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Much Australian work on categories is part of, or relevant to, the develop-
ment of higher categories and their theory. In this note, I hope to describe some
of the origins and achievements of our efforts that they might perchance serve
as a guide to the development of aspects of higher-dimensional work.

I trust that the somewhat autobiographical style will add interest rather
than be a distraction. For so long I have felt rather apologetic when describing
how categories might be helpful to other mathematicians; I have often felt even
worse when mentioning enriched and higher categories to category theorists.
This is not to say that I have doubted the value of our work, rather that I have
felt slowed down by the continual pressure to defend it. At last, at this meeting,
I feel justified in speaking freely amongst motivated researchers who know the
need for the subject is well established.

Australian Category Theory has its roots in homology theory: more pre-
cisely, in the treatment of the cohomology ring and the Künneth formulas in
the book by Hilton and Wylie [71]. The first edition of the book had a mistake
concerning the cohomology ring of a product. The Künneth formulas arise from
splittings of the natural short exact sequences

0 −→ Ext(HA, HB) −→ H[A,B] H−→ Hom(HA, HB) −→ 0

0 −→ HA⊗HB
⊗−→ H(A⊗B) −→ Tor(HA, HB) −→ 0

where A and B are chain complexes of free abelian groups; however, there are no
choices of natural splittings. Wylie’s former postgraduate student, Max Kelly,
was intrigued by these matters and wanted to understand them conceptually.
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So stimulated, in a series of papers [87, 88, 89, 91, 93] published in Proc.
Camb. Phil. Soc., Kelly progressed ever more deeply into category theory. He
discussed equivalence of categories and proposed criteria for when a functor
should provide “complete invariants” for objects of its domain category. More-
over, Kelly invented differential graded categories and used them to show ho-
motopy nilpotence of the kernel of certain functors [93].

Around the same time, Sammy Eilenberg invented DG-categories probably
for purposes similar to those that led Verdier to derived categories. Thus began
the collaboration of Eilenberg and Kelly on enriched categories. They realized
that the definition of DG-category depended only on the fact that the category
DGAb of chain complexes was what they called a closed or, alternatively, a
monoidal category. They favoured the “closed” structure over “monoidal” since
internal homs are usually more easily described than tensor products; good
examples such as DGAb have both anyway.

The groundwork for the correct definition of monoidal category V had been
prepared by Saunders Mac Lane with his coherence theorem for associativity and
unit constraints. Kelly had reduced the number of axioms by a couple so that
only the Mac Lane–Stasheff pentagon and the unit triangle remained. Enriched
categories were also defined by Fred Linton; however, he had conditions on the
base V that ruled out the examples V = DGAb and V = Cat that proved so
vital in later applications.

The long Eilenberg–Kelly paper [46] in the 1965 LaJolla Conference Proceed-
ings was important for higher category theory in many ways; I shall mention
only two.

One of these ways was the realization that 2-categories could be used to
organize category theory just as category theory organizes the theory of sets
with structure. The authors provided an explicit definition of (strict) 2-category
early in the paper although they used the term “hypercategory” at that point
(probably just as a size distinction since, as we shall see, “2-category” is used
near the end). So that the paper became more than a list of definitions with
implications between axioms, the higher-categorical concepts allowed the paper
to be summarized with theorems such as:

V-Cat is a 2-category and (−)∗:MonCat −→ 2-Cat is a 2-functor.

The other way worth mentioning here is their efficient definition of (strict)
n-category and (strict) n-functor using enrichment. If V is symmetric monoidal
then V-Cat is too and so the enrichment process can be iterated. In particular,
starting with V0 = Set using cartesian product, we obtain cartesian monoidal
categories Vn defined by Vn+1 = Vn-Cat. This Vn is the category n-Cat of
n-categories and n-functors. In my opinion, processes like V 7→ V-Cat are
fundamental in dimension raising.

With his important emphasis on categories as mathematical structures of the
ilk of groups, Charles Ehresmann [44] defined categories internal to a category C
with pullbacks. The category Cat(C) of internal categories and internal functors
also has pullbacks, so this process too can be iterated. Starting with C = Set, we
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obtain the category Catn(Set) of n-tuple categories. In particular, Cat2(Set) =
DblCat is the category of double categories; it contains 2-Cat in various way as
does Catn(Set) contain n-Cat.

At least two other papers in the LaJolla Proceedings volume had a strong
influence on Australian higher-dimensional category theory. One was the paper
[115] of Bill Lawvere suggesting a categorical foundations for mathematics; con-
cepts such as comma category appeared there. The other was the paper [57] of
John Gray developing the subject of Grothendieck fibred categories as a formal
theory in Cat so that it could be dualized. This meant that Gray was essentially
treating Cat as an arbitrary 2-category; the duality was that of reversing mor-
phisms (what we call Catop) not 2-cells (what we call Catco). In stark contrast
with topology, Grothendieck had unfortunately used the term “cofibration” for
the Catco case.

Kelly developed the theory of enriched categories describing enriched ad-
junction [94] and introducing the variety of limit he called end. I later pointed
out that Yoneda had used this concept in the special case of additive cate-
gories using an integral notation which Brian Day and Max Kelly adopted [33].
Following this, Mac Lane [121] discussed ends for ordinary categories.

Meanwhile, as Kelly’s graduate student, I began addressing his concerns with
the Künneth formulas. The main result of my thesis [134] (also see [137, 149])
was a Künneth hom formula for finitely filtered complexes of free abelian groups.
I found it convenient to express the general theory in terms of DG-categories
and triangulated categories; my thesis involved the development of some of their
theory. In particular, I recognized that completeness of a DG-category should
involve the existence of a suspension functor. The idea was consistent with the
work of Day and Kelly [33] who eventually defined completeness of a V-category
A to include cotensoring A with objects V of V: the characterizing property is
A

(
B,AV

) ∼= V
(
V,A(B,A)

)
. The point is that, for ordinary categories where

V = Set, the cotensor AV is the product of V copies of A and so is not needed
as an extra kind of limit. Cotensoring with the suspension of the tensor unit
in V = DGAb gives suspension in the DG-category A. Experience with DG-
categories would prove very helpful in developing the theory of 2-categories.

In 1968–9 I was a postdoctoral fellow at the University of Illinois (Champaign–
Urbana) where John Gray worked on 2-categories. To construct higher-dimensional
comprehension schema [58], Gray needed lax limits and even lax Kan extensions
[61]. He also worked on a closed structure for the category 2-Cat for which the
internal hom [A,B] of two 2-categories A and B consisted of 2-functors from A
to B, lax natural transformations, and modifications. (By “lax” we mean the
insertion of compatible morphisms in places where there used to be equalities.
We use “pseudo” when the inserted morphisms are all invertible.) The next year
at Tulane University, Jack Duskin and I had one-year (1969–70) appointments
where we heard for a second time Mac Lane’s lectures that led to his book [121];
we had all been at Bowdoin College (Maine) over the Summer. Many category
theorists visited Tulane that year. Duskin and Mac Lane convinced Gray that
this closed category structure on 2-Cat should be monoidal. Thus appeared the
(lax) Gray tensor product of 2-categories that Gray was able to prove satisfied
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the coherence pentagon using Artin’s braid groups (see [62, 63]).
Meanwhile Jean Bénabou [12] had invented weak 2-categories, calling them

bicategories. He also defined a weak notion of morphism that I like to call
lax functor. His convincing example was the bicategory Span(C) of spans in
a category C with pullbacks; the objects are those of the category C while
it is the morphisms of Span(C) that are spans; composition of spans requires
pullback and so is only associative up to isomorphism. He pointed out that a
lax functor from the terminal category 1 to Cat was a category A equipped
with a “standard construction” or “triple” (that is, a monoid in the monoidal
category [A,A] of endofunctors of A where the tensor product is composition);
he introduced the term monad for this concept. Thus we could contemplate
monads in any bicategory. In particular, Bénabou observed that a monad in
Span(C) is a category internal to C.

The theory of monads (or “triples” [47]) became popular as an approach
to universal algebra. A monad T on the category Set of sets can be regarded
as an algebraic theory and the category SetT of “T -modules” regarded as the
category of models of the theory. Michael Barr and Jon Beck had used mon-
ads on categories to define an abstract cohomology that included many known
examples.

The category CT of T -modules (also called “T -algebras”) is called, after its
inventors, the Eilenberg–Moore category for T . The underlying functor UT :
CT −→ C has a left adjoint which composes with UT to give back T . There
is another category CT , due to Kleisli, equivalent to the full subcategory of CT

consisting of the free T -modules; this gives back T in the same way. In fact,
whenever we have a functor U :A −→ C with left adjoint F , there is a “gen-
erated” monad T = UF on C. There are comparison functors CT −→ A and
A −→ CT ; if the latter functor is an equivalence, the functor U is said to be
monadic. See [121] for details. Beck [11] established necessary and sufficient con-
ditions for a functor to be monadic. Erny Manes showed that compact Hausdorff
spaces were the modules for the ultrafilter monad β on Set (see [121]). However,
Bourbakifying the definition of topological space via Moore–Smith convergence,
Mike Barr [7] showed that general topological spaces were the relational modules
for the ultrafilter lax monad on the 2-category Rel whose objects are sets and
morphisms are relations. (One of my early Honours students at Macquarie Uni-
versity baffled his proposed Queensland graduate studies supervisor who asked
whether the student knew the definition of a topological space. The aspiring
researcher on dynamical systems answered positively: “Yes, it is a relational β-
module!” I received quite a bit of flak from colleagues concerning that one; but
the student Peter Kloeden went on to become a full professor of mathematics
in Australia then Germany.)

I took Bénabou’s point that a lax functor W :A −→ Cat became a monad
when A = 1 and in [136] I defined generalizations of the Kleisli and Eilenberg–
Moore constructions for a lax functor W with any category A as domain. These
constructions gave two universal methods of assigning strict functors A −→ Cat
to a lax one; I pointed out the colimit- and limit-like nature of the construc-
tions. I obtained a generalized Beck monadicity theorem that we have used
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recently in connection with natural Tannaka duality. The Kleisli-like construc-
tion was applied by Peter May to spectra under the recommendation of Robert
Thomason.

When I was asked to give a series of lectures on universal algebra from the
viewpoint of monads at a Summer Research Institute at the University of Syd-
ney, I wanted to talk about the lax functor work. Since the audience consisted
of mathematicians of diverse backgrounds, this seemed too ambitious so I set
out to develop the theory of monads in an arbitrary 2-category K, reducing to
the usual theory when K = Cat. This “formal theory of monads” [135] (see
[113] for new developments) provides a good example of how 2-dimensional cat-
egory theory provides insight into category theory. Great use could be made of
duality: comonad theory became rigorously dual to monad theory under 2-cell
reversal while the Kleisli and Eilenberg–Moore constructions became dual under
morphism reversal. Also, a distributive law between monads could be seen as a
monad in the 2-category of monads.

In 1971 Bob Walters and I began work on Yoneda structures on 2-categories
[108, 165]. The idea was to axiomatize the deeper aspects of categories beyond
their merely being algebraic structures. This worked centred on the Yoneda em-
bedding A −→ PA of a category A into its presheaf category PA = [Aop,Set].
We covered the more general example of categories enriched in a base V where
PA = [Aop,V]. Clearly size considerations needed to be taken seriously although
a motivating size-free example was preordered sets with PA the inclusion-
ordered set of right order ideals in A. Size was just an extra part of the structure.
With the advent of elementary topos theory and the stimulation of the work of
Anders Kock and Christian Mikkelsen, we showed that the preordered objects
in a topos provided a good example. We were happy to realize [108] that an
elementary topos was precisely a finitely complete category with a power object
(that is, a relations classifier). This meant that my work with Walters could
be viewed as a higher-dimensional version of topos theory. As usual when rais-
ing dimension, what we might mean by a 2-dimensional topos could be many
things, several of which could be useful. I looked [139, 141] at those special
Yoneda structures where PA classified two-sided discrete fibrations.

At the same time, having made significant progress with Mac Lane on the
coherence problem for symmetric closed monoidal categories [106, 107], Kelly
was developing a general approach to coherence questions for categories with
structure. In fact, Max Kelly and Peter May were in the same place at the same
time developing the theories of “clubs” and “operads”; there was some interac-
tion. As I have mentioned, clubs [95, 96, 97, 98, 99] were designed to address
coherence questions in categories with structure; however, operads were initially
for the study of topological spaces bearing homotopy invariant structure. Kelly
recognized that at the heart of both notions were monoidal categories such as
the category P of finite sets and permutations. May was essentially dealing with
the category [P,Top] (also written TopP) of functors from P to the category
Top of topological spaces; there is a tensor product on [P,Top], called “substi-
tution”, and a monoid for this tensor product is a symmetric topological operad.
Kelly was dealing with the slice 2-category Cat/P with its “substitution” ten-
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sor product; a monoid here Kelly called a club (a special kind of 2-dimensional
theory). There is a canonical functor [P,Top] −→ [Top,Top] and a canonical
2-functor Cat/P −→ [Cat,Cat]; each takes substitution to composition. Hence
each operad gives a monad on Top and each club gives a 2-monad on Cat. The
modules for the 2-monad on Cat are the categories with the structure specified
by the club. Kelly recognized that complete knowledge of the club solved the
coherence problem for the club’s kind of structure on a category.

That was the beginning of a lot of work by Kelly and colleagues on “2-
dimensional universal algebra” [17]. There is a lot that could be said about
this with some nice results and I recommend looking at that work; homotopy
theorists will recognize many analogues. One theme is the identification of
structures that are essentially unique when they exist (such as “categories with
finite products”, “regular categories” and “elementary toposes”) as against those
where the structure is really extra (such as “monoidal categories”). A particular
class of the essentially unique case is those structures that are modules for a
Kock–Zöberlein monad [111, 172]. In this case, the action of the monad on
a category is provided by an adjoint to the unit of the monad. It turns out
that these monads have an interesting relationship with the simplicial category
[142]. It is well known (going right back to the days when monads were called
standard constructions) that the coherence problem for monads is solved by the
(algebraic) simplicial category ∆alg: the monoidal category of finite ordinals
(including the empty ordinal) and order-preserving functions. A monad on a
category A is the same as a strict monoidal functor ∆alg −→ [A,A]. In point of
fact, ∆alg is the underlying category of a 2-category Ordfin where the 2-cells give
the pointwise order to the order-preserving functions. There are nice strings of
adjunctions between the face and degeneracy maps. A Kock–Zöberlein monad
on a 2-category K is the same as a strict monoidal 2-functor Ordfin −→ [K,K];
see [142, 112]. My main example of algebras for a Kock–Zöberlein monad in
[138, 142] was fibrations in a 2-category. The monad for fibrations needed an
idea of John Gray that I will describe.

In the early 1970s, Gray [60] was working on 2-categories that admitted the
construction which in Cat forms the arrow category A→ from a category A. This
rang a bell, harking me back to my work on DG-categories: Gray’s construction
was like suspension. I saw that its existence should be part of the condition of
completeness of a 2-category. A 2-category is complete if and only if it admits
products, equalizers and cotensoring with the arrow category →.

Walters and I had a general concept of limit for an object of a 2-category
bearing a Yoneda structure. As a special case I looked at what this meant for
limits in 2-categories. Several people and collaborators had come to the same
conclusion about what limit should mean for enriched categories. Borceux and
Kelly called the notion “mean cotensor product”. I used the term “indexed
limit” for the 2-category case and Kelly adopted that name in his book on
enriched categories. When preparing a talk to physicists and engineers in Milan,
I decided a better term was weighted limit : roughly, the “weighting” J should
provide the number of copies JA of each object SA in the diagram S whose
limit we seek. Precisely, for V-categories, the limit lim(J, S) of a V-functor S:
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A −→ X weighted by a V-functor J :A −→ Vis an object of X equipped with a
V-natural isomorphism

X
(
X, lim(J, S)

) ∼= [A,V]
(
J,X (X, S)

)
.

Products, equalizers and cotensors are all examples. Conversely, if X admits
these three particular examples, it admits all weighted limits; despite this, in-
dividual weighted limits can occur without being thus constructible.

The V = Cat case is very interesting. Recall that a V-category in this
case is a 2-category. As implied above, it turns out that all weighted limits
can be constructed from products, equalizers and cotensoring with the arrow
category. Yet there are many interesting constructions that are covered by the
notion of weighted limit: good examples are the Eilenberg–Moore construction
on a monad and Lawvere’s “comma category” of two morphisms with the same
codomain.

Gray had defined what we call lax and pseudo limits of 2-functors. Mac
Lane says that a limit is a universal cone; a cone is a natural transformation
from a constant functor. A lax limit is a universal lax cone. A pseudo limit
is a universal pseudo cone. Although these concepts seemed idiosyncratic to
2-category theory, I showed that all lax and pseudo limits were weighted limits
and so were covered by “standard” enriched category theory. For example, the
lax limit of a 2-functor F :A −→ X is precisely lim(LA, F ) where LA:A −→ Cat
is the 2-functor defined by LAA = π0∗(A/A); here A/A is the obvious slice 2-
category of objects over A and π0∗ applies the set-of-path-components functor
π0: Cat −→ Set on the hom categories of 2-categories. Gray then pointed out
that, for V = [∆op,Set] (the category of simplicial sets), homotopy limits of V-
functors could be obtained as limits weighted by the composite A LA−→ Cat Nerve−→
[∆op,Set].

In examining the limits that exist in a 2-category admitting finite limits
(that is, admitting finite products, equalizers, and cotensors with →) I was
led to the notion of computad. This is a 2-dimensional kind of graph: it has
vertices, edges and faces. Each edge has a source and target vertex; however,
each face has a source and target directed path of edges. More 2-categories
can be presented by finite computads than by finite 2-graphs. Just as for 2-
graphs, the forgetful functor from the category of 2-categories to the category
of computads is monadic: the monad formalizes the notion of pasting diagram
in a 2-category while the action of the monad on a 2-category encapsulates the
operation of pasting in a 2-category. Later, Steve Schanuel and Bob Walters
pointed out that these computads form a presheaf category.

The step across from limits in 2-categories to limits in bicategories is fairly
obvious. For bicategories A and X , the limit lim(J, S) of a pseudofunctor S:
A −→ X weighted by a pseudofunctor J :A −→ Cat is an object of X equipped
with a pseudonatural equivalence

X
(
X, lim(J, S)

)
' Psd(A,Cat)

(
J,X (X, S)

)
.

It is true that every bicategorical weighted limit can be constructed in a bicat-
egory that has products, iso-inserters (or “pseudoequalizers”), and cotensoring
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with the arrow category (where the universal properties here are expressed by
equivalences rather than isomorphisms of categories); however, the proof is a
little more subtle than in the 2-category case. It is also a little tricky to de-
termine which 2-categorical limits give rise to bicategorical ones: for example
pullbacks and equalizers are not bicategorical limits per se; the weight needs to
be flexible in a technical sense that would be natural to homotopy theorists.

Now I would like to say more about 2-dimensional topos theory. We have
mentioned that Yoneda structures can be seen as a 2-dimensional version of
elementary topos theory. However, given that a topos is a category of sheaves,
there is a fairly natural notion of “2-sheaf”, called stack, and a 2-topos should
presumably be a 2-category of stacks. After characterizing Grothedieck toposes
as categories possessing certain limits and colimits with exactness properties,
Giraud developed a theory of stacks in connection with his non-abelian 2-
dimensional cohomology. He expressed this in terms of fibrations over categories.
Grothendieck had pointed out that a fibration P : E −→ C over the category C
was the same as a pseudofunctor F : Cop −→ Cat where, for each object U of C,
the category FU is the fibre of P over U . If C is a site (that is, it is a category
equipped with a Grothendieck topology) then the condition that F should be a
stack is that, for each covering sieve R −→ C(−, U), the induced functor

FU −→ Psd(Cop,Cat)(R,F )

should be an equivalence of categories. We write Stack(Cop,Cat) for the full sub-
2-category of Psd(Cop,Cat) consisting of the stacks. I developed this direction a
little by defining 2-dimensional sites and proved a Giraud-like characterization
of bicategories of stacks on these sites. Perhaps one point is worth mentioning
here. In sheaf theory there are various ways of approaching the associated sheaf.
Grothendieck used a so-called “L” construction. Applying L to a presheaf gave a
separated presheaf (some “unit” map became a monomorphism) then applying
it again gave the associated sheaf (the map became an isomorphism). I found
that essentially the same L works for stacks. This time one application of L
makes the unit map faithful, two applications make it fully faithful, and the
associated stack is obtained after three applications when the map becomes an
equivalence.

Just as Kelly was completing his book [101] on enriched categories, a re-
markable development was provided by Walters who linked enriched category
theory with sheaf theory. First, he extended the theory of enriched categories
to allow a bicategory W (my choice of letter!) as base: a category A enriched in
W (or W-category) has a set ObA of objects where each object A is assigned an
object e(A) of W; each pair of objects A and B is assigned a morphism A(A,B):
e(A) −→ e(B) in W thought of as a “hom” of A; and “composition” in A is a
2-cell µ B

A,C :A(B,C) ◦ A(A,B) ⇒ A(A,C) which is required to be associative
and unital. Walters regards each object A as a copy of “model pieces” e(A)
and A as a presentation of a structure that is made up of model pieces that
are glued together according to “overlaps” provided by the homs. For example,
each topological space T yields a bicategory W = Rel(T ) whose objects are the
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open subsets of T , whose morphisms U −→ V are open subsets R ⊆ U ∩ V ,
and whose 2-cells are inclusions. Each presheaf P on the space T yields a W-
category el(P ) whose objects are pairs (U, s) where U is an open subset of T
and s is an element of PU ; of course, e(U, S) = U . The hom el(P )

(
(U, s), (V, t)

)
is the largest subset R ⊆ U ∩ V such that the “restrictions” of s and t to R
are equal. As another example, for any monoidal category V, let ΣV denote
the bicategory with one object and with the endohom category of that single
object being V; then a V-category in the Eilenberg–Kelly sense is exactly a
ΣV-category in Walters’ sense.

For each Grothendieck site (C, J), Walters constructed a bicategory RelJC
such that the category of symmetric Cauchy-complete RelJC-categories became
equivalent to the category of set-valued sheaves on C, J . This stimulated the
development of the generalization of enriched category theory to allow a bicate-
gory as base. We established a higher-dimensional version of Walters’ result to
obtain stacks as enriched categories. Walters had been able to ignore many co-
herence questions because the base bicategories he needed were locally ordered
(no more than one 2-cell between two parallel morphisms). However the base
for stacks is not locally ordered.

I have mentioned the 2-category V-Cat of V-categories; the morphisms are V-
functors. However, there is another kind of “morphism” between V-categories.
Keep in mind that a category is a “monoid with several objects”; monoids can
act on objects making the object into a module. There is a “several objects”
version of module. Given V-categories A and B, we can speak of left A-, right
B-bimodules [117]; I call this a module from A to B (although earlier names were
“profunctor” and “distributor” [13]). Provided V is suitably cocomplete, there
is a bicategory V-Mod whose objects are V-categories and whose morphisms are
modules. This is not a 2-category (although it is biequivalent to a fairly natural
one) since the composition of modules involves a colimit that is only unique
up to isomorphism. The generalization W-Mod for a base bicategory W was
explained in [147] and, using some monad ideas, in [15].

Also in [15] we showed how to obtain prestacks as Cauchy complete W-
categories for an appropriate base bicategory W. This has some relevance to
algebraic topology since Alex Heller and Grothendieck argue that homotopy
theories can be seen as suitably complete prestacks on the category cat of small
categories. I showed in [146] (also see [147] and [162]) that stacks are precisely
the prestacks possessing colimits weighted by torsors. In [145] (accessible as
[164]), I show that stacks on a (bicategorical) site are Cauchy complete W-
categories for an appropriate base bicategory W.

Earlier (see [139] and [142]) I had concocted a construction on a bicategory
K to obtain a bicategory M such that, if K is V-Cat, then M is W-Mod; the
morphisms of M were codiscrete two-sided cofibrations in K. I had used this
as an excuse in [142] to develop quite a bit of bicategory theory: the bicate-
gorical Yoneda Lemma, weighted bicategorical limits, and so on. The need for
tricategories was also implicit.

The mathematical physicist John Roberts had asked Peter Freyd whether
he knew how to recapture a compact group from its monoidal category of finite-
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dimensional unitary representations. While visiting the University of New South
Wales in 1971, Freyd lectured on his solution of the finite group case. A decade
and a half later Roberts with Doplicher did the general case using an idea of
Cuntz: this is an analytic version of Tannaka duality. In 1977–8, Roberts visited
Sydney. He spoke in the Australian Category Seminar (ACS) about non-abelian
cohomology. It came out that he had worked on (strict) n-categories because
he thought they were what he needed as coefficient structures in non-abelian
cohomology. In the tea room at the University of Sydney, Roberts explained
to me what the nerve of a 2-category should be: the dimension 2 elements
should be triangles of 1-cells with 2-cells in them and the dimension 3 elements
should be commutative tetrahedra. Furthermore, he had defined structures he
called complicial sets: these were simplicial sets with distinguished elements
(he originally called them “neutral” then later suggested “hollow”, but I am
quite happy to use Dakin’s term [31] “thin” for these elements) satisfying some
conditions, most notably, unique “thin horn filler” conditions. The important
point was which horns need to have such fillers. Roberts believed that the
category of complicial sets was equivalent to the category of n-categories.

I soon managed to prove that complicial sets, in which all elements of dimen-
sion greater than 2 were thin, were equivalent to 2-categories. I also obtained
some nice constructions on complicial sets leading to new complicial sets. How-
ever the general equivalence seemed quite a difficult problem.

I decided to concentrate on one aspect of the problem. How do we rigorously
define the nerve of an n-category? After unsuccessfully looking for an easy way
out using multiple categories and multiply simplicial sets (I sent several letters to
Roberts about this), I realized that the problem came down to defining the free
n-category On on the n-simplex. Meaning had to be given to the term “free” in
this context: free on what kind of structure? How was an n-simplex an example
of the structure? The structure required was n-computad. The definition of
n-computad and free n-category on an n-computad is done simultaneously by
induction on n (see [150], [127, 154, 155, 162]). An element of dimension n of
the nerve N(A) of an ω-category A is an n-functor from On to A. Things began
to click once I drew the following picture of the 4-simplex.

big diagram

I was surprised to find out that Roberts had not drawn this picture in his work
on complicial sets! It was only in studying this and the pictures for the 5-
and 6-simplex that I understood the horn filler conditions for the nerve of an
n-category. The resemblence to Stasheff’s associahedra was only pointed out
much later (I think by Jim Stasheff himself).

I think of the n-category On as a simplex with oriented faces; I call it the
nth oriental. The problem in constructing it inductively starting with small
n is where to put that highest dimensional cell. What are that cell’s source
and target? Even in the case of O4 above, the description of the 3-source and
3-target of the cell (01234), in terms of composites of lower dimensional cells,
takes some work to write explicitly. To say a 4-functor out of O4 takes (01234)
to the identity is the non-abelian 3-cocycle condition.
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In mid-1982 I circulated a conjectural description of the free ω-category Oω

on the infinite-dimensional simplex; the objects were to be the natural numbers
and On would be obtained by restricting to the objects no greater than n. The
description is very simple: however, it turns out to be hard even to prove Oω is
an ω-category, let alone prove it free.

The starting point for my description is the fact that a path in a circuit-free
(directed) graph is determined by the finite set of edges in the path: the edges
order themselves using source and target. The set must be “well formed”: there
should be no two edges with the same source and no two with the same target.
Moreover, the source of the path is the unique vertex which is a source of some
edge but not the target of any edge in the set. What a miracle that this should
work in higher dimensions.

Meanwhile, on the enriched category front, Walters had pointed out that in
order for W-Mod to be monoidal, the base bicategory W should be monoidal.
You will recall that, in order to define tensor products and duals for V-categories,
Eilenberg–Kelly [46] had assumed V to be symmetric. In a talk in the ACS,
Bob Walters reported on a discussion Carboni, Lawvere and he had had about
the possibility of using an Eckmann–Hilton argument to show that a monoidal
bicategory with one object was a symmetric monoidal category in the same
way that a monoidal category with one object is a commutative monoid. It is
perhaps not surprising that they did not pursue the calculation to completion at
that time since monoidal bicategories had not appeared in print except for the
locally ordered case. I was so taken by how much I could do without a monoidal
structure on W-Mod that I did not follow up the idea then either.

Duskin returned to Australia at the end of 1983 and challenged me to draw
O6; this took me a weekend. The odd-faces-source and even-faces-target con-
vention forces the whole deal!

By the end of 1984 I had prepared the oriented simplexes paper [150]. My
conjectured description is correct. (Actually, Verity pointed out an error in
the proof written in [150] which I corrected in [156].) The heart of proving
things about Oω is the algorithm I call excision of extremals for deriving the
non-abelian n-cocycle condition “from the top down”.

The paper [150] has several other important features. Perhaps the most
obvious are the diagrams of the orientals; they resemble Stasheff associahedra
with some oriented faces and some commuting faces. I give the 1-sorted defini-
tion of ω-category and show the relationship between the 1-sorted definition of
n-category and the inductive one in terms of enrichment. I make precise some
facts about the category ω-Cat of ω-categories such as its cartesian closedness.
I say what it means for a morphism in an n-category to be a weak equivalence.

The paper [150] defines what it means for an n-category to be free. I define
the nerve of an n-category and make a conjecture about characterizing those
nerves as “stratified” (or filtered) simplicial sets satisfying horn-filler conditions.
The horns I suggested should be filled were a wider class than those of Roberts’
complicial sets; I called my horns “admissible” and Roberts’ “complicial”. How-
ever, I really believed the admissible horns would still lead to complicial sets.

That there is a weaker notion of n-category than the strict ones was an
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obvious consequence of the introduction of weak 2-categories (bicategories) by
Bénabou [12]. I later was reminded that Mac Lane, in 1969, had suggested
tricategories as a possible area of study [120]. As a kind of afterthought in [150],
I suggest a characterization of weak n-categories as stratified simplicial sets
with horn filler conditions. My intuition was that, even in a strict n-category,
the same horns should be fillable by only insisting that our thin elements be
simplexes whose highest dimensional cell is a weak equivalence rather than a
strict identity. So the same horns should have fillers even in a weak n-category.
Of course, the fillers now would not be unique.

While travelling in North America, I submitted the preprint of [150] to ex-
patriate Australian Graeme Segal as editor of Topology. I thought Graeme
might have some interest in higher nerves as a continuation of his work in [132].
He rejected the paper without refereeing on grounds that it would not be of
sufficient interest to topologists. I think this IMA Summer Program proves he
was wrong. To make things worse, his rejection letter went to the institution
I was visiting when I submitted and it was not forwarded to me at Macquarie
University. I waited a year or so before asking Segal what happened! He sent
me a copy of his short letter.

In April 1985, all excited about higher nerves, I began a trip to North Amer-
ica that would trigger two wonderful collaborations: one with Sammy Eilenberg
and one with André Joyal. The first stop was a conference organized by Freyd
and Scedrov at the University of Pennsylvania. After my talk, Sammy told me
of his work on rewriting systems and that, in my orientals, he could see higher
rewriting ideas begging to be explained. I left Philadelphia near the end of April
as spring was beginning to bloom only to arrive in Montréal during a blizzard.
Michael Barr had invited me to McGill where Robin Cockett was also visiting.

During my talk in the McGill Category Seminar, André Joyal started quizzing
me on various aspects of the higher nerves. We probably remember that dis-
cussion differently. My memory is that André was saying that the higher asso-
ciativities were not the important things as they could be coherently ignored;
the more important things were the higher commutativities. In arguing that
commutativities were already present in the “middle-of-four interchange”, I was
harking back to Walters’ talk about applying an Eckmann–Hilton-like argument
to a one-object monoidal bicategory. That night I checked what I could find
out about a monoidal object (or pseudomonoid) in the 2-category of monoidal
categories and strong monoidal functors. It was pretty clear that some kind of
commutativity was obtained that was not as strong as a symmetry.

When I reported my findings to André the next day, he already knew what
was going on. He told me about his work with Myles Tierney on homotopy 3-
types as groupoids enriched in 2-groupoids with the Gray tensor product. I told
André that I was happy enough with weak 3-groupoids as homotopy types and
that ordinary cartesian product works just as well as the Gray tensor product
when dealing with bicategories rather than stricter things. In concentrating
on this philosophy, I completely put out of my memory the claim that André
recently reminded me he made at that time about Gray-categories being a good
3-dimensional notion of weak 3-category. I believed we should come to grips
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with the fully weak n-categories and this dominated my thinking.
There had been other weakenings of the notion of symmetry for monoidal

categories but this kind had not been considered by category theorists. I an-
nounced a talk on joint work with Joyal for the Isle of Thornes (Sussex, Eng-
land) conference in mid-1985: the title was “Slightly incoherent symmetries for
monoidal categories”. Before the actual talk, we had settled on the name braid-
ing for this kind of commutativity. I talked about the a coherence theorem for
braided monoidal categories based on the braid groups just as Mac Lane had
for symmetries based on the symmetric groups.

After this talk, Sammy Eilenberg told me about his use of the braid monoid
with zero to understand the equivalence of derivations in rewriting systems.
This was the basis of our unpublished work some of which is documented in
[48]. We were going to finish the work after he finished his books on cellular
spaces with Eldon Dyer.

I returned to Australia where Peter Freyd was again visiting. He became very
excited when I lectured on braided monoidal categories in the ACS. He knew
about his ex-student David Yetter’s monoidal category of tangles. Freyd and
Yetter had already entered low-dimensional topology with their participation in
the “homfly” polynomial invariant for links. By the next year (mid-1986) at the
Cambridge category meeting, I heard that Freyd was announcing his result with
Yetter about the freeness of Yetter’s category of tangles as a compact braided
monoidal category. Their idea was that duals turned braids into links.

In the mid-1980s the low-dimensional topologist Iain Aitchison (Masters
student of Hyam Rubenstein and PhD student of Robion Kirby) was my first
postdoctoral fellow. He reminded me in more detail of the string diagrams for
tensor calculations used by Roger Penrose. Max Kelly had mentioned these at
some point, having seen Penrose using them in Cambridge. Moreover, Aitchison
[1] developed an algorithm for the non-abelian n-cocycle condition “from the
bottom up”, something Roberts and I had failed to obtain. He did the same for
oriented cubes in place of oriented simplexes. The algorithm is a kind of “Pas-
cal’s triangle” where a given entry is derived from two earlier ones; the simplex
case is less symmetric because of the different lengths of sources and targets in
that case. The algorithm appeared in combinatorial form in a Macquarie Math.
Preprint but was nicely represented in terms of string diagrams drawn by hand
with coloured pens.

Aitchison and I satisfied ourselves that the arguments of [150] carried over to
cubes in place of simplexes but this was not published. That work was subsumed
by my parity complexes [153, 156] and Michael Johnson’s pasting schemes [73]
which I intend to discuss below.

Following my talks on orientals in the ACS, Bob Walters and his student
Mike Johnson obtained [74] a variant of my construction of the nerve of a (strict)
category. The cells in their version of On were actual subsimplicial sets of a
simplicial set and the compositions were all unions; they thought of these cells
as simplicial “pasting diagrams”. The cells in my On were only generators for
the Walters–Johnson simplicial sets and so, while smaller objects to deal with,
required some deletions from the unions defining composition.
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Around this time I set my student Michael Zaks the problem of proving the
equivalence between complicial sets and categories. To get him started I proved
[152] that the nerve of an category satisfies the unique thin filler condition for
admissible (and hence complicial) horns. So nerves of categories are complicial
sets. Zaks fell in love with the simplicial identities and came up with a con-
struction he believed to be the zero-composition needed to make an n-category
from a complicial set. We showed that this composition was the main ingredient
required by using an induction based on showing an equivalence

Cmpln ' Cmpln−1-Cat

where the left-hand side is the category of n-trivial complicial sets; a stratified
simplicial set is n-trivial when all elements of dimension greater than n are thin.
Zaks did not complete the proof that his formula worked and we still do not
know whether it does. In 1990, Dominic Verity was motivated by my paper
[150] to work on this problem. Unaware of [152], Dominic independently came
up with the machinery Zaks and I had developed. By mid-1991 Dominic had
proved, amongst other things, that the nerve was fully faithful; he completed
the details of the proof of the equivalence

ω-Cat ' Cmpl

in 1993; the details are still being written [169].
Knowing the nerve of an n-category, we now knew the non-abelian cocycle

conditions. So I turned attention to understanding the full cohomology. The
idea was that, given a simplicial object X and an category object A, there should
be an ω-category to be called the cohomology of X with coefficients in A. Jack
Duskin pointed out that this should be part of a general descent construction
which obtains an ω-category Desc C from any cosimplicial ω-category C. For the
cohomology case, the cosimplicial ω-category is C = Hom(X, A) taken in the
ambient category. Furthermore, Jack drew a few low-dimensional diagrams.

It took me some time to realize that the diagrams Jack had drawn were
really just products of globes with simplexes. I then embarked on a program of
abstracting the structure possessed by simplexes, cubes and globes, and to show
the structure was closed under products. For his PhD, Mike Johnson was also
working on abstracting the notion of pasting diagram. In an ACS, I explained
my idea about descent and gave an overly-simplistic description of the product
of parity complexes. By the next week’s ACS Mike Johnson had corrected my
definition of product based on the usual tensor product of chain complexes. The
next step was to find the right axioms on a parity complex in order for it to be
closed under product. For this I invented a new order that I denoted by a solid
triangle: let me denote it now by ≺. I need to give more detail.

A parity complex is a graded set dim:P −→ N together with functions

(−)−, (−)+:P −→ PfinP ,

where PfinS is the set of finite subsets of the set S, such that

x ∈ y− ∪ y+ implies dim x + 1 = dim y.
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For x in the fibre Pn we think of x− as the set of elements in the source of x
and x+ as the set of elements in the target of x. For a subset S of Pn, put
Sε =

⋃
x∈S xε for ε ∈ {+,−}. There are some further conditions such as

x− ∩ x+ = ∅, x−+ ∩ x+− = ∅, x−− ∩ x++ = ∅, x−+ ∪ x+− = x−− ∪ x++.

These conditions imply that we obtain a positive chain complex ZP consisting
of the free abelian groups ZPn with differential defined on generators by

d(x) = x+ − x−

where we write S for the formal sum of the elements of a finite subset S of Pn.
The order on P is the smallest reflexive transitive relation ≺ such that

x ≺ y if either x ∈ y− or y ∈ x+.

The amazing axiom we require is that this order should be linear .
If the functions (−)−, (−)+:P −→ PfinP land in singleton subsets of P , the

parity complex is a globular set which represents a globular pasting diagram.
As later shown by Michael Batanin, these globular sets hold the key to free
n-categories on all globular sets. A very special globular pasting diagram is the
“free-living globular k-cell”; it is a parity complex Gk with 2k + 1 elements.

The original example of a parity complex is the infinite simplex ∆[ω] whose
elements of dimension n are injective order-preserving functions x: [n] −→ ω; we
write such an x as an ordered (n + 1)-tuple (x0, x1, . . . xn). Also ∂i: [n− 1] −→
[n] is the usual order-preserving function whose image does not contain i in
[n] = {0, 1, . . . , n}. Then

x− = {x∂i | i odd} and x+ = {x∂i | i even}.

We obtain a parity complex ∆[k], called the parity k-simplex, by restricting
attention to those x that land in [k]. In particular, ∆[1] is the parity interval
and also denoted by I.

The product of two parity complexes P and Q is the cartesian product P×Q
with

dim(x, y) = dim x + dim y and (x, y)ε = xε × {y} ∪ {x} × yε(m)

where dim x = m and ε(m) is the sign ε when m is even and the opposite of
ε when m is odd. It can be shown that P × Q is again a parity complex. In
particular, there is a parity k-cube

Ik =

k︷ ︸︸ ︷
I× · · · × I .

There is a canonical isomorphism of chain complexes

Z(P ×Q) ∼= ZP ⊗ ZQ.
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A parity complex P generates a free ω-category O(P ). The description
is rather simple because the conditions on a parity complex ensure sufficient
“circuit-freeness” for the order of composition to sort itself out. The detailed
description can be found in [153] or [162].

We shall now describe a monoidal structure on ω-Cat that was considered
by Richard Steiner and Sjoerd Crans. It turns out that the full subcategory of
ω-Cat, consisting of the free ω-categories O

(
Ik

)
on the parity cubes, is dense in

ω-Cat. The tensor product of the free ω-categories O
(
Ih

)
and O

(
Ik

)
is defined

by
O

(
Ih

)
⊗O

(
Ik

)
= O

(
Ih+k

)
.

This is extended to a tensor product on ω-Cat by Kan extension along the
inclusion. A result of Brian Day applies to show this is a monoidal structure. We
call it the Gray monoidal structure on ω-Cat although John Gray only defined it
on 2-Cat by forcing all cells of dimension higher than 2 to be identities. Dominic
Verity has shown that, for a wide class of parity complexes P and Q, we have
an isomorphism of categories

O(P )⊗O(Q) ∼= O(P ×Q).

These ingredients allow us to define the descent ω-category Desc E of a cosim-
plicial category E as follows. The functor Celln:ω-Cat −→ Set, which assigns
the set of n-cells to each ω-category, is represented by the free n-category O(Gn)
on the n-globe; that is,

Celln(A) = ω-Cat(O(Gn), A).

From this we see that O(Gn) is a co-n-category in ω-Cat. Since the functor
− ⊗A preserves colimits, it follows that O(Gn)⊗A is a co-n-category in ω-Cat
for all categories A. In particular,

O(Gn)⊗Om = O(Gn)⊗O(∆[m]) ∼= O(Gn ×∆[m])

is a co-n-category in ω-Cat. Allowing m to vary, we obtain a co-n-category
O(Gn ×∆) in the category [∆, ω-Cat] of cosimplicial ω-categories; so we define

Desc E = [∆, ω-Cat](O(Gn ×∆), E).

As a special case, the cohomology ω-category of a simplicial object X with
coefficients in an category object A (in some fixed category) is defined by

H(X, A) = Desc Hom(X, A).

During 1986–7, André Joyal and I started to hear about Yang–Baxter op-
erators from the Russian School. Drinfeld lectured on quantum groups at the
World Congress in 1986. We attended Yuri Manin’s lectures on quantum groups
at the University of Montréal. My opinion at first was that, as far as monoidal
categories were concerned, braidings were the good notion and Yang–Baxter
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operators were only their mere shadow. André insisted that we also needed to
take these operators seriously. The braid category is not only the free braided
monoidal category on a single object, it is the free monoidal category on an
object bearing a Yang–Baxter operator. While we were at the Louvain-la-nerve
category conference in mid-1987, Iain Aitchison brought us a paper by Turaev
that had been presented at an Isle of Thorns low-dimensional topology meeting
the week before. Turaev knew about Yetter’s monoidal category of tangles and
gave a presentation of it using Yang–Baxter operators. I had the impression
that Turaev did not know about braided monoidal categories at the time. All
André and I had put out in print were a handwritten Macquarie Mathematics
Report at the end of 1985 and a typed revision about a year later.

I set my student Mei Chee Shum on the project of “adapting” Kelly–Laplaza’s
coherence for compact symmetric monoidal categories [105] to the braided case.
She soon detected a problem with our understanding of the Freyd–Yetter result.
Meanwhile, Joyal and I continued working on braided monoidal categories; there
was a variant we called balanced monoidal categories based on braids of ribbons
(not just strings). We started developing the appropriate string diagrams for cal-
culating in the various monoidal categories with extra structure [76]; this could
be seen as a formalization of the Penrose notation for calculating with tensors
but now deepened the connection with low-dimensional topology. The notion of
tortile monoidal category was established; Shum’s thesis became a proof (based
on Reidermeister calculus) that the free tortile monoidal category was the cat-
egory of tangles on ribbons. Joyal and I proved in [77], just using universal
properties, that this category was also freely generated as a monoidal category
by a tortile Yang–Baxter operator. In doing this we introduced the notion of
centre of a monoidal category C: it is a braided monoidal category ZC. This
construction can be understood from the point of view of higher categories. For
any bicategory D, the braided monoidal category Hom(D,D)(1D, 1D), whose ob-
jects are pseudo-natural transformations of the identity of D, whose morphisms
are modifications, and whose tensor product is either of the two compositions,
might be called the centre of the bicategory D. If D is the one-object bicategory
ΣC with hom monoidal category C then Hom(D,D)(1D, 1D) is the centre ZC of
C in the sense of [77].

In statistical mechanics there are higher dimensional versions of the Yang–
Baxter equations. The next one in the list is the Zamolodchikov equation. I
began to hear about this from various sources; I think first from Aitchison who
showed me the string diagrams. I talked a little about this at the category
meeting in Montréal in 1991. This is where I was given a copy of Dominic
Verity’s handwritten notes on complicial sets. Moreover, Bob Gordon and John
Power asked me whether I realized that my bicategorical Yoneda lemma in [142]
could be used to give a one-line proof that every bicategory is biequivalent to a
2-category. I remembered that I had thought about using that lemma for some
kind of coherence but it was probably along the lines of the Giraud result that
every fibration was equivalent to a strict one (in the form that every pseudo-
functor into Cat is equivalent to a strict 2-functor). Gordon and Power had
been looking at categories on which a monoidal category acts and (I imagine)
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examined the “Cayley theorem” in that context, and then realized the connec-
tion with the bicategorical Yoneda lemma. Since this coherence theorem for
bicategories was so easy, we decided we would use it as a model for a coherence
theorem for trictegories. Tricategories had not been defined in full generality
at that point. Our theorem was that every tricategory was triequivalent to a
Gray-category; the latter is a little more general than a 3-category (there is
an isomorphism instead of equality for the middle-four law). In fact, Gray-
categories are categories enriched in 2-Cat with a Gray-type tensor product.
John Power has briefly described at this conference the rest of the story behind
[54] so I shall say no more about that here.

Of course a tricategory is a “several object version” of a monoidal bicategory.
The need for this had already come up in the Australian School: a monoidal
structure was needed on the base bicategory W to obtain a tensor product of
enriched W-categories. Kapranov had also sent us rough notes on his work with
Voevodsky (see [83, 84, 85]). Their monoidal bicategories were not quite as gen-
eral as our one-object tricategories but they had ideas about braided monoidal
bicategories and the relationship with the Zamolodchikov equation. Larry Breen
and Martin Neuchl independently realized that Kapranov–Voevodsky needed
an extra condition on their higher braiding. Kapranov–Voevodsky called Gray-
categories semi-strict 3-categories and were advising us that they were writing
a proof of coherence; I do not think that ever appeared.

By 1993, with Dominic Verity and Todd Trimble at Macquarie University,
many interesting ideas were developed about monoidal and higher-order cate-
gories. Amongst other things Verity contributed vitally to the completion of
work I had begun with other collaborators: modulated bicategories [23] and
traced monoidal categories [81]. Todd was interested in operads and was estab-
lishing a use of Stasheff’s associahedra to define weak n-categories. He seemed
to know what was going on but could not write the general definition formally.
I challenged him to write down a definition of weak 4-category which he did
[167] against his better judgement: it is horrendous. Moreover, at Macquarie,
Todd and Margaret McIntyre worked out the surface diagrams for monoidal
bicategories; the paper was submitted to Advances and is still in revision limbo.
I should point out that Todd was married just before taking the postdoctoral
fellowship at Macquarie University. His wife stayed in the U.S. with her good
job. So it was natural that, after two years (and only a couple of visits each
way), he had to return to the U.S. This left one year of the fellowship to fill.
Tim Porter mentioned a chap from Novosibirsk (Siberia). So Michael Batanin
was appointed to Macquarie and began working on higher categories.

This brings me to the point of the letter John Baez and James Dolan sent
me concerning their wonderful definition of weak ω-category. I think Michael
Makkai caught on to their idea much quicker than me and I shall skip over the
history in that direction.

I have learnt that when Michael Batanin comes to me starting a new topic
with: “Oh Ross, have you . . . ?”, that something serious is about to come. If
it is mathematics, it is something he has thought deeply about already. A
few months after he arrived at Macquarie University, after returning to the
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Macquarie carpark from an ACS at Sydney University, Michael popped me one
of these questions:

“Oh Ross, have you ever thought of the free strict n-category on the
terminal globular set?”

My response was that the terminal globular set is full of loops, so my approach to
free n-categories using parity complexes did not apply. The loops frankly scared
me! Soon after, Michael described the monad for ω-categories on globular sets.
The clue was his answer to the carpark question: it involved plane trees which
he used to codify globular pasting diagrams. Then the solution is like using
what I tell undergraduates is my favourite mathematical object, the geometric
series, to obtain free monoids.

Batanin’s full fledged theory of higher (globular) operads quickly followed,
including the operad for weak ω-categories and the natural monoidal environ-
ment for the operads; see [8, 158]. He also developed a theory of computads for
the algebras of any globular operad [9]: the computads for weak n-categories
differ from the ones for the strict case since you need to choose a pasting order
for the source and target before placing your generating cell. (Verity’s PhD
thesis had a coherence theorem for bicategories that pointed out the need for
this kind of thing.)

Let me finish with one further development I see as a highlight and a ref-
erence which contains many precise details of topics of interest to this confer-
ence. The highlight, arising from the development of the theory of monoidal
bicategories jointly with Brian Day, is the realization of the connection among
the concepts of quantum groupoids, ∗-autonomy in the sense of Michael Barr,
and Frobenius algebras (see [38, 163]). The reference for further reading is
[162] which I prepared for the Proceedings of the Workshop on “Categorical
Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Cat-
egories” at the Fields Institute, Toronto 2002; it represents an improved and
updated version of notes of three lectures presented at Oberwolfach in Septem-
ber 1995.
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