become
(a:fl(t) ), (a:lﬁ(t) ) Construct a new curve 7 through p whose x coordinates are given by

(2h(t)) = (ah(t) + z5(t) ).

We want to emphasize that the above curve depends on «, 8 and the choice of local

coordinates (z',..., ™). We will indicate this using the notation a 4, 3 when referring

to . Set .

[@(0)] + [8(0)] == [7(0)].
The zero vector in T,M is described by a curve « such that @%(0) = 0, Vi. For this
operation to be well defined one has to check several things.

(a) The equivalence class [¥(0)] is independent of coordinates. In other words, if
(z',...,2™) and (y',...,y™) are local coordinates near p such that

z'(p) =y’ (p) =0, Vi,j,

then
04‘1‘325“’1 a+y 5

(b) If a curve represents the zero vector in some local coordinates (z%) at p, then it
represents the zero vector in any other choice of local coordinates at p.

(¢) If [c1(0)] = [cia(0)] and [B1(0)] = [2(0)], then
[6i1.(0)] + [81(0)] = [di2(0)] + [B2(0)]-

We let the reader supply the routine details. a
Exercise 2.1.6. Finish the proof of the Lemma 2.1.5. O
From this point on we will omit the brackets [ — ] in the notation of a tangent vector.

Thus, [@(0)] will be written simply as &(0).
As one expects, all the above notions admit a nice description using local coordinates.
Let (2!,...,2™) be coordinates near p € M such that z*(p) = 0, Vi. Consider the curves

ep(t) = (to},...,t0M), k=1,...,m,
where 5;- denotes Kronecker’s delta symbol. For example
e1(t) = (¢,0,0,...,0 < es(t) =(0,t,0,...,0),....
We set

O (p) := €(0) = (S, 01 ) | (2.1.2)

Often, when the point p is clear from the context, we will omit it in the above notation.

w Note that the vectors O,k (p) depend on the choice of local coordinates (zl,... z™).
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Lemma 2.1.7. The collection (9,+(p)) is a basis of T,M.

1<k<m

Proof. Given a smooth path

m 2.1.3

00 4 A0 = Y (00 T
=1

O

Exercise 2.1.8. Suppose that M C R™ is an m-dimensional smooth submanifold of
R™. Let pgp € M and suppose that «, 5 : (—e,&) — M are two smooth paths such that
a(0) = B(0) = pp. Prove that the following statements are equivalent.

1. The paths «, 8 have first order contact at pg.

2. doélgo) = %(to) as vectors i R"™.

Deduce from the above that T},,,M can be identified with the vector subspace of R"
spanned by the vectors v € R™ with the property that there exists a smooth path « :
(e,e) - M C R"™ such that
da(0)
Cdt

Exercise 2.1.9. Let F : RN — R* be a smooth map. Assume that
(a) M = F~1(0) # 0;

(b) rank D, F' = k, for all z € M.

Then M is a smooth manifold of dimension N — k and

a(0) = po, = 0. O

T.M = ker D, F, VYx € M. a

Example 2.1.10. We want to describe T7G, where GG is one of the Lie groups discussed
in Section 1.2.2.

(a) G =0O(n). Let (—e,e) > s — T'(s) be a smooth path of orthogonal matrices such that
T(0) = 1. Then T%(s) - T(s) = 1. Differentiating this equality at s = 0 we get

T'(0) +7(0) = 0.

The matrix 7°(0) defines a vector in Ty O(n), so the above equality states that this tangent
space lies inside the space of skew-symmetric matrices, i.e., T30(n) C o(n). On the other
hand, we proved in Section 1.2.2 that dim G = dimo(n) so that

T10(n) = o(n).
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(b) G = SL(n;R). Let (—¢,
T(0) = 1. Then detT'(s) =
Exercise 1.1.3)

£) 3 s — T(s) be a smooth path in SL(n;R) such that
1 and differentiating this equality at s = 0 we get (see

tr7°(0) = 0.

Thus, the tangent space at 1 lies inside the space of traceless matrices, i.e. T1SL(n;R) C
sl(n;R). Since (according to Exercise 1.2.27) dim SL(n;R) = dimsl(n; R) we deduce

T1SL(n;R) = sl(n; R). 0

Exercise 2.1.11. Show that 73U (n) = u(n) and 735U (n) = su(n). 0

2.1.2 The tangent bundle

In the previous subsection we have naturally associated to an arbitrary point p on a
manifold M a vector space T, M. It is the goal of the present subsection to coherently
organize the family of tangent spaces (1, M )pecps. In particular, we want to give a rigorous
meaning to the intuitive fact that 7,,M depends smoothly upon p.

We will organize the disjoint union of all tangent spaces as a smooth manifold T'M.
There is a natural surjection

7 TM= | | T,M - M, 7(v)=p<>veT,M.
peEM

Any local coordinate system z = (z*) defined over an open set U C M produces a natural

basis (a(?ci (p)) of T,M, for any p € U. Thus, an element v € TU = | |, .., T,,M is completely

determined if we know

peU

e which tangent space does it belong to, i.e., we know the point p = 7(v) € M,

e the coordinates of v in the basis (9,:(p) ),

v = Z X'(0),: (p).

We thus have a bijection
U, :TU - U* xR™ C R™ x R™,

where U? is the image of U in R™ via the coordinates (z'). We can now use the map ¥,
to transfer the topology on R™ x R™ to T'U. Again, we have to make sure this topology
is independent of local coordinates.

To see this, pick a different coordinate system y = (3*) on U. The coordinate inde-
pendence referred to above is equivalent to the statement that the transition map

Ty oW 1 U xR™ — TU — UY x R™

is a homeomorphism.
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Let A:= (T,X) € U* x R™. Then ¥_1(A) = (p,&(0)), where z(p) =T, and a(t) C U
is a path through p given in the = coordinates as
at) =T+ tX.
Denote by F': U* — UY the transition map « +— y. Then
Uy o U (A) = (y(@):;Y', ... .Y™),

where &(0) = (42,(0)) = > Y78, (p), and (ya(t)) is the description of the path «(t) in
the coordinates 3/. Applying the chain rule we deduce

8yj . _ ayj xi

J— g — =
V=0 =30 5 0 = 2 5

(2.1.4)

This proves that ¥, o U1 is actually smooth.

The natural topology of T'M is obtained by patching together the topologies of T'U,,
where (U, )~ is a countable atlas of M. A set D C T'M is open if its intersection with
any T'U, is open in TU,. The above argument shows that T'M is a smooth manifold with
(TU,,¥.,) a defining atlas. Moreover, the natural projection m : TM — M is a smooth
map.

Definition 2.1.12. The smooth manifold T'M described above is called the tangent bundle
of M. O

Proposition 2.1.13. A smooth map f: M — N induces a smooth map Df : TM — TN
such that

(a) Df(TpM) C Tf(p)N, Vpe M

(b) The restriction to each tangent space D, F : T, M — Ty N is linear. The map Df is
called the differential of f, and one often uses the alternate notation f, = Df.

Proof. Recall that T,,M is the space of tangent vectors to curves through p. If «(t) is such
a curve («(0) = p), then B(t) = f(a(t)) is a smooth curve in N through ¢ = f(p), and we
define ‘
D f((0)) == B(0).

One checks easily that if a3 ~1 ag, then f(a1) ~1 f(ag), so that Df is well defined. To
prove that the map Df : T,M — T,N is linear it suffices to verify this in any particular
local coordinates (z',...,2™) near p, and (y',...,y") near ¢, such that 2(p) = 0, y’(q) =
0, Vi, j, since any two choices differ (infinitesimally) by a linear substitution. Hence, we
can regard f as a collection of maps

(.., 2™) = (it 2™), Ly (™).
A basis in T),M is given by { Oyi }, while a basis of T, N is given by { Oy }
If o, 8 : (—e,e) — M are two smooth paths such that a(0) = 5(0) = p, then in local
coordinates they have the description
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Then '
Fla(t) = (4a(t),-- - ua®) = (y'(2h(®)), ..,y (2 (1)),
FB() = (y5t), -, y5(1)) = (v (25(1)), - y" (25(1))),
Fla(t) + (1)) = (y' (ah(t) +25(t)), ..., y" (25 (t) + 25(t)) )

= DF(&(0)) + DF(B(0)).
This shows that Df : T,M — T,N is the linear operator given in these bases by the

. oy?
matrix ( D

> . In particular, this implies that Df is also smooth. a
1<5<n, 1<i<m

2.1.3 Sard’s Theorem

In this subsection we want to explain rigorously a phenomenon with which the reader may
already be intuitively acquainted. We describe it first in a special case.

Suppose M is a submanifold of dimension 2 in R?. Then, a simple thought experiment
suggests that most horizontal planes will not be tangent to M. Equivalently, if we denote
by f the restriction to M of the function (x,y, z) +— z , then for most real numbers h the
level set f~1(h) = M N {z = h} does not contain a point where the differential of f is
zero, so that most level sets f~!(h) are smooth submanifolds of M of codimension 1, i.e.,
smooth curves on M.

We can ask a more general question. Given two smooth manifolds X, Y, a smooth map
f:X — Y, isit true that for “most” y € Y the level set f~!(y) is a smooth submanifold of
X of codimension dim Y? This question has a positive answer, known as Sard’s theorem.

Definition 2.1.14. Suppose that Y is a smooth, connected manifold of dimension m.

(a) We say that a subset S C Y is negligible if, for any coordinate chart of Y, ¥ : U —
R™, the set ¥(S NU) C R™ has Lebesgue measure zero in R™.

(b) Suppose F' : X — Y is a smooth map, where X is a smooth manifold. A point
x € X is called a critical point of F', if the differential D, F' : T, X — Tp(;)Y is not
surjective.

We denote by Crp the set of critical points of F', and by Ar C Y its image via F. We
will refer to Ap as the discriminant set of /. The points in Ap are called the critical
values of F. O
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Exercise 2.1.15. Define
2= {(z,a,b,c) eRY ax’+br+c=0; a#0}.

(a) Prove that Z is a smooth submanifold of R*.
(b) Define 7 : Z — R3 by (z,a,b,¢) — (a,b,c). Describe explicitly the discriminant set
of . 0

Definition 2.1.16. Suppose U,V are finite dimensional real Euclidean vector spaces,
O C U is an open subset, and F' : O — V is a smooth map. Then a point u € O is a
critical point of F if and only if

rank (D, F : U — V) < min ( dimU,dim V). O

Exercise 2.1.17. Show that if ' : M — N is a smooth map and dim N < dim M, hen for
every ¢ € N \ Ar the fiber F~!(q) is either empty, or a submanifold of M of codimension
dim N. O

Theorem 2.1.18 (Sard). Suppose U,V are finite dimensional real Euclidean vector spaces,
O c U is an open subset, and F' : O — V is a smooth map. Assume dimV < dimU.
Then the discriminant set A is negligible.

Proof. We follow the elegant approach of J. Milnor [75] and L. Pontryagin [83]. Set
n =dimU, and m = dim V. We will argue inductively on the dimension n.

For every positive integer k we denote by Cr’} C Crp the set of points u € O such
that all the partial derivatives of F' up to order k vanish at u. We obtain a decreasing
filtration of closed sets

Crp>Criy>Cri o,
The case n = 0 is trivially true so we may assume n > 0, and the statement is true for
any n’ < n, and any m < n/. The inductive step is divided into three intermediary steps.
Step 1. The set F(Crr\ Crk) is negligible.
Step 2. The set F(Cr’}\Cr];fl) is negligible for all k£ > 1.
Step 3. The set F(Cr%.) is negligible for some sufficiently large k.
Step 1. Set Cr’ := Crp\ Cr}. We will show that there exists a countable open cover
{0, }]21 of Cr’p such that F(O;NCr' ) is negligible for all j > 1. Since Cr', is separable,
it suffices to prove that every point u € Cr’ admits an open neighborhood N such that
F(NNCrY) is negligible.

Suppose uy € Cr’. Assume first that there exist local coordinates (z!,..., 2")
defined in a neighborhood N of ug, and local coordinates (y!,...,y™) near vg = F(ug)
such that,

i (ug) =0, Vi=1,...n, y/(vg) =0, Vj=1,...m,

and the restriction of F' to N is described by functions y/ = 3/(x!,...,2™) such that
1 1
Yy =x.

For every t € R we set

New={(z",...,a") eN; 2! =t},
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and we define
Ge: Ny = R™ L (22 ... 2") — (yz(t,a:2,...,a:"),...,ym(t,xz,...,x")).

Observe that
F(NNCrf) = U{t} x G¢(Crg, ).
t

The inductive assumption implies that the sets G¢(Cr¢,) have trivial (m —1)-dimensional
Lebesgue measure. Using Cavalieri’s principle or Fubini’s theorem we deduce that F(N'N
Cr';) has trivial m-dimensional Lebesgue measure.

To conclude Step 1 is suffices to prove that the above simplifying assumption concerning
the existence of nice coordinates is always fulfilled. To see this, choose local coordinates
(s',...,s") near uy and coordinates (y',...,4™) near vy such that

s'(up) =0, Vi=1,...n, y/(vg) =0, Vj=1,...m,

The map F is then locally described by a collection of functions y/(s',...,s"), j =
1,...,n. Since u € Cr’y, we can assume, after an eventual re-labelling of coordinates,

that g—gi(uo) # 0. Now define

The implicit function theorem shows that the collection of functions (z?!,...,2") defines

a coordinate system in a neighborhood of uy. We regard 3/ as functions of #. From the

definition we deduce y' = 2.

Step 2. Set Cr%g) = Cr’f;\Cr’}H. Since ug € Crg), we can find local coordinates
(s',...,s") near uy and coordinates (y',...,4™) near vy such that

st(ug) =0, Vi=1,...n, y/(vg) =0, Vj=1,...m,

88(;3{;. (uo) =0, Yj=1,... .k,
and HF+1yl
W(Uo) # 0.
Define oyl
o (s) = it
and set 2’ :=s', Vi=2,...,n.

Then the collection (z*) defines smooth local coordinates on an open neighborhood N
of ug, and C'r'} NN is contained in the hyperplane {z' = 0}. Define

G:Nn{z! =0} = V; G?,...,2™) = F(0,2%,...,z").

Then
Cri. NN = Crf, F(Cr%nN)=G(Cry),
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and the induction assumption implies that G(Crlé) is negligible. By covering C’rg{) with
a countably many open neighborhood {Ny},~1 such that F(Cr'f; MNy) is negligible we

conclude that F (Crgf)) is negligible.

Step 3. Suppose k > >. We will prove that I’ (Cr’}) is negligible. More precisely, we
will show that, for every compact subset S C O, the set F(S N Cr’f;) is negligible.

From the Taylor expansion around points in Crl} NS we deduce that there exist num-
bers ro € (0,1) and A9 > 0, depending only on S, such that, if C' is a cube with edge
r < ro which intersects C'r'f; NS, then

diam F(C) < Aor*,
where for every set A C V' we define
diam(A) := sup{ |a1 — az|; a1,a2 € A}.

In particular, if u,, denotes the m-dimensional Lebesgue measure on V', and u, denotes
the n-dimensional Lebesgue measure on U, we deduce that there exists a constant A\; > 0
such that

i (F(C)) < Mr™* = AL (C)TR/

Cover Crk. NS by finitely many cubes {Cr}1<e<r, of edges < rp, such that their interiors
are disjoint. For every positive integer P, subdivide each of the cubes Cy into P™ sub-cubes
C7 of equal sizes. For every sub-cube C/f which intersects C'rll? we have

pn(F(C7)) < Mpn(CF)™ ™ = T pn (Co).

We deduce that

If we let P — oo in the above inequality, we deduce that when k > = we have
pm( F(CynCrY)) =0, VE=1,...,L. O

Theorem 2.1.18 admits the following immediate generalization.

Corollary 2.1.19 (Sard). Suppose F : X — Y is a smooth map between two smooth
connected, separable, manifolds. Then its discriminant set is negligible. O

Definition 2.1.20. A smooth map f : M — N is called immersion (resp. submersion)
if for every p € M the differential D f : T,M — Ty, N is injective (resp. surjective). A
smooth map f: M — N is called an embedding if it is an injective immersion. O

Suppose F': M — N is a smooth map, and dim M > dim N. Then F is a submersion
if and only if the discriminant set Ag is empty.
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Exercise 2.1.21. Suppose F' : M — N is a smooth map, and S C N is a smooth
submanifold of N. We say that F is transversal to S if for every x € F~1(S) we have

Prove that if F is transversal to S, then F'~1(S) is a submanifold of M whose codimension
is equal to the codimension of S in N. ad

Exercise 2.1.22. Suppose A, X, Y are smooth, connected manifolds, and FF: Ax X — Y

is a smooth map
Ax X > (\zx)— Fy(z) €Y.

Suppose S is a submanifold of Y such that F' is transversal to S. Define
2 =F"S)CcAxX,

Ao = {)\ €A; F):X — Y is not transversal to S}.

Prove that Ag is contained in the discriminant set of the natural projection Z — A. In
particular, Ag must be negligible. ad

2.1.4 Vector bundles

The tangent bundle TM of a manifold M has some special features which makes it a
very particular type of manifold. We list now the special ingredients which enter into
this special structure of T'M since they will occur in many instances. Set for brevity
E:=TM, and F :=R™ (m = dim M). We denote by Aut(F') the Lie group GL(n,R) of
linear automorphisms of F'. Then

(a) E is a smooth manifold, and there exists a surjective submersion 7 : E — M. For
every U C M we set E |y:= 7~ 1(U).

(b) From (2.1.4) we deduce that there exists a trivializing cover, i.e., an open cover U
of M, and for every U € U a diffeomorphism

Uy:Ely—UXF, v~ (pzﬂ(v),fbg(v))

(bl) @, is a diffeomorphism E, — F for any p € U.

(b2) If U, V € U are two trivializing neighborhoods with non empty overlap U N’V
then, for any p € U NV, the map ®yy(p) = (1)1‘7/ o (<I>pU)_1 : ' — F is a linear
isomorphism, and moreover, the map

p— Pyy(p) € Aut(F)
is smooth.

In our special case, the map @y (p) is explicitly defined by the matrix (2.1.4)

Alp) = (%(p)> 1<ij<m
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In the above formula, the functions (x%) are local coordinates on U, and the functions (y7)
are local coordinates on V.

The properties (a) and (b) make no mention of the special relationship between F =
TM and M. There are many other quadruples (E, 7, M, F') with these properties and
they deserve a special name.

Definition 2.1.23. A vector bundle is a quadruple (E,w, M, F') such that

e E. M are smooth manifolds,
e 7 : F — M is a surjective submersion,
e [ is a vector space over the field K = R, C, and

e the conditions (a) and (b) above are satisfied.

The manifold E is called the total space, and M is called the base space. The vector
space I is called the standard fiber, and its dimension (over the field of scalars K) is called
the rank of the bundle. A line bundle is a vector bundle of rank one. O

Roughly speaking, a vector bundle is a smooth family of vector spaces. Note that the
properties (b1) and (b2) imply that the fibers 7=!(p) of a vector bundle have a natural
structure of linear space. In particular, one can add elements in the same fiber. Moreover,
the addition and scalar multiplication operations on m~!(p) depend smoothly on p. The
smoothness of the addition operation this means that the addition is a smooth map

+:Exy E={(uw,v) € EXE; w(u)=n(v)} — E.
The smoothness of the scalar multiplication means that it is smooth map
Rx FEF— F.

There is an equivalent way of defining vector bundles. To describe it, let us introduce
a notation. For any vector space F' over the field K = R,C we denote by GLk(F'), (or
simply GL(F) if there is no ambiguity concerning the field of scalars K) the Lie group of
linear automorphisms F' — F.

According to Definition 2.1.23, we can find an open cover (U,) of M such that each of
the restrictions E, = E'|y, is isomorphic to a product ¥, : E, = F x U,. Moreover, on
the overlaps U, N Ug, the transition maps gop = \I’Q\Ifg1 can be viewed as smooth maps

9ap : UaNUg — GL(F).
They satisfy the cocycle condition
(a) Jaa = ]lF

(b) 9apgsy9ya = 1F over U, NUg N U,,.
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Conversely, given an open cover (U,) of M, and a collection of smooth maps
9ap : Ua NUg — GL(F)

satisfying the cocycle condition, we can reconstruct a vector bundle by gluing the product
bundles £, = F' x U, on the overlaps U, N Upg according to the gluing rules

the point (v,z) € E, is identified with the point (gga(z)v,2) € Eg Vo € Uy NUp.

The details are carried out in the exercise below.

We will say that the map gg, is the transition from the a-trivialization to the [-
trivialization, and we will refer to the collection of maps (gg.) satisfying the cocycle
condition as a gluing cocycle. We will refer to the cover (U,) as above as a trivializing
cover.

Exercise 2.1.24. Consider a smooth manifold M, a vector space V', an open cover (U,),
and smooth maps
9ap : Ua NUg — GL(V)

satisfying the cocycle condition. Set

X =V xUa x {a}.

We topologize X as the disjoint union of the topological spaces U, x V', and we define a
relation ~C X x X by

V x Uy x{a} 2 (u,z,a) ~ (v,2,8) € V x Ug x {5} g:ﬂzy, v = gga(T)u.

(a) Show that ~ is an equivalence relation, and £ = X/ ~ equipped with the quotient
topology has a natural structure of smooth manifold.

(b) Show that the projection 7 : X — M, (u,x,a) — x descends to a submersion E — M.
(c) Prove that (E,m, M,V) is naturally a smooth vector bundle. 0

Definition 2.1.25. A description of a vector bundle in terms of a trivializing cover, and
a gluing cocycle is called a gluing cocycle description of that vector bundle. a

Exercise 2.1.26. Find a gluing cocycle description of the tangent bundle of the 2-sphere.O0

In the sequel, we will prefer to think of vector bundles in terms of gluing cocycles.

Definition 2.1.27. (a) A section in a vector bundle E = M defined over the open subset
U C M is a smooth map s : U — FE such that

s(p) € B, =71 1(p), VpeU <= mos=1p.

The space of smooth sections of E over U will be denoted by I'(U, E) or C*°(U, E). Note
that T'(U, E) is naturally a vector space. We will use the simpler notation C°°(FE) when
referring to the space of sections of E over M.

(b) A section of the tangent bundle of a smooth manifold is called a vector field on that
manifold. The space of vector fields over on open subset U of a smooth manifold is denoted
by Vect (U). 0
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Proposition 2.1.28. Suppose E — M is a smooth vector bundle with standard fiber F,
defined by an open cover (Uy)aca, and gluing cocycle

9Ba : Uag — GL(F)
Then there exists a natural bijection between the vector space of smooth sections of E, and
the set of families of smooth maps { Sa:Uy— F; aeA }, satisfying the following gluing
condition on the overlaps
sa(2) = gap(x)sg(z), VYo € Uy NUg. 0
Exercise 2.1.29. Prove the above proposition. O
Definition 2.1.30. (a) Let E* =% M; be two smooth vector bundles. A vector bundle map

consists of a pair of smooth maps f : My — M, and F : E' — E? satisfying the following
properties.

e The map F covers f, i.e., F (E;) C E]%(p), Vp € M;. Equivalently, this means that
the diagram below is commutative

EIL)EZ

My L>]\42

e The induced map F': E; — Ef[(p) is linear.

The composition of bundle maps is defined in the obvious manner and so is the identity
morphism so that one can define the notion of bundle isomorphism in the standard way.
(b) If E and F are two vector bundles over the same manifold, then we denote by
Hom(FE, F') the space of bundle maps E — F which cover the identity 1j;. Such bundle
maps are called bundle morphisms. O

For example, the differential Df of a smooth map f : M — N is a bundle map
Df:TM — TN covering f.

Definition 2.1.31. Let E = M be a smooth vector bundle. A bundle endomorphism of
E is a bundle morphism F : E — E. An automorphism (or gauge transformation) is an
invertible endomorphism. O

Example 2.1.32. Consider the trivial vector bundle R, — M over the smooth manifold
M. A section of this vector bundle is a smooth map u : M — R™. We can think of u as a
smooth family of vectors (u(z) € R™),ens.
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An endomorphism of this vector bundle is a smooth map A : M — Endg(R"™). We can
think of A as a smooth family of n X n matrices

ai(iﬂ) aé(w) aé(w)
aj(xz) a5(x) -+ a(z .
o | @) e O | iy o
aj(z) ay(z) - ap(z)
The map A is a gauge transformation if and only if det A, # 0, Vx € M. O

Exercise 2.1.33. Suppose E1, Fo — M are two smooth vector bundles over the smooth
manifold with standard fibers F}, and respectively F5. Assume that both bundles are
defined by a common trivializing cover (Uy)aca and gluing cocycles

9Ba - Uag — GL(Fl), hﬁa : Uaﬁ — GL(FQ).

Prove that there exists a bijection between the vector space of bundle morphisms Hom(FE, F),
and the set of families of smooth maps

{T, : Uy —» Hom(Fy, F»); a €A},
satisfying the gluing conditions
Ts(x) = hga(x)Ta(:E)(:E)gB_;, Vo € Uyg. 0

Exercise 2.1.34. Let V be a vector space, M a smooth manifold, {U,} an open cover
of M, and g8, hag : Uo N Ug = GL(V') two collections of smooth maps satisfying the
cocycle conditions. Prove the two collections define isomorphic vector bundles if and only
they are cohomologous, i.e., there exist smooth maps ¢, : Uy, — GL(V') such that

haﬁ = @ba.gaﬁgbgl- u

2.1.5 Some examples of vector bundles

In this section we would like to present some important examples of vector bundles and
then formulate some questions concerning the global structure of a bundle.

Example 2.1.35. (The tautological line bundle over RP" and CP"). First, let us
recall that a rank one vector bundle is usually called a line bundle. We consider only the
complex case. The total space of the tautological or universal line bundle over CP" is the
space

U, = U5 = { (2,L) € C""! x CP"; z belongs to the line L C C"+1}.

Let m: US — CP" denote the projection onto the second component. Note that for every
L € CP", the fiber through 7~1(L) = US’ ;, coincides with the one-dimensional subspace
in C"*! defined by L. ]
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Example 2.1.36. (The tautological vector bundle over a Grassmannian). We
consider here for brevity only complex Grassmannian Gry(C™). The real case is completely
similar. The total space of this bundle is

U = u%n ={(2,L) € C" x Gry(C") ; z belongs to the subspace L C C" }.

If m denotes the natural projection 7 : Uy ,, — Gry(C"), then for each L € Gry(C") the
fiber over L coincides with the subspace in C" defined by L. Note that US | = u?n. O

Exercise 2.1.37. Prove that U$ and u‘,g{n are indeed smooth vector bundles. Describe a
gluing cocycle for UE. O

Example 2.1.38. A complex line bundle over a smooth manifold M is described by an
open cover (Uy)aea, and smooth maps

980 : Ua NUg — GL(1,C) = C*,
satisfying the cocycle condition
Gya () = gyp(x) - ggalx), Vo € Us NUgNU,.

Consider for example the manifold M = $? c R3. Denote as usual by N and S the North
and respectively South pole. We have an open cover

S? =UyUUs, Up=5*\{S}, Ui =5*\{N}

In this case, we have only a single nontrivial overlap, Uy N Ug. Identify Uy with the
complex line C, so that the North pole becomes the origin z = 0.

For every n € Z we obtain a complex line bundle L,, — S2, defined by the open cover
{Up,U; } and gluing cocycle

gi0(z) =2z7", Vze C* =0\ {0}.
A smooth section of this line bundle is described by a pair of smooth functions

UQ:U()—>(C, U1:U1—>(C,

n

which along the overlap Uy N Uy satisfy the equality ui(z) = 27 "ug(z). For example, if

n > 0, the pair of functions

up(z) = 2", wi(p) =1, Vpe U
defines a smooth section of L,,. O
Exercise 2.1.39. We know that CP! is diffeomorphic to S?. Prove that the universal

line bundle U,, — CP! is isomorphic with the line bundle L_; constructed in the above
example. O
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Exercise 2.1.40. Consider the incidence set
J:={(z,L) € (C™1\ {0}) x CP"; z € L}.

Prove that the closure of J in C**! x CP" is a smooth manifold diffeomorphic to the total
space of the universal line bundle U,, — CP"™. This manifold is called the complex blowup
of C"*! at the origin. 0

The family of vector bundles is very large. The following construction provides a very
powerful method of producing vector bundles.

Definition 2.1.41. Let f : X — M be a smooth map, and F a vector bundle over M
defined by an open cover (U,) and gluing cocycle (gag). The pullback of E by f is the
vector bundle f*E over X defined by the open cover f~!(U,), and the gluing cocycle

(gaﬁof)' d

One can check easily that the isomorphism class of the pullback of a vector bundle F is
independent of the choice of gluing cocycle describing E. The pullback operation defines
a linear map between the space of sections of F and the space of sections of f*FE.

More precisely, if s € I'(E) is defined by the open cover (U,), and the collection of
smooth maps (s, ), then the pullback f*s is defined by the open cover f~'(U,), and
the smooth maps (s, o f). Again, there is no difficulty to check the above definition is
independent of the various choices.

Exercise 2.1.42. For every positive integer k consider the map
pr: CPY — CPY) pi([z20, 21]) = [285, 2F).

Show that py L, = Ly, where L,, is the complex line bundle L,, — CP! defined in Example
2.1.38. a

Exercise 2.1.43. Let £ — X be a rank k (complex) smooth vector bundle over the
manifold X. Assume FE is ample, i.e. there exists a finite family si1,...,sx of smooth
sections of E such that, for any = € X, the collection {si(z),...,sn(z)} spans E,. For

each z € X we set
Sy = {v eCV; Zvisi(x) = 0}.

Note that dim S, = N — k. We have a map F : X — Gry(C") defined by z > Si.
(a) Prove that F' is smooth.
(b) Prove that E is isomorphic with the pullback F*Uy n. O

Exercise 2.1.44. Show that any vector bundle over a smooth compact manifold is ample.
Thus any vector bundle over a compact manifold is a pullback of some tautological bundle!
O

The notion of vector bundle is trickier than it may look. Its definition may suggest
that a vector bundle looks like a direct product mani fold x vector space since this happens
at least locally. We will denote by K%, the bundle K" x M — M.
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Definition 2.1.45. A rank r vector bundle £ = M (over the field K = R, C) is called
trivial or trivializable if there exists a bundle isomorphism E = K,. A bundle isomor-
phism E — K, is called a trivialization of E, while an isomorphism K" — E is called a
framing of E.

A pair (trivial vector bundle, trivialization) is called a trivialized, or framed bundle. O

Remark 2.1.46. Let us explain why we refer to a bundle isomorphism ¢ : K}, — E as
a framing.

Denote by (e1,...,e,) the canonical basis of K". We can also regard the vectors
e; as constant maps M — K", ie., as (special) sections of K’,. The isomorphism ¢
determines sections f; = ¢(e;) of E with the property that for every x € M the collection
(fr(x),..., fr(z)) is a frame of the fiber E,.

This observation shows that we can regard any framing of a bundle £ — M of rank r
as a collection of r sections uq, ..., u, which are pointwise linearly independent. O

One can naively ask the following question. Is every vector bundle trivial? We can
even limit our search to tangent bundles. Thus we ask the following question.

Is it true that for every smooth manifold M the tangent bundle TM is trivial (as a
vector bundle)?

Let us look at some positive examples.

Example 2.1.47. T'S' 2 Rq1 Let 6 denote the angular coordinate on the circle. Then
Oy is a globally defined, nowhere vanishing vector field on S'. We thus get a map

Rgi — TS, (s5,0) — (s0y,0) € TpS!

which is easily seen to be a bundle isomorphism.

Let us carefully analyze this example. Think of S! as a Lie group (the group of complex
numbers of norm 1). The tangent space at z = 1, i.e., § = 0, coincides with the subspace
Rez =0, and % |1 is the unit vertical vector j.

Denote by Ry the counterclockwise rotation by an angle 6. Clearly Ry is a diffeomor-
phism, and for each # we have a linear isomorphism

Dg ‘9:0 Rg : TlSl — TgSl.

Moreover,
0p = Dy lo=0 Ryj-

The existence of the trivializing vector field dy is due to to our ability to “move freely and
coherently” inside S'. One has a similar freedom inside a Lie group as we are going to see
in the next example. O

Example 2.1.48. For any Lie group G the tangent bundle T'G is trivial.
To see this let n = dim G, and consider eq, ..., e, a basis of the tangent space at the
origin, T1G. We denote by R, the right translation (by g¢) in the group defined by

Ry: x—x-g, Veed.
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Ry is a diffeomorphism with inverse R,-1 so that the differential DR, defines a linear
isomorphism DR, : T1G — T4G. Set

Ei(g) = DRy(e;) € T,G, i=1,--- ,n.

Since the multiplication G x G — G, (g,h) — g - h is a smooth map we deduce that the
vectors F;(g) define smooth vector fields over G. Moreover, for every g € G, the collection
{E1(9),-..,En(g)} is a basis of T,G so we can define without ambiguity a map

O:RE TG, (X X" (g;) X'Ei(g)).

One checks immediately that ® is a vector bundle isomorphism and this proves the claim.
In particular T'S® is trivial since the sphere S is a Lie group (unit quaternions). (Using
the Cayley numbers one can show that T'S7 is also trivial; see [84] for details). O

We see that the tangent bundle T'M of a manifold M is trivial if and only if there exist
vector fields Xi,..., X, (m = dim M) such that for each p € M, X;(p),..., X;n(p) span
T,M. This suggests the following more refined question.

Problem Given a manifold M, compute v(M), the mazimum number of pointwise linearly
independent vector fields over M. Obviously 0 < v(M) < dim M and TM is trivial if and
only if v(M) = dim M. A special instance of this problem is the celebrated vector field
problem: compute v(S™) for any n > 1.

We have seen that v(S™) = n for n =1,3 and 7. Amazingly, these are the only cases
when the above equality holds. This is a highly nontrivial result, first proved by J.F.Adams
in [2] using very sophisticated algebraic tools. This fact is related to many other natural
questions in algebra. For a nice presentation we refer to [70].

The methods we will develop in this book will not suffice to compute v(S™) for any n,
but we will be able to solve “half” of this problem. More precisely we will show that

v(S™) =0 if and only if n is an even number.

In particular, this shows that 7°S?" is not trivial. In odd dimensions the situation is far
more elaborate (a complete answer can be found in [2]).

Exercise 2.1.49. v(S?*71) > 1 for any k > 1. 0

The quantity v(M) can be viewed as a measure of nontriviality of a tangent bundle.
Unfortunately, its computation is highly nontrivial. In the second part of this book we will
describe more efficient ways of measuring the extent of nontriviality of a vector bundle.

2.2 A linear algebra interlude

We collect in this section some classical notions of linear algebra. Most of them might be
familiar to the reader, but we will present them in a form suitable for applications in differ-
ential geometry. This is perhaps the least glamorous part of geometry, and unfortunately
cannot be avoided.

1= Convention. All the vector spaces in this section will tacitly be assumed finite dimen-
stonal, unless otherwise stated.
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2.2.1 Tensor products
Let E, F be two vector spaces over the field K (K = R, C). Consider the (infinite) direct

sum
T(E,F) = EB(e,f)eExFK

Equivalently, the vector space T(E, F') can be identified with the space of functions c :
E x F — K with finite support. The space T(FE, F') has a natural basis consisting of “Dirac
functions”

g ExF oK o { g G020

In particular, we have an injection’
0:ExF —=T(E,F), (ef) dey-
Inside T(E, F) sits the linear subspace R(E, F') spanned by
Ae,f = Oxe,fs Ae.f = Oefs Oever f = Oef = Oct fs Oc 1 = Oc,f = Oc,f7,

where e,e’ € E, f,f' € F, and X\ € K. Now define

E®g F :=T(E,F)/R(E, F),
and denote by 7 the canonical projection 7 : T(E,F) - E® F. Set

e® fi:=m(de,f)-

We get a natural map
L:EXF—>FEQRF, exf—e® f.

Obviously ¢ is bilinear. The vector space E @k F' is called the tensor product of E and F
over K. Often, when the field of scalars is clear from the context, we will use the simpler
notation £ ® F'. The tensor product has the following universality property.

Proposition 2.2.1. For any bilinear map ¢ : E X F — G there exists a unique linear
map ® : E® F — G such that the diagram below is commutative.

ExF ———E®F
. O
X‘i
G

The proof of this result is left to the reader as an exercise. Note that if (e;) is a basis
of E, and (f;) is a basis of F', then (e; ® f;) is a basis of F ® F, and therefore

dimg F Qg F = (dlmK E) . (dimK F)

YA word of caution: § is not linear!
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Exercise 2.2.2. Using the universality property of the tensor product prove that there
exists a natural isomorphism F ® F' = F ® E uniquely defined by e ® f — f®e. a

The above construction can be iterated. Given three vector spaces Fy, Fs, F3 over
the same field of scalars K we can construct two triple tensor products:

(El ® E9) ® F3 and F) ® (EQ ® E3).

Exercise 2.2.3. Prove there exists a natural isomorphism of K-vector spaces
(E1®E2)®E3§E1®(E2®E3). O

The above exercise implies that there exists a unique (up to isomorphism) triple tensor
product which we denote by F1 ® Fy ® E3. Clearly, we can now define multiple tensor
products: F1 ® -+ ® E,.

Definition 2.2.4. (a) For any two vector spaces U,V over the field K we denote by
Hom(U, V'), or Homg (U, V') the space of K-linear maps U — V.

(b) The dual of a K-linear space FE is the linear space E* defined as the space Homg (E, K)
of K-linear maps £ — K. For any ¢* € E* and e € E we set

(e*,e) :=e"(e). O
The above constructions are functorial. More precisely, we have the following result.

Proposition 2.2.5. Suppose E;, F;, G;, i = 1,2 are K-vector spaces. LetT; € Hom (E;, F;),
S; € Hom(F;,G;), i = 1,2, be two linear operators. Then they naturally induce a linear
operator

T=TRT:E1k - F®F, S1®5:F®FH
uniquely defined by
T ® T2(€1 ® 62) = (Tlel) &® (Tgeg), Ve; € F;,

and satisfying
(Sl ® 52) o (Tl & Tg) = (51 o Tl) & (SQ o Tg).

(b) Any linear operator A : E — F induces a linear operator Al : F* — E* uniquely
defined by

(ATf* e) = (f* Ae), Veec E, f*eF*

The operator At is called the transpose or adjoint of A. Moreover,

(AoB)l = BT o AT, YA € Hom(F,G), B € Hom(E, F). 0

Exercise 2.2.6. Prove the above proposition. a
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Remark 2.2.7. Any basis (e;)i1<i<n of the n-dimensional K-vector space determines a
basis (e%)1<;<n of the dual vector space V* uniquely defined by the conditions

. . 1 i=j
17 :67':
(e ei) =9, {0 i

We say that the basis (e%) is dual to the basis (e;). The quantity (5;) is called the
Kronecker symbol.
A vector v € V admits a decomposition

n
i
v = E v'e;,
i=1

while a vector v* € V* admits a decomposition

n
v = Z vie'.
i=1
Moreover,
n
(v*,v) = vavi.
i=1

Classically, a vector v in V is represented by a one-column matrix

’Ul

Then

where the - denotes the multiplication of matrices. O

Using the functoriality of the tensor product and of the dualization construction one
proves easily the following result.

Proposition 2.2.8. (a) There exists a natural isomorphism
E*QF"=2(E®F)",
uniquely defined by

E*®@F 2" ®f "+ Lesgy € (E® F)T,
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where
(Lexg e, x @y) = (", 2)(f",y), Ve e E, y € F.

In particular, this shows E* Q@ F* can be naturally identified with the space of bilinear maps
Ex F — K.
(b) The adjunction morphism E* ® F' — Hom (E, F), given by

E*@F 3¢ ® fr— Tergy € Hom(E, F),

where

Te*@f(x) = <€*,$>f, Vo € E7
is an isomorphism.? O
Exercise 2.2.9. Prove the above proposition. a

Let V' be a vector space. For r,s > 0 set

V) =V e (V)P

where by definition V®° = (V*)®0 = K. An element of 77 is called tensor of type (r,s).

Example 2.2.10. According to Proposition 2.2.8 a tensor of type (1,1) can be identified
with a linear endomorphism of V| i.e.,

T1(V) = End (V),
while a tensor of type (0, k) can be identified with a k-linear map

Vx.-xV =K O
~—_—————
k

A tensor of type (r,0) is called contravariant, while a tensor of type (0,s) is called
covariant. The tensor algebra of V is defined to be

T(V) =P T(V).

We use the term algebra since the tensor product induces bilinear maps

. / _,’_7,,/
©: T x T] — T

The elements of T(V') are called tensors.

Exercise 2.2.11. Show that (‘J’(V), +, ®) is an associative algebra. O

2The finite dimensionality of E is absolutely necessary. This adjunction formula is known in Bourbaki
circles as “formule d’adjonction chér a Cartan”.
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Example 2.2.12. It is often useful to represent tensors using coordinates. To achieve
this pick a basis (e;) of V, and let (') denote the dual basis in V* uniquely defined by

<e’eﬂ>_5ﬂ'_{o if Qo

We then obtain a basis of T (V)
{eq @ ®e, @@ @€/ 1<, jg <dimV}.
Any element T € T7 (V) has a decomposition

T=T;""7e® Qe Qe @, Qe
where we use Einstein convention to sum over indices which appear twice, once as a
superscript, and the second time as a subscript.

Using the adjunction morphism in Proposition 2.2.8, we can identify the space ‘J'%(V)
with the space End(V) a linear isomorphisms. Using the bases (e;) and (¢’), and Einstein’s
convention, the adjunction identification can be described as the correspondence which
associates to the tensor A = aé—ei ® e/ € T(V), the linear operator Ly : V — V which

tvle;. O

maps the vector v = vjej to the vector L v = aj

On the tensor algebra there is a natural contraction (or trace) operation

tr:f]"”—)‘ﬁ:ll

S S

uniquely defined by
tr(m®@ - @uou e --@u'):=w e  v,eue- - Qu,

Vv, €V, w e V*.

In the coordinates determined by a basis (e;) of V, the contraction can be described

ig.oin _ ((rpriig..ir
(tr D)3 = (Tijg...js) )

where again we use Einstein’s convention. In particular, we see that the contraction
coincides with the usual trace on T1(V) = End (V).

as

2.2.2 Symmetric and skew-symmetric tensors

Let V' be a vector space over K = R, C. We set T7"(V') := T5(V), and we denote by 8, the
group of permutations of r objects. When r = 0 we set 8¢ := {1}.

Every permutation o € 8, determines a linear map T (V) — J7(V), uniquely deter-
mined by the correspondences

1)1®"‘®Ur'_>Uo(1)®"'®vo(7")7 Yui,..., v € V.

We denote this action of o € §, on an arbitrary element t € T7"(V') by ot.
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In this subsection we will describe two subspaces invariant under this action. These
are special instances of the so called Schur functors. (We refer to [35] for more general
constructions.) Define

S, TN(V) = T(V), Sy(t) := % S o,

’ TgES,
and 15 )
) _J 72 0es, €lo)at if r<dmV
A, T(V)—=T(V), A(t):= { 0 s dimV
Above, we denoted by €(o) the signature of the permutation o. Note that
AO =50 = 1k.

The following results are immediate. Their proofs are left to the reader as exercises.
Lemma 2.2.13. The operators A, and S, are projectors of T"(V'), i.e.,
S?2=8, A’=A,.
Moreover,
0S.(t) = S, (ct) = S,(t), 0 A.(t) = A.(ct) = €(0)A(t), Yt € T (V). 0

Definition 2.2.14. A tensor T' € T"(V) is called symmetric (respectively skew-symmetric)
if
S, (T)=T (respectively A,(T)=T).

The nonnegative integer r is called the degree of the (skew-)symmetric tensor.
The space of symmetric tensors (respectively skew-symmetric ones) of degree r will be
denoted by S"V (and respectively A"V'). O

Set
SV = EBSTV, and A°V = EBATV.
r>0 r>0
Definition 2.2.15. The exterior product is the bilinear map

A ATV x ASV s ATV

defined by

(r+s)!
rls!

Proposition 2.2.16. The exterior product has the following properties.

(a) (Associativity)

w' AR = A s(wen), YWw e A"V, n° € A°V. O

(@AB)Ny=an(BAY), Vo, By e AV

In particular,

v A Aok = kAR (1 ® . Qug) = Z €(0)Va(1) ® oo B Vp(), Yv; €V,
€Sy

(b) (Super-commutativity)
WwAD = (=) A", YW e ATV, w® e A%V
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Proof. We first define a new product “A1” by
WA = Arys(w @),

which will turn out to be associative and will force A to be associative as well.

To prove the associativity of A; consider the quotient algebra Q* = T*/J* where T*
is the associative algebra (D,~,T"(V), +, ®), and J* is the bilateral ideal generated by
the set of squares {v®v/ v € V}. Denote the (obviously associative) multiplication in Q*
by U. The natural projection 7 : T* — Q* induces a linear map 7 : A*V — Q*. We will
complete the proof of the proposition in two steps.

Step 1. We will prove that the map 7 : A*V — Q* is a linear isomorphism, and moreover
m(aniB) = m(a) Un(B). (2.2.1)

In particular, A1 is an associative product.
The crucial observation is

m(T) = (A (T)), VYt T (V). (2.2.2)
It suffices to check (2.2.2) on monomials T =e; ® --- ® e, ¢; € V. Since
(u4v)%? €T, Yu,veV
we deduce u ® v = —v ® u(mod J*). Hence, for any o € 8,
m(e1 ®- - @) = €(0)m(eg(1) @+ @ €g(ry) (2.2.3)

When we sum over o € 8, in (2.2.3) we obtain (2.2.2).
To prove the injectivity of 7 note first that A.(J*) = 0. If 7(w) = 0 for some w € A*V,
then w € kerm =J* N A®*V so that

w=A,(w)=0.

The surjectivity of 7 follows immediately from (2.2.2). Indeed, any 7(7") can be alterna-
tively described as m(w) for some w € A® V. It suffices to take w = A, (T).
To prove (2.2.1) it suffices to consider only the special cases when « and  are mono-
mials:
Oé:Ar(€1®---®€r), BZAs(f1®®fs)
We have
(a1 B) =7 (Ars(Ar(e1 @ ®e) @ As(f1 @ ® f5)))

(2'22) T(Ar(e1®- - Re)QA([LR--® f5))

YA ® - ®e)) Um(A(fi @ ® f,)) = m(a) Un(B).

Thus Aq is associative.
Step 2. The product A is associative. Consider o € A"V, B € A*V and v € A'V. We

have
(r+s)! (r+s)!(r+s+1t)!
(@AB)ANy = (TiaMB) A= ST (an1B)A1y
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(r+s+1t)
= W(a/\ﬁ)/\ﬂ =

(r+s+1)!

e @M BAY) = a A (B A7),

The associativity of A is proved. The computation above shows that
er N Nep =klAg(e1 ® - @ eg).

(b) The supercommutativity of A follows from the supercommutativity of Ay (or U). To
prove the latter one uses (2.2.2). The details are left to the reader. O

Exercise 2.2.17. Finish the proof of part (b) in the above proposition. a

The space A®V is called the exterior algebra of V. A is called the exterior product .
The exterior algebra is a Z-graded algebra, i.e.,

(A"V) A (ASV) € A"T5V, Vr,s.
Note that A"V =0 for » > dim V' (pigeonhole principle).
Definition 2.2.18. Let V be an n-dimensional K-vector space. The one dimensional
vector space A"V is called the determinant line of V', and it is denoted by det V. a
There exists a natural injection ¢y : V < A®* V| 1y (v) = v, such that

(V) Ay (v) =0, YoeV.

This map enters crucially into the formulation of the following universality property.

Proposition 2.2.19. Let V be a vector space over K. For any K-algebra A, and any
linear map ¢ : V. — A such that (¢(x)? = 0, there exists an unique morphism of K-
algebras ® : A*V — A such that the diagram below is commutative

Ly
V —— AV
o
¢ |
A
i.e., Doy = o.
Exercise 2.2.20. Prove Proposition 2.2.19. a

The space of symmetric tensors S*V can be similarly given a structure of associative
algebra with respect to the product

a-f:=81s(a®p), Yae SV, g e S°V.

The symmetric product “” is also commutative.

Exercise 2.2.21. Formulate and prove the analogue of Proposition 2.2.19 for the algebra
S°V. 0
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It is often convenient to represent (skew-)symmetric tensors in coordinates. If ey, ..., e,
is a basis of the vector space V then, for any 1 < r < n, the family

{eqs N Nei /1 <ip < - <i,<n}

is a basis for A"V so that any degree r skew-symmetric tensor w can be uniquely repre-
sented as

w= E W N Ney, .
1<i1 <-<ir<n

Symmetric tensors can be represented in a similar way.
The A® and the S*® constructions are functorial in the following sense.

Proposition 2.2.22. Any linear map L : V — W induces a natural morphisms of algebras
AL:AV AW, S°L:S°V = S*'W
uniquely defined by their actions on monomials
A L(vy A+~ ANwvp) = (Lvy) A=+ A (Luy),

and
S® L(vy,...,v.) = (Lvy)--- (Loy).

Moreover, if U v By W are two linear maps, then
A" (BA) = (A"B)(A"A), S"(BA)=(S"B)(S"A). O
Exercise 2.2.23. Prove the above proposition. O

In particular, if n = dimg V, then any linear endomorphism L : V' — V defines an
endomorphism

AL :detV = A"V — det V.

Since the vector space det V' is 1-dimensional, the endomorphism A™L can be identified
with a scalar det L, the determinant of the endomorphism L.

Definition 2.2.24. Suppose V is a finite dimensional vector space and A : V — V is
an endomorphism of V. For every positive integer r we denote by o,(A) the trace of the
induced endomorphism

ANA:ANV = AV,
and by 1,.(A) the trace of the endomorphism A" : V' — V. We define

UO(A) =1, 1/10(A) =dimV. g
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Exercise 2.2.25. Suppose V is a complex n-dimensional vector space, and A is an endo-
morphism of V.
(a) Prove that if A is diagonalizable and its eigenvalues are aq, ..., a,, then

O'T(A): Z Qiy * o Qs ¢T(A):a7ld+_|_a;

1<ip <<ipr<n

(b) Prove that for every sufficiently small z € C we have the equalities

d
det(ly + zA) = ZO’T , ——logdet (1-2zA) Zwr . O
j>0 r>1

The functors A®* and S°® have an exponential like behavior, i.e., there exists a natural
isomorphism
ANVeW)ZA VAW (2.2.4)

ST (Vaw)=SVeS W (2.2.5)

To define the isomorphism in (2.2.4) consider the bilinear map
PNV XA W S A*(VeWw),
uniquely determined by
GUI A ANvpy, Wi A Awg) =v1 A= Avp Awy A -+ - A ws.
The universality property of the tensor product implies the existence of a linear map
AN VRAW A (VaW),

such that ® o1 = ¢, where ¢ is the inclusion of A°*V x A* W in A*V @ A®* W. To construct
the inverse of ®, note that A*V @ A®* W is naturally a K-algebra by

(wen) * (@ ©n) = (~1)* "B W A W) ® (n A1),
The vector space V @ W is naturally embedded in A*V ® A®* W via the map given by
(v,w) > Yv,w) =vR1+1Rwe A*VRA* .

Moreover, for any = € V @ W we have ¢(x) * ¢ (x) = 0. The universality property of the
exterior algebra implies the existence of a unique morphism of K-algebras

T A (VEW) = AV oA W,

such that W o 1y gw = 1. Note that ® is also a morphism of K-algebras, and one verifies
easily that
(@oW)ovew = tvew.
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The uniqueness part in the universality property of the exterior algebra implies ® o ¥ =
identity. One proves similarly that W o ® = identity, and this concludes the proof of
(2.2.4).

We want to mention a few general facts about Z-graded vector spaces, i.e., vector
spaces equipped with a direct sum decomposition

vz@vn.

nel

(We will always assume that each V,, is finite dimensional.) The vectors in V,, are said
to be homogeneous, of degree n. For example, the ring of polynomials K[z] is a K-graded
vector space. The spaces A®*V and S°®V are Z-graded vector spaces.

The direct sum of two Z-graded vector spaces V and W is a Z-graded vector space
with

(VaeW),:=V,eW,.
The tensor product of two Z-graded vector spaces V and W is a Z-graded vector space
with
VeaW), = f V,ew.

r4+s=n

To any Z-graded vector space V one can naturally associate a formal series Py (t) €
Z[[t,t71]] by
Py(t) == > (dimg V,)t".

nel

The series Py (t) is called the Poincaré series of V.

Example 2.2.26. The Poincaré series of K[z] is
Prpg®) =1+t+2 4 +t" o= —— -

Exercise 2.2.27. Let V and W be two Z-graded vector spaces. Prove the following
statements are true (whenever they make sense).

(a) Praw(t) = Pv(t) + Pw(?).

(b) Prew (t) = Pv(t) - Pw(?).

(c) dimV = Py (1). 0

Definition 2.2.28. Let V' be a Z-graded vector space. The Fuler characteristic of V,
denoted by x(V), is defined by

X(V) = Py(-1) = (-1)"dim V,,
nez

whenever the sum on the right-hand side makes sense. O

Remark 2.2.29. If we try to compute x(K|z]) using the first formula in Definition 2.2.28
we get y(K[z]) = 1/2, while the second formula makes no sense (divergent series). 0
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Proposition 2.2.30. Let V be a K-vector space of dimension n. Then

Prov(t) = (1+)" and Pgey(t) = <%>n - (n_ll)! (%)H <%>

In particular, dim A®*V = 2" and x(A* V) = 0.

Proof. From (2.2.4) and (2.2.5) we deduce using Exercise 2.2.27 that for any vector spaces
V and W we have

Preqvaw)(t) = Prev(t) - Paew(t) and Pseygw)(t) = Pseyv(t) - Psew (1)

In particular, if V has dimension n, then V' 22 K" so that
Prev(t) = (Paek(t))" and Pgey(t) = (Psek(t)" .

The proposition follows using the equalities

1
Preg(t) =1+1t, and Pgeg(t) = Pxiy(t) = 7 0

2.2.3 The “super” slang

The aim of this very brief section is to introduce the reader to the “super” terminology.
We owe the “super” slang to the physicists. In the quantum world many objects have a
special feature not present in the Newtonian world. They have parity (or chirality), and
objects with different chiralities had to be treated differently.

The “super” terminology provides an algebraic formalism which allows one to deal
with the different parities on an equal basis. From a strictly syntactic point of view, the
“super” slang adds the attribute super to most of the commonly used algebraic objects.
In this book, the prefix “s-” will abbreviate the word “super”

Definition 2.2.31. (a) A s-space is a Zs-graded vector space, i.e., a vector space V
equipped with a direct sum decomposition V = Vj & V1.

(b) A s-algebra over K is a Zo-graded K-algebra, i.e., a K-algebra A together with a direct
sum decomposition A = A° @ A! such that A’ - AJ C A+ (m0d2)  The elements in A’ are
called homogeneous of degree i. For any a € A we denote its degree (mod 2) by |a|. The
elements in A° are said to be even while the elements in A! are said to be odd.

(c) The supercommutator in a s-algebra A = A° @ Al is the bilinear map
[0,0], : A XA — A,
defined on homogeneous elements w® € A, 7 € A7 by
[w', ] o= Wl — (1)

An s-algebra is called s-commutative, if the suppercommutator is trivial, [e,e], =0. O
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Example 2.2.32. Let E = E°@® E! be a s-space. Any linear endomorphism T’ € End (E)
has a block decomposition
Too T ]
T= ,
[ Tio Tn

where T}; € End (E*, E7). We can use this block decomposition to describe a structure of
s-algebra on End (E). The even endomorphisms have the form

0 Ty |’

while the odd endomorphisms have the form

0 Tn
[Tw O} .

Example 2.2.33. Let V be a finite dimensional space. The exterior algebra A*V is
naturally a s-algebra. The even elements are gathered in

Aevenys — @ AT’V7

T even

while the odd elements are gathered in

Ay = B ATV
r odd

The s-algebra A®V is s-commutative. O

Definition 2.2.34. Let A = A° ® A' be a s-algebra. An s-derivation on A is a linear
operator on D € End (A) such that, for any = € A,

[D, LB = L, (2.2.6)
where |, ]End(ﬂ) denotes the supercommutator in End (A) (with the s-structure defined
in Example 2.2.32), while for any z € A we denoted by L, the left multiplication operator
a— z-a.

An s-derivation is called even (respectively odd), if it is even (respectively odd) as an
element of the s-algebra End (A). O

Remark 2.2.35. The relation (2.2.6) is a super version of the usual Leibniz formula.
Indeed, assuming D is homogeneous (as an element of the s-algebra End (A)) then equality
(2.2.6) becomes

D(zy) = (Dz)y + (—1)*Plz(Dy),

for any homogeneous elements x,y € A. O
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Example 2.2.36. Let V be a vector space. Any u* € V* defines an odd s-derivation of
A°®V denoted by i,+ uniquely determined by its action on monomials.

T
iy (Vo AV A+ ANvp) = Z(—l)i(u*,vi>vo AVIA o NN -+ Ay,
i=0

As usual, a hat indicates a missing entry. The derivation i, is called the interior derivation
by uw* or the contraction by u*. Often, one uses the alternate notation u*_J to denote this
derivation. a

Exercise 2.2.37. Prove the statement in the above example. a

Definition 2.2.38. Let A = (A° ® A', +,[, ]) be an s-algebra over K, not necessarily
associative. For any z € A we denote by R, the right multiplication operator, a — [a, z].
A is called an s-Lie algebra if it is s-anticommutative, i.e.,

[z,y] + (=1)1#¥l[y, 2] = 0, for all homogeneous elements z,y € A,

and Vx € A, R, is a s-derivation.
When A is purely even, i.e., A' = {0}, then A is called simply a Lie algebra. The
multiplication in a (s-) Lie algebra is called the (s-)bracket. O

The above definition is highly condensed. In down-to-earth terms, the fact that R, is
a s-derivation for all x € A is equivalent with the super Jacobi identity

[[y7 Z]v ‘T] = Hya x]? Z] + (_1)‘90‘@' [y7 [27 ‘T]]v (2’2’7)

for all homogeneous elements z,y,z € A. When A is a purely even K-algebra, then A is
a Lie algebra over K if [ , | is anticommutative and satisfies (2.2.7), which in this case is
equivalent with the classical Jacobi identity,

[z, y], 2] + [y, 2], x] + [[z, z],y] =0, Vz,y,z € A. (2.2.8)

Example 2.2.39. Let E be a vector space (purely even). Then A = End (F) is a Lie
algebra with bracket given by the usual commutator: [a,b] = ab — ba. a

Proposition 2.2.40. Let A = A° ® A! be a s-algebra, and denote by Derg(A) the vector
space of s-derivations of A.

(a) For any D € Derg(A), its homogeneous components D°, D! € End(A) are also
s-derivations.

(b) For any D, D" € Derg(A), the s-commutator [D,D’]End(A) is again an s-derivation.
(c) Yx € A the bracket B* : a — [a,x]s is a s-derivation called the bracket derivation
determined by x. Moreover

[B®, BY)Erd () = Blevls | vy € A O
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Exercise 2.2.41. Prove Proposition 2.2.40. O

Definition 2.2.42. Let E = E° @ E! and F = F° @ F! be two s-spaces. Their s-tensor
product is the s-space ¥ ® F' with the Zs-grading,

(E@F):= P EoF, e=0,L
i+j=e(2)

To emphasize the super-nature of the tensor product we will use the symbol “®” instead
of the usual “®”. O

Exercise 2.2.43. Show that there exists a natural isomorphism of s-spaces
V*QA®V = Dery(A®V),
uniquely determined by v* x w — DY ®% where DV"®“ is s-derivation defined by
DV (v) = (v*,v)w, YveV.

Notice in particular that any s-derivation of A®V is uniquely determined by its action on
A'V. (When w = 1, DV ®! coincides with the internal derivation discussed in Example
2.2.36.) O

Let A = AY@® A! be an s-algebra over K = R, C. A supertrace on A is a K-linear map
7 : A — K such that,
7([z,yls) =0 Va,y € A.

If we denote by [A, A]s the linear subspace of A spanned by the supercommutators

{[m,y]s; T,y EA},

then we see that the space of s-traces is isomorphic with the dual of the quotient space

A/[A, Als.

Proposition 2.2.44. Let E = Ey ® E; be a finite dimensional s-space, and denote by
A the s-algebra of endomorphisms of E. Then there exists a canonical s-trace trg on A
uniquely defined by

trglp = dim Ey — dim Fq.

In fact, if T € A has the block decomposition

Too To ]
T = ,
[ Tio T

then
trg T = tr1pg — trTiy. O

Exercise 2.2.45. Prove the above proposition. O
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2.2.4 Duality

Duality is a subtle and fundamental concept which permeates all branches of mathematics.
This section is devoted to those aspects of the atmosphere called duality which are relevant
to differential geometry. In the sequel, all vector spaces will be tacitly assumed finite
dimensional, and we will use Einstein’s convention without mentioning it. K will denote
one of the fields R or C.

Definition 2.2.46. A pairing between two K-vector spaces V and W is a bilinear map
B:VxW—K. a

Any pairing B : V x W — K defines a linear map
Ip:V—>W*" v— B(v, o) e W*,

called the adjunction morphism associated to the pairing.
Conversely, any linear map L : V — W* defines a pairing

Bp:VxW =K, Bww)=(Lv)(w), YveV, weW.

Observe that I, = L. A pairing B is called a duality if the adjunction map Ip is an
isomorphisms.

Example 2.2.47. The natural pairing (e,e) : V* x V' — K is a duality. One sees that
H<.7.> = 1y« : V* — V*. This pairing is called the natural duality between a vector space
and its dual. O

Example 2.2.48. Let V be a finite dimensional real vector space. Any symmetric non-
degenerate quadratic form (e,e) : V' x V — R defines a (self)duality, and in particular a
natural isomorphism

L= ]1(.7.) V=V

When (e, @) is positive definite, then the operator £ is called metric duality or lowering-
the-indices map. This operator can be nicely described in coordinates as follows. Pick a
basis (e;) of V, and set

gij = (ei,ej).
Let (e/) denote the dual basis of V* defined by

<ej,e,~> = 5g, Vi, j.

The action of £ is then
Le; = gije’. ]
Example 2.2.49. Consider V a real vector space and w: V x V — R a skew-symmetric

bilinear form on V. The form w is said to be symplectic if this pairing is a duality. In
this case, the induced operator I, : V. — V* is called symplectic duality. a

Exercise 2.2.50. Suppose that V' is a real vector space, and w : V xV — R is a symplectic
duality. Prove the following.

(a) The V has even dimension.

(b) If (e;) is a basis of V, and wj; := w(e;, e;), then det(w;j)i<i j<dimv # 0. 0
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The notion of duality is compatible with the functorial constructions introduced so
far.

Proposition 2.2.51. Let B; : V; x W; = R (i = 1,2) be two pairs of spaces in duality.
Then there exists a natural duality

B=B1®Bsy: (V1®V2) X (W1®W2)—>R,
uniquely determined by

Ip,eB, = 1B, ®Ip, <= B(v1 ® v2, w1 @ wa) = Bi(v1,w1) - Ba(va, wo). O

Exercise 2.2.52. Prove Proposition 2.2.51. |

Proposition 2.2.51 implies that given two spaces in duality B : V x W — K there is a
naturally induced duality
BE" VO x W — K.
This defines by restriction a pairing
A'B: ANV xANW - K
uniquely determined by
A"B (vi A= Avpywy A+ Awy) = det (B (vi, w)) 1< <, -

Exercise 2.2.53. Prove the above pairing is a duality. O

In particular, the natural duality (e, @) : V* x V — K induces a duality
(o, ) : A"V*" x A"V = R,
and thus defines a natural isomorphism
ANV* = (A"V)".

This shows that we can regard the elements of A"V* as skew-symmetric r-linear forms
V" — K.
A duality B : V x W — K naturally induces a duality Bt : V* x W* — K by

Bl (v*,w*) : =(v*, I3 w*),
where 5 : V — W™ is the adjunction isomorphism induced by the duality B.

Now consider a (real) Euclidean vector space V. Denote its inner product by (e, e).
The self-duality defined by (e, ) induces a self-duality

(o,0): A"V X A"V = R,
determined by
(Vi A Avpwr A Awy) i=det ((vi, w)) )< i<, - (2.2.9)

The right hand side of (2.2.9) is a Gramm determinant, and in particular, the bilinear
form in (2.2.9) is symmetric and positive definite. Thus, we have proved the following
result.
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Corollary 2.2.54. An inner product on a real vector space V naturally induces an inner
product on the tensor algebra T(V'), and in the exterior algebra A®V . a

In a Euclidean vector space V' the inner product induces the metric duality £ : V' — V*.
This induces an operator £ : 1% (V) — Ts’:ll(V) defined by

L ®..000u @ - @u)=(1® -Qv) @ (Lneu o --@u’). (2.2.10)

The operation defined in (2.2.10) is classically referred to as lowering the indices.
The reason for this nomenclature comes from the coordinate description of this oper-

ation. If T € T7(V) is given by

— Thirg . e ... Js
T=T;""€ ® ®Xe;, Qe ® ®e’?,

then
2.0 __ _ ii2..ip
(LT)jjl...jr = 9ij ;775
where g;; = (e;,ej). The inverse of the metric duality £~! : V* — V induces a linear
operation T (V) — T7 (V) called raising the indices.

Exercise 2.2.55 (Cartan). Let V be an Euclidean vector space. For any v € V' denote by
ey (resp. i,) the linear endomorphism of A*V defined by e,w = v Aw (resp. i, = 1,» where
1+ denotes the interior derivation defined by v* € V*-the metric dual of v; see Example
2.2.36). Show that for any u,v € V

[61)7 Zu]s = eviu + Z‘uev - (ua U)]IA'V' O

Definition 2.2.56. Let V be a real vector space. A wvolume form on V is a nontrivial
linear form on the determinant line of V', y : det V' — R. O

Equivalently, a volume form on V' is a nontrivial element of det V* (n = dim V). Since

det V' is 1-dimensional, a choice of a volume form corresponds to a choice of a basis of
det V.

Definition 2.2.57. (a) An orientation on a vector space V is a continuous, surjective
map

or :detV \ {0} — {£1}.

We denote by Or(V') the set of orientations of V. Observe that Or (V') consists of precisely
two elements.

(b) A pair (V,or), where V is a vector space, and or is an orientation on V is called an
oriented vector space.

(c) Suppose or € Or(V'). A basis w of det V' is said to be positively oriented if or(w) > 0.
Otherwise, the basis is said to be negatively oriented. a
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There is an equivalent way of looking at orientations. To describe it, note that any
nontrivial volume form p on V' uniquely specifies an orientation or, given by

or,(w) :=signu(w), Yw € detV \ {0}.
We define an equivalence relation on the space of nontrivial volume forms by declaring
p1 ~ pg <= p(w)pz(w) >0, Yw e detV \ {0}.
Then
H1 ~ [l <= OT ), = OT,.

To every orientation or we can associate an equivalence class [p]or of volume forms such
that
p(w)or(w) >0, Yw e detV \ {0}.

Thus, we can identify the set of orientations with the set of equivalence classes of nontrivial
volume forms.

Equivalently, to specify an orientation on V it suffices to specify a basis w of det V.
The associated orientation or,, is uniquely characterized by the condition

or,(w) =1.

To any basis {eq,...,e, } of V one can associate a basis e; A --- A e, of det V. Note that a
permutation of the indices 1,...,n changes the associated basis of det V' by a factor equal
to the signature of the permutation. Thus, to define an orientation on a vector space, it
suffices to specify a total ordering of a given basis of the space.

An ordered basis of an oriented vector space (V,or) is said to be positively oriented
if so is the associated basis of det V.

Definition 2.2.58. Given two orientations ori, ors on the vector space V we define
ori/ory € {£1}

to be
ori/ory := ori(w)ors(w), Yw e detV \ {0}.

We will say that ory/or, is the relative signature of the pair of orientations ory,ors. O

Assume now that V' is an Euclidean space. Denote the Euclidean inner product by
g(e, e). The vector space det V' has an induced Euclidean structure, and in particular,
there exist exactly two length-one-vectors in det V. If we fix one of them, call it w, and
we think of it as a basis of det V', then we achieve two things.

e First, it determines a volume form p, defined by

fg(Aw) = A.

e Second, it determines an orientation on V.
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Conversely, an orientation or € Or (V) uniquely selects a length-one-vector w = wep
in det V, which determines a volume form iy = pg". Thus, we have proved the following
result.

Proposition 2.2.59. An orientation or on an Euclidean vector space (V,g) canonically
selects a volume form on V', henceforth denoted by Dety = Detg". ad

Exercise 2.2.60. Let (V,g) be an n-dimensional Euclidean vector space, and or an
orientation on V. Show that, for any basis vy, ... v, of V, we have

Detgr('ul ARRAN 'Un) = OT(UI JARERIAN ’Un) (det g(vi,vj)).

If V = R? with its standard metric, and the orientation given by e; A es, prove that
| Dety" (v1 A va)|

is the area of the parallelogram spanned by v; and vs. a

Definition 2.2.61. Let (V,g,0r) be an oriented, Euclidean space and denote by Detg"
the associated volume form. The Berezin integral or ( berezinian) is the linear form

/ AV - R,

g

defined on homogeneous elements by
1 B 0 if degw <dimV -
gw ~ | Dety"w if degw =dimV

Definition 2.2.62. Let w € A%V, where (V, g,0r) is an oriented, Euclidean space. We
define its pfaffian as

—

Pf(w)=Pf) (w) = /expw =

{ 0 if dimV isodd
g

2Det" (W) if dimV =2n °
where expw denotes the exponential in the (nilpotent) algebra A®*V,
ok
exXpw = Z R O
k>0

If (V,g) is as in the above definition, dimV = N, and A: V — V is a skew-symmetric
endomorphism of V, then we can define wy € A2V by

1
WA = Zg(Aei, ejlei Nej = 3 Zg(Aei, ej)ei N ej,
1<) 2¥}
where (eq, ..., en) is a positively oriented orthonormal basis of V. The reader can check
that w4 is independent of the choice of basis as above. Notice that

wa(u,v) = g(Au,v), Yu,v € V.
We define the pfaffian of A by
Pf(A):=Pf(wa).
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Example 2.2.63. Let V = R? denote the standard Euclidean space oriented by e; A es,
where e1eg denotes the standard basis. If

0 -6
=)
then wq = ey A ey so that Pf(A) = 6. O

Exercise 2.2.64. Let A : V — V be a skew-symmetric endomorphism of an oriented
Euclidean space V. Prove that Pf(A)? = det A. O

Exercise 2.2.65. Let (V, g, or) be an oriented Euclidean space of dimension 2n. Consider
A:V =V a skewsymmetric endomorphism and a positively oriented orthonormal frame
€1,...,€ea,. Prove that

> 0)aa)o@)  * Co2n—1)o(2n)

UGSQn

P (4) =

= (1" Y €0)to(1)o@) ** to@n-1)o(2n);

€8,

where a;; = g(e;, Ae;j) is the (4, j)-th entry in the matrix representing A in the basis (e;),
and 8),, denotes the set of permutations o € 8y, satisfying

02k — 1) < min{o(2k),0(2k + 1)}, Vk. O

Let (V, g,or) be an n-dimensional, oriented, real Euclidean vector space. The metric
duality £, : V' — V* induces both a metric, and an orientation on V*. In the sequel we

will continue to use the same notation £, to denote the metric duality T7 (V) — T (V*) =
TTV).

s

Definition 2.2.66. Suppose (V, g, or) oriented Euclidean space, and r is a nonnegative
integer, r < dim V. The r-th Hodge pairing is the pairing

S=2 AV Xx ATV SR,

g,0r
defined by

Ew" ") = Det‘;’"(ﬁglwr A" ), whe ANVE gt e ATV O
Exercise 2.2.67. Prove that the Hodge pairing is a duality. O

Definition 2.2.68. The Hodge *-operator is the adjunction isomorphism
x=Ig : A"V* - A"V

induced by the Hodge duality. O
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The above definition obscures the meaning of the x-operator. We want to spend some
time clarifying its significance.
Let a € A"V* so that xa € A" "V*. Denote by (e, e) the standard pairing

AMTTVE X AVTY S R,

and by (e, e) the induced metric on A"~"V*. Then, by definition, for every § € A"~ *V*
the operator * satisfies

Dety(£, oA L;1B) = (xa, £, B) = (xa, B), VB EATV™. (2.2.11)

Let w denote the unit vector in det V' defining the orientation. Then (2.2.11) can be
rewritten as
(a A B,w) = (xa, B), Y8 € A"V,
Thus
a B = (xa,B)Dety", Vae A"V* VB e A"V (2.2.12)
Equality (2.2.12) uniquely determines the action of .

Example 2.2.69. Let V be the standard Euclidean space R? with standard basis e1, e, es,
and orientation determined by e; A ea A e3. Then

*e] = eg AN eg, *ep =e3 /ey, xe3 = e1 A eo,

x1 =e1 ANeg Aes, x(ej Nea Aeg) =1,
x(eg Neg) =eq, x(e3Nep) =eq, *x(ep Aeg) = es. O
The following result is left to the reader as an exercise.

Proposition 2.2.70. Suppose (V, g,or) is an oriented, real Fuclidean space of dimension
n. Then the associated Hodge x-operator satisfies

(+w) = (1P Py Yw e APV,

Dety(x1) =1,

and
aA*f = (o, B8) %1, Yae AFV* Vg e AnFy=, 0

Exercise 2.2.71. Let (V, g,¢) be an n-dimensional, oriented, Euclidean space. For every
t > 0 Denote by g; the rescaled metric g; = t2g. If * is the Hodge operator corresponding
to the metric g and orientation or, and *; is the Hodge operator corresponding to the
metric g; and the same orientation, show that

Dety)” = t" Dety",

and
ww =t""Pxw VYwe APV*. a
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We conclude this subsection with a brief discussion of densities.

Definition 2.2.72. Let V be a real vector space. For any r > 0 we define an r-density
to be a function f : detV — R such that

Fu) = A" f(u), Yue detV \ {0}, VA #O0. 0

The linear space of r-densities on V' will be denoted by |A[{,. When r = 1 we set
|Aly :=|Al};, and we will refer to 1-densities simply as densities.

Example 2.2.73. Any Euclidean metric g on V' defines a canonical 1-density |Det, | €
|A[{; which associated to each w € det V its length, |w],. O

Observe that an orientation or € Or(V') defines a natural linear isomorphism
tor : det V' — |Aly  det V* 3 i 10pp € |Aly, (2.2.13)
where
torit(w) = or(w)pu(w), Yw € det V '\ {0}.

In particular, an orientation in a Euclidean vector space canonically identifies |A]y with
R.

2.2.5 Some complex linear algebra

In this subsection we want to briefly discuss some aspects specific to linear algebra over
the field of complex numbers.

Let V be a complex vector space. Its conjugate is the complex vector space V which
coincides with V as a real vector space, but in which the multiplication by a scalar A € C
is defined by

A-vi= v, YvoeV.

The vector space V has a complex dual V* that can be identified with the space of complex
linear maps V' — C. If we forget the complex structure we obtain a real dual V,*consisting
of all real-linear maps V' — R.

Definition 2.2.74. A Hermitian metric is a complex bilinear map
(0,0) : VxV = C
satisfying the following properties.
e The bilinear from (e, e) is positive definite, i.e.

(v,v) >0, Yo e V\{0}.

e For any u,v € V we have (u,v) = (v,u). 0
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A Hermitian metric defines a duality V x V — C, and hence it induces a complex
linear isomorphism

L:V =V v () e VE

If V and W are complex Hermitian vector spaces, then any complex linear map A: V — W
induces a complex linear map

AW =V A = (vn—> <Av,w>) e V7,

where (o, o) denotes the natural duality between a vector space and its dual. We can
rewrite the above fact as

(Av,w) = (v, A*w).

A complex linear map W — V7 is the same as a complex linear map W — V.". The
metric duality defines a complex linear isomorphism V." 2V so we can view the adjoint
A* as a complex linear map W — V.

Let h = (e, ®) be a Hermitian metric on the complex vector space V. If we view (e, o)
as an object over R, i.e., as an R-bilinear map V x V — C, then the Hermitian metric
decomposes as

h=Reh—iw, i:=+v—-1, w=—Imh.

The real part is an inner product on the real space V, while w is a real, skew-symmetric
bilinear form on V, and thus can be identified with an element of A]%%V*. w is called the
real 2-form associated to the Hermitian metric.

It is convenient to have a coordinate description of the abstract objects introduced
above. Let V be an n-dimensional complex vector space and h a Hermitian metric on it.
Pick an unitary basis eq,...,e, of V, ie., n = dimcV, and h(e;,e;) = d;5. For each j,
we denote by f; the vector 2e;. Then the collection e, f1,..., ey, fr is an R-basis of V.
Denote by el, 1, ..., e, f™ the dual R-basis in V*. Then

Reh(ei,ej) = 5ij = Re h(fz,f]) and Reh(ei,fj) = O,

ie.,

Reh=) (¢®e +f @f)

Also
w(ei, fj) = —Imh(e;, tej) = 0i5, wlei e;) =w(fi, f;) =0 Vi, j,
which shows that ' '
w = —Imh:Ze’/\f’.

Any complex space V' can be also thought of as a real vector space. The multiplication
by 4 = v/—1 defines a real linear operator which we denote by J. Obviously J satisfies
J? = —1y.

Conversely, if V is a real vector space then any real operator J : V — V as above
defines a complex structure on V' by

(a+bi)v =av+bJv, YveV, a+bieC.
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We will call an operator J as above a complex structure .

Let V be a real vector space with a complex structure J on it. The operator J has no
eigenvectors on V. The natural extension of J to the complexification of V', Vo =V ® C,
has two eigenvalues +%, and we have a splitting of V¢ as a direct sum of complex vector
spaces (eigenspaces)

Ve =ker (J —1) @ (ker J +1).

Exercise 2.2.75. Prove that we have the following isomorphisms of complex vector spaces

V=ker(J—1i) V =(kerJ+1). 0
Set
VIO = ker(J —d) =2V VOl i=ker(J +1i) = V.

Thus Ve 2 V0@ V0!l =2 V@ V. We obtain an isomorphism of Z-graded complex vector

spaces
AVe = AV @ AV

If we set

APV = APVLO @ ATV 0L
then the above isomorphism can be reformulated as
M= @ Arav. (2.2.14)
p+q=k

Note that the complex structure J on V induces by duality a complex structure J* on
V¥, and we have an isomorphism of complex vector spaces

Ve =W J)e = (V5 ).

We can define similarly AP9V* as the AP'%-construction applied to the real vector space
V¥ equipped with the complex structure J*. Note that

Al,OV* ~ (ALOV):,
AO,lv* ~ (AO,lv)z’

and, more generally
APAV* = (APIV)Y.

If h is a Hermitian metric on the complex vector space (V,J), then we have a natural
isomorphism of complex vector spaces

Vi (VT = (V,-J) =V,

so that
APIV* = APV

The Euclidean metric ¢ = Re h, and the associated 2-form w = —Im h are related by

g(u,v) = w(u, Jv), w(u,v)=g(Ju,v), Yu,v € V. (2.2.15)
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Moreover, w is a (1, 1)-form. To see this it suffices to pick a unitary basis (e;) of V, and
construct as usual the associated real orthonormal basis {e1, f1, -+ ,en, fu} (fi = Je;).

Denote by {e’, fi; i = 1,...,n} the dual orthonormal basis in V,*. Then J*¢! = — f?, and
if we set ) 1
ei= — (e +ift), &= —=(e —if’
(e rif), & = (e —if),
then
AMOV* = spanc{e'} A = spanc{&’},
and
w=1iy & AE.
Let V be a complex vector space, and eq, ..., e, be a basis of V over C. This is not a real
basis of V since dimg V' = 2dim¢ V. We can however complete this to a real basis. More
precisely, the vectors eq,teq,...,en,te, form a real basis of V.

Proposition 2.2.76. Suppose (e1,...,e,) and (f1,..., fn) are two complex bases of V,
and Z = (zi)1§j7k is the complex matriz describing the transition from the basis e to the
basis f, i.e.,

fk:Zziej, V1<k<n.
J

Then
FINGfIA - A foNifn = |det Z2e; Ndeg A - Aey Adey,.

Proof. We write
J_ ..J . J J o, ) £
2y, = xp, iy, T,y €ER, € =tej, fip=1fp.

Then

J

fr = Z(m{t + iyi)ej = me;ej + Zyiéj,
J J
and ' '
Je==2_mes + 3w
J J
Then, if we set €, = (—1)""1/2 we deduce
FINGFUN - A faNifu=enfi Ao Afa ANfIA- A fn

:en(detZ)el AN Nepg NELA - Néy = (det?)el ANter A ... Nep Aten,
where Z is the 2n x 2n real matrix

5_[Rez —ImZz]_[X -Y
“|ImZ Rez| |Y X|°

and X, Y denote the n x n real matrices with entries (:L'i) and respectively (yi)
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We want to show that
det Z = |det Z|?, VZ € End¢(C"). (2.2.16)

Let
A:={Z € Endc(C"); |det Z|* = detZ}.

We will prove that A = Endc(C").

The set A is nonempty since it contains all the diagonal matrices. Clearly A is a closed
subset of Endc(C"), so it suffices to show that A is dense in Endc(C").

Observe that the correspondence

Endc(C") 5 Z — Z € Endg(R)

is an endomorphism of R-algebras. Then, for every Z € Endc(C™), and any complex
linear automorphism 7' € Autc(C™), we have

TZT' =TZT".

Hence
ZeA=TZT e A, VT € Autc(Ch).

In other words, if a complex matrix Z satisfies (2.2.16), then so will any of its conjugates.
In particular, A contains all the diagonalizable n X n complex matrices, and these form a
dense subset of Endc(C") (see Exercise 2.2.77). O

Exercise 2.2.77. Prove that the set of diagonalizable n x n complex matrices form a
dense subset of the vector space Endc(C"). O

Definition 2.2.78. The canonical orientation of a complex vector space V', dim¢c V' = n,
is the orientation defined by e; A te; A ... A e, A te, € A%{‘V, where {e1,...,e,} is any
complex basis of V. O

Suppose h is a Hermitian metric on the complex vector space V. Then g = Re h defines
is real, Euclidean metric on V regarded as a real vector space. The canonical orientation
or. on V, and the metric g define a volume form Det‘g”"C € A%&”VT*, n = dimc V, and a
pffafian

1
Pf,=Pfo : AJV* =R, A’V >0 Hg(n",Detg).

If w=—TImh is real 2-form associated with the Hermitian metric h, then

1
Dety = Detg" = Hw",

and we conclude
Pfhw = 1
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2.3 Tensor fields

2.3.1 Operations with vector bundles

We now return to geometry, and more specifically, to vector bundles.

Let K denote one of the fields R or C, and let £ — M be a rank r K-vector bundle
over the smooth manifold M. According to the definition of a vector bundle, we can find
an open cover (Uy) of M such that each restriction E |y, is trivial: E |y, = V x U,,
where V is an r-dimensional vector space over the field K. The bundle E is obtained by
gluing these trivial pieces on the overlaps U, N Ug using a collection of transition maps
9ap : Ua NUg — GL(V) satisfying the cocycle condition.

Conversely, a collection of gluing maps as above satisfying the cocycle condition
uniquely defines a vector bundle. In the sequel, we will exclusively think of vector bundles
in terms of gluing cocycles.

Let E, F' be two vector bundles over the smooth manifold M with standard fibers Vg
and respectively Vg, given by a (common) open cover (U,), and gluing cocycles

9ap : Uap — GL(VE), and respectively hog: Usg — GL(VF).
Then the collections
9ap @ hap : Uap = GL(VE ® VF), gap @ hap : Uap = GL(VE @ VF),
(955)7" 1 Uap = GL(VE), A"gag : Uap — GL(A"Vg),

where T denotes the transpose of a linear map, satisfy the cocycle condition, and therefore
define vector bundles which we denote by E & F, F ® F, E*, and respectively A"FE. In
particular, if » = rankgF, the bundle A"E has rank 1. It is called the determinant line
bundle of E, and it is denoted by det E. Given the adjunction isomorphism V3 ® Vi =
Hom(Vg, VF), we set

Hom(E, F) := E*® F.

We set
End(F) := Hom(FE, E).

The reader can check easily that these vector bundles are independent of the choices of
transition maps used to characterize £ and F' (use Exercise 2.1.34). The bundle E* is
called the dual of the vector bundle E. The direct sum E & F is also called the Whitney
sum of vector bundles. All the functorial constructions on vector spaces discussed in the
previous section have a vector bundle correspondent. (Observe that a vector space can be
thought of as a vector bundle over a point.)

These above constructions are natural in the following sense. Let E’ and F’ be vector
bundles over the same smooth manifold M’. Any bundle maps S : F — E' and T : F —
F’, both covering the same diffeomorphism ¢ : M — M’, induce bundle morphisms

SeT:-EdF —-F oT, ST E®QF - E ® F/,

covering ¢, a morphism
ST (E* — E*,

covering ¢~ ! etc.
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Exercise 2.3.1. Prove the assertion above. O

Example 2.3.2. Let E, F', E' and F’ be vector bundles over a smooth manifold M. Con-
sider bundle isomorphisms S : E — E’ and T : F' — F’ covering the same diffeomorphism
of the base, ¢ : M — M. Then (S‘l)T : E* — (FE’)* is a bundle isomorphism covering ¢,
so that we get an induced map (S~ @ T : E* ® F — (E')* ® F'. Note that we have a
natural identification

C*( Hom(E,F)) = C*(E* ® F) = Hom(E, F),
where we recall that Hom(E, F') denotes the space of smooth bundle morphisms £ — F.0

Definition 2.3.3. Let £ — M be a K-vector bundle over M. A metric on FE is a section
h of E* ®x E* (E = E if K = R) such that, for any m € M, h(m) defines a metric on E,,
(Euclidean if K = R or Hermitian if K = C). O

2.3.2 Tensor fields

We now specialize the previous considerations to the special situation when E is the
tangent bundle of M, E =2 TM. The cotangent bundle is then

T*M = (TM)*.
We define the tensor bundles of M

TT(M) : =T7(TM) = (TM)®" & (T M),
Definition 2.3.4. (a) A tensor field of type (r,s) over the open set U C M is a section
of T (M) over U.

(b) A degree r differential form (r-form for brevity) is a section of A"(T*M). The space
of (smooth) r-forms over M is denoted by Q"(M). We set

Q° (M) == P ().

r>0

(¢) A Riemannian metric on a manifold M is a metric on the tangent bundle. More
precisely, it is a symmetric (0, 2)-tensor g, such that for every = € M, the bilinear map

Go T M X T, M — R
defines a Euclidean metric on T, M. O

If we view the tangent bundle as a smooth family of vector spaces, then a tensor field
can be viewed as a smooth selection of a tensor in each of the tangent spaces. In particular,
a Riemann metric defines a smoothly varying procedure of measuring lengths of vectors
in tangent spaces.
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Example 2.3.5. It is often very useful to have a local description of these objects.
If (z',...,2") are local coordinates on an open set U C M, then the vector fields
(2 9_) trivialize TM |y, i.e., they define a framing of the restriction of TM to

Bzl O

U. We can form a dual framing of T*M |y, using the 1-forms da?, i = 1,...,n. They
satisfy the duality conditions ' '
(i, 0,5) = 8, Vi,

A basis in T (T, M) is given by
{01 ® .. ® Opir ®d2?' ® .. @da?; 1 <iiy, oo yip <my 1< ji1, oy js <}
Hence, any tensor T' € T% (M) has a local description

T=T"" 0 @ ... ®pir @d2? @ ... @ da’".

In the above equality we have used Einstein’s convention. In particular, an r-form w has
the local description

w = Z wil,,,irdazil A Adat, Wiy iy = w(@xil sy Ogir ),
1<ip<-<ir<n
while a Riemann metric g has the local description
9=> gijds' ®@da’, gij = gji=g(0,,0, ). 0
Z‘ij
Remark 2.3.6. (a) A covariant tensor field, i.e., a (0, s)-tensor field S, naturally defines
a C°°(M)-multilinear map

S: é\fect (M) — C(M),
1

(X1, ooy, Xg) (p > Sp(Xl(p),...,XS(p)) € C(M).

Conversely, any such map uniquely defines a (0, s)-tensor field. In particular, an r-form 7
can be identified with a skew-symmetric C'°*° (M )-multilinear map

n: é\fect (M) — C*™°(M).
1

Notice that the wedge product in the exterior algebras induces an associative product in
Q2*(M) which we continue to denote by A.

(b) Let f € C°°(M). Its Fréchet derivative Df : TM — TR = R xR is naturally a 1-form.
Indeed, we get a smooth C°°(M)-linear map df : Vect (M) — C*°(M) defined by

df(X)m = Df(X)f(m) S Tf(m)R =R

In the sequel we will always regard the differential of a smooth function f as a 1-form and
to indicate this we will use the notation df (instead of the usual Df). O
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Any diffeomorphism f : M — N induces bundle isomorphisms Df : TM — TN and
(Df~YHf . T*M — T*N covering f. Thus, a diffeomorphism f induces a linear map

fo  TN(M) — TT(N), (2.3.1)

called the push-forward map. In particular, the group of diffecomorphisms of M acts
naturally (and linearly) on the space of tensor fields on M.
Example 2.3.7. Suppose f : M — N is a diffeomorphism, and S is a (0, k)-tensor field
on M, which we regard as a C'°° (M )-multilinear map
S : Vect (M) x -+ x Vect (M) — C>*(M).
k

Then f.S is a (0,k) tensor field on N. Let ¢ € N, and set p := f~!(q). Then, for any
Yi,..., Y, € T;N, we have

(f*S)q(Yl, oY) = Sp(f;1Y17 R (f*)_lyk)

= Sp((Dpf) Y1, ..., (Dpf)'Y%). 0.

For covariant tensor fields a more general result is true. More precisely, any smooth
map f: M — N defines a linear map

FoTUN) = TUM),

called the pullback by f. Explicitly, if S is such a tensor defined by a C'°°(M)-multilinear
map

S (Vect (N))® — C*°(N),
then f*S is the covariant tensor field defined by
(f*9)p(X1(p), ..., Xs(p) := St (Dpf(X1), ..., Dpf(Xs) ),
VX1,...,Xs € Vect (M), p € M. Note that when f is a diffeomorphism we have
fr=h
where f, is the push-forward map defined in (2.3.1).
Example 2.3.8. Consider the map

F, : (0,00) x (0,27) = R, (r,0) — (x =rcosf,y = rsinf).

The map I defines the usual polar coordinates. It is a diffeomorphism onto the open

subset
U :=R?*\ {(x,0); z>0}.

For simplicity, we will write 0,., 0, instead of %, a% etc. We have

F*dx = d(r cos0) = cosOdr — rsinfdf, F*dy = d(rsinf) = sinfdr + r cos 0db,
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F*(dx A dy) = d(rcos @) A d(rsinf) = (cos @dr — rsinfdf) A (sinfdr + r cos 0d0)
= 7(cos? 0 + sin6)dr A df = rdr A df.
To compute F,0, and F.0y we use the chain rule which implies

. 1
= 3 Oy = cos 00, +sin 00, = ;(:E@m + y0y)

1
= @0 0.

The Euclidean metric is described over U by the symmetric (0,2)-tensor g = da? + dy?.
The pullback of g by F' is the symmetric (0, 2)-tensor

F*(d2® + dy?) = (d(rcos@))2 + (d(rsin@))2

= (cos @dr — rsinfdh)? + (sinfdr + r cos 0dh)? = dr?® + r2do>.

To compute F.dr we need to express r as a function of x and y, r = (22 +y2)1/ 2 and then
we have

Fodr = (F7Y*dr = d(z? + y*)V? = 2(2® + )7V dax + y(a® + y*) " 2dy. 0

All the operations discussed in the previous section have natural extensions to ten-
sor fields. There exists a tensor multiplication, a Riemann metric defines a duality
L : Vect (M) — QY (M) etc. In particular, there exists a contraction operator

tr: To7 (M) = T3 (M)
defined by
tr(X0®~-®Xr)®(w0®-~®ws) ZWQ(Xo)(Xl®---Xr®wl®"'®ws),

VX; € Vect (M), Yw; € Q1 (M). In local coordinates the contraction has the form

20...0r _ 01 ...y
{tr (TJOJ)} =Tk
Let us observe that a Riemann metric g on a manifold M induces metrics in all the

associated tensor bundles J7(M). If we choose local coordinates (x') on an open set U
then, as explained above, the metric g can be described as

g= Zgijdxi ® da?,
1,J
while a tensor field T of type (r,s) can be described as

T=T"""0, @ .. ®0 @d) @ ... @ dal
If we denote by (¢g*) the inverse of the matrix (g;;), then, for every point p € U, the length
of T'(p) € T, (M), is the number |T'(p)|, defined by

Jjilr .. gjsésT?L--Z:erL--kr

|T(p)|g = gilkl e gir'kr'g J1e-ds 1. hg 0
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where in the above equalities we have used Einstein’s convention.
The exterior product defines an exterior product on the space of smooth differential
forms
A: QN (M) xQ*(M) — Q*(M).

The space Q°(M) is then an associative algebra with respect to the operations + and A.

Proposition 2.3.9. Let f : M — N be a smooth map. The pullback by f defines a
morphism of associative algebras f* : Q*(N) — Q*(M). O

Exercise 2.3.10. Prove the above proposition. O

2.3.3 Fiber bundles

We consider useful at this point to bring up the notion of fiber bundle. There are several
reasons to do this.

On one hand, they arise naturally in geometry, and they impose themselves as worth
studying. On the other hand, they provide a very elegant and concise language to describe
many phenomena in geometry.

We have already met examples of fiber bundles when we discussed vector bundles.
These were “smooth families of vector spaces”. A fiber bundle wants to be a smooth
family of copies of the same manifold. This is a very loose description, but it offers a first
glimpse at the notion about to be discussed.

The model situation is that of direct product X = F' x B, where B and F' are smooth
manifolds. It is convenient to regard this as a family of manifolds (F})scp. The manifold
B is called the base, F is called the standard (model) fiber, and X is called the total
space. This is an example of trivial fiber bundle.

In general, a fiber bundle is obtained by gluing a bunch of trivial ones according to
a prescribed rule. The gluing may encode a symmetry of the fiber, and we would like to
spend some time explaining what do we mean by symmetry.

Definition 2.3.11. (a) Let M be a smooth manifold, and G a Lie group. We say the
group G acts on M from the left (respectively right), if there exists a smooth map

Q:GxM—=M, (g,m)—Tym,
such that T7 = 1, and
Ty(Tpym) = Typm (respectively T,(Tpm) = Thgm) Vg, h € G, m € M.

In particular, we deduce that Vg € G the map T is a diffeomorphism of M. For any
m € M the set

G-m={T,m; g € G}

is called the orbit of the action through m.
(b) Let G act on M. The action is called free if Vg € G\ {1}, and Vm € M T,m # m.
The action is called effective if, Vg € G\ {1}, Ty # 1. O
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It is useful to think of a Lie group action on a manifold as encoding a symmetry of
that manifold.

Example 2.3.12. Consider the unit 3-dimensional sphere
S? = {(z,y,2) €R* 2® +y*+22=1}.

Then the counterclockwise rotations about the z-axis define a smooth left action of S! on
S2. More formally, if we use cylindrical coordinates (7,6, z),

r=rcosf, y=rsinfd, z =0,
then for every ¢ € R mod 27 = S we define T, : S? — S2% by
T,(r,0,z) = (r,(6 + ¢) mod 2, 2).

The resulting map 7 : St x §% — 52, (p,p) — T,(p) defines a left action of S on 5?2
encoding the rotational symmetry of S? about the z-axis. a

Example 2.3.13. Let G be a Lie group. A linear representation of G on a vector space
V is a left action of G on V' such that each T} is a linear map. One says V' is a G-module.
For example, the tautological linear action of SO(n) on R™ defines a linear representation

of SO(n). O

Example 2.3.14. Let G be a Lie group. For any g € G denote by L, (resp. Ry) the left
(resp right) translation by g. In this way we get the tautological left (resp. right) action
of GG on itself. 0

Definition 2.3.15. A smooth fiber bundle is an object composed of the following;:

a) a smooth manifold F called the total space;

(

(b) a smooth manifold F' called the standard fiber;
(
(d

)
)
c¢) a smooth manifold B called the base;
) a surjective submersion 7 : E — B called the natural projection;
)

(e) a collection of local trivializations, i.e., an open cover (U,) of the base B, and dif-
feomorphisms ¥, : F' x U, — 771 (U,) such that

moUa(f,b) =b, Y(f,b) € F x U,

i.e., the diagram below is commutative.

Vo

F x U, 1 (Uy)

N A

Ua
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We can form the transition (gluing) maps Vg : F' X Uyg = F X Uyg, where Uy =
Us NUg, defined by ¥,z = P to g. According to (e), these maps can be written
as

waﬁ(fv b) = (Taﬁ(b)fv b)?
where T;,5(b) is a diffeomorphism of F' depending smoothly upon b € Ugg.

We will denote this fiber bundle by (E,, F, B).
If G is a Lie group, then the bundle (E, 7, F, B) is called a G-fiber bundle if it satisfies
the following additional conditions.

(f) There exists an effective left action of the Lie group G on F,
GxF>(g,z)—~g-o=TexeF.
The group G is called the symmetry group of the bundle.
(g) There exist smooth maps g, : Uy — G satisfying the cocycle condition
Jaa =1 € G, gya = gy8 - 9gas Vo, 53,7,

and such that

Tup(b) = Tg.s(0)-
We will denote a G-fiber bundle by (E,, F, B, G). O

The choice of an open cover (Uy,) in the above definition is a source of arbitrariness
since there is no natural prescription on how to perform this choice. We need to describe
when two such choices are equivalent.

Two open covers (U,) and (V;), together with the collections of local trivializations

Dy: FxUy—n YU, and U, : F x V; — 7 (V)
are said to be equivalent if, for all «, 7, there exists a smooth map
Toi :UsNV;, — G,
such that, for any « € U, NV}, and any f € F', we have
O, Wi(f, ) = (Toi(2) f. ).

A G-bundle structure is defined by an equivalence class of trivializing covers.

As in the case of vector bundles, a collection of gluing data determines a G-fiber bundle.
Indeed, if we are given a cover (U, )aca of the base B, and a collection of transition maps
9ap : Ua NUg — G satisfying the cocycle condition, then we can get a bundle by gluing
the trivial pieces U, x F' along the overlaps.

More precisely, if b € U, N Ug, then the element (f,b) € F' x U, is identified with the
element (ggq(b) - f,b) € F x Ug.
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Definition 2.3.16. Let £ 5 B be a G-fiber bundle. A G-automorphism of this bundle is
a diffeomorphism 7' : F — FE such that woT = 7, i.e., T maps fibers to fibers, and for any
trivializing cover (U, ) (as in Definition 2.3.15) there exists a smooth map g, : Uy — G
such that

U, TWa(f,0) = (9a(b)f,b), Wb, f. 0
Definition 2.3.17. (a) A fiber bundle is an object defined by conditions (a)-(d) and (f) in
the above definition. (One can think the structure group is the group of diffeomorphisms
of the standard fiber).
(b) A section of a fiber bundle E ™ B is a smooth map s : B — E such that 7 os = 13,
ie., s(b) € m1(b), Vb€ B. 0

Example 2.3.18. A rank r vector bundle (over K = R, C) is a GL(r, K)-fiber bundle with
standard fiber K", and where the group GL(r,K) acts on K" in the natural way. a

Example 2.3.19. Let GG be a Lie group. A principal G-bundle is a G-fiber bundle with
fiber GG, where G acts on itself by left translations. Equivalently, a principal G-bundle
over a smooth manifold M can be described by an open cover U of M and a G-cocycle,
i.e., a collection of smooth maps

guv :UNV -G UV e,
such that Ve e UNV NW (U, V,IW € U)

guv(z)gvw (x)gwu(z) =1 € G. O

Exercise 2.3.20. (Alternative definition of a principal bundle). Let P be a fiber
bundle with fiber a Lie group G. Prove the following are equivalent.

(a) P is a principal G-bundle.

(b) There exists a free, right action of G on G,

PxG— P, (pg —p-g,

such that its orbits coincide with the fibers of the bundle P, and there exists a trivializing
cover

{Uo:GxUy— 71 Us)},

such that
Vo (hg,u) = Vy(h,u)-g, Yg,h € G, uecl,. a

Exercise 2.3.21. (The frame bundle of a manifold). Let M™ be a smooth manifold.
Denote by F(M) the set of frames on M, i.e.,

FM)={(m; X1, ..., Xp); me M, X; € T, M and span(X;, ..., Xp,) =T, M }.

(a) Prove that F(M) can be naturally organized as a smooth manifold such that the
natural projection p : F(M) — M, (m; Xy, ..., X,,) — m is a submersion.
(b) Show F(M) is a principal GL(n,R)-bundle. The bundle F(M) is called the frame
bundle of the manifold M.
Hint: A matrix 7' = (T;) € GL(n,K) acts on the right on F(M) by

(105 X1,y X) 5 (5 (T X, oy (T X). 0

n
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Example 2.3.22. (Associated fiber bundles). Let 7 : P — G be a principal G-
bundle. Consider a trivializing cover (Uy)aca, and denote by gog : Uy NUg — G a
collection of gluing maps determined by this cover. Assume G acts (on the left) on a

smooth manifold F
T:GXF—=F, (9,f)—71(9)f

The collection To3 = 7(gap) : Uag — Diffeo (F) satisfies the cocycle condition and can be
used (exactly as we did for vector bundles) to define a G-fiber bundle with fiber F. This
new bundle is independent of the various choices made (cover (U,) and transition maps
gap)- (Prove this!) It is called the bundle associated to P via 7 and is denoted by P x, F'.

O

Exercise 2.3.23. Prove that the tangent bundle of a manifold M" is associated to F(M)
via the natural action of GL(n,R) on R™. O

Exercise 2.3.24. (The Hopf bundle) If we identify the unit odd dimensional sphere
S$?n=1 with the submanifold

{(Zb "'7ZTL) € (Cn7 |Z0|2 +oe |ZTL|2 = 1}

then we detect an S'-action on S?"~! given by

6 0 0

e (21, 2n) = (€721, ...,€72).

The space of orbits of this action is naturally identified with the complex projective space
cPrL.

(a) Prove that p : §?"~! — CP"! is a principal S* bundle called Hopf bundle. (p is the
obvious projection). Describe one collection of transition maps.

(b) Prove that the tautological line bundle over CP"~! is associated to the Hopf bundle
via the natural action of S on C'. O

Exercise 2.3.25. Let E be a vector bundle over the smooth manifold M. Any metric h
on E (euclidian or Hermitian) defines a submanifold S(E) C E by

S(E) ={v e E; |[v[ =1}

Prove that S(F) is a fibration over M with standard fiber a sphere of dimension rank F—1.
The bundle S(E) is usually called the sphere bundle of E. O



Chapter 3

Calculus on Manifolds

This chapter describes the “kitchen” of differential geometry. We will discuss how one
can operate with the various objects we have introduced so far. In particular, we will
introduce several derivations of the various algebras of tensor fields, and we will also
present the inverse operation of integration.

3.1 The Lie derivative

3.1.1 Flows on manifolds

The notion of flow should be familiar to anyone who has had a course in ordinary differ-
ential equations. In this section we only want to describe some classical analytic facts in
a geometric light. We strongly recommend [4] for more details, and excellent examples.
A neighborhood N of {0} x M in R x M is called balanced if, Ym € M, there exists
r € (0, 00] such that
(Rx{m})NN=(=rr) x{m}.

Note that any continuous function f: M — (0,00) defines a balanced open
Ny:={(t;m) eRx M; [t| < f(m)}.

Definition 3.1.1. A local flow is a smooth map ® : N — M, (t,m) — ®!(m), where N
is a balanced neighborhood of {0} x M in R x M, such that

(a) ®%°(m) =m, Ym € M.
(b) ®Y(®%(m)) = ®'T5(m) for all s,t € R, m € M such that
(87 m)? (s+t7 m)7 (t7 és(m)) G N'
When N =R x M, ® is called a flow. a

The conditions (a) and (b) above show that a flow is nothing but a left action of the
additive (Lie) group (R, +) on M.

79
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Example 3.1.2. Let A be a n x n real matrix. It generates a flow ®%, on R™ by

[e.9]

ik
dhx = My = ( EAI“) x. O
k=0 "

Definition 3.1.3. Let ® : N — M be a local flow on M. The infinitesimal generator of
® is the vector field X on M defined by

d
X(p) = Xa(p) == = li=o ®'(p), Vpe M,

i.e., X(p) is the tangent vector to the smooth path ¢ — ®!(p) at t = 0. This path is called
the flow line through p. O

Exercise 3.1.4. Show that Xg is a smooth vector field. O

Example 3.1.5. Consider the flow e'4 on R™ generated by a nxn matrix A. Its generator
is the vector field X4 on R™ defined by

_4d
o dt

A

Xa(u) li=0 eu = Au. O

Proposition 3.1.6. Let M be a smooth n-dimensional manifold. The map
X : {Local flows on M} — Vect (M), & — Xo,

is a surjection. Moreover, if ®; : N; — M (i=1,2) are two local flows such that X¢, = Xo,,
then ®1 = ®3 on N7 N Nsy.

Proof. Surjectivity. Let X be a vector field on M. An integral curve for X is a smooth
curve v : (a,b) — M such that

Y(t) = X (v(1))-

In local coordinates (x%) over on open subset U C M this condition can be rewritten as

i'(t) = X' (2 (t),..,a"(t)), Vi=1,...,n, (3.1.1)

where y(t) = (z!(t),...,2"(t)), and X = X! 621-. The above equality is a system of ordinary
differential equations. Classical existence results (see e.g. [4, 44]) show that, for any
precompact open subset K C U, there exists € > 0 such that, for all x € K, there exists

a unique integral curve for X, v, : (—¢,e) — M satisfying
v2(0) = z. (3.1.2)

Moreover, as a consequence of the smooth dependence upon initial data we deduce that
the map
O : Ng = (—e,6) x K — M, (x,t) — 7.(t),

is smooth.
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Now we can cover M by open, precompact, local coordinate neighborhoods (Ky)aeca,
and as above, we get smooth maps ®, : N, = (—¢€4,€4) X Ko — M solving the initial
value problem (3.1.1-2). Moreover, by uniqueness, we deduce

¢, = &, on N, N Ng.

Define

N:= [ Na.
acA
and set @ : N — M, & = &, on N,.

The uniqueness of solutions of initial value problems for ordinary differential equations
implies that ® satisfies all the conditions in the definition of a local flow. Tautologically,
X is the infinitesimal generator of ®. The second part of the proposition follows from the
uniqueness in initial value problems. a

The family of local flows on M with the same infinitesimal generator X € Vect(M) is
naturally ordered according to their domains,

(@12N1—>M)<((I)22N2—>M)

if and only if N7 C Ny. This family has a unique maximal element which is called the
local flow generated by X, and it is denoted by ®x.

Exercise 3.1.7. Consider the unit sphere
S? = {(:E,y,z) eR?; 2?49?4222 = 1}.

For every point p € S? we denote by X (p) € T, p]R3 , the orthogonal projection of the vector
k = (0,0,1) onto 7,52

(a) Prove that p — X (p) is a smooth vector field on S?, and then describe it in cylindrical
coordinates (z,#), where

x=rcosl, y=rsinf, r= (332 +y2)1/2-

(b) Describe explicitly the flow generated by X. O

3.1.2 The Lie derivative

Let X be a vector field on the smooth n-dimensional manifold M and denote by & =
®x the local flow it generates. For simplicity, we assume & is actually a flow so its
domain is R x M. The local flow situation is conceptually identical, but notationally more
complicated.

For each t € R, the map ®! is a diffeomorphism of M and so it induces a push-forward
map on the space of tensor fields. If S is a tensor field on M we define its Lie derivative
along the direction given by X as

LSy = —lim + ((8L) — ) ¥im € M. (3.1.3)

t—0 t
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Intuitively, LxS measures how fast is the flow ® changing' the tensor S.
If the limit in (3.1.3) exists, then one sees that LxS is a tensor of the same type as S.
To show that the limit exists, we will provide more explicit descriptions of this operation.

Lemma 3.1.8. For any X € Vect (M) and f € C*°(M) we have
Xf = Lxf={df,X) = df(X).
Above, (e, @) denotes the natural duality between T*M and TM,
(o0,0) : C°(T*M) x C*(TM) — C*(M),
C®(T*M) x C®(TM) > (o, X) — a(X) € C(M).
In particular, Lx is a derivation of C*°(M).

Proof. Let ®' = ®% be the local flow generated by X. Assume for simplicity that it is
defined for all t. The map ®¢ acts on C°°(M) by the pullback of its inverse, i.e.

ol = (&71)*.
Hence, for point p € M we have
o1 _ d _
Lxf(p) =lim —(f(p) = F(®7'p)) = —— li=0 f(®"'p) = (df , X),. 0
-0t dt

Exercise 3.1.9. Prove that any derivation of the algebra C'°°(M) is of the form Lx for
some X € Vect(M), i.e.
Der (C*°(M)) = Vect (M). O

Lemma 3.1.10. Let X,Y € Vect (M). Then the Lie derivative of Y along X is a new
vector field LxY which, viewed as a derivation of C*°(M), coincides with the commutator
of the two derivations of C°°(M) defined by X and Y i.e.

LxYf=[X,Y]f, VfeC®M).

The vector field [X,Y] = LxY is called the Lie bracket of X and Y. In particular the Lie
bracket induces a Lie algebra structure on Vect (M ).

Proof. We will work in local coordinates (%) near a point m € M so that
X =X'9, and Y =Y70,;.
We first describe the commutator [X,Y]. If f € C°°(M), then

of of
29 E?xi)

L Arnold refers to the Lie derivative Lx as the “fisherman’s derivative”. Here is the intuition behind
this very suggestive terminology. We place an observer (fisherman) at a fixed point p € M, and we let him
keep track of the the sizes of the tensor S carried by the flow at the point p. The Lie derivatives measures
the rate of change in these sizes.

[XY]f = (X10,) (Y o) = (Y70, )(X
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_ (Xiw' o2 f QY af> - <Xiw' Pf i 0X 8f>’

0ziOxI +X ozt Oz 0zt0xI + 0zJ Oxt

so that the commutator of the two derivations is the derivation defined by the vector field

gy OXF
J__ X
o Y i ) D,k (3.1.4)

(X,Y] = <XZ

Note in particular that [0,:,0,;] = 0, i.e., the basic vectors d,:; commute as derivations.
So far we have not proved the vector field in (3.1.4) is independent of coordinates. We
will achieve this by identifying it with the intrinsically defined vector field LxY .
Set (t) = ®'m so that we have a parametrization ~y(t) = (2%(t)) with 2 = X*. Then

O~'m = y(—t) = 4(0) = 4(0)t + O(t*) = (2 — tX" + O(t)) ,

and

, , ,OY
Yy =Yh—tX 7t O(t?). (3.1.5)

Note that &, : Ty)yM — Ty M is the linearization of the map
(2') = (2" —tX' 4+ O(t?)),

so it has a matrix representation

=11t <6X. ) + O(t?). (3.1.6)
i

In particular, using the geometric series
(1-A) 7 P=1+A+A%+...,
where A is a matrix of operator norm strictly less than 1, we deduce that the differential
DL = (@) Ty M = Ty M,

has the matrix form o
XZ
oL =1+t : t%). 1.
X + <8x3>”+0( ) (3.1.7)

)

Using (3.1.7) in (3.1.5) we deduce

E (&t k _ z‘a_yk_ jan 2
Yo — (P Yg-t1) _t<X o Y- 507 + O(t?).

This concludes the proof of the lemma. O

Lemma 3.1.11. For any differential form w € QY(M), and any vector fields X,Y €
Vect(M) we have
(Lxw)(Y) = Lx (w(Y)) —w([X,Y]), (3.1.8)

where X -w(Y') denotes the (Lie) derivative of the function w(Y') along the vector field X .
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Proof. Denote by ®¢ the local flow generated by X. We have ®lw = (®7!)*w, i.e., for any
p € M, and any Y € Vect (M), we have
(@iw)p(Y;)) = W@*tp( (I)*_tY}? )

Fix a point p € M, and choose local coordinates (z*) near p. Then
w=)Y wdr', X= X0, Y=Y Y,

Denote by v(t) the path t — ®¢(p). We set w;(t) = w;(v(t)), X§ = X*(p), and Y = Y(p).
Using (3.1.6) we deduce

sz (YO tz Y]+O t2)>

Hence p 5
: X
—(Lxw)Y = \t 0( Zw, Yy — Zwi(O)
,J

One the other hand, we have

o 00 = 0% + 005

We deduce that

X -w(Y) - (Lyxw)Y Zwl ( % %Yoj):wp([X,Y]p). 0

Observe that if S, T are two tensor fields on M such that both LxS and LxT exist,
then using (3.1.3) we deduce that Lx (S ® T') exists, and

Lx(S®T)=LxS®T+S® LxT. (3.1.9)
Since any tensor field is locally a linear combination of tensor monomials of the form
X1® 20X, 0w ® - Quws, X;€ Vect(M), w; € Q' (M),

we deduce that the Lie derivative LxS exists for every X € Vect (M), and any smooth
tensor field S. We can now completely describe the Lie derivative on the algebra of tensor
fields.

Proposition 3.1.12. Let X be a vector field on the smooth manifold M. Then the Lie
derivative Lx is the unique derivation of T¥(M) with the following properties.
(a) Lxf = (df,X) = Xf, Vf € C(M),
(b) LxY =[X,Y], VX,Y € Vect (M).
(¢) Lx commutes with the contraction tr : 72111( ) — To(M).

Moreover, Lx is a natural operation, i.e., for any diffeomorphism ¢ : M — N we have
(;5* o LX = L¢*X o gb*, VX € Vect (M), i.e., ¢*(Lx) = L¢*X



3.1. THE LIE DERIVATIVE 85

Proof. The fact that Ly is a derivation follows from (3.1.9). Properties (a) and (b) were
proved above. As for part (c), in its simplest form, when 7' =Y ® w, where Y € Vect (M),
and w € QY(M), the equality

LxtrT =trLxT

is equivalent to
Lx @(¥)) = (Lxw)(¥) +w(Lx(V), (3.1.10)

which is precisely (3.1.8).

Since Ly is a derivation of the algebra of tensor fields, its restriction to C*°(M) &
Vect (M) @& Q'(M) uniquely determines the action on the entire algebra of tensor fields
which is generated by the above subspace. The reader can check easily that the general
case of property (c) follow from this observation coupled with the product rule (3.1.9).

The naturality of Lx is another way of phrasing the coordinate independence of this
operation. We leave the reader to fill in the routine details. a

Corollary 3.1.13. For any X,Y € Vect (M) we have
[Lx,Ly] = Lixy],

as derivations of the algebra of tensor fields on M. In particular, this says that Vect (M)
as a space of derivations of Ti(M) is a Lie subalgebra of the Lie algebra of derivations.

Proof. The commutator [Lx, Ly] is a derivation (as a commutator of derivations). By
Lemma 3.1.10, [Lx, Ly| = Lix y] on C*°(M). Also, a simple computation shows that

[Lx,Ly)Z = Lixy\Z, VZ € Vect (M),

so that [Lx, Ly] = Lix,y) on Vect (M). Finally, since the contraction commutes with both
Lx and Ly it obviously commutes with Lx Ly — Ly Lx. The corollary is proved. a

Exercise 3.1.14. Prove that the map
D : Vect (M) & End (TM) — Der(T;(M))
given by D(X,S) = Lx + S is well defined and is a linear isomorphism. Moreover,
[D(X1,51), D(X2, 82)] = D([X1, Xa], [S1, 52])- O
The Lie derivative Lx is a derivation of T; with the remarkable property
Lx(Q"(M)) C Q(M).

The wedge product makes Q*(M) a s-algebra, and it is natural to ask whether Lx is an
s-derivation with respect to this product.

Proposition 3.1.15. The Lie derivative along a vector field X is an even s-derivation of
Q* (M), i.e.
Lx(wAn)=(Lxw) An+wA (Lxn), Yw,ne Q" (M).



86 CHAPTER 3. CALCULUS ON MANIFOLDS

Proof. Asin Subsection 2.2.2, denote by A the anti-symmetrization operator A : (T*M)®F —
QF(M). The statement in the proposition follows immediately from the straightforward
observation that the Lie derivative commutes with this operator (which is a projector).
We leave the reader to fill in the details. O

Exercise 3.1.16. Let M be a smooth manifold, and suppose that ®,¥ : R x M — M
are two smooth flows on M with infinitesimal generators X and respectively Y. We say
that the two flows commute if

Plo Vs = TVo Wl Vs, teR.
Prove that if
{peM; X(p)=0}={peM; Y(p)=0}.

the two flows commute if and only if [X,Y] = 0. 0

3.1.3 Examples

Example 3.1.17. Let w = w;dz’ be a 1-form on R". If X = X709, is a vector field on
R™, then Lyw = (Lxw)gdx” is defined by

(Lxw)g = (Lxw)(0ux) = Xw(0yk) —w(Lx0uk) = X - wg +w (%@c@) .

Hence

) 7
Lyw = <X’ Oy 0X ) da®.

9k 92
OxJ I Ok

In particular, if X =0, =}, 599, then

Lxw=Ly ,w= &UI‘?
T 8:1;2

k=1

daF.

If X is the radial vector field X = > 20,4, then

Lyw= Z(X - w, 4 wi)da®. 0
k

Example 3.1.18. Consider a smooth vector field X = F0, + G0y + H0. on R3. We want
to compute Lxdv, where dv is the volume form on R3, dv = dx A dy A dz. Since Ly is an
even s-derivation of Q*(M), we deduce

Lx(dx Ndy Ndz) = (Lxdx) Ndy ANdz +dz A (Lxdy) Adz+dx Ady A (Lxdz).

Using the computation in the previous example we get

Lx(dz) = dF := OF 4o + 8—de + g—f

e 3y dz, Lx(dy) =dG, Lx(dz)=d
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so that SF 8C OH
Lx(dv) = <£ + ay + E) dv = (ditv X)dv.

In particular, we deduce that if div X = 0, the local flow generated by X preserves the
form dv. We will get a better understanding of this statement once we learn integration
on manifolds, later in this chapter. O

Example 3.1.19. (The exponential map of a Lie group). Consider a Lie group
G. Any element g € G defines two diffeomorphisms of G: the left (L,), and the right
translation (R,) on G,

Ly(h) =g-hy, Rgy(h)=h-g, Yhed.

A tensor field T" on G is called left (respectively right) invariant if for any g € G (Lg).T =
T (respectively (Ry)«T = T). The set of left invariant vector fields on G is denoted by
L. The naturality of the Lie bracket implies

(Lg)*[Xv Y] = [(Lg)*X’ (Lg)*y]v

so that VXY € Lq, [X,Y] € L5. Hence L¢ is a Lie subalgebra of Vect (G). It is called
called the Lie algebra of the group G.

Fact 1. dim£Ls = dimG. Indeed, the left invariance implies that the restriction map
Lo — ThG, X — X; is an isomorphism (FEzercise). We will often find it convenient to
identify the Lie algebra of G with the tangent space at 1.

Fact 2. Any X € L defines a local flow ®% on G that is is defined for all ¢ € R. In
other wors, @' is a flow. (Ezercise) Set

exp(tX) : =0%(1).

We thus get a map
exp: T1G=Ls— G, X — exp(X)

called the exponential map of the group G.
Fact 3. ®%(g) = g-exp (tX), Le.,

CI)?X = Rexp (tX)-
Indeed, it suffices to check that
d
o li=0 (g - exp (tX)) = X,.
We can write (g - exp(tX)) = Lgexp(tX) so that
d d . .
7 li=o (Lgexp(tX)) = (Lg)*<£ lt=0 exp(tX)) = (Lg)+X = Xg4, (left invariance).

The reason for the notation exp (tX) is that when G = GL(n, K), then the Lie algebra of G
is the Lie algebra gl(n,KK) of all n x n matrices with the bracket given by the commutator
of two matrices, and for any X € L5 we have (Ezercise)

1
exp(X):eX:ZEXk. 0
k>0
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Exercise 3.1.20. Prove the statements left as exercises in the example above. O

Exercise 3.1.21. Let G be a matrix Lie group, i.e., a Lie subgroup of some general linear
group GL(N,K). This means the tangent space T1G can be identified with a linear space
of matrices. Let X,Y € T1G, and denote by exp(tX) and exp(tY') the 1-parameter groups
with they generate, and set

g(s,t) = exp(sX) exp(tY) exp(—sX) exp(—tY).

(a) Show that
gst = 1+ [X,Y]qgst + O((s*> +t%)%?) as s,t — 0,

where the bracket [X,Y]q, (temporarily) denotes the commutator of the two matrices X
and Y.

(b) Denote (temporarily) by [X, Y ]geom the Lie bracket of X and Y viewed as left invariant
vector fields on G. Show that at 1 € G

[X7 Y]alg = [X7 Y]geom'

(c) Show that o(n) C gl(n,R) (defined in Section 1.2.2) is a Lie subalgebra with respect to
the commutator [-, -]. Similarly, show that u(n), su(n) C gl(n, C) are real Lie subalgebras
of gl(n,C), while su(n,C) is even a complex Lie subalgebra of gl(n,C).

(d) Prove that we have the following isomorphisms of real Lie algebras. Lo, = o(n),
Lum) Zu(n), Lsym) = su(n) and Ly c) = sl(n, C). O

Remark 3.1.22. In general, in a non-commutative matrix Lie group G, the traditional
equality
exp(tX)exp(tY) =exp(t(X +Y))

no longer holds. Instead, one has the Campbell-Hausdorff formula
exp(tX) - exp(tY) = exp (tdi(X,Y) + 2do(X,Y) + t3d3(X,Y) + - -),

where dj are homogeneous polynomials of degree k in X, and Y with respect to the
multiplication between X and Y given by their bracket. The d;’s are usually known as
Dynkin polynomials. For example,

1
di(X,)Y)=X+Y, do(X,Y) = §[X, Y],

d5(X,¥) = (X, [X, V] + [V, [V, X])) ete.

For more details we refer to [42, 85]. O
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3.2 Derivations of Q°*(M)

3.2.1 The exterior derivative

The super-algebra of exterior forms on a smooth manifold M has additional structure,
and in particular, its space of derivations has special features. This section is devoted
precisely to these new features.

The Lie derivative along a vector field X defines an even derivation in °*(M). The
vector field X also defines, via the contraction map, an odd derivation iy, called the
interior derivation along X, or the contraction by X,

ixw: =tr (X ®w), Ywe Q"(M).
More precisely, ixw is the (r — 1)-form determined by
(ixw)(X1y..., Xpo1) =w(X, X1, ..., Xo1), VXq,...,X,—1 € Vect (M).
The fact that 7x is an odd s-derivation is equivalent to
ix(wAn) = (ixw) Ang+ (=1)B“w A (ixn), Yw, ne Q(M).

Often the contraction by X is denoted by X _I.

Exercise 3.2.1. Prove that the interior derivation along a vector field is a s-derivation.

O
Proposition 3.2.2. (a) [ix,iy]s = ixiy +iyix = 0.
(b) The super-commutator of Lx and iy as s-derivations of Q*(M) is given by
[LX,iy]s:iny—iyLX :Z'[X,Y]- O

The proof uses the fact that the Lie derivative commutes with the contraction operator,
and it is left to the reader as an exercise.

The above s-derivations by no means exhaust the space of s-derivations of Q*(M). In
fact we have the following fundamental result.

Proposition 3.2.3. There exists an odd s-derivation d on the s-algebra of differential
forms Q°( -) uniquely characterized by the following conditions.

(a) For any smooth function f € Q°(M), df coincides with the differential of f.
(b) d* = 0.

(¢) d is natural, i.e., for any smooth function ¢ : N — M, and for any form w on M,
we have
dp*w = ¢*dw(<= [¢p*,d] = 0).

The derivation d is called the exterior derivative.
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Proof.  Uniqueness. Let U be a local coordinate chart on M™ with local coordinates
(x', ...,2"). Then, over U, any r-form w can be described as

w = Z wilmirdl‘il Ao Adx'.

1< <-<ir<n

Since d is an s-derivation, and d(dz?) = 0, we deduce that, over U

dw = Z (dwiy .. 4,) N (d:pil A-ee A d;UZ'r)

1<ip << <n

Owiy iy 5 i1 ir
= Z (Wdzn > A (dx"t N Adx'). (3.2.1)

1< < <ir<n

Thus, the form dw is uniquely determined on any coordinate neighborhood, and this
completes the proof of the uniqueness of d.

FEzistence. Consider an r-form w. For each coordinate neighborhood U we define dw |y as
in (3.2.1). To prove that this is a well defined operation we must show that, if U, V' are
two coordinate neighborhoods, then

dw|y=dwly onUNV.

Denote by (2!, ...,2™) the local coordinates on U, and by (3!, ...,y") the local coordinates
along V', so that on the overlap U NV we can describe the y’s as functions of the x’s. Over
U we have

w = Z wilmirdl‘il VANPYAN dl‘ir

1<in < <ir<n

Owiy . iv + 4 ; '
o= Y (Ld;g) A (d2 A .. A dar),
. , ox'

1<ii<-+<ir<n
while over V' we have

w= E Oy pdy?t Ao A dy'T
1<j1<-<gr<n

dw = Z <#dy3> (dy* N+ Ndy'm).

1<ji<<jr<n

The components wj, ;. and &y, ;. are skew-symmetric, i.e., Vo € §,
Wi (1)eripr = E(O)Wiy iy
and similarly for the &'s. Since w|y= w|y over U NV we deduce

Ot Qg i

Wiy i =
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Hence

oz’ ozh bohadohnds Qxir I Py Ozir  Oxt

8wi1...z~f-:§r:<ayﬁ... Pyl Oy 3yj1...5yjra%-~jr>
k=1

where in the above equality we also sum over the indices ji, ..., j» according to Einstein’s
convention. We deduce

> X acg;;“ dat A da A . A datr

i 1<i1<--<ip<n

s 5 - .
ayjl a2yjk ay]r R ) ) N
=22 i Bt e v AT A A

1 k=1
T . y o~
oyt Oy 0wy, 4, i i
+Zkzaxi1 gt Nt AL A da (3.2.2)
) =1
Notice that
2 2

9710z Ozxidzi’
while dz’ A dz'* = —dx™ A dx' so that the first term in the right hand side of (3.2.2)
vanishes. Consequently on U NV

&Uil i : : ; 8yj1 ayjr 8@] i ; : :
At Adx™ - Nda't = T LIr A dat Adx™ - - - datT
ot o v oz Ox'r  Oxt v o o
8@]'1 j : ayjl ; 8ij ;
= | —=det ) AN | ===dx" | A A — '
( ozt Bzit dir
N . . awjl---jr' . : .
= (d@j,. ;) Ndy* A+ Ndy'm = Tyidy] ANdy A A dy'T.

This proves dw |p= dw |y over UNV. We have thus constructed a well defined linear map
d:Q*(M) — QL (M).

To prove that d is an odd s-derivation it suffices to work in local coordinates and show
that the (super)product rule on monomials.
Let 0 = fdx"™ A--- Adz"™ and w = gdxI* A--- AN dxIs. We set for simplicity

del == dz" A Ada' and dx? = dxt A A dade
Then
d(0 Aw) = d(fgdx! Nda’) = d(fg) A dx! A da’
= (df -g+ f - dg) Ndz! A dz”
= df Ada! Nda? + (=1)"(f Adat) A (dg A dz?)
=dd Aw+ (—1)%8%9 A duw.
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We now prove d?> = 0. We check this on monomials fdz! as above.
d?(fdz") = d(df Adxt) = (d*f) A da.
Thus, it suffices to show d?f = 0 for all smooth functions f. We have

of? . .
df = —L—da* Ada?.
! Oxt0xJ v v
The desired conclusion follows from the identities
of? of?

_ i J_ g0 i
Do 51 O and dz* A dzx dx? N dx'.

Finally, let ¢ be a smooth map N — M and w =), wrdxz! be an r-form on M. Here I
runs through all ordered multi-indices 1 < i1 < --- <4, < dim M. We have

dy(¢*w) =Y (dy(¢"wr) A ¢*(da’) + ¢*w A d(¢™da’)) .

1

For functions, the usual chain rule gives dy(¢*ws) = ¢*(dprwr). In terms of local coordi-
nates (2') the map ¢ looks like a collection of n functions ¢’ € C*°(N) and we get

o*(dx!) = do! = dyd™ A - Adyo'.
In particular, dN(dgbI ) = 0. We put all the above together and we deduce
dy(¢*w) = ¢*(dpw’) Ade" = ¢*(dyw’) A ¢*da’ = ¢* (dyw).
The proposition is proved. ad

Proposition 3.2.4. The exterior derivative satisfies the following relations.
(a) [d,d]s = 2d%> = 0.
(b) (Cartan’s homotopy formula) [d,ix|s = dix +ixd = Lx, VX € Vect (M).
(c) [d,Lx]s =dLx — Lxd =0, VX € Vect (M).
An immediate consequence of the homotopy formula is the following invariant descrip-
tion of the exterior derivative:

T

(dw)(Xo, X1, o, Xp) = > (1) Xi(w(Xo, .., Xi, s X;))

i=0
+ Y (DX, Xj] X0, Xy X X, (3.2.3)
0<i<j<r
Above, the hat indicates that the corresponding entry is missing, and | , |s denotes the

super-commutator in the s-algebra of real endomorphisms of Q*(M).

Proof. To prove the homotopy formula set
D= [d,iX]s =dix +ixd.

D is an even s-derivation of Q*(M). It is a local s-derivation, i.e., if w € Q*(M) vanishes
on some open set U then Dw vanishes on that open set as well. The reader can check easily
by direct computation that Dw = Lxw, Yw € Q°(M) @ Q1(M). The homotopy formula is
now a consequence of the following technical result left to the reader as an exercise.
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Lemma 3.2.5. Let D, D' be two local s-derivations of Q*(M) which have the same parity,
i.e., they are either both even or both odd. If D = D' on Q°(M) @ Q' (M), then D = D’
on Q°*(M). O

Part (c) of the proposition is proved in a similar way. Equality (3.2.3) is a simple
consequence of the homotopy formula. We prove it in two special case r = 1 and r = 2.

The case 7 = 1. Let w be an 1-form and let X,Y € Vect (M). We deduce from the
homotopy formula

dw(X,Y) = (ixdw)(Y) = (Lxw)(Y) — (dw(X))(Y).
On the other hand, since Lx commutes with the contraction operator, we deduce
Xw(Y) = Lx(w(Y)) = (Lxw)(Y) + w([X,Y]).
Hence
dw(X,Y) = Xw(Y) —w([X,Y]) — (dw(X))(YV) = Xw(Y) = Yw(X) —w([X,Y])).

This proves (3.2.3) in the case r = 1.

The case r = 2. Consider a 2-form w and three vector fields X, Y and Z. We deduce
from the homotopy formula

(dw)(X,Y,Z) = (ixdw)(Y,Z) = (Lx — dix)w(Y, Z). (3.2.4)
Since Lx commutes with contractions we deduce
(Lxw)(V,X) =X(w(Y,2)) —w([X,Y],Z) —w(Y,[X, Z]). (3.2.5)
We substitute (3.2.5) into (3.2.4) and we get
(dw)(X,Y,Z) =X (w(Y,2)) —w([X,Y],Z) —w(Y,[X, Z]) — d(ixw)(Y, X). (3.2.6)
We apply now (3.2.3) for r = 1 to the 1-form ixw. We get
Alixw)(Y, X) = Y (ixw(Z)) - Zlixw(¥)) - (ixw)([Y, 2])

=Yw(X,Z) - Zw(X,Y) —w(X,[Y, Z]). (3.2.7)
If we use (3.2.7) in (3.2.6) we deduce
(dw)(X,Y, Z) = Xw(Y, Z) — Yo(X, Z) + Zw(X,Y)

The general case in (3.2.3) can be proved by induction. The proof of the proposition is
complete. 0
Exercise 3.2.6. Prove Lemma 3.2.5. a

Exercise 3.2.7. Finish the proof of (3.2.3) in the general case. O
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3.2.2 Examples

Example 3.2.8. (The exterior derivative in R?).
(a) Let f € C*(R3). Then

of of of
—dzr + ——dy + =—dz.
A TR PR
The differential df looks like the gradient of f.

(b) Let w € QY(R3), w = Pdx + Qdy + Rdz. Then

df =

dw =dP Ndx +dQ Ndy + dR N dz

0Q OP OR 0Q oP OR
(8:17 8y>d A dy +<8y 8z>d Ndz +<§—%>dz/\d$,

so that dw looks very much like a curl.
(c) Let w = Pdy A dz + Qdz A dx + Rdx A dy € Q%(R3). Then

oP 0Q OR
dw=|——+4+——+ — | dx ANdy Ndz.
© <a Tyt 82) vAdy N aE
This looks very much like a divergence. O

Example 3.2.9. Let G be a connected Lie group. In Example 3.1.11 we defined the Lie
algebra L of G as the space of left invariant vector fields on G. Set

Qe +(G) = left invariant r-forms on G.
In particular, £ = QF ft(G)‘ If we identify £7, = T7'G, then we get a natural isomorphism
lefte(G) = AL

The exterior derivative of a form in €27, 1 can be described only in terms of the algebraic
structure of Lq.
Indeed, let w € L7, = Qlleft(G). For X,Y € Lf, we have (see (3.2.3) )

dw(X,Y) = Xw(Y) - Yw(X) — w([X, ).

Since w, X and Y are left invariant, the scalars w(X) and w(Y") are constants. Thus, the
first two terms in the above equality vanish so that

dw(X,Y) = —w([X,Y)).

More generally, if w € €, o then the same arguments applied to (3.2.3) imply that for all
Xo, ..., X, € L we have

A~

do(Xo, X1, X)) = Y (=D)Mw((X4, X5), X1, Xy ooy X5y o Xp). (3.2.9)
0<i<j<r
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3.3 Connections on vector bundles

3.3.1 Covariant derivatives

We learned several methods of differentiating tensor objects on manifolds. However, the
tensor bundles are not the only vector bundles arising in geometry, and very often one is
interested in measuring the “oscillations” of sections of vector bundles.

Let E be a K-vector bundle over the smooth manifold M (K = R, C). Technically, one
would like to have a procedure of measuring the rate of change of a section u of E along a
direction described by a vector field X. For such an arbitrary E, we encounter a problem
which was not present in the case of tensor bundles. Namely, the local flow generated by
the vector field X on M no longer induces bundle homomorphisms.

For tensor fields, the transport along a flow was a method of comparing objects in
different fibers which otherwise are abstract linear spaces with no natural relationship
between them.

To obtain something that looks like a derivation we need to formulate clearly what
properties we should expect from such an operation.

(a) It should measure how fast is a given section changing along a direction given by a
vector field X. Hence it has to be an operator

V :Vect (M) x C°(E) - C*(E), (X,u)+— Vxu,

where we recall (see Definition 2.1.27) that C°°(FE) denotes the space of smooth
sections of F over M.

(b) If we think of the usual directional derivative, we expect that after “rescaling” the
direction X the derivative along X should only rescale by the same factor, i.e.,

Vf e COO(M) : Vqu = fVxu.

(c) Since V is to be a derivation, it has to satisfy a sort of (Leibniz) product rule.
The only product that exists on an abstract vector bundle is the multiplication of a
section with a smooth function. Hence we require

Vx(fu) = (Xflu+ fVxu, Yf e C®M), ue C®E).

The conditions (a) and (b) can be rephrased as follows: for any u € C*°(FE), the map
Vu: Vect (M) - C*(E), X — Vxu,

is C>°(M)-linear so that it defines a bundle morphism (see Definition 2.1.30(b) and Ex-
ample 2.3.2)
Vu € Hom(TM,E) 2 C*(T*M ® E).

Summarizing, we can formulate the following definition.
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Definition 3.3.1. A covariant derivative (or linear connection) on E is a K-linear map
V:C®(E)— C®(T"M ® E),
such that, Vf € C°°(M), and Yu € C*°(FE), we have
V(fu)=df @ u+ fVu. O

Example 3.3.2. Let K, = K" x M be the rank r trivial vector bundle over M. The space
C*(K,;) of smooth sections coincides with the space C°(M,K") of K"-valued smooth
functions on M. We can define

V0 C%®°(M,K") — C®°(M,T*M @ K")
VO(fry s fr) = (dfts ey dfi).
One checks easily that V is a connection. This is called the trivial connection. O

Remark 3.3.3. Let V?, V! be two connections on a vector bundle E — M. Then for
any a € C°°(M) the map

V=aVi+(1-a)V':C®E) - C®(T*®E)
is again a connection. O

#Notation.  For any vector bundle F' over M we set
QF(F) : =C®(A*T*M @ F).

We will refer to these sections as differential k-forms with coefficients in the vector bundle
F. O

Proposition 3.3.4. Let E be a vector bundle. The space A(E) of linear connections on
E is an affine space modeled on Q'(End (E)).

Proof. We first prove that A (E) is not empty. To see this, choose an open cover {U,} of
M such that F|y, is trivial Yo Next, pick a smooth partition of unity (ug) subordinated
to this cover.

Since F'|y, is trivial, it admits at least one connection, the trivial one, as in the above
example. Denote such a connection by V*. Now define

V.= Z o V.

One checks easily that V is a connection so that A(E) is nonempty. To check that A (E)
is an affine space, consider two connections V? and V!. Their difference A = V! — V0 is
an operator

A:C®(E) = C®(T"M ® E),
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satisfying A(fu) = fA(u), Yu € C*°(FE). Thus,
AeC®(Hom(E,T*M ® E)) 2 C®(T*"M ® E* ® E) = Q'(E* ® E) 2 Q' (End(E) ).
Conversely, given VY € A(E) and A € Q'( End(E) ) one can verify that the operator
VA=V'4 A:C®E) - Q(E).
is a linear connection. This concludes the proof of the proposition. O

The tensorial operations on vector bundles extend naturally to vector bundles with
connections. The guiding principle behind this fact is the product formula. More precisely,
if E; (i = 1,2) are two bundles with connections V*, then E; ® Ey has a naturally induced
connection VZ1®E2 uniquely determined by the product rule,

VIO () @ ug) = (Vi) ® ug + up @ Vus.
The dual bundle Ef has a natural connection V* defined by the identity
X (v,u) = (Viv,u) + (v, Viu), Yue C®(E), ve C®(E}), X € Vect (M),

where
(e,0) : C°(E]) x C®(Ey) — C(M)

is the pairing induced by the natural duality between the fibers of Ef and E;. In particular,
any connection V¥ on a vector bundle E induces a connection VF?(E) on End (E) =
E* ® E by

(VEME) T () = VE(Tw) — T(VF) = [VF, T, (3.3.1)

VT € End(E), u € C*(E).

It is often useful to have a local description of a covariant derivative. This can be
obtained using Cartan’s moving frame method.

Let £ — M be a K-vector bundle of rank r over the smooth manifold M. Pick a
coordinate neighborhood U such E |y is trivial. A moving frame? is a bundle isomorphism
¢»: K =K'xM— E|y.

Consider the sections e, = ¢(d,), « =1,...,7, where d, are the natural basic sections
of the trivial bundle K7;. As 2 moves in U, the collection (e;(z), ..., e, (x)) describes a basis
of the moving fiber E,, whence the terminology moving frame. A section u € C*°(E|y)
can be written as a linear combination

u=1u% u* e C>*U,K).
Hence, if V is a covariant derivative in F, we have
Vu = du® ® eq + u*Ve,.

Thus, the covariant derivative is completely described by its action on a moving frame.

2A moving frame is what physicists call a choice of local gauge.
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To get a more concrete description, pick local coordinates (z%) over U. Then Ve, €
QY(E|y) so that we can write

Veo = I‘iﬁadmi ® eg, I‘fa € C*(U,K).
Thus, for any section u®e, of E | we have

Vu = du® ® eq + T u®da’ @ ep. (3.3.2)

It is convenient to view (Ff a) as an r X r-matrix valued 1-form, and we write this as
(Pﬁ ) —da' ® T
o) T 1

The form I' = dx’ ® I'; is called the connection 1-form associated to the choice of local
gauge. A moving frame allows us to identify sections of F|y with K"-valued functions on
U, and we can rewrite (3.3.2) as

Vu = du +T'u. (3.3.3)

A natural question arises: how does the connection 1-form changes with the change of the
local gauge?

Let f = (fa) be another moving frame of E|y. The correspondence e, — f, defines
an automorphism of E' |y. Using the local frame e we can identify this correspondence
with a smooth map g : U — GL(r; K). The map g is called the local gauge transformation
relating e to f.

Let I" denote the connection 1-form corresponding to the new moving frame, i.e.,

Vo =18 fs.

Consider a section o of E |y. With respect to the local frame (e,) the section o has a
decomposition
o =uq,

while with respect to (fg) it has a decomposition
o =i fs.
The two decompositions are related by
u = gi. (3.3.4)

Now, we can identify the F-valued 1-form Vo with a K™-valued 1-form in two ways: either
using the frame e, or using the frame f. In the first case, the derivative Vo is identified
with the K"-valued 1-form

du + T'u,

while in the second case it is identified with

du + I'u.
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These two identifications are related by the same rule as in (3.3.4):
du + Tu = g(da + Ta).
Using (3.3.4) in the above equality we get
(dg)u + gdi + T'gu = gdu + gl

Hence
I'= g_ldg + g_ng.

The above relation is the transition rule relating two local gauge descriptions of the same
connection.
A word of warning.  The identification

{moving frames} = {local trivialization}

should be treated carefully. These are like an object and its image in a mirror, and there
is a great chance of confusing the right hand with the left hand.

More concretely, if to : Fo — K" x U, (respectively tg : Eg = K" x Ug) is a
trivialization of a bundle E over an open set U, (respectively Ug), then the transition
map “from a to 37 over U, NUg is ggo = tg o t>1. The standard basis in K", denoted by
(0;), induces two local moving frames on E:

€ni=1,"(5;) and eg; = t;l(di).
On the overlap U, N Up these two frames are related by the local gauge transformation
€sg; = gﬁ_iea,i = JaB€ai-
This is precisely the opposite way the two trivializations are identified. a

The above arguments can be reversed producing the following global result.

Proposition 3.3.5. Let E — M be a rank r smooth vector bundle, and (U,) a trivializing
cover with transition maps go5 : UoNUg — GL(1;K). Then any collection of matriz valued
1-forms 'y, € Q'(End K7,.,) satisfying

Tg = (924d908) + 9ogLadap = —(d95a)g5a + 98alagza over U NUs, (3.3.5)
uniquely defines a covariant derivative on E. a
Exercise 3.3.6. Prove the above proposition. a

We can use the local description in Proposition 3.3.5 to define the notion of pullback
of a connection. Suppose we are given the following data.

e A smooth map f: N — M.
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e A rank r K-vector bundle E — M defined by the open cover (Uy,), and transition
maps ggq : Us N Ug — GL(K").

e A connection V on E defined by the 1-forms I',, € Ql( End(K’{JQ)) satisfying the
gluing conditions (3.3.5).

Then, these data define a connection f*V on f*E described by the open cover f~(U,),
transition maps gg, © f and 1-forms f*I',. This connection is independent of the various
choices and it is called the pullback of V by f

Example 3.3.7. (Complex line bundles). Let L — M be a complex line bundle
over the smooth manifold M. Let {U,} be a trivializing cover with transition maps
Zap : Uo NUg = C* = GL(1,C). The bundle of endomorphisms of L, End (L) = L* ® L
is trivial since it can be defined by transition maps (zdg)_1 ® zqp = 1. Thus, the space of
connections on L, A (L) is an affine space modelled by the linear space of complex valued
1-forms. A connection on L is simply a collection of C-valued 1-forms w® on U, related
on overlaps by
B8 _ dzag
ZaB

w +w® = dlog zop + W O

3.3.2 Parallel transport

As we have already pointed out, the main reason we could not construct natural derivations
on the space of sections of a vector bundle was the lack of a canonical procedure of
identifying fibers at different points. We will see in this subsection that such a procedure
is all we need to define covariant derivatives. More precisely, we will show that once a
covariant derivative is chosen, it offers a simple way of identifying different fibers.

Let E — M be a rank r K-vector bundle and V a covariant derivative on E. For any
smooth path 7 : [0,1] — M we will define a linear isomorphism T, : E o) — E,() called
the parallel transport along ~. More exactly, we will construct an entire family of linear
isomorphisms

T+ Byo) = By

One should think of this 7; as identifying different fibers. In particular, if ug € E,
then the path ¢ — u; = Tyug € E, ) should be thought of as a “constant” path. The
rigorous way of stating this “constancy” is via derivations: a quantity is “constant” if its
derivatives are identically 0. Now, the only way we know how to derivate sections is via
V, i.e., u; should satisfy

V%ut =0, where i =1.

dt
The above equation suggests a way of defining T;. For any ug € E, (), and any t € [0, 1],
define Tjug as the value at t of the solution of the initial value problem

V%u(t) = 0
{U(O) . (3.3.6)

The equation (3.3.6) is a system of linear ordinary differential equations in disguise.
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To see this, let us make the simplifying assumption that ~(t) lies entirely in some
coordinate neighborhood U with coordinates (z',...,2"), such that E |y is trivial. This
is always happening, at least on every small portion of 7. Denote by (eq)1<a<r & local
moving frame trivializing F |7 so that u = u®e,. The connection 1-form corresponding to
this moving frame will be denoted by I' € Q! (End (K")). Equation (3.3.6) becomes (using

Einstein’s convention)

du® a,B
+ I'hu” = 0
di t8
{ 4 (0) — g (3.3.7)
where J
Fy=— T =4T € Q°( End(K")) = End(K").
More explicitly, if the path «(¢) is given by the smooth map
t (t) = (2 (1), 2"(1)),
then I'; is the endomorphism given by
Ties = i'Tzeq.
The system (3.3.7) can be rewritten as
2 4 T9i® = 0
: (3.3.8)
u*(0) = uf

This is obviously a system of linear ordinary differential equations whose solutions
exist for any t. We deduce

w(0) = —T'yup. (3.3.9)

This gives a geometric interpretation for the connection 1-form I': for any vector field X,
the contraction
—ixI'=-T'(X) € C*°(End(FE))

describes the infinitesimal parallel transport along the direction prescribed by the vector
field X, in the non-canonical identification of nearby fibers via a local moving frame.

In more intuitive terms, if v(¢) is an integral curve for X, and 7; denotes the parallel
transport along v from E, ) to E, ), then, given a local moving frame for F in a neigh-
borhood of v(0), T is identified with a t-dependent matrix which has a Taylor expansion
of the form

Ty =1 —Tot + O(t?), t very small, (3.3.10)

with 'y = (ixr) "Y(O)'

3.3.3 The curvature of a connection

Consider a rank k£ smooth K-vector bundle £ — M over the smooth manifold M, and let
V:Q%E) - QY(E) be a covariant derivative on E.
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Proposition 3.3.8. The connection V has a natural extension to an operator
dV Q' (E) - Q(E)
uniquely defined by the requirements,

(a) d¥ |qom=V,
(b) Yw € Q"(M), n € Q%(E)

dV(wAn) =dwAn+ (=1)"wAdVn.

Outline of the proof FEzistence. For w € Q"(M), u € QY(E) set
A (w®u) =dw®u+(—1) wVu. (3.3.11)

Using a partition of unity one shows that any n € Q"(FE) is a locally finite combination of
monomials as above so the above definition induces an operator Q" (E) — Q" T1(E). We
let the reader check that this extension satisfies conditions (a) and (b) above.

Uniqueness. Any operator with the properties (a) and (b) acts on monomials as in (3.3.11)
so it has to coincide with the operator described above using a given partition of unity. O

Example 3.3.9. The trivial bundle K,, has a natural connection V°- the trivial con-
nection. This coincides with the usual differential d : Q%(M) ® K — Q}(M) ® K. The
extension dV° is the usual exterior derivative. O

There is a major difference between the usual exterior derivative d, and an arbitrary
dV. In the former case we have d> = 0, which is a consequence of the commutativity
[04i,0,] = 0, where (x%) are local coordinates on M. In the second case, the equality
(dV)? = 0 does not hold in general. Still, something very interesting happens.

Lemma 3.3.10. For any smooth function f € C*°(M), and any w € Q" (E) we have
(dV)*(fw) = f{(dV)*w}.
Hence (dY)? is a bundle morphism N"T*M @ E — N P?T*M @ E.

Proof. We compute
(dV)(fw) = d¥ (df Aw + fdVw)

= —df Ndvw+df ANdVw + f(dY)2w = f(dV)w. O
As a map Q°(E) — Q?(E), the operator (dV)? can be identified with a section of
Homg (E, A*T*M ®g E) = E* @ A>’T*M @r E = A*T*M ® Endg (E).

Thus, (dV)? is an Endg (E)-valued 2-form.

Definition 3.3.11. For any connection V on a smooth vector bundle £ — M, the object
(dV)? € Q?(Endg (E)) is called the curvature of V, and it is usually denoted by F(V). O
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Example 3.3.12. Consider the trivial bundle K},. The sections of this bundle are smooth
K"-valued functions on M. The exterior derivative d defines the trivial connection on K,
and any other connection differs from d by a M, (K)-valued 1-form on M. If A is such a
form, then the curvature of the connection d + A is the 2-form F(A) defined by

F(A)u= (d+ A)?u= (dA+ AN A)u, Yuec C®(M,K").
The A-operation above is defined for any vector bundle E as the bilinear map
O/ (End (E)) x QF(End (E)) — /¥ (End (E)),
uniquely determined by

W e®ANMN* ©B)=w Ap*® AB, A,Be C®(End(E)). 0

We conclude this subsection with an alternate description of the curvature which hope-
fully will shed some light on its analytical significance.

Let E — M be a smooth vector bundle on M and V a connection on it. Denote its
curvature by F = F(V) € Q%(End (E)). For any X,Y € Vect (M) the quantity F(X,Y)
is an endomorphism of E. In the remaining part of this section we will give a different
description of this endomorphism.

For any vector field Z, we denote by iz : Q"(E) — Q"~Y(E) the C*(M) — linear
operator defined by

iz(w@u) = (izw) @u, Ywe Q' (M), uecQ(E).

For any vector field Z, the covariant derivative Vz : C*°(E) — C*°(FE) extends naturally
as a linear operator Q" (E) — Q"(E), which we continue to denote by V7, uniquely defined
by the requirements

Vzw®u) = (Lzw) @ u+w® Vzu.

The operators d¥, iz, Vz : Q*(E) — Q°(E) satisfy the usual super-commutation identi-
ties.

izdY +dVig =Vy. (3.3.12)
ixty +iyix = 0. (3.3.13)
Vxiy —iyVx = i[xy]. (3.3.14)

For any u € Q°(E) we compute using (3.3.12)-(3.3.14)
F(X,Y)u =iyix(dY)?u =iy (ixd)Vu

=iy (Vx — dVix)Vu = (iy Vx)Vu — (iyd" )Vxu
= (Vxiy —ixy))Vu — VyVxu = (VxVy - VyVyx — Vix y))u.
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Hence
F(X,Y)=[Vx,Vy] — V[X’y}. (3.3.15)

If in the above formula we take X = 0,: and Y = 8,;, where (z°) are local coordinates on
M, and we set V; := Vazi, V= Vaﬂ" then we deduce

Thus, the endomorphism F;; measures the extent to which the partial derivatives V;, V;
fail to commute. This is in sharp contrast with the classical calculus and an analytically
oriented reader may object to this by saying we were careless when we picked the con-
nection. Maybe an intelligent choice will restore the classical commutativity of partial
derivatives so we should concentrate from the very beginning to covariant derivatives V
such that F(V) = 0.

Definition 3.3.13. A connection V such that F(V) = 0 is called flat. 0

A natural question arises: given an arbitrary vector bundle E — M do there exist
flat connections on E?7 If E is trivial then the answer is obviously positive. In general,
the answer is negative, and this has to do with the global structure of the bundle. In the
second half of this book we will discuss in more detail this fact.

3.3.4 Holonomy

The reader may ask a very legitimate question: why have we chosen to name curvature,
the deviation from commutativity of a given connection. In this subsection we describe the
geometric meaning of curvature, and maybe this will explain this choice of terminology.
Throughout this subsection we will use Einstein’s convention.

Let £ — M be a rank r smooth K-vector bundle, and V a connection on it. Consider
local coordinates (x!,...,2™) on an open subset U C M such that E |y is trivial. Pick a
moving frame (ey, ...,e,) of E over U. The connection 1-form associated to this moving
frame is

I'=Tyda’ = (T)da’, 1<a,B<r

It is defined by the equalities (V; := Vy ;)
Vieg = I'izea- (3.3.17)
Using (3.3.16) we compute
Fijeg = (ViV;j = V;Vi)eg = Vi(l'jeg) — V;(lieg)

ore or¢
_ JB JB vy Y
- < oxt  Oxd > Ca + <Fjﬁr§xv B Fiﬁr?l*y) €a;

so that

oar;  or,
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Figure 3.1: Parallel transport along a coordinate parallelogram.

Though the above equation looks very complicated it will be the clue to understanding
the geometric significance of curvature.

Assume for simplicity that the point of coordinates (0,...,0) lies in U. Denote by
T} the parallel transport (using the connection V) from (!, ....2") to (! +s,22, ..., 2")
along the curve 7~ (z! 4+ 7,22, ...,2"). Define T} in a similar way using the coordinate
z? instead of z.

Look at the parallelogram P in the “plane” (z!,x2) described in Figure 3.1, where

po=(0,...,0), p1 =(s,0,...,0), p2=(s,t,0,...,0), ps=(0,t,0,...,0).

We now perform the counterclockwise parallel transport along the boundary of Ps;. The
outcome is a linear map Ts; : Fy — Ep, where Ej is the fiber of E over py Set Fio :=
F(a%l%) |(0,...,0)- F12 is an endomorphism of Ejp.

Proposition 3.3.14. For any u € Ey we have
2

Flou = ———
124 0s0t

‘3'57tu.

We see that the parallel transport of an element u € Ey along a closed path may not
return it to itself. The curvature is an infinitesimal measure of this deviation.

Proof. The parallel transport along 0F;; can be described as
Ty =Ty "I STETS.
The parallel transport 75 : Eyg — E,, can be approximated using (3.3.9)
up = uy(s,t) = Tug = ug — sT1(po)ug + C152 + O(s). (3.3.19)

(1 is a constant vector in Ey whose exact form is not relevant to our computations. In
the sequel the letter C' (eventually indexed) will denote constants.

Ug = ’LLQ(S,t) = T%Tlsu = T2t’LL1 = U] — tfg(pl)ul + 02t2 + O(tg)
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= ug — Srl(po)u() — trg(pl)(u() — Srl(po)uO) + C182 + C2t2 + 0(3)
= {1 — sT1(po) — tT2(p1) + tsTa(p1)T1(po) Juo + Crs* + Cot® + O(3).

O(k) denotes an error < C(s% + t2)*/2 as s,t — 0. Now use the approximation

Ta(ps) = Talpo) + 552 (o) + O(2),

to deduce
ol'y
{]l—sl“l—tl“g—st(a I‘2F1) }|po ]
!

40152 + Cot? + O(3). (3.3.20)

Similarly, we have
uz = ’LL3(S, t) = TfSTﬁTfuo = Tl_SUQ = ug + Srl(pg)UQ + 0382 -+ 0(3)

The I'-term in the right-hand-side of the above equality can be approximated as

oIy

oy (o) + O(2)

oIy
ﬁ(po) +1

I'y(p2) =Ti(po) + s
Using ug described as in (3.3.20) we get after an elementary computation
ar or
U3ZU3(S,t):{]1—tF2—|— t(a ; B f+F2F1 F1F2>}|p0 (N
+Cys? + O5t* + 0(3). (3.3.21)
Finally, we have
Uy = U4(8, t) = Tz_t = usz + tFQ(pg)U3 + 06t2 + 0(3),
with
dl'y 9
I2(p3) = Ta(po) + -3 (po) + Crt" + O(3).
Using (3.3.21) we get

or or
uy(s,t) = ug + st (E?x; B f Lol — I‘IF2> [po o
+Cgs® + Cot? + O(3)
= Uug — 8tF12(p0)U0 + 0882 + Cgt2 + 0(3)

Clearly g S5t = —F12(po)ug as claimed. O
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Remark 3.3.15. If we had kept track of the various constants in the above computation
we would have arrived at the conclusion that Cg = Cy = 0 i.e.

Tt = 1 — stFis + O(3).

Alternatively, the constant Cg is the second order correction in the Taylor expansion of
s+ Tg,0 =, so it has to be 0. The same goes for Cy. Thus we have

dTss diT\/g,\/5

—Fjy = =
12 dareaP; ; ds

Loosely speaking, the last equality states that the curvature is the the “amount of holon-
omy per unit of area”. a

The result in the above proposition is usually formulated in terms of holonomy.

Definition 3.3.16. Let E — M be a vector bundle with a connection V. The holonomy
of V along a closed path < is the parallel transport along ~. ad

We see that the curvature measures the holonomy along infinitesimal parallelograms.
A connection can be viewed as an analytic way of trivializing a bundle. We can do so
along paths starting at a fixed point, using the parallel transport, but using different paths
ending at the same point we may wind up with trivializations which differ by a twist. The
curvature provides an infinitesimal measure of that twist.

Exercise 3.3.17. Prove that any vector bundle E over the Euclidean space R" is trivial-

izable.

Hint: Use the parallel transport defined by a connection on the vector bundle E to

produce a bundle isomorphism £ — Eg x R™, where Ej is the fiber of E over the origin.
g

3.3.5 The Bianchi identities

Consider a smooth K-vector bundle E — M equipped with a connection V = V. We
have seen that the associated exterior derivative d¥ : QP(E) — QPT(E) does not satisfy
the usual (dV)? = 0, and the curvature is to blame for this. The Bianchi identity describes
one remarkable algebraic feature of the curvature.

Recall that VF induces a connection in any tensor bundle constructed from E. In
particular, it induces a connection in E* @ F = End (F) which we denote by VFrd(E),
This extends to an “exterior derivative”

DF = gV . QP(End (E)) — QP (End (E)).

Proposition 3.3.18. (The Bianchi identity.) Let E — M be a K-vector bundle on
M and V¥ a connection on E. Then

DFE(VEF) =0.
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Roughly speaking, the Bianchi identity states that (dV)? is 0.

Proof. We will use the identities (3.3.12)—(3.3.14). For any vector fields X, Y, Z we have
ixD? = v _ pPiy.

Hence,

(DEF)(X,Y, Z) = igivix DEF = iziy (VP _ DEiy)F

X 1y — Z‘[X’y})F - iz(vgnd(E)

— D¥iy)ixF

. End(E) . End(E). .

= (Vyx iziy —ix gy —izixy))F — (Vy " izix — iy, z)ix — VE‘“‘(E)

iyix)F
(ix.xyiz + iy ziix +izx)iv)F — (V' ®iyiy + V00 4 v, i) F

= AX,Y,Z)+ A(Y, Z,X) + A(Z, X,Y),

where

AX,Y, Z) = (ix iz — V' Wiyviz )F, VX,Y,Z € Vect (M).
We compute immediately
ixyjizF = F(Z,[X,Y]) = [VE, v&,y]] —VE xy-
Also for any u € Q°(E) we have

(Vi iy Fyu = VE(F(Z,Y)u) — F(2,Y)Viu = [VE, F(Z,Y)] u

— | V5. VEg | u— [VE [VEVE] u

Hence
AX,Y,Z)=[V%,[V¥,VZ]].

The Bianchi identity now follows from the classical Jacobi identity for commutators. O
Example 3.3.19. Let K be the trivial line bundle over a smooth manifold M. Any
connection on K has the form V¥ = d 4+ w, where d is the trivial connection, and w is a
K-valued 1-form on M. The curvature of this connection is

F(w) = dw.

The Bianchi identity is in this case precisely the equality d?w = 0. O
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3.3.6 Connections on tangent bundles

The tangent bundles are very special cases of vector bundles so the general theory of
connections and parallel transport is applicable in this situation as well. However, the
tangent bundles have some peculiar features which enrich the structure of a connection.

Recall that, when looking for a local description for a connection on a vector bundle,
we have to first choose local coordinates on the manifolds, and then a local moving frame
for the vector bundle. For an arbitrary vector bundle there is no correlation between these
two choices.

For tangent bundles it happens that, once local coordinates (z') are chosen, they
automatically define a moving frame of the tangent bundle, (0; = 0,:), and it is thus very
natural to work with this frame. Hence, let V be a connection on T'M. With the above
notations we set

Vi0; =T50k (Vi=Va,).

The coefficients Ffj are usually known as the Christoffel symbols of the connection. As
usual we construct the curvature tensor

F(X,Y) =[Vx,Vy] = Vixy] € €°( End(TM)).

Still, this is not the only tensor naturally associated to V.

Lemma 3.3.20. For X,Y € Vect (M) consider
T(X,Y)=VxY - VyX — [X,Y] € Vect (M).

Then Vf € C*(M)
T(fX,Y)=T(X,fY) = fT(X,Y),

s0 that T'(e,e) is a tensor T € Q*(TM), i.c., a 2-form whose coefficients are vector fields
on M. The tensor T is called the torsion of the connection V. ad

The proof of this lemma is left to the reader as an exercise. In terms of Christoffel
symbols, the torsion has the description

T(0;,05) = (Tf; — T, 0.

Definition 3.3.21. A connection on T'M is said to be symmetric if T = 0. O

We guess by now the reader is wondering how the mathematicians came up with
this object called torsion. In the remaining of this subsection we will try to sketch the
geometrical meaning of torsion.

To find such an interpretation, we have to look at the finer structure of the tangent
space at a point x € M. It will be convenient to regard T, M as an affine space modeled
by R™, n = dim M. Thus, we will no longer think of the elements of T, M as vectors, but
instead we will treat them as points. The tangent space T, M can be coordinatized using
affine frames. These are pairs (p; e), where p is a point in T, M, and e is a basis of the
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underlying vector space. A frame allows one to identify T, M with R™, where p is thought
of as the origin.

Suppose that A, B are two affine spaces, both modelled by R", and (p; e) , (p; f) are
affine frames of A and respectively B. Denote by (2?) the coordinates in A induced by
the frame (p; e), and by (3’) the coordinates in B induced by the frame (¢; f). An affine
isomorphism T : A — B can then be described using these coordinates as

T:Ry >Ry z—y=Sz+o,

where v is a vector in R"™, and S is an invertible n x n real matrix. Thus, an affine map is
described by a “rotation” S, followed by a translation v. This vector measures the “drift”
of the origin. We write T' = S+«

If now (z°) are local coordinates on M, then they define an affine frame A, at each
x € M: (Ay = (0;(0;)). Given a connection V on T'M, and a smooth path v : I — M, we
will construct a family of affine isomorphisms 73 : T',(g) — Ty called the affine transport
of V along ~. In fact, we will determine 7; by imposing the initial condition Ty = 1, and
then describing T;.

This is equivalent to describing the infinitesimal affine transport at a given point
2o € M along a direction given by a vector X = X!0; € T, zoM. The affine frame of T, M
is Az, = (0;(0y)).

If x; is a point along the integral curve of X, close to xg then its coordinates satisfy

=zl +tX' 4+ O(t?).

This shows the origin xg of A, “drifts” by tX + O(¢?). The frame (9;) suffers a parallel
transport measured as usual by 1 — tixI' 4+ O(t?). The total affine transport will be

Ty = (1 — tixT)+tX + O(t?).

The holonomy of V along a closed path will be an affine transformation and as such it has
two components: a “rotation”” and a translation. As in Proposition 3.3.14 one can show
the torsion measures the translation component of the holonomy along an infinitesimal
parallelogram, i.e., the “amount of drift per unit of area”. Since we will not need this fact
we will not include a proof of it.

Exercise 3.3.22. Consider the vector valued 1-form w € Q'(T'M) defined by
w(X)=X VX € Vect (M).

Show that if V is a linear connection on TM, then d¥w = TV, where TV denotes the
torsion of V. 0

Exercise 3.3.23. Consider a smooth vector bundle £ — M over the smooth manifold
M. We assume that both E and T'M are equipped with connections and moreover the
connection on T'M is torsionless. Denote by V the induced connection on A2T*M ®
End (E). Prove that VX,Y, Z € Vect (M)

(VXF)(Y,Z)+ (VyF)(Z,X) + (VzF)(X,Y) =0. O
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3.4 Integration on manifolds

3.4.1 Integration of 1-densities

We spent a lot of time learning to differentiate geometrical objects but, just as in classical
calculus, the story is only half complete without the reverse operation, integration.

Classically, integration requires a background measure, and in this subsection we will
describe the differential geometric analogue of a measure, namely the notion of 1-density
on a manifold.

Let E — M be a rank k, smooth real vector bundle over a manifold M defined by
an open cover (U,) and transition maps ggo : Usg — GL(k,R) satisfying the cocycle
condition. For any r € R we can form the real line bundle |A|"(E) defined by the same
open cover and transition maps

tga = |det gga|™" = |det gag|” : Uap = Rso — GL(1,R).

The fiber at p € M of this bundle consists of r-densities on E, (see Subsection 2.2.4).

Definition 3.4.1. Let M be a smooth manifold and » > 0. The bundle of r-densities on
M is

|Alh : =[A[(TM).
When r = 1 we will use the notation |A|ys = |A]},. We call |A|y the density bundle of
M. a

Denote by C*°(|A|yr) the space of smooth sections of |A[y, and by C5°(|A|a) its
subspace consisting of compactly supported densities.

It helps to have local descriptions of densities. To this aim, pick an open cover of M
consisting of coordinate neighborhoods (U,). Denote the local coordinates on U,, by (z?).
This choice of a cover produces a trivializing cover of T'M with transition maps

oxt
Top = < ?) ,
Oy .
1<i,5<n

where n is the dimension of M. Set .3 = | det T, g|. A 1-density on M is then a collection
of functions pu, € C*(U,) related by

fho = O 5 14-

It may help to think that for each point p € U, the basis %, - a%

infinitesimal parallelepiped and p4(p) is its “volume”. A change in coordinates should
be thought of as a change in the measuring units. The gluing rules describe how the
numerical value of the volume changes from one choice of units to another.

The densities on a manifold resemble in many respects the differential forms of maximal
degree. Denote by det TM = AY™MTMf the determinant line bundle of TM. A density
is a map

of T,,M spans an

w:C®(det TM) — C>(M),
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such that u(fe) = |f|u(e), for all smooth functions f : M — R, and all e € C*°(det T'M).
In particular, any smooth map ¢ : M — N between manifolds of the same dimension
induces a pullback transformation

9" CF(JAly) = C=(|A[n),
described by
(¢*1)(e) = pu((det ¢,) - ) = |det .| u(e), Ve € C*(det TM).

Example 3.4.2. (a) Consider the special case M = R™. Denote by ey, ..., e, the canonical
basis. This extends to a trivialization of TR™ and, in particular, the bundle of densities
comes with a natural trivialization. It has a nowhere vanishing section |dv,,| defined by

|dvp|(e1 A ... Aep) = 1.

In this case, any smooth density on R" takes the form u = f|dv,|, where f is some smooth

function on R™. The reader should think of |dv,| as the standard Lebesgue measure on
R™.
If ¢ : R — R" is a smooth map, viewed as a collection of n smooth functions

(bl = (bl(xla "'71'”)7 cee 7¢n = ¢n('x17 ’”7xn)7

D
det <8xj> ‘ - |dvy|.

(b) Suppose M is a smooth manifold of dimension m. Then any top degree form w €
Q"(M) defines a density |w| on M which associates to each section e € C*°(det T M) the
smooth function

then,

¢*(|dvn|) =

z = |ws(e(z))|

Observe that |w| = | — w]|, so this map Q™(M) — C*(|A|rr) is not linear.
(c) Suppose ¢ is a Riemann metric on the smooth manifold M. The volume density
defined by g is the density denoted by |dVj| which associates to each e € C*°(det T'M)
the pointwise length

x — le(x)ly-

If (Uy, (%)) is an atlas of M, then on each U, we have top degree forms
dze == dzl A A da™,

to which we associate the density |dz,|. In the coordinates (z¢) the metric g can be
described as
g= Z Gazijdy, @ dx),.
i,j
We denote by |go| the determinant of the symmetric matrix go = (gasij)1<i,j<m. Then the
restriction of |dVj| to U, has the description

|dVg| =V |9al |dz o U
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The importance of densities comes from the fact that they are exactly the objects that
can be integrated. More precisely, we have the following abstract result.

Proposition 3.4.3. There exists a natural way to associate to each smooth manifold M
a linear map

/ O (M) — R
M

uniquely defined by the following conditions.
(a) fM 1s invariant under diffeomorphisms, i.e., for any smooth manifolds M, N of the
same dimension n, any diffeomorphism ¢ : M — N, and any p € C§°(|A|ar), we have

o f

(b) [y is a local operation, i.e., for any open set U C M, and any p € CG(|Alar) with

supp u C U, we have
o
M U
(c) For any p € C§°(R™) we have

/p\dvn\:/ p(x)dx,

where in the right-hand-side stands the Lebesgue integral of the compactly supported func-
tion p. fM 1s called the integral on M.

Proof. To establish the existence of an integral we associate to each manifold M a collec-
tion of data as follows.

(i) A smooth partition of unity A C C§°(M) such that Va € A the support supp « lies
entirely in some precompact coordinate neighborhood U,, and such that the cover
(Uy) is locally finite.

(ii) For each U, we pick a collection of local coordinates (z%,), and we denote by |dx|
(n = dim M) the density on U, defined by

0 0

For any u € C*°(|A|), the product ap is a density supported in Uy, and can be written
as
Q= Na‘dxa‘7

where p, is some smooth function compactly supported on U,. The local coordinates
allow us to interpret y, as a function on R™. Under this identification |dzl,| corresponds
to the Lebesgue measure |dv,| on R™, and p, is a compactly supported, smooth function.

We set
/ afp ::/ toldzq).
« R™
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Jo= e ] o

acA
The above sum contains only finitely many nonzero terms since supp u is compact, and
thus it intersects only finitely many of the U s which form a locally finite cover.

To prove property (a) we will first prove that the integral defined as above is indepen-
dent of the various choices: the partition of unity A C C§°(M), and the local coordinates
(xa)aefl-

e Independence of coordinates. Fix the partition of unity A, and consider a new
collection of local coordinates (y%) on each U,. These determine two densities |dz?,| and
respectively |dy%|. For each u € C§°(|A|ar) we have

Finally, define

ap = apigldre| = apgldyal,

det <ax9> ‘ L.
Iy,

/ 2| daa] = / 1yl
Rn Rn

is the classical change in variables formula for the Lebesgue integral.

where pZ, pd € C5°(Uy,) are related by

pe =

The equality

¢ Independence of the partition of unity. Let A, B C C§°(M) two partitions of unity
on M. We will show that
A B
L=t

AxB:={af; (a,B) €Ax B} CCFM).

Form the partition of unity

Note that suppaf C Uyg = U, NUg. We will prove

A AxB B
I
Let p € C§°(|A|ar). We can view apu as a compactly supported function on R™. We have

/Ua ap = ZB:/UacRn Bap = ZB:/UM aB. (3.4.1)

Similarly
Bp = / aBu. 3.4.2
/Ua Za: Uag ( )

Summing (3.4.1) over a and (3.4.2) over /3 we get the desired conclusion.
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To prove property (a) for a diffeomorphism ¢ : M — N, consider a partition of unity
A C C§°(N). From the classical change in variables formula we deduce that, for any
coordinate neighborhood U, containing the support of a € A, and any pu € C§°(|A|n) we

have
/ (¢*a)¢*u=/ .
¢~ (Ua) Us

The collection (qﬁ*a = o (b) . forms a partition of unity on M. Property (a) now
[e1S

follows by summing over a the above equality, and using the independence of the integral
on partitions of unity.

To prove property (b) on the local character of the integral, pick U C M, and then
choose a partition of unity B C C§°(U) subordinated to the open cover (Vz)ges. For any
partition of unity A C C§°(M) with associated cover (V,,)aea We can form a new partition
of unity A * B of U with associated cover V,3 = V, N V. We use this partition of unity
to compute integrals over U. For any density p on M supported on U we have

[ n Z/au zz/ apu= 3 / asn= [ n

acA BeB aBeAxB

Property (c) is clear since, for M = R™, we can assume that all the local coordinates chosen
are Cartesian. The uniqueness of the integral is immediate, and we leave the reader to fill
in the details. ad

3.4.2 Orientability and integration of differential forms

Under some mild restrictions on the manifold, the calculus with densities can be replaced
with the richer calculus with differential forms. The mild restrictions referred to above
have a global nature. More precisely, we have to require that the background manifold is
oriented.

Roughly speaking, the oriented manifolds are the “2-sided manifolds”, i.e., one can
distinguish between an “inside face” and an “outside face” of the manifold. (Think of a
2-sphere in R? (a soccer ball) which is naturally a “2-faced” surface.)

The 2-sidedness feature is such a frequent occurrence in the real world that for many
years it was taken for granted. This explains the “big surprise” produced by the famous
counter-example due to Mdébius in the first half of the 19th century. He produced a 1-sided
surface nowadays known as the Mobius band using paper and glue. More precisely, he
glued the opposite sides of a paper rectangle attaching arrow to arrow as in Figure 3.2.
The 2-sidedness can be formulated rigorously as follows.

Definition 3.4.4. A smooth manifold M is said to be orientable if the determinant line
bundle det T'M (or equivalently det 7% M) is trivializable. O

We see that det T* M is trivializable if and only if it admits a nowhere vanishing section.
Such a section is called a volume form on M. We say that two volume forms wy and ws
are equivalent if there exists f € C°°(M) such that

Wy = efwl.
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Figure 3.2: The Mobius band.

This is indeed an equivalence relation, and an equivalence class of volume forms will be
called an orientation of the manifold. We denote by Or(M) the set of orientations on
the smooth manifold M. A pair (orientable manifold, orientation) is called an oriented
manifold.

Let us observe that if M is orientable, and thus Or(M) # (), then for every point
p € M we have a natural map

Or(M) — Or(T,M), Or(M) > or — or, € Or(T,M),

defined as follows. If the orientation or on M is defined by a volume form w, then

wp € det T7 M is a nontrivial volume form on 7}, M, which canonically defines an orientation

or, ,onT,M. It is clear that if w; and wy are equivalent volume form then or,, , = or., p.
This map is clearly a surjection because or_,, = —or,, p, for any volume form w.

Proposition 3.4.5. If M is a connected, orientable smooth manifold M, then for every
p € M the map
Or(M) > or — or, € Or(T,M)

s a bijection.
Proof. Suppose or and or’ are two orientations on M such that or, = or;. The function
M 3 q— €(q) = ory/or, € {£1}

is continuous, and thus constant. In particular, e(q) = e(p) =1, Vg € M.
If or is given by the volume form w and or’ is given by the volume form «’, then there
exists a nowhere vanishing smooth function p : M — R such that w’ = pw. We deduce

sign p(q) = €(q), Vg € M.

This shows that the two forms w’ and w are equivalent and thus or = or’. O
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Figure 3.3: The normal line bundle to the round sphere.

The last proposition shows that on a connected, orientable manifold, a choice of an
orientation of one of its tangent spaces uniquely determines an orientation of the manifold.
A natural question arises.

How can one decide whether a given manifold is orientable or not.

We see this is just a special instance of the more general question we addressed in Chap-
ter 2: how can one decide whether a given vector bundle is trivial or not. The orientability
question can be given a very satisfactory answer using topological techniques. However,
it is often convenient to decide the orientability issue using ad-hoc arguments. In the
remaining part of this section we will describe several simple ways to detect orientability.

Example 3.4.6. If the tangent bundle of a manifold M is trivial, then clearly T'M is

orientable. In particular, all Lie groups are orientable. a

Example 3.4.7. Suppose M is a manifold such that the Whitney sum Rﬁ/[ ® TM is
trivial. Then M is orientable. Indeed, we have

det(R* & TM) = det R*¥ @ det T M.
Both det RF and det(R* @ TM) are trivial. We deduce det T'M is trivial since
det TM = det(R* @ TM) ® (det RF)*.

This trick works for example when M = S™. Indeed, let v denote the normal line bundle.
The fiber of v at a point p € S™ is the 1-dimensional space spanned by the position vector
of p as a point in R"; (see Figure 3.3). This is clearly a trivial line bundle since it has a
tautological nowhere vanishing section p — p € v,. The line bundle v has a remarkable
feature:

v®TS" =R

Hence all spheres are orientable. a
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wlmportant convention. The canonical orientation on R™ is the orientation defined
by the volume form dz' A- - -Adz™, where 2!, ..., 2™ are the canonical Cartesian coordinates.

The unit sphere S™ C R™! is orientable. In the sequel we will exclusively deal with
its canonical orientation. To describe this orientation it suffices to describe a positively
oriented basis of det T, M for some p € S™. To this aim we will use the relation

1~
R 2y, @ T, 5",

An element w € det T,,S™ defines the canonical orientation if p'Aw € det R™*! defines the
canonical orientation of R"*!. Above, by p’ we denoted the position vector of p as a point
inside the Euclidean space R"T!. We can think of  as the “outer” normal to the round
sphere. We call this orientation outer normal first. When n = 1 it coincides with the
counterclockwise orientation of the unit circle S?. O

Lemma 3.4.8. A smooth manifold M is orientable if and only if there exists an open

cover (Uy)aen, and local coordinates (zL,...,x%) on U, such that

det [ 2% ) 50 on U, N0, (3.4.3)
83;]5

Proof. 1. We assume that there exists an open cover with the properties in the lemma,
and we will prove that det T*M is trivial by proving that there exists a volume form.

Consider a partition of unity B C C§°(M) subordinated to the cover (Uy)aca, i-€.,
there exists a map ¢ : B — A such that

supp C Uy VB € B.

Define
wi= Y Bw(s),
B

where for all & € A we define w, := dr} A --- Adz?. The form w is nowhere vanishing
since condition (3.4.3) implies that on an overlap Uy, N --- N U,,, the forms wgy,,...,wq
differ by a positive multiplicative factor.

2. Conversely, let w be a volume form on M and consider an atlas (Uy; (z%,)). Then

m

wlo,= padz: A--- A dz?,
where the smooth functions p, are nowhere vanishing, and on the overlaps they satisfy
the gluing condition
oz’
Aag =det| —% | = @
al‘JB Mo

A permutation ¢ of the variables x}, ..., 2" will change dxl A--- A da” by a factor €(¢) so
we can always arrange these variables in such an order so that p, > 0. This will insure
the positivity condition

Aag > 0.
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The lemma is proved. a

We can rephrase the result in the above lemma in a more conceptual way using the
notion of orientation bundle. Suppose E — M is a real vector bundle of rank r on the
smooth manifold M described by the open cover (Uy)aca, and gluing cocycle

9Ba - Uag — GL(T, R).

The orientation bundle associated to E is the real line bundle ®(E) — M described by
the open cover (Uy)aeca, and gluing cocycle

€8q := sign det ggo : Uyg = R* = GL(1,R).

We define orientation bundle ©jp; of a smooth manifold M as the orientation bundle
associated to the tangent bundle of M, @) := @(T'M).
The statement in Lemma 3.4.8 can now be rephrased as follows.

Corollary 3.4.9. A smooth manifold M is orientable if and only if the orientation bundle

O is trivializable. O
From Lemma 3.4.8 we deduce immediately the following consequence.

Proposition 3.4.10. The connected sum of two orientable manifolds is an orientable

manifold. 0

Exercise 3.4.11. Prove the above result. O

Using Lemma 3.4.8 and Proposition 2.2.76 we deduce the following result.

Proposition 3.4.12. Any complex manifold is orientable. In particular, the complex
Grassmannians Gry(C™) are orientable. O

Exercise 3.4.13. Supply the details of the proof of Proposition 3.4.12. a

The reader can check immediately that the product of two orientable manifolds is
again an orientable manifold. Using connected sums and products we can now produce
many examples of manifolds. In particular, the connected sums of g tori is an orientable
manifold.

By now the reader may ask where does orientability interact with integration. The
answer lies in Subsection 2.2.4 where we showed that an orientation or on a vector space
V' induces a canonical, linear isomorphism 1oy : det V* — |Aly; see (2.2.13).

Similarly, an orientation or on a smooth manifold M defines an isomorphism

tor 1 C(det T*M) — C™°(|A|nr).

For any compactly supported differential form w on M of maximal degree we define its

integral by
/ w = / lorW.
M M
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Figure 3.4: Spherical coordinates.

We want to emphasize that this definition depends on the choice of orientation.
We ought to pause and explain in more detail the isomorphism 24, : C*°(det T*M) —

C*(|A|ar). Since M is oriented we can choose a coordinate atlas (U, (z%,)) such that

det[a—xiﬁ

: ] >0, n=dimM, (3.4.4)
Oxl, 11<ij<m

and on each coordinate patch U, the orientation is given by the top degree form dz, =
drl A A da?.
A top degree differential form w is described by a collection of forms

Wa = pada:a, Pa € COO(Ua)y
and due to the condition (3.4.4) the collection of densities
Mo = pa’dxa’ S COO(UOH ‘ ‘A‘ ‘M)

satisfy po = pg on the overlap U,g. Thus they glue together to a density on M, which is
precisely 2orw.

Example 3.4.14. Consider the 2-form on R?, w = zdy A dz, and let S? denote the unit
sphere. We want to compute |, g2 W|g2, where S 2 has the canonical orientation. To compute

this integral we will use spherical coordinates (r, p,6). These are defined by (see Figure
3.4.)

r = rsinpcosd
y = rsinesind
Z = Trcosgp
At the point p = (1,0,0) we have
Op =0, =p, Op =0y 0, =—0,,
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so that the standard orientation on S? is given by dp A df. On S? we have » = 1 and
dr = 0 so that

xdy N dz |g2= sin @ cos 0 (cos 6 sin pdf + sin 6 cos pdp)) A (— sin@)de

= sin® p cos? Odp A db.
The standard orientation associates to this form de density sin® ¢ cos? |dpdf)|, and we
deduce
™ 21
/ w= / sin® ¢ cos? 0|dpdf| = / sin® dyp - / cos? 0db
52 [0,7] x[0,27] 0 0
A : 3 3
=5 = volume of the unit ball B® C R”.
As we will see in the next subsection the above equality is no accident. a

Example 3.4.15. (Invariant integration on compact Lie groups). Let G be a
compact, connected Lie group. Fix once and for all an orientation on the Lie algebra
L. Consider a positively oriented volume element w € det £Lf,. We can extend w by left
translations to a left-invariant volume form on G which we continue to denote by w. This
defines an orientation, and in particular, by integration, we get a positive scalar

c:/w.
G

/ dVag = 1. (3.4.5)
G

The differential form dVi is the unique left-invariant n-form (n = dim G) on G satisfying
(3.4.5) (assuming a fixed orientation on G). We claim dVj is also right invariant.
To prove this, consider the modular function G > h — A(h) € R defined by

Set dVg = %w so that

Ri(dVe) = A(h)dVg.

The quantity A(h) is independent of h because R;dVg is a left invariant form, so it has
to be a scalar multiple of dV. Since (Rp,p,)* = (R, Rp,)* = Rj R; we deduce

A(hlhg) = A(hl)A(hg) Vhy, he € G.
Hence h — Ah is a smooth morphism
G — (R\{0},).

Since G is connected A(G) C R4, and since G is compact, the set A(G) is bounded.
If there exists € G such that A(z) # 1, then either A(z) > 1, or A(z™!) > 1, and
in particular, we would deduce the set (A(z"))nez is unbounded. Thus A = 1 which
establishes the right invariance of dVg.
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The invariant measure dVg provides a very simple way of producing invariant objects
on (G. More precisely, if T is tensor field on G, then for each x € G define

T = /G (Lg)uT)edVi(9).

Then z — T, defines a smooth tensor field on G. We claim that T is left invariant.
Indeed, for any h € G we have

(L), T = / (L)e((Lg)sT)dVer(g) = / ((Lng)-T)dVi: ()
G G

4

uzhy /G(Lu)*TL;‘leVG(u) =T (Lj_1dVg=dVg).

If we average once more on the right we get a tensor

G5z / ((Ry).T") dVe,
G
which is both left and right invariant. O

Exercise 3.4.16. Let G be a Lie group. For any X € L denote by ad(X) the linear
map Lo — L defined by
Lagd3Y — [X,Y] € Lq.

(a) If w denotes a left invariant volume form prove that VX € Lg
Lxw=—trad(X)w.

(b) Prove that if G is a compact Lie group, then trad(X) = 0, for any X € L¢. O

3.4.3 Stokes’ formula

The Stokes’ formula is the higher dimensional version of the fundamental theorem of
calculus (Leibniz-Newton formula

)
b
/ df = £(b) — f(a),

where f : [a,b] — R is a smooth function and df = f’(t)dt. In fact, the higher dimensional
formula will follow from the simplest 1-dimensional situation.

We will spend most of the time finding the correct formulation of the general version,
and this requires the concept of manifold with boundary. The standard example is the
lower half-space

H” = {(z',....,2") e R"; 2! <0}.

Definition 3.4.17. A smooth manifold with boundary of dimension n is a topological
space with the following properties.

(a) There exists a smooth n-dimensional manifold M that contains M as a closed subset.



3.4. INTEGRATION ON MANIFOLDS 123

(b) The interior of M, denoted by M?, is non empty.

(c) For each point p € OM := M \ M?, there exist smooth local coordinates (x!, ..., 2")
defined on an open neighborhood N of p in M such that

(1) M°NN={qgeN; z'(q) <0, }.
(c2) OM NN ={z'=0}.

The set OM is called the boundary of M. A manifold with boundary M is called
orientable if its interior M? is orientable. ad

Example 3.4.18. (a) A closed interval I = [a,b] is a smooth 1-dimensional manifold with
boundary I = {a,b}. We can take M = R.

(b) The closed unit ball B3 C R? is an orientable manifold with boundary dB3 = S2.
We can take M = R3.

(c) Suppose X is a smooth manifold, and f : X — R is a smooth function such that
0 € R is a regular value of f, i.e.,

f(x) = 0= df(x) # 0.

Define M := {a: €eX; f(z)<0 } A simple application of the implicit function theorem
shows that the pair (X, M) defines a manifold with boundary. Note that examples (a)
and (b) are special cases of this construction. In the case (a) we take X = R, and
f(z) = (x—a)(z—0b), while in the case (b) we take X = R3 and f(x,y, 2) = (22 +y*+22)—1.

O

Definition 3.4.19. Two manifolds with boundary M; C ]\71, and My C M2 are saidﬁt/o
be diffeomorphic if, for every ¢ = 1,2 there exists an open neighborhood U; of M; in M;,
and a diffeomorphism F : Uy — U such that F(M;) = Mo. O

Exercise 3.4.20. Prove that any manifold with boundary is diffeomorphic to a manifold
with boundary constructed via the process described in Example 3.4.18(c). O

Proposition 3.4.21. Let M be a smooth manifold with boundary. Then its boundary
OM is also a smooth manifold of dimension dimOM = dim M — 1. Moreover, if M is
orientable, then so is its boundary. ad

The proof is left to the reader as an exercise.

wImportant convention.  Let M be an orientable manifold with boundary. There is
a (non-canonical) way to associate to an orientation on M an orientation on the boundary
OM . This will be the only way in which we will orient boundaries throughout this book.
If we do not pay attention to this convention then our results may be off by a sign.

We now proceed to described this induced orientation on OM. For any p € M choose
local coordinates (z!,...,2") as in Definition 3.4.17. Then the induced orientation of T,0M
is defined by

edr® A --- Adx" € det T,0M, €= +1,



124 CHAPTER 3. CALCULUS ON MANIFOLDS

where € is chosen so that for 2! < 0, i.e. inside M, the form
edzt Adz? Ao N dz™

is positively oriented. The differential da' is usually called an outer conormal since

x! increases as we go towards the exterior of M. —dx' is then the inner conormal for

analogous reasons. The rule by which we get the induced orientation on the boundary can
be rephrased as

{outer conormal} A {induced orientation on boundary} = {orientation in the interior}.
We may call this rule “outer (co)normal first” for obvious reasons. O

Example 3.4.22. The canonical orientation on S C R™! coincides with the induced
orientation of S"*! as the boundary of the unit ball B" 1!, O

Exercise 3.4.23. Consider the hyperplane H; C R™ defined by the equation {z* = 0}.
Prove that the induced orientation of H; as the boundary of the half-space H}* = {2’ > 0}

is given by the (n—1)-form (—1)‘dz! A---Adzi A-- - da™ where, as usual, the hat indicates
a missing term. O

Theorem 3.4.24 (Stokes formula). Let M be an oriented n-dimensional manifold with
boundary OM and w € Q"~Y(M) a compactly supported form. Then

/dw:/ w.
MO oM

In the above formula d denotes the exterior derivative, and OM has the induced orientation.

Proof. Via partitions of unity the verification is reduced to the following two situations.

Case 1. The (n — 1)-form w is compactly supported in R™. We have to show

/ dw = 0.

It suffices to consider only the special case
w= f(z)dz® A - Adz",

where f(x) is a compactly supported smooth function. The general case is a linear com-
bination of these special situations. We compute

/ dw = ﬁala:l/\'u/\d:v":/ ﬁala;l dz® A -+ Ndz" =0,

since
oaf
R 6331

and f has compact support.

dz' = f(oo,2?,...,2") — f(—o0,22,...,2"),
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Case 2. The (n — 1)-form w is compactly supported in H". Let

w:Zfi(a:)dazl/\---/\@/\---/\dx”.

Then
dw = Z(—l)”la—f dzt A Adx"
- Ozt '
One verifies as in Case 1 that

of

H" 8$Z

dz' Ao Adz™ =0 fori # 1.

For i = 1 we have

0
a—fdgnl/\'u/\ala:":/ / ﬁala;l dz? A« A dz"
H" (9:51 Rn—1 —00 (9:51
+

= / (f(07$2, e x) = f(—oo,:z:2, ,;1:")) dr? A - A dz™
Rnfl

= / f(O,[]j27 ,..7xn)dx2 /\ - /\d{]}'n — / w.
o oH™

The last equality follows from the fact that the induced orientation on JH™ is given by
dz? A --- A dz™. This concludes the proof of the Stokes formula. a

Remark 3.4.25. Stokes formula illustrates an interesting global phenomenon. It shows
that the integral [ ) dw is independent of the behavior of w inside M. It only depends on
the behavior of w on the boundary. ad

Example 3.4.26.

47

/a:dy/\dz:/ dz A dy A dz = vol (B3) = O
S2 B3 3

Remark 3.4.27. The above considerations extend easily to more singular situations.
For example, when M is the cube [0, 1]" its topological boundary is no longer a smooth
manifold. However, its singularities are inessential as far as integration is concerned. The
Stokes formula continues to hold

/dw:/ w Ywe Q).
n oI

The boundary is smooth outside a set of measure zero and is given the induced orientation:
“ outer (co)normal first”. The above equality can be used to give an explanation for the
terminology “exterior derivative” we use to call d. Indeed if w € Q""}(R") and I, = [0, h]
then we deduce

dw |z=0= lim h_"/ w. (3.4.6)
orn

h—0

When n = 1 this is the usual definition of the derivative. O
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Example 3.4.28. We now have sufficient technical background to describe an example
of vector bundle which admits no flat connections, thus answering the question raised at
the end of Section 3.3.3.

Consider the complex line bundle L,, — S? constructed in Example 2.1.38. Recall that
L,, is described by the open cover

5% =UyUU;, Uy= 5%\ {South pole}, U; =S?\ {North pole},
and gluing cocycle
910 : UgNUL = C*, gio(2) = 27" = gor(2) 7,

where we identified the overlap Uy N U; with the punctured complex line C*.
A connection on L, is a collection of two complex valued forms wy € Q' (U;) ® C,
wy € QY(U;) ® C, satisfying a gluing relation on the overlap (see Example 3.3.7)

d dz
w1 :—ﬂ+w0:n—+wo.
g10 z

If the connection is flat, then
dwo =0 on Uy and dw; =0 on Uj.

Let ET be the Equator equipped with the induced orientation as the boundary of the
northern hemisphere, and E~ the equator with the opposite orientation, as the boundary
of the southern hemisphere. The orientation of E+ coincides with the orientation given
by the form df, where z = exp(26).

We deduce from the Stokes formula (which works for complex valued forms as well)

that
/ wo=0 / w1=—/ w1 = 0.
E+ E+ -

On the other hand, over the Equator, we have
d .
w1 —wy = n—Z = nidb,
z

from which we deduce

0:/ wo—wlzni/ df = 2nmi
E+ E+

Thus there exist no flat connections on the line bundle L,, n # 0, and at fault is the
gluing cocycle defining L. In a future chapter we will quantify the measure in which the
gluing data obstruct the existence of flat connections. O

3.4.4 Representations and characters of compact Lie groups

The invariant integration on compact Lie groups is a very powerful tool with many uses.
Undoubtedly, one of the most spectacular application is Hermann Weyl’s computation
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of the characters of representations of compact semi-simple Lie groups. The invariant
integration occupies a central place in his solution to this problem.

We devote this subsection to the description of the most elementary aspects of the
representation theory of compact Lie groups.

Let G be a Lie group. Recall that a (linear) representation of G is a left action on a
(finite dimensional) vector space V'

GxV =V (gv)—=T(gvevV,

such that the map T'(g) is linear for any g. One also says that V has a structure of
G-module. If V' is a real (respectively complex) vector space, then it is said to be a real
(respectively complex) G-module.

Example 3.4.29. Let V' = C". Then G = GL(n,C) acts linearly on V in the tautological
manner. Moreover V*, V® A™V and SV are complex G-modules. a

Example 3.4.30. Suppose G is a Lie group with Lie algebra L5 —T1G. For every g € G,
the conjugation
C,:G— G, hw Cy(h)=ghg™?,

sends the identity 1 € G to itself. We denote by Ad, : Lg — £ the differential of
h+— C4(h) at h = 1. The operator Ad, is a linear isomorphism of £, and the resulting
map

G — Aut(Lg), g— Adg,

is called adjoint representation of G.
For example, if G = SO(n), then Ls = so(n), and the adjoint representation Ad :
SO(n) — Aut(so(n)), can be given the more explicit description

so(n) 5 X g gXg~ ! eso(n), Yge SO(n). 0

Exercise 3.4.31. Let G be a Lie group, with Lie algebra L. Prove that for any X,Y €

L we have

d
E‘tZO Adexp(tX) (Y) = ad(X)Y = [X7 Y] 0

Definition 3.4.32. A morphism of G-modules Vi and V5 is a linear map L : Vi — V5
such that, for any g € G, the diagram below is commutative, i.e., To(g)L = LT1(g).

Vi W

T1(g) [ [Tz.(g)

Vi W

The space of morphisms of G-modules is denoted by Homg(Vy,V2). The collection of
isomorphisms classes of complex G-modules is denoted by G — M od. a
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If V is a G-module, then an invariant subspace (or submodule) is a subspace U C V
such that T'(¢)(U) C U, Vg € G. A G-module is said to be irreducible if it has no invariant
subspaces other than {0} and V itself.

Proposition 3.4.33. The direct sum “®”, and the tensor product “®” define a structure
of semi-ring with 1 on G — Mod. 0 is represented by the null representation {0}, while 1
is represented by the trivial module G — Aut (C), g — 1. O

The proof of this proposition is left to the reader.

Example 3.4.34. Let T; : G — Aut (U;) (i = 1,2) be two complex G-modules. Then U}
is a G-module given by (g,u*) + Ti(g~ ') u*. Hence Hom (Uy, Us) is also a G-module.
Explicitly, the action of g € G is given by

(9,L) — To(g)LT1(g7"), VL € Hom(Uy,Usy).

We see that Homg (U, Us) can be identified with the linear subspace in Hom (U, Us)
consisting of the linear maps U; — Us unchanged by the above action of G. O

Proposition 3.4.35 (Weyl’s unitary trick). Let G be a compact Lie group, and V a
complexr G-module. Then there exists a Hermitian metric h on V which is G-invariant,
i.e., h(gvi, gve) = h(vy,v2), Yui,v9 € V.

Proof. Let h be an arbitrary Hermitian metric on V. Define its G-average by

h(u,v) ::/Gh(gu,gv)dVG(g),

where dV;(g) denotes the normalized bi-invariant measure on G. One can now check
easily that h is G-invariant. O

In the sequel, G will always denote a compact Lie group.

Proposition 3.4.36. Let V be a compler G-module and h a G-invariant Hermitian met-
ric. If U is an invariant subspace of V' then so is UL, where “L” denotes the orthogonal
complement with respect to h.

Proof. Since h is G-invariant it follows that, Vg € G, the operator T'(g) is unitary,
T(9)T*(g) = Ly. Hence, T*(g9) =T '(g) = T(9™"), ¥g € G.
If 2 € UL, then for all w € U, and Vg € G
W(T(g)a,u) = h((x, T*(g)u) = h(z, T(g~ " )u) = 0.

Thus T'(g)z € U+, so that U~ is G-invariant. 0

Corollary 3.4.37. Every G-module V can be decomposed as a direct sum of irreducible
ones. 0
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If we denoted by Irr(G) the collection of isomorphism classes of irreducible G-modules,
then we can rephrase the above corollary by saying that Irr(G) generates the semigroup
(G—Mod, @).

To gain a little more insight we need to use the following remarkable trick due to Isaac
Schur.

Lemma 3.4.38 (Schur lemma). Let Vi, Vo be two irreducible complex G-modules. Then

1 if =W
0 it 2V

Proof. Let L € Homg(V1, Va). Then ker L C V; is an invariant subspace of V;. Similarly,
Range (L) C V5 is an invariant subspace of V5. Thus, either ker L = 0 or ker L = V].

The first situation forces RangeL # 0 and, since Vs is irreducible, we conclude
Range L = V5. Hence, L has to be in isomorphism of G-modules. We deduce that, if
V1 and V4 are not isomorphic as G-modules, then Homg(V, V) = {0}.

Assume now that Vi =2 V5 and S : Vi — V5 is an isomorphism of G-modules. According
to the previous discussion, any other nontrivial G-morphism L : V; — V5 has to be an
isomorphism. Consider the automorphism 7' = S™!'L : V; — V;. Since Vi is a complex
vector space T admits at least one (non-zero) eigenvalue A.

The map Aly; — 7 is an endomorphism of G-modules, and ker (Aly, — T') # 0.
Invoking again the above discussion we deduce T' = Aly,, i.e. L = AS. This shows
dim Homg (V7, Vo) = 1. 0

dimc Homg (V1, Vo) = {

Schur’s lemma is powerful enough to completely characterize S' — Mod, the repre-
sentations of S7.

Example 3.4.39. (The irreducible (complex) representations of S'). Let V be
a complex irreducible S'-module

St x V3 (e v) — Tyv eV,

where Ty, Ty, = T, +6, mod 2=, In particular, this implies that each Ty is an S L_automorphism
since it obviously commutes with the action of this group. Hence Ty = A(f)1y which
shows that dim V' = 1 since any 1-dimensional subspace of V is S'-invariant. We have
thus obtained a smooth map
A: St Cr,

such that

Ae? - efT) = A(ef) ().
Hence X : S — C* is a group morphism. As in the discussion of the modular function we
deduce that |A| = 1. Thus, A looks like an exponential, i.e., there exists o € R such that
(verify!)

Ae) = exp(iaf), V6 € R.

Moreover, exp(2mia) = 1, so that o € Z.
Conversely, for any integer n € Z we have a representation

S128 Aut (C) (¥, 2) i P2,

The exponentials exp(énf) are called the characters of the representations p;,. O
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Exercise 3.4.40. Describe the irreducible representations of T™-the n-dimensional torus.
O

Definition 3.4.41. (a) Let V be a complex G-module, g — T(g) € Aut(V). The
character of V is the smooth function

xv:G—=C, xy(g) =trT(g).

(b) A class function is a continuous function f : G — C such that

f(hgh™) = f(g) Vg,h€G.

(The character of a representation is an example of class function). O

Theorem 3.4.42. Let G' be a compact Lie group, Uy, Uz complex G-modules and xy,
their characters. Then the following hold.

(a)xthav, = Xy + Xuy» XvieUs = XU, * XUr -
(b) xy,(1) = dim U;.
(¢) xXu+ = Xy, -the complex conjugate of Xy,

(4)
/G xv,(9)dVa(g) = dim UE,

where UZ-G denotes the space of G-invariant elements of U;,
UY ={zecU; z="Tig)z Yge G}

(e)
/G X0, (9) - X, (9)dVir(g) = dim Home(Uy, U).

Proof. The parts (a) and (b) are left to the reader. To prove (c), fix an invariant Hermitian
metric on U = U;. Thus, each T'(g) is a unitary operator on U. The action of G on U* is
given by T(g~!)f. Since T'(g) is unitary, we have T'(g~!)" = T'(g). This proves (c).

Proof of (d). Consider

P:U—U, Pu= / T(g)u dVa(g).
G

Note that PT'(h) =T (h)P,Vh € G, i.e., P € Homg(U,U). We now compute

T(h)Pu — /

T(hg)u dVi(g) = / T(y)u Ry dVi(y),
G

G

/ T(y)u dVg(y) = Pu.
G

Thus, each Pu is G-invariant. Conversely, if x € U is G-invariant, then

Pa= [ Tlg)edy = [ 2 dVisto) =,
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i.e., UY = Range P. Note also that P is a projector, i.e., P> = P. Indeed,
Py = / T(g)Pu dVg(g) = / Pu dVg(g) = Pu.
G G

Hence P is a projection onto U, and in particular

dimc U“ :trP:/

trT(g) dVg(g) z/xU(g) dva(9)-
G G

Proof of (e).

/GXU1 “Xu,dVa(g) = /GXU1 “XuydVa(g) = /GXU@U;CZVG(Q) = /GXHom(Ug,Ul)
— dimc (Hom (Up, U1))“ = dime Homg (U, Uy),
since Homg coincides with the space of G-invariant morphisms. a

Corollary 3.4.43. Let U, V be irreducible G-modules. Then

(xXv:xv) = | Xv-Xvdg =dvv = Lo UV
Us XV o U \% 0 , U /?\é 1%
Proof. Follows from Theorem 3.4.42 using Schur’s lemma. a

Corollary 3.4.44. Let U, V be two G-modules. Then U =V if and only if Xy = Xy -

Proof. Decompose U and V' as direct sums of irreducible G-modules
U=alml;) V=aihV).

Hence xp = > mixy, and xy = ) Xy, The equivalence “representation” <= “char-
acters” stated by this corollary now follows immediately from Schur’s lemma and the
previous corollary. O

Thus, the problem of describing the representations of a compact Lie group boils down
to describing the characters of its irreducible representations. This problem was completely
solved by Hermann Weyl, but its solution requires a lot more work that goes beyond the
scope of this book. We will spend the remaining part of this subsection analyzing the
equality (d) in Theorem 3.4.42.

Describing the invariants of a group action was a very fashionable problem in the
second half of the nineteenth century. Formula (d) mentioned above is a truly remarkable
result. It allows (in principle) to compute the maximum number of linearly independent
invariant elements.

Let V' be a complex G-module and denote by Xy its character. The complex exterior
algebra A2V* is a complex G-module, as the space of complex multi-linear skew-symmetric
maps

Vx.-..xV—=C.
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Denote by b$(V) the complex dimension of the space of G-invariant elements in AFV*.
One has the equality

b (V) = /G Xary-dVa(g).

These facts can be presented coherently by considering the Z-graded vector space
@Aznv V.
Its Poincaré polynomial is

Py (t) = > _tFB5(V) —/ "Xarv-dVa(g).

To obtain a more concentrated formulation of the above equality we need to recall some
elementary facts of linear algebra.
For each endomorphism A of V' denote by o (A) the trace of the endomorphism

AFA APV 5 ARV

Equivalently, (see Exercise 2.2.25) the number o(A) is the coefficient of ¢* in the charac-
teristic polynomial
o1(A) = det(1y + tA).

Explicitly, 0% (A) is given by the sum

or(A) = Z det (aiaiﬁ) (n=dimV).

1<iy i <n

If g € G acts on V by T(g), then g acts on A¥V* by A*T(¢1)T = AFT(g). (We
implicitly assumed that each T'(g) is unitary with respect to some G-invariant metric on
V). Hence

xarv- = 0k(T(g) ). (3.4.7)
We conclude that

Pjo(v /Ztkak dVG /det 1y +tT(g ))dVG( ). (3.4.8)

Consider now the following situation. Let V' be a complex G-module. Denote by AYV the
space of R-multi-linear, skew-symmetric maps

Vx---xV =R

The vector space ApV* is a real G-module. We complexify it, so that A2V @ C is the space
of R-multi-linear, skew-symmetric maps

Vx--xVoC,
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and as such, it is a compler G-module. The real dimension of the subspace J¥(V) of
G-invariant elements in A¥V* will be denoted by bi.(V), so that the Poincaré polynomial
of 12(V) = @, JF is

Py (t) = D> t*0(V).
p

On the other hand, b (V) is equal to the complez dimension of A¥V* ® C. Using the
results of Subsection 2.2.5 we deduce

MV @C= AV @c AV =P (@H]-:kAgv* ® A§7*> . (3.4.9)
k

Each of the above summands is a G-invariant subspace. Using (3.4.7) and (3.4.9) we
deduce

Py =3 / S 0i(T(9) ), (TT9) )1+ dVis(g)
L G

it+j=k

= /G det( Ly +t7'(g)) det( 1y +tT(g) ) dVa(g) (3.4.10)

:/G|det(11v+tT(g))\2dVG(Q)-

We will have the chance to use this result in computing topological invariants of man-
ifolds with a “high degree of symmetry” like, e.g., the complex Grassmannians.

3.4.5 Fibered calculus

In the previous section we have described the calculus associated to objects defined on a
single manifold. The aim of this subsection is to discuss what happens when we deal with
an entire family of objects parameterized by some smooth manifold. We will discuss only
the fibered version of integration. The exterior derivative also has a fibered version but its
true meaning can only be grasped by referring to Leray’s spectral sequence of a fibration
and so we will not deal with it. The interested reader can learn more about this operation
from [41], Chapter 3, Sec.5.

Assume now that, instead of a single manifold F', we have an entire (smooth) family of
them (Fp)pep. In more rigorous terms this means that we are given a smooth fiber bundle
p: E — B with standard fiber F.

On the total space E we will always work with split coordinates (z';y’), where (z?)
are local coordinates on the standard fiber F', and (y7) are local coordinates on the base
B (the parameter space).

The model situation is the bundle

E=RFxR™" B R™ =B, (2,y) "> y.

We will first define a fibered version of integration. This requires a fibered version of
orientability.

Definition 3.4.45. Let p : £ — B be a smooth bundle with standard fiber F. The
bundle is said to be orientable if the following hold.
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(a) The manifold F' is orientable;

(b) There exists an open cover (U,), and trivializations p~*(Uy) Loy F x U, such that
the gluing maps

Vg0V i FxUyp = FxUs (Uag = Uy NUg)
are fiberwise orientation preserving, i.e., for each y € U,g, the diffeomorphism
Faf’_)\yaﬁ(fvy) €EF

preserves any orientation on F'. O

Exercise 3.4.46. If the base B of an orientable bundle p : E — B is orientable, then so
is the total space F (as an abstract smooth manifold). O

iwImportant convention.  Let p: E — B be an orientable bundle with oriented basis
B. The natural orientation of the total space E is defined as follows.

If E = F x B then the orientation of the tangent space T(;; E is given by Qp x
wp, where wp € detTyF (respectively wp € detT,B) defines the orientation of T4 F
(respectively T, B).

The general case reduces to this one since any bundle is locally a product, and the
gluing maps are fiberwise orientation preserving. This convention can be briefly described
as

orientation total space = orientation fiber A orientation base.

The natural orientation can thus be called the fiber-first orientation. In the sequel all
orientable bundles will be given the fiber-first orientation. O

Let p: E — B be an orientable fiber bundle with standard fiber F'.
Proposition 3.4.47. There exists a linear operator
Dy = / (e (E) — Q;I;T(B), r = dim F,
E/B
uniquely defined by its action on forms supported on domains D of split coordinates
DR xR™ BR™  (279) — y.

Ifw= fdx! Ndy’, f € C3(R™T™), then

/ :{ 0, [[#r
E/B (Jer fdat) dy” , I =r

The operator |’ E/B is called the integration-along-fibers operator. O
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The proof goes exactly as in the non-parametric case, i.e., when B is a point. One
shows using partitions of unity that these local definitions can be patched together to
produce a well defined map

/ L8, (B) = Q5 (B).
E/B

The details are left to the reader.

Proposition 3.4.48. Let p : E — B be an orientable bundle with an r-dimensional
standard fiber . Then for any w € Q7 (E) and n € wi(B) such that degw + degn =

dim E we have
/ dEw = (—1)TdB/ w.
E/B E/B

If B is oriented and w 1 ar as above then
/ wAp*(n) = / / wl| An. (Fubini)
E B \JE/B

The last equality implies immediately the projection formula
(W Ap™n) = paw A . (3.4.11)
Proof. 1t suffices to consider only the model case
p: E=R"xR™ - R"™ =B, (x; y)—)y,

and w = fdax! Ady’. Then

dEw:ngda; Adz! A dy? + ( mz dm Ady’ A dy? .

9 .
/E/BdEw— (/TZ dm A dx > 1)‘” /Tza—yfjdazl Ady’ A dy? .
J

The above integrals are defined to be zero if the corresponding forms do not have degree
r. Stokes’ formula shows that the first integral is always zero. Hence

0 .
dpw = () — / de! | Ady? A dy? = —1’"d/ w.
/E/BE (D55 Z y A dy” = ( )BE/B

The second equality is left to the reader as an exercise. a
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Exercise 3.4.49. (Gelfand-Leray). Suppose that p : E — B is an oriented fibration,
wg is a volume form on F, and wpg is a volume form on B.

(a) Prove that, for every b € B, there exists a unique volume form wg,p on Ej, = p~(b)
with the property that, for every x € Ej, we have

we(r) =wg/p(x) A (p'wp)(r) € A ET R,

This form is called the Gelfand-Leray residue of wg rel p.
(b) Prove that for every compactly supported smooth function f : E — R we have

(pu(fuop)), = < / b wa/3> cu®) e B, [ fos= [ < A wa/3> s

(c) Consider the fibration R? — R, (z,v) Bt = az + by, a® + b2 # 0. Compute the

Gelfand-Leray residue dmc?tdy along the fiber p(z,y) = 0. O

Definition 3.4.50. A 0-bundle is a collection (E,JFE,p, B) consisting of the following.
(a) A smooth manifold E with boundary OF.

(ii) A smooth map p : F — B such that the restrictions p : Int £ — B and p : 0F — B
are smooth bundles.

The standard fiber of p : Int £ — B is called the interior fiber. O

One can think of a d-bundle as a smooth family of manifolds with boundary.

Example 3.4.51. The projection
p:[0,1] x M — M (t;m)+— m,

defines a 9-bundle. The interior fiber is the open interval (0,1). The fiber of p : d(Ix M) —
M is the disjoint union of two points. O

Standard Models A J-bundle is obtained by gluing two types of local models.
e Interior models R” x R™ — R™
e Boundary models  H' x R™ — R™, where
H' = {(3:1,--- ,z") eR™; 2t > 0}.

Remark 3.4.52. Let p: (E,0E) — B be a 0-bundle. If p : Int E — B is orientable and
the basis B is oriented as well, then on OF one can define two orientations.

(i) The fiber-first orientation as the total space of an oriented bundle OE — B.

(ii) The induced orientation as the boundary of E.
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These two orientations coincide. O

Exercise 3.4.53. Prove that the above orientations on F coincide. O

Theorem 3.4.54. Let p: (E,0FE) — B be an orientable 0-bundle with an r-dimensional

interior fiber. Then for any w € Q2 (F) we have

/ w= dpw — (—1)TdB/ w (Homotopy formula). 0
OE/B E/B E/B

The last equality can be formulated as

o= ey
o£/B  JE/B E/B

This is “the mother of all homotopy formulae”. It will play a crucial part in Chapter 7
when we embark on the study of DeRham cohomology.

Exercise 3.4.55. Prove the above theorem. O



Chapter 4

Riemannian Geometry

Now we can finally put to work the abstract notions discussed in the previous chapters.
Loosely speaking, the Riemannian geometry studies the properties of surfaces (manifolds)
“made of canvas”. These are manifolds with an extra structure arising naturally in many
instances. On such manifolds one can speak of the length of a curve, and the angle between
two smooth curves. In particular, we will study the problem formulated in Chapter 1: why
a plane (flat) canvas disk cannot be wrapped in an one-to-one fashinon around the unit
sphere in R3. Answering this requires the notion of Riemann curvature which will be the
central theme of this chapter.

4.1 Metric properties

4.1.1 Definitions and examples

To motivate our definition we will first try to formulate rigorously what do we mean by a
“canvas surface”.

A “canvas surface” can be deformed in many ways but with some limitations: it cannot
be stretched as a rubber surface because the fibers of the canvas are flexible but not elastic.
Alternatively, this means that the only operations we can perform are those which do not
change the lengths of curves on the surface. Thus, one can think of “canvas surfaces” as
those surfaces on which any “reasonable” curve has a well defined length.

Adapting a more constructive point of view, one can say that such surfaces are endowed
with a clear procedure of measuring lengths of piecewise smooth curves.

Classical vector analysis describes one method of measuring lengths of smooth paths
in R3. If v : [0,1] — R3 is such a paths, then its length is given by

1
length (7) = /0 5(0)\dt.

where |¥(t)| is the Euclidean length of the tangent vector ().

We want to do the same thing on an abstract manifold, and we are clearly faced with
one problem: how do we make sense of the length |§(¢)|? Obviously, this problem can be
solved if we assume that there is a procedure of measuring lengths of tangent vectors at
any point on our manifold. The simplest way to do achieve this is to assume that each

138
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tangent space is endowed with an inner product (which can vary from point to point in a
smooth way).

Definition 4.1.1. (a) A Riemann manifold is a pair (M, g) consisting of a smooth
manifold M and a metric g on the tangent bundle, i.e., a smooth, symmetric positive
definite (0, 2)—tensor field on M. The tensor g is called a Riemann metric on M.

(b) Two Riemann manifolds (M;, g;) (i = 1,2) are said to be isometric if there exists a
diffeomorphism ¢ : My — M such that ¢*go = g1. a

If (M, g) is a Riemann manifold then, for any x € M, the restriction
9o : TuM x T,M — R

is an inner product on the tangent space T, M. We will frequently use the alternative
notation (e,e), = g,(e,®). The length of a tangent vector v € T, M is defined as usual,

[v|e = gz(v, v)1/2.

If v : [a,b] = M is a piecewise smooth path, then we define its length by

b
1) = [ Fitohoat
a
If we choose local coordinates (z',...,z") on M, then we get a local description of g as
9= gijdxidxjy 9ij = 9(0yis Os).

Proposition 4.1.2. Let M be a smooth manifold, and denote by Ry the set of Riemann
metrics on M. Then Ry is a non-empty convex cone in the linear space of symmetric
(0,2)—tensors.

Proof. The only thing that is not obvious is that Rj; is non-empty. We will use again
partitions of unity. Cover M by coordinate neighborhoods (Uy)aea- Let (2%) be a collec-
tion of local coordinates on U,. Using these local coordinates we can construct by hand
the metric g, on U, by

Jo = (dzl)? 4 - 4 (dzm)>.

Now, pick a partition of unity B C C§°(M) subordinated to the cover (Uy)aea, i-€., there
exits a map ¢ : B — A such that V3 € B supp 8 C Uy(g). Then define

9= BIss)

BeB

The reader can check easily that g is well defined, and it is indeed a Riemann metric on
M. O

Example 4.1.3. (The Euclidean space). The space R" has a natural Riemann metric
go = (dz')* 4 - - 4 (dz™)?.

The geometry of (R™, gg) is the classical Euclidean geometry. a
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Example 4.1.4. (Induced metrics on submanifolds). Let (M,g) be a Riemann
manifold and S C M a submanifold. If ¢+ : S — M denotes the natural inclusion then we
obtain by pull back a metric on S

gs=1g=ygls .

For example, any invertible symmetric n x n matrix defines a quadratic hypersurface in
R™ by

Ha = {a:E]R"; (Az,z) = 1,},
where (e, @) denotes the Euclidean inner product on R™. #H 4 has a natural metric induced

by the Euclidean metric on R™. For example, when A = I,,, then #;, is the unit sphere
in R™, and the induced metric is called the round metric of S"~1. O

Figure 4.1: The unit sphere and an ellipsoid look “different”.

Figure 4.2: A plane sheet and a half cylinder are “not so different”.

Remark 4.1.5. On any manifold there exist many Riemann metrics, and there is no
natural way of selecting one of them. One can visualize a Riemann structure as defining
a “shape” of the manifold. For example, the unit sphere z2 4 3% + 22 = 1 is diffeomorphic
to the ellipsoid f—; + g—; + §—§ = 1, but they look “different ” (see Figure 4.1). However,
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appearances may be deceiving. In Figure 4.2 it is illustrated the deformation of a sheet
of paper to a half cylinder. They look different, but the metric structures are the same
since we have not changed the lengths of curves on our sheet. The conclusion to be drawn
from these two examples is that we have to be very careful when we use the attribute
“different”. O

Example 4.1.6. (The hyperbolic plane). The Poincaré model of the hyperbolic
plane is the Riemann manifold (D, g) where D is the unit open disk in the plane R? and
the metric g is given by

Exercise 4.1.7. Let H denote the upper half-plane
H = {(u,v) € R?; v >0},

endowed with the metric

1 2 2
Show that the Cayley transform
. 2+t ,
Z=T+ W= w=—1 - = U+ W
z2—1
establishes an isometry (D, g) = (H, h). 0

Example 4.1.8. (Left invariant metrics on Lie groups). Consider a Lie group G,
and denote by L¢ its Lie algebra. Then any inner product (-, -) on £ induces a Riemann
metric h = (-,-)4 on G defined by

hg(X,Y) = (X,Y)y = (Ly-1).X,(L,1).Y), Vg€ G, X,Y €T,G,

g g

where (Lg-1)s : TyG — T1G is the differential at g € G of the left translation map L,-1.
One checks easily that the correspondence

G> g <’7 '>g
is a smooth tensor field, and it is left invariant, i.e.,
Lih=h VgeG.

If G is also compact, we can use the averaging technique of Subsection 3.4.2 to produce
metrics which are both left and right invariant. ad

4.1.2 The Levi-Civita connection

To continue our study of Riemann manifolds we will try to follow a close parallel with
classical Euclidean geometry. The first question one may ask is whether there is a notion
of “straight line” on a Riemann manifold.

In the Euclidean space R3 there are at least two ways to define a line segment.



142 CHAPTER 4. RIEMANNIAN GEOMETRY

(i) A line segment is the shortest path connecting two given points.
(ii) A line segment is a smooth path « : [0, 1] — R3 satisfying
~(t) = 0. (4.1.1)
Since we have not said anything about calculus of variations which deals precisely with
problems of type (i), we will use the second interpretation as our starting point. We will
soon see however that both points of view yield the same conclusion.
Let us first reformulate (4.1.1). As we know, the tangent bundle of R3 is equipped
with a natural trivialization, and as such, it has a natural trivial connection V° defined

by
Vgﬁj =0 Vi,j, where 0;:=0,:, V;:=Vy,

i.e., all the Christoffel symbols vanish. Moreover, if gy denotes the Euclidean metric, then
(V290) (05, 0k) = Vb — 90(V305, k) — 90(9;, Vi) = 0,

i.e., the connection is compatible with the metric. Condition (4.1.1) can be rephrased as

V() =0, (4.1.2)

so that the problem of defining “lines” in a Riemann manifold reduces to choosing a
“natural” connection on the tangent bundle.

Of course, we would like this connection to be compatible with the metric, but even so,
there are infinitely many connections to choose from. The following fundamental result
will solve this dilemma.

Proposition 4.1.9. Consider a Riemann manifold (M,g). Then there exists a unique
symmetric connection V on T M compatible with the metric g t.e.

The connection V is usually called the Levi-Civita connection associated to the metric g.

Proof. Uniqueness. We will achieve this by producing an explicit description of a connec-
tion with the above two mproperties.
Let V be such a connection, i.e.,

Vg=0 and VxY —VyX =[X,Y], VX,Y € Vect (M).
For any X,Y,Z € Vect (M) we have
Z9(X,Y) =g(VzX,Y)+9(X,VzY)
since Vg = 0. Using the symmetry of the connection we compute
Z9(X,Y)=Yg(Z X)+ Xg(Y,Z) = g(V2X,Y) = g(Vy Z,X) + g(VxY, Z)

+9(X,VzY) —g(Z,VyX)+g(Y,VxZ)
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We conclude that

o(VXZY) = {Xg(¥,2) - Y (2, X) + Zg(X,Y)

—g([X,Y],Z)—i—g([Y,Z],X)—g([Z,X],Y)}. (4’1’3)

The above equality establishes the uniqueness of V.
Using local coordinates (z',...,z") on M we deduce from (4.1.3), with X = 0; = 0,4,
Y=0,=0ux, Z= 8]' = 0,5), that

1
9(Vi0;,0) = grell; = =

5 (0igjk — Okgij + 05gik) -

Above, the scalars I‘fj denote the Christoffel symbols of V in these coordinates, i.e.,

Vo, 05 = r

ij

Oy

If (¢%) denotes the inverse of (g;) we deduce

1
5 = 59" (Bigjr — Ogij + 0igin) - (4.1.4)

2

Existence. It boils down to showing that (4.1.3) indeed defines a connection with the
required properties. The routine details are left to the reader. a

We can now define the notion of “straight line” on a Riemann manifold.

Definition 4.1.10. A geodesic on a Riemann manifold (M, g) is a smooth path

7 (ayb) = M,

satisfying
Vy(tﬂ(t) =0, (4.1.5)
where V is the Levi-Civita connection. ad
Using local coordinates (z!,...,2™) with respect to which the Christoffel symbols are

(Ffj), and the path 7 is described by (t) = (2'(t),...,2"(t)), we can rewrite the geodesic
equation as a second order, nonlinear system of ordinary differential equations. Set

d

7 = 4(t) = 2'0;.

Then,
Vdi"y(t) = 3'0; + a‘:’Vdiai =3'0; + Q'EZQ'E]V]'(?,'
¢ ¢

= i*0, + Thd'aI0, (T, =T%),



144 CHAPTER 4. RIEMANNIAN GEOMETRY

so that the geodesic equation is equivalent to
iF 4T =0 Vk=1,..,n. (4.1.6)

Since the coefficients T’ f] = Ff](x) depend smoothly upon x, we can use the classical
Banach-Picard theorem on existence in initial value problems (see e.g. [4]). We deduce
the following local existence result.

Proposition 4.1.11. Let (M,g) be a Riemann manifold. For any compact subset K C
TM there exists € > 0 such that for any (x,X) € K there exists a unique geodesic
Y ="z,x : (—€,€) = M such that v(0) =z, 4(0) = X. 0

One can think of a geodesic as defining a path in the tangent bundle ¢ — (v(¢),7(t)).
The above proposition shows that the geodesics define a local flow ® on T'M by

'(z,X) = (v(1),7()) 7= Yax-

Definition 4.1.12. The local flow defined above is called the geodesic flow of the Riemann
manifold (M, g). When the geodesic glow is a global flow, i.e., any v, x is defined at each
moment of time ¢ for any (x, X) € TM, then the Riemann manifold is called geodesically
complete. O

The geodesic flow has some remarkable properties.

Proposition 4.1.13 (Conservation of energy). If the path ~(t) is a geodesic, then the
length of 4(t) is independent of time. O

Proof. We have i p
SHWP = Zg03(0),5(0) = 20(V309,4(2)) = 0. 0

Thus, if we consider the sphere bundles
Sy(M)={XeTM; |X|=r},

we deduce that S, (M) are invariant subsets of the geodesic flow.

Exercise 4.1.14. Describe the infinitesimal generator of the geodesic flow. O

Example 4.1.15. Let G be a connected Lie group, and let £ be its Lie algebra. Any
X € Lg defines an endomorphism ad(X) of L by

ad(X)Y :=[X,Y].
The Jacobi identity implies that
ad([X,Y]) = [ad(X),ad(Y)],

where the bracket in the right hand side is the usual commutator of two endomorphisms.
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Assume that there exists an inner product (-,-) on Lg such that, for any X € L¢, the
operator ad(X) is skew-adjoint, i.e.,

<[X7Y]7Z>:_<Y7 [X7Z]> (4-1-7)

We can now extend this inner product to a left invariant metric h on G. We want to
describe its geodesics.

First, we have to determine the associated Levi-Civita connection. Using (4.1.3) we
get

WV XZ,Y) = %{Xh(Y, 2) —Y(Z,X) + Zh(X,Y)

—h([X,Y],Z)+ h([Y, Z],X) — h([Z,X],Y)}.

If we take XY, Z € Lg, i.e., these vector fields are left invariant, then h(Y, Z) = const.,
hZ,X) = const., h(X,Y) = const. so that the first three terms in the above formula
vanish. We obtain the following equality (at 1 € G)

1
(vXZ7Y> = 5{_<[X7 Y]7Z> + <[Y7 Z]7X> - <[ZvX]7Y>}
Using the skew-symmetry of ad(X) and ad(Z) we deduce

<VXZ7Y> = <[X7 Z]7Y>7

N =

so that, at 1 € G, we have

VxZ==[X,Z] VX,Z¢€Lq. (4.1.8)

1
2
This formula correctly defines a connection since any X € Vect (G) can be written as a

linear combination

X = ZaiXi o; € COO(G) X; € Lg.

If 7(t) is a geodesic, we can write §(t) = > ; X;, so that
. ) 1
0=Vipi(t) =D 4:Xi+ 3 > ivlX Xl
i .3
Since [X;, X;] = —[X, Xi], we deduce §; =0, i.e.,

J(t) =D 7(0)X; = X.

This means that v is an integral curve of the left invariant vector field X so that the
geodesics through the origin with initial direction X € T1G are

Vx (t) = exp(tX). 0
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Exercise 4.1.16. Let G be a Lie group and h a bi-invariant metric on GG. Prove that its
restriction to L satisfies (4.1.7). In particular, on any compact Lie groups there exist
metrics satisfying (4.1.7). O

Definition 4.1.17. Let £ be a finite dimensional real Lie algebra. The Killing pairing or
form is the bilinear map

k:LxL =R, k(x,y) = —tr(ad(x)ad(y)) =,y € L.

The Lie algebra £ is said to be semisimple if the Killing pairing is a duality. A Lie group
G is called semisimple if its Lie algebra is semisimple. O

Exercise 4.1.18. Prove that SO(n) and SU(n) and SL(n,R) are semisimple Lie groups,
but U(n) is not. O

Exercise 4.1.19. Let G be a compact Lie group. Prove that the Killing form is positive
semi-definite! and satisfies (4.1.7).
Hint: Use Exercise 4.1.16. O

Exercise 4.1.20. Show that the parallel transport of X along exp(tY) is

(Loxp(%Y))*(Rexp(%Y))*X‘ 0
Example 4.1.21. (Geodesics on flat tori, and on SU(2)). The n-dimensional torus
T = St x...x St is an Abelian, compact Lie group. If (6, ...,6™) are the natural angular

coordinates on 1", then the flat metric is defined by
g=(d6")? 4 - 4 (do™)*.

The metric g on T™ is bi-invariant, and obviously, its restriction to the origin satisfies the
skew-symmetry condition (4.1.7) since the bracket is 0. The geodesics through 1 will be
the exponentials

Yorom ()t (89T et oy € R.

If the numbers oy, are linearly dependent over Q, then obviously 7a,... a,(t) is a closed
curve. On the contrary, when the a’s are linearly independent over Q then a classical
result of Kronecker (see e.g. [43]) states that the image of 74, ..., is dense in T™!I! (see
also Section 7.4 to come)

The special unitary group SU(2) can also be identified with the group of unit quater-
nions

n

{a+bitcj+dk; a®+0>+F+d* =1},

so that SU(2) is diffeomorphic with the unit sphere S C R%. The round metric on S? is
bi-invariant with respect to left and right (unit) quaternionic multiplication (verify this),

The converse of the above exercise is also true, i.e., any semisimple Lie group with positive definite
Killing form is compact. This is known as Weyl’s theorem. Its proof, which will be given later in the book,
requires substantially more work.



4.1. METRIC PROPERTIES 147

and its restriction to (1,0,0,0) satisfies (4.1.7). The geodesics of this metric are the 1-
parameter subgroups of S2, and we let the reader verify that these are in fact the great
circles of S3, i.e., the circles of maximal diameter on S3. Thus, all the geodesics on S3 are
closed. O

4.1.3 The exponential map and normal coordinates

We have already seen that there are many differences between the classical Euclidean
geometry and the the general Riemannian geometry in the large. In particular, we have
seen examples in which one of the basic axioms of Euclidean geometry no longer holds: two
distinct geodesic (read lines) may intersect in more than one point. The global topology
of the manifold is responsible for this “failure”.

Locally however, things are not “as bad”. Local Riemannian geometry is similar in
many respects with the Euclidean geometry. For example, locally, all of the classical
incidence axioms hold.

In this section we will define using the metric some special collections of local coordi-
nates in which things are very close to being Euclidean.

Let (M,g) be a Riemann manifold and U an open coordinate neighborhood with
coordinates (z!,...,2"). We will try to find a local change in coordinates (z%) +— (y/)
in which the expression of the metric is as close as possible to the Euclidean metric
go = 0ijdy'dy’.

Let ¢ € U be the point with coordinates (0, ...,0). Via a linear change in coordinates
we may as well assume that

9ij(q) = 0ij.
We can formulate this by saying that (g;;) is Euclidean up to order zero.
We would like to “spread” the above equality to an entire neighborhood of ¢. To

achieve this we try to find local coordinates (37) near ¢ such that in these new coordinates
the metric is Euclidean up to order one, i.e.,

9gi; 00;; .
9ij(q) = 6ij a—yk(q) = o (q) =0. Yi, j,k.
We now describe a geometric way of producing such coordinates using the geodesic flow.
Denote as usual the geodesic from ¢ with initial direction X € T,M by v, x(t). Note
the following simple fact.
Vs >0 yg,sx(t) = 7g,x(st).

Hence, there exists a small neighborhood V' of 0 € T, M such that, for any X € V, the
geodesic v, x (t) is defined for all [t] < 1. We define the ezponential map at g by

exp, : V CTyM — M, X+ v4x(1).
The tangent space T, M is a Euclidean space, and we can define D,(r) C T, M, the open
“disk” of radius r centered at the origin. We have the following result.

Proposition 4.1.22. Let (M,g) and q € M as above. Then there exists r > 0 such that
the exponential map
exp, : Dy(r) — M
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is a diffeomorphism onto. The supremum of all radii r with this property is denoted by
pr(q)- 0

Definition 4.1.23. The positive real number pys(q) is called the injectivity radius of M
at ¢. The infimum

pM = ilgf pr(q)

is called the injectivity radius of M. O

The proof of Proposition 4.1.22 relies on the following key fact.
Lemma 4.1.24. The Fréchet differential at 0 € T;M of the exponential map

Dy expy - TqM — Tequ(O)M = TqM
is the identity TyM — T, M.

Proof. Consider X € T,M. It defines a line ¢t — ¢tX in T, M which is mapped via the
exponential map to the geodesic 74 x (t). By definition

(Do exp,) X = 44,x(0) = X. O

Proposition 4.1.22 follows immediately from the above lemma using the inverse func-
tion theorem. O

Now choose an orthonormal frame (e, ..., e,) of T,M, and denote by (x!,...,z") the
resulting cartesian coordinates in T, M. For 0 < 7 < pp(q), any point p € exp,(Dy(r))
can be uniquely written as

p = exp,(z'e;),
so that the collection (2!, ..., ™) provides a coordinatization of the open set exp,(Dg(r)) C
M. The coordinates thus obtained are called normal coordinates at q, the open set
exp,(Dy(r)) is called a normal neighborhood, and will be denoted by B, (g) for reasons
that will become apparent a little later.

Proposition 4.1.25. Let (z') be normal coordinates at ¢ € M, and denote by gi; the
expression of the metric tensor in these coordinates. Then we have

0g;; ..
9ij(a) = i and == (g) =0 Vi, j k.

Thus, the mormal coordinates provide a first order contact between g and the Fuclidean
metric.

Proof. By construction, the vectors e; = % form an orthonormal basis of T; M and this
proves the first equality. To prove the second equality we need the following auxiliary
result.

Lemma 4.1.26. In normal coordinates (x;) (at q) the Christoffel symbols Fék vanish at
q.
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Proof. For any (m!,..,m") € R™ the curve t — (x'(t))

geodesic ¢ — exp, (> m't 621-) so that

1<i<n? x'(t) = m't, Vi is the

;-k(ac(t))mjmk = 0.

In particular, ' ' ‘
L (0)ym/mP =0 vm/ e R”

from which we deduce the lemma. O

The result in the above lemma can be formulated as

g(V 0 a)zO, Vi, g, k

0 T =%
227 Oxt’ Oxk

so that,
0 .
V%@azi =0 atgq, Vi,j. (4.1.9)
Using Vg = 0 we deduce giig (q) = (6—%€gij) l4=0. 0

The reader may ask whether we can go one step further, and find local coordinates
which produce a second order contact with the Euclidean metric. At this step we are in for
a big surprise. This thing is in general not possible and, in fact, there is a geometric way
of measuring the “second order distance” between an arbitrary metric and the Euclidean
metric. This is where the curvature of the Levi-Civita connection comes in, and we will
devote an entire section to this subject.

4.1.4 The length minimizing property of geodesics

We defined geodesics via a second order equation imitating the second order equation
defining lines in an Euclidean space. As we have already mentioned, this is not the unique
way of extending the notion of Euclidean straight line to arbitrary Riemann manifolds.

One may try to look for curves of minimal length joining two given points. We will
prove that the geodesics defined as in the previous subsection do just that, at least locally.
We begin with a technical result which is interesting in its own. Let (M, g) be a Riemann
manifold.

Lemma 4.1.27. For each q € M there exists 0 < r < pp(q), and € > 0 such that,
vm € B, (q), we have ¢ < ppr(m) and Bz(m) D By(q). In particular, any two points of
B, (q) can be joined by a unique geodesic of length < e.

We must warn the reader that the above result does not guarantee that the postulated
connecting geodesic lies entirely in B,.(¢). This is a different ball game.

Proof. Using the smooth dependence upon initial data in ordinary differential equations
we deduce that there exists an open neighborhood V' of (¢,0) € TM such that exp,, X is
well defined for all (m, X) € V. We get a smooth map

F:V—>MxM (mX)— (m,exp,, X).
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We compute the diﬁergntial of F at (g,0). First, using normal coordinates (x*) near q we
get coordinates (z'; X7) near (¢,0) € TM. The partial derivatives of F at (¢, 0) are

o. o0 0 PR
D(‘LO)F(@) = @ + W7 D(q70) (ﬁ) = S

Thus, the matrix defining D, o) F has the form
1 0
« 1 |7

It follows from the implicit function theorem that F' maps some neighborhood V' of
(¢,0) € TM diffeomorphically onto some neighborhood U of (¢,q) € M x M. We can
choose V' to have the form {(m,X) ; | X|, <&, m € Bs(q)} for some sufficiently small e
and §. Choose 0 < r < min(e, pps(q)) such that

and in particular, it is nonsingular.

mi,my € By(q) = (m1,mg) € U.

In particular, we deduce that, for any m € B,(q), the map exp,,, : D.(m) C T,,M — M
is a diffeomorphism onto its image, and

Be(m) = eXpm(Ds(m)) ) BT(Q)'

Clearly, for any m € M, the curve t — exp,,(tX) is a geodesic of length < e joining m to
exp,,(X). It is the unique geodesic with this property since F': V' — U is injective. O

We can now formulate the main result of this subsection.

Theorem 4.1.28. Let q, r and € as in the previous lemma, and consider the unique
geodesic 7y : [0,1] — M of length < € joining two points of B,(q). If w : [0,1] — M is a
piecewise smooth path with the same endpoints as v then

1 1
/Olv(t)ldts/o |ao(t)|dt.

with equality if and only if w([0,1]) = ~v([0,1]). Thus, ~y is the shortest path joining its
endpoints.

The proof relies on two lemmata. Let m € M be an arbitrary point, and assume
0 < R < pp(m).

Lemma 4.1.29 (Gauss). In Br(m) C M, the geodesics through m are orthogonal to the
hypersurfaces

Y5 = exp,(95(0)) = { exp,,(X); |X|=6}, 0<6 <R
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Proof. Let t — X (t), 0 <t <1 denote a smooth curve in T,,, M such that | X (t)|,, = 1,
i.e., X(t) is a curve on the unit sphere S1(0) C T, M. We assume that the map t —
X(t) € 51(0) is an embedding, i.e., it is injective, and its differential is nowhere zero. We
have to prove that the curve t — exp,, (0 X (¢)) are orthogonal to the radial geodesics

5+ expp, (sX (1), 0<s<R.
Consider the smooth map
I [07R] X [07 1] — M, f(S,t) = eXpm(SX(t)) (Svt) € (OvR) X (071)
If we use normal coordinates on Br(m) we can express f as the embedding
(0,R) x (0,1) = Ty, M, (s,t) — sX(t).
Set
) 0
O0s = [« % S Tf(s,t)M-

Define 9; similarly. The objects 0, and 0; are sections of the restriction of T'M to the
image of f. Using the normal coordinates on Br(m) we can think of s as a vector field
on a region in 7,, M, and as such we have the equality 95 = X (¢). We have to show

(05,0) =0 Y(s,t),

where (-, -) denotes the inner product defined by g.
Using the metric compatibility of the Levi-Civita connection along the image of f we
compute

as<asvat> = (vasas78t> =+ <83,V858t>-

Since the curves s — f(s,t = const.) are geodesics, we deduce
Vo, 0s = 0.

On the other hand, since [0s, 0] = 0, we deduce (using the symmetry of the Levi-Civita
connection)

(00, V0.0 = (01, Va0s) = 50,10, =0,

since |0s| = |X(t)| = 1. We conclude that the quantity (Js,d;) is independent of s. For
s = 0 we have f(0,t) = exp,,(0) so that J¢|s=0 = 0, and therefore

(0s,0¢) =0 V(s,1),
as needed. O

Now consider any continuous, piecewise smooth curve
w: [a,b] = Br(m) \ {m}.
Each w(t) can be uniquely expressed in the form

w(t) = exp, (p()X (1)) [X(H)] =1 0<[p(t)] <R.



152 CHAPTER 4. RIEMANNIAN GEOMETRY

Lemma 4.1.30. The length of the curve w(t) is > |p(b) — p(a)|. The equality holds if
and only if X(t) = const and p(t) > 0. In other words, the shortest path joining two
concentrical shells X5 is a radial geodesic.

Proof. Let f(p,t) := exp,,(pX(t)), so that w(t) = f(p(t),t). Then

o, of
=9, o

Since the vectors aj; and are orthogonal, and since

of
&= xwl -
we get
2 2 f 2 2
> |pl“.
Wl = 1o + 55| = Al

The equality holds if and only if g—{ =0, ie. X =0. Thus

b b
/ (oldt > / pldt > 1p(b) — pla).

Equality holds if and only if p(t) is monotone, and X (¢) is constant. This completes the
proof of the lemma. O

The proof of Theorem 4.1.28 is now immediate. Let mg,m; € B,(¢), and consider a
geodesic v : [0,1] — M of length < & such that (i) = m;, i = 0,1. We can write

Y(t) = expy,, (tX) X € D (myp).

Set R = |X|. Consider any other piecewise smooth path w : [a,b] — M joining mg to
mq. For any ¢ > 0 this path must contain a portion joining the shell ¥5(mg) to the shell
Y r(mp) and lying between them. By the previous lemma the length of this segment will
be > R — §. Letting 6 — 0 we deduce

Iw) > R =1().

If w([a,b]) does not coincide with ([0, 1]) then we obtain a strict inequality. 0

Any Riemann manifold has a natural structure of metric space. More precisely, we set
d(p,q) = inf{l(w); w:[0,1] — M piecewise smooth path joining p to q}

A piecewise smooth path w connecting two points p, ¢ such that l(w) = d(p, q) is said to
be minimal. From Theorem 4.1.28 we deduce immediately the following consequence.

Corollary 4.1.31. The image of any minimal path coincides with the image of a geodesic.
In other words, any minimal path can be reparametrized such that it satisfies the geodesic
equation.
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Exercise 4.1.32. Prove the above corollary. ad

Theorem 4.1.28 also implies that any two nearby points can be joined by a unique
minimal geodesic. In particular we have the following consequence.

Corollary 4.1.33. Let g € M. Then for all r > 0 sufficiently small
expy(D;(0))(= By (q)) ={p €M d(p,q) <7}. (4.1.10)
Corollary 4.1.34. For any q € M we have the equality
pyv(q) = sup{ r; rsatisfies (4.1.10) }

Proof. The same argument used in the proof of Theorem 4.1.28 shows that for any 0 <
7 < pu(q) the radial geodesics exp,(tX) are minimal. 0

Definition 4.1.35. A subset U C M is said to be convex if any two points in U can be
joined by a unique minimal geodesic which lies entirely inside U. ad

Proposition 4.1.36. For any q € M there exists 0 < R < tp(q) such that for any r < R
the ball B,.(q) is conver.

Proof. Choose ax 0 < € < %pM(q), and 0 < R < ¢ such that any two points mg, mq
in Br(g) can be joined by a unique minimal geodesic [0,1] 3 ¢ + iy m, (t) of length
< g, not necessarily contained in Bg(q). We will prove that Vmg,m; € Br(q) the map
t — d(q,Ymg,m: (t)) is convex and thus it achieves its maxima at the endpoints ¢ = 0, 1.
Note that

d(q,~(t)) < R+e < pu(q)-

The geodesic Yy m, (t) can be uniquely expressed as
Yimo,ma () = equ(r(t)X(t)) X(t) e T,M with r(t) = d(q, Yme,m. (t))-

It suffices to show %(rz) > 0 for t € [0,1] if d(q, mo) and d(gq, m;) are sufficiently small.
At this moment it is convenient to use normal coordinates (x') near q. The geodesic
Ymo,m, takes the form (z'(t)), and we have

We compute easily
d2
dt?
where (t) = Y &'e; € T,M. The path v satisfies the equation

(r*) = 2r(@" + - + &) + |2 (4.1.11)

@'+ Dy (@)’ &" = 0.

Since F;k(O) = 0 (normal coordinates), we deduce that there exists a constant C' > 0
(depending only on the magnitude of the second derivatives of the metric at ¢) such that

IS (@)| < Clal.
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Using the geodesic equation we obtain
& > —Clx||x]?
We substitute the above inequality in (4.1.11) to get

d2

@(rz) > 2|&|* (1 — nClz|?). (4.1.12)

If we chose from the very beginning
R+4¢e< (nC)™ Y3,

then, because along the geodesic we have |x| < R + ¢, the right-hand-side of (4.1.12) is
nonnegative. This establishes the convexity of ¢ — 72(t) and concludes the proof of the
proposition. O

In the last result of this subsection we return to the concept of geodesic completeness.
We will see that this can be described in terms of the metric space structure alone.

Theorem 4.1.37 (Hopf-Rinow). Let M be a Riemann manifold and g € M. The following
assertions are equivalent:
(a) exp, is defined on all of T, M.
(b) The closed and bounded (with respect to the metric structure) sets of M are compact.
(c) M is complete as a metric space.
(d) M is geodesically complete.
(e) There exists a sequence of compact sets K,, C M, K,, C K,,41 and |J,, K, = M such
that if p, & K, then d(q,pn) — oo.

Moreover, on a (geodesically) complete manifold any two points can be joined by a
minimal geodesic. O

Remark 4.1.38. On a complete manifold there could exist points (sufficiently far apart)
which can be joined by more than one minimal geodesic. Think for example of a manifold
where there exist closed geodesic, e.g., the tori T". O

Exercise 4.1.39. Prove the Hopf-Rinow theorem. O

Exercise 4.1.40. Let (M,g) be a Riemann manifold and let (U,) be an open cover
consisting of bounded, geodesically convex open sets. Set d, = (diameter (Uy,))?. Denote
by go the metric on U, defined by g, = d;'g so that the diameter of U, in the new metric
is 1. Using a partition of unity (¢;) subordinated to this cover we can form a new metric

G=_ Piga@ (supppi C Uyp)).

Prove that g is a complete Riemann metric. Hence, on any manifold there exist complete
Riemann metrics. O
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4.1.5 Calculus on Riemann manifolds

The classical vector analysis extends nicely to Riemann manifolds. We devote this sub-
section to describing this more general “vector analysis”.

Let (M,g) be an oriented Riemann manifold. We now have two structures at our
disposal: a Riemann metric, and an orientation, and we will use both of them to construct
a plethora of operations on tensors.

First, using the metric we can construct by duality the lowering-the-indices isomor-
phism £ : Vect (M) — Q' (M); see Example 2.2.48.

Example 4.1.41. Let M = R? with the Euclidean metric. A vector field V on M has

the form
0 0

)
V=Pao+Qy + Ry

Then
W =LV = Pdx + Qdy + Rdz.

If we think of V' as a field of forces in the space, then W is the infinitesimal work of V. O

On a Riemann manifold there is an equivalent way of describing the exterior derivative.

Proposition 4.1.42. Let
£: C®(T*M @ AFT* M) — C=(A* 17" M)
denote the exterior multiplication operator
ela®pB)=anp, YaecQ (M), BcQF(M).

Then the exterior derivative d is related to the Levi-Civita on A*T*M connection via the
equality d =€o V.

Proof. We will use a strategy useful in many other situations. Our discussion about normal
coordinates will payoff. Denote temporarily by D the operator € o V.

The equality d = D is a local statement, and it suffices to prove it in any coordinate
neighborhood. Choose (z!) normal coordinates at an arbitrary point p € M, and set
9; := 2. Note that

= oz

D =) da' AV, V=V,
i
Let w € QF(M). Near p it can be written as
w= ijdacl,
I
where as usual, for any ordered multi-index I: (1 <4 < --- < i <n), we set
dx! = dx A Adx'c.

In normal coordinates at p we have (V;0;)|,= 0 from which we get the equalities

(Vidz?) |, (O) = —(da? (Vi0k)) |,= 0.
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Thus, at p,
Dw = Z dz’ A Vi(wrda’)
I

= Zda}i A (Qjwrdz! + wrVi(dz!)) = Z dz' A Qjwy = dw.
I I
Since the point p was chosen arbitrarily this completes the proof of Proposition 4.1.42. O

Exercise 4.1.43. Show that for any k-form w on the Riemann manifold (M, g) the exterior
derivative dw can be expressed by

k
dw(Xo, X1,..., Xp) = > (-1 (Vx,w)(Xo,..., Xi, ..., Xp),
i=0
for all Xo,..., Xy € Vect (M). (V denotes the Levi-Civita connection.) 0

The Riemann metric defines a metric in any tensor bundle J7 (M) which we continue
to denote by g. Thus, given two tensor fields T3, T of the same type (r,s) we can form
their pointwise scalar product

M 3 p g(T,S), = gp(T1(p), T2(p))-

In particular, any such tensor has a pointwise norm
M >p—|Tlg, = (T,T)42.

Using the orientation we can construct (using the results in subsection 2.2.4) a natural
volume form on M which we denote by dV,, and we call it the metric volume. This is the
positively oriented volume form of pointwise norm = 1.

If (2!, ...,2™) are local coordinates such that dz' A--- Adz™ is positively oriented, then

AV, = /|gldz* A -+ A da™,
where |g| := det(g;;). In particular, we can integrate (compactly supported) functions on

M by
/ déf/ fdv, Vf e Co(M).
(M,g) M

We have the following not so surprising result.

Proposition 4.1.44. VxdV, =0, VX € Vect (M).
Proof. We have to show that for any p € M

(VxdV,)(e1, ..., en) =0, (4.1.13)

where ey, ..., €, is a basis of T,M. Choose normal coordinates (z') near p. Set 9; = %,
gij = 9(9i,0k), and e; = 0; |p. Since the expression in (4.1.13) is linear in X, we may as

well assume X = 0y, for some k = 1,...,n. We compute
(devg)(el, ceey en) = X(dVg(al, ceey an)) ‘p
=S dvg(er, e (Vx85) s ooy D). (4.1.14)
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We consider each term separately. Note first that dV(01,...,0,) = (det(gij))l/ 2 so that

X(det(gij))l/Z lp= 8k(det(gij))l/2 lp

is a linear combination of products in which each product has a factor of the form 9xg;; |p-
Such a factor is zero since we are working in normal coordinates. Thus, the first term
in(4.1.14) is zero. The other terms are zero as well since in normal coordinates at p we
have the equality

Vx0; =V, 0; = 0.

Proposition 4.1.44 is proved. O
Once we have an orientation, we also have the Hodge *-operator
s QF (M) — Qv F (M),
uniquely determined by
aAxf = (a,B)dVy, Yape Qk(M) (4.1.15)
In particular, *1 = dVj,.

Example 4.1.45. To any vector field F = P9, + Qd, + RO, on R3 we associated its
nfinitesimal work
Wp = L(F) = Pdz + Qdy + Rdz.

The infinitesimal energy flux of F' is the 2-form
Op = «Wp = Pdy Ndz + Qdz A dz + Rdx N dy.
The exterior derivative of W is the infinitesimal flux of the vector field curl F
dWp = (0yR — 0.Q)dy A dz + (0.P — 9, R)dz A dx + (9,Q — 9, P)dx A dy
= Peurtr = *Weurt p-
The divergence of F' is the scalar defined as
divF = xd* Wp = xd®p
=+ {(0,P + 0yQ + 0;R)dx Ndy N dz} = 0, P + 0,Q + 0. R.
If f is a function on R3, then we compute easily
)dxdf = 02f +02f + 02f = Af. O

Definition 4.1.46. (a) For any smooth function f on the Riemann manifold (M, g) we
denote by grad f, or grad, f, the vector field g-dual to the 1-form df. In other words

glgrad f,X)=df(X)=X-f VX € Vect (M).

(b) If (M,g) is an oriented Riemann manifold, and X € Vect (M), we denote by div X,
or div, X, the smooth function defined by the equality

LxdV, = (div X)dV. 0
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Exercise 4.1.47. Consider the unit sphere
S* = {(2,y,2) R 22 +y? + 22 =1},
and denote by g the Riemann metric on S? induced by the Euclidean metric gy = da? +
dy? + dz? on R3.
(a) Express g in the spherical coordinates (r,0, ) defined as in Example 3.4.14.

(b) Denote by h the restriction to S? of the function h(z,y,z) = z. Express grad? f in
spherical coordinates. O

Proposition 4.1.48. Let X be a vector field on the oriented Riemann manifold (M,g),
and denote by a the 1-form dual to X. Then
(a) div X = tr (VX), where we view VX as an element of C*°(End (T'M)) via the iden-
tifications

VX € QYTM) = C®(T*M @ TM) = C®(End (T M)).

(b) div X = xd * a.
(c) If (x',...,2™) are local coordinates such that dx' A--- Adz™ is positively oriented, then

div X = Lai(\/\gyxi),

varj
where X = X'0;.

The proof will rely on the following technical result which is interesting in its own. For
simplicity, we will denote the inner products by (e, e), instead of the more precise g(e, o).

Lemma 4.1.49. Denote by § the operator
6 = xdx : QF (M) — QF L ().

Let o be a (k — 1)-form and B a k-form such that at least one of them is compactly
supported. Then

/ (dav, B)dV, = (—1)n / (0, 36)dV],
M

M
where vy, j, = nk +n+ 1.

Proof. We have

/M(da,ﬁ)dvg = /M da A *f3 = /M d(a A *B) + (—=1)F /Ma Adx* B.

The first integral in the right-hand-side vanishes by the Stokes formula since o A % has
compact support. Since

d* B e Qn—k-i-l(M) and 2 — (_1)(n—k+l)(k—l) on Qn—k-i-l(M)

we deduce

/ (dav, B)dVy, = (—1)kFn=h+1)(n=k) / a A %8
M

M
This establishes the assertion in the lemma since

(n—k+1)(k—1)+k = vy, (mod?2). O
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Definition 4.1.50. Define d* : Q% (M) — QF—Y(M) by
d* = (=1)"*§ = (=1)"* xd*. O

Proof of the proposition. Set 2 :=dV,, and let (X1, ..., X,,) be a local moving frame
of TM in a neighborhood of some point. Then

(Lx)(X1, 000 Xn) = X (X1, 000 X)) = D QUX, o, [X X, o, Xi). (4.1.16)

Since V2 = 0 we get

X (X1, Xn)) = D QUX1, o, VX, oo, Xn).

Using the above equality in (4.1.16) we deduce from VxY — [X,Y] = Vy X that
(Lx)(X1, . Xn) = ) QX1 ., Vi, X, 0, Xo). (4.1.17)
Over the neighborhood where the local moving frame is defined, we can find smooth

functions flj , such that
Vx,X = fIX; =t (VX) = fl.

Part (a) of the proposition follows after we substitute the above equality in (4.1.17).
Proof of (b) For any f € C§°(M) we have

Lx(fw) = (X1)Q+ f(div X)Q.

On the other hand,
Lx(fQ) = (ixd+dix)(fQ) =dix(fQ).

Hence
{(XF) + f(div X)} dV, = d(ix f).

Since the form fQ is compactly supported we deduce from Stokes formula

/M d(ix fQ) = 0.

We have thus proved that for any compactly supported function f we have the equality

_/M f(div X)dV, =/M(Xf)dVg =/M df (X)dVg

- / (grad f, X)dV, = / (df , a)dVy.
M M

Using Lemma 4.1.49 we deduce

—/ f(dz'vX)dVg:—/ féadV, VfeCgo(M).
M M
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This completes the proof of (b).
Proof of (c) We use the equality

Lx(\/|gldz* A --- A dz™) = div(X)(\/|gldzt A -+ A dz™).

The desired formula follows derivating in the left-hand-side. One uses the fact that Lx is
an even s-derivation and the equalities

Lxdz' = 9;X"dz’ (no summation),

proved in Subsection 3.1.3. O

Exercise 4.1.51. Let (M, g) be a Riemann manifold and X € Vect (M). Show that the

following conditions on X are equivalent.

(a) Lxg = 0.

(b) g(Vy X, Z)+g(Y,VzX) =0 for all Y, Z € Vect (M).

(A vector field X satisfying the above equivalent conditions is called a Killing vector field).
|

Exercise 4.1.52. Consider a Killing vector field X on the oriented Riemann manifold
(M, g), and denote by n the 1-form dual to X. Show that dn = 0, i.e., div(X) = 0. O

Definition 4.1.53. Let (M, g) be an oriented Riemann manifold (possibly with bound-
ary). For any k-forms «, 8 define

(@.8) = a8 = [ (a.p)avy = [ ans

whenever the integrals in the right-hand-side are finite. O

Let (M, g) be an oriented Riemann manifold with boundary OM. By definition, M is
a closed subset of a boundary-less manifold M of the same dimension. Along OM we have
a vector bundle decomposition

(TM) |op=T(OM) & n

where n = (TOM)™ is the orthogonal complement of TOM in (T'M) |sp;. Since both M
and OM are oriented manifolds it follows that v is a trivial line bundle. Indeed, over the

boundary
det TM = det(TOM) @ n

so that
n =det TM ® det(TOM)*.

In particular, n admits nowhere vanishing sections, and each such section defines an
orientation in the fibers of n.

An outer normal is a nowhere vanishing section o of n such that, for each z € M,
and any positively oriented w, € detT,0M, the product o, A w, is a positively oriented
element of det T, M. Since n carries a fiber metric, we can select a unique outer normal
of pointwise length = 1. This will be called the unit outer normal, and will be denoted by
7. Using partitions of unity we can extend I/ to a vector field defined on M.
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Proposition 4.1.54 (Integration by parts). Let (M,g) be a compact, oriented Riemann
manifold with boundary, o € QF~Y(M) and B € QF(M). Then

/M(doz,ﬁ)dVg = /é)M(a A *B) o —I-/M(Oz,d*ﬁ)dVg

= [ alows AsGisB)lons + [ (@ B)a,
oM M
where % denotes the Hodge x-operator on OM with the induced metric g and orientation.
Using the (-, ) notation of Definition 4.1.53 we can rephrase the above equality as
(da, B)avr = (o, igB)om + (o, d*B) -
Proof. As in the proof of Lemma 4.1.49 we have
(dav, B)dV, = da A B = d(a A *B) + (—1)Fa Ad * 3.

The first part of the proposition follows from Stokes formula arguing precisely as in Lemma
4.1.49. To prove the second part we have to check that

(a A %B) o= alors Nx(iB) lons -
This is a local (even a pointwise) assertion so we may as well assume
M =H" ={(z',..,2") e R"; 2! >0},

and that the metric is the Euclidean metric. Note that 7 = —9;. Let I be an ordered
(k — 1)-index, and J be an ordered k-index. Denote by J¢ the ordered (n — k)-index
complementary to J so that (as sets) J U J¢ = {1,...,n}. By linearity, it suffices to
consider only the cases a = dz!, f = dz’. We have

sdz’ = ejda’” (e5 = £1) (4.1.18)
and ¢
0, 1¢gJ
;L J — . 9
td { —dz” | 1eJ’

where J' = J \ {1}. Note that, if 1 ¢ J, then 1 € J¢ so that

(@ A*B) lon= 0= a [onr N¥(158) |ons,

and therefor, the only nontrivial situation left to be discussed is 1 € J. On the boundary
we have the equality

Y(igde?) = —x(dz’") = —€;da’ () = +1). (4.1.19)

We have to compare the two signs ey and €. in (4.1.18) and (4.1.19). The sign €; is
the signature of the permutation JUJ of {1,...,n} obtained by writing the two increasing
multi-indices one after the other, first J and then J¢. Similarly, since the boundary oM
has the orientation —dz? A --- A dz"™, we deduce that the sign €/ is (—1)x(the signature
of the permutation J'UJ¢ of {2,...,n}). Obviously

sign (JUJ®) = sign (J'0J°),

so that e; = —¢/;. The proposition now follows from (4.1.18) and (4.1.19). 0
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Corollary 4.1.55 (Gauss). Let (M,g) be a compact, oriented Riemann manifold with
boundary, and X a vector field on M. Then

/Mdiv(X)dng / (X, D)dvg,,

oM
where gg = glon -

Proof. Denote by « the 1-form dual to X. We have

/ dz"u(X)dVg:/ 1/\*d*ad‘/;]:/ (1,*d*a)dVg:—/ (1,d"a)dV,
M M M M

_ / (i) duy, — / (X, 7)dvy,. .
oM oM

Remark 4.1.56. The compactness assumption on M can be replaced with an integrability
condition on the forms «, 8 so that the previous results hold for noncompact manifolds as
well provided all the integrals are finite. O

Definition 4.1.57. Let (M, g) be an oriented Riemann manifold. The geometric Lapla-
cian is the linear operator Ay : C°(M) — C°(M) defined by

Ay =dYdf = — xd*df = —div(grad f).

A smooth function f on M satisfying the equation Ap;f = 0 is called harmonic. O

Using Proposition 4.1.48 we deduce that in local coordinates (x!, ..., 2"), the geometer’s
Laplacian takes the form

Ay = = (VIdlg9;)

Vgl

where (g"/) denotes as usual the matrix inverse to (g;;). Note that when g is the Euclidean
metric, then the geometers’ Laplacian is

Ag=—(8 +---+3),

which differs from the physicists’ Laplacian by a sign.

Corollary 4.1.58 (Green). Let (M,g) as in Proposition 4.1.54, and f, g € C*(M).
Then

(F, Sarg) = G dg)ar — A D)o,

and

(F Basghae — Bacf g = (L ghons — (. Dyour

Proof. The first equality follows immediately from the integration by parts formula (Propo-
sition 4.1.54), with o = f, and 8 = dg. The second identity is now obvious. O
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Exercise 4.1.59. (a) Prove that the only harmonic functions on a compact oriented
Riemann manifold M are the constant ones.
(b) If u, f € C°°(M) are such that Ayu = f show that [, f =0. O

Exercise 4.1.60. Denote by (u',...,u") the coordinates on the round sphere S” « R"*+!
obtained via the stereographic projection from the south pole.
(a) Show that the round metric gy on S™ is given in these coordinates by

4
1+ r2

go = {(du1)2+---+(du”)2},

where 72 = (u!)? + .- + (u™)2.
(b) Show that the n-dimensional “area” of S™ is

or(nt1)/2
on = / dvgy = ——5—
sn ==
where I' is Euler’s Gamma function
o0
I(s) = / t5=te . O
0
Hint: Use the “doubling formula”
T/20(25) = 22710 ()T (s + 1/2),
and the classical Beta integrals (see [40], or [103], Chapter XII)

[ T2
o (I+r2n 2T'(n)

Exercise 4.1.61. Consider the Killing form on su(2) (the Lie algebra of SU(2)) defined
by

(X,)Y)=—tr X -Y.
(a) Show that the Killing form defines a bi-invariant metric on SU(2), and then compute
the volume of the group with respect to this metric. The group SU(2) is given the
orientation defined by e; A ea A ez € A3su(2), where e; € su(2) are the Pauli matrices

Ti o0 [0 1 [0 i
“CTlo i T -1 0] ®Tio0
(b) Show that the trilinear form on su(2) defined by
B(X,Y,Z) = ([X,Y], ),

is skew-symmetric. In particular, B € A%su(2)*.
(c) B has a unique extension as a left-invariant 3-form on SU(2) known as the Cartan
form on SU(2)) which we continue to denote by B. Compute fSU(2) B.

Hint: Use the natural diffeomorphism SU(2) = S3, and the computations in the previous
exercise. 0
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4.2 The Riemann curvature

Roughly speaking, a Riemann metric on a manifold has the effect of “giving a shape” to
the manifold. Thus, a very short (in diameter) manifold is different from a very long one,
and a large (in volume) manifold is different from a small one. However, there is a lot
more information encoded in the Riemann manifold than just its size. To recover it, we
need to look deeper in the structure, and go beyond the first order approximations we
have used so far.

The Riemann curvature tensor achieves just that. It is an object which is very rich
in information about the “shape” of a manifold, and loosely speaking, provides a second
order approximation to the geometry of the manifold. As Riemann himself observed, we
do not need to go beyond this order of approximation to recover all the information.

In this section we introduce the reader to the Riemann curvature tensor and its as-
sociates. We will describe some special examples, and we will conclude with the Gauss-
Bonnet theorem which shows that the local object which is the Riemann curvature has
global effects.
1= [Unless otherwise indicated, we will use Einstein’s summation convention.

4.2.1 Definitions and properties
Let (M, g) be a Riemann manifold, and denote by V the Levi-Civita connection.
Definition 4.2.1. The Riemann curvature is the tensor R = R(g), defined as

where F(V) is the curvature of the Levi-Civita connection. O
The Riemann curvature is a tensor R € Q?(End (T'M)) explicitly defined by
R(X,Y)Z =[Vx,Vy]Z - Vxy|Z.
In local coordinates (z',...,2") we have the description
R{;.00 = R(9;,0,,)0;.
In terms of the Christoffel symbols we have
Rijy, = 0,15, — OkT5; + Ty T — T 7
Lowering the indices we get a new tensor
Rijee = gim R = 9( R(Ok, 00)05,0; ) = g( 8y, R(Ok, 0r)0; ).

Theorem 4.2.2 (The symmetries of the curvature tensor). The Riemann curvature tensor
R satisfies the following identities (X,Y,Z,U,V € Vect (M)).

(¢) g(R(X,Y)U,V) = —g(R((Y, X),U, V).

(b) g(R(X,Y)U,V) = —g(R(X,Y)V,U).
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(c¢) (The 1st Bianchi identity)
R(X,Y)Z + R(Z,X)Y + R(Y, Z)X = 0.

(d) g(R(X,Y)U,V) =g(R(U,V)X,Y).
(e) (The 2nd Bianchi identity)

(VxR)(Y,Z)+ (VyR)(Z,X)+ (VzR)(X,Y) =0
In local coordinates the above identities have the form
Rijre = —Rjike = — Rijok,

Rijke = Ryeij,
Ry + Rijj, + Riy =0,

(ViR)znkg + (VZR)zm'k + (ka)gngi =0.

Proof. (a) It follows immediately from the definition of R as an End(T'M )-valued skew-
symmetric bilinear map (X,Y) — R(X,Y).
(b) We have to show that the symmetric bilinear form

Q(U’ V) = g(R(X, Y)Uv V) + g(R(X, Y)Vv U)

is trivial. Thus, it suffices to check Q(U,U) = 0. We may as well assume that [X,Y] =0,
since (locally) X, Y can be written as linear combinations (over C*°(M)) of commuting
vector fields. (E.g. X = X'9;). Then

Q(U, U) = g((VXVy - Vyvx)U, U).
We compute
Y(Xg(U, U)) = QYQ(VXU, U) = ZQ(VyVXU, U) + ZQ(V)(U, VyU),

and similarly,
X(Yg(U,U)) =29(VxVyU,U) +29(VxU,VyU).

Subtracting the two equalities we deduce (b).
(c) As before, we can assume the vector fields X, Y, Z pairwise commute. The 1st Bianchi
identity is then equivalent to

VxVyZ =VyVxZ +VzVxY —=VxVzY +VyVzX - VzVy X =0.

The identity now follows from the symmetry of the connection: VxY = Vy X etc.
(d) We will use the following algebraic lemma ([61], Chapter 5).
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Lemma 4.2.3. Let R: Ex ExX E x E — R be a quadrilinear map on a real vector space
E. Define

S(X1, Xo, X3, X4) = R(X1, Xo, X3, Xy) + R(X2, X3, X1, Xu) + R(X3, X1, X2, Xy).
If R satisfies the symmetry conditions
R(Xb X27 X37 X4) = _R(X27 X17 X37 X4)

R(X1, X9, X3, X4) = —R(X1, X9, X4, X3),
then

R(Xb X27 X37 X4) - R(X37 X47 X17 X2)
1

= 5{ S(X1, Xo, X3, X4) — S(X2, X3, X4, X1)

— S(Xg,X4,X1,X2) + S(X4,X3,X1,X2) }

The proof of the lemma is a straightforward (but tedious) computation which is left
to the reader. The Riemann curvature R = g(R(X1, X2)X3, X4) satisfies the symmetries
required in the lemma and moreover, the 1st Bianchi identity shows that the associated
form S is identically zero. This concludes the proof of (d).

(e) This is the Bianchi identity we established for any linear connection (see Exercise
3.3.23). O

Exercise 4.2.4. Denote by C,, of n-dimensional curvature tensors, i.e., tensors (R;jx) €
(R™)®4 satisfying the conditions,

Rijre = Rivij = —Rjine, Rijre + Rigje + Rigej = 0, Vi, j, k, L.

ame, = (9,1 - () =30 ((5)+1) - (1)

(Hint: Consult [13], Chapter 1, Section G.) 0

Prove that

The Riemann curvature tensor is the source of many important invariants associated
to a Riemann manifold. We begin by presenting the simplest ones.

Definition 4.2.5. Let (M, g) be a Riemann manifold with curvature tensor R. Any two
vector fields X, Y on M define an endomorphism of T'M by

U~ R(U,X)Y.
The Ricci curvature is the trace of this endomorphism, i.e.,
Ric(X,Y) =tr (U — R(U,X)Y).

We view it as a (0,2)-tensor (X,Y) — Ric (X,Y) € C®°(M). 0
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If (z%,...,2") are local coordinates on M and the curvature R has the local expression
R= (Rf;i j) then the Ricci curvature has the local description

Ric = (Ric;;) = Y Rip
¢

The symmetries of the Riemann curvature imply that Ric is a symmetric (0,2)-tensor (as
the metric).

Definition 4.2.6. The scalar curvature s of a Riemann manifold is the trace of the Ricci
tensor. In local coordinates, the scalar curvature is described by

s = g" Ric;j = ginfgj, (4.2.1)

where (g) is the inverse matrix of (g;;). O

Let (M, g) be a Riemann manifold and p € M. For any linearly independent X,Y €
T,M set
(R(X, Y)Y, X)

XA Y| 7

where | X A Y| denotes the Gramm determinant

Ky(X)Y) =

(X, X) (X,Y)

XAYT=1 v xy vy |

which is non-zero since X and Y are linearly independent. (|X A Y|'/? measures the area
of the parallelogram in 7, M spanned by X and Y".)

Remark 4.2.7. Given a metric g on a smooth manifold M, and a constant A > 0, we
obtained a new, rescaled metric gy = A\2g. A simple computation shows that the Christoffel
symbols and Riemann tensor of gy are equal with the Christoffel symbols and the Riemann
tensor of the metric g. In particular, this implies

Ricg, = Ricy .

However, the sectional curvatures are sensitive to metric rescaling.

For example, if ¢ is the canonical metric on the 2-sphere of radius 1 in R3, then g is
the induced metric on the 2-sphere of radius A in R3. Intuitively, the larger the constant
A, the less curved is the corresponding sphere.

In general, for any two linearly independent vectors X,Y € Vect (M) we have

K, (X,Y) = \2K,(X,Y).

In particular, the scalar curvature changes by the same factor upon rescaling the metric.
If we thing of the metric as a quantity measured in meter?, then the sectional curvatures
are measured in meter—2. O

Exercise 4.2.8. Let X, Y, Z, W € T,,M such that span(X,Y)= span(Z,W) is a 2-dimensional
subspace of T, M prove that K,(X,Y) = K,(Z,W). 0
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According to the above exercise the quantity K,(X,Y) depends only upon the 2-plane
in T, M generated by X and Y. Thus K, is in fact a function on Gry(p) the Grassmannian
of 2-dimensional subspaces of T, M.

Definition 4.2.9. The function K, : Grz(p) — R defined above is called the sectional
curvature of M at p. O

Exercise 4.2.10. Prove that
Gra(M) = disjoint union of Gra(p) pe M

can be organized as a smooth fiber bundle over M with standard fiber Gra(R"), n =
dim M, such that, if M is a Riemann manifold, Gra(M) > (p;7) — K,(m) is a smooth
map. g
4.2.2 Examples

Example 4.2.11. Consider again the situation discussed in Example 4.1.15. Thus, G is
a Lie group, and (e, e) is a metric on the Lie algebra L satisfying

(ad(X)Y, Z) = —(Y,ad(X)Z).

In other words, (e,e) is the restriction of a bi-invariant metric m on G. We have shown
that the Levi-Civita connection of this metric is

VxY = %[X, Y], VX,Y € L¢.
We can now easily compute the curvature
1 1
.. . 1 1 1 1 1
(JaCObl ldentltY) = Z[[X7Y]vz]+1[y7 [X7 ZH_Z[K [Xv Z]]_i[[X7Y]7Z] = _Z[[X7Y]7Z]

We deduce
(ROX,Y)Z,W) = =3 ([1X,Y), 2), W) = 3 (ad(Z)[X, Y], W)

1 1
= _Z<[X7 Y]v ad(Z)W> = _Z<[X7 Y]7 [Z7 W]>
Now let m € Gra(T,;G) be a 2-dimensional subspace of TG, for some g € G. If (X,Y) is
an orthonormal basis of 7, viewed as left invariant vector fields on G, then the sectional

curvature along 7 is
1
Ky(m) = (X, Y], [X,Y]) > 0.

Denote the Killing form by x(X,Y) = —tr (ad(X) ad(Y) ). To compute the Ricci curva-
ture we pick an orthonormal basis E,. .., E, of Lg. For any X = X'E;,Y = YjEj € Lo
we have

Ric (X,Y) = itr (Z > [[X, 2], Y))
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= L X BL YL ED) = - Y d()IX, B, B)

7

(2

= —i Z(ad(Y) ad(X)E;, B;) = —itr (ad(Y)ad(X)) = in(X,Y).

In particular, on a compact semisimple Lie group the Ricci curvature is a symmetric
positive definite (0,2)-tensor, and more precisely, it is a scalar multiple of the Killing
metric.

We can now easily compute the scalar curvature. Using the same notations as above
we get

In particular, if G is a compact semisimple group and the metric is given by the Killing
form then the scalar curvature is

s(k) = idimG. 0

Remark 4.2.12. Many problems in topology lead to a slightly more general situation
than the one discussed in the above example namely to metrics on Lie groups which are
only left invariant. Although the results are not as “crisp” as in the bi-invariant case many
nice things do happen. For details we refer to [74]. O

Example 4.2.13. Let M be a 2-dimensional Riemann manifold (surface), and consider
local coordinates on M, (z',22). Due to the symmetries of R,

Rijri = —Rijik = Ryuij,

we deduce that the only nontrivial component of the Riemann tensor is R = Rj212. The
sectional curvature is simply a function on M

1 1
K= leglg = 53(9), where |g| = det(g;;).
In this case, the scalar K is known as the total curvature or the Gauss curvature of the
surface.
In particular, if M is oriented, and the form dz' A dz? defines the orientation, we can
construct a 2-form

1 1 1
e(g) = —Kdvy = —s(g)dV, = ——
(g) Ug s(g) g 27_[_\/@

27 4
The 2-form £(g) is called the Fuler form associated to the metric g. We want to emphasize
that this form is defined only when M is oriented.

nglgd:ﬂl A dz?.
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We can rewrite this using the pfaffian construction of Subsection 2.2.4. The curvature
R is a 2-form with coefficients in the bundle of skew-symmetric endomorphisms of T'M so
we can write

1
R=A®dV, A:—[

Vgl
Assume for simplicity that (z!,2?) are normal coordinates at a point ¢ € M. Thus at g,
lg| = 1 since 01, 02 is an orthonormal basis of T, M. Hence, at ¢, dV, = dz' A dz?, and

6(9) = ig( R(@l, O )82, al)d:El Adz? = inglgdl‘l A dz?.
2 2

0 Ri212 ]
Rai12 0

Hence we can write
1 1
E(g) = % Pfg(_A)dvg =: % Pfg(_R)

The Euler form has a very nice interpretation in terms of holonomy. Assume as before
that (z',22) are normal coordinates at g, and consider the square S; = [0,/] x [0, /]
in the (z',22) plane. Denote the (counterclockwise) holonomy along 9S; by T;. This is
an orthogonal transformation of T, M, and with respect to the orthogonal basis (01, d2) of
T,M, it has a matrix description as

cos@(t) —sinf(t)

To= 1 Gno)  cos(t)

The result in Subsection 3.3.4 can be rephrased as
sinf(t) = —tg(R(0y1,02)0,01) + O(t?),

so that ‘
Ri212 = 0(0).

Hence Rj212 is simply the infinitesimal angle measuring the infinitesimal rotation suffered
by 0y along S;. We can think of the Euler form as a “density” of holonomy since it
measures the holonomy per elementary parallelogram. O

4.2.3 Cartan’s moving frame method

This method was introduced by Elie Cartan at the beginning of the 20th century. Cartan’s
insight was that the local properties of a manifold equipped with a geometric structure can
be very well understood if one knows how the frames of the tangent bundle (compatible
with the geometric structure) vary from one point of the manifold to another. We will
begin our discussion with the model case of R™. Throughout this subsection we will use
Einstein’s convention.

Example 4.2.14. Consider an orthonormal moving frame on R", X, = X' 0;, a« = 1,...,m,
where (x!,...,2") are the usual Cartesian coordinates, and 0; := %. Denote by (6) the
dual coframe, i.e., the moving frame of T*R" defined by

6(X5) = 69
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The 1-forms 0% measure the infinitesimal displacement of a point P with respect to the
frame (X,). Note that the T'M-valued 1-form 6 = 6“X,, is the differential of the identity
map 1 : R™ — R" expressed using the given moving frame.

Introduce the 1-forms wg defined by

dXg = Wi Xa, (4.2.2)

where we set

OXi\
dX, = < 5 > dz’ ® 0;.

We can form the matrix valued 1-form w = (wg) which measures the infinitesimal rotation
suffered by the moving frame (X,,) following the infinitesimal displacement = — = + dx.
In particular, w = (wg‘) is a skew-symmetric matrix since

0=d(Xa, Xg) = (w- Xao, Xg) + (Xo,w - Xg).
Since 0 = d1 we deduce
0=d’1=df =df* ® Xo — 0° ® dXp = (d0* — 6° Nw§) ® X,,
and we can rewrite this as
do™ = 6° A wg, or df = —w A 0. (4.2.3)

Above, in the last equality we interpret w as a m X n matrix whose entries are 1-forms,
and 6 as a column matrix, or a n X 1 matrix whose entries are 1-forms.
Using the equality d?Xz = 0 in (4.2.2) we deduce

dwg = —w§ A wg, or equivalently, dw = —w A w. (4.2.4)

The equations (4.2.3)—(4.2.4) are called the structural equations of the Euclidean space.
The significance of these structural equations will become evident in a little while. a

We now try to perform the same computations on an arbitrary Riemann manifold
(M,g), dimM = n. We choose a local orthonormal moving frame (X, )i<q<n, and we
construct similarly its dual coframe (6%);<q<p. Unfortunately, there is no natural way to
define dX, to produce the forms wj entering the structural equations. We will find them
using a different (dual) search strategy.

Proposition 4.2.15 (E. Cartan). There ezists a collection of 1-forms (wg)lgaﬁgn uniquely
defined by the requirements

(a) w§ = —wh, Va, B.

(b) do~ = 68 Awg, Vo
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Proof. Since the collection of two forms (6¢ NGP )1<a<p<n defines a local frame of A2T*R"™,
there exist functions gg‘ﬁ/, uniquely determined by the conditions

1
_ - B - _
do* = 292‘76 AR gg‘V = gf;‘ﬁ.

Uniqueness. Suppose that there exist forms wj satisfy the conditions (a)&(b) above. Then
there exist functions fgy such that

o = 130
Then the condition (a) is equivalent to
(al) fg, = —fir,
while (b) gives
(b1) f3, — fs = 95,
The above two relations uniquely determine the f’s in terms of the ¢’s via a cyclic
permutation of the indices «, 3, v

1

Ezistence. Define wg = fgym, where the f’s are given by (4.2.5). We let the reader check
that the forms wj satisfy both (a) and (b). O

The reader may now ask why go through all this trouble. What have we gained by
constructing the forms w, and after all, what is their significance?
To answer these questions, consider the Levi-Civita connection V. Define (Z)g by

VX5 = 0f Xa.

Hence
VXWXﬁ = (Z)g(XV)Xa.

Since V is compatible with the Riemann metric, we deduce in standard manner that
W = —08.

The differential of % can be computed in terms of the Levi-Civita connection (see
Subsection 4.1.5), and we have

A0 (Xg, Xy) = Xp0*(X,) — X,6%(Xp) — 0%(Vx,X5) +0%(Vx, Xp)
(use 0%(X3) = 03 = const) = —HQ(GJ?Y(X[;)X(;) + HQ(wg(XV)X(;)
= 0§ (X,) — &5 (Xp) = (0° A&)(Xp, Xy).
Thus the @’s satisfy both conditions (a) and (b) of Proposition 4.2.15 so that we must
have
w5 = wg.
In other words, the matrix valued 1-form (w§) is the 1-form associated to the Levi-Civita

connection in this local moving frame. In particular, using the computation in Example
3.3.12 we deduce that the 2-form

Q= (dw+wAw)
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is the Riemannian curvature of g. The Cartan structural equations of a Riemann manifold
take the form
df =—-wANb, dv+wAw=1Q. (4.2.6)

Comparing these with the Euclidean structural equations we deduce another interpretation
of the Riemann curvature: it measures “the distance” between the given Riemann metric
and the Euclidean one”. We refer to [93] for more details on this aspect of the Riemann
tensor.

The technique of orthonormal frames is extremely versatile in concrete computations.

Example 4.2.16. We will use the moving frame method to compute the curvature of the
hyperbolic plane, i.e., the upper half space

H, = {(‘Tvy); y > 0}

endowed with the metric g = y~2(dz? + dy?).
The pair (y0;,y0y) is an orthonormal moving frame, and (6% = %d:n, oY =
dual coframe. We compute easily

édy) is its

1 1 1
do* = d(—dx) = —dx Ndy = (—dx) N 6Y,
(y ) " (y )
Y = d(Ldy) = 0 = (—Lda) A 0"
y y

Thus the connection 1-form in this local moving frame is

0 —1
w=| 4 Y | dx.
[a 0]

Note that w A w = 0. Using the structural equations (4.2.6) we deduce that the Riemann
curvature is

0 % 0 -1
= g Y — x Y
Q=dw [_y_12 Oldy/\daz [1 0}9 N 6Y.
The Gauss curvature is
1 1
K = EQ(Q(axvay)ayvax) = ?44(_?) =-L 0

Exercise 4.2.17. Suppose (M, g) is a Riemann manifold, and u € C°°(M). Define a new
metric g, := e*/g. Using the moving frames method, describe the scalar curvature of g,
in terms of v and the scalar curvature of g. a

4.2.4 The geometry of submanifolds

We now want to apply Cartan’s method of moving frames to discuss the the local geometry
of submanifolds of a Riemann manifold.

Let (M, g) be a Riemann manifold of dimension m, and S a k-dimensional submanifold
in M. The restriction of g to S induces a Riemann metric gg on S. We want to analyze
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the relationship between the Riemann geometry of M (assumed to be known) and the
geometry of S with the induced metric.

Denote by VM (respectively V*) the Levi-Civita connection of (M, g) (respectively of
(S,9gs). The metric g produces an orthogonal splitting of vector bundles

(TM)|s= TS @ NgS.

The Ng is called the normal bundle of S < M, and its is the orthogonal complement of
TS in (TM)|s. Thus, a section of (T'M) |g, that is a vector field X of M along S, splits
into two components: a tangential component X7, and a normal component, X".

Now choose a local orthonormal moving frame (X1, ..., X; Xg11, ..., X;n) such that the
first k vectors (X1, ..., Xj) are tangent to S. Denote the dual coframe by (0%)1<a<m. Note
that

0%|s=0 fora > k.

Denote by (u3), (1 < o, 8 < m) the connection 1-forms associated to VM by this frame,
and let of, (1 < «, 3 < k) be the connection 1-forms of V¥ corresponding to the frame
(X1,...,X). We will analyze the structural equations of M restricted to S < M.

d9* =0 Apf 1< a,B<m. (4.2.7)

We distinguish two situations.
A. 1<a <k Since #° |g=0 for B > k the equality (4.2.7) yields

k
d@a:ZHB/\,ug, ,ug:—ug 1<a,p<k.
B=1

The uniqueness part of Proposition 4.2.15 implies that along S
ag‘:,ug 1<a,6<Ek.
This can be equivalently rephrased as
VY = (VYY) VXY € Vect (S). (4.2.8)

B. k£ <a<m. We deduce
k

0=> 6"Apug.
B=1
At this point we want to use the following elementary result.

Exercise 4.2.18 (Cartan Lemma). Let V be a d-dimensional real vector space and con-
sider p linearly independent elements wy, ...,w, € AV, p < d. If 6y, ...,0, € A'V are

such that ,
Z 0; \w; =0,
i=1

then there exist scalars A;;, 1 <4,j < p such that A;; = Aj; and

p
0; = Z Aijwj. O
j=1



The Riemann curvature 175

Using Cartan lemma we can find smooth functions fé\v’ A>k, 1 <8,y <k satisfying

fé\v = i\ﬁ’ and ,ug = fé\vm‘
Now form
N=f3,0"®60"  X,.
We can view N as a symmetric bilinear map
Vect (S) x Vect (S) — C*°(Ng).

If U,V € Vect (5)
U=UXs=0°U)Xs 1<B<k,

and
V=V'X,=0(V)X, 1<y<k,
then

A>k

NUV)=>" {Z (Z f@ﬁ%V)) eﬁ(U)} XA
B Y
= Z (Zug(V)UB) X
B

A>k

The last term is precisely the normal component of V{‘//[ U. We have thus proved the
following equality. so that we have established

(VHU)” =NU, V) =NV, U) = (VHV)". (4.2.9)

The map N is called the 2nd fundamental form? of S < M.
There is an alternative way of looking at N. Choose

U,V € Vect (S), N € C®(Ng).
If we write g(e, ) = (e, @), then
(NW,V)N) = ((Ve'V)",N) = (VFV.N)
= Vi (V. N) = (V.VIIN ) = (V. (VI N)" ).
We have thus established
—(V,(V¥N)") =(NU,V),N) = (NV,U),N ) = (U, (VI N)"). (4.2.10)

The 2nd fundamental form can be used to determine a relationship between the curvature
of M and that of S. More precisely we have the following celebrated result.

Theorema Egregium (Gauss). Let RM (resp. RS ) denote the Riemann curvature
of (M,g) (resp. (S, g|s). Then for any X,Y, Z, T € Vect (S) we have
(RM(X,Y)Z,T)=(R5(X,Y)Z,T)
+ <N(X, Z), N(Y, T)> — <N(X, T), N, Z) >

2The first fundamental form is the induced metric.

(4.2.11)
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Proof. Note that
VAY = V5V + N(X,Y).

We have
RM(X, V)X = V¥, v¥]Z -V, Z

= VY (VYZ+N(Y, 2)) = VY (VX Z + N(X, 2)) = Vixy1Z = N([X,Y], Z).

Take the inner product with 7" of both sides above. Since N(e, ®) is Ng-valued, we deduce
using (4.2.8)-(4.2.10)

(RM(X,Y)Z,T)=(VXVYZT)+(VXNY,2),T)
—(VY¥VXZ,T) = (VY¥N(X,2),T) = (Vixy%T)
= ([V%, V12,7 ) = (N(Y, Z),N(X,T) ) + (N(X, 2),N(Y,T) ) = (Vix %, T).
This is precisely the equality (4.2.11). 0

The above result is especially interesting when S is a transversally oriented hypersur-
face, i.e., S is a a codimension 1 submanifold such that the normal bundle Ng is trivial®.
Pick an orthonormal frame n of Ng, i.e., a length 1 section of Ng, and choose an orthonor-
mal moving frame (Xq, ..., X;,—1) of T'S.

Then (X, ..., X;—1,n) is an orthonormal moving frame of (T'M) |g, and the second
fundamental form is completely described by

Nn(X,Y) = (N(X,Y),n).
N, is a bona-fide symmetric bilinear form, and moreover, according to (4.2.10) we have
Np(X,Y) = —(V¥n,Y) = —(V{¥n X).
In this case, Gauss formula becomes

(REZT) = (R )2 ) - | XD T |

No(Y,Z) No(Y,T)

—~

Let us further specialize, and assume M = R™. Then

(4.2.12)

<RS(X,Y)Z,T>:‘ Na(X,T) Nu(X,Z) ‘

NV, T) Np(Y,2)
In particular, the sectional curvature along the plane spanned by X,Y is
(RY(X,Y)Y, X ) = Nn(X,X) - Nu(YV,Y) = [Nu(X, V)2

This is a truly remarkable result. On the right-hand-side we have an extrinsic term (it
depends on the “space surrounding S”), while in the left-hand-side we have a purely in-
trinsic term (which is defined entirely in terms of the internal geometry of S). Historically,

3Locally, all hypersurfaces are transversally oriented since N is locally trivial by definition.
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the extrinsic term was discovered first (by Gauss), and very much to Gauss surprise (?!7)
one does not need to look outside S to compute it. This marked the beginning of a new
era in geometry. It changed dramatically the way people looked at manifolds and thus it
fully deserves the name of The Golden (egregium) Theorem of Geometry.

We can now explain rigorously why we cannot wrap a plane canvas around the sphere.
Notice that, when we deform a plane canvas, the only thing that changes is the extrinsic
geometry, while the intrinsic geometry is not changed since the lengths of the “fibers” stays
the same. Thus, any intrinsic quantity is invariant under “bending”. In particular, no
matter how we deform the plane canvas we will always get a surface with Gauss curvature
0 which cannot be wrapped on a surface of constant positive curvature! Gauss himself
called the total curvature a“bending invariant”.

Example 4.2.19. (Quadrics in R?). Let A : R? — R3 be a selfadjoint, invertible
linear operator with at least one positive eigenvalue. This implies the quadric

Qa={uecR3; <Au,u>:1},

is nonempty and smooth (use implicit function theorem to check this). Let uy € Q4.
Then

TuQa={z €R?; (Aug,z) = 0} = (Aug)*.

Q4 is a transversally oriented hypersurface in R? since the map Q4 3 u + Au defines a
nowhere vanishing section of the normal bundle. Set n = ‘A—lu‘Au.

Consider an orthonormal frame (eg, e1,es) of R such that ey = m(ug). Denote the
Cartesian coordinates in R? with respect to this frame by (2%, 2!, 2?), and set 9; :=
Extend (ej, ez) to a local moving frame of T'Q) 4 near uy.

The second fundamental form of @ 4 at ug is

xt

Nn(ai,aj) = <8inaaj > ’uO :

We compute

n—o (A% s, -1/2
om = 0; <|Au|> = 0;((Au, Au )™ '") Au +

1
<0,~Au, Au>

1
= —WAU + M&Au

Hence

1
N (03, 05) luo= m< Adju,ej ) lug

1

1
= m( diu, Aej ) lug= ——( €i, Aej ). (4.2.13)

| Aug|

We can now compute the Gaussian curvature at ug.

1 <A61,€1> <A€1,€2>

Kuo - |Au0|2 <A€2,61> <A€2,62>



178 Riemannian geometry

In particular, when A = r—2] so that Q4 is the round sphere of radius r we deduce

1
Ky=— Vu[=r
r
Thus, the round sphere has constant positive curvature. O

Example 4.2.20. (Gauss). Let ¥ be a transversally oriented, compact surface in R3,
e.g., a connected sum of a finite number of tori. Note that the Whitney sum Ny @ TX is
the trivial bundle R$,. We orient Ny, such that

orientation Ns: A orientation 71> = orientation R3.

Let n be the unit section of Ny defining the above orientation. We obtain in this way a
map
G:Y = S?={ueck?; |u=1}, L3z—n(x) eSS

The map G is called the Gauss map of ¥ < S2. It really depends on how ¥ is embedded
in R3 so it is an extrinsic object. Denote by N, the second fundamental form of ¥ < R3,
and let (z',2?) be normal coordinates at ¢ € ¥ such that

orientation 7,3 = 01 A Os.

Consider the Euler form ey, on ¥ with the metric induced by the Euclidean metric in R3.
Then, taking into account our orientation conventions, we have

Nn(01,01) N (01,02)

2men (01, 02) = Baza = | \"ig  0) Now(0n.00) |

(4.2.14)

Now notice that

82'71 = —Nn(ai, 81)61 — Nn(ai, 82)62.

We can think of n,d; |, and 02 |, as defining a (positively oriented) frame of R?. The last
equality can be rephrased by saying that the derivative of the Gauss map

9* : qu — Tn(q)52

acts according to

0;i = —Np(04,01)01 — Ny (0;, 02) 0.

In particular, we deduce
G« preserves (reverses) orientations <= Rj212 > 0 (< 0), (4.2.15)

because the orientability issue is decided by the sign of the determinant

1 0 0
0 —Np(01,01) —Np(01,02)
0 —Np(02,01) —Np(02,02)
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At g, 01 L 05 so that,
< oin, ajn > = :Nn(a“ 81)Nn(8j, 81) + Nn(ai, GQ)Nn(aj, 82)
We can rephrase this coherently as an equality of matrices

[ (aln,81n> <81n,82n> :|
<82n,81n> <82n,82n>
N,

_ [ N (01, 01)

n(01,02) ] y [ Np(01,01) Np(01,02) ]t
n(02,01) Np(02,02) '

Np(02,01) Ny (02,02)
Hence

2

‘ Np(01,01) Np(01,02) (4.2.16)

Nn(01,02) Nn(02,02)

. <(91TL,81’I’Z> <81n,82n>
- <81n,82n> <82n,82n> ’

If we denote by dvg the metric volume form on S? induced by the restriction of the
Euclidean metric on R3, we see that (4.2.14) and (4.2.16) put together yield

27lex (01, 02)| = |dvo(dim, Oan)| = |dvo(§+(1), 5+(92))]-

Using (4.2.15) we get
1 * 1 *
ey, = %92(1110 = %9265’2. (4217)

This is one form of the celebrated Gauss-Bonnet theorem . We will have more to say
about it in the next subsection.

Note that the last equality offers yet another interpretation of the Gauss curvature.
From this point of view the curvature is a “distortion factor”. The Gauss map “stretches”
an infinitesimal parallelogram to some infinitesimal region on the unit sphere. The Gauss
curvature describes by what factor the area of this parallelogram was changed. In Chapter
9 we will investigate in greater detail the Gauss map of arbitrary submanifolds of an
Euclidean space. a

4.2.5 The Gauss-Bonnet theorem for oriented surfaces

We conclude this chapter with one of the most beautiful results in geometry. Its meaning
reaches deep inside the structure of a manifold and can be viewed as the origin of many
fertile ideas.

Recall one of the questions we formulated at the beginning of our study: explain
unambiguously why a sphere is “different” from a torus. This may sound like forcing our
way in through an open door since everybody can “see” they are different. Unfortunately
this is not a conclusive explanation since we can see only 3-dimensional things and possibly
there are many ways to deform a surface outside our tight 3D Universe.

The elements of Riemann geometry we discussed so far will allow us to produce an
invariant powerful enough to distinguish a sphere from a torus. But it will do more than
that.
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Theorem 4.2.21. (Gauss-Bonnet Theorem. Preliminary version.) Let S be a
compact oriented surface without boundary. If go and g1 are two Riemann metrics on S
and €4,(S) (i = 0,1) are the corresponding Euler forms then

[ en($)= [ ents)

Hence the quantity fS £4(S) is independent of the Riemann metric g so that it really
depends only on the topology of S!!!

The idea behind the proof is very natural. Denote by g; the metric g = go+t(g91 — g0)-

We will show J

E/Sggtzo VtE[O,l]

It is convenient to consider a more general problem.

Definition 4.2.22. Let M be a compact oriented manifold. For any Riemann metric g
on E define

Em(M,g) = /M s(g)dVy,

where s(g) denotes the scalar curvature of (M, g). The functional g — E(g) is called the
Hilbert-Einstein functional. O

We have the following remarkable result.

Lemma 4.2.23. Let M be a compact oriented manifold without boundary and g = (gfj)
be a 1-parameter family of Riemann metrics on M depending smoothly upon t € R. Then

d

. 1 .
58(91&) =— /M<Rngt — §s(gt)gt gt >td‘/;7t, Vt.

In the above formula (-,-); denotes the inner product induced by g' on the space of sym-
metric (0,2)-tensors while the dot denotes the t-derivative.

Definition 4.2.24. A Riemann manifold (M, g) of dimension n is said to be Einstein if
the metric g satisfies Finstein’s equation

s(x)

Ricg = Tg,
where s(x) denotes the scalar curvature.
Example 4.2.25. Observe that if the Riemann metric g satisfies the condition
Ricy(x) = A(x)g(x) (4.2.18)

for some smooth function A € C*°(M), then by taking the traces of both sides of the
above equality we deduce
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Thus, the Riemann manifold is Einstein if and only if it satisfies (4.2.18).

Using the computations in Example 4.2.11 we deduce that a certain constant multiple
of the Killing metric on a compact semisimple Lie group is an Einstein metric.

We refer to [13] for an in depth study of the Einstein manifolds. 0

The (0, 2)-tensor
1
€ij = Rij(z) — 55(2)gi5(2)

is called the Einstein tensor of (M,g).
Exercise 4.2.26. Consider a 3-dimensional Riemann manifold (M, g). Show that

S

Rijre = Eikgje — Cirgjk + Ejegin — Ejrgie + Z(Qiégjk — Gikgjt)-
In particular, this shows that on a Riemann 3-manifold the full Riemann tensor is com-

pletely determined by the Einstein tensor. a

Exercise 4.2.27. (Schouten-Struik, [88]). Prove that the scalar curvature of an Ein-
stein manifold of dimension > 3 is constant.
Hint: Use the 2nd Bianchi identity. ad

Notice that when (S, ¢) is a compact oriented Riemann surface two very nice things
happen.
(i) (S, g) is Einstein. (Recall that only Rj212 is nontrivial).
(i) £(9) = 2 5 2.
Theorem 4.2.21 is thus an immediate consequence of Lemma 4.2.23.
Proof of the lemma  We will produce a very explicit description of the integrand

d

7 < s(g")dV > = ( %S(gt) ) dVye +5(g") ( idVgt ) (4.2.19)

dt

of %E(Qt). We will adopt a “roll up your sleeves, and just do it” strategy reminiscent to
the good old days of the tensor calculus frenzy. By this we mean that we will work in a
nicely chosen collection of local coordinates, and we will keep track of the zillion indices
we will encounter. As we will see, the computations are not as hopeless as they may seem
to be.

We will study the integrand (4.2.19) at ¢ = 0. The general case is entirely analogous.
For typographical reasons we will be forced to introduce new notations. Thus, § will
denote (g') for t = 0, while g* will be denoted simply by g. A hat over a quantity means
we think of that quantity at ¢ = 0, while a dot means differentiation with respect to ¢ at
t=0.

Let ¢ be an arbitrary point on S, and denote by (z',...,2") a collection of §-normal
coordinates at ¢q. Denote by V the Levi-Civita connection of g and let F;k denote its
Christoffel symbols in the coordinates (x?).

Many nice things happen at ¢, and we list a few of them which will be used later.

Gij = 9" = 8ij, Odij = 0. (4.2.20)
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Vi0; =0, T, =0. (4.2.21)

If & = a;dx’ is a 1-form then, at g,

dga = Z@Zai. where 0 = d * . (4.2.22)

In particular, for any smooth function u we have

(Angu)la) = =3 05w (4.2.23)

Set
h = (hi;) == (9) = (gij)-

The tensor h is a symmetric (0, 2)-tensor. Its g-trace is the scalar
trgh = Qijhij =tr L_l(h),
where £ is the lowering the indices operator defined by ¢. In particular, at ¢

trgh =3 hi. (4.2.24)

The curvature of g is given by

¢ ¢ ¢ ¢ ¢ ¢

Riyj = —Rijp = 0kl — 0515, + T ) — Ty i
The Ricci tensor is
k k k k k
Finally, the scalar curvature is
= trg Rij = g Rij = g" (0,T%; — O,k + Th . T —T% T
S_trg ij =9 ij =9 kL g Lk + Lok ij mjtik | -

Differentiating s at ¢t = 0, and then evaluating at g we obtain

5 =g (0Ll — o510 ) + oY (4Tl — oy )

=R+ (aksz. — aiffk) . (4.2.25)

The term ¢“ can be computed by derivating the equality gikgjk = (5?€ at t = 0. We get
G g6 + §"hjr =0,

so that -
g7 = —hyj. (4.2.26)
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To evaluate the derivatives I'’s we use the known formulse

1
I = gg’f’” (0ig9jk — Orgij + 0igik) »

which, upon differentiation at ¢ = 0, yield

. 1 R . . 1 .
U7 = = (8idjk — Ondij + 0jGik) + 53"™ (Oihji — Okhij + Ojhir)
2 2 (4.2.27)
= 5 (8ihjm — amhij + 8]}1””) .

We substitute (4.2.26) -(4.2.27) in (4.2.25), and we get, at q

. 1 1
§=— Z hinij + 5 Z(akazhzk - ak2hii + akﬁihik) — 5 Z(afhkk — 8i8khz’k)

1, i,k i,k
== hijRij = > 0hgr+ Y 0i0khi
ij ik ik
= —<EE, g>g + AM@'EI"@ g+ Z aﬁkh,k (4.2.28)
i,k
To get a coordinate free description of the last term note that, at g,
(Vih)(Dss On) = Ohirm.

The total covariant derivative VA is a (0,3)-tensor. Using the g-trace we can construct a
(0,1)-tensor, i.e., a 1-form
trg(Vh) = tr(£; V),

where Lg_l is the raising the indices operator defined by §. In the local coordinates (z*)
we have

trg(Vh) = §9(V;h)rda”.

Using (4.2.20), and (4.2.22) we deduce that the last term in (4.2.28) can be rewritten (at
q) as
5'51"@ (Vh) = 5trg(Vg).

We have thus established that
§ = —(Ric, §)4 + Aprgtrg § + 6trs (V). (4.2.29)
The second term of the integrand (4.2.19) is a lot easier to compute.
dVy = ++/|gldz* A -~ A da",

so that . J
dv, = ijgy—l/?yg\dxl Ao Ada™
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At q the metric is Euclidean, g;; = ;;, and
d . . . A v A
21191 =29 =13l - tr5(9) = (3,915 191
Hence
: 1 ... . . . -
&(g) = /M< ( és(g)g — Rng) , g >gd‘/§ + /M (AM@ trg g + 6trg(Vg) )d‘/;}.

Green’s formula shows the last two terms vanish and the proof of the Lemma is concluded.
O

Definition 4.2.28. Let S be a compact, oriented surface without boundary. We define
its Fuler characteristic as the number

X(8) = 3= [ <lo)

where g is an arbitrary Riemann metric on S. The number

9(5) = 5(2 - x(5))

is called the genus of the surface. O

Remark 4.2.29. According to the theorem we have just proved, the Euler characteristic is
independent of the metric used to define it. Hence, the Euler characteristic is a topological
invariant of the surface. The reason for this terminology will become apparent when we
discuss DeRham cohomology, a Z-graded vector space naturally associated to a surface
whose Euler characteristic coincides with the number defined above. So far we have no
idea whether y(.S) is even an integer. 0

Proposition 4.2.30.
x(S%) =2 and x(T?) =0.

Proof. To compute x(52) we use the round metric go for which K = 1 so that

1 1

x(5%) = —/ dvg, = ——areay, (S?) = 2.

S2 2

To compute the Euler characteristic of the torus we think of it as an Abelian Lie group with
a bi-invariant metric. Since the Lie bracket is trivial we deduce from the computations in
Subsection 4.2.2 that its curvature is zero. This concludes the proof of the proposition. O

Proposition 4.2.31. If S; (i=1,2) are two compact oriented surfaces without boundary
then

X(S1#52) = x(51) + x(S2) — 2.
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Figure 4.3: Generating a hot-dog-shaped surface

Thus upon iteration we get

k
X(Sa#t- - #Sk) = D> x(Si) — 2(k — 1),
i=1
for any compact oriented surfaces Si,...,Sk. In terms of genera, the last equality can be
rephrased as
k
g(Si#t- #S6) = > g(Sy).
i=1

In the proof of this proposition we will use special metrics on connected sums of surfaces
which require a preliminary analytical discussion.

Consider f: (—4,4) — (0,00) a smooth, even function such that
(i) f(zx) =1 for |z| < 2.
(i) f(z) = +/1— (z+3)? for x € [—4,—3.5].
(iii) f(z) = /1 — (z — 3)2 for x € [3.5,4].
(iv) f is non-decreasing on [—4,0].
One such function is graphed in Figure 4.3
Denote by Sy the surface inside R3 obtained by rotating the graph of f about the -
axis. Because of properties (i)-(iv), Sy is a smooth surface diffeomorphic® to S%. We denote

*One such diffeomorphism can be explicitly constructed projecting along radii starting at the origin.



186 Riemannian geometry

Di

N

Figure 4.4: Special metric on a connected sum

by g the metric on Sy induced by the Euclidean metric in R3. Since S t is diffeomorphic
to a sphere

K,dV, = 2rx(S?) = 4.
Sy

Set
ij =Sy N {£z > 0}, ijl =Srn{+xr > 1}

Since f is even we deduce

1
Kydv, = —/ Kgdv, = 2. (4.2.30)
Ch 2 Js;

On the other hand, on the neck C' = {|z| < 2} the metric g is locally Euclidean g =
dz? 4 df?, so that over this region K, = 0. Hence

/ K,dv, = 0. (4.2.31)
C

Proof of the Proposition 4.2.31 Let D; C S; (i = 1,2) be a local coordinate neigh-
borhood diffeomorphic with a disk in the plane. Pick a metric g; on S; such that (Dq, g1) is
isometric with S;{ and (Dag, g2) is isometric to Sf_. The connected sum S1#S5 is obtained

by chopping off the regions S}c from D; and S;l from Dy and (isometrically) identifying
the remaining cylinders ij N{]z] <1} = C and call O the overlap created by gluing (see
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Figure 4.4). Denote the metric thus obtained on S;#S3 by §. We can now compute

1

X(S1#S :—/ K;dug
(S1#£S2) o Sy, 1M

1 1 1
= — K, dV, —I——/ K, dV, —I——/ K, dV,
27T Sl\Dl g1 g1 27T 52\D2 g2 g2 27T 0 g g

4.2.31) 1 / 1 /
= — K, dV, — — K, dV,
27 s, 1%V — 50 D, glVg
1 1 (4.2.30)
— K, dV, — — K, dV, =
+ o /32 92@Vg2 = 5 /D2 g@Vy X

This completes the proof of the proposition. O

(S1) + x(S2) — 2.

Corollary 4.2.32 (Gauss-Bonnet). Let ¥, denote the connected sum of g-tori. (By defi-
nition Lo = S?. Then
X(Eg) =2—2g and g(Xg) =g.

In particular, a sphere is not diffeomorphic to a torus.

Remark 4.2.33. It is a classical result that the only compact oriented surfaces are the
connected sums of g-tori (see [69]), so that the genus of a compact oriented surface is a
complete topological invariant. O



Chapter 5

Elements of the Calculus of
Variations

This is a very exciting subject lieing at the frontier between mathematics and physics. The
limited space we will devote to this subject will hardly do it justice, and we will barely
touch its physical significance. We recommend to anyone looking for an intellectual feast
the Chapter 16 in vol.2 of “The Feynmann Lectures on Physics” [36], which in our opinion
is the most eloquent argument for the raison d’étre of the calculus of variations.

5.1 The least action principle

5.1.1 The 1-dimensional Euler-Lagrange equations

From a very “dry” point of view, the fundamental problem of the calculus of variations
can be easily formulated as follows.

Consider a smooth manifold M, and let L : R x TM — R by a smooth function
called the lagrangian. Fix two points pg, p1 € M. The action of a piecewise smooth path
v :10,1] — M connecting these points is the real number S(v) = Sp () defined by

1
S(y) = Su(7) = /0 L(t,4(8),4(£))dt.

In the calculus of variations one is interested in those paths as above with minimal action.

Example 5.1.1. Given a smooth function U : R® — R called the potential, we can form
the lagrangian
L(¢,q) : R3 x R® 2 TR? — R,

given by
1
L = Q — U = kinetic energy — potential energy = §m|q'|2 —U(q).

The scalar m is called the mass. The action of a path (trajectory) v : [0,1] — R3 is a
quantity called the Newtonian action. Note that, as a physical quantity, the Newtonian
action is measured in the same units as the energy. O

188
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Example 5.1.2. To any Riemann manifold (M, g) one can naturally associate two la-
grangians L1, Lo : TM — R defined by

Li(v,q) = gg(v,0)'/* (v € TuM),

and )
Ly(v,q) = §9q(v,v)-

We see that the action defined by L; coincides with the length of a path. The action
defined by Lo is called the energy of a path. a

Before we present the main result of this subsection we need to introduce a bit of
notation.

Tangent bundles are very peculiar manifolds. Any collection (¢?,...,q") of local co-
ordinates on a smooth manifold M automatically induces local coordinates on T M. Any
point in T'M can be described by a pair (v, q), where ¢ € M, v € T,M. Furthermore, v
has a decomposition

; 0
v =10'0;, where 0; := —.
0q"
We set ¢ := v’ so that '
v = q’@l
The collection (¢',...,¢";q",...,q") defines local coordinates on T'M. These are said to

be holonomic local coordinates on T'M. This will be the only type of local coordinates we
will ever use.

Theorem 5.1.3 (The least action principle). Let L : R x TM — R be a lagrangian, and
po, P1 € M two fixed points. Suppose v : [0,1] — M is a smooth path such that the
following hold.

(i) v(i) = pi, i=0,1.
(i) Sp(y) < Sp(¥), for any smooth path 7 : [0,1] — M joining pg to p1.

Then the path ~ satisfies the Euler-Lagrange equations

d 0 0

——L(t,4 = —L(t,7%,7).

TR (t,%,7) o (t,%,7)

More precisely, if (¢7,q") are holonomic local coordinates on TM such that v(t) = (¢'(t)),
and ¥ = (¢’(t)), then v is a solution of the system of nonlinear ordinary differential

equations

4oL, .. . 0L, . .
Ea—q.k(t’qj’q):a—qk(t’q],Q)y k}:l,...,’l’L:dlmM.

Definition 5.1.4. A path v : [0,1] — M satisfying the Euler-Lagrange equations with
respect to some lagrangian L is said to be an extremal of L. a
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To get a better feeling of these equations consider the special case discussed in Example
5.1.1

1 .
L=-m|¢|*-U(qg).

2
Then 5 9
—L=mq, —L=-VU
and the Euler-Lagrange equations become
mg = —VU(q). (5.1.1)

These are precisely Newton’s equation of the motion of a particle of mass m in the force
field —VU generated by the potential U.
In the proof of the least action principle we will use the notion of variation of a path.

Definition 5.1.5. Let v : [0,1] — M be a smooth path. A wvariation of v is a smooth
map

a=as(t) : (—e,e) x [0,1] = M,

such that ag(t) = ~(t). If moreover, as(i) = p; Vs, i« = 0,1, then we say that « is a
variation rel endpoints. O

Proof of Theorem 5.1.3.  Let a; be a variation of v rel endpoints. Then

Sp(ag) < Sp(as) Vs,

so that J
Ts |s=0 Sr(as) = 0.
Assume for simplicity that the image of ~ is entirely contained in some open coordinate
neighborhood U with coordinates (¢',...,¢"). Then, for very small |s|, we can write
i dog y
as(t) = (q (87t)) and dt = ((] (S,t)).
Following the tradition, we set
Oa gt . 0 dag 0§70
b= — |s=0= =—0; 0G4 = — |00 — = ———.
T s 0= e O 0= g0 T = 550

The quantity da is a vector field along ~y called infinitesimal variation (see Figure 5.1). In
fact, the pair (da;dc) € T(T'M) is a vector field along t — (y(t),5(t)) € TM. Note that
oc = %&y, and at endpoints da = 0.

Exercise 5.1.6. Prove that if ¢t — X (t) € T, ;)M is a smooth vector field along +, such
that X (t) = 0 for t = 0,1 then there exists at least one variation rel endpoints « such that
oo = X.

Hint: Use the exponential map of some Riemann metric on M. O
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Figure 5.1: Deforming a path rel endpoints

We compute (at s = 0)

d d

1
= — = — v — - 2 _ J
0 dsSL(aS) ds/o L(t, as, as) ; 5 dt+/ —0ddt.

Integrating by parts in the second term in the right-hand-side we deduce

/01 {qu ;t <2L>}5aidt. (5.1.2)

The last equality holds for any variation . From Exercise 5.1.6 we deduce that it holds
for any vector field 6a’0; along 7. At this point we use the following classical result of
analysis.

If f(t) is a continuous function on [0,1] such that

/f Bdt =0 Vg e C52(0,1),

then f is identically zero.

Using this result in (5.1.2) we deduce the desired conclusion. O

Remark 5.1.7. (a) In the proof of the least action principle we used a simplifying assump-
tion, namely that the image of + lies in a coordinate neighborhood. This is true locally,
and for the above arguments to work it suffices to choose only a special type of variations,
localized on small intervals of [0,1]. In terms of infinitesimal variations this means we
need to look only at vector fields along v supported in local coordinate neighborhoods.
We leave the reader fill in the details.

(b) The Euler-Lagrange equations were described using holonomic local coordinates.
The minimizers of the action, if any, are objects independent of any choice of local coordi-
nates, so that the Euler-Lagrange equations have to be independent of such choices. We
check this directly.
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If (2%) is another collection of local coordinates on M and (i7,x%) are the coordinates
induced on T'M, then we have the transition rules

. . . J
=2, ..., q"), = g—jqu7
so that _ '
0 _oal 9 O 0
o¢  0q 0z " ogkag ! o
009 0w 0
d¢7  0¢J 9iI  Oq' DI
Then

OL _ 0w’ OL | &°x) ;0L
o¢ ~ 0q 0x7 ' dgFag ! o

d (OL\ d (827 OL\ 0% L OL 917 d [OL
dt (8—di> ot <5qi @> ~ agrag ! 0w " ag @ <@> '
We now see that the Euler-Lagrange equations in the g-variables imply the Euler-Lagrange
in the x-variable, i.e., these equations are independent of coordinates.
The @esthetically conscious reader may object to the way we chose to present the
Fuler-Lagrange equations. These are intrinsic equations we formulated in a coordinate

dependent fashion. Is there any way of writing these equation so that the intrinsic nature
is visible “on the nose”?

If the lagrangian L satisfies certain nondegeneracy conditions there are two ways of
achieving this goal. One method is to consider a natural nonlinear connection V% on TM
as in [78] . The Euler-Lagrange equations for an extremal «(¢) can then be rewritten as a
“geodesics equation”

vi4.

The example below will illustrate this approach on a very special case when L is the
lagrangian Lo defined in Example 5.1.2, in which the extremals will turn out to be precisely
the geodesics on a Riemann manifold.

Another far reaching method of globalizing the formulation of the Euler-Lagrange
equation is through the Legendre transform, which again requires a nondegeneracy condi-
tion on the lagrangian. Via the Legendre transform the Euler-Lagrange equations become
a system of first order equations on the cotangent bundle T*M known as Hamilton equa-
tions.

These equations have the advantage that can be formulated on manifolds more general
than the cotangent bundles, namely on symplectic manifolds. These are manifolds carrying
a closed 2-form whose restriction to each tangent space defines a symplectic duality (see
Subsection 2.2.4.)

Much like the geodesics equations on a Riemann manifold, the Hamilton equations
carry a lot of information about the structure of symplectic manifolds, and they are
currently the focus of very intense research. For more details and examples we refer to
the monographs [5, 26]. O
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Example 5.1.8. Let (M, g) be a Riemann manifold. We will compute the Euler-Lagrange
equations for the lagrangians L, Ly in Example 5.1.2.

. 1 i
Ly(q,q) = 592'1(61)qu] ,

so that
OLo . 0Ly  10gij ;.

a9 B = 35
The Euler-Lagrange equations are

j-

8gjk i lagzg Y

kil = . 1.
g 11 =594 (5.1.3)

& gjr +

m

Since gkmgjm = 05", we get

gk 10gi;\ .. .5
i gt (2L - 22 ) il = 0. 5.1.4
i"+g (aql 5ag ) 11 (5.1.4)
When we derivate with respect to t the equality gjr’® = gjkq'j we deduce

ogjk .; 1 99k O9ik \ .i.;
kmYIIK -q -5 —— km _Z _] iqd

We substitute this equality in (5.1.4), and we get

ijm+—9km< Jik | ik g]>qzq]=0. (5.1.5)

g

2 oq’ ot Oqk

The coefficient of ¢*¢’ in (5.1.5) is none other than the Christoffel symbol ' so this
equation is precisely the geodesic equation. a

Example 5.1.9. Consider now the lagrangian Li(¢,q) = (gijq'iqj)lﬂ. Note that the
action

D1

sua) = [ L.

Po
is independent of the parametrization t +— ¢(t) since it computes the length of the path
t +— ¢q(t). Thus, when we express the Euler-Lagrange equations for a minimizer 7y of
this action, we may as well assume it is parameterized by arclength, i.e., |y9| = 1. The
Euler-Lagrange equations for L are

d grd gt 4'd

dt /90 2\/950d0
Along the extremal we have g;;¢'¢’ = 1 (arclength parametrization) so that the previous
equations can be rewritten as

77 (osd’) = §aq,§q .

We recognize here the equation (5.1.3) which, as we have seen, is the geodesic equation in
disguise. This fact almost explains why the geodesics are the shortest paths between two
nearby points. a
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5.1.2 Noether’s conservation principle

This subsection is intended to offer the reader a glimpse at a fascinating subject touching
both physics and geometry. We first need to introduce a bit of traditional terminology
commonly used by physicists.

Consider a smooth manifold M. The tangent bundle T'M is usually referred to as the
space of states or the lagrangian phase space. A point in TM is said to be a state. A
lagrangian L : R x TM — R associates to each state several meaningful quantities.

e The generalized momenta: p; = g—;.
e The energy: H = pig* — L.
e The generalized force: F = g—qLi.

This terminology can be justified by looking at the lagrangian of a classical particle in
a potential force field, F = —VU,

1 .
L= §m\<ﬂ2 —U(g).

The momenta associated to this lagrangian are the usual kinetic momenta of the Newto-
nian mechanics
pbi = mq27

while H is simply the total energy
.
H = 5mldl* + U(q)-

It will be convenient to think of an extremal for an arbitrary lagrangian L(t,q,q) as
describing the motion of a particle under the influence of the generalized force.

Proposition 5.1.10 (Conservation of energy). Let v(t) be an extremal of a time inde-
pendent lagrangian L = L(q,q). Then the energy is conserved along v, i.e.,

d .
EH(%’Y) = 0.

Proof. By direct computation we get

d od, _d(oL\ ., 9L, OL., OL,
EH(%V)—E(M(]_) < )q

o dt

— {% <§_qu> — g—i} ' =0 (by Euler — Lagrange). O
At the beginning of the 20th century (1918), Emmy Noether discovered that many of the
conservation laws of the classical mechanics had a geometric origin: they were, most of
them, reflecting a symmetry of the lagrangian!!!

This became a driving principle in the search for conservation laws, and in fact, con-
servation became almost synonymous with symmetry. It eased the leap from classical to

¢’

57" ~ag! a7
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quantum mechanics, and one can say it is a very important building block of quantum
physics in general. In the few instances of conservation laws where the symmetry was not
apparent the conservation was always “blamed” on a “hidden symmetry”. What is then
this Noether principle?

To answer this question we need to make some simple observations.

Let X be a vector field on a smooth manifold M defining a global flow ®°. This flow
induces a flow ¥* on the tangent bundle T'M defined by

Ui(v,z) = (@i(v), D% (x) )

One can think of ¥® as defining an action of the additive group R on T'M. Alterna-
tively, physicists say that X is an infinitesimal symmetry of the given mechanical system
described by the lagrangian L.

Example 5.1.11. Let M be the unit round sphere S? C R3. The rotations about the
z-axis define a l-parameter group of isometries of S? generated by %, where 6 is the
longitude on S2. a

Definition 5.1.12. Let L be a lagrangian on T'M, and X a vector field on M. The
lagrangian L is said to be X- invariant if

LoVU® =1, Vs. O

Denote by X € Vect (T'M) the infinitesimal generator of ¥* and by Ly the Lie deriva-
tive on T'M along X. We see that L is X-invariant if and only if

LxL =0.
We describe this derivative using the local coordinates (¢7, ¢*). Set

(d(s),d'(s)) = ¥*(¢,q").

Then p
T ls—o ¢'(s) = X*6L.

To compute % |s=0 qj(s)a%j we use the definition of the Lie derivative on M
d .. 0 i 0 o¢7  LO0X7\ 0 L 0X7 0
ds” OgJ aq* dq dq oLy 0q* O¢J

since 9¢’ /0q" = 0 on TM. Hence

0 £0X7 0

x=xi-l o2 9
¢ 4 gk agi

Corollary 5.1.13. The lagrangian L is X -invariant if and only if

(0L ,0X7 0L

a_qi +q 8—(]k8—(]9 = (5.1.6)
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Figure 5.2: A surface of revolution

Theorem 5.1.14 (E. Noether). If the lagrangian L is X -invariant, then the quantity

oL ;
Py = X' = g = X'p;

is conserved along the extremals of L.

Proof. Consider an extremal v = v(¢*(t)) of L. We compute

d d - oL 0X' , OL -d (0L
— Py X (y(t ¢ Xi—
GPeoni) = g {xamgs b= S+ X' g (55)
Euler-Lagrange 0X? k oL Z@_L (5.1.6)
Pra 8(] dgt
The classical conservation-of-momentum law is a special consequence of Noether’s theo-
rem.

0. O

Corollary 5.1.15. Consider a lagrangian L = L(t,q,q,) on R™. If % =0, i.e., the i-th

component of the force is zero, then d;f = 0 along any extremal, i.e., the i-th component

of the momentum is conserved).

Proof. Take X = i in Noether’s conservation law. O

The conservation of momentum has an interesting application in the study of geodesics.

Example 5.1.16. (Geodesics on surfaces of revolution). Consider a surface of
revolution S in R? obtained by rotating about the z-axis the curve y = f(z) situated in
the yz plane. If we use cylindrical coordinates (r, 0, z) we can describe S as r = f(z).

In these coordinates, the Euclidean metric in R3 has the form

ds® = dr® + dz? + r?d6>.
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We can choose (z,6) as local coordinates on S, then the induced metric has the form
g9s = {14 (f'(2))?}dz" + f2(2)d0® = A(2)dz> +1%d6?, r = f(2).
The lagrangian defining the geodesics on S is
L= % (422 +%2).
We see that L is independent of 0: %—g = 0, so that the generalized momentum
o=

is conserved along the geodesics. a

This fact can be given a nice geometric interpretation. Consider a geodesic

V(1) = (2(1),6(2),

and compute the angle ¢ between ¥ and %. We get

,0/00 29
7] -10/06]  rl4l
i.e., rcos¢ = r20|4|~!. The conservation of energy implies that |¥|? = 2L = H is constant
along the geodesics. We deduce the following classical result.

Theorem 5.1.17 (Clairaut). On a a surface of revolution r = f(z) the quantity r cos ¢
is constant along any geodesic, where ¢ € (—m, ) is the oriented angle the geodesic makes
with the parallels z = const. |

Exercise 5.1.18. Describe the geodesics on the round sphere S?, and on the cylinder
{z?2 + 9% =1} CR3. O

5.2 The variational theory of geodesics

We have seen that the paths of minimal length between two points on a Riemann manifold
are necessarily geodesics.

However, given a geodesic joining two points qg,q; it may happen that it is not a
minimal path. This should be compared with the situation in calculus, when a critical
point of a function f may not be a minimum or a maximum.

To decide this issue one has to look at the second derivative. This is precisely what
we intend to do in the case of geodesics. This situation is a bit more complicated since

the action functional )
S = Y12 dt
5 / o]

is not defined on a finite dimensional manifold. It is a function defined on the “space of all
paths” joining the two given points. With some extra effort this space can be organized
as an infinite dimensional manifold. We will not attempt to formalize these prescriptions,
but rather follow the ad-hoc, intuitive approach of [72].
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5.2.1 Variational formulae

Let M be a connected Riemann manifold, and consider p,q € M. Denote by Q,, =
Q, 4(M) the space of all continuous, piecewise smooth paths 7 : [0,1] — M connecting p
to q.

An infinitesimal variation of a path v € Q,, is a continuous, piecewise smooth
vector field V' along v such that V(0) = 0 and V(1) = 0 and

lim V (¢t + h)
AW
exists for every t € [0,1], they are vectors V(t)* € T, (t)M, and V(t)* = V)~ for all

but finitely many t-s. The space of infinitesimal variations of v is an infinite dimensional
linear space denoted by T, = T,€2,, .

Definition 5.2.1. Let v € €, ,. A wariation of + is a continuous map
a=a4(t): (—e,e) x [0,1] = M
such that
(i) Vs € (—¢,¢), as € Q4.
(ii) There exists a partition 0 = tg < t1-+- < tx_1 < tp = 1 of [0,1] such that the

restriction of « to each (—¢,¢) x (t;—1,t;) is a smooth map. O

Every variation « of v defines an infinitesimal variation

Jayg
oo i= — |g=0 -
s ls=0
Exercise 5.2.2. Given V € T, construct a variation « such that éa = V. O

Consider now the energy functional

I
B0, R, B0) =3 [ 1P,

Fix v € Qp4, and let o be a variation of 7. The velocity 4(¢) has a finite number of
discontinuities, so that the quantity

Ay = lim (3(t+h) = 3(t — h)
is nonzero only for finitely many ¢’s.
Theorem 5.2.3 (The first variation formula).
d 1
BL(00) = oo Blew) = = (000,800 — [0 gigat, (521)

where V  denotes the Levi-Civita connection. (Note that the right-hand-side depends on
a only through Sov so it is really a linear function on T.,.)
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Proof. Set &y = 80‘5 . We differentiate under the integral sign using the equality

9
s

las|? = 2(V o ds, ds),
ds

and we get

d 1
Sl Blo) = [ (9 g il .

Since the vector fields -2 55 and 2 5 commute we have V 8 m V_ g‘;‘

Let 0 =ty < t2 < --- <t = 1 be a partition Of [0 1] as in Definition 5.2.1. Since
ag =y for s = 0 we conclude

«(0av) Z/ a5oz,7

We use the equality
0 . . .
57100 7) = (Vada,9) + {5a, V 2. 4)
to integrate by parts, and we obtain

k k

E.(ba) =) (6, 9) |7, —Z/i (00, V 5 ) dt.

i=1 i=1 7 ti-1

This is precisely equality (5.2.1). O

Definition 5.2.4. A path v €, , is called critical if

E.(V)=0, VWV eT,. O
Corollary 5.2.5. A path v € Q,, , is critical if and only if it is a geodesic. a
Exercise 5.2.6. Prove the above corollary. a

Remark 5.2.7. Note that, a priori, a critical path may have a discontinuous first deriva-
tive. The above corollary shows that this is not the case: the criticality also implies
smoothness. This is a manifestation of a more general analytical phenomenon called el-
liptic reqularity. We will have more to say about it in Chapter 11. O

The map FE, : T, — R, da — E,(da) is called the first derivative of E at v € Q.
We want to define a second derivative of E in order to address the issue raised at the
beginning of this section. We will imitate the finite dimensional case which we now briefly
analyze.

Let f: X — R be a smooth function on the finite dimensional smooth manifold X. If
xp is a critical point of f, i.e., df(zp) = 0, then we can define the Hessian at z

for i TooX X Ty X - R
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as follows. Given Vi, Vs € T, X, consider a smooth map (s1,s2) — a(si,s2) € X such
that
Ja

a(0,0) = zp and 5 0,0)=V;, i=1,2. (5.2.2)

S
Now set

O f(afs1,s2)) |
051089 0,0) -

Note that since zg is a critical point of f, the Hessian f..(V1,V2) is independent of the
function « satisfying (5.2.2).

We now return to our energy functional £ : €, , — R. Let v € Q,, , be a critical path.
Consider a 2-parameter variation of v

f**(VlaV2) =

Q= Qg (—€,6) X (—g,6) X [0,1] = M, (s1,52,t) = a5, (1).

Set U := (—¢,e) x (—e,6) C R? and v := apo. The map « is continuous, and has
second order derivatives everywhere except maybe on finitely many “coordinate” planes
s; = const, or t = const. Set d;« := g—; \(0,0), i = 1,2. Note that ;o € T.

Exercise 5.2.8. Given V1, V5 € T, construct a 2-parameter variation o such that V; = d;a.
O

We can now define the Hessian of E at v by

82E(a81782)

E**(51a752a) = 881882 ’(070) :

Theorem 5.2.9 (The second variation formula).

1
By (010, 000) = = Y (20, Agdrar) — / <520¢,V22510z—R(ﬁ,ém)ﬁ)dt, (5.2.3)
. 0 ot

where R denotes the Riemann curvature. In particular, E.. is a bilinear functional on
T,.
Y

Proof. According to the first variation formula we have

oF Oa 1 Oa
8—82 == —Zt:<520é,AtE> —/0 <520[,V%E>dt
Hence e 5
E . o
(981(982 - - Z:<v6(21 (52&, Al’Y> - zt:<52a7 V% <Ata>>
1 . ! da
_/0 (V.2 630,V g 3)dt — /0 020,V 2. 5 (5.2.4)

Since v is a geodesic, we have

Ay =0 and Va@"y:O.
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Using the commutativity of % with 6%1 we deduce

ox Oa
Vo <Ata> — A, (Vailﬁ> — A, (V%&[a).

Finally, the definition of the curvature implies

VaVe=VaV o +R(5104,"y).
Jsq ot ot Jsq
Putting all the above together we deduce immediately the equality (5.2.3). a
Corollary 5.2.10.
E**(Vla‘é) :E**(‘/%Vl)y \V/V17V2 GTw- a

5.2.2 Jacobi fields

In this subsection we will put to work the elements of calculus of variations presented so
far. Let (M, g) be a Riemann manifold and p,q € M.

Definition 5.2.11. Let v € Q,, be a geodesic. A geodesic variation of v is a smooth
map as(t) : (—&,e) x [0,1] = M such that, ag =, and t — «a,(t) is a geodesic for all s.
We set as usual da = g—‘;‘ |s=0- 0

Proposition 5.2.12. Lety € Q, , be a geodesic and (as) a geodesic variation of v. Then
the infinitesimal variation da satisfies the Jacobi equation

Vida = R(¥,60)y (Vi=Va).

ot

Proof. 5 5
(0% (6
Viia =V, <vt$> =V, (VSE>
Ja . Ooa . Oa
=9, (V55 ) + Re.60) 5 = R d0) .

Definition 5.2.13. A smooth vector field J along a geodesic v is called a Jacobi field if
it satisfies the Jacobi equation

ViJ = R(%,J)7. 0
Exercise 5.2.14. Show that if J is a Jacobi field along a geodesic ~y, then there exists a
geodesic variation ag of v such that J = da. a

Exercise 5.2.15. Let v € €, 4, and J a vector field along ~.
(a) Prove that J is a Jacobi field if and only if

En(J,V)=0, YV €T,

(b) Show that a vector field J along v which vanishes at endpoints, is a Jacobi field if any
only if E..(J,W) =0, for all vector fields W along ~. 0
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Figure 5.3: The poles are conjugate along meridians.

Exercise 5.2.16. Let v € €, , be a geodesic. Define g, to be the space of Jacobi fields
V' along « such that V(p) = 0. Show that dim g, = dim M, and moreover, the evaluation
map

evy:dp = T,M V — V. V(p)

is a linear isomorphism. O

Definition 5.2.17. Let v(t) be a geodesic. Two points 7(t1) and ~y(t2) on  are said to
be conjugate along -y if there exists a nontrivial Jacobi field J along v such that J(¢;) = 0,
i=1,2. O

Example 5.2.18. Consider ~ : [0,27] — S? a meridian on the round sphere connection
the poles. One can verify easily (using Clairaut’s theorem) that v is a geodesic. The
counterclockwise rotation by an angle 6§ about the z-axis will produce a new meridian,
hence a new geodesic vg. Thus (7y) is a geodesic variation of v with fixed endpoints. o+
is a Jacobi field vanishing at the poles. We conclude that the poles are conjugate along
any meridian (see Figure 5.3). O

Definition 5.2.19. A geodesic v € 2, ,is said to be nondegenerate if ¢ is not conjugated
to p along ~. O

The following result (partially) explains the geometric significance of conjugate points.
Theorem 5.2.20. Let v € Q,, be a nondegenerate, minimal geodesic. Then p is con-

jugate with no point on 7y other than itself. In particular, a geodesic segment containing
conjugate points cannot be minimal !
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Proof. We argue by contradiction. Let p; = ~(¢;) be a point on 7 conjugate with p.
Denote by J; a Jacobi field along |jg,] such that Jo = 0 and J;, = 0. Define V' € T, by

Jy, te€|0,t
‘/t:{ta 6[71]
0, t>t.

We will prove that V; is a Jacobi field along v which contradicts the nondegeneracy of ~.
Step 1.
E.(UU)>0 VU €eT,. (5.2.5)

Indeed, let s denote a variation of v such that dao = U. One computes easily that

d2

Since v is minimal for any small s we have length (v 2) > length () so that

1/ ! S 1
E(age) > = </ |o'452|dt> = —length (arz2)? > =length (ag)?
2 s 2 2
1 2
= §length (7)* = E(ap).
Hence
d2
752 ls=0 E(ag2) > 0.

This proves (5.2.5).
Step 2. E,.(V,V) = 0. This follows immediately from the second variation formula and
the fact that the nontrivial portion of V is a Jacobi field.
Step 3.
E..(UV)=0, YU €T,.

From (5.2.5) and Step 2 we deduce
0=FEu(V,V)<E.(V+1UV +71U) = fu(r) V.
Thus, 7 = 0 is a global minimum of fi;(7) so that
Fir(0) =o0.

Step 3 follows from the above equality using the bilinearity and the symmetry of E,.. The
final conclusion (that V is a Jacobi field) follows from Exercise 5.2.15. 0

Exercise 5.2.21. Let v: R — M be a geodesic. Prove that the set
{t € R; ~(t) is conjugate to ¥(0) }

is discrete. O
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Definition 5.2.22. Let v € Q, , be a geodesic. We define its index, denoted by ind (v),
as the cardinality of the set

C, ={t€(0,1); is conjugate to v(0) }
which by Exercise 5.2.21 is finite. O

Theorem 5.2.20 can be reformulated as follows: the index of a nondegenerate minimal
geodesic is zero.

The index of a geodesic obviously depends on the curvature of the manifold. Often,
this dependence is very powerful.

Theorem 5.2.23. Let M be a Riemann manifold with non-positive sectional curvature,
1.€.,

(R(X,Y)Y,X) <0 VX,Y € T,M Vx € M. (5.2.6)

Then for any p,q € M and any geodesic v € §, 4, ind () = 0.

Proof. Tt suffices to show that for any geodesic v : [0,1] — M the point (1) is not
conjugated to (0).
Let J; be a Jacobi field along v vanishing at the endpoints. Thus

V] = R(%,J)%,

so that ) ) )
/ (V2.J,J)dt = / (R(%, )Y, J)dt = — / (R(J, %)%, J)dt.
0 0 0

We integrate by parts the left-hand-side of the above equality, and we deduce

1 1
(Vo T / VT2t = — / (R(J, )4, J)dt.
0 0

Since J(7) =0 for 7 = 0,1, we deduce using (5.2.6)
1
/ |V, J)%dt < 0.
0

This implies V;J = 0 which coupled with the condition J(0) = 0 implies J = 0. The
proof is complete. u

The notion of conjugacy is intimately related to the behavior of the exponential map.

Theorem 5.2.24. Let (M, g) be a connected, complete, Riemann manifold and gy € M.
A point g € M is conjugated to qy along some geodesic if and only if it is a critical value
of the exponential map

expy, : LooM — M.
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Proof. Let q = exp,, v, v € TyyM. Assume first that g is a critical value for exp, , and v
is a critical point. Then D, exp, (X) = 0, for some X € T, (Ty,M). Let v(s) be a path
in Ty, M such that v(0) = v and 9(0) = X. The map (s,t) > exp, (tv(s)) is a geodesic
variation of the radial geodesic v, : ¢+ exp, (tv). Hence, the vector field

0
W = s ls=0 expy, (tv(s))

is a Jacobi field along ,. Obviously W (0) = 0, and moreover

W(1) = % ls=0 exp,, (v(s)) = Dyexp,, (X) = 0.

On the other hand this is a nontrivial field since
0
Vi = V4o 57 05y, (10(5)) = V50(5) o O

This proves qo and ¢ are conjugated along -, .
Conversely, assume v is not a critical point for exp, . For any X € T, (Tyo M) denote
by Jx the Jacobi field along ~, such that

Jx(q0) = 0. (5.2.7)

The existence of such a Jacobi field follows from Exercise 5.2.16. As in that exercise,
denote by dg, the space of Jacobi fields J along +, such that J(qp) = 0. The map

Ty(Ty M) = 84, X > Jx

is a linear isomorphism. Thus, a Jacobi field along ~, vanishing at both go and ¢ must
have the form Jy, where X € T, (T,, M) satisfies D, exp, (X ) = 0. Since v is not a critical
point, this means X = 0 so that Jx = 0. a

Corollary 5.2.25. On a complete Riemann manifold M with non-positive sectional cur-
vature the exponential map exp, has no critical values for any q € M. O

We will see in the next chapter that this corollary has a lot to say about the topology
of M.

Consider now the following experiment. Stretch the round two-dimensional sphere of
radius 1 until it becomes “very long”. A possible shape one can obtain may look like
in Figure 5.4. The long tube is very similar to a piece of cylinder so that the total (=
scalar) curvature is very close to zero, in other words is very small. The lesson to learn
from this intuitive experiment is that the price we have to pay for lengthening the sphere
is decreasing the curvature. Equivalently, a highly curved surface cannot have a large
diameter. Our next result offers a more quantitative description of this phenomenon.

Theorem 5.2.26 (Myers). Let M be an n-dimensional complete Riemann manifold. If

for all X € Vect (M)

. n—1
Rie (X, x) > " Dy
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Figure 5.4: Lengthening a sphere.

then every geodesic of length > wr has conjugate points and thus is not minimal. Hence
diam (M) = sup{dist (p,q) ; p,q € M} < 7,
and in particular, Hopf-Rinow theorem implies that M must be compact. O

Proof. Fix a minimal geodesic 7 : [0,¢] — M of length ¢, and let ¢;(¢) be an orthonormal
basis of vector fields along 7 such that e, (t) = ¥(t). Set go = ¥(0), and ¢; = ~(¢). Since
~ is minimal we deduce

E.(V,V)>0 YW eT,

Set W; = sin(nt/¢)e;. Then

l
B (Wi, W) = — / (Wi, VWi + R(Wi,4)4)dt
0

Y4
_ /0 sin?(t/6) (7262 — (R(es, 4), ez)) dt.

We sum over i = 1,...,n — 1, and we obtain
n—1 ¢
> Ea(Wi, Wi) = / sin? 7t /¢ ((n — 1)7? /€% — Ric (4,7)) dt > 0.
i=1 0

If £ > 7wr, then
(n — )7 /¢ — Ric (¥,%) <0,
so that,

n—1

> B (Wi, W) <0.

i=1
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Hence, at least for some W;, we have E,.(W;, W;) < 0. This contradicts the minimality
of v. The proof is complete. a

We already know that the Killing form of a compact, semisimple Lie group is positive
definite; see Exercise 4.1.19. The next result shows that the converse is also true.

Corollary 5.2.27. A semisimple Lie group G with positive definite Killing pairing is
compact.

Proof. The Killing form defines in this case a bi-invariant Riemann metric on G. Its
geodesics through the origin 1 € G are the 1-parameter subgroups exp(tX) which are
defined for all ¢ € R. Hence, by Hopf-Rinow theorem G has to be complete.

On the other hand, we have computed the Ricci curvature of the Killing metric, and
we found

1
Ric (X,Y) = ZI{(X,Y) VXY € Lg.
The corollary now follows from Myers’ theorem. a

Exercise 5.2.28. Let M be a Riemann manifold and ¢ € M. For the unitary vectors
X,Y € TyM consider the family of geodesics

7s(t) = exp, t(X + sY).

Denote by W; = §v, the associated Jacobi field along vo(t). Form f(t) = |W;|?. Prove the
following.

(a) Wiy = Dyx exp,(Y) = Frechet derivative of v > exp,(v).

(b) f(t) =% = §(R(Y, X)X, Y)gt* + O(t%).

(c) Denote by &' a collection of normal coordinates at q. Prove that

1 o
gre(x) = Ope — ng’jemZm] + O(3).

1 .
det g”(w) =1- gRi]—w’w] + 0(3)

(d) Let
D,(q) ={z € T;M; |z| <r}.

Prove that if the Ricci curvature is negative definite at ¢ then

volg (D (q)) < voly (exp, (D, (q))

for all r sufficiently small. Above, voly denotes the Euclidean volume in 7, M while vol,
denotes the volume on the Riemann manifold M. a

Remark 5.2.29. The interdependence “curvature-topology” on a Riemann manifold has
deep reaching ramifications which stimulate the curiosity of many researchers. We refer
to [28] or [72] and the extensive references therein for a presentation of some of the most
attractive results in this direction. a



Chapter 6

The Fundamental group and
Covering Spaces

In the previous chapters we almost exclusively studied local properties of manifolds. This
study is interesting only if some additional structure is present since otherwise all manifolds
are locally alike.

We noticed an interesting phenomenon: the global “shape” (topology) of a manifold
restricts the types of structures that can exist on a manifold. For example, the Gauss-
Bonnet theorem implies that on a connected sum of two tori there cannot exist metrics
with curvature everywhere positive because the integral of the curvature is a negative
universal constant.

We used the Gauss-Bonnet theorem in the opposite direction, and we deduced the
intuitively obvious fact that a sphere is not diffeomorphic to a torus because they have
distinct genera. The Gauss-Bonnet theorem involves a heavy analytical machinery which
may obscure the intuition. Notice that S? has a remarkable property which distinguishes
it from 72: on the sphere any closed curve can be shrunk to a point while on the torus
there exist at least two “independent” unshrinkable curves (see Figure 6.1). In particular,
this means the sphere is not diffeomorphic to a torus.

This chapter will set the above observations on a rigorous foundation.

<D

Figure 6.1: Looking for unshrinkable loops.

208
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6.1 The fundamental group

6.1.1 Basic notions

In the sequel all topological spaces will be locally path connected spaces.

Definition 6.1.1. (a) Let X and Y be two topological spaces. Two continuous maps
fo, f1: X = Y are said to be homotopic if there exists a continuous map

F:[0,1]] xX =Y (t,x)— Fi(x),

such that, F; = f; for i = 0,1. We write this as fo ~ fi.

(b) Two topological spaces X, Y are said to be homotopy equivalent if there exist maps
f:X—=Yandg:Y — X such that fog~ 1y and go f ~ 1x. We write this X ~ Y.
(c) A topological space is said to be contractible if it is homotopy equivalent to a point.O0

Example 6.1.2. The unit disk in the plane is contractible. The annulus {1 < |z| < 2} is
homotopy equivalent to the unit circle. a

Definition 6.1.3. (a) Let X be a topological space and zg € X. A loop based at zg is a
continuous map
~v:10,1] = X, such that v(0) = (1) = xo.

The space of loops in X based at xg is denoted by Q(X, zg).
(b) Two loops 79,71 : I — X based at x( are said to be homotopic rel xg if there exists a
continuous map

:00,1] xI—X, (t,s)— T(s),

such that
Ti(s) =i(s) i=0,1,
and
(s =~ Ty(s)) € QUX,zo) Vt e€0,1].
We write this as v9 ~z, V1. O

Note that a loop is more than a closed curve; it is a closed curve + a description of a
motion of a point around the closed curve.

Example 6.1.4. The two loops 71,72 : I — C, v (t) = exp(2knt), k = 1,2 are different
though they have the same image. a

Definition 6.1.5. (a) Let 71,72 be two loops based at xg € X. The product of v, and 7,
is the loop

—_ /71(28) ) 0§81/2
71*72(8)_{fy2(2s—1) L 1/2<s<1

The inverse of a based loop 7y is the based loop v~ defined by
v (8) =(1—s).

(c) The identity loop is the constant loop ez, (s) = wo. O
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Intuitively, the product of two loops 71 and 2 is the loop obtained by first following
~v1 (twice faster), and then o (twice faster).
The following result is left to the reader as an exercise.

Lemma 6.1.6. Let ag >y, a1, Bo~z,01 and Yo~z,71 be three pairs of homotopic based
loops.. Then

(a) g * Bo~zo01 * B1.

(b) ag * oy e -

(c) i * ey ™ay Q-

(d) (a0 * Bo) * Yo~z * (Bo * Y0)- O

Hence, the product operation descends to an operation “” on Q(X,z)/~,, the set
of homotopy classes of based loops. Moreover the induced operation is associative, it has
a unit and each element has an inverse. Hence (2(X,z)/~4,, ) is a group.

Definition 6.1.7. The group (2(X,z9)/~4,,) is called the fundamental group (or the
Poincaré group) of the topological space X, and it is denoted by m1 (X, xg). The image of
a based loop v in 1 (X, ) is denoted by [7]. O

The elements of m1 (X, xo) are the “unshrinkable loops” discussed at the beginning of
this chapter.

The fundamental group 71(X,zg) “sees” only the connected component of X which
contains xg. To get more information about X one should study all the groups {m (X, z)},ex-

Proposition 6.1.8. Let X and Y be two topological spaces. Fix two points, xo € X and
yo € Y. Then any continuous map f: X — Y such that f(xo) = yo induces a morphism

of groups
fer (X, m0) = m1 (Y, 90),

satisfying the following functoriality properties.
((l) (]]'X)* = ]]'ﬂ'l(X,xo)'
(b) If
(X, 20) L (Viyo) % (2, 20)

are continuous maps, such that f(xo) =yo and g(yo) = 20, then (go f)s = g« © fx.

(c) Let fo, f1: (X, z0) — (Y, y0) be two base-point-preserving continuous maps. Assume fo
is homotopic to f1 rel xg, i.e., there exists a continuous map F: IxX — Y, (t,z) — Fy(x)
such that, Fi(z) = fi(x). for i =0,1 and Fy(xo) = yo. Then (fo)« = (f1)«-

Proof. Let v € Q(X,xg), Then f(v) € Q(Y,yo0), and one can check immediately that
V~a0Y = F(7) 20 (V)
Hence the correspondence
QX,z0) 57— f(7) € Y, 50)

descends to a map f : m(X,x0) — m1(Y,yo). This is clearly a group morphism. The
statements (a) and (b) are now obvious. We prove (c).



6.1. THE FUNDAMENTAL GROUP 211

O<— a=—

— ) —

Figure 6.2: Connecting base points.

Let fo,f1 @ (X,z0) — (Y,yo) be two continuous maps, and F; a homotopy rel x
connecting them. For any v € Q(X, zy) we have

o = fo(7) =yo 1(7) = Pr-

The above homotopy is realized by B, = Fy(7). O

A priori, the fundamental group of a topological space X may change as the base point
varies and it almost certainly does if X has several connected components. However, if
X is connected, and thus path connected since it is locally so, all the fundamental groups
m1(X,x), x € X are isomorphic.

Proposition 6.1.9. Let X be a connected topological space. Any continuous path o :
[0,1] = X joining x¢ to x1 induces an isomorphism

Oy 2 7T1(X,3§‘0) — WI(X7331)7

defined by, a.([7]) := [~ *v* a]; see Figure 6.2. O

Exercise 6.1.10. Prove Proposition 6.1.9. a

Thus, the fundamental group of a connected space X is independent of the base point
modulo some isomorphism. We will write 71 (X, pt) to underscore this weak dependence
on the base point.

Corollary 6.1.11. Two homotopically equivalent connected spaces have isomorphic fun-
damental groups.

Example 6.1.12. (a) 71 (R", pt) ~ 71 (pt,pt) = {1}.
(b) 71 (annulus) ~ 71 (S1). 0

Definition 6.1.13. A connected space X such that m (X, pt) = {1} is said to be simply
connected. O

Exercise 6.1.14. Prove that the spheres of dimension > 2 are simply connected. a
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Exercise 6.1.15. Let G be a connected Lie group. Define a new operation “x” on (G, 1)
by
(axpB)(s) = als) - B(s),

where - denotes the group multiplication.
(a) Prove that ax 8 ~1 a x 3.
(b) Prove that 71(G, 1) is Abelian. 0

Exercise 6.1.16. Let E — X be a rank r complex vector bundle over the smooth manifold
X, and let V be a flat connection on E, i.e., F(V) = 0. Pick zg € X, and identify the fiber
E., with C". For any continuous, piecewise smooth v € Q(X,zg) denote by T, = T, (V)
the parallel transport along +, so that 7', € GL (C").
(a) Prove that a~y, 8 = T, = Tp.
(b) Tgsq =T 0 Tj.

Thus, any flat connection induces a group morphism

T:7m(X,z9) - GL(C") v+~ Tw_l.

This morphism (representation) is called the monodromy of the connection. O

Example 6.1.17. We want to compute the fundamental group of the complex projective
space CP". More precisely, we want to show it is simply connected. We will establish this
by induction.

For n = 1, CP' = §2, and by Exercise 6.1.14, the sphere S? is simply connected. We
next assume CP¥ is simply connected for k < n and prove the same is true for n.

Notice first that the natural embedding CF*! < C"*! induces an embedding CP*¥ —
CP™. More precisely, in terms of homogeneous coordinates this embedding is given by

[ZQ,...sz]H[Zo,...,Zk,O,...,O] e CP".

Choose as base point pt = [1,0,...,0] € CP", and let v € Q(CP", pt). We may assume vy
avoids the point P = [0,...,0, 1] since we can homotop it out of any neighborhood of P.

We now use a classical construction of projective geometry. We project v from P to the
hyperplane H# = CP"~! < CP". More precisely, if ¢ = [z, ...,2,] € CP", we denote by
m(¢) the intersection of the line P¢ with the hyperplane . In homogeneous coordinates

m(¢) =[20(1 — 2zn)s -+, 2n—1(1 — 2,),0] (= [20,- -, 2n—1,0] when z, # 1).
Clearly 7 is continuous. For ¢ € [0,1] define

() = [20(1 — tzn), ...y 2n—1(1 — tzp), (1 — t)z,].

Geometrically, m; flows the point ¢ along the line P until it reaches the hyperplane H.
Note that 7(¢) = ¢, Vt, and V¢ € H. Clearly, m; is a homotopy rel pt connecting v = 7y ()
to a loop 71 in H = CP"~! based at pt. Our induction hypothesis shows that v, can be
shrunk to pt inside H . This proves that CP" is simply connected. O
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6.1.2 Of categories and functors

The considerations in the previous subsection can be very elegantly presented using the

language of categories and functors. This brief subsection is a minimal introduction to

this language. The interested reader can learn more about it from the monograph [55, 68].
A category is a triplet € = (Ob(C), Hom(C), o) satisfying the following conditions.

(i) Ob(C) is a set whose elements are called the objects of the category.

(i) Hom(C) is a family of sets Hom (X,Y"), one for each pair of objects X and Y. The
elements of Hom (X,Y") are called the morphisms (or arrows) from X to Y.

(iii) o is a collection of maps
o: Hom(X,Y) x Hom(Y, Z) - Hom(X, Z2), (f,g9)— go f,
which satisfies the following conditions.
(C1) For any object X, there exists a unique element 1x € Hom(X, X) such that,

folx=f golx =g VfeHom(X,Y), Vg€ Hom(Z, X).

(C2) Vf €e Hom(X,Y), g € Hom(Y,Z), h € Hom(Z,W)

ho(gof)=(hog)of.

Example 6.1.18. e Top is the category of topological spaces. The objects are topological
spaces and the morphisms are the continuous maps. Here we have to be careful about one
foundational issue. Namely, the collection of all topological spaces is not a set. To avoid
this problem we need to restrict to topological spaces whose subjacent sets belong to a
certain Universe. For more about this foundational issue we refer to [55].

e (Top, ) is the category of marked topological spaces. The objects are pairs (X, *),
where X is a topological space, and * is a distinguished point of X. The morphisms

(X, %) L (Y, 0)

are the continuous maps f : X — Y such that f(x) = .

e rVect is the category of vector spaces over the field F. The morphisms are the F-linear
maps.

e Gr is the category of groups, while Ab denotes the category of Abelian groups. The
morphisms are the obvious ones.

e sMod denotes the category of left R-modules, where R is some ring. ad

Definition 6.1.19. Let C; and Gy be two categories. A covariant (respectively contravari-
ant) functor is a map

F:0b(C1) x Hom(C1) — Ob(C2) x Hom(Cy),
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(X, ) = (F(X), F(/)),
I(f)

such that, if X EN Y, then F(X) 7U) F(Y) (respectively F(X) +— F(Y)), and
(i) F(1x) = Lgx),
(i) F(g) o F(f) = Flg o f) (respectively F(f) o F(g) = F(go [f)). O

Example 6.1.20. Let V be a real vector space. Then the operation of right tensoring
with V' is a covariant functor

@V :gVect = gVect, U~ U@V, (U1 B Us) ~ (U1 @V "2V U0 V).

On the other hand, the operation of taking the dual defines a contravariant functor,
* . pVect - gVect, V ~ V*, (U5 V)~ (v 5y,
The fundamental group construction of the previous is a covariant functor
71 : (Top, ¥) — Gr. 0

In Chapter 7 we will introduce other functors very important in geometry. For more
information about categories and functors we refer to [55, 68].

6.2 Covering Spaces

6.2.1 Definitions and examples

As in the previous section we will assume that all topological spaces are locally path
connected.

Definition 6.2.1. (a) A continuous map 7 : X — Y is said to be a covering map if, for
any y € Y, there exists an open neighborhood U of y in Y, such that 7=(U) is a disjoint
union of open sets V; C X each of which is mapped homeomorphically onto U by 7. Such
a neighborhood U is said to be an evenly covered neighborhood. The sets V; are called
the sheets of m over U.

(b) Let Y be a topological space. A covering space of Y is a topological space X, together
with a covering map 7 : X — Y.

(c) If 7: X — Y is a covering map, then for any y € Y the set m—!(y) is called the fiber
over y. g

Example 6.2.2. Let D be a discrete set. Then, for any topological space X, the product
X x D is a covering of X with covering projection 7(z,d) = x. This type of covering space
is said to be trivial. O

Exercise 6.2.3. Show that a fibration with standard fiber a discrete space is a covering.
O

Example 6.2.4. The exponential map exp : R — S, t — exp(2mit) is a covering map.
However, its restriction to (0,00) is no longer a a covering map. (Prove this!). O
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Exercise 6.2.5. Let (M, g) and (M, q) be two Riemann manifolds of the same dimension
such that (M, g) is complete. Let ¢ : M — M be a surjective local isometry i.e. ® is
smooth and

|vlg = |Do(v)|s YveTM.

Prove that ¢ is a covering map. a

The above exercise has a particularly nice consequence.

Theorem 6.2.6 (Cartan-Hadamard). Let (M, g) be a complete Riemann manifold with
non-positive sectional curvature. Then for every point g € M, the exponential map

exp, : IyM — M
1S @ covering map.

Proof. The pull-back h = expy(g) is a symmetric non-negative definite (0,2)-tensor field
on Ty M. It is in fact positive definite since the map exp, has no critical points due to the
non-positivity of the sectional curvature.

The lines ¢t — tv through the origin of T;, M are geodesics of h and they are defined
for all t € R. By Hopf-Rinow theorem we deduce that (T, M, h) is complete. The theorem
now follows from Exercise 6.2.5. O

Exercise 6.2.7. Let G and G be two Lie groups of the same dimension and ¢ : G — G
a smooth, surjective group morphism. Prove that ¢ is a covering map. In particular, this
explains why exp : R — S! is a covering map. a

Exercise 6.2.8. Identify S® c R* with the group of unit quaternions
S ={qeH; |ql =1}.
The linear space R3 can be identified with the space of purely imaginary quaternions
R? = ImH = {23 +yj + zk}.

(a) Prove that gvq~! € ImH, Vq € S°.
(b) Prove that for any ¢ € S? the linear map

Ty : ImH — ImH qrqt
is an isometry so that T, € SO(3). Moreover, the map
S35 g T, € SO(3)

is a group morphism.
(c) Prove the above group morphism is a covering map. a
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Example 6.2.9. Let M be a smooth manifold. A Riemann metric on M induces a metric
on the determinant line bundle det T'M. The sphere bundle of det T'M (with respect to
this metric) is a 2 : 1 covering space of M called the orientation cover of M. O

Definition 6.2.10. Let X; 5 Y and X» 3 Y be two covering spaces of Y. A morphism
of covering spaces is a continuous map F' : X; — X5 such that my o F' = 7y, i.e., the
diagram below is commutative.

F
o\ S
Y

If F' is also a homeomorphism we say F' is an isomorphism of covering spaces.
Finally, if X = Y is a covering space then its automorphisms are called deck transfor-
mations. The deck transformations form a group denoted by Deck (X, 7). O

X5 Xo

Exercise 6.2.11. Show that Deck (R =¥ S1) = 7, O

Exercise 6.2.12. (a) Prove that the natural projection S™ — RP" is a covering map.

(b) Denote by U} the tautological (real) line bundle over RP™. Using a metric on this
line bundle form the associated sphere bundle S(U}) — RP™. Prove that this fiber bundle
defines a covering space isomorphic with the one described in part (a). O

6.2.2 Unique lifting property

Definition 6.2.13. Let X = Y be a covering space and F : Z — Y a continuous map.
A lift of f is a continuous map F : Z — X such that mo F' = f, i.e. the diagram below is
commutative.

X
/7(
F/// T O
7
Z —Y

Proposition 6.2.14 (Unique Path Lifting). Let X LY be a covering map, 7 : 0,1] =Y
a path in'Y and xo a point in the fiber over yo = v(0), xo € 7 (yo). Then there exists at
most one lift of v, T : [0,1] = Y such that T'(0) = xo.

Proof. We argue by contradiction. Assume there exist two such lifts, I'y, Ty : [0,1] — X.
Set
S:={te[0,1]; Ti(t) =T2() }.

The set S is nonempty since 0 € .S. Obviously S is closed so it suffices to prove that it is also
open. We will prove that for every s € S, there exists ¢ > 0 such that [s—e, s+£]N[0,1] C S.
For simplicity, we consider the case s = 0. The general situation is entirely similar.

We will prove that there exists rg > 0 such that [0,79] C S. Pick a small open
neighborhood U of z( such that 7 restricts to a homeomorphism onto 7(U). There exists
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ro > 0 such that ’yi( [O,ro]) C U, i=1,2. Since o'y = 70Ty, we deduce I' [jg )=
Iy |[0,T,O]. The proposition is proved. a

Theorem 6.2.15. Let X 5 Y be a covering space, and f : Z — Y be a continuous map,
where Z is a connected space. Fix zy € Z, and xo € m (yo), where yo = f(20). Then
there exists at most one lift F : Z — X of f such that F(zy) = xg.

Proof. For each z € Z let a, be a continuous path connecting zy to z. If Fy, Fy are two
lifts of f such that Fy(z9) = Fa(z9) = xo then, for any z € Z, the paths I'y = Fj(a,),
and 'y = Fy(ay) are two lifts of v = f(«,) starting at the same point. From Proposition
6.2.14 we deduce that I'y =T'y, i.e., F1(z) = F»(2), for any z € Z. 0

6.2.3 Homotopy lifting property

Theorem 6.2.16 (Homotopy lifting property). Let X =Y be a covering space, f : Z —
Y be a continuous map, and F : Z — X be a lift of f. If

h:[0,1] x Z =Y (t,2)— h(2)
is a homotopy of f (ho(z) = f(z)), then there exists a unique lift of h
H:[0,1] xZ—=X (t,z) — Hz),
such that Hy(z) = F(z).

Proof. For each z € Z we can find an open neighborhood U, of z € Z, and a partition
0=ty <ty <...<ty, =1, depending on z, such that h maps [t;—1,¢;] X U, into an evenly
covered neighborhood of hy, ,(z). Following this partition, we can now successively lift
hlrxu, to a continuous map H = H? : I x U, — X such that Hy(¢) = F(¢), V¢ € U,. By
unique lifting property, the liftings on I x U,, and I x U,, agree on I x (U, NU,,), for
any 21,z € Z, and hence we can glue all these local lifts together to obtain the desired
lift H on I x Z. a

Corollary 6.2.17 (Path lifting property). Suppose that X LY is a covering map, yo €
Y, and v : [0,1] — Y is a continuous path starting at yo. Then, for every xo € 7 *(yo)
there exists a unique lift T': [0,1] — X of v starting at xg.

Proof. Use the previous theorem with f: {pt} — Y, f(pt) = v(0), and hi(pt) = ~v(t). O

Corollary 6.2.18. Let X Y be a covering space, and yo € Y. If 49,71 € Q(Y, o) are
homotopic rel yy, then any lifts I'g, I'y which start at the same point also end at the same
point, i.e. To(1) =T1(1).

Proof. Lift the homotopy connecting g to 71 to a homotopy in X. By unique lifting
property this lift connects I'y to I';. We thus get a continuous path I'y(1) inside the fiber
771 (yo) which connects T'g(1) to T'1(1). Since the fibers are discrete, this path must be
constant. O
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Let X Y be a covering space, and yo € Y. Then, for every x € 7—'(yo), and any
v e Qly, Yo), denote by I',, the unique lift of v starting at z. Set

x -y :=Ty(1).
By Corollary 6.2.18, if w € Q(Y,yg) is homotopic to v rel yg, then
Ty = w.

Hence, x - v depends only upon the equivalence class [y] € m1(Y, yo). Clearly

and
T ey, =T,

so that the correspondence

7 Hyo) x m(Yyy0) D (v,7) = x-y €z -y €T (yo)

defines a right action of 7 (Y, o) on the fiber 771 (yo). This action is called the monodromy
of the covering. The map = + x -~ is called the monodromy along ~. Note that when Y
is simply connected, the monodromy is trivial. The map 7 induces a group morphism

Tt (X, 20) = m(Y,90) o € 7 (yo)-
Proposition 6.2.19. 7, is injective.

Proof. Indeed, let v € Q(X, o) such that 7(y) is trivial in m1(Y,y0). The homotopy
connecting m(7y) to ey, lifts to a homotopy connecting 7 to the unique lift of ey, at zo,
which is eg,. O

6.2.4 On the existence of lifts

Theorem 6.2.20. Let X =Y be a covering space, xo € X, yo = m(xo) €Y, f:Z =Y
a continuous map and zg € Z such that f(zg) = yo. Assume the spaces Y and Z are
connected (and thus path connected). f admits a lift F': Z — X such that F(zy) = xg if
and only if

f* (7‘(’1(2, ZO)) C Ty (Wl(X,xQ)). (6.2.1)

Proof. Necessity. If F' is such a lift then, using the functoriality of the fundamental
group construction, we deduce f, = 7, o Fi. This implies the inclusion (6.2.1).

Sufficiency. For any z € Z, choose a path ~, from 2y to z. Then a, = f(y.) is a
path from yy to y = f(z). Denote by A, the unique lift of «, starting at zp, and set
F(z) = A,(1). We claim that F' is a well defined map.

Indeed, let w, be another path in Z connecting zy to z. Set A, := f(w,
by A, its unique lift in X starting at zo. We have to show that A,(1) = A,(
the loop based at zg

), and denote
1). Construct

ﬁz:wz*%_-
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Then f(5,) is a loop in Y based at yo. From (6.2.1) we deduce that the lift B, of f(f,)
at zg € X is a closed path, i.e., the monodromy along f(3.) is trivial. We now have

Az(l) = Bz(1/2) = Az(o) = Az(l)

This proves that F' is a well defined map. We still have to show that this map is also
continuous.

Pick z € Z. Since f is continuous, for every arbitrarily small, evenly covered neigh-
borhood U of f(z) € Y there exists a path connected neighborhood V' of z € Z such that
f(V) Cc U. For any ¢ € V pick a path ¢ = o¢ in V connecting z to ¢. Let w denote
the path w = 7, x 0¢ (go from 2 to z along 7., and then from z to ¢ along o¢). Then
F(¢) = (1), where € is the unique lift of f(w) starting at z¢. Since (f(¢) € U, we deduce
that (1) belongs to the local sheet X, containing F'(z), which homeomorphically covers
U. We have thus proved z € V. C F~1(X). The proof is complete since the local sheets %
form a basis of neighborhoods of F'(z). 0

Definition 6.2.21. Let Y be a connected space. A covering space X — Y is said to be
universal if X is simply connected. a

Corollary 6.2.22. Let X, Ky (i=0,1) be two covering spaces of Y. Fix x; € X; such
that po(zo) = p(x1) = yo € Y. If Xy is universal, then there exists a unique covering
morphism F : Xo — X1 such that F(xg) = 1.

Proof. A bundle morphism F': Xy — X; can be viewed as a lift of the map pg: Xg > Y
to the total space of the covering space defined by p;. The corollary follows immediately
from Theorem 6.2.20 and the unique lifting property. ad

Corollary 6.2.23. FEvery space admits at most one universal covering space (up to iso-
morphism,).

Theorem 6.2.24. Let Y be a connected, locally path connected space such that each of
its points admits a simply connected neighborhood. Then'Y admits an (essentially unique)
universal covering space.

Sketch of proof.  Assume for simplicity that Y is a metric space. Fix yg € Y. Let Py,
denote the collection of continuous paths in Y starting at yg. It can be topologized using
the metric of uniform convergence in Y. Two paths in Py, are said to be homotopic rel
endpoints if they we can deform one to the other while keeping the endpoints fixed. This
defines an equivalence relation on P,,. We denote the space of equivalence classes by Y,
and we endow it with the quotient topology. Define p: Y — Y by

() =~(1) VyePy.
Then (}7, p) is a universal covering space of Y. a

Exercise 6.2.25. Finish the proof of the above theorem. a
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Example 6.2.26. The map R ¥ S! is the universal cover of S*. More generally, exp :
R™ —T"
(t1,...,tn) — (exp(2mity),...,exp(27ity,)), © =V —1,

is the universal cover of T™. The natural projection p : §™ — RP" is the universal cover
of RP™. O

Example 6.2.27. Let (M, g) be a complete Riemann manifold with non-positive sectional
curvature. By Cartan-Hadamard theorem, the exponential map exp, : T;M — M is a
covering map. Thus, the universal cover of such a manifold is a linear space of the same
dimension. In particular, the universal covering space is contractible!!!

We now have another explanation why exp : R™ — T™ is a universal covering space of
the torus: the sectional curvature of the (flat) torus is zero. O

Exercise 6.2.28. Let (M,g) be a complete Riemann manifold and p : M — M its
universal covering space.

(a) Prove that M has a natural structure of smooth manifold such that p is a local
diffeomorphism.

(b) Prove that the pullback p*g defines a complete Riemann metric on M locally isometric
with g. O

Example 6.2.29. Let (M, g) be a complete Riemann manifold such that
Ric (X, X) > const.\X!ﬁ, (6.2.2)

where const denotes a strictly positive constant. By Myers theorem M is compact. Using
the previous exercise we deduce that the universal cover M is a complete Riemann manifold
locally isometric with (M, g). Hence the inequality (6.2.2) continues to hold on the covering
M. Myers theorem implies again that the universal cover M is compact!! In particular,
the universal cover of a semisimple, compact Lie group is compact!!! O

6.2.5 The universal cover and the fundamental group

Theorem 6.2.30. Let X & X be the universal cover of a space X. Then
71 (X, pt) = Deck (X — X).

Proof. Fix & € X and set 2o = p(&o). There exists a bijection
Ev : Deck (X) — p~(x0),

given by the evaluation
Ev (F) = F(%).

For any £ € 71 (a:o),~1et V¢ be a path connecting &y to £. Any two such paths are homotopic
rel endpoints since X is simply connected (check this). Their projections on the base X
determine identical elements in 71 (X, zo). We thus have a natural map

U : Deck (X) — m (X, 20) F = P(YF(&0))-
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The map ¥ is clearly a group morphism. (Think monodromy!) The injectivity and the
surjectivity of W are consequences of the lifting properties of the universal cover. a

Corollary 6.2.31. If the space X has a compact universal cover, then 7 (X, pt) is finite.

Proof. Indeed, the fibers of the universal cover have to be both discrete and compact.

Hence they must be finite. The map Ev in the above proof is a bijection onto Deck (X).0

Corollary 6.2.32 (H. Weyl). The fundamental group of a compact semisimple group is
finite.

Proof. Indeed, we deduce from Example 6.2.29 that the universal cover of such a group is
compact. O

Example 6.2.33. From Example 6.2.11 we deduce that 71(S') = (Z, +). 0

Exercise 6.2.34. (a) Prove that w1 (RP", pt) = Zy, Yn > 2.
(b) Prove that 7y (T™) = Z™. O

Exercise 6.2.35. Show that the natural inclusion U(n — 1) < U(n) induces an isomor-
phism between the fundamental groups. Conclude that the map

det: U(n) — S*

induces an isomorphism
m1(U(n),1) = 1 (ST,1) 2 Z. 0



Chapter 7

Cohomology

7.1 DeRham cohomology

7.1.1 Speculations around the Poincaré lemma

To start off, consider the following partial differential equation in the plane. Given two
smooth functions P and @), find a smooth function u such that

ou ou
e P, oy Q. (7.1.1)
As is, the formulation is still ambiguous since we have not specified the domains of the
functions u, P and Q). As it will turn out, this aspect has an incredible relevance in
geometry.

Equation (7.1.1) has another interesting feature: it is overdetermined, i.e., it imposes
too many conditions on too few unknowns. It is therefore quite natural to impose some
additional restrictions on the data P, ) just like the zero determinant condition when
solving overdetermined linear systems.

To see what restrictions one should add it is convenient to introduce the 1-form o =
Pdx + Qdy. The equality (7.1.1) can be rewritten as

du = a. (7.1.2)

If (7.1.2) has at least one solution u, then 0 = d?u = da, so that a necessary condition for
existence is

da =0, (7.1.3)
ie.,
or _oQ
oy Oz’

A form satisfying (7.1.3) is said to be closed. Thus, if the equation du = « has a solution
then « is necessarily closed. Is the converse also true?

Let us introduce a bit more terminology. A form « such that the equation (7.1.2) has
a solution is said to be ezxact. The motivation for this terminology comes from the fact

222
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that sometimes the differential form du is called the exact differential of u. We thus have
an inclusion of vector spaces

{exact forms} C {closed forms}.

Is it true that the opposite inclusion also holds?

Amazingly, the answer to this question depends on the domain on which we study
(7.1.2). The Poincaré lemma comes to raise our hopes. It says that this is always true, at
least locally.

Lemma 7.1.1 (Poincaré lemma). Let C' be an open convex set in R™ and a € QF(C).
Then the equation
du =« (7.1.4)

has a solution v € QF1(C) if and only if « is closed, do = 0.

Proof. The necessity is clear. We prove the sufficiency. We may as well assume that 0 € C.
Consider the radial vector field on C

7 =a'0y,
and denote by ®! the flow it generates. More explicitly, ®; is the linear flow
P'(x) = 'z, z€R™

The flow lines of ®! are half-lines, and since C' is convexz, for every z € C, and any t < 0
we have ®!(z) € C.
We begin with an a priori study of (7.1.4). Let u satisfy du = a.. Using the homotopy
formula,
Ly = diz+ i7d,

we get
dLzu = d(diz + izd)u = diza = d(Lypu — iza) = 0.

This suggests looking for solutions ¢ of the equation
Lrp = iza, o€ QF10). (7.1.5)
If ¢ is a solution of this equation, then
Lidp = dLpp = dipae = Lpaw — i gda = Ly,

Hence the form ¢ also satisfies
L#dp —a) = 0.

Set w:=dp—a=>; wrdx!. Using the computations in Subsection 3.1.3 we deduce
Lz’ = da’,

so that
Liw = Z(L,w)d:pf = 0.
I
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We deduce that Lzv; = 0, and consequently, the coefficients w; are constants along the
flow lines of ®; which all converge at 0. Thus,

wj = ¢y = const.

Each monomial crdz! is exact, i.e., there exist nr € Qk_l(C') such that dn; = crdx!. For
example, when I =1 <2< --- <k

det Adx? A - Adak = d(atda® A - A dab).
Thus, the equality Lyw = 0 implies w is exact. Hence there exists 7 € QF~1(C) such that

d(p —n) = a,

i.e., the differential form u := ¢ — 7 solves (7.1.4). Conclusion: any solution of (7.1.5)
produces a solution of (7.1.4).
We now proceed to solve (7.1.5), and to this aim, we use the flow ®;.Define

"= / D (@Y (i)t (7.1.6)

Here the convexity assumption on C' enters essentially since it implies that
dl(C)cC Vt<0,

so that if the above integral is convergent, then u is a form on C. If we write
(@) (ira) = > ni(a)da’,
|I|=k—1

then

u(z) = Z </0 n}(m)dt) da!. (7.1.7)

I —0o0
We have to check two things.
A. The integral in (7.1.7) is well defined. To see this, we first write

o= Z aydz?,

J|=k
and then we set
Ax) = jmax | lay (1))
Then
(®H)*(ira) = eliy (Z on(etx)de) ,
J
so that

|77§(:17)| < C’et|:17|A(:17) vt < 0.
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This proves the integral in (7.1.7) converges.
B. The differential form u defined by (7.1.6) is a solution of (7.1.5). Indeed,

1
Lru = lim — ((®°)*u —u)

s—=0 s
1 0 . ‘ 0 .
—tig (@ [ @) Geagar— [ (@) (it
s 0
~ Jim ( / (@1)* (i) dt — / (@t)*(im)dt>
s—0 o 0
T s NI _ Ok (s i
—21_% ; (") *(ipa)dt = (P°)* (irer) = i
The Poincaré lemma is proved. a

The local solvability does not in any way implies global solvability. Something happens
when one tries to go from local to global.

Example 7.1.2. Consider the form df on R?\ {0} where (r, #) denote the polar coordinates
in the punctured plane. To write it in cartesian coordinates (z,y) we use the equality

tand =
x
so that p ) p p
(1+tan20)d0 = —Ldz+ L and (1+ L)ap = LTI
x x x x

ie.,

—ydx + zdy

df = ———— =
z2 +y? “

Obviously, da = d?0 = 0 on R? \ {0} so that « is closed on the punctured plane. Can we
find a smooth function u on R?\ {0} such that du = a?

We know that we can always do this locally. However, we cannot achieve this globally.
Indeed, if this was possible, then

/du:/ o= df = 2.
St St St

On the other hand, using polar coordinates u = u(r,0) we get
ou 2T Ju
du = —df = —df = u(1,2m) — u(1,0) = 0.
[an= [ Ggdo= [ Gga0 = ui.2m) —ur.0
Hence on R?\ {0}
{exact forms} # {closed forms}.

We see what a dramatic difference a point can make: R?\ {point} is structurally very
different from R2. O

The artifice in the previous example simply increases the mystery. It is still not clear
what makes it impossible to patch-up local solutions. The next subsection describes two
ways to deal with this issue.
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7.1.2 Cech vs. DeRham

Let us try to analyze what prevents the “spreading” of local solvability of (7.1.4) to global
solvability. We will stay in the low degree range.

The Cech approach. Consider a closed 1-form w on a smooth manifold. To solve the
equation du = w, u € C*°(M) we first cover M by open sets (U,) which are geodesically
convex with respect to some fixed Riemann metric.

Poincaré lemma shows that we can solve du = w on each open set U, so that we can
find a smooth function f, € C*°(U,) such that df, = w. We get a global solution if and
only if

fop=1fa—fs=0 oneach U, =U,NUg # 0.

For fixed «, the solutions of the equation du = w on U, differ only by additive constants,
i.e., closed 0-forms.

The quantities f,p satisfy dfag = 0 on the (connected) overlaps U,g so they are con-
stants. Clearly they satisfy the conditions

fap+ fay+ fra =0 onevery Uygy :=U,NUgNU, # 0. (7.1.8)

On each U, we have, as we have seen, several choices of solutions. Altering a choice is
tantamount to adding a constant f, — fo + co. The quantities f,3 change according to

foeﬁ — faﬁ + Ca — C5.

Thus, the global solvability issue leads to the following situation.
Pick a collection of local solutions f,. The equation du = w is globally solvable if we
can alter each f, by a constant ¢, such that

fap = (g — ca) Vo, such that U,p # 0. (7.1.9)

We can start the alteration at some open set U,, and work our way up from one such
open set to its neighbors, always trying to implement (7.1.9). It may happen that in the
process we might have to return to an open set whose solution was already altered. Now
we are in trouble. (Try this on S', and w = df.) After several attempts one can point the
finger to the culprit: the global topology of the manifold may force us to always return to
some already altered local solution.

Notice that we replaced the partial differential equation du = w with a system of linear
equations (7.1.9), where the constants f,s are subject to the constraints (7.1.8). This is
no computational progress since the complexity of the combinatorics of this system makes
it impossible solve in most cases.

The above considerations extend to higher degree, and one can imagine that the com-
plexity increases considerably. This is however the approach Cech adopted in order to
study the topology of manifolds, and although it may seem computationally hopeless, its
theoretical insights are invaluable.

The DeRham approach. This time we postpone asking why the global solvability
is not always possible. Instead, for each smooth manifold M one considers the Z-graded
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vector spaces
B*(M) =@ B*(M), (B'(M):={0}) 2°(M) =P z"m),
k>0 k>0

where
B*(M) = {dw e QF(M); we QY (M) } = exact k — forms,

and
AE {ne QF(M); dn= 0} = closed k — forms.

Clearly B ¢ ZF. We form the quotients,
H*(M) = Z* (M) /B¥(M).

Intuitively, this space consists of those closed k-forms w for which the equation du = w
has no global solution u € Qk_l(M ). Thus, if we can somehow describe these spaces, we
may get an idea “who” is responsible for the global nonsolvability.

Definition 7.1.3. For any smooth manifold M the vector space H¥(M) is called the k-th
DeRham cohomology group of M. O

Clearly H*(M) = 0 for k > dim M.

Example 7.1.4. The Poincaré lemma shows that H¥(R") = 0 for k > 0. The discussion
in Example 7.1.2 shows that H'(R?\ {0}) # 0. 0

Proposition 7.1.5. For any smooth manifold M
dim H°(M) = number of connected components of M.

Proof. Indeed
H'M)=2ZM)={feC>®M);df =0}.

Thus, H°(M) coincides with the linear space of locally constant functions. These are
constant on the connected components of M. O

We see that H°(M), the simplest of the DeRham groups, already contains an important
topological information. Obviously the groups H* are diffeomorphism invariants, and its
is reasonable to suspect that the higher cohomology groups may contain more topological
information.

Thus, to any smooth manifold M we can now associate the graded vector space

H*(M) := P H"(M).
k>0

A priori, the spaces H*(M) may be infinite dimensional. The Poincaré polynomial of M,
denoted by Pp(t), is defined by

Py(t) = t"dim H* (M),
k>0
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every time the right-hand-side expression makes sense. The number dim H* (M) is usually
denoted by bi(M), and it is called the k-th Betti number of M. Hence

Py(t) =Y be(M)t*.
k

The alternating sum

is called the Euler characteristic of M.
Exercise 7.1.6. Show that Pgi(t) =1 +t. O

We will spend the remaining of this chapter trying to understand what is that these
groups do and which, if any, is the connection between the two approaches outlined above.

7.1.3 Very little homological algebra

At this point it is important to isolate the common algebraic skeleton on which both
the DeRham and the Cech approaches are built. This requires a little terminology from
homological algebra.

1= [n the sequel all rings will be assumed commutative with 1.

Definition 7.1.7. (a) Let R be a ring, and let
c*=cn, p*=pDo"
neL nez

be two Z-graded left R-modules. A degree k-morphism ¢ : C* — D® is an R-module
morphism such that
H(C™) c D"* vn e Z.

(7.::€}>(jn

neL

(b) Let

be a Z-graded R-module. A boundary (respectively coboundary) operator is a degree —1
(respectively a degree 1) endomorphism d : C* — C*® such that d? = 0.

A chain (respectively cochain) complex over R is a pair (C*®,d), where C* is a Z-graded
R-module, and d is a boundary (respectively a coboundary) operator. O

In this book we will be interested mainly in cochain complexes so in the remaining
part of this subsection we will stick to this situation. In this case cochain complexes are
usually described as (C* = @,ezC™, d). Moreover, we will consider only the case C" = 0
for n < 0.

Traditionally, a cochain complex is represented as a long sequence of R-modules and
morphisms of R-modules

(C*d): ot on ey onil

such that range (d,,—1) C ker (dy,), i.e., d,dy,—1 = 0.
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Definition 7.1.8. Let
oot o ey ontt
be a cochain complex of R-modules. Set
Z"(C) :=kerd, B"(C):=range(d,_1).

The elements of Z™(C) are called cocycles, and the elements of B"(C') are called cobound-
aries.

Two cocycles ¢, ¢ € Z™(C') are said to be cohomologous if c—c € B"(C'). The quotient
module

H"(C) = 2"(C)/B"(C)

is called the n-th cohomology group (module) of C. It can be identified with the set of
equivalence classes of cohomologous cocycles. A cochain complex complex C' is said to be
acyclic if H*(C) = 0 for all n > 0. ]

For a cochain complex (C*®,d) one usually writes

H*(C) = H*(C,d) = P H"(C).

n>0

Example 7.1.9. (The DeRham complex). Let M be an m-dimensional smooth
manifold. Then the sequence

0 QM) St % ... b amrn -0

(where d is the exterior derivative) is a cochain complex of real vector spaces called the
DeRham complex. Its cohomology groups are the DeRham cohomology groups of the
manifold. O

Example 7.1.10. Let (g,[,‘]) be a real Lie algebra. Define
d: AFg* — AFH1g*,
by

(dw)(Xo, X1,..., Xp) = Z (—D)"M (X, X1, Xoy ooy Xiy ooy Xy oo, Xi),
0<i<j<k

where, as usual, the hat “indicates a missing argument.

According to the computations in Example 3.2.9 the operator d is a coboundary op-
erator, so that (A®g*,d) is a cochain complex. Its cohomology is called the Lie algebra
cohomology, and it is denoted by H*(g). ad

Exercise 7.1.11. (a) Let g be a real Lie algebra. Show that

H'(g) = (9/s.9))",
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where [g,g] = span { [X,Y]; X,Y €g}.

(b) Compute H'(gl(n,R)), where gl(n,R) denotes the Lie algebra of n x n real matrices
with the bracket gTven by the commutator.

(c) (Whitehead) Let g be a semisimple Lie algebra, i.e., its Killing pairing is nondegenerate.
Prove that H'(g) = {0}. (Hint: Prove that [g,g]* = 0, where L denotes the orthogonal
complement with respect to the Killing pairing.) O

Proposition 7.1.12. Let

(C*d): - s ot T on oy ol

be a cochain complex of R-modules. Assume moreover that C' is also a Z-graded R-algebra,
i.e., there exists an associative multiplication such that

cr.Cc™c C"™" Ym,n.
If d is a quasi-derivation, i.e.,
dx-y)==x(dx) -y+z-(dy) Vx,ye€C,
then H®(C) inherits a structure of Z-graded R-algebra.

A cochain complex as in the above proposition is called a differential graded algebra
or DGA.

Proof. 1t suffices to show Z*(C) - Z*(C) c Z*(C), and B*(C) - B*(C) C B*(C).
If dv = dy = 0, then d(zy) = +(dx)y £ z(dy) = 0. If x = dz’ and y = dy’ then, since
d? = 0, we deduce zy = +(dz'dy’). 0

Corollary 7.1.13. The DeRham cohomology of a smooth manifold has an R-algebra struc-
ture induced by the exterior multiplication of differential forms. O

Definition 7.1.14. Let (A°®,d) and (B*®,0) be two cochain complexes of R-modules.
(a) A cochain morphism, or morphism of cochain complezes is a degree 0 morphism ¢ :
A® — B°® such that ¢ od = § o ¢, i.e., the diagram below is commutative for any n.

A" L An—l—l

¢n d)nJrl

Bn L Bn+1

(b) Two cochain morphisms ¢, : A* — B*® are said to be cochain homotopic , and we
write this ¢ ~ 1, if there exists a degree —1 morphism y : { A" — B"~!} such that

¢(a) —¢(a) = £5 0 x(a) £ x 0 d(a).

(¢) Two cochain complexes (A®,d), and (B®,d) are said to be homotopic, if there exist
cochain morphism
¢p:A— B and ¢ : B — A,

such that ¢y o¢ ~ 14, and pop ~ 1p. O
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Example 7.1.15. The commutation rules in Subsection 3.2.1, namely [Lx,d] = 0, and
lix,d]s = Lx, show that for each vector field X on a smooth manifold M, the Lie derivative
along X, Ly : Q*(M) — Q°(M) is a cochain morphism homotopic with the trivial map

(= 0). The interior derivative ix is the cochain homotopy achieving this. ]

Proposition 7.1.16. (a) Any cochain morphism ¢ : (A®,d) — (B®,0) induces a degree
zero morphism in cohomology

¢, : H*(A) — H*(B).

(b) If the cochain maps ¢, : A — B are cochain homotopic, then they induce identical
morphisms in cohomology, ¢, = 1,

(¢) (La)e = Lpe(ay, and if (A§,d°) N (A3, dY) N (AS,d?) are cochain morphisms, then
(Y0 @)s = ths 0 Py
Proof. (a) It boils down to checking the inclusions

$(Z"(A)) C Z"(B) and ¢(B"(A)) C B"(B).

These follow immediately from the definition of a cochain map.
(b) We have to show that ¢(cocycle) — ¢ (cocycle) = coboundary. Let da = 0. Then

o(a) — ¥(a) = £6(x(a) £ x(da) = §(£x(a)) = coboundary in B.
(c) Obvious. O

Corollary 7.1.17. If two cochain complexes (A®,d) and (B®,d8) are cochain homotopic,
then their cohomology modules are isomorphic. a

Proposition 7.1.18. Let
0— (4%, d*) -% (B*,dB) - (C*,d°) — 0

be a short exact sequence of cochain complexes of R-modules. This means that we have a
commutative diagram
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dA dB dc
$nt1 Ynt1
0 An+1 Bn+1 RN Cn—i—l —— 0
d4 dB dc
0 An 2 pgn P om 0 (7.1.10)
d4 dB dc
0 An—l Y1 Bn—l m Cn—l — 0
d4 dB dc

in which the rows are exact. Then there exists a long exact sequence

87L7 1
-

s HYO) S HMA) S B B) S HYO) B B (A) - (7.1.11)

We will not include a proof of this proposition. We believe this is one proof in ho-
mological algebra that the reader should try to produce on his/her own. We will just
indicate the construction of the connecting maps 9,. This construction, and in fact the
entire proof, relies on a simple technique called diagram chasing.

Start with € H"(C). The cohomology class x can be represented by some cocycle
c € Z"(C). Since 1, is surjective there exists b € B™ such that ¢ = 1, (b). From the
commutativity of the diagram (7.1.10) we deduce 0 = d“,(b) = ¥, .1dB (D), i.e., dB(D) €
ker ¢,,41 = range ¢,41. In other words, there exists a € A" such that Ont1(a) = df b.
We claim that a is a cocycle. Indeed,

bntodiy 10 = dp nr1a = diydib = 0.

Since ¢n42 is injective we deduce dﬁﬂa =0, i.e., a is a cocycle.
If we trace back the path which lead us from ¢ € Z"(C) to a € Z"1(A), we can write

a = (Zs;-il-l ) dB (¢] w;l(c) = (b;—}-l o de

This description is not entirely precise since a depends on various choices. We let the
reader check that the correspondence Z"(C) 3 ¢ + a € Z"T1(A) above induces a well
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defined map in cohomology, 9, : H"(C') — H"*1(A) and moreover, the sequence (7.1.11)
is exact.

Exercise 7.1.19. ' Suppose R is a commutative ring with 1. For any cochain complex
(K*,dg) of R-modules, and any integer n we denote by K[n]® the complex defined by
K[n]™ = K™, dp,) = (—1)"dg. We associate to any cochain map f : K* — L*® two
new cochain complexes:

(a) The cone (C(f)’,dc(f)> where

. _ o EL ][ —dg 0 i+l
oo a4 21 (%]
(b) The cylinder (C’yl(f),doyl(f))
ki dK _]lKi+1 0 ki
Cyl(f)* = K @ C(f)* doyp | K71 | =| 0 —=dg 0 || k"
4 0 / dr, 0

We have canonical inclusions a : L®* — Cyl(f), f : K®* — Cyl(f)®, a canonical projections
B:Cyl(f)* = L*, 6 =45(f): C(f)* — K[1]*, and 7 : Cyl(f) — C(f).

(i) Prove that o, 3f,8(f) are cochain maps, foa = 11 and ao 3 is cochain homotopic to
Leyiy)-

(ii) Show that we have the following commutative diagram of cochain complexes, where
the rows are exact.

0 e —— o L gy 0
a Lo
0 K —L— ey —— cp) 0
1k B
K* ! L*

(iii) Show that the connecting morphism in the long exact sequence corresponding to the
short exact sequence

0= K* L5 oyi(f) = O(f) = 0
coincides with the morphism induced in cohomology by d(f) : C(f) — K[1]°.

(iv) Prove that f induces an isomorphism in cohomology if and only if the cone of f is
acyclic. 0

!This exercise describes additional features of the long exact sequence in cohomology. They are partic-
ularly useful in the study of derived categories.
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Exercise 7.1.20. (Abstract Morse inequalities). Let C* =, .,C" be a cochain
complex of vector spaces over the field F. Assume each of the vector spaces C" is finite
dimensional. Form the Poincaré series

Po(t) =) t"dimp C™,

n>0

and

Prrecy(t) =Y _ " dimg H™(C).
n>0

Prove that there exists a formal series R(t) € Zl[[t]] with non-negative coefficients such
that

Poe(t) = Pe(c)(t) + (1 + ) R(?).
In particular, whenever it makes sense, the graded spaces C* and H* have identical Euler
characteristics

X(C®) = Po(=1) = Pye(c) (1) = x(H*(C)). 0
Exercise 7.1.21. (Additivity of Euler characteristic). Let

0—+A*"—>B*—=C*—=0

be a short exact sequence of cochain complexes of vector spaces over the field F. Prove
that if at least two of the cohomology modules H*(A), H*(B) and H*(C) have finite
dimension over [F, then the same is true about the third one, and moreover

X(H*(B)) = x(H*(A)) + x(H*(C)). O

Exercise 7.1.22. (Finite dimensional Hodge theory). Let

(v*.d) = (PV"dn ),

n>0

be a cochain complex of real vector spaces such that dim V"™ < oo, for all n. Assume that
each V" is equipped with a Euclidean metric, and denote by d : V"1 — V" the adjoint
of d,,. We can now form the Laplacians

Ap iV V™ Ay = didy + dpdi .

(a) Prove that ©,>0A, = (d + d*)2.
(b) Prove that Apc = 0 if and only if d,c = 0 and d’_,c = 0. In particular, ker A,, C
zZm(Ve).
(c) Let ¢ € Z™(V). Prove that there exists a unique ¢ € Z™(V') cohomologous to ¢ such
that

le| =min{ ||; ¢—¢ € B*(C)},

where | - | denotes the Euclidean norm in V.
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(d) Prove that ¢ determined in part (c) satisfies A,,¢ = 0. Deduce from all the above that

the natural map
ker A,, — H"(V*)

is a linear isomorphism. a

Exercise 7.1.23. Let V be a finite dimensional real vector space, and vy € V. Define
dy, = di(vo) : ARV S AV s v Aw.
(a) Prove that
...d’“_*iAkvi)AkHVd’"_*i

is a cochain complex. (It is known as the Koszul complex.)
(b) Use the Cartan identity in Exercise 2.2.55 and the finite dimensional Hodge theory
described in previous exercise to prove that the Koszul complex is acyclic if vy # 0, i.e.,

H*(A*V, d(vg)) =0, Vk>0. O

7.1.4 Functorial properties of the DeRham cohomology
Let M and N be two smooth manifolds. For any smooth map ¢ : M — N the pullback

o 1 Q*(N) = Q*(M)

is a cochain morphism, i.e., ¢*dy = dy;¢*, where dj; and respectively dy denote the
exterior derivative on M, and respectively N. Thus, ¢* induces a morphism in cohomology
which we continue to denote by ¢*;

¢*: H*(N) — H*(M).
In fact, we have a more precise statement.

Proposition 7.1.24. The DeRham cohomology construction is a contravariant functor
from the category of smooth manifolds and smooth maps to the category of Z-graded vector
spaces with degree zero morphisms. a

Note that the pullback is an algebra morphism ¢* : Q*(N) — Q*(M),
¢ (@ B) = (0"a) A (¢7B), Va, B € Q*(N),

and the exterior differentiation is a quasi-derivation, so that the map it induces in coho-
mology will also be a ring morphism.

Definition 7.1.25. (a) Two smooth maps ¢g,¢; : M — N are said to be (smoothly)
homotopic, and we write this ¢g >~ ¢1, if there exists a smooth map

®:IxM—N (t,m)— Py(m),

such that ®; = ¢;, for : =0, 1.
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(b) A smooth map ¢ : M — N is said to be a (smooth) homotopy equivalence if there
exists a smooth map 1 : N — M such that ¢ o ~4, 1y, and 1) o ¢ ~, 1.

(¢) Two smooth manifolds M and N are said to be homotopy equivalent if there exists a
homotopy equivalence ¢ : M — N. O

Proposition 7.1.26. Let ¢g,¢1 : M — N be two homotopic smooth maps. Then they
induce identical maps in cohomology

¢ = o1 HY(N) — H*(M).

Proof. According to the general results in homological algebra, it suffices to show that the
pullbacks
$p, ¢1 : Q°(N) — Q*(M)

are cochain homotopic. Thus, we have to produce a map
X QU(N) — QL (M),

such that
¢1(w) — ¢p(w) = £x(dw) £ dxw, Vw € Q*(M).

At this point, our discussion on the fibered calculus of Subsection 3.4.5 will pay off.
The projection ® : I x M — M defines an oriented J-bundle with standard fiber 1.
For any w € Q°(N) we have the equality

P1(w) — dp(w) = D™ (W) [1xmr —P*(w) [ox = > (w).
(OIx M)/ M

We now use the homotopy formula in Theorem 3.4.54 of Subsection 3.4.5, and we deduce

/ B*(w) = / s ® (@) — dag &*(w)
(BT x M) /M (IxM)/M (IxM)/M

_ / & (dyw) — das " (w).
(IxM)/M (IxM)/M

x(w) = /UxM)/M " (w)

is the sought for cochain homotopy. O

Thus

Corollary 7.1.27. Two homotopy equivalent spaces have isomorphic cohomology rings.O

Consider a smooth manifold M, and U, V' two open subsets of M such that M = UUV.
Denote by 2y (respectively 2y) the inclusions U < M (resp. V < M). These induce the
restriction maps

i (M) - Q*(U), w—wly,

and
1w QM) = Q(V), wewly.
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We get a cochain morphism
r: QM) —=Q*U) e Q(V), w— (w,yw).
There exists another cochain morphism
§:QU)eQ (V)= QUNV), (w,n)— —wl|luvnv +1lunv -

Lemma 7.1.28. The short Mayer-Vietoris sequence

0= QM) -5 QU)®Q (V) -5 Q*(UNV) =0

15 exact.

Proof. Obviously r is injective. The proof of the equality Ranger = ker d can be safely
left to the reader. The surjectivity of d requires a little more effort.

The collection {U,V'} is an open cover of M, so we can find a partition of unity
{pv,pv} C C*°(M) subordinated to this cover, i.e.,

supppy C U, supppy CV, 0< oy, v <1, pu+ey =1.

Note that for any w € Q*(U N'V) we have

supp pyw C supp ¢y C 'V,

and thus, upon extending ¢y w by 0 outside V', we can view it as a form on U. Similarly,
ppw € (V). Note that

d(—pvw, ppw) = (pv + Yu)w = w.

This establishes the surjectivity of d. a

Using the abstract results in homological algebra we deduce from the above lemma
the following fundamental result.

Theorem 7.1.29 (Mayer-Vietoris). Let M = U UV be an open cover of the smooth
manifold M. Then there exists a long exact sequence

s HE M) S HRNU) @ HRYV) S HRYU N V) S BN O >
called the long Mayer-Vietoris sequence. a

The connecting morphisms O can be explicitly described using the prescriptions fol-
lowing Proposition 7.1.18 in the previous subsection. Let us recall that construction.
Start with w € QF(U N V) such that dw = 0. Writing as before

W= pyw + pyw,

we deduce
d(pyw) =d(—pyw) onUNV.
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Thus, we can find n € Q¥+1(M) such that

nlv=d(evw) nly=d(—prw).
Then
ow = 1.

The reader can prove directly that the above definition is independent of the various
choices.
The Mayer-Vietoris sequence has the following functorial property.

Proposition 7.1.30. Let ¢ : M — N be a smooth map and {U,V'} an open cover of N.
Then U = ¢=Y(U),V' = ¢=Y(V) form an open cover of M and moreover, the diagram
below is commutative.

HY(N) —— H*U) @ HY (V) —— HY U NV) —2— HFY(N)
o" o" ®" o™ a

HE (M) —— B*U) & B (V') —— B0 V') —Z— HF(0r)
Exercise 7.1.31. Prove the above proposition. O

7.1.5 Some simple examples

The Mayer-Vietoris theorem established in the previous subsection is a very powerful tool
for computing the cohomology of manifolds. In principle, it allows one to recover the
cohomology of a manifold decomposed into simpler parts, knowing the cohomologies of its
constituents. In this subsection we will illustrate this principle on some simple examples.

Example 7.1.32. (The cohomology of spheres). The cohomology of S! can be easily
computed using the definition of DeRham cohomology. We have HY(S') = R since S' is
connected. A 1-form n € Q(S') is automatically closed, and it is exact if and only if

/ n=0.
S1

Indeed, if n = dF’, where F' : R — R is a smooth 27-periodic function, then
/ n=F(2n)— F(0) =0.
Sl

Conversely if n = f(6)df, where f : R — R is a smooth 27-periodic function and

2m
f(0)do =0,
0

then the function

F(t):/0 f(s)ds
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is smooth, 2m-periodic, and dF = n.

Thus, the map
/ L QN(SY) = R, 77#—)/ n,
St St

induces an isomorphism H'(S') — R, and we deduce

To compute the cohomology of higher dimensional spheres we use the Mayer-Vietoris
theorem.
The (n + 1)-dimensional sphere S™"*! can be covered by two open sets

Usouth = S™T1\ {North pole} and Upopn = ™1\ {South pole}.

Each is diffeomorphic to R**!. Note that the overlap Unoren N Usoutn is homotopically
equivalent with the equator S™. The Poincaré lemma implies that

H** (Unorin) @& H*' (Usoutn) = 0
for k£ > 0. The Mayer-Vietoris sequence gives
H*Unortn) & H*(Usoutn) = H"(Unorth N Usourn) — H* (S ) = 0.
For k > 0 the group on the left is also trivial, so that we have the isomorphisms
H*(S™) 2 H*(Unorth N Usoutn) = H*H(S™) k> 0.

Denote by P, (t) the Poincaré polynomial of S™ and set Q,,(t) = P, (t) — P,(0) = P,(t)— 1.
We can rewrite the above equality as

Qni1(t) =tQu(t) n > 0.
Since Q1(t) =t we deduce Q(t) =t", i.e.,
Psn(t) =1-+1¢" O

Example 7.1.33. Let {U,V} be an open cover of the smooth manifold M. We assume
that all the Betti numbers of U, V and U NV are finite. Using the Mayer-Vietoris short
exact sequence, and the Exercise 7.1.21 in Subsection 7.1.3, we deduce that all the Betti
numbers of M are finite, and moreover

X(M)=xU)+x(V)=x(UNV). (7.1.12)

This resembles very much the classical inclusion-exclusion principle in combinatorics. We
will use this simple observation to prove that the Betti numbers of a connected sum of g
tori is finite, and then compute its Euler characteristic.

Let ¥ be a surface with finite Betti numbers. From the decomposition

S = (2 \ disk) U disk,



240 CHAPTER 7. COHOMOLOGY

we deduce (using again Exercise 7.1.21)
X(2) = x(2\ disk) 4+ x(disk) — x ((2\ disk) N (disk) ) .
Since (X \ disk) N disk is homotopic to a circle, and x(disk) = 1, we deduce
() = x(2\ disk) + 1 — x(S') = x(2 \ disk) + 1.
If now X1 and X9 are two surfaces with finite Betti numbers, then
Yi#3e = (27 \ disk) U (29 \ disk),

where the two holed surfaces intersect over an entire annulus, which is homotopically a
circle. Thus

X(E1#52) = x(Z1 \ disk) + x(32 \ disk) — x(5")
= x(Z1) + x(Z2) — 2.

This equality is identical with the one proved in Proposition 4.2.31 of Subsection 4.2.5.
We can decompose a torus as a union of two cylinders. The intersection of these
cylinders is the disjoint union of two annuli so homotopically, this overlap is a disjoint
union of two circles. In particular, the Euler characteristic of the intersection is zero.
Hence
X (torus) = 2x(cylinder) = 2x(circle) = 0.

We conclude as in Proposition 4.2.31 that
X (connected sum of g tori) = 2 — 2g.

This is a pleasant, surprising connection with the Gauss-Bonnet theorem. And the story
is not over. 0

7.1.6 The Mayer-Vietoris principle

We describe in this subsection a “patching” technique which is extremely versatile in estab-
lishing general homological results about arbitrary manifolds building up from elementary
ones.

Definition 7.1.34. A smooth manifold M is said to be of finite type if it can be covered
by finitely many open sets Uy, ..., U, such that any nonempty intersection U;, N---NU;,
(k > 1) is diffeomorphic to R¥™ M Such a cover is said to be a good cover. O

Example 7.1.35. (a) All compact manifolds are of finite type. To see this, it suffices
to cover such a manifold by finitely many open sets which are geodesically convex with
respect to some Riemann metric.

(b) If M is a finite type manifold, and U C M is a closed subset homeomorphic with
the closed unit ball in RU™M  then M \ U is a finite type non-compact manifold. (It
suffices to see that R™ \ closed ball is of finite type).

(¢) The connected sums, and the direct products of finite type manifolds are finite
type manifolds. O
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Proposition 7.1.36. Let p: E — B be a smooth vector bundle. If the base B is of finite
type, then so is the total space E.

In the proof of this proposition we will use the following fundamental result.

Lemma 7.1.37. Let p : E — B be a smooth vector bundle such that B is diffeomorphic
to R™. Then p: E — B is a trivializable bundle. a

Proof of Proposition 7.1.36. Denote by F' the standard fiber of E. The fiber F
is a vector space. Let (U;)i<i<, be a good cover of B. For each ordered multi-index
I:={i; <--- <y} denote by U the multiple overlap U;, N---NU;,. Using the previous
lemma we deduce that each Er = E|y, is a product F' x U;, and thus it is diffeomorphic
with some vector space. Hence (F;) is a good cover. O

Exercise 7.1.38. Prove Lemma 7.1.37.

Hint: Assume that F is a vector bundle over the unit open ball B C R". Fix a connection
V on E, and then use the V-parallel transport along the half-lines L, [0,00) 2 t — tx €
R™ z € R™\ {0}. O

# We denote by M,, the category finite type smooth manifolds of dimension n. The
morphisms of this category are the smooth embeddings, i.e., the one-to-one immersions
My — My, M; € M,.

Definition 7.1.39. Let R be a commutative ring with 1. A contravariant Mayer- Vietoris
functor (or MV -functor for brevity) is a contravariant functor from the category M, to
the category of Z-graded R-modules

F = OnezF" — GradgMod, M — P F"(M),

with the following property. If {U,V'} is a MV -cover of M € M, i.e., U, V, UNV € M,,
then there exist morphisms of R-modules

Op : FHUNV) — FHH(M),
such that the sequence below is exact
S T D T e T (V) S T UnY) B I (M) >

where r* is defined by
= (w) & F(v),
and 0 is defined by
6z ®y) = Flwnv)(y) — Flwnv)(@).

(The maps 72 denote natural embeddings.) Moreover, if N € M,, is an open submanifold
of N, and {U,V} is an MV-cover of M such that {U "N,V NN} is an MV-cover of N,
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then the diagram below is commutative.

On

FHUNV) FrH (M)

FUUNVAN) —2s grtl ()
The vertical arrows are the morphisms F(z,) induced by inclusions. O

The covariant MV -functors are defined in the dual way, by reversing the orientation
of all the arrows in the above definition.

Definition 7.1.40. Let F, G be two contravariant MV -functors,
F, §: M, - GradgrMod.

A correspondence® between these functors is a collection of R-module morphisms

o =P i PI M) — P g (M),

nel

one morphism for each M € M,,, such that, for any embedding M; & Ms, the diagram

below is commutative (o)
F"(Mz) —— F"(M)

dM, [ iy l ,

" (M) L gn (o)

and, for any M € M,, and any MV -cover {U, V' } of M, the diagram below is commutative.

FUUAV) =2 gnt(ag)

oM ‘
On

9n(Uﬁ V) o 9n+1(M)

dunv

The correspondence is said to be a natural equivalence if all the morphisms ¢, are iso-
morphisms. O

Theorem 7.1.41 (Mayer-Vietoris principle). Let F, G be two (contravariant) Mayer-
Vietoris functors on M, and ¢ : F — G a correspondence. If

ok, + FF(R™) = GF(R™)

is an isomorphism for any k € Z, then ¢ is a natural equivalence. O

20ur notion of correspondence corresponds to the categorical notion of morphism of functors.
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Proof. The family of finite type manifolds M,, has a natural filtration
McMic...cM C--,

where M7 is the collection of all smooth manifolds which admit a good cover consisting
of at most r open sets. We will prove the theorem using an induction over r.

The theorem is clearly true for r = 1 by hypothesis. Assume ¢I]€v[ is an isomorphism
for all M € MI7L. Let M € M, and consider a good cover {Uy,...,U,.} of M. Then

{UZUlLJ"'UUr_l,Ur}

is an MV -cover of M. We thus get a commutative diagram

FNU) @ FU,) — FUNU,) —2— 7 (M) — T U) @ §™HL(U,)

| | | |

") & §"(Uy) — §*"(UNU,) §* (M) — FHHU) @ §TH(UY)

The vertical arrows are defined by the correspondence ¢. Note the inductive assumption
implies that in the above infinite sequence only the morphisms ¢;; may not be isomor-
phisms. At this point we invoke the following technical result.

Lemma 7.1.42. (The five lemma.) Consider the following commutative diagram of
R-modules.

Ay — A, A Aq Ay

le fll fo‘ fl‘ le

B — B_; By B By
If f; is an isomorphism for any i # 0, then so is fy. a
Exercise 7.1.43. Prove the five lemma. a

The five lemma applied to our situation shows that the morphisms ¢;; must be iso-
morphisms. a

Remark 7.1.44. (a) The Mayer-Vietoris principle is true for covariant M V-functors as
well. The proof is obtained by reversing the orientation of the horizontal arrows in the
above proof.

(b) The Mayer-Vietoris principle can be refined a little bit. Assume that F and § are
functors from M,, to the category of Z-graded R-algebras, and ¢ : ¥ — §G is a correspon-
dence compatible with the multiplicative structures, i.e., each of the R-module morphisms
¢ are in fact morphisms of R-algebras. Then, if ¢rn are isomorphisms of Z-graded
R-algebras , then so are the ¢;;’s, for any M € M,,.

(c) Assume R is a field. The proof of the Mayer-Vietoris principle shows that if F is a
MV-functor and dimpg F*(R") < oo then dim F*(M) < oo for all M € M,,.

(d) The Mayer-Vietoris principle is a baby case of the very general technique in alge-
braic topology called the acyclic models principle. a
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Corollary 7.1.45. Any finite type manifold has finite Betti numbers. O

7.1.7 The Kunneth formula

We learned in principle how to compute the cohomology of a “union of manifolds”. We will
now use the Mayer-Vietoris principle to compute the cohomology of products of manifolds.

Theorem 7.1.46 (Kiinneth formula). Let M € M,, and N € M,,. Then there exists a
natural isomorphism of graded R-algebras

H*(M x N) = H*(M) @ H*(N) = § ( P H (M) @ Hq(N)> .
n>0 \ptg=n

In particular, we deduce
Purxn(t) = Py(t) - Py (1)

Proof. We construct two functors

F,5:M,, —» GradrAlg,

?:MHEBT(M):EB{ &y Hp(M)®Hq(N)},

r=>0 r>0 \ p+g=r
and
§: Mg (M)=EH (M xN),
r>0 r>0
where
FH =P ( B 1 luron ®]1H‘1(N)> , Vi My — Mo,
r>0 \p+g=r
and

S(f) = B x In) [mr(araxvys Vf 2 My < My,

r>0
We let the reader check the following elementary fact.

Exercise 7.1.47. F and G are contravariant MV -functors. O
For M € My, define ¢ps : F(M) — G(N) by
du(w®n)=wxn=rywAryn (weH*(M), ne H*(M)),

where 7 (respectively my) are the canonical projections M x N — M (respectively
M x N — N). The operation

X:H*(M)® H*(N) = H*(M x N) (w®mn)+—w xmn,

is called the cross product. The Kiinneth formula is a consequence of the following lemma.
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Lemma 7.1.48. (a) ¢ is a correspondence of MV-functors.
(b) ¢rm is an isomorphism.

Proof. The only nontrivial thing to prove is that for any MV-cover {U,V} of M € M,,
the diagram below is commutative.

Bprg=r HP (U N V) @ HYN) L5 @, HPYY (M) ® HI(N)

Punv oM

H"((U x N)N(V x N)) H™ (M x N)

We briefly recall the construction of the connecting morphisms 9 and 9'.

One considers a partition of unity {¢y, ¢y} subordinated to the cover {U,V'}. Then,
the functions ¢y = m},0uy and ¥y = 73,0y form a partition of unity subordinated to the
cover

{UxN,VxN}
of M xN. Ifw®@ne H(UNV)® H*(N),
dw@n) =wemn,

where
Wly= —d(pyw) @ = d(pyw).

On the other hand, ¢pyny(w @ n) = w x n, and &' (w x ) = @ x n. This proves (a).
To establish (b), note that the inclusion

J: N —=>R"™x N, z~ (0,z)

is a homotopy equivalence, with 7 a homotopy inverse. Hence, by the homotopy invari-
ance of the DeRham cohomology we deduce

G(R™) = H*(N).

Using the Poincaré lemma and the above isomorphism we can identify the morphism ¢gm
with ]lRm . a

Example 7.1.49. Consider the n-dimensional torus, T". By writing it as a direct product
of n circles we deduce from Kiinneth formula that

Prn(t) = {Psi (D} = (L + )"

Thus
b (T™) = (Z) dim H*(T™) = 2",
and x(7T™) = 0.
One can easily describe a basis of H*(T™). Choose angular coordinates (01, ...,0") on

T™. For each ordered multi-index I = (1 <4y < --- < i, < n) we have a closed, non-exact
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form df’. These monomials are linearly independent (over R) and there are 2" of them.
Thus, they form a basis of H*(T™). In fact, one can read the multiplicative structure
using this basis. We have an isomorphism of R-algebras

H*(T™) = A*R™. 0

Exercise 7.1.50. Let M € M,, and N € M,,. Show that for any w; € H*(M), n; €
H*(N), i,j = 0,1, the following equality holds.

(wo X 7o) A (w1 X 1) = (—1)98M0dEWL (105 A (1) x (19 A 71). O

Exercise 7.1.51. (Leray-Hirsch). Let p : E — M be smooth bundle with standard
fiber F'. We assume the following:

(a) Both M and F are of finite type.

(b) There exist cohomology classes eq,...,e, € H®*(E) such that their restrictions to
any fiber generate the cohomology algebra of that fiber.

The projection p induces a H®(M)-module structure on H*(E) by
w-n=p'wAn, YweH*(M), ne H*(E).

Show that H*(E) is a free H*(M )-module with generators ey, ..., e,. O

7.2 The Poincaré duality

7.2.1 Cohomology with compact supports
Let M be a smooth n-dimensional manifold. Denote by QF (M) the space of smooth

cpt
compactly supported k-forms. Then
0 d d n
0= Qep(M) = - — Qcpt(M) —0

is a cochain complex. Its cohomology is denoted by H,, (M), and it is called the DeR-
ham cohomology with compact supports. Note that when M is compact this cohomology
coincides with the usual DeRham cohomology.

Although it looks very similar to the usual DeRham cohomology, there are many
important differences. The most visible one is that if ¢ : M — N is a smooth map,
and w € Qgpt(N ), then the pull-back ¢*w may not have compact support, so this new
construction is no longer a contravariant functor from the category of smooth manifolds
and smooth maps, to the category of graded vector spaces.

On the other hand, if dim M = dim N, and ¢ is an embedding, we can identify M with
an open subset of N, and then any 7 € Q¢,(M) can be extended by 0 outside M C N.
This extension by zero defines a push-forward map

Gy 2 Qo (M) — Q2 (N).

cpt cpt
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One can verify easily that ¢, is a cochain map so that it induces a morphism

oy HY

cpt

(M) — H?

cpt

(N).

In terms of our category M,, we see that Hg, is a covariant functor from the category M,

to the category of graded real vector spaces. As we will see, it is a rather nice functor.

Theorem 7.2.1. H7, is a covariant MV -functor, and moreover

(R”):{ 0, k<n ‘

k
A, R , k=n

cpt

The last assertion of this theorem is usually called the Poincaré lemma for compact
supports.

We first prove the Poincaré lemma for compact supports. The crucial step is the
following technical result that we borrowed from [11].

Lemma 7.2.2. Let E 2 B be a rank r real vector bundle which is orientable in the sense
described in Subsection 3.4.5. Denote by p. the integration-along-fibers map

pe: Q0 L(E) — QT (B).

cpt cpt

Then there exists a smooth bilinear map

m: Q!

cpt

(E) - Qi-i-j—r—l(E)

cpt

(E) x

cpt

such that,

ppa A B —aAp'p=(—1)dm(a, 8)) — m(de, B) + (—1)%%m(a, df).

Proof. Consider the 0-bundle
m:€=IXx(E®E)—E, 7:(tvg,v1)— (t;vo + t(v1 — vo)).

Note that

0 =({0}x(FaFE))U ({1} x(E®E)).
Define 7t : E @ E — E as the composition

EGE=2{t}xE®FE—Ix(E®FE) 5 E.
Observe that

o =7 |ge= (—7°) Url.

(E) define a®© B € Q2 (E @ E) by

cpt

For (o, B) € Q2 (E) x Q2

cpt cpt

a® B = (1) an (Th)*B.
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(Verify that the support of & ® 3 is indeed compact.) For o € Qipt(E), and 8 € szt(E)
we have the equalities

poanf=ai(aef) e QUIT(E), aAppb=racp) et T(E).

Hence

D(a,B) =p'peaAB—anp'pp=r(a®p)—1d(adp) = /ag/Ea@ﬁ.

We now use the fibered Stokes formula to get

D(a, ) = /g AT @O+ (s /g T(a ® B),

/E

where T is the natural projection € =1 x (F @ FE) — E @ E. The lemma holds with
mag) = [ T(aos), 0
¢/E

Proof of the Poincaré lemma for compact supports. Consider § € C§°(R") such
that

0<6<1, / O(z)dx = 1.
Define the, closed, compactly supported n-form
7= 6(x)dzt A - A da™

We want to use Lemma 7.2.2 in which E is the rank n bundle over a point, ie., F =
{pt} x R™ & {pt}. The integration along fibers is simply the integration map.

0 , degw<n

t
p fRnw , degw =n.

it Q0 (R") — R, wn—>p*w:{

If now w is a closed, compactly supported form on R™, we have
w=(P'p«T) Nw.
Using Lemma 7.2.2 we deduce
w—TAP pww = (—1)"dm(7,w).

Thus any closed, compactly supported form w on R™ is cohomologous to 7 A p*p,w. The
latter is always zero if degw < n. When degw = n we deduce that w is cohomologous to
(J w)T. This completes the proof of the Poincaré lemma. 0

To finish the proof of Theorem 7.2.1 we must construct a Mayer-Vietoris sequence.
Let M be a smooth manifold decomposed as an union of two open sets M = U UV, The
sequence of inclusions

Unv < UV — M,
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induces a short sequence

U)o, (V)L as

cpt cpt

0= Q8,(UNV) S Q8

cpt cpt

(M) — 0,

where

Z((U) = ((21,(21), ]((U,?]) = ﬁ - w.
The hat " denotes the extension by zero outside the support. This sequence is called the
Mayer-Vietoris short sequence for compact supports.

Lemma 7.2.3. The above Mayer-Vietoris sequence is exact.

Proof. The morphism i is obviously injective. Clearly, Range (i) = ker(j). We have to
prove that j is surjective.
Let (¢, ¢v) a partition of unity subordinated to the cover {U,V}. Then, for any
n € Qi (M), we have
pun € Qe (U) and pyn € Q2,(V).

In particular, n = j(—pun, v n), which shows that j is surjective. O

We get a long exact sequence called the long Mayer-Vietoris sequence for compact
supports.

cpt (M)ng—l—l—)

cpt

Unv)— H*

cpt

(U)o HE

cpt

(V) — HF

cpt

The connecting homomorphism can be explicitly described as follows. If w € Q’gpt(M ) is
a closed form then
d(pyw) =d(—pyw) onUNV.

We set dw := d(pyw). The reader can check immediately that the cohomology class of dw
is independent of all the choices made.

If ¢ : N < M is a morphism of M,, then for any MV-cover of {U, V'} of M {¢~1(U), ¢~ *(V)}
is an MV-cover of N. Moreover, we almost tautologically get a commutative diagram

HE(N) = HE (o7 (U N V)

cpt cpt

o | o |

HE (M) —2— HE LU NY)

cpt cpt
This proves Hgy, is a covariant Mayer-Vietoris sequence. O

Remark 7.2.4. To be perfectly honest (from a categorical point of view) we should have

considered the chain complex
Nk —k
D" = D%
k<0 k<0

and correspondingly the associated homology

He:=H_;.
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This makes the sequence
0 Q" Q1 Q%«0

a chain complex ,and its homology H, is a bona-fide covariant Mayer-Vietoris functor
since the connecting morphism & goes in the right direction H, — Ho_1. However, the
simplicity of the original notation is worth the small formal ambiguity, so we stick to our
upper indices. O

From the proof of the Mayer-Vietoris principle we deduce the following.
Corollary 7.2.5. For any M € M,,, and any k < n we have dim prt(M) < 00. O

7.2.2 The Poincaré duality

Definition 7.2.6. Denote by M, the category of m-dimensional, finite type, oriented
manifolds. The morphisms are the embeddings of such manifold. The MV functors on
M are defined exactly as for M,,. O

Given M € M, there is a natural pairing

(o,0), : QF(M) x Q% (M) — R,

cpt

defined by
(W, n)x :=/ w A .
M

This pairing is called the Kronecker pairing. We can extend this pairing to any (w,n) €
Q° x Q2 as
(w.n) :{ 0 , degw +degn #n
R fyywAn , degw-+degn=mn '

The Kronecker pairing induces maps

D =D": Q% (M) — (" (M))*, (D(w), 1) = (W, M-

cpt
Above, (e, e) denotes the natural pairing between a vector space V and its dual V*,
(0,0) : V" xV — R.
Cptk of closed, compactly supported

(n — k)-forms vanishes on the subspace B?p;k = dQZp_tk_l(M ). Indeed, if n = dn/, 0 €
Q" F=1(M) then

cpt

If w is closed, the restriction of D(w) to the space Z.,

(D(w),n) :/ w A dn St%es:l:/ dw A7’ =0.
M M

Thus, if w is closed, the linear functional D(w) defines an element of (Hc"p;k (M))*. If

moreover w is exact, a computation as above shows that D(w) =0 € (HC”p;k(M ))*. Hence
D descends to a map in cohomology
D: HYM) — (HYF(M))*.

cpt
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Equivalently, this means that the Kronecker pairing descends to a pairing in cohomology,

(o,0), : HF(M) x H*(M) — R.

Theorem 7.2.7 (Poincaré duality). The Kronecker pairing in cohomology is a duality for
all M € M.

Proof. The functor M} — Graded Vector Spaces defined by

M — @ H (M) =P (HL (M)
k

k

is a contravariant MV -functor. (The exactness of the Mayer-Vietoris sequence is pre-
served by transposition. This is where the fact that all the cohomology groups are finite
dimensional vector spaces plays a very important role).

For purely formal reasons which will become apparent in a little while, we re-define
the connecting morphism

HUunv)S g wuv),

to be (—1)k6T, where H?p;k_l(U nv) LN chpgk(U U V') denotes the connecting morphism

in the DeRham cohomology with compact supports, and 61 denotes its transpose.
The Poincaré lemma for compact supports can be rephrased

b o R , k=0
Hk(R):{o k>0

The Kronecker pairing induces linear maps
Dy : HHY (M) — H*(M).
Lemma 7.2.8. @, D¥ is a correspondence of MV functors.

Proof. We have to check two facts.

Fact A. Let M < N be a morphism in M;. Then the diagram below is commutative.

H*(N) — H*(M)
DN D

e

H*(N) — H*(M)
Fact B. If {U,V} is an MV-cover of M € M, then the diagram bellow is commutative

v U Nnv) Lm0

DUrwvl {D]\/I‘/
k

- —1)kst .
H*U N V)( VY HM (M)
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Proof of Fact A. Let w € H¥(N). Denoting by (e,e) the natural duality between a

vector space and its dual we deduce that for any n € H, gp;k(M ) we have

<(£* o DN(w)a 77> = <(¢*)T®N(w)7 77> = <DN(w)7 <Z5*?7>

— [wnom=[  whumn= [ swnn=Du@ ).
N M<N M
Hence ¢* o Dy = Dy o ¢*.

Proof of Fact B. Let oy, py be a partition of unity subordinated to the MV-cover
{U,V} of M € M. Consider a closed k-form w € Q¥(U N V). Then the connecting
morphism in usual DeRham cohomology acts as

[ d(=pyw) on U
OW—{ d(pyw) on V °

Choose 1 € Qgp_tk_l(M) such that dn = 0. We have

(DM&u,n):/ 8w/\77=/8w/\77+/8w/\77—/ OwAn
M U v unv

= —/ d(pvw) An+/ doyw) M?Jr/ d(pvw) An.
U \4 unv
Note that the first two integrals vanish. Indeed, over U we have the equality
(dlpvw)) An=d(pvwAn),

and the vanishing now follows from Stokes formula. The second term is dealt with in a
similar fashion. As for the last term, we have

/ d(ww)/\nz/ dwvAwAnz(—l)deg“’/ wA (dey An)
unv unv unv

— (—-1)* /U @ ndn= (<1 Dunve,b1) = (<18 Dy, ).

This concludes the proof of Fact B. The Poincaré duality now follows from the Mayer-
Vietoris principle. O

Remark 7.2.9. Using the Poincaré duality we can associate to any smooth map f: M —
N between compact oriented manifolds of dimensions m and respectively n a natural push-
forward or Gysin map

fe: H*(M) — H*"(N), q:=dim N —dim M =n —m)
defined by the composition

o) 2% (=) C (e () P (),

where (f *)T denotes the transpose of the pullback morphism. O



7.2. THE POINCARE DUALITY 253

Corollary 7.2.10. If M € M then

.
H cpt

(M) = (H"(M))".
Proof. Since H, fpt(M ) is finite dimensional, the transpose

Diyy = (Hipy"(M))™ — (H*(M)*

cpt

is an isomorphism. On the other hand, for any finite dimensional vector space there exists
a natural isomorphism

V=V, O
Corollary 7.2.11. Let M be a compact, connected, oriented, n-dimensional manifold.

Then the pairing
HY(M) x H*"*(M) - R (w,n) — / wAn
M

is a duality. In particular, bp(M) = b,_(M), Vk. 0

If M is connected HO(M) = H"(M) = R so that H"(M) is generated by any volume
form defining the orientation.

The symmetry of Betti numbers can be translated in the language of Poincaré poly-
nomials as

t"PM(%) — Pu(t). (7.2.1)
Example 7.2.12. Let ¥, denote the connected sum of g tori. We have shown that
X(Xg) =bo — b1 +by=2—2g.
Since Y4 is connected, the Poincaré duality implies by = by = 1. Hence b; = 2g i.e.
Ps, (t) =1+ 2gt +t°. 0

Consider now a compact oriented smooth manifold such that dim M = 2k. The Kro-
necker pairing induces a non-degenerate bilinear form

J: H*(M) x HE(M) - R I(w,n) = / w AT,
M
The bilinear form J is called the cohomological intersection form of M.
When k is even (so that n is divisible by 4) J is a symmetric form. Its signature is
called the signature of M, and it is denoted by o(M).
When £k is odd, J is skew-symmetric, i.e., it is a symplectic form. In particular,
H?1(M) must be an even dimensional space.

Corollary 7.2.13. For any compact manifold M & J\/[Ik+2 the middle Betti number
bort1(M) is even. 0
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Exercise 7.2.14. (a) Let P € Z[t] be an odd degree polynomial with non-negative integer
coefficients such that P(0) = 1. Show that if P satisfies the symmetry condition (7.2.1)
there exists a compact, connected, oriented manifold M such that Pys(t) = P(t).

(b) Let P € Z[t] be a polynomial of degree 2k with non-negative integer coefficients.
Assume P(0) = 1 and P satisfies (7.2.1). If the coefficient of t* is even then there exists
a compact connected manifold M € Mj, such that Py (t) = P(t).

Hint: Describe the Poincaré polynomial of a connect sum in terms of the polynomials of
its constituents. Combine this fact with the Kiinneth formula. O

Remark 7.2.15. The result in the above exercise is sharp. Using his intersection theorem
F. Hirzebruch showed that there exist no smooth manifolds M of dimension 12 or 20 with
Poincaré polynomials 1+ t% +¢!2 and respectively 1+ ¢'9 +¢29. Note that in each of these
cases both middle Betti numbers are odd. For details we refer to J. P. Serre, “Travaux de
Hirzebruch sur la topologie des variétés’, Seminaire Bourbaki 1953/54,n° 88. O

7.3 Intersection theory

7.3.1 Cycles and their duals

Suppose M is a smooth manifold.

Definition 7.3.1. A k-dimensional cycle in M is a pair (S, ¢), where S is a compact,
oriented k-dimensional manifold without boundary, and ¢ : S — M is a smooth map. We
denote by Cr(M) the set of k-dimensional cycles in M. O

Definition 7.3.2. (a) Two cycles (So, ¢0), (S1,¢1) € Cr(M) are said to be cobordant,
and we write this (S, ¢g) ~¢ (S1,¢1), if there exists a compact, oriented manifold with
boundary ¥, and a smooth map ® : ¥ — M such that the following hold.

(al) 0¥ = (—Sp) U S1 where —Sy denotes the oriented manifold Sy equipped with the
opposite orientation, and “LU” denotes the disjoint union.

(a2) ®|s,= i, i =0, 1.

(b) A cycle (S,¢) € Cr(M) is called trivial if there exists a (k + 1)-dimensional,
oriented manifold 3 with (oriented) boundary S, and a smooth map ® : ¥ — M such
that ®|gy; = ¢. We denote by T (M) the set of trivial cycles.

(¢) A cycle (S,¢) € Cr(M) is said to be degenerate if it is cobordant to a constant
cycle, i.e., a cycle (5,¢’) such that ¢’ is map constant on the components of S’. We
denote by Dy (M) the set of degenerate cycles. O

Exercise 7.3.3. Let (S, ¢g) ~¢ (51, ¢1). Prove that (—SoU S1, ¢o LU ¢1) is a trivial cycle.
O

The cobordism relation on €4 (M) is an equivalence relation®, and we denote by 2 (M)
the set of equivalence classes. For any cycle (S, ¢) € Cr(M) we denote by [S, ¢] its image
in Zy(M). Since M is connected, all the trivial cycles are cobordant, and they define an
element in Z;(M) which we denote by [0].

3We urge the reader to supply a proof of this fact.
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Figure 7.1: A cobordism in R?

Given [So, ¢o], [S1, ¢1] € Zk (M) we define
[So, ¢o] + [S1, ¢1] := [So U S1, ¢o U 1],

where “LJ” denotes the disjoint union.
Proposition 7.3.4. Suppose M is a smooth manifold.
((1) Let [Slv ¢Z]7 [Szlv ¢;] € ek(M)J 1= 07 1. If [Slv ¢Z] ~ec [Szly ¢;], fO’f’ 1= 07 1} then
[So U S1, ¢ U 1] ~e [So U ST, ¢ U @]

so that the above map + : Zi,(M) X Zp(M) — Zp(M) is well defined.
(b) The binary operation + induces a structure of Abelian group on Zy(M). The trivial
element is represented by the trivial cycles. Moreover,

=[S, 9] =[5, ¢] € H(M). 0
Exercise 7.3.5. Prove the above proposition. a

We denote by Hy (M) the quotient of Zi(M) modulo the subgroup generated by the
degenerate cycles. Let us point out that any trivial cycle is degenerate, but the converse

is not necessarily true.
Suppose M € M. Any k-cycle (S, #) defines a linear map H*(M) — R given by

H*¥(M) 5w~ / Prw.
S
Stokes formula shows that this map is well defined, i.e., it is independent of the closed

form representing a cohomology class.
Indeed, if w is exact, i.e., w = dw’, then

/S¢*dw’=/sd¢*w’=o.
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In other words, each cycle defines an element in ( H¥(M))*. Via the Poincaré duality we
identify the vector space ( H*(M))* with HC”p;k(M). Thus, there exists dg € chpzk(M)
such that

/Mwmss = /qu*w Yw € H*(M).

The compactly supported cohomology class dg is called the Poincaré dual of (S, ).

There exist many closed forms 7 € Q?I;k(M ) representing dg. When there is no risk

of confusion, we continue denote any such representative by dg.

Figure 7.2: The dual of a point is Dirac’s distribution

Example 7.3.6. Let M = R", and S is a point, S = {pt} C R™. pt is canonically a
0-cycle. Its Poincaré dual is a compactly supported n-form w such that for any constant

A (i.e. closed 0-form)
/ Aw = / A=A
R™ pt

/ w=1.

Thus d,; can be represented by any compactly supported n-form with integral 1. In
particular, we can choose representatives with arbitrarily small supports. Their “profiles”
look like in Figure 7.2. “At limit” they approach Dirac’s delta distribution. O

ie.,

Example 7.3.7. Consider an n-dimensional, compact, connected, oriented manifold M.
We denote by [M] the cycle (M, 1y7). Then opy =1 € HO(M). 0

& For any differential form w, we set (for typographical reasons), |w| = degw.

Example 7.3.8. Consider the manifolds M € M;}, and N € M;}. (The manifolds M and
N need not be compact.) To any pair of cycles (S,¢) € C,(M), and (T,v) € Cu(N) we
can associate the cycle (S x T, ¢ x ¢) € Cpiq(M x N). We denote by mys (respectively
mn) the natural projection M x N — M (respectively M x N — N). We want to prove

the equality
OsxT = (—1)(m_p)q5s x or, (7.3.1)
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where

wxn:=mnywAryn, Y(w,n) € Q*(M)xQ*(N).
Pick (w,n) € Q*(M) x Q*(N) such that, degw + degn = (m +n) — (p + ¢). Then, using
Exercise 7.1.50

/ (wx 1) A (85 % 87) = (- P [ (4 Ass) x (n A 7).
MxN MxN

The above integral should be understood in the generalized sense of Kronecker pairing.
The only time when this pairing does not vanish is when |w| = p and |n| = ¢. In this case
the last term equals

(—1ysm=p) ( /S w/\55> ( /T 77/\5T> _ (—1)itmp) ( /S ¢*w> < /T Wn)

— (1D [ @0y,
SxT
This establishes the equality (7.3.1). 0
Example 7.3.9. Consider a compact manifold M € M. Fix a basis (w;) of H*(M) such

that each w; is homogeneous of degree |w;| = d;, and denote by w’ the basis of H*(M)
dual to (w;) with respect to the Kronecker pairing, i.e.,

(W' wihe = (=D TR, ) . = 6.
In M x M there exists a remarkable cycle, the diagonal

A=Ay M—MxM, z— (z,x).
We claim that the Poincaré dual of this cycle is

oa =0y = (Dl x w;. (7.3.2)

7

Indeed, for any homogeneous forms «, 5 € Q°*(M) such that |a| + |3] = n, we have

/MXM(a % B) A 6ar =3 (— 1) (@ x B) A (Wi x w;)

i MxM
= LIy [ @ndhx @ aw)
MxM
—Z BH“'(/ oz/\w’)(/ ﬁ/\wi>.
M M
The i-th summand is nontrivial only when |3| = |w’|, and |a| = |w;|. Using the equality

|w?| + |w?|? = 0(mod 2) we deduce

/MXM(a X B) 1 ox = Z </Ma /\wi> </Mﬁ /\wz') = Z(avwi>ﬁ</87wi>n.

(2 3
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From the equalities
a=> wilw, a) and B= (B,w;,)sw
( J

we conclude

/M A*(a x B) = /Ma AB= /M(Z wi(w', ) A (Zw,ijj)

/ Zw O[ ﬁ’w]>"1w2/\w _Z<w OZ> (ﬁvw]> <wl7 ]>/-;

2%
= 2RO o (RIS ) = 3 el

Equality (7.3.2) is proved. O

Proposition 7.3.10. Let M € M} be a manifold, and suppose that (S;,¢;) € Ck(M)
(i =0,1) are two k-cycles in M.

(a) If (So. d0) ~c (S1, 1), then s, = ds, in HF(M).

(b) If (So, o) is trivial, then dg, =0 in chptk(M).

(C) (550u51 = (550 + 551 m H?ptk(M)

(d) 6_s, = —0s, in H™F(M).

cpt

Proof. (a) Consider a compact manifold ¥ with boundary 0¥ = —Sp U S and a smooth
map ® : ¥ — M such that ®|gx= ¢g L ¢1. For any closed k-form w € QF(M) we have

0:/<I>*(dw)=/d<1>*w Sti““/ w= | ¢w— [ ¢w.
by b)) oy S1 So

Part (b) is left to the reader. Part (c) is obvious. To prove (d) consider ¥ = [0, 1] x Sy
and
®:[0,1] x So = M, ®(t,x) = ¢o(x), V(t,z) € X.

Note that 93 = (—Sp) L Sy so that
5—50 + 55() = 6—5()L|So = 582 =0. O
The above proposition shows that the correspondence

Cr(M) 3 (S,¢) — ds € H™ * (M)

cpt

descends to a map
6 Hp(M) — H™F(M).

cpt

This is usually called the homological Poincaré duality. We are not claiming that J is an
isomorphism.
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Figure 7.3: The intersection number of the two cycles on T? is 1

7.3.2 Intersection theory

Consider M € M, and a k-dimensional compact oriented submanifold S of M. We

denote by 2 : S < M inclusion map so that (.5,2) is a k-cycle.

Definition 7.3.11. A smooth map ¢ : T — M from an (n — k)-dimensional, oriented
manifold 7" is said to be transversal to S, and we write this S h ¢, if the following hold.

(a) ¢~1(S) is a finite subset of T;
(b) for every x € ¢~1(S) we have
Gu(ToT) + Ty(2)S = Ty(yM  (direct sum).
If S i @, then for each z € ¢~1(S) we define the local intersection number at x to be
(or = orientation)

i (S.T) L, or(Tyw)S) Nor(¢1.T) = or(Ty) M)
A —1 , or(Tyu)S) Nor (T, T) = —or(Ty M)

Finally, we define the intersection number of S with T to be

S Ti= > i(S.1). 0
r€¢=1(5)

Our next result offers a different description of the intersection number indicating how
one can drop the transversality assumption from the original definition.

Proposition 7.3.12. Let M € M. Consider a compact, oriented, k-dimensional sub-
manifold S — M, and (T,¢) € Ch_r(M) a (n — k)-dimensional cycle intersecting S
transversally, i.e., S h ¢. Then

ST = / Ss A dr, (7.3.3)
M
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where do denotes the Poincaré dual of e.

The proof of the proposition relies on a couple of technical lemmata of independent
interest.

Lemma 7.3.13 (Localization lemma). Let M € M} and (S, ¢) € Cr(M). Then, for any
open neighborhood N of ¢(S) in M there evists 03 € Q?I;k(M) such that

(a) 6% represents the Poincaré dual §g € HZ;’“(M);

(b) supp &y C N.

Proof. Fix a Riemann metric on M. Each point p € ¢(S) has a geodesically convex open
neighborhood entirely contained in N. Cover ¢(S) by finitely many such neighborhoods,
and denote by N their union. Then N € M}, and (S, ¢) € Cf (N).

Denote by 5év the Poincaré dual of S in N. It can be represented by a closed form in
Q" F(N) which we continue to denote by 6% . If we pick a closed form w € QF(M), then

cpt
/WAééV:/WAééV:/¢*W.
M N s

w|n is also closed, and
Hence, 6% represents the Poincaré dual of S in H C”p;k(M ), and moreover, suppdy C N. O

Definition 7.3.14. Let M € M}, and S — M a compact, k-dimensional, oriented

submanifold of M. A local transversal at p € S is an embedding
¢:BCR" — M, B=open ball centered at 0 € R"*,
such that S th ¢ and ¢~1(S) = {0}. 0

Lemma 7.3.15. Let M € M}, S < M a compact, k-dimensional, oriented submanifold
of M and (B,¢) a local transversal at p € S. Then for any sufficiently “thin” closed
neighborhood N of S C M we have

5-(B.0)= [ o8,

Proof. Using the transversality S M ¢, the implicit function theorem, and eventually
restricting ¢ to a smaller ball, we deduce that, for some sufficiently “thin” neighborhood
N of S, there exist local coordinates (z',...,z") defined on some neighborhood U of
p € M diffeomorphic with the cube

{]z'| < 1, Vi}
such that the following hold.
) SNU ={zFl=...=2" =0}, p=(0,...,0).
(i)
(ii) The orientation of SN U is defined by dz! A --- A dz*.
(iii) The map ¢ : B C R?y_lk. T M is expressed in these coordinates as
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(V) NNU = {|27| <1/2; j=1,...,n}.
Let € = 41 such that edz® A ... A dz™ defines the orientation of T'M. In other words,
e=S5-(B,o).
For each ¢ = (z!,...,2%) € SNU denote by P the (n — k)-“plane”
Py = {({;xkﬂ,...,aﬁ") : |x]| <1 j>k}

We orient each P using the (n — k)-form dz**! A - A da™, and set

()= [ 5.
P

Equivalently,
o) = [ o,
B
where ¢¢ : B — M is defined by
Sely's .y M) = &yt yt TR
To any function ¢ = ¢(&) € C*>°(SNU) such that
supp o C {|2'] < 1/2; i <k},
we associate the k-form
W, 1= @da' A Ada = pdE € prt(Sﬂ U).
Extend the functions z', ..., 2% € C°(U N'N) to smooth compactly supported functions
e C(M) — [0,1].
The form w, is then the restriction to U N S of the closed compactly supported form

Gy = (&L, ") dEt A - A dER

/M%M? = /U wp A\ OY = /S W, = /[R p(E)de. (7.3.4)

The integral over U can be evaluated using the Fubini theorem. Write

We have

6y = fdz*t Ao A da™ 4 o,

where ¢ is an (n — k)-form not containing the monomial dz*+1 A --- A dz™. Then
/ww/u%\fz/ fodxt A Ada™
U U

= e/ foldzt A--- Adx™| (|dzt A --- A dz™| = Lebesgue density)
U
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Fubini n
= 6/ (£ < fldz" A A de !) |de|
SnU Pg

—c [ e© ( / 5 6?) gl =< [ ple)ule)lie.

Comparing with (7.3.4), and taking into account that ¢ was chosen arbitrarily, we deduce
that

/ 0% = v(0) = e.
B
The local transversal lemma is proved. O

Proof of Proposition 7.3.12 Let

qb_l(s) = {p17' .. ,pm}

The transversality assumption implies that each p; has an open neighborhood B; diffeo-
morphic to an open ball such that ¢; = ¢|p, is a local transversal at y; = ¢(p;). Moreover,
we can choose the neighborhoods B; to be mutually disjoint. Then

S'T:ZS'(Bi,%)-

The compact set K := ¢(T \ UB;) does not intersect .S so that we can find a “thin”, closed
neighborhood” N of S < M such that K "N = (). Then, gb*(%\f is compactly supported in
the union of the B;’s and

ﬂAé:/@W%: /¢MN
f = for =3 [ o

From the local transversal lemma we get
6% =S - (B, ¢) = ip, (S, T). O
B;

Equality (7.3.3) has a remarkable feature. Its right-hand-side is an integer which is
defined only for cycles S, T such that S is embedded and S h T

The left-hand-side makes sense for any cycles of complementary dimensions, but a
priori it may not be an integer. In any event, we have a remarkable consequence.

Corollary 7.3.16. Let (S;,¢;) € Cp(M) and ((T;,v;) € Cp_p(M) where M € M}, i =
0,1. If

(a) So ~eS1, To ~c T,
(b) the cycles S; are embedded, and

(C) SZ FhTZ,



7.3. INTERSECTION THEORY 263

then
So-To=51-T1. O

Definition 7.3.17. The homological intersection pairing is the Z-bilinear map
J= jM : j’fk(M) X j‘fn_k(M) — R,

(M € M) defined by
J(5,T) = / ds A or. a
M

We have proved that in some special instances J(S,T) € Z. We want to prove that,
when M is compact, this is always the case.

Theorem 7.3.18. Let M € M} be compact manifold. Then, for any (S,T) € Hy(M) x
Hn—r (M), the intersection number I(S,T') is an integer.

The theorem will follow from two lemmata. The first one will show that it suffices to
consider only the situation when one of the two cycles is embedded. The second one will
show that, if one of the cycles is embedded, then the second cycle can be deformed so that
it intersects the former transversally. (This is called a general position result.)

Lemma 7.3.19 (Reduction-to-diagonal trick). Let M, S and T as in Theorem 7.3.18.
Then

1S, T) = (—1)" / N
Mx M

where A is the diagonal cycle A : M — M x M, x — (x,x). (It is here where the
compactness of M is essential, since otherwise A would not be a cycle).

Proof. We will use the equality (7.3.1)
SsxT = (—1)n_k55 X Or.

Then
(_1)n—k = / dsxT N oA = / (55 X 5T) YN
MxM MxM

:/ A*((55><5T):/ s A Or. O
M M

Lemma 7.3.20 (Moving lemma). Let S € C(M), and T' € €, (M) be two cycles in
M e M. If S is embedded, then T is cobordant to a cycle T such that S hT.

The proof of this result relies on Sard’s theorem. For details we refer to [46], Chapter
3.
Proof of Theorem 7.3.18 Let (S,T) € Cr(M) x Cp,—(M). Then,

J(S,T) = (—1)"*I(S x T, A).

Since A is embedded we may assume by the moving lemma that (S x T') h A, so that
IS xT,A) € Z. 0
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7.3.3 The topological degree

Consider two compact, connected, oriented smooth manifolds M, N having the same
dimension n. Any smooth map F' : M — N canonically defines an n-dimensional cycle in
M x N

'pr:M—>MxN z—(z,F(zx)).

I'r is called the graph of F.
Any point y € N defines an n-dimensional cycle M x {y}. Since N is connected all
these cycles are cobordant so that the integer I'r - (M x {y}) is independent of y.

Definition 7.3.21. The topological degree of the map F is defined by
deg F:= (M x {y}) - T'p. O

Note that the intersections of I'p with M x {y} correspond to the solutions of the
equation F'(x) = y. Thus the topological degree counts these solutions (with sign).

Proposition 7.3.22. Let F : M — N as above. Then for any n-form w € Q"(N)

/F*w:degF/ w.
M N

Remark 7.3.23. The map F' induces a morphism
R~ H"(N) 5 H"(M) =R

which can be identified with a real number. The above proposition guarantees that this
number is an integer. O

Proof of the proposition Note that if w € Q"(V) is exact, then

/w:/ F*w=0.
N M

Thus, to prove the proposition it suffices to check it for any particular form which generates
H"™(N). Our candidate will be the Poincaré dual ¢, of a point y € N. We have

JRE
N

6M><{y} = 5M X (5y =1x 5y-

while equality (7.3.1) gives

We can then compute the degree of F' using Theorem 7.3.18

degF:degF/ 5y:/ (1><5y)/\5pF:/ I‘*F(lxéy):/ F*6,. 0
N MxN M M

Corollary 7.3.24 (Gauss-Bonnet). Consider a connected sum of g-tori ¥ = ¥, embedded
in R3 and let Gy, : ¥ — S2 be its Gauss map. Then

deg Gy = x(¥) =2 — 2g. O
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This corollary follows immediately from the considerations at the end of Subsection
4.2.4.

Exercise 7.3.25. Consider the compact, connected manifolds My, M1, N € M} and
the smooth maps F; : M; — N, ¢ = 0,1. Show that if Fj is cobordant to F; then
deg Fy = deg F;. In particular, homotopic maps have the same degree. a

Exercise 7.3.26. Let A be a nonsingular n x n real matrix. It defines a smooth map

Ax

Fyp:8" 15 gt —_—

Prove that deg F'4 = sign det A.
Hint: Use the polar decomposition A = P - O (where P is a positive symmetric matrix
and O is an orthogonal one) to deform A inside GL(n,R) to a diagonal matrix. O

Exercise 7.3.27. Let M %5 N be a smooth map (M, N are smooth, compact oriented of
dimension n). Assume y € N is a regular value of F, i.e., for all z € F~1(y) the derivative

D,F : T,M — T,N

is invertible. For € F~!(y) define

_ 1 , D.F preserves orientations
deg(F,z) = { —1 , otherwise
Prove that
deg I = Z deg(F, ). O
F(z)=y

Exercise 7.3.28. Let M denote a compact oriented manifold, and consider a smooth
map F': M — M Regard H®*(M) as a superspace with the obvious Zs-grading

H.(M) — Heven(M) D HOdd(M),
and define the Lefschetz number A\(F) of F' as the supertrace of the pull back
F*: H*(M) — H*(M).

Prove that AM(F) = A -T'p, and deduce from this the Lefschetz fixed point theorem:
AF) # 0 = F has a fixed point. 0

Remark 7.3.29. For an elementary approach to degree theory, based only on Sard’s
theorem, we refer to the beautiful book of Milnor, [75]. 0
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7.3.4 Thom isomorphism theorem

Let p : E — B be an orientable fiber bundle (in the sense of Definition 3.4.45) with
standard fiber ' and compact, oriented basis B. Let dim B = m and dim F' = r. The total
space F is a compact orientable manifold which we equip with the fiber-first orientation.

In this subsection we will extensively use the techniques of fibered calculus described
in Subsection 3.4.5. The integration along fibers

/ — p. Q8 (E) 5 07 (B)
E/B

satisfies
pedp = (_1)TdBp*y

so that it induces a map in cohomology

Y2 Hc.pt

(E) — H* " (B).
This induced map in cohomology is sometimes called the Gysin map.

Remark 7.3.30. If the standard fiber F' is compact, then the total space E is also
compact. Using Proposition 3.4.48 we deduce that for any w € Q°*(F), and any n € Q*(B)
such that

degw + degn = dim F,
we have

(P (@), My = (W, 0" (M)
If we denote by Dy : Q%(M) — QIMM=*()[)* the Poincaré duality isomorphism on a
compact oriented smooth manifold M, then we can rewrite the above equality as

(Dpp.(w),n) = (Dpw,p*n) = {(p") Dpw,n) = Dpp.(w) = (p*) Dpw.
Hence
pe = D' (»") D,
so that, in this case, the Gysin map coincides with the pushforward (Gysin) map defined
in Remark 7.2.9. U

Exercise 7.3.31. Consider a smooth map f : M — N between compact, oriented man-
ifolds M, N of dimensions m and respectively n. Denote by i; the embedding of M in
M x N as the graph of f

M >z~ (z, f(x)) € M x N.
The natural projection M x N — N allows us to regard M x N as a trivial fiber bundle

over N.
Show that the push-forward map f. : H*(M) — H**"~™(N) defined in Remark 7.2.9
can be equivalently defined by

f* = T4 O (lf)*a
where 7, : H*(M x N) — H*~™(N) denotes the integration along fibers while
(if)e : H*(M) — H*"(M x N),

is the pushforward morphism defined by the embedding i . O



7.3. INTERSECTION THEORY 267

Let us return to the fiber bundle p : E — B. Any smooth section ¢ : B — FE defines
an embedded cycle in E of dimension m = dim B. Denote by d, its Poincaré dual in
H!.(E).

cpt
Using the properties of the integration along fibers we deduce that, for any w € Q™ (B),

we have
/50/\p*w:/</ 5g>w.
E B \JE/B

On the other hand, by Poincaré duality we get

/E5a Ap'w = (=1)"" /Ep*w A g
= (—1)%/30’*29*@ = (—1)Tm/B(p0’)*w = (—1)””/B¢u.

Dby = / 5 = (=1)"™ € Q%B).
E/B

Hence

Proposition 7.3.32. Let p: E — B a bundle as above. If it admits at least one section,
then the Gysin map

Px: Hc.pt

(E) — H*"(B)

18 surjective.
Proof. Denote by 7, the map

7ot H*(B) = H ' (E) w e (=1)0 Ap*w = p'w A d,.

Then 7, is a right inverse for p,. Indeed
w=(=1)""p0s ANw = (=1)""ps(d5 A p*w) = ps(Tow). 0

The map p, is not injective in general. For example, if (S, ¢) is a k-cycle in F', then
it defines a cycle in any fiber 7=1(b), and consequently in E. Denote by dg its Poincaré
dual in H™"~*(E). Then for any w € Q™ ¥(B) we have

cpt
/(p*5s)/\w:/5s/\p*w::|:/ QS*p*w:/(pqu)*w:O,
B E D 5

since p o ¢ is constant. Hence p,dg = 0, and we conclude that that if F' carries nontrivial
cycles ker p, may not be trivial.
The simplest example of standard fiber with only trivial cycles is a vector space.

Definition 7.3.33. Let p : E — B be an orientable vector bundle over the compact
oriented manifold B (dim B = m, rank (F) = r). The Thom class of E, denoted by 7p is
the Poincaré dual of the cycle defined by the zero section {p: B — E, b+— 0 € E. Note

that 75 € Hp i (E). 0
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Theorem 7.3.34 (Thom isomorphism). Let p: E — B as in the above definition. Then
the map

T:H*(B) —» HY"(E) ww g Ap*w

is an isomorphism called the Thom isomorphism. [Its inverse is the Gysin map

(_1)rmp* : Hc.pt

(E) — H* " (B).

Proof. We have already established that p,7 = (—1)"". To prove the reverse equality,

Tps = (—1)"", we will use Lemma 7.2.2 of Subsection 7.2.1. For # € QZ,(E) we have
(p*peTE) A B —TE A (P*psB) = (1) d(m(7E, B)),

where m(7g, ) € Qg (E). Since p*ps7p = (—1)"™, we deduce

(=1)""B = (1e A p*(p«B) + exact form = (=1)""B = 7 o p.(B) in HY(E). O

Exercise 7.3.35. Show that 75 = (.1, where (s : H*(M) — Hz;gdimM(E) is the push-

forward map defined by a section ( : M — F. O

Remark 7.3.36. Suppose M € M, and S < M is a compact, oriented, k-dimensional
manifold. Fix a Riemann metric ¢ on M, and denote by Ng the normal bundle of the
embedding S < M, i.e., the orthogonal complement of TN in (T'M)|s.

The exponential map defined by the metric g defines a smooth map

exp : Ng — M,

which induces a diffeomorphism from an open neighborhood O of S in Ng, to an open
(tubular) neighborhood N of S in M. Fix a closed form 0% € Q" *(M) with compact
support contained in N, and representing the Poincaré dual of (S,4), where i : S — M
denotes the canonical inclusion.

Then exp* 5? is the Poincaré dual of the cycle (S, () in Ng, where ¢ : S — Ng denotes
the zero section. This shows that exp* 535{ is a compactly supported form representing the
Thom class of the normal bundle Ng.

Using the identification between O and N we obtain a natural submersive projection
7 : N — S corresponding to the natural projection Ng — S. In more intuitive terms,
associates to each x € N the unique point in S which closest to x. One can prove that the
Gysin map

i HY(S) = Ho " (),
is given by,

H*(S) > w— exp* 6% Am*w € H:;;("_k)(M). (7.3.5)

Exercise 7.3.37. Prove the equality (7.3.5). O
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7.3.5 Gauss-Bonnet revisited

We now examine a very special type of vector bundle: the tangent bundle of a compact,
oriented, smooth manifold M. Note first the following fact.

Exercise 7.3.38. Prove that M is orientable if and only if T'M is orientable as a bundle.
d

Definition 7.3.39. Let F — M be a real orientable vector bundle over the compact,
oriented, n-dimensional, smooth manifold M. Denote by 7 € H,,(E) the Thom class of
E. The FEuler class of F is defined by

e(E) :=(ite € H"(M),

where (p : M — E denotes the zero section. e(T'M) is called the Euler class of M, and it
is denoted by e(M). O

Note that the sections of T'M are precisely the vector fields on M. Moreover, any such
section o : M — T'M tautologically defines an n-dimensional cycle in TM, and in fact,
any two such cycles are homotopic: try a homotopy, affine along the fibers of T'M.

Any two sections og,01 : M — T M determine cycles of complementary dimension,
and thus the intersection number og - 01 is a well defined integer, independent of the two
sections. It is a number reflecting the topological structure of the manifold.

Proposition 7.3.40. Let 0g,01 : M — TM be two sections of TM. Then

/Me(M) =00 01.

In particular, if dim M is odd then

/M e(M) = 0.

Proof. The section o, 01 are cobordant, and their Poincaré dual in H[,, (7'M is the Thom

class 7)s. Hence
0'0'0'1:/ (500/\501:/ ™ N\ Ty
TM

TM
:/ TMA5<O:/ CSTM:/ e(M)
TM M M

/Me(M):JO-o*l:—al-Jo:—/ e(M). .

M

If dim M is odd then

Theorem 7.3.41. Let M be a compact oriented n-dimensional manifold, and denote by
e(M) € H"(M) its Euler class. Then the integral of e(M) over M is equal to the Euler

characteristic of M,
n

| etan) = x(ar) = Yo (=1) (o)

k=0
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In the proof we will use an equivalent description of x(M).

Lemma 7.3.42. Denote by A the diagonal cycle A € H,(M x M). Then x(M) = A-A.

Proof. Denote by 8y € Hy,(M x M) the Poincaré dual of A. Consider a basis (w;) of

H*(M) consisting of homogeneous elements. We denote by (w’) the dual basis, i.e.,
<(,ui,(,uj>,.g = 5; Vi, 7.
According to (7.3.2), we have
op = Z(—l)‘“”wi X w;.
i

Similarly, if we start first with the basis (w’), then its dual basis is

(1)l
so, taking into account that |w;| + |w’| - |w;| = n|w;| (mod 2), we also have

oy = Z(—l)""wj‘wj X w,
i

Using Exercise 7.1.50 we deduce

A-A= O NOpy = —)li x w; | A —1)Mily x Wi
MxM M M MxM <Z( ) > Z( ) ’

i J

:/ Z(_l)\wil—i—n-lwﬂ(_1)|wi\-\wj|wi Awj | x (wi x w’)
MxM

Z"j
- Z(_l)\wilJrN'le\(_1)|Wi\'\wj|<wi7wj>ﬁ (wi, ).
Z"j

In the last expression we now use the duality equations
<wi7wj>n — (_1)\cm'|'|wi|5g7
and the congruences
n=0 mod 2, |w|+ nw+ |wi?®+ |wi-|w|=|w| mod 2,

to conclude that

AA =1 =y (). O

Proof of theorem 7.3.41 The tangent bundle of M x M restricts to the diagonal A
as a rank 2n vector bundle. If we choose a Riemann metric on M x M then we get an

orthogonal splitting
T(M x M)|a= Na ® TA.

The diagonal map M — M x M identifies M with A so that TA =2 TM. We now have
the following remarkable result.
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Lemma 7.3.43. Nao =2 TM.
Proof Use the isomorphisms
T(M x M)|aAZTA® NaA 2XTM @ Na

and
T(M x M)|a=TM ®TM. O

From this lemma we immediately deduce the equality of Thom classes
TNy = TM- (7.3.6)

At this point we want to invoke a technical result whose proof is left to the reader as an
exercise in Riemann geometry.

Lemma 7.3.44. Denote by exp the exponential map of a Riemann metric g on M x M.
Regard A as a submanifold in Na via the embedding given by the zero section. Then there
exists an open neighborhood W of A C Na C T(M x M) such that

exply: U — M x M

is an embedding. ad

Let U be a neighborhood of A C Na as in the above lemma, and set N := exp(U).
Denote by 6% the Poincaré dual of A in U, §¥ € H, ept(W), and by 6\ the Poincaré dual of
Ain N, 0% € H(N). Then

/&@wuz/ﬁﬁmﬂ:/n On Aoy = x(M).
u N MxM

The cohomology class 5& is the Thom class of the bundle No — A, which in view of
(7.3.6) means that 0% = 7y, = 7as. We get

A&AﬂzAﬂzAwmzﬂﬁwzﬂdM-

/d%:ﬂm. 0
M

Hence

If M is a connected sum of g tori then we can rephrase the Gauss-Bonnet theorem as
follows.

Corollary 7.3.45. For any Riemann metric h on a connected sum of g-tori X, we have

1 1 . %
%E(h) = Eshdvh =e(X,) in H*(X,). O
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The remarkable feature of the Gauss-Bonnet theorem is that, once we choose a metric,
we can explicitly describe a representative of the Euler class in terms of the Riemann
curvature.

The same is true for any compact, oriented, even-dimensional Riemann manifold. In
this generality, the result is known as Gauss-Bonnet-Chern, and we will have more to say
about it in the next two chapters.

We now have a new interpretation of the Euler characteristic of a compact oriented
manifold M.

Given a smooth vector field X on M, its “graph” in T'M,

I'x ={(z,X(z)) € TuM ; v € M},

is an n-dimensional submanifold of T'M. The Euler characteristic is then the intersection
number

X(M) :PX 'M,

where we regard M as a submanifold in 7'M via the embedding given by the zero section.
In other words, the Euler characteristic counts (with sign) the zeroes of the vector fields
on M. For example if x(M) # 0 this means that any vector field on M must have a zero
! We have thus proved the following result.

Corollary 7.3.46. If x(M) # 0 then the tangent bundle T M is nontrivial. O

The equality x(S?") = 2 is particularly relevant in the vector field problem discussed
in Subsection 2.1.4. Using the notations of that subsection we can write

v(5%") = 0.
We have thus solved “half” the vector field problem.

Exercise 7.3.47. Let X be a vector field over the compact oriented manifold M. A point
x € M is said to be a non-degenerate zero of X if X(0) =0 and

0X;
det <%> ’SL‘:Z‘()# 0.

for some local coordinates (x') near zo such that the orientation of T,,M is given by
dz' A--- Adx™. Prove that the local intersection number of I'x with M at zg is given by

. . 0X;
izo(Tx, M) = sign det <%> lz=x0 -

This is sometimes called the local index of X at x, and it is denoted by (X, xg). O

From the above exercise we deduce the following celebrated result.

Corollary 7.3.48 (Poincaré-Hopf). If X is a vector field along a compact, oriented man-
ifold M, with only non-degenerated zeros x1,...,Ty, then

X(M):Zi(X’xj)- U

J
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Exercise 7.3.49. Let X be a vector field on R and having a non-degenerate zero at the
origin.

(a) prove that for all » > 0 sufficiently small X has no zeros on S, = {|z| = r}.

(b) Consider F, : S, — S~ ! defined by

1
X (@)]

F.(x) X (x).

Prove that i(X,0) = deg F, for all » > 0 sufficiently small.
Hint: Deform X to a linear vector field. O

7.4 Symmetry and topology

The symmetry properties of a manifold have a great impact on its global (topological)
structure. We devote this section to a more in depth investigation of the correlation
symmetry-topology.

7.4.1 Symmetric spaces

Definition 7.4.1. A homogeneous space is a smooth manifold M acted transitively by
a Lie group G called the symmetry group. a

Recall that a smooth left action of a Lie group G, on a smooth manifold M
GxM—>M (g,m)—g-m,
is called transitive if, for any m € M, the map
U,:Gogr—rg-meM

is surjective. For any point x of a homogeneous space M we define the isotropy group at
x by
Io={9€G; g-z =z}

Lemma 7.4.2. Let M be a homogeneous space with symmetry group G and x,y € M.
Then
(a) I, is a closed subgroup of G;

(b) 3, =7,.
Proof. (a) is immediate. To prove (b), choose g € G such that y = g - z. Then note that
Jy = 9.9 . a

Remark 7.4.3. It is worth mentioning some fundamental results in the theory of Lie
groups which will shed a new light on the considerations of this section. For proofs we
refer to [45, 97].

Fact 1. Any closed subgroup of a Lie group is also a Lie group (see Remark 1.2.31). In
particular, the isotropy groups J, of a homogeneous space are all Lie groups. They are
smooth submanifolds of the symmetry group.
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Fact 2. Let G be a Lie group, and H a closed subgroup. Then the space of left cosets,
G/H := {g-H; gGG},
can be given a smooth structure such that the map
Gx(G/H) = G/H (q1,92H) — (g9192) - H

is smooth. The manifold G/H becomes a homogeneous space with symmetry group G.
All the isotropy groups subgroups of G conjugate to H.

Fact 3. If M is a homogeneous space with symmetry group G, and = € M, then M is
equivariantly diffeomorphic to G/J,, i.e., there exists a diffeomorphism

¢ M — G/,
such that ¢(g-y) = g - d(y). O

We will be mainly interested in a very special class of homogeneous spaces.

Definition 7.4.4. A symmetric space is a collection of data (M, h, G, o,1) satisfying the

following conditions.
(a) (M,h) is a Riemann manifold.
(b) G is a connected Lie group acting isometrically and transitively on M

GxM>(g,m)—g-me M.
(¢) o : M x M — M is a smooth map (mq,ma) — 0, (m2) such that the following hold.

cl) Vm € M oy, : M — M is an isometry, and o,,(m) = m.
)

)

) Ogm = gomg~

(d)i: M xG— G, (m,g) — ing is a smooth map such that the following hold.

Ym € M, i, : G — G is a homomorphism of G.

(e) ngo*;bl(x) = omgom () =in(g) -, Ym,x € M, g € G. O

Remark 7.4.5. This may not be the most elegant definition of a symmetric space, and
certainly it is not the minimal one. As a matter of fact, a Riemann manifold (M, g) is
a symmetric space if and only if there exists a smooth map o : M x M — M satisfying
the conditions (c1),(c2) and (c3). We refer to [45, 51] for an extensive presentation of this
subject, including a proof of the equivalence of the two descriptions. Our definition has
one academic advantage: it lists all the properties we need to establish the topological
results of this section. O
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The next exercise offers the reader a feeling of what symmetric spaces are all about.
In particular, it describes the geometric significance of the family of involutions o,.

Exercise 7.4.6. Let (M, h) be a symmetric space. Denote by V the Levi-Civita connec-
tion, and by R the Riemann curvature tensor.

(a) Prove that VR = 0.

(b) Fix m € M, and let y(t) be a geodesic of M such that v(0) = m. Show that

om(t) = (). 0

Example 7.4.7. Perhaps the most popular example of symmetric space is the round
sphere S” C R"*!. The symmetry group is SO(n+ 1), the group of orientation preserving
“rotations” of R"*!. For each m € S"*! we denote by o, the orthogonal reflection through
the 1-dimensional space determined by the radius Om. We then set i,,(T) = 0,70},
VT € SO(n+ 1). We let the reader check that o and i satisfy all the required axioms. O

Example 7.4.8. Let G be a connected Lie group and m a bi-invariant Riemann metric
on G. The direct product G x G acts on G by

(g1.92) - h = grhgy .
This action is clearly transitive and since m is bi-invariant its is also isometric. Define
c:GxG—G agh:gh_lg_l
and

1:Gx(GxG)—=GxG iyg,9) = (9919 " 99297 ).

We leave the reader to check that these data do indeed define a symmetric space structure
on (G,m). The symmetry group is G x G. ad

Example 7.4.9. Consider the complex Grassmannian M = Gry(C"). Recall that in
Example 1.2.22 we described Gry(C") as a submanifold of End* (V') — the linear space of
selfadjoint n x n complex matrices, via the map which associates to each complex subspace
S, the orthogononal projection Pg : C™* — C™ onto S.

The linear space End ™ (C") has a natural metric go(A, B) = £ Re tr (AB*) that restricts
to a Riemann metric g on M. The unitary group U(n) acts on End™(C") by conjugation,

U(n) x End™(C") > (T, A) — T x A := TAT™*.

Note that U(n) x M = M, and go is U(n)-invariant. Thus U(n) acts transitively, and
isometrically on M.
For each subspace S € M define

Rg = PS—PSJ_ =2Pg — 1.

The operator Rg is the orthogonal reflection through S*. Note that Rg € U(n), and
R% = 2. The map A — Rgx* A is an involution of End™(C"). It descends to an involution
of M. We thus get an entire family of involutions

o: M x M—)M, (Pgl,PSQ) I—>R51*PSQ.
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Define
i: M x U(n) — U(n), isT = RsTRg.

We leave the reader to check that the above collection of data defines a symmetric space
structure on Gry(C"). 0

Exercise 7.4.10. Fill in the details left out in the above example. O

7.4.2 Symmetry and cohomology

Definition 7.4.11. Let M be a homogeneous space with symmetry group G. A differen-
tial form w € Q*(M) is said to be (left) invariant if f;w = w Vg € G, where we denoted
by

by Q*(M) — Q% (M)

the pullback defined by the left action by g: m + g - m. O

Proposition 7.4.12. Let M be a compact homogeneous space with compact, connected
symmetry group G. Then any cohomology class of M can be represented by a (not neces-
sarily unique) invariant form.

Proof. Denote by dV(g) the normalized bi-invariant volume form on G. For any form
w € Q*(M) we define its G-average by

o / w0 dVa(g).
G

The form @ is an invariant form on M. The proposition is a consequence of the following
result.

Lemma 7.4.13. If w is a closed form on M then @ is closed and cohomologous to w.

Proof. The form @ is obviously closed so we only need to prove it is cohomologous to w.
Consider a bi-invariant Riemann metric m on (. Since G is connected, the exponential
map

exp: Lo — G X — exp(tX)

is surjective. Choose r > 0 sufficiently small so that the map
exp:DT:{\X]m:T; Xeﬁg}—>G

is an embedding. Set B, = exp D,.. We can select finitely many g1,...,gn € G such that
m
G = U Bj, Bj = ngr-
j=1

Now pick a partition of unity (c;) C C°°(G) subordinated to the cover (B)), i.e.,

0<a; <1, suppa; C Bj, Zaj =1.
J
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Set

a; ::/ajdVG(g).
G

Since the volume of G is normalized to 1, and s =1, we deduce that ) ;ja; = 1. For
any j =1,...,m define T; : Q*(M) — Q*(M) by

Tjw ::/Gaj(g)EdeVg(g).

Note that
W= ZT]w and dTjw = T;dw.
J

Each T} is thus a cochain morphism. It induces a morphism in cohomology which we
continue to denote by 7). The proof of the lemma will be completed in several steps.

Step 1. £; =1 on H*(M), for all g € G. Let X € L such that g = exp X. Define
[l xM— M fi(m):=exp(tX) -m= Legpux)m.

The map f is a homotopy connecting 1) with £. This concludes Step 1.
Step 2.
Tj = aj]lH*(M).

For t € [0, 1], consider ¢;; : Bj — G defined as the composition

exp’1

—1
9; t— ex; 9j
BjJ—>B7« — DT—>Dt7«—p>Btr<—>G.

Define Tj4 : Q*(M) — Q*(M) by

T = /G 0 (95, o AVes(g) = Ty, o (7.4.1)

We claim that Tj o is cochain homotopic to T} ;.
To verify this claim set ¢t := e*, —o00 < s < 0 and

gs = exp(e®exp~'(g)) Vg € B,.

Then

def * * )k
Usw = 1}7esw:/B aj(gjg)ﬁgjgsw:/ a(gjg)ﬁgsﬁgjdeG(g).

T

For each g € B, the map (s, m) — ¥y (m) = gs(m) defines a local flow on M. We denote
by X, its infinitesimal generator. Then

d

0@ = [ afai0Lx, .00 Va0)

_ /B 03 (959 (darix, + ix,dar) (€505, 0) dVi(g).
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Consequently,
Tj’ow — Tj,lw = U_oow - Uow

-/ 0 ( / cw(gjg)(dz'xg+ixgd><e;e;jw>dva<g>) ds.

—00 B,

(An argument entirely similar to the one we used in the proof of the Poincaré lemma
shows that the above improper integral is pointwise convergent). From the above formula
we immediately read a cochain homotopy x : Q*(M) — Q*~'(M) connecting U_, to Up.
More precisely

0

(W)} lzerr:= —/ </ a;(g;9) {ixgﬁzsézjw}\x dVG(g)> ds.

—00 B

Tjow = /
B.

Now notice that

aj(g)dVG(g)> = a;ly w,
J
while T 1w = Tjw. Taking into account Step 1, we deduce Tj9 = a; - 1. Step 2 is

completed.

The lemma and hence the proposition follow from the equality

Lrre(ar) :Zaj]lH*(M) :ZTJ’ = (G — average. 0
J J

The proposition we have just proved has a greater impact when M is a symmetric space.

Proposition 7.4.14. Let (M,h) be an, oriented symmetric space with symmetry group
G. Then the following are true.

(a) Every invariant form on M is closed.

(b) If moreover M is compact, then the only invariant form cohomologous to zero is the
trivial one.

Proof. (a) Consider an invariant k-form w. Fix mo € M and set @ = o}, w. We claim @
is invariant. Indeed, Vg € G
?k *

U = U507, = (Ome9) W = (9iyomeg) W = O by = Ty

mo w=w.

Since Do |1,,, = —11,,, M, We deduce that, at mo € M, we have w = (—1)Fw.
Both w and @ are G-invariant, and we deduce that the above equality holds at any
point m = g - mg. Invoking the transitivity of the G-action we conclude that

&= (-1)*w on M.

In particular, d& = (—1)¥dw on M.
The (k+1)-forms dw = 07, dw = dw, and dw are both invariant and, arguing as above,
we deduce

—

di> = dw = (—=1)*dw.
The last two inequalities imply dw = 0.
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(b) Let w be an invariant form cohomologous to zero, i.e. w = da. Denote by * the Hodge
x-operator corresponding to the invariant metric h. Since G acts by isometries, the form
n = *w is also invariant, so that dn = 0. We can now integrate (M is compact), and use

Stokes theorem to get
/ w/\*w:/ da/\::l:/ aNdn=0.
M M M

This forces w = 0. O

From Proposition 7.4.12 and the above theorem we deduce the following celebrated
result of Elie Cartan ([20])

Corollary 7.4.15 (E Cartan). Let (M,h) be a compact, oriented symmetric space with
compact, connected symmetry group G. Then the cohomology algebra H*(M) of M is
isomorphic with the graded algebra Q% (M) of invariant forms on M. a

inv

In the coming subsections we will apply this result to the symmetric spaces discussed
in the previous subsection: the Lie groups and the complex Grassmannians.

7.4.3 The cohomology of compact Lie groups

Consider a compact, connected Lie group G, and denote by L its Lie algebra. According
to Proposition 7.4.12, in computing its cohomology, it suffices to restrict our considerations
to the subcomplex consisting of left invariant forms. This can be identified with the
exterior algebra A®*Lf,. We deduce the following result.

Corollary 7.4.16. H*(G) = H*(Lg) = A}, La, where A, La denotes the algebra of

bi-invariant forms on G, while H*(L¢) denotes the Lie algebra cohomology introduced in
FEzxzample 7.1.10. O

Using the Exercise 7.1.11 we deduce the following consequence.

Corollary 7.4.17. If G is a compact semisimple Lie group then H'(G) = 0. ad

Proposition 7.4.18. Let G be a compact semisimple Lie group. Then H*(G) = 0.

Proof. A closed bi-invariant 2-form w on G is uniquely defined by its restriction to Lg,
and satisfies the following conditions.

dw =0 < w([X(),Xl],Xg) — w([X(),XQ],Xl) +w([X1,X2],X0) = 0,
and (right-invariance)
(LXOw)(Xl,Xg) =0 VXQ S LG e w([X(),Xl],XQ) — w([XQ,XQ],Xl) =0.

Thus
w([XQ,Xl],XQ) =0 VXy,X1,Xs9 € Lg.

On the other hand, since H'(Lg) = 0 we deduce (see Exercise 7.1.11) Lo = [Lg, Lg], so
that the last equality can be rephrased as

w(X,Y)=0 VXY € Lg. 0
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Definition 7.4.19. A Lie algebra is called simple if it has no nontrivial ideals. A Lie
group is called simple if its Lie algebra is simple. O

Exercise 7.4.20. Prove that SU(n) and SO(m) are simple. O

Proposition 7.4.21. Let G be a compact, simple Lie group. Then H3(G) =2 R. Moreover,
H3(G) is generated by the Cartan form

a(X,)Y,Z2) = k([X,Y], 2),

where k denotes the Killing pairing. O

The proof of the proposition is contained in the following sequence of exercises.

Exercise 7.4.22. Prove that a simple Lie algebra is necessarily semi-simple. O

Exercise 7.4.23. Let w be a closed, bi-invariant 3-form on a Lie group G. Then
w(X,Y,[Z,T) =w([X,Y],Z,T) VX,Y,Z,T € L. O

Exercise 7.4.24. Let w be a closed, bi-invariant 3-form on a compact, semisimple Lie
group.
(a) Prove that for any X € L¢ there exists a unique left-invariant form ny € Q'(G) such
that

(ixw)(Y, Z) = nx (Y, 2)).
Moreover, the correspondence X + nx is linear. Hint: Use H(G) = H%(G) = 0.
(b) Denote by A the linear operator L5 — L defined by

R(AX,Y) = nx (V).

Prove that A is selfadjoint with respect to the Killing metric.
(c) Prove that the eigenspaces of A are ideals of L. Use this to prove Proposition 7.4.21.
d

Exercise 7.4.25. Compute

/ a and «Q,
SU(2) 50(3)

where a denotes the Cartan form. (These groups are oriented by their Cartan forms.)
Hint: Use the computation in the Exercise 4.1.61 and the double cover SU(2) — SO(3)
described in the Subsection 6.2.1. Pay very much attention to the various constants. O

7.4.4 Invariant forms on Grassmannians and Weyl’s integral formula

We will use the results of Subsection 7.4.2 to compute the Poincaré polynomial of the
complex Grassmannian Grg(C"). Set £ =n — k.

As we have seen in the previous subsection, the Grassmannian Gry(C") is a symmet-
ric space with symmetry group U(n). It is a complex manifold so that it is orientable
(cf. Exercise 3.4.13). Alternatively, the orientability of Grg(C™) is a consequence of the
following fact.
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Exercise 7.4.26. If M is a homogeneous space with connected isotropy groups, then M
is orientable. 0

We have to describe the U(n)-invariant forms on Gry(C"). These forms are completely
determined by their values at a particular point in the Grassmannian. We choose this point
to correspond to the subspace Sy determined by the canonical inclusion CF < C™.

The isotropy of Sy is the group H = U(k) x U(¢). The group H acts linearly on the
tangent space Vp = T, Gri(C"). If w is an U(n)-invariant form, then its restriction to Vj
is an H-invariant skew-symmetric, multilinear map

Vo x---xVyg—=R.

Conversely, any H-invariant element of AV extends via the transitive action of U(n)

to an invariant form on Gry(C"™). Denote by A?  the space of H-invariant elements of

A*Vy. We have thus established the following result.

Proposition 7.4.27. There exists an isomorphism of graded R-algebras:

H* (Gry (C™) = A;

mv*

O

We want to determine the Poincaré polynomial of the complexified Z-graded space,
A @C

ij(t) = Z tJ dimc Azm) QC = PGrk((C”)(t)'
J
Denote the action of H on V{ by
H > hw— T € Aut (Vp).

Using the equality (3.4.10) of Subsection 3.4.4 we deduce

Pra(t) = /H | det(Ty, + ¢T3)dVi (h), (7.4.2)

where dVy denotes the normalized bi-invariant volume form on H.

At this point, the above formula may look hopelessly complicated. Fortunately, it can
be dramatically simplified using a truly remarkable idea of H. Weyl.

Note first that the function

H > h— @(h) = |det(1y, + tTy)|?

is a class function, i.e., p(ghg™') = (h), Yg,h € H.
Inside H sits the mazimal torus T = T* x T¢, where

T* = { diag (e, ... e%) e Uk) }, and T = {diag (¢'*',...,e") e U(0)}.

Each h € U(k) x U({) is conjugate to diagonal unitary matrix, i.e., there exists ¢ € H
such that ghg™' € T.
We can rephrase this fact in terms of the conjugation action of H on itself

C:HxH-—H (g,h)— Cyh)=ghg".
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The class functions are constant along the orbits of this conjugation action, and each
such orbit intersects the maximal torus T. In other words, a class function is completely
determined by its restriction to the maximal torus. Hence, it is reasonable to expect
that we ought to be able to describe the integral in (7.4.2) as an integral over T. This is
achieved in a very explicit manner by the next result.

Define Ay, : TF — C by

A0, 05 = T (@ —e?), i=v-1.

1<i<j<n

On the unitary group U(k) we fix the bi-invariant metric m = my, such that at 73U (k) we
have
m(X,Y) := Retr(XY™).

If we think of X,Y as k x k matrices, then

m(X, Y) = Re Z ZijYij-
4,3
We denote by dvi the volume form induced by this metric, and by Vj the total volume

Vk = / dvk.
U(k)

Proposition 7.4.28 (Weyl’s integration formula). Consider a class function ¢ on the
group G =U(ky) x --- x U(ks), denote by dg the volume form

dg = dvg, N ---dvg,,

and by V' the volume of G, V = Vy, ---Vi_. Then

s

1 1 1
— dg = 01,....0, A.(0)?dO1 A -+ A dB,
1 / > )
=— " [ ©(61,...,0y) |Ag.(0;)|°dO1 A -+ N dOs
[Tj=1(2m)kik;! ]1;[1 Y
Above, for every j =1,...,s, we denoted by 6; the angular coordinates on T3,

k.
0]' = (6;""79j])7

while d@; denotes the bi-invariant volume on Tk,

do; = do} A N dby.
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The remainder of this subsection is devoted to the proof of this proposition. The
reader may skip this part at the first lecture, and go directly to Subsection 7.4.5 where
this formula is used to produce an explicit description of the Poincaré polynomial of a
complex Grassmannian.

Proof of Proposition 7.4.28 To keep the main ideas as transparent as possible, we
will consider only the case s = 1. The general situation is entirely similar. Thus, G = U(k)
and T = T*. In this case, the volume form dg is the volume form associated to metric my,.

We denote by Ad : G — Aut(L¢) the adjoint representation of G; see Example 3.4.30.
In this concrete case, Ad can be given the explicit description

Ady(X) =gXg ', VgeU(k), X €u(k).

Denote the angular coordinates @ on T by @ = (6. ..,6%). The restriction of the metric
m to T is described in these coordinates by

m|p = (d0)% + - - - + (d6%)%.
To any class function ¢ : G — C we associate the complex valued differential form
wy = p(g)dg.
Consider the homogeneous space G/T, and the smooth map
¢:TxG/T =G (t,gT)=gtg .

Note that if g1 T = ¢oT, then g1tg; - gitgy ! so the map ¢ is well defined.
We have a m-orthogonal splitting of the Lie algebra Lg

Lo =L1®LE.

The tangent space to G/T at 1-T € G/T can be identified with £7. For this reason we
will write LT instead of Lf.

Fix x € G/T. Any g € G defines a linear map L, : T,G/T — Ty,G/T. Moreover, if
gr = hz =y, then Ly and L, differ by an element in the stabilizer of « € G/T. This
stabilizer is isomorphic to T, and in particular it is connected.

Hence, if w € detT,G/T, then Lyw € detT,G/T and Lpw € det T,G/T define the
same orientation of T,,G/T. In other words, an orientation in one of the tangent spaces of
G/T “spreads” via the action of G to an orientation of the entire manifold. Thus, we can
orient G/T by fixing an orientation on L¢ .

We fix an orientation on L¢, and we orient L1 using the form d@ = df' A --- A db*.
The orientation on Lg/7 will be determined by the condition

or(Lg) = or(Lt) A or(Lgt)-

The proof of Weyl’s integration formula will be carried out in three steps.

Step 1.
1 .
/Gw¢ = E/ﬂ‘ qw, Yw.
xG/T
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Step 2. We prove that there exists a positive constant C} such that for any class
function ¢ on G we have

k!/ W, :/ q*wgpok/cp(G)!Ak(g)Fda
G TxG/T T

Step 3.  We prove that
Vi Vi

~ vol(T)  (2m)F

/ ¢ w, = degq/ W,
TxG/T G

so it suffices to compute the degree of ¢.
Denote by N(T) the normalizer of T in G, i.e.,

Step 1. We use the equality

N(’]I‘):{QGG; ng‘lcT},

and then form the Weyl group
W := N(T)/T.

Lemma 7.4.29. The Weyl group W is isomorphic to the group Sy of permutations of k
symbols.

Proof. This is a pompous rephrasing of the classical statement in linear algebra that two
unitary matrices are similar if and only if they have the same spectrum, multiplicities
included. The adjoint action of N(T) on T= diagonal unitary matrices simply permutes
the entries of a diagonal unitary matrix. This action descends to an action on the quotient
W so that W C §.

Conversely, any permutation of the entries of a diagonal matrix can be achieved by a
conjugation. Geometrically, this corresponds to a reordering of an orthonormal basis. O

Lemma 7.4.30. Let o',...,a*) € R¥ such that 1, g‘—;,...,g‘—; are linearly independent
over Q. Set 7 := (exp(ial),... ,exp(ia®)) € TF. Then the sequence (T")nez is dense in

Tk. (The element T is said to be a generator of T*.)
For the sake of clarity, we defer the proof of this lemma to the end of this subsection.

Lemma 7.4.31. Let 7 € T C G be a generator of T*. Then ¢~ (1) C T x G/T consists
of |\W| = k! points.

Proof.

1 1

q(s,9T) =717 <= gsg =17<=grg =s€eT.

In particular, g7"g~! = s" € T, Vn € Z. Since (7") is dense in T, we deduce
gTg ' cT= ge N(T).

Hence
g ' (r)={(97"'79,9T) e Tx G/T; g€ N(T) },
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and thus ¢~1(7) has the same cardinality as the Weyl group W. ad

The metric m on L r extends to a G-invariant metric on G/T. It defines a left-
invariant volume form du on G/T. Observe that the volume form on T induced by the
metric m is precisely

do =0 A+ NdfF.

Lemma 7.4.32. ¢*dg = |Ar(0)|?d0 A dp. In particular, any generator T of TF C G is a
regular value of q since A(c) # 0, Vo € ¢~ (7).

Proof. Fix a point xg = (to,goT) € TxG/T. We can identify T, (T x G /T) with Lr®Lg/T
using the isometric action of T x G on T x G/T.
Fix X € L, Y € Lg/r. For every real number s consider

hs = q(toexp(sX), goexp(sY)T ) = goexp(sY )t exp(sX) exp(—sY)gy ' € G.

We want to describe J
£|S:0h61h5 € TG = Lg.

Using the Taylor expansions
exp(sX) =1+ sX +O(s%), and exp(sY) =1+ sY + O(s?),

we deduce
hyths = gotg (14 sY)to(1 4+ sX)(1 — sY)gy ' + O(s?)

=1+s (gotletogo_1 + gngO_1 - gOYgo_l) + 0(82).

Hence, the differential
Dyy i Too (T x G/T) 2 Ly @ Ly — L1 @ Lgym = L,
can be rewritten as
Dyq(X®Y)= Ang(Adtal —1)Y + Ady, X,

or, in block form,
1gp 0

Payt = Ada | Adpor = Leg

The linear operator Ad, is an m-orthogonal endomorphism of £, so that det Ad, = £1.
On the other hand, since G = U(k) is connected, det Ad, = det Ad; = 1. Hence,

det Dgyq = det(Ady-1 — Lz )
Now observe that Lg/1 = L% is equal to

{XGQ(’C); X;;=0 Vj:1,...,k’}cg(k7):[/g.
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Given t = diag (exp(if'),...,exp(i0%)) € TF C U(k), we can explicitly compute the
eigenvalues of Ad,-1 acting on L r. More precisely, they are

{exp(—i(0; —0;)); 1<i#j<k}.

Consequently
det Dyyq = det(Ad,—1 — 1) = |[AR(¢) % O

Lemma 7.4.32 shows that ¢ is an orientation preserving map. Using Lemma 7.4.31 and
Exercise 7.3.27 we deduce degq = |W| = k!. Step 1 is completed.
Step 2 follows immediately from Lemma 7.4.32. More precisely, we deduce

Loo=m ( | /Tdu> [ et0sn0)a
Mo ),

=:C}

To complete Step 3, that is, to find the constant C), we apply the above equality in the
special case ¢ = 1. so that w, = dv,. We deduce

Vi= S [ aye)ae,
k' ']Tk
so that
o Vik
BT T Ar(0)de

Thus, we have to show that
Ar(8)d6 = klvol (T) = (2m)*k!.
Tk

To compute the last integral we observe that Ag(6) can be expressed as a Vandermonde
determinant

1 1 .. 1
10" R L 10"
2701 2102 L 2i0%
Ag(0) = e e e
cik=1)01  i(k—1)0* L i(k—1)0F

This shows that we can write A as a trigonometric polynomial

AR(0) =D e(0)es (),

oESy,

where, for any permutation o of {1,2,...,k} we denoted by €(o) its signature, and by
e, (0) the trigonometric monomial

Hl?fl eiU(j)ej

Hle 07
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The monomials e, are orthogonal with respect to the L?-metric on T}, and we deduce
84(0)/%d0 = / eo(6)d0 = (2m)"k
T o€Sy,

This completes the proof of Weyl’s integration formula. a

Proof of Lemma 7.4.30 We follow Weyl’s original approach ([98, 99]) in a modern
presentation.

Let X = C(T,C) denote the Banach space of continuous complex valued functions on
T. We will prove that

lim

If U C T is an open subset and f is a continuous, non-negative function supported in U
(f #0) then, for very large n,

1 « ,
nHjZZ%fw)z/det#o.

This means that f(77) # 0, i.e., 77 € U for some j.
To prove the equality (7.4.3) consider the continuous linear functionals L,,, L : X — C

Lu(P) = g S A, and L) = [ fa
§=0

We have to prove that
li_)m L.(f)=L(f) feX. (7.4.4)

It suffices to establish (7.4.4) for any f € §, where § is a subset of X spanning a dense
subspace. We let 8§ be the subset consisting of the trigonometric monomials

ec(0',...,0%) = exp(i¢10") - - - exp(i¢s0"), ¢ = (Ciy--.,Ck) € ZF.

The Weierstrass approximation theorem guarantees that this 8§ spans a dense subspace.
We compute easily

n

1 1 ec(a)mtt—1
Ln(ec) = () = .
(ec) n+1jzz:oejc(a) n+1 ec(a)—1

say, are linearly independent over Q we deduce that ec(a) # 1 for all

Since 1, 27TO¢1, ey e

¢ € Z*. Hence
lim Ly(e¢) = O:/Tegdt:L(eC).

n—o0

Lemma 7.4.30 is proved. ad
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7.4.5 The Poincaré polynomial of a complex Grassmannian

After this rather long detour we can continue our search for the Poincaré polynomial of
Gry(C™).

Let Sy denote the canonical subspace C¥ < C™. The tangent space of Gri(C™) at Sy
can be identified with the linear space € of complex linear maps C¥ — Cf, ¢ =n — k. The
isotropy group at Sy is H = U(k) x U(¥).

Exercise 7.4.33. Prove that the isotropy group H acts on & = {L : C¥ — C’} by

(T,S)-L=SLT* VLe€&, TeUk), SeU). 0

Consider the maximal torus 7% x T¢ ¢ H formed by the diagonal unitary matrices.
We will denote the elements of T* by

e:=(€1,...,6k), Ea = e2mir®

)

and the elements of T by
e:=(e1,...,er), € = exp(27i67),
The normalized measure on T is then
dr =dr' Ao AdrF,
and the normalized measure on T is
do = do* A --- A db".
The element (g,¢e) € T* x T* viewed as a linear operator on & has eigenvalues

{Eatj; 1<a<k 1<j<Ut}

Using the Weyl integration formula we deduce that the Poincaré polynomial of Gry(C™)
is

1 _
Peot®) = 73 [ T+ e PIAMEr) PIAde(®) Par 1 do
a,]

_ 1 2 2 2
= /. e LT e eI P e(8) P
We definitely need to analyze the integrand in the above formula. Set
[hg(t) = H(EO‘ + tej)Ak(g)Ag(g),
a,j

so that )
Py g(t) = — / I g(t)]k g(t)d’r A d6. (7.4.5)
’ k'gl TkxT?t ’ ’
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= W o1 o1 o

P w w .k~ b~ o

Figure 7.4: The conjugate of (6,5,5,3,1) is (5,4,4,3,3,1)

We will study in great detail the formal expression

Tt zsy) = [ [(@a + ty))-

a7j

The Weyl group W = 8, x 8, acts on the variables (z;y) by separately permuting the
x-components and the y-components. If (o, ) € W then

Jre(t;o(z);0(y) = Jre(t; z359).

Thus we can write Ji ¢ as a sum

Jee(t) =Y t'Qa(z)Ra(y)

d>0

where Qg(z) and Ry(y) are symmetric polynomials in z and respectively y.

To understand the nature of these polynomials we need to introduce a very useful class
of symmetric polynomials, namely the Schur polynomials. This will require a short trip in
the beautiful subject of symmetric polynomials. An extensive presentation of this topic is
contained in the monograph [67].

A partition is a compactly supported, decreasing function

A:{1,2,...} = {0,1,2,...}.

We will describe a partition by an ordered finite collection (A1, Aa,...,A,), where A\; >
~o- 2> Ap > Apa1 = 0. The length of a partition A is the number

L(A) :=max{n; A\, # 0}.

The weight of a partition A is the number

A=) A

n>1

Traditionally, one can visualize a partition using Young diagrams. A Young diagram
is an array of boxes arranged in left justified rows (see Figure 7.4). Given a partition
(A > -+ > \p), its Young diagram will have \; boxes on the first row, Ao boxes on the
second row etc.
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Any partition A has a conjugate \ defined by
Ani=#{j >0; N >n}.

The Young diagram of A is the transpose of the Young diagram of A (see Figure 7.4).

A strict partition is a partition which is strictly decreasing on its support. Denote
by P, the set of partitions of length < n, and by P} the set of strict partitions A of
length n — 1 < L(A\) < n. Clearly P; C P,. Denote by § = 4, € P; the partition
(n—1,n—2,...,1,0,...).

Remark 7.4.34. The correspondence P, 3 A — A+ 6, € P;. is a bijection. O

To any A € P;, we can associate a skew-symmetric polynomial

a)\(xb s ,ﬂj‘n) = det(x;") = Z E(J)xﬁz(z)

gESy

Note that as, is the Vandermonde determinant

as(w1, ... xn) = det(a) ) = [ (@i — ;) = An(2).

i<j

For each A € P, we have A + 0 € P}, so that ay4s is well defined and nontrivial.
Note that ay;s vanishes when z; = z;, so that the polynomial ay,s(z) is divisible by
each of the differences (x; — ;) and consequently, it is divisible by as. Hence

_ axys(2)
Sale) = as(x)

is a well defined polynomial. It is a symmetric polynomial since each of the quantities
ax+s and as is skew-symmetric in its arguments. The polynomial Sy(z) is called the
Schur polynomial corresponding to the partition A. Note that each Schur polynomial S
is homogeneous of degree |A|. We have the following remarkable result.

Lemma 7.4.35. B
Tre(t) = D, tHS5(2)55(w),

)\Gfpkl

where
‘PW::{)\; A <k L)\ SE}.

For each A € Py we denoted by X the complementary partition

N=(k—Xok— Nt .o b — A1),

Geometrically, the partitions in Py, are precisely those partitions whose Young dia-
grams fit inside a £ x k rectangle. If A is such a partition then the Young diagram of the
complementary of A is (up to a 180° rotation) the complementary of the diagram of A in
the ¢ x k rectangle (see Figure 7.5).
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Figure 7.5: The complementary of (6,4,4,2,1,0) € P76 is (7,6,5,3,3,1) € Pg 7

For a proof of Lemma 7.4.35 we refer to [67], Section 1.4, Example 5. The true essence
of the Schur polynomials is however representation theoretic, and a reader with a little
more representation theoretic background may want to consult the classical reference
[66], Chapter VI, Section 6.4, Theorem V, for a very exciting presentation of the Schur
polynomials, and the various identities they satisfy, including the one in Lemma 7.4.35.

Using (7.4.5), Lemma 7.4.35, and the definition of the Schur polynomials, we can
describe the Poincaré polynomial of Gry(C"™) as

2

x
Pedt) = /T - Azﬂ; Mo, (e)ag, s ()| dr A do. (7.4.6)
Vs

The integrand in (7.4.6) is a linear combination of trigonometric monomials e}* - - - £} -

eft - ezz, where the r-s and s-s are nonnegative integers.
Note that if A\, € Py, are distinct partitions, then the terms a5\+6(§) and a;45(g)
have no monomials in common. Hence

/Tk a5 s(e)apts(e) dr = 0.

Similarly,
/TZ 05,5 (©)amra(@)d0 = 0, if \# p.

On the other hand, a simple computation shows that

a dr = k!,
/T lag 5@
and
2
~ do = /!.
/T‘f \GM_(;(Q)\

In other words, the terms

1\ /2
(7)o@

form an orthonormal system in the space of trigonometric (Fourier) polynomials endowed
with the L? inner product. We deduce immediately from (7.4.6) that

Poot) = Y 2P, (7.4.7)

)\Efpk,e
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R e CE L _
+1
Rl+1 +1
____
= — Rk+%44%>

Figure 7.6: The rectangles Ryy, and Rt are “framed” inside Rf:ll

The map B
(‘P]%g SA= A E ﬂ)g,k,

is a bijection so that

Peo(t) = Y 2P = Pyu(t). (7.4.8)
AETAk

Computing the Betti numbers, i.e., the number of partitions in Pj, with a given weight
is a very complicated combinatorial problem, and currently there are no exact general
formulae. We will achieve the next best thing, and rewrite the Poincaré polynomial as a
“fake” rational function.

Denote by by ¢(w) the number of partitions A € P, with weight |A\| = w. Hence

ke
ij(t) = Z bk’g(u})ﬁw.
w=1

Alternatively, by ¢(w) is the number of Young diagrams of weight w which fit inside a & x ¢
rectangle.

Lemma 7.4.36.
bk-i-l,é-i-l(w) = bk,@-ﬁ-l(w) + bk+1,g(w —0{—1).

Proof. Look at the (k + 1) x £ rectangle R**! inside the (k + 1) x (I 4 1)-rectangle Rifi’ll
(see Figure 7.6). Then

bi+1,041(w) = # { diagrams of weight w which fit inside RZ_rll

= #{ diagrams which fit inside RF*! }
—I—#{ diagrams which do not fit inside RF*! }
On the other hand,

bt = #{ diagrams which fit inside REFT }
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If a diagram does not fit inside R**! this means that its first line consists of £ + 1 boxes.
When we drop this line, we get a diagram of weight w — ¢ — 1 which fits inside the
k x (¢4 1) rectangle R,y of Figure 7.6. Thus, the second contribution to byt ¢+1(w) is
biepr(w — £ —1). O

The result in the above lemma can be reformulated as

Peyroi1(t) = Poyro(t) + 2D Py (2).

Because the roles of k and ¢ are symmetric (cf. (7.4.8)) we also have

Pit1,041(t) = Prgar (8) + 2FT Py o(8).
These two equality together yield

(1 o t2(€+1) (1 . t2(k+1)).

Py o1 = Pry1y

Let m =k + £+ 1 and set Qg (t) = Pam—a(t) = Pg,m,c)(t). The last equality can be

rephrased as
1 _ tm—k
Qrstm(t) = Qrom - T30y

so that
1 — $2(m=k) 1 _ 42(m—k+1) 1 — ¢2(n—1)

Qk—l—l,m(t) = 1 _ 2(k+1) : 1_ 2k T 1_4#4

Now we can check easily that by ,—1(w) =1, ie.,

1_t2m
1—t2"

lem(t) =1+ t2 + t4 4+ .4 t2(m_l) _

Hence
(1— t2(m—k+1)) (1= t2m)

(1 —#2)--- (1 —t2F)

(1—t2)-~(1—t2m)
(1 _ t2) ce (1 _ t2k)(1 _ t2) ce (1 _ t2(m—k))'

Remark 7.4.37. (a) The invariant theoretic approach in computing the cohomology
of Gri(C™) was used successfully for the first time by C. Ehresmann[32]. His method
was then extended to arbitrary compact, oriented symmetric spaces by H. Iwamoto [50].
However, we followed a different avenue which did not require Cartan’s maximal weight
theory.

(b) We borrowed the idea of using the Weyl’s integration formula from Weyl’s classical
monograph [102]. In turn, Weyl attributes this line of attack to R. Brauer. Our strategy
is however quite different from Weyl’s. Weyl uses an equality similar to (7.4.5) to produce
an upper estimate for the Betti numbers (of U(n) in his case) and then produces by hand
sufficiently many invariant forms. The upper estimate is then used to established that
these are the only ones. We refer also to [93] for an explicit description of the invariant
forms on Grassmannians. a

Pay (m,0)(t) = Qrm(t) =
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Exercise 7.4.38. Show that the cohomology algebra of CP™ is isomorphic to the truncated
ring of polynomials
R[z]/(z"+1),

where x is a formal variable of degree 2 while (z"*!) denotes the ideal generated by x"*+1.

Hint: Describe A} CP" explicitly. O

mu

7.5 Cech cohomology

In this last section we return to the problem formulated in the beginning of this chapter:
what is the relationship between the Cech and the DeRham approach. We will see that
these are essentially two equivalent facets of the same phenomenon. Understanding this
equivalence requires the introduction of a new and very versatile concept namely, the
concept of sheaf. This is done in the first part of the section. The second part is a fast
paced introduction to Cech cohomology. A concise yet very clear presentation of these
topics can be found in [47]. For a very detailed presentation of the classical aspects of
subject we refer to [38]. For a modern presentation, from the point of view of derived
categories we refer to the monographs [49, 54].

7.5.1 Sheaves and presheaves

Consider a topological space X. The topology Tx on X, i.e., the collection of open subsets,
can be organized as a category. The morphisms are the inclusions U — V. A presheaf of
Abelian groups on X is a contravariant functor 8 : Tx — Ab.

In other words, 8 associates to each open set an Abelian group 8(U), and to each
inclusion U < V, a group morphism r¥/ : §(V) — 8(U) such that, if U < V < W, then

TVUV = 7«5 o TXV. If s € (V) then, for any U < V', we set

sly:=r{l(s) € $(U).

If f € S(U) then we define dom f := U.
The presheaves of rings, modules, vector spaces are defined in an obvious fashion.

Example 7.5.1. Let X be a topological space. For each open set U C X we denote by
C(U) the space of continuous functions U — R. The assignment U — C(U) defines a
presheaf of R-algebras on X. The maps Tg are determined by the restrictions |: C'(V) —
c(U).

If X is a smooth manifold we get another presheaf U — C°°(U). More generally, the
differential forms of degree k can be organized in a presheaf Q¥ (o). If F is a smooth vector
bundle, then the F-valued differential forms of degree k can be organized as a presheaf of
vector spaces

U= Qp(U) = Q5 (Ep).

If G is an Abelian group equipped with the discrete topology, then the G-valued continuous
functions C'(U, G) determine a presheaf called the constant G-presheaf which is denoted
by Gy. U
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Definition 7.5.2. A presheaf § on a topological space X is said to be a sheaf if the
following hold.

(a) If (Uy) is an open cover of the open set U, and f,g € $(U) satisty f|y,= g|v.,, Vo,
then f =g.

(b) If (Uy) is an open cover of the open set U, and f, € 8(U,) satisty
falvanus= folvanvs, YUa NUg # 0

then there exists f € $(U) such that, f|y,= fa, V. O

Example 7.5.3. All the presheaves discussed in Example 7.5.1 are sheaves. a
Example 7.5.4. Consider the presheaf 8§ over R defined by
8(U) := continuous, bounded functions f : U — R.

We let the reader verify this is not a sheaf since the condition (b) is violated. The reason
behind this violation is that in the definition of this presheaf we included a global condition
namely the boundedness assumption. ad

Definition 7.5.5. Let X be a topological space, and R a commutative ring with 1. We
equip R with the discrete topology

(a) A space of germs over X ( “espace étalé” in the French literature) is a topological space
&, together with a continuous map 7 : € — X satisfying the following conditions.

(al) The map 7 is a local homeomorphism that is, each point e € € has a neighborhood
U such that 7|y is a homeomorphism onto the open subset m(U) C X. For every
r € X, the set &, := 7~ 1(z), is called the stalk at x.

(a2) There exist continuous maps
tRxE&—E,

and
+:{(u,v) € € x & w(u) =n(v) } =&,

such that
Vre R, Ve X, Yu,v€ &, wehave r-u € &,, ut+vée &y,
and with respect to the operations +, -, the stalk €, is an R-module, Vx € X.
(b) A section of a space of germs 7w : € — X over a subset Y C X is a continuous function

s 1Y — & such that s(y) € €,, Yy € Y. The spaces of sections defined over Y will be
denoted by E(Y). O
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Example 7.5.6. (The space of germs associated to a presheaf). Let 8 be a
presheaf of Abelian groups over a topological space X. For each x € X define an equiva-
lence relation ~, on

|_| 8(U), U runs through the open neighborhoods of X,
Usz

by
f ~z g < Jopen U > x such thatf |y= g|v -

The equivalence class of f € | |;;5, 8(U) is denoted by [f],, and it is called the germ of f
at x. Set

8z :={[f]z; dom f >z}, and S = |_| Sz
rzeX

There exists a natural projection 7 : S — X which maps [f]; to . The “fibers” of this
map are 71 (z) = 8, — the germs at x € X. Any f € §(U) defines a subset

Uf:{[f]u;uGU}Cg.

We can define a topology in S by indicating a basis of neighborhoods. A basis of open
neighborhoods of [f], € 8 is given by the collection

{U?:U>s% g€8U) lgle = [fla }-

We let the reader check that this collection of sets satisfies the axioms of a basis of
neighborhoods as discussed e.g. in [58].
With this topology, each f € 8§(U) defines a continuous section of m over U

[f]: Usuwr [flu € 8u.
Note that each fiber S, has a well defined structure of Abelian group
[fle + 9]l =[(f +9)|u]e U > zisopenand U C dom f Ndomg.

(Check that this addition is independent of the various choices.) Since 7 : f(U) — U is a
homeomorphism, it follows that 7 : 8 — X is a space of germs. It is called the space of
germs associated to the presheaf 8. O

If the space of germs associated to a sheaf 8§ is a covering space, we say that 8 is a
sheaf of locally constant functions (valued in some discrete Abelian group). When the
covering is trivial, i.e., it is isomorphic to a product X x { discrete set }, then the sheaf is
really the constant sheaf associated to a discrete Abelian group.

Example 7.5.7. (The sheaf associated to a space of germs). Consider a space of
germs & = X over the topological space X. For each open subset U C X, we denote by
&(U) the space of continuous sections U — €. The correspondence U + E(U) clearly a
sheaf. € is called the sheaf associated to the space of germs. O
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Proposition 7.5.8. (a) Let € = X be a space of germs. Then & = .
(b) A presheaf 8 over the topological space X is a sheaf if and only z'fg = 3. a

Exercise 7.5.9. Prove the above proposition. a

Definition 7.5.10. If S is a presheaf over the topological space X, then the sheaf E is
called the sheaf associated to S, or the sheafification of 8. O

Definition 7.5.11. (a) Let A morphism between the (pre)sheaves of Abelian groups
(modules etc.) 8§ and S over the topological space X is a collection of morphisms of
Abelian groups (modules etc.) hy : S(U) — 8(U), one for each open set U C X, such
that, when V' C U, we have hy o rg = fg o hy. Above, rg denotes the restriction
morphisms of §, while the fg denotes the restriction morphisms of 8. A morphism A is
said to be injective if each hy is injective.

(b) Let 8 be a presheaf over the topological space X. A sub-presheaf of 8 is a pair (T,1),
where T is a presheaf over X, and 2 : T — § is an injective morphism. The morphism 2 is
called the canonical inclusion of the sub-presheaf. a

Let A : 8§ — T be a morphism of presheaves. The correspondence
U+ ker hy € 8(U),

defines a presheaf called the kernel of the morphism h. It is a sub-presheaf of 8.

Proposition 7.5.12. Let h : § — T be a morphism of presheaves. If both § and T are
sheaves, then so is the kernel of h. O

The proof of this proposition is left to the reader as an exercise.

Definition 7.5.13. (a) Let & % X (i = 0,1) be two spaces of germs over the same
topological space X. A morphism of spaces of germs is a continuous map h : £y — &
satisfying the following conditions.

(al) 7 0 h = m, ie., h(my ' (z)) C 7 (2), Vo € X.

(a2) For any 2 € X, the induced map h, : 7y '(x) — 77 '(z) is a morphism of Abelian
groups (modules etc.).
The morphism h is called injective if each h, is injective.

(b) Let € & X be a space of germs. A subspace of germs is a pair (F,7), where T is a
space of germs over X and j:JF — & is an injective morphism. a

Proposition 7.5.14. (a) Let h : &y — &1 be a morphism between two spaces of germs
over X. Then h(&y) TV X is a space of germs over X called the image of h. It is denoted
by Im h, and it is a subspace of &1. a

Exercise 7.5.15. Prove the above proposition. ad



298 Cohomology

Lemma 7.5.16. Consider two sheaves 8§ and T, and let h : 8 — T be a morphism. Then
h induces a morphism between the associated spaces of germs h:8—T. O

The definition of A should be obvious. If f € 8y, and = € U, then h([f]) = [2(f)a,
where h(f) is now an element of T(U). We let the reader check that h is independent of
the various choices, and that it is a continuous map § — T with respect to the topologies
described in Example 7.5.6.

The sheaf associated to the space of germs Im h is a subsheaf of T called the image of
h, and denoted by Im h.

Exercise 7.5.17. Consider a morphism of sheaves over X, h: 8§ — T. Let U C X be an
open set. Show that a section g € T(U) belongs to (Im 2)(U) if an only if, for every z € X,
there exists an open neighborhood V,, C U, such that g|y,= h(f), for some f € 8§(V,). O

w Due to Proposition 7.5.8(a), in the sequel we will make no distinction between sheaves
and spaces of germs.

Definition 7.5.18. (a) A sequence of sheaves and morphisms of sheaves,

"%Sn%8n+lh318n+2_>"'y

is said to be exact if Im h,, = ker hy, 41, Vn.

(b) Consider a sheaf 8 over the space X. A resolution of 8 is a long exact sequence
' g0 dq o1 d n dn on+1
0—=8—=8 RS ... »gngntl ... O
Exercise 7.5.19. Consider a short exact sequence of sheaves

0—8_1—>8 —8 —0.

For each open set U define $(U) = 8¢(U)/8_1(U).
(a) Prove that U — 8(U) is a presheaf.

(b) Prove that 8; = § = the sheaf associated to the presheaf S. 0

Example 7.5.20. (The DeRham resolution). Let M be a smooth n-dimensional
manifold. Using the Poincaré lemma and the Exercise 7.5.17 we deduce immediately that
the sequence

0Ry, =00, 50l 4. 4an 0

is a resolution of the constant sheaf R,,;. Q% denotes the sheaf of k-forms on M while d
denotes the exterior differentiation. O
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7.5.2 Cech cohomology

Let U — 8(U) be a presheaf of Abelian groups over a topological space X. Consider
an open cover U = (Uy)aeca of X. A simpler associated to U is a nonempty subset
A= {ao,...,aq} C A, such that

q
:ﬂUai 7&@
0

We define dim A to be one less the cardinality of A, dimA = |A| — 1. The set of all
g-dimensional simplices is denoted by Ny (U). Their union,

UNa(w)

is denoted by N(U), and it is called the nerve of the cover.

For every nonnegative integer ¢ we set A, := {0,...,¢}, and we define an ordered
q-simplex to be a map o : A, — A with the property that o(A,) is a simplex of N(U),
possibly of dimension < ¢q. We will denote by Nq(U) the set of ordered g-simplices, and
we will use the symbol (ayp,...,aq) to denote an ordered g-simplex o : A; — A such that
g (k) = 0.

Define

II 8o 8o :=8Usa,))
€N, (W)

The elements of C9(8,U) are called Cech g-cochains subordinated to the cover U. In other
words, a g-cochain ¢ associates to each ordered g-simplex ¢ an element (c,0) € 8.
We have face operators

& =0 N (U )—)Nq (W), 7=0,...,q,
where for a ordered g-simplex o = (o, ..., qq), we set
Vo = 830’ = (@0, -+, Gy, -5 ) € Ugg—ny,

and where a hat “” indicates a missing entry.

Exercise 7.5.21. Prove that 82_183 = ag’ja;, for all j > i. O

We can now define an operator
§: CTHS,U) — (8, ),
which assigns to each (¢—1)-cochain ¢, a g-cochain dc whose value on an ordered g-simplex
o is given by
(0c,0) = 2‘1: (c, Vo

j=0

Using Exercise 7.5.21 above we deduce immediately the following result.
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Lemma 7.5.22. §°> = 0 so that
0 CO8,U) > s, U) S - S s, u) S -
s a cochain complex.

The cohomology of this cochain complex is called the Cech cohomology of the cover U
with coefficients in the pre-sheaf S.

Example 7.5.23. Let U and 8 as above. A 0-cochain is a correspondence which associates
to each open set U, € U an element ¢, € $(U,). It is a cocycle if, for any pair («, ) such
that U, N 3 # 0, we have
cg — cq = 0.
Observe that if S is a sheaf, then the collection (c,) determines a unique section of S.
A 1-cochain associates to each pair (e, 8) such that Uyg # () an element

CaB € S(Uaﬁ).
This correspondence is a cocycle if, for any ordered 2-simplex («, 3,7) we have
CBy — Cay + Cap = 0.

For example, if X is a smooth manifold, and U is a good cover, then we can associate to
each closed 1-form w € QY(M) a Cech 1-cocycle valued in Ry as follows.
First, select for each U, a solution f, € C*°(U,) of

dfa = w.

Since d(fa — f3) = 0 on U,g, we deduce there exist constants c,g such that fo — fz = cap.
Obviously this is a cocycle, and it is easy to see that its cohomology class is independent
of the initial selection of local solutions f,. Moreover, if w is exact, this cocycle is a
coboundary. In other words we have a natural map

HY(X) — HY (NU),Ry ).
We will see later this is an isomorphism. O
Definition 7.5.24. Consider two open covers U = (Uqy)qen, and V = (V3)gep of the same
topological space X. We say V is finer than U, and we write this U < V, if there exists a

map o : B — A, such that
Vg C Ug(g) VB e B.

The map p is said to be a refinement map. O
Proposition 7.5.25. Consider two open covers U = (Uy)aea and V = (V3)pes of the
same topological space X such that U < V. Fiz a sheaf of Abelian groups S. Then the

following are true.
(a) Any refinement map o induces a cochain morphism

o EPCIU,8) » UV, ).
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(b) If r + A — B is another refinement map, then . is cochain homotopic to r.. In
particular, any relation W <V defines a unique morphism in cohomology

0, HY (U, 8) — H*(V,8).

(c) If U<V <W, then
w =1 o).
Proof. (a) We define g, : C4(U) — C1(V) by
8(Vo) 2 (0«(c),0) == (c,0(0)) v, Vece CUU) o V),

where, by definition, o(c) € A? is the ordered g-simplex (0(5o), ..., 0(53q)). The fact that
0« is a cochain morphism follows immediately from the obvious equality

0o 83 = 83 0 0.
(b) We define hj : Ny_1(V) — N, (U) by
hj(BOV .- 7/811—1) = (Q(,B()), .- '79(/8j)7r(5j)7' o 7T(Bq—1))‘

The reader should check that hj(co) is indeed an ordered simplex of U for any ordered
simplex o of V. Note that V, C Uy, (,) Vj. Now define

X = Xg : CUU) = CTH(V)
by

—1
(xq(c),0) == (—1)j (c,hj(o)) v, VeeCI(U) Vo e Vig—1)-

Q

<.
Il
=)

We will show that
50 Xq(€) + Xqt1 0 8(0) = 04() — 7o(c) Ve € CI(W).
Let 0 = (Bo,...,Bq) € ﬁq(\?), and set

Q(J) = ()‘07 cee 7)‘q)7 T(O-) = (ﬂOa ce nuq) € u(q)y

so that,
hj(U) = ()\0,...,)\j,,uj,... ,,uq).
Then '
(xod(c),0) = > (=1 (6¢, hj(0))|v,
q q+1
= (= Q=1 e, 01 hi(0)) Iv,)
=0 k=0

j,---7>\j71uj7“‘7lu’q)>|vo

Il
[]=
—
|
—_
N—
<.
N\ <.
o
—
|
—_
N—
=
—
\.Q
—
>
S
P
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q
+ Z(_l)é+l<cv ()‘07 s 7)‘j7/~Lj7 s Hakv s 7/~Lq)> |V0
q 3L A
= Z(—l)J <Z(—1)k<c, ()\0, ce ,/\j, ce ,/\j,,uj, e ,,uq)> |Vo'

+ Z (_1)é+1<cv ()‘07"' 7Ajnuj7"'7/~]k7"' nuq)>|Va
l=j+1
q .
A (DI Qo At s 1)) v (6 Nos - gy g1, 1)) v, -
§=0
The last term is a telescopic sum which is equal to
<Cv ()‘07 oo 7/\q> |Vo' _<Cv (,U(], cee nuq)> |Vo': <Q*Cv 0> - (T*Cv 0>'

If we change the order of summation in the first two term we recover the term (—dyc, o).
Part (c) is left to the reader as an exercise. O

We now have a collection of graded groups
{ H*(U,8); U— open cover of X },
and morphisms
{zg CH(U,8) — H*(V,8); U<V }

such that,

=1 and o} = o),

whenever U <V < 'W. We can thus define the inductive (direct) limit
H*(X,8) := 1ilrlnH'(u,S).

The group H*(X,8) is called the Cech cohomology of the space X with coefficients in the
pre-sheaf S.

Let us briefly recall the definition of the direct limit. One defines an equivalence
relation on the disjoint union

[[E Ws),
u

by
H(W>S frge H(V) <= IW=UV: o f =19

We denote the equivalence class of f by f. Then
li ‘(W) = * ~.
im H* (W) <HH (U,S)) /
u
Note that we have canonical morphisms,

w: H*(U,8) - H*(X,8).
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Example 7.5.26. Let S be a sheaf over the space X. For any open cover U = (U,),
a 0-cycle subordinated to U is a collection of sections f, € 8(U,) such that, every time
UaNUg # 0, we have

falvas= fslu,s -

According to the properties of a sheaf, such a collection defines a unique global section
f € 8(X). Hence, H(X,8) = §(X). O

Proposition 7.5.27. Any morphism of pre-sheaves h : 8§ — 81 over X induces a mor-
phism in cohomology
he : H*(X,80) — H*(X,81).

Sketch of proof. Let U be an open cover of X. Define
hy : C1(U,8p) — CUU, 81),

by
(hic,0) = hy((c,0)) Vee CUU,8) o € Uq).

The reader can check easily that h, is a cochain map so it induces a map in cohomology
R HO (U, 8o) — H*(U,81)

which commutes with the refinements ZX. The proposition follows by passing to direct

limits. O

Theorem 7.5.28. Let
0—)8_1—J>80£>81—>0,

be an exact sequence of sheaves over a paracompact space X. Then there exists a natural
long exact sequence

oo HYX,S_1) 2 HI(X,80) 25 HI(X,81) 53 HIT(X,8_1) — -+

Sketch of proof. For each open set U C X define 8(U) := 8§¢(U)/S_1(U). Then the
correspondence U — 8(U) defines a pre-sheaf on X. Its associated sheaf is isomorphic
with 8; (see Exercise 7.5.19). Thus, for each open cover U we have a short exact sequence

0— CIU,8_1) L CUU,8) & CI(U,8) — 0.
We obtain a long exact sequence in cohomology
coe— HI(U,8_1) — HI(U, 8) — HI(U, 8) — HIT (U, X) — ---
Passing to direct limits we get a long exact sequence
s = HY(X,8_1) — HI(X,8)) = HI(X,8) - HITH(X,8_1) — ---.

To conclude the proof of the proposition we invoke the following technical result. Its proof
can be found in [89].
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Lemma 7.5.29. If two pre-sheaves 8, 8' over a paracompact topological space X have
isomorphic associated sheaves then

H*(X,8) = H*(X,8). 0

Definition 7.5.30. A sheaf S is said to be fine if, for any locally finite open cover U =
(Ua)aea there exist morphisms h,, : 8 — 8 with the following properties.

(a) For any o € A there exists a closed set C, C U,, and hy(8;) = 0 for = & C,, where
8, denotes the stalk of 8§ at x € X.

(b) >°, ha = Lg. This sum is well defined since the cover U is locally finite. 0

Example 7.5.31. Let X be a smooth manifold. Using partitions of unity we deduce that
the sheaf Qlj( of smooth k-forms is fine. More generally, if E is a smooth vector bundle
over X then the space Q'ﬁ; of E-valued k-forms is fine. O

Proposition 7.5.32. Let 8 be a fine sheaf over a paracompact space X. Then H1(X,§) =
0 for g > 1.

Proof. Because X is paracompact, any open cover admits a locally finite refinement. Thus,
it suffices to show that, for each locally finite open cover U = (U, )aex, the cohomology
groups H?(U, 8) are trivial for ¢ > 1. We will achieve this by showing that the identity
map C?(U,8) — C9(U,8) is cochain homotopic with the trivial map. We thus need to

produce a map
x?: CU U, 8) — CTHU, 8),

such that
Xq+15q + 5‘1_1)(‘1 =1. (7.5.1)

Consider the morphisms hy : 8§ — 8 associa_:ced to the cover U postulated by the definition
of a fine sheaf. For every @ € A, 0 € Ny(U), and every f € CYU,S), we construct
(ta(f),0) € 8(Uy) as follows. Consider the open cover of U,

{V =UsNUy, W:=U,\ Cy }, (supp hg C Cy).

Note that hqf|vaw= 0 and, according to the axioms of a sheaf, the section h,(f|y) can
be extended by zero to a section (t,(f),0) € 8(Uy). Now, for every f € C?(U,8), define
XIf € 071U, 8) by

The above sum is well defined since the cover U is locally finite. We let the reader check
that y? satisfies (7.5.1). 0

Definition 7.5.33. Let 8 be a sheaf over a space X. A fine resolution is a resolution
058580 Ggld. ..

such that each of the sheaves §; is fine. O
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Theorem 7.5.34 (Abstract DeRham theorem). Let
058580 &gt dy. ..
be a fine resolution of the sheaf 8 over the paracompact space X. Then
0-8(xX) B8l (x)% ...
s a cochain complex, and there exists a natural isomorphism
HY(X,8) = HY(84(X)).

Proof. The first statement in the theorem can be safely left to the reader. For ¢ > 1,
denote by 27 the kernel of the sheaf morphism d,. We set for uniformity 20 := 8. We get
a short exact sequence of sheaves

0—27 8127 50 ¢g>o0. (7.5.2)

We use the associated long exact sequence in which H*(X, 8;) =0, for k > 1, since 87 is
a fine sheaf. This yields the isomorphisms

HFL(X, 20 = HR(X, 29) k> 2.
We deduce inductively that
H™(X,2% =2 HY(X, 2™ Y m> 1. (7.5.3)

Using again the long sequence associated to (7.5.2), we get an exact sequence

HOX, 21 L HO(X, 2™ = HY(X, 2 — 0.
We apply the computation in Example 7.5.26, and we get
HY (X, 2™ =2 2m(X)/drt (8™ (X)) .
This is precisely the content of the theorem. ad
Corollary 7.5.35. Let M be a smooth manifold. Then
H*(M,Ry) = H*(M).

Proof. The manifold M is paracompact. We conclude using the fine resolution

05 Ry 0% S0t ... O
Exercise 7.5.36. Describe explicitly the isomorphisms

H'(M) = H'(M,Ryy) and H*(M) = H*(M, Ry). 0
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Remark 7.5.37. The above corollary has a surprising implication. Since the Cech co-
homology is obviously a topological invariant, so must be the DeRham cohomology which
is defined in terms of a smooth structure. Hence if two smooth manifolds are homeo-
morphic they must have isomorphic DeRham groups, even if the manifolds may not be
diffeomorphic.

Such exotic situations do exist. In a celebrated paper [71], John Milnor has constructed
a family of nondiffeomorphic manifolds all homeomorphic to the sphere S7. More recently,
the work of Simon Donaldson in gauge theory was used by Michael Freedman to construct
a smooth manifold homeomorphic to R* but not diffeomorphic with R* equipped with the
natural smooth structure. (This is possible only for 4-dimensional vector spaces!) These
three mathematicians, J. Milnor, S. Donaldson and M. Freedman were awarded Fields
medals for their contributions. O

Theorem 7.5.38. (Leray) Let M be a smooth manifold and U = (Uy)aca a good cover
of M, i.e.,
UO' ~ RdimM.

Then
H*(U,R,,) = H*(M).

Proof. Let Z¥ denote the sheaf of closed k-forms on M. Using the Poincaré lemma we
deduce

2k(U,) = dF—1(U,).
We thus have a short exact sequence
0 — C9(U, 2%) — U, Q1) b5 e, 2F) — 0.

Using the associated long exact sequence and the fact that QF~! is a fine sheaf, we deduce
as in the proof of the abstract DeRham theorem that

HIU,Ry) = HITHU,ZY) = -

~ gt 297 =2 FO(U, 29) /d HO (U, Q971 22 29(M) /dQa—Y (M) = H*(M). O

Remark 7.5.39. The above result is a special case of a theorem of Leray: if S is a sheaf
on a paracompact space X, and U is an open cover such that

HY(Uy,8) =0, Vg>1 AeNU),
then H*(U,8) = H*(X,8). For a proof we refer to [38].
When G, is a constant sheaf, where G is an arbitrary Abelian group, we have a
Poincaré lemma (see [33], Chapter IX, Thm. 5.1.),
HYR",G)=0 ¢q>1.

Hence, for any good cover U

H.(Mng):H.(ung) 0
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Remark 7.5.40. A combinatorial simplicial complex, or a simplicial scheme, is a collec-
tion K of nonempty, finite subsets of a set V' with the property that any nonempty subset
B of a subset A € X must also belong to the collection X, i.e.,

AeX, BCA B+#0)=— BeX.

The set V is called the vertex set of K, while the subsets in K are called the (open) faces)
of the simplicial scheme. The nerve of an open cover is an example of simplicial scheme.
To any simplicial scheme X, with vertex set V', we can associate a topological space
|K| in the following way.
Denote by RY the vector space of all maps f : V' — R with the property that f(v) = 0,
for all but finitely many v’s. In other words,

RV:@R.

veV

Note that RY has a canonical basis given by the Dirac functions

1 u=w

0y : V= R, (5v(u):{0 2
u # v.

We topologize RV by declaring a subset C' C RV closed if the intersection of C' with any
finite dimensional subspace of RV is a closed subset with respect to the Euclidean topology
of that finite dimensional subspace.

For any face F C K we denote by Ar C RY the convex hull of the set {&,; veF }
Note that Ap is a simplex of dimension |F| — 1. Now set

Xl = Ap.

FeX

We will say that |X| is the geometric realization of the simplicial scheme X.

A result of Borsuk-Weil (see [14]) states that if U = (Uy)qex is a good cover of a com-
pact manifold M, then the geometric realization of the nerve N(U) is homotopy equivalent
to M. Thus, the nerve of a good cover contains all the homotopy information about the
manifold. Since the DeRham cohomology is homotopy invariant, Leray’s theorem comes
as no suprise. What is remarkable is the explicit way in which one can extract the coho-
mological information from the combinatorics of the nerve.

While at this point, we should remark that any compact manifold admits finite good
covers. This shows that the homotopy type is determined by a finite, albeit very large,
set of data. O

Example 7.5.41. Let M be a smooth manifold and U = (Uy,)aea & good cover of M. A
1-cocycle of R, is a collection of real numbers f,3 - one for each pair («,3) € A? such
that U, # 0 satisfying
fozB + fB'y + f'ya = 07

whenever U,y # ). The collection is a coboundary if there exist the constants f, such
that fog = fs — fo. This is precisely the situation encountered in Subsection 7.1.2. The
abstract DeRham theorem explains why the Cech approach is equivalent with the DeRham
approach. O
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Remark 7.5.42. Often, in concrete applications it is convenient to work with skew-
symmetric Cech cochains. A cochain ¢ € C9(8,U) is skew-symmetric if for any ordered
g-simplex 0 = (ay, ..., aq), and for any permutation ¢ of A, we have

(c, (ap,...,0q)) = €(p){c, (a¢(0), . ,ap(q))>.

One can then define a “skew-symmetric” Cech cohomology following the same strategy.
The resulting cohomology coincides with the cohomology described in this subsection. For
a proof of this fact we refer to [89]. O

Exercise 7.5.43. A sheaf of Abelian groups 8 on a paracompact space X is called soft if
for every closed subset C' C X the restriction map 8(X) — 8(C) is surjective. The sheaf
8 is called flabby if, for any open subset U C X, the restriction map S$(X) — S(U) is
surjective.

(a) Prove that any flabby sheaf is also soft.

(b) Suppose 0 — 8§ — 81 — 8o — 0 is a short exact sequence of sheaves on X. Show that
if 8¢ is a flabby sheaf, then the sequence of Abelian groups

00— 8p(X) = 81(X) = 82(X) =0
is exact. o

Exercise 7.5.44. Suppose X is a topological space and § is a sheaf of Abelian groups on
X.

(a) Prove that 8 admits a flabby resolution, i.e., there exists a sequence of flabby sheaves
over X, 8, kK > 0, and morphisms of sheaves f : Sp_1 — 8, k=0,1,...,8_1 =8, such
that the sequence below is exacft

08158 L8 —-on.

(b) Prove that if
0582%8 Ihg —...
is a flabby resolution of 8, then the cohomology groups H¥(X,8) are isomorphic to the

cohomology groups of the cochain complex

So(X) L% 81(X) — .- 0



Chapter 8

Characteristic classes

We now have sufficient background to approach a problem formulated in Chapter 2: find a
way to measure the “extent of nontriviality” of a given vector bundle. This is essentially a
topological issue but, as we will see, in the context of smooth manifolds there are powerful
differential geometric methods which will solve a large part of this problem. Ultimately,
only topological techniques yield the best results.

8.1 Chern-Weil theory

8.1.1 Connections in principal G-bundles

In this subsection we will describe how to take into account the possible symmetries of a
vector bundle when describing a connection.

All the Lie groups we will consider will be assumed to be matriz Lie groups, i.e., Lie
subgroups of a general linear group GL(n,K) = GL(K").

This restriction is neither severe, nor necessary. It is not severe since, according to
a nontrivial result (Peter-Weyl theorem), any compact Lie group is isomorphic with a
matrix Lie group, and these groups are sufficient for most applications in geometry. It is
not necessary since all the results of this subsection are true for any Lie group. We stick
with this assumption since most proofs are easier to “swallow” in this context.

The Lie algebra g of a matrix Lie group G is a Lie algebra of matrices in which the
bracket is the usual commutator.

Let M be a smooth manifold. Recall that a principal G-bundle P over M can be
defined by an open cover (U,) of M and a gluing cocycle

Jap - Uag — G.
The Lie group G operates on its Lie algebra g via the adjoint action

Ad: G — GL(g), g+ Ad(g) € GL(g),

where
Ad(g)X :==gXg™!, VX eg, geG.

309
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We denote by Ad(P) the vector bundle with standard fiber g associated to P via the
adjoint representation. In other words, Ad(P) is the vector bundle defined by the open
cover (Uy), and gluing cocycle

Ad(gap) : Uap — GL(g).
The bracket operation in the fibers of Ad(P) induces a bilinear map
[ QF(Ad(P)) x QF(Ad(P)) — Q" (Ad(P)),

defined by

Wreo X nf oY) =W Ar") e [X,Y], (8.1.1)
for all wk € QF(M), n* € QY(M), and X,Y € Q°( Ad(P)).
Exercise 8.1.1. Prove that for any w,n, ¢ € Q*(Ad(P)) the following hold.

fw.n] = —(=1)“ [, ], (8.1.2)
[, ], 6] = [w, 6,1 + (=D)¥lw, [n, 6] (8.1.3)
In other words, (Q*(Ad(P)),[, ]) is a super Lie algebra. O

Using Proposition 3.3.5 as inspiration we introduce the following fundamental concept.

Definition 8.1.2. (a) A connection on the principal bundle P defined by the open cover
U = (Ua)aca, and the gluing cocycle gg, : Uy — G is a collection

AO! € Ql(Ua) ® ga
satisfying the transition rules
Ag(2) = 9,5 (2)dgap (@) + g5 (2) Aa(2)gap (@)
= —(dgga(t) )95, () + gpa(r) Aa(2)g5, (), Vo € Usp.

We will denote by A(U, ges) the set of connections defined by the open cover U and the
gluing cocycle oo : Use — G.

(b) The curvature of a connection A € A(U, gee) is defined as the collection F,, € Q%(U,)®g
where

F,=dA, + %[Aa, Ayl O
Remark 8.1.3. Given an open cover (U,) of M, then two gluing cocycles
98ashga 1 Uag — G,
define isomorphic principal bundles if and only if there exists smooth maps

T, : U, — G,
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such that
hsa(2) = T5(2)gpa(r)Ta(z) ™t Vo, B, Vo € Uyg.

If this happens, we say that the cocycles gee and hee are cohomologous.
Suppose (gag), (hap) are two such cohomologous cocycles. Then the maps T, induce
a well defined correspondence

T A(u, g..) — ‘A(uv hoo)

given by

T _ _
AU, ges) D (An) = ( By = —(dTo) Ty + ToAaTy ') € A(U, hae).
The correspondence T is a bijection.
Suppose U = (Uy)aca and V = (V;);er are open covers, and ggq : Uy — G is a gluing
cocycle. Suppose that the open cover (V;);cs is finer that the cover (U, )aca, i-e., there
exists a map ¢ : I — A such that

ViCUcp(i)a Vi e I
We obtain a new gluing cocycle g:-';- : Vij — G given by
gz-'}(x) = Goliyp(j) (), Vi,j eI, eV

This new cocycle defines a principal bundle isomorphic to the principal bundle defined by
the cocycle (gga). If (Aq) is a connection defined by the open cover (U,) and the cocycle
(98a), then it induces a connection

AL = Ay v,

defined by the open cover (V;), and the cocycle g;;. We say that the connection A¥ is the
V-refinement of the connection A. The correspondence

r.Tvu : A(u,g..) — A(V, gfo)v A A7

is also a bijection.
Finally, given two pairs (open cover, gluing cocycle), (U, ges) and (V, hee), both de-
scribing the principal bundle P — M, there exists an open cover W, finer that both U

and W, and cohomologous gluing cocycles Gee, s : Wee — G refining gee and respectively
hee, such that the induced maps

AU, goo) — AW, Goo) —> A(W, hee) <— A(V, hes)

are bijections.

For simplicity, we will denote by A(P), any of these isomorphic spaces A(U, geo)-

w All the constructions that we will perform in the remainder of this section are com-
patible with the above isomorphisms but, in order to keep the presentation as transparent
as possible, in our proofs we will not keep track of these isomorphisms. We are convinced
that the reader can easily supply the obvious, and repetitious missing details. a
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Proposition 8.1.4. Suppose P — M 1is a principal G-bundle described by an open cover
U = (Ua)aca, and gluing cocycle ggqo : Uap — G.

(a) The set A(P) of connections on P is an affine space modelled by Q'( Ad(P)).

(b) For any connection A = (Ay) € A(U, ges), the collection (Fy) defines a global Ad(P)-
valued 2-form. We will denote it by Fa or F(A), and we will refer to it as the curvature
of the connection A.

(c) (The Bianchi identity.)

dF. + [Ag, Fa] =0, Va. (8.1.4)

Proof. (a) If (An)aca, (Ba)aca € A(P), then their difference C,, = A, — B, satisfies the
gluing rules
Cg = gﬁaC'agg_;,

so that it defines an element of Q!'(Ad(P)). Conversely, if (A,) € A(P), and w €
Q'(Ad(P)), then w is described by a collection of g-valued 1-forms w, € Q'(Ua) ® g,
satisfying the gluing rules

wplu,s = gﬁawa‘Ua[ggﬁ_ol{'

The collection A/, := A, + w, is then a connection on P. This proves that if A(P) is
nonempty, then it is an affine space modelled by Q'( Ad(P)).

To prove that A(P) # () we consider a partition of unity subordinated to the cover
U,. More precisely, we consider a family of nonnegative smooth functions wu, : M — R,
a € A, such that suppu, C U,, Va, and

Zua: 1.
(0%

For every a € A we set

B, = Zuyg;jdgw c QY (U,) ®g.
Y

Since gyo = g;ﬁ} we deduce g;o}dgw = —(dgm)g;ﬁ} , 80 that
By, = — Z u’y(dgav)g(;-i'
v
Then, on the overlap U,g, we have the equality
-1 -1 -1 -1
Bg — gBaBocgga = - Z u’y(dgﬁv)gﬁ«, + Z U*ygﬁa(dga'y)ga-y 98a
v v

The cocycle condition implies that

dgsy = (d98a)9ary + 98a(dgar ),

so that
(dgg-y)gﬁ_,yl = (dgﬁ'y)g’yﬁ = (dgﬁa)gaﬁ + gﬁa(dga’y)g'yﬁ'
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Hence

- Z u’y(d.gﬁ'y)gﬁ_«} = _(dgﬁa)gaﬁ - Z uﬁ/gﬁa(dga'y)g'yﬁ-
Y vy

Using the cocycle condition again, we deduce g;% 9501{ = g4, so that

11
Zu'\/gﬁa(dga'y)gafy 960 = Z u'ygﬁa(dgoc’y)gfyﬁ-
v Y

Hence, on the overlap U,z we have

Bg = —(dgsa)9pa + 98aBadsa = 9asddas + 9up Bagas-

This shows that the collection (B,) defines a connection on P.
(b) We need to check that the forms F,, satisfy the gluing rules

where g = go3 = gﬁ_; We have
1
FB = dAB + 5[145,145]

_ _ 1. _ _ _ _
=d(g 'dg+g 1Aa9)+§[9 Ldg + g7 Ang, g dg + g7  Aug).

Set @ := g~ 'dg. Using (8.1.2) we get

1
FB =dw + 5[’@',@]

_ _ 1. _ _
+d(g " Aung) + [w, g 1Aag]Jrg[g Y409, 97 Angl.

We will check two things.
A. The Maurer-Cartan structural equations.

1
dw+§[w,w] =0.

B.
d(g7 Aug) + [@, 9 Angl = g7 (dAn)g.

313

(8.1.5)

Proof of A. Let us first introduce a new operation. Let gl(n,K) denote the associative

algebra of K-valued n x n matrices. There exists a natural operation

A QFUs) ® gl(n,K) x Q(U,) ® gl(n, K) — QF(U,) @ gl(n,K),

uniquely defined by

W'e A AN ®B)= (W An)® (A B),

(8.1.6)
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where w* € QF(U,), n° € QY(U,) and A, B € gl(n,K) (see also Example 3.3.12). The
space gl(n,K) is naturally a Lie algebra with respect to the commutator of two matrices.
This structure induces a bracket

[0, #] : ©F(Ua) ® gl(n, K) x Q(Ua) ® gl(n, K) = Q"(Ua) ® gl(n, K)
defined as in (8.1.1). A very simple computation yields the following identity.

1
wAn= gl Ywne Q'(Ua) ® gl(n,K). (8.1.7)

The Lie group lies inside GL(n,K), so that its Lie algebra g lies inside gl(n,KK). We can
think of the map g, as a matrix valued map, so that we have
dww =d(g~"dg) = (dg~") A dg

=— (97" -dg-g ")dg=—(g""dg) A (g""dg)
817 1

—=[w, w].

=—wN\w
2

Proof of B. We compute
d(g7 Aag) = (dg™ ' An) - g+ g7 (dAn)g + g~ " Aady
=—g'dg-g " NAa-g+ 97 (dAx)g + (97" Aag) A g dyg
=—wAg ' Aug+ g Aag A + g (dAR)g

8.1.7) 1 _ 1 -
O g Aag] + 5l 0" Aag] + 97 (dA)g

2 2
8.1.2 B _
e )—[w,g YAng) + 971 (dAL)g.

Part (b) of the proposition now follows from A, B and (8.1.5).
(c) First, we let the reader check the following identity

dw,n] = [dw,n] + (=) [w, dn), (8.1.8)
where w,n € Q*(U,) ® g. Using the above equality we get
d(F,) Z%{[dAa, Al — [Aa, dAL)} ®12) [dAq, Ag)
1 (8.1.3)
:[FaaAa] _5[[1404714&]71411] = [FaaAa]-
The proposition is proved. O

Exercise 8.1.5. Let w, € Q¥(U,) ® g satisfy the gluing rules
wg = ggawagﬁ_; on Uyg.

In other words, the collection w, defines a global k-form w € QF(Ad(P)). Prove that the
collection
dwe + [An, wal,

defines a global Ad(P)-valued (k + 1)-form on M which we denote by dsw. Thus, the
Bianchi identity can be rewritten as d4F(A) = 0, for any A € A(P). O
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Remark 8.1.6. Suppose P — M is a principal G-bundle given by the open cover U = (U,)
and gluing cocycle gg, : Uag — G. A gauge transformation of P is by definition, a
collection of smooth maps

To: Uy — G

satisfying the gluing rules
Ts(x) = gga(x)Ta(x)gga(x)_l, Ve € Uap.
Observe that a gauge transformation is a section of the G-fiber bundle
G — C(P) —» M,

(see Definition 2.3.15) with standard fiber G, symmetry group G, where the symmetry
group G acts on itself by conjugation

G x G5 (g,h) -5 Cy(h) == ghg' € G.
The set of gauge transformations forms a group with respect to the operation
(Sa) - (Ta) = (SaTa)-

We denote by G(U, ges) this group. One can verify that if P is described the (open cover,
gluing cocycle)-pair (V, hee ), then the groups G(U, ges) and G(V), hee) are isomorphic. We
denote by G(P) the isomorphism class of all these groups.

The group G(U, ges) acts on A(U, ges) according to

G(P) x A(P) 3 (T, A)  TAT ' i= (—(dT.)T; " + Ta AT, ') € A(P).

The group G(P) also acts on the vector spaces Q*(Ad(P)) and, for any A € A(P),
T € §(P) we have
Frap—1 = TF,T7L.

We say that two connections A%, A' € A(P) are gauge equivalent if there exists 7' € G(P)
such that A! = T AT, O
8.1.2 (G-vector bundles

Definition 8.1.7. Let GG be a Lie group, and E — M a vector bundle with standard fiber
a vector space V. A G-structure on E is defined by the following collection of data.

(a) A representation p: G — GL(V).

(b) A principal G-bundle P over M such that FE is associated to P via p. In other words,
there exists an open cover (U,) of M, and a gluing cocycle go5 : Uyg — G, such
that the vector bundle E can be defined by the cocycle

p(gaﬁ) :Uap = GL(V).
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We denote a G-structure by the pair (P, p).
Two G-structures (F;, p;) on E, i = 1,2, are said to be isomorphic, if the representa-
tions p; are isomorphic, and the principal G-bundles P; are isomorphic. O

Example 8.1.8. Let £ — M be a rank r real vector bundle over a smooth manifold
M. A metric on E allows us to talk about orthonormal moving frames. They are easily
produced from arbitrary ones via the Gramm-Schimdt orthonormalization technique. In
particular, two different orthonormal local trivializations are related by a transition map
valued in the orthogonal group O(r), so that a metric on a bundle allows one to replace an
arbitrary collection of gluing data by an equivalent (cohomologous) one with transitions in
O(r). In other words, a metric on a bundle induces an O(r) structure. The representation
p is in this case the natural injection O(r) — GL(r,R).

Conversely, an O(r) structure on a rank r real vector bundle is tantamount to choosing
a metric on that bundle.

Similarly, a Hermitian metric on a rank k complex vector bundle defines an U (k)-
structure on that bundle. O

Let E = (P, p,V) be a G-vector bundle. Assume P is defined by an open cover (U,),

and gluing cocycle

Jag - Uag — G.

If the collection {A,, € Q'(U,)®g} defines a connection on the principal bundle P, then the
collection p,(A,) defines a connection on the vector bundle E. Above, p, : g — End(V)
denotes the derivative of p at 1 € G. A connection of F obtained in this manner is
said to be compatible with the G-structure. Note that if F'(A,) is the curvature of the
connection on P, then the collection p.(F(Ay)) coincides with the curvature F'(p.(Aq))
of the connection p.(Aa).

For example, a connection compatible with some metric on a vector bundle is com-
patible with the orthogonal/unitary structure of that bundle. The curvature of such a
connection is skew-symmetric which shows the infinitesimal holonomy is an infinitesimal
orthogonal /unitary transformation of a given fiber.

8.1.3 Invariant polynomials
Let V' be a vector space over K = R, C. Consider the symmetric power
SE(V*) C (VH)=F,
which consists of symmetric, multilinear maps
p:Vx.-xV oK
Note that any ¢ € S¥(V*) is completely determined by
Py(v) = ¢(v,...,v).
This follows immediately from the polarization formula

1 ok

@(Ul,---avk) = Em

P¢(t1U1 + -+ tkvk).
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If dim V' = n then, fixing a basis of V, we can identify S*(V*) with the space of degree k
homogeneous polynomials in n variables.

Assume now that A is a K-algebra with 1. Starting with ¢ € S*(V*) we can produce
a K-multilinear map

p=pa:ARV)Xx - x(ARV)— A,
uniquely determined by
vlag @ vy, ...,a @vg) = @(v1,...,0)a1az - - ax € A.
If moreover the algebra A is commutative, then @4 is uniquely determined by the polyno-
mial
Py(x) =pa(x,...,x) € ARV,

Remark 8.1.9. Let us emphasize that when A is not commutative, then the above func-
tion is not symmetric in its variables. For example, if ajas = —agaq, then

P(a1X1,a2X2, ) = —P(asX2,a1 X1, ).

For applications to geometry, A will be the algebra Q°(M) of complex valued differential
forms on a smooth manifold M. When restricted to the commutative subalgebra

Qeven(M) _ @ Q2k(M) ® (C,
k>0

we do get a symmetric function. O

Example 8.1.10. Let V = gl(n,C). For each matrix 7" € V' we denote by c(7T") the
coefficient of \¥ in the characteristic polynomial

ex(T) := det (]1 - iT> = ch(T))\k, (i=+-1).

21t
k>0

Then, ¢, (T) is a degree k homogeneous polynomial in the entries of 7. For example,

1 1\"
a(T) = ~9 trT, c,(T) = <_2—m> detT.

Via polarization, c¢;(T') defines an element of S*(gl(n, C)*).
If A is a commutative C-algebra with 1, then A ® gl(n,C) can be identified with the
space gl(n,A) of n x n matrices with entries in A. For each T € gl(n, A) we have

A

and c(T) continues to be the coefficient of A* in the above polynomial. O
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Consider now a matrix Lie group G. The adjoint action of G on its Lie algebra g
induces an action on S*(g*) still denoted by Ad. We denote by I*(G) the Ad-invariant
elements of S*(g*). It consists of those ¢ € S¥(g*) such that

(p(gXlg_l, s 7ngg_1) = SD(XD s 7Xk)7

for all Xy,..., X € g. Set

I*(G) == @PI*(G) and I**(G) := [[ I"(G).

k>0 k>0

The elements of I*(G) are usually called invariant polynomials. The space I**(G) can
be identified (as vector space) with the spa