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Principal G-bundles

Principal bundles are ubiquitous in geometry and math-

ematical physics. A principal G-bundle consists of

• a surjective submersion π : P → M

• an action P × G //
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of G on M

such that

• the action is strongly free in the sense that the nat-

ural map

P × G → P ×M P

is a diffeomorphism

Classically, connections on P are understood in terms

of parallel transport:
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Another point of view is to think of a connection on P

as an invariant choice of horizontal subspace Hu ⊂

TuP for each u ∈ P :

		




M

P

p

Vu

Hu

This horizontal subspace gives a splitting for this exact

sequence:

0 → Vu → TuP
dp
−→ Tp(u)M → 0

where the vertical subspace Vu is the kernel of dp.

We would like to think about connections as splittings

from a more categorical viewpoint . . .
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The Atiyah Sequence of a
Principal Bundle

Suppose that

G // P

��

M

is a principal G-bundle. Associated to P is an exact

sequence of vector bundles on M :

0 → ad(P ) → TP/G → TM → 0

A connection on P is a splitting A of this exact se-

quence. Associated to this exact sequence is an exten-

sion of Lie algebras

0 → Γ(ad(P )) → Γ(TP/G) → Γ(TM) → 0

The curvature FA of A can be understood as a mea-

sure of the failure of A to be a homomorphism of Lie

algebras:

FA(X, Y ) = [A(X), A(Y )]−A[X, Y ] X, Y ∈ Γ(TM)

FA is skew and bilinear in X , Y and is linear over C∞(M)

so defines an element

FA ∈ Ω2(M, ad(P ))
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Lie 2-algebras and Crossed
Modules

A (strict) Lie 2-algebra is a category L internal

to LieAlg. Thus L consists of

• a Lie algebra of objects L0,

• a Lie algebra of morphisms L1,

such that each operation is a homomorphism of Lie alge-

bras.

There is a bijective correspondence between Lie 2-algebras

and crossed modules of Lie algebras. A crossed mod-

ule of Lie algebras consists of a homomorphism

t : L → J

of Lie algebras, together with an action α : J × L → L

of J on L by derivations, such that

t(α(x)(ξ)) = [x, t(ξ)] and α(t(ξ))(η) = [ξ, η]

To such a crossed module is associated a Lie 2-algebra

with

objects = J

morphisms = J n L

where the semidirect product structure is defined by the

action α : J → Der(L).
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Lie Schreier Theory

Let J be a Lie algebra. J acts by derivations on itself

and so defines a crossed module of Lie algebras

ad : J → Der(J)

Associated to this crossed module is a Lie 2-algebra

DER(J) as explained above with objects DER(J) = Der(J)

and morphisms DER(J) = Der(J) n J . The bracket on

Der(J) n J is defined as usual by

[(f, ξ), (g, η)] = ([f, g], [ξ, η] + g(ξ) − f(η))

Suppose we are given an arbitrary extension of Lie

algebras

0 → J → K → L → 0

A splitting σ of this exact sequence induces a linear map

σ : L → Der(J)

x 7→ adσ(x)|J

together with a skew bilinear map

ω : L × L → J

ω(x, y) = [σ(x), σ(y)] − σ[x, y]

We would like the pair (σ, ω) to define a homomor-

phism of semistrict Lie 2-algebras.
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So we would like to think of ω(x, y) as defining a mor-

phism

[σ(x), σ(y)]
ω(x,y)
−→ σ[x, y]

We need this morphism to satisfy a coherence law: the

diagram

[σ(x), [σ(y), σ(z)]] =
//

[σ(x),ω(y,z)]

��

[[σ(x), σ(y)], σ(z)] + [σ(y), [σ(x), σ(z)]]

[ω(x,y),σ(z)]+[σ(y),ω(x,z)]

��

[σ(x), σ[y, z]]

ω(x,[y,z])

��

[σ[x, y], σ(z)] + [σ(y), σ[x, z]]

ω([x,y],z)+ω(y,[x,z])

��

σ[x, [y, z]] =
// σ[[x, y], z] + σ[y, [x, z]]

should commute. This is equivalent to the Bianchi

Identity

dAω(x, y, z) = 0

for ω. Here dA is the linear map

dA : ∧p L∗ ⊗ J → ∧p+1L∗ ⊗ J

defined by

dA(ω)(x1, . . . , xp+1) =

p+1∑

i=0

(−1)i[σ(xi), ω(x1, . . . , x̂i, . . . , xp+1)]

+
∑

i<j

(−1)i+jω([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xp+1)
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Theorem: There is a bijective correspondence

Ext(L, J) ' π0[L, DER(J)]

where Ext(L, J) denotes isomorphism classes of split

extensions of Lie algebras

0 → J → K → L → 0

π0[L, DER(J)] = “nonabelian Lie algebra cohomology”.

We have seen:

• A connection on a principal G-bundle is a splitting

A of an extension of Lie algebras

• The curvature of the connection measures the fail-

ure of A to be a homomorphism of Lie algebras

• The Bianchi Identity for the curvature can be under-

stood as a coherence law.

All of this can be neatly encoded in a homomorphism

∇ : Γ(TM) → DER(ad(P ))

of semistrict Lie 2-algebras.

We want to categorify this picture.
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Gerbes and Categorified
Bundles

Suppose that G = (G0, G1) is a Lie 2-group. For

example G = AUT(G) for a compact Lie group G. A

principal G-bundle on a smooth groupoid M consists

of

• a surjective submersion π : P → M,

• an action

P × G //

$$IIIIIIIII
P
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M

of G on M,

such that

• the natural functor

P × G → P ×M P

is a diffeomorphism

Note that P0 → M0 and P1 → M1 are principal G0 and

G1 bundles respectively. P is an example of a category

internal to the category PrinBund of principal bundles.

Principal G-bundles are closely related to gerbes.
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Examples

If M = X ×M X ⇒ X is the groupoid associated to

a surjective submersion π : X → M we say that P is a

G-gerbe on M .

Example 1: Suppose that P → M is a principal K-

bundle where K forms part of a central extension

1 → S1 → K̂ → K → 1

Let M = P × K ⇒ P and P = P × K̂ ⇒ P be

transformation groupoids. Then P → M is a gerbe on

M for the 2-group S1[1] with one object and morphisms

S1.

Example 2: Let G be a compact, simple and simply

connected Lie group, and take K = ΩG, P = P0G.

Then

Ĝ = P0G × Ω̂G ⇒ P0G

is a gerbe on G — this is the string 2-group.

Example 3: Suppose that M is a 2-connected spin man-

ifold such that a certain characteristic class c ∈ H4(M ; Z),

twice which is p1, vanishes. Then there is a gerbe P on

M for the string 2-group Ĝ — the string gerbe.
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Local description of G-gerbes
with connection

If M is the groupoidtUij ⇒ tUi associated to an open

cover of M , then an AUT(G)-gerbe with connection and

curving can be described locally by the following data

(λij, gijk, γijk, mij, νi, δij, Bi, ωi)

where gijk : Uijk → G, λij : Uij → Aut(G) and the re-

maining fields are described in the following table:

1-forms 2-forms 3-forms

g-valued γijk δij , Bi ωi

Der(g)-valued mi νi

The 2-form νi is called the ‘fake curvature’; the g-

valued 3-form ωi is called the ‘3-curvature’. These

fields are required to satisfy the following equations:

λij(gjkl)gijl = gijkgikl

λijλjk = Adgijk
λik

. . . plus 10 other even more complicated ones

One of these equations is the Higher Bianchi Iden-

tity which says that

dωi + mi(ωi) = νi(Bi)

Is there a more conceptual way to understand

this??
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Connections on Gerbes

Suppose that P → M is a gerbe for the 2-group G.

The Atiyah sequences for the principal bundles P0 and

P1 combine to form a diagram of groupoids and functors

between them

ad(P1) //

����

TP1/G1
//

����

TM1

����

ad(P0) // TP0/G0
// TM0

We can think of this as an analogue of the Atiyah se-

quence:

0 → ad(P) → TP/G → TM → 0

The individual groupoids in this sequence one can think

of as 2-vector bundles on M, i.e groupoids internal to

VectBund.

A connection on P is a splitting A of this exact se-

quence, i.e a smooth functor A : TM → TP/G such that

p ◦ A = 1.

Associated to the exact sequence above we get an exact

sequence of Lie 2-algebras.

0 → Γ(ad(P)) → Γ(TP/G) → Γ(TM) → 0

Here if p : E → M is a 2-vector bundle, Γ(E) denotes

the functors s : M → E such that p ◦ s = 1 and natural

transformations between these.
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The Lie 3-algebra of
Derivations

Let L be a strict Lie 2-algebra. A (strict) derivation

of L is a linear functor f : L → L such that

f0[x, y] = [f0(x), y] + [x, f0(y)]

f1[u, v] = [f1(u), v] + [u, f1(v)]

for all objects x, y in L0 and all morphisms u, v in L1.

A morphism of derivations is a linear natural transfor-

mation α : f ⇒ g such that

α[x, y] = [α(x), y] + [x, α(y)]

The derivations of L and morphisms between them form

a 2-vector space Der(L). We can equip Der(L) with a

bracket functor [ , ] : L × L → L by defining

[f, f ′] = f ◦ f ′ − f ′ ◦ f

[α, β] = f ′
1β + αg0 − g′1α − βf0

[ , ] is skew, bilinear and satisfies the Jacobi identity on

the nose. Der(L) is a strict Lie 2-algebra. Define a ho-

momorphism

ad: L → Der(L)

x 7→ ad(x)

u 7→ ad(u)

where ad(x) is the derivation of L defined on objects by

ad(x)(y) = [x, y] and similarly for morphisms.

13



The homomorphism ad : L → Der(L) is an example

of a (strict) crossed module of Lie 2-algebras.

A crossed module of Lie 2-algebras consists of a homo-

morphism t : L → J together with an action α : J×L →

L of J on L by derivations such that the following

diagrams commute:

J × L
α

//

1×t
��

L

t
��

J × J
ad

// J

L × L
t×1

//

ad ��
??

??
??

J × L

α����
��

��

L

If we think of L and J themselves as crossed modules

d : L1 → L0 and ∂ : J1 → J0 then we have a commuta-

tive square

L1

d
��

t1
// J1

∂
��

L0 t0
// J0

in which each arrow, and each composite arrow, is a

crossed module, together with some extra conditions.

Given such a crossed module t : L → J we can form a

J0-equivariant complex of Lie algebras

L1
(t1,d)
−→ J1 n L0

t0−∂
−→ J0

where each arrow is a crossed module.
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Here the bracket on J1 n L0 is defined by

[(x1, ξ1), (x2, ξ2)] = ([x1, x2],−[ξ1, ξ2]+

α(∂(x1))(ξ2) − α(∂(x0))(ξ1))

We associate a Lie 3-algebra, i.e a 2-category in LieAlg,

to this complex with

objects = J0

1-morphisms = J0 n (J1 n L0)

2-morphisms = J0 n ((J1 n L0) n L1)

We denote by DER(L) the Lie 3-algebra associated in

this way to the crossed module ad : L → Der(L).
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Towards Higher Lie Schreier
Theory

Suppose that

0 → J → K → L → 0

is an exact sequence of Lie 2-algebras, where L is an

ordinary Lie algebra and L denotes the corresponding

discrete Lie 2-algebra.

Suppose that A : L → K is a splitting of this exact

sequence. In analogy with the previous discussion we

measure the failure of A to be a homomorphism of Lie

2-algebras. In general there exist morphisms in J

[A(x), A(y)]
B(x,y)
−→ A[x, y] + ν(x, y)

natural, skew, and bilinear in x and y, where ν is a skew

bilinear functor

ν : L × L → J.

This is the origin of the fake curvature. Under the

homomorphism ad: J → Der(J) the morphisms B(x, y)

become morphisms of derivations

[adA(x), adA(y)]
adB(x,y)
−→ adA[x,y] + adν(x,y)

16



If we denote the derivation adA(x) of J by ∇x then we

can combine adB(x,y) and ν(x, y) into a 1-morphism in

DER(J):

[∇x,∇y]
{adB(x,y),ν(x,y)}

−→ ∇[x,y]

Define a bilinear functor

dA :
∧p

L∗ ⊗ J →
∧p+1

L∗ ⊗ J

using a similar formula to that above. We find that there

is a skew, trilinear morpism ω(x, y, z), natural in x, y

and z, such that

dA ν(x, y, z) = t ω(x, y, z)

ω(x, y, z) = dA B(x, y, z)

ω satisfies a coherence law — the ‘Higher Bianchi

Identity’ — which can be interpreted as the equation

dA ω = [ν, B]

17



This data can be neatly encoded as a homomorphism

of semistrict Lie 3-algebras

∇ : L → DER(J)

We have

• a homomorphism L → DER(J)

L 3 x 7→ ∇x

where ∇x is the derivation adA(x).

• a skew, bilinear natural transformation

fx,y : [∇x,∇y] ⇒ ∇[x,y]

defined by

fx,y = {B(x, y), ν(x, y)}

• a skew, trilinear modification ω as in the diagram

[∇x, [∇y,∇z]]
=

//

[∇x,fy,z ]

��

[[∇x,∇y],∇z] + [∇y, [∇x,∇z]]

[fx,y,∇z]+[∇y,fx,z]

��

[∇x,∇[y,z]]

fx,[y,z]

��

[∇[x,y],∇z] + [∇y,∇[x,z]]

f[x,y],z+fy,[x,z]

��

∇[x,[y,z]] =
// ∇[[x,y],z] + ∇[y,[x,z]]

• ω is required to satisfy a coherence law, making a

certain diagram commute
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