
Comonads: what are they and what can you do with them?
Melbourne Haskell Users Group

David Overton

29 May 2014

Table of Contents

1 Motivation

2 Theory

3 Examples

4 Applications

5 Other Considerations

6 Further Reading

Motivation

• Monads are an abstract concept from category theory, have turned out to be
surprisingly useful in functional programming.

• Category theory also says that there exists a dual concept called comonads. Can
they be useful too?

• Intuition:
• Monads abstract the notion of effectful computation of a value.
• Comonads abstract the notion of a value in a context.
• “Whenever you see large datastructures pieced together from lots of small but

similar computations there’s a good chance that we’re dealing with a comonad.”
—Dan Piponi

Table of Contents

1 Motivation

2 Theory

3 Examples

4 Applications

5 Other Considerations

6 Further Reading

What is a Comonad?

• A comonad is just a comonoid in the category of endofunctors. . .

• A comonad is the category theoretic dual of a monad.

• A comonad is a monad with the “arrows” reversed.

What is a Comonad?

Both monads and comonads are functors. (Functor is its own dual.)

class Functor f where

fmap :: (a → b) → (f a → f b)

class Functor m ⇒ Monad m where class Functor w ⇒ Comonad w where

return :: a → m a extract :: w a → a

bind :: (a → m b) → (m a → m b) extend :: (w b → a) → (w b → w a)

join :: m (m a) → m a duplicate :: w a → w (w a)

join = bind id duplicate = extend id

bind f = fmap f ◦ join extend f = fmap f ◦ duplicate

(>>=) :: m a → (a → m b) → m b (=>>) :: w b → (w b → a) → w a

(>>=) = flip bind (=>>) = flip extend

Intuition

• Monadic values are typically produced in effectful computations:

a → m b

• Comonadic values are typically consumed in context-sensitive computations:

w a → b

Monad/comonad laws

Monad laws
Left identity return ◦ bind f = f

Right identify bind return = id

Associativity bind f ◦ bind g = bind (f ◦ bind g)

Comonad laws
Left identity extract ◦ extend f = f

Right identity extend extract = id

Associativity extend f ◦ extend g = extend (f ◦ extend g)

Table of Contents

1 Motivation

2 Theory

3 Examples

4 Applications

5 Other Considerations

6 Further Reading

Example: reader/writer duality

-- Reader monad

instance Monad ((→) e) where

return = const

bind f r = λc → f (r c) c

-- CoReader (a.k.a. Env) comonad

instance Comonad ((,) e) where

extract = snd

extend f w = (fst w, f w)

-- Writer monad

instance Monoid e ⇒ Monad ((,) e)

where

return = ((,) mempty)

bind f (c, a) = (c ♦ c’, a’)

where (c’, a’) = f a

-- CoWriter (a.k.a. Traced) comonad

instance Monoid e ⇒ Comonad ((→) e)

where

extract m = m mempty

extend f m = λc →
f (λc’ → m (c ♦ c’))

Example: state

newtype State s a = State { runState :: s → (a, s) }

instance Monad (State s) where

return a = State $ λs → (a, s)

bind f (State g) = State $ λs →
let (a, s’) = g s

in runState (f a) s’

data Store s a = Store (s → a) s -- a.k.a. ‘‘Costate’’

instance Comonad (Store s) where

extract (Store f s) = f s

extend f (Store g s) = Store (f ◦ Store g) s

One definition of Lens:

type Lens s a = a → Store s a

Hence the statement that lenses are “the coalgebras of the costate comonad”.

Example: stream comonad

data Stream a = Cons a (Stream a)

instance Functor Stream where

fmap f (Cons x xs) = Cons (f x) (fmap f xs)

instance Comonad Stream where

extract (Cons x) = x

duplicate xs@(Cons xs’) = Cons xs (duplicate xs’)

extend f xs@(Cons xs’) = Cons (f xs) (extend f xs’)

• extract = head, duplicate = tails.

• extend extends the function f :: Stream a → b by applying it to all tails of
stream to get a new Stream b.

• extend is kind of like fmap, but instead of each call to f having access only to a
single element, it has access to that element and the whole tail of the list from
that element onwards, i.e. it has access to the element and a context.

Example: list zipper

data Z a = Z [a] a [a]

left, right :: Z a → Z a

left (Z (l:ls) a rs) = Z ls l (a:rs)

right (Z ls a (r:rs)) = Z (a:ls) r rs

instance Functor Z where

fmap f (Z l a r) = Z (fmap f l) (f a) (fmap f r)

iterate1 :: (a → a) → a → [a]

iterate1 f = tail ◦ iterate f

instance Comonad Z where

extract (Z a) = a

duplicate z = Z (iterate1 left z) z (iterate1 right z)

extend f z = Z (fmap f $ iterate1 left z) (f z)

(fmap f $ iterate1 right z)

Example: list zipper (cont.)

• A zipper for a data structure is a transformed structure which gives you a focus
element and a means of stepping around the structure.

• extract returns the focused element.

• duplicate returns a zipper where each element is itself a zipper focused on the
corresponding element in the original zipper.

• extend is kind of like fmap, but instead of having access to just one element, each
call to f has access to the entire zipper focused at that element. I.e. it has the
whole zipper for context.

• Compare this to the Stream comonad where the context was not the whole
stream, but only the tail from the focused element onwards.

• It turns out that every zipper is a comonad.

Example: array with context

data CArray i a = CA (Array i a) i

instance Ix i ⇒ Functor (CArray i) where

fmap f (CA a i) = CA (fmap f a) i

instance Ix i ⇒ Comonad (CArray i) where

extract (CA a i) = a ! i

extend f (CA a i) =
let es’ = map (λj → (j, f (CA a j))) (indices a)

in CA (array (bounds a) es’) i

• CArray is basically a zipper for Arrays.

• extract returns the focused element.

• extend provides the entire array as a context.

Table of Contents

1 Motivation

2 Theory

3 Examples

4 Applications

5 Other Considerations

6 Further Reading

Application: 1-D cellular automata – Wolfram’s rules

rule :: Word8 → Z Bool → Bool

rule w (Z (a:) b (c:)) = testBit w (sb 2 a .|. sb 1 b .|. sb 0 c) where

sb n b = if b then bit n else 0

move :: Int → Z a → Z a

move i u = iterate (if i < 0 then left else right) u !! abs i

toList :: Int → Int → Z a → [a]

toList i j u = take (j - i) $ half $ move i u where

half (Z b c) = b : c

testRule :: Word8 → IO ()

testRule w = let u = Z (repeat False) True (repeat False)

in putStr $ unlines $ take 20 $
map (map (λx → if x then ’#’ else ’ ’) ◦ toList (-20) 20) $
iterate (=>> rule w) u

Application: 2-D cellular automata – Conway’s Game of Life

data Z2 a = Z2 (Z (Z a))

instance Functor Z2 where

fmap f (Z2 z) = Z2 (fmap (fmap f) z)

instance Comonad Z2 where

extract (Z2 z) = extract (extract z)

duplicate (Z2 z) = fmap Z2 $ Z2 $ roll $ roll z where

roll a = Z (iterate1 (fmap left) a) a (iterate1 (fmap right) a)

Application: 2-D cellular automata – Conway’s Game of Life

countNeighbours :: Z2 Bool → Int

countNeighbours (Z2 (Z

(Z (n0:) n1 (n2:):)

(Z (n3:) (n4:))

(Z (n5:) n6 (n7:):))) =
length $ filter id [n0, n1, n2, n3, n4, n5, n6, n7]

life :: Z2 Bool → Bool

life z = (a && (n == 2 | | n == 3))

| | (not a && n == 3) where

a = extract z

n = countNeighbours z

Application: image processing

laplace2D :: CArray (Int, Int) Float → Float

laplace2D a = a ? (-1, 0)

+ a ? (0, 1)

+ a ? (0, -1)

+ a ? (1, 0)

- 4 ∗ a ? (0, 0)

(?) :: (Ix i, Num a, Num i) ⇒ CArray i a → i → a

CA a i ? d = if inRange (bounds a) (i + d) then a ! (i + d) else 0

• laplace2D computes the Laplacian at a single context, using the focused element
and its four nearest neighbours.

• extend laplace2D computes the Laplacian for the entire array.

• Output of extend laplace2D can be passed to another operator for further
processing.

Application: Env (CoReader) for saving and reverting to an initial value

type Env e a = (e, a)

ask :: Env e a → e

ask = fst

local :: (e → e’) → Env e a → Env e’ a

local f (e, a) = (f e, a)

initial = (n, n) where n = 0

experiment = fmap (+ 10) initial

result = extract experiment

initialValue = extract (experiment =>> ask)

Other applications of comonads

• Signal processing: using a stream comonad.

• Functional reactive programming: it has been postulated (e.g. by Dan Piponi,
Conal Elliott) that some sort of “causal stream” comonad should work well for
FRP, but there don’t yet seem to be any actual implementations of this.

• Gabriel Gonzalez’s three examples of “OO” design patterns:
• The Builder pattern: using CoWriter / Traced to build an “object” step-by-step.
• The Iterator pattern: using Stream to keep a history of events in reverse

chronological order.
• The Command pattern: using Store to represent an “object” with internal state.

Table of Contents

1 Motivation

2 Theory

3 Examples

4 Applications

5 Other Considerations

6 Further Reading

Syntactic sugar

At least two different proposals for a comonadic equivalent of do notation for
comonads:

• Gonzalez’s method notation – “OOP-like” with this keyword representing the
argument of the function passed to extend.

• Orchard & Mycroft’s codo notation – resembles Paterson’s arrow notation.

Unsugared Gonzalez Orchard & Mycroft
λwa →

let wb = extend (λthis → expr1) wa

wc = extend (λthis → expr2) wb

in (λthis → expr3) wc

method

wa> expr1

wb> expr2

wc> expr3

codo wa ⇒
wb ← λthis → expr1

wc ← λthis → expr2

λthis → expr3

λwa →
let wb = extend func1 wa

wc = extend func2 wb

in func3 wc

method

wa> func1 this

wb> func2 this

wc> func3 this

codo wa ⇒
wb ← func1

wc ← func2

func3

Comonad transformers

-- Monad transformers

class MonadTrans t where

lift :: Monad m ⇒ m a → t m a

-- Comonad transformers

class ComonadTrans t where

lower :: Comonad w ⇒ t w a → w a

The comonad package provides a few standard transformers:

• EnvT – analogous to ReaderT

• StoreT – analogous to StateT

• TracedT – analogous to WriterT

Cofree comonads

-- Free monad

data Free f a = Pure a | Free (f (Free f a))

instance Functor f ⇒ Monad (Free f) where

return = Pure

bind f (Pure a) = f a

bind f (Free r) = Free (fmap (bind f) r)

-- Cofree comonad

data Cofree f a = Cofree a (f (Cofree f a))

instance Functor f ⇒ Comonad (Cofree f) where

extract (Cofree a) = a

extend f w@(Cofree r) = Cofree (f w) (fmap (extend f) r)

• Cofree Identity is an infinite stream.

• Cofree Maybe is a non-empty list.

• Cofree [] is a rose tree.

A bit of category theory

-- Kleisli category identity and composition (monads)

return :: Monad m ⇒ a → m a

(>=>) :: Monad m ⇒ (a → m b) → (b → m c) → (a → m c)

f >=> g = λa → f a >>= g

-- Co-Kleisli category identity and composition (comonads)

extract :: Comonad w ⇒ w a → a

(=>=) :: Comonad w ⇒ (w a → b) → (w b → c) → (w a → c)

f =>= g = λw → f w =>> g

• Each monad has a corresponding Kleisli category with morphisms a → m b,
identity return and composition operator (>=>).

• Each comonad has a corresponding Co-Kleisli category with morphisms w a → b,
identity extract and composition operator (=>=).

Category laws

Monad laws
Left identity return >=> f = f

Right identify f >=> return = f

Associativity (f >=> g) >=> h = f >=> (g >=> h)

Comonad laws
Left identity extract =>= f = f

Right identify f =>= extract = f

Associativity (f =>= g) =>= h = f =>= (g =>= h)

Category laws

Left identity id ◦ f = f

Right identify f ◦ id = f

Associativity (f ◦ g) ◦ h = f ◦ (g ◦ h)

Table of Contents

1 Motivation

2 Theory

3 Examples

4 Applications

5 Other Considerations

6 Further Reading

Further reading

• http://blog.sigfpe.com/2006/12/evaluating-cellular-automata-is.html

• http://blog.sigfpe.com/2008/03/comonadic-arrays.html

• http://blog.sigfpe.com/2008/03/transforming-comonad-with-monad.html

• http://blog.sigfpe.com/2014/05/cofree-meets-free.html

• https://www.fpcomplete.com/user/edwardk/cellular-automata

• http://www.jucs.org/jucs_11_7/signals_and_comonads/jucs_11_7_1311_1327_

vene.pdf

• http://www.haskellforall.com/2013/02/you-could-have-invented-

comonads.html

• http://www.cl.cam.ac.uk/~dao29/publ/codo-notation-orchard-ifl12.pdf

• http://conal.net/blog/tag/comonad

http://blog.sigfpe.com/2006/12/evaluating-cellular-automata-is.html
http://blog.sigfpe.com/2008/03/comonadic-arrays.html
http://blog.sigfpe.com/2008/03/transforming-comonad-with-monad.html
http://blog.sigfpe.com/2014/05/cofree-meets-free.html
https://www.fpcomplete.com/user/edwardk/cellular-automata
http://www.jucs.org/jucs_11_7/signals_and_comonads/jucs_11_7_1311_1327_vene.pdf
http://www.jucs.org/jucs_11_7/signals_and_comonads/jucs_11_7_1311_1327_vene.pdf
http://www.haskellforall.com/2013/02/you-could-have-invented-comonads.html
http://www.haskellforall.com/2013/02/you-could-have-invented-comonads.html
http://www.cl.cam.ac.uk/~dao29/publ/codo-notation-orchard-ifl12.pdf
http://conal.net/blog/tag/comonad

	Motivation
	Theory
	Examples
	Applications
	Other Considerations
	Further Reading

