A synthetic approach to the formal theory of PDEs (cf. arXiv:1701.06238)

Igor Khavkine

Department of Mathematics University of Milan (Statale)

Geometry and Algebra of PDEs University of Tromsø, Norway 09 June 2017

joint work with with U. Schreiber (CAS, Prague)

Observations about Jets

- ▶ Work in the category \mathcal{F}_M of smooth **fibered manifolds** $E \to M$, dim $M < \infty$, dim $E \le \infty$ (local dependence on *finitely* many of at most *countably* many coordinates, LocProMfd).
- ▶ **Jet bundles** define a functor $J := J^{\infty} : \mathcal{F}_M \to \mathcal{F}_M$ that preserves "sufficiently regular" limits (monos, fibered products, . . .).
- ▶ The **jet extension** $j^{\infty}f: M \to JE$ of a section $f: M \to E$:
 - (a) recalls the *original section* $f = \epsilon_E \circ j^{\infty} f$,
 - (b) and knows its *own jet extension* $j^{\infty}j^{\infty}f = \Delta_E \circ j^{\infty}f$.
- ▶ The natural transformations ϵ : $J \rightarrow id$, Δ : $J \rightarrow JJ$ satisfy

the axioms of a comonad.

Observations about PDEs

- ▶ A sufficiently regular PDE $\mathcal{E}^k \hookrightarrow J^k E$ can be put into a **canonical** first order form $\rho^1 : \mathcal{E}^{k+1} \hookrightarrow J^1 \mathcal{E}^k$.
 - Introduce a new variables u for each component of $j^k \phi$ of a solution. Use $u = j^k \phi$ to solve $j^1 f(j^k \phi) = 0$ for $j^1 u = \rho^1(u)$.
- ▶ A sufficiently regular formally integrable PDE $\mathcal{E} \hookrightarrow JE$ can be put into a **canonical infinitely prolonged form** $\rho \colon \mathcal{E} \hookrightarrow J\mathcal{E}$.
- ► The canonical form $j^{\infty}u = \rho(u)$ satisfies the **universal** integrability condition

the axioms of a **coalgebra** over the comonad J.

Jets & PDEs :: Comonads & Coalgebras

- ► Observations due to Marvan (*Proc DG&A* 1986, *PhD* 1989).
- ▶ The category of **differential operators** $\alpha[f] = \alpha \circ j^{\infty}f$ is equivalent to the **co-Kleisli** category of J, $\mathrm{DiffOp}(\mathcal{F}_M) \simeq \mathrm{Kl}(J)$. Follows from the composition formula

$$(\alpha \circ \beta)[f] = (\alpha \circ p^{\infty}\beta) \circ j^{\infty}f$$
, where $p^{\infty}\beta = J\beta \circ \Delta$.

▶ Vinogradov's category of **PDEs** is equivalent to the **Eilenberg-Moore** category of coalgebras over J, $PDE(\mathcal{F}_M) \simeq EM(J)$. Morphisms of coalgebras satisfy

$$\begin{array}{ccc}
\mathcal{E}_1 & \stackrel{\alpha}{\longrightarrow} & \mathcal{E}_2 \\
\rho_1 \downarrow & & \downarrow \rho_2 \\
J\mathcal{E}_1 & \stackrel{}{\longrightarrow} & J\mathcal{E}_2
\end{array}$$

- Remaining questions:
 - How much can the regularity assumptions be relaxed?
 - ▶ Can \mathcal{E} be a variety, orbifold, stratified, ... supermanifold, stack, ..., have boundaries, singularities, ...?

Synthetic Differential Geometry (SDG)

- ▶ **SDG** is an *axiomatic/categorical* approach to the study of smooth spaces, operations between them and their generalizations.
- ▶ We will work specifically with the Cahiers Topos H, introduced by Dubuc (Cahiers T&GD 1979).
- ▶ **H** has fully faithful embeddings of well-known categories:

$$\mathsf{Mfd} \hookrightarrow \mathsf{LocProMfd} \hookrightarrow \mathsf{FrMfd} \hookrightarrow \mathsf{DiflSp} \hookrightarrow \textbf{H} \hookleftarrow \mathsf{FormalMfd}$$

- Objects in H may have algebraic or orbifold singularities, may have boundaries and corners, could be infinite dimensional, and may have infinitesimal directions.
- Infinitesimal spaces are particularly well-adapted to the formal theory of PDEs.
- Literature:
 - ► A. Kock: *SDG* (CUP 1981), *SGM* (CUP 2009)
 - ▶ R. Lavendhome: Basic Concepts of SDG (Springer 1996)
 - ▶ U. Schreiber: dcct [arXiv:1310.7930]

Generalized Smooth Spaces

- ▶ $M \in Mfd$, dim M = n; Atlas $(M) \subset C^{\infty}(\mathbb{R}^n, M)$.
- ► CartSp category of **all** $\mathbb{R}^k \to \mathbb{R}^m$ smooth; CartSp_{diff}(n) — **all diffeomorphisms** onto image $\mathbb{R}^n \to \mathbb{R}^n$.
- ▶ Functor CartSp_{diff} $(n)^{op}$ → Set, $\mathbb{R}^n \mapsto \text{Atlas}(M)$, satisfies **gluing**:

(illustration)

- ▶ No harm in **extending** Atlas(M) $\subset C^{\infty}(-, M)$: CartSp^{op} \to Set.
- ▶ Now $C^{\infty}(-, M) \in Sh(CartSp, Set)$ is a **sheaf** with respect to the "open cover" Grothendieck topology on CartSp.
- ▶ Fully faithful $Mfd \hookrightarrow SmthSp$ (Generalized Smooth Spaces):

(Yoneda) $\operatorname{SmthSp} \ni M \leftrightarrow "C^{\infty}(-, M)" \in \operatorname{Sh}(\operatorname{CartSp}, \operatorname{Set})$

Cahiers Topos

Sheaves (" $C^{\infty}(-,M)$ ") on test spaces (\mathbb{R}^k) are generalized spaces (M).

► FormalCartSp := $\langle \mathbb{R}^k, \mathbb{D}^k(m), \times \rangle$ — opposite to the *full* subcategory

$$\langle \textit{\textbf{C}}^{\infty}(\mathbb{R}^{\textit{k}}), \textit{\textbf{C}}^{\infty}(\mathbb{R}^{\textit{k}})/(\textit{\textbf{x}}^{1},\ldots,\textit{\textbf{x}}^{\textit{k}})^{\textit{m}+1}, \otimes \rangle \hookrightarrow \mathrm{CAlg}^{\mathbb{R}}$$

of commutative \mathbb{R} -algebras, closed under products.

▶ **Ex:** $f \in C^{\infty}(\mathbb{R}^n \times \mathbb{D}^k(m))$ is a formal power series

$$f(x^1,\ldots,x^n,\varepsilon^1,\ldots,\varepsilon^k) = \sum_{|\mathrm{I}| \leq m} f_{\mathrm{I}}(x^1,\ldots,x^n)\varepsilon^{\mathrm{I}}.$$

- ► Cahiers topos H := Sh(FormalCartSp, Set):
 - ▶ closed under all small $\underline{\lim}(-)$, $\underline{\lim}(-)$ and internal $\underline{\operatorname{Hom}}(-,-)$;
 - fully faithful embedding of many categories of "smooth spaces";
 - ▶ access to infinitesimals without leaving the category, e.g., formal disks $\mathbb{D}^k(\infty) := \lim_{m \to \infty} \mathbb{D}^k(m)$.

Infinitesimals, Formal Disks, Jets

- ▶ Take $M \in \mathrm{Mfd} \hookrightarrow \mathbf{H}$, dim M = n (independent variables); take $(E \to M) \in \mathbf{H}_{/M}$ (dependent variables, no extra regularity!).
- ▶ Every $x \in M$ has formal disk neighborhood $T_x^\infty \simeq \mathbb{D}^n(\infty) \to M$.
- ▶ Formal neighborhoods functor T^{∞} : $\mathbf{H}_{/M} \to \mathbf{H}_{/M}$, $T^{\infty}E := T^{\infty}M \times_{M} E$.
- ▶ In "coordinates" $f \in \text{Hom}_{\mathbf{H}_{/M}}(T^{\infty}E, F)$ is of the form

$$f(x,u,arepsilon) = \sum_{|{
m I}|<\infty} f_{
m I}(x,u) arepsilon^{
m I} \quad ext{(formal series)}.$$

▶ **Jets** — *right adjoint* of $T^{\infty} \dashv J^{\infty}$: $\mathbf{H}_{/M} \to \mathbf{H}_{/M}$ (exists in topos!):

$$\mathsf{Hom}_{\mathsf{H}_{/M}}(T^{\infty}E,F) \simeq \mathsf{Hom}_{\mathsf{H}_{/M}}(E,J^{\infty}F) \quad \mathsf{naturally} \ \forall E,F \in \mathsf{H}_{/M};$$

$$f(x,u,\varepsilon) \dashv f(x,u,-) \simeq \tilde{f}(x,u) = (f_{\mathsf{I}}(x,u))_{|\mathsf{I}| < \infty}.$$

- ▶ **Right adjoints** automatically preserve all limits (monos, fibered products, . . .). No need for Marvan's "sufficient regularity".
- ▶ $J: \mathbf{H}_{/M} \to \mathbf{H}_{/M}$ is a **comonad** for abstract reasons, due to the **differential cohesion** (Schreiber 2013) of $\mathbf{H}_{/M}$.

Synthetic Geometry of PDEs

- ▶ **Generalized PDE** $\mathcal{E} \hookrightarrow J^{\infty}F$ in $\mathbf{H}_{/M}$; *mono* is the only regularity condition needed.
- ▶ A *Y-family* of formal sections σ : $T^{\infty}Y \to JF$ is **holonomic** if $\sigma(x, u, \varepsilon)(\sim) = \sigma(x, u, \varepsilon + \sim)(0)$.
- ▶ A *Y-family s* such that $T^{\infty}Y \stackrel{s}{\to} \mathcal{E} \hookrightarrow JF$ is *holonomic* is a *Y-family* of **formal solutions**.
- If E₁ → E₂ preserves all families of formal solutions, it is a morphism of generalized PDEs ("prolonged differential operator").
- ▶ There always exists a **universal family of formal solutions** $T^{\infty}\mathcal{E}^{\infty} \to \mathcal{E}$ such that $\mathcal{E}^{\infty} \stackrel{\overline{\epsilon}}{\hookrightarrow} T^{\infty}\mathcal{E}^{\infty} \to \mathcal{E}$ is a *mono*:

 $\mathcal{E}^{\infty} \hookrightarrow \mathcal{E} \hookrightarrow JF$ is exactly the *(infinite) prolongation* of $\mathcal{E} \hookrightarrow JF$.

Main Results

- ▶ When $\mathcal{E}^{\infty} \simeq \mathcal{E}$, the PDE is **formally integrable**, has intrinsic presentation $\rho \colon \mathcal{E} \simeq \mathcal{E}^{\infty} \hookrightarrow J\mathcal{E}$.
- Category PDE(H_{/M}): objects formally integrable PDEs, morphisms — preserve all families of formal solutions. Logically independent from Vinogradov's definition.
- ▶ Thm: DiffOp($\mathbf{H}_{/M}$) \simeq KI(J) and PDE($\mathbf{H}_{/M}$) \simeq EM(J); for each formally integrable PDE, $\rho \colon \mathcal{E} \hookrightarrow J\mathcal{E}$ is a J-coalgebra; a morphism preserving families of formal solutions is a morphism of coalgebras.
 - Because of different definitions/hypotheses, the proof is logically independent from (but inspired by) Marvan's.
 - ▶ The fully faithful embedding $\mathcal{F}_M \hookrightarrow \mathbf{H}_{/M}$ and Marvan's original equivalence *imply* PDE(\mathcal{F}_M) \simeq PDE_{Vinogradov}(\mathcal{F}_M).
- ▶ Thm: $PDE(H_{/M})$ is also a *topos* (hence has all small limits). More concretely, all finite limits in $PDE(H_{/M})$ can be computed in $H_{/M}$.
- ▶ **Thm:** Sol(\mathcal{E}) \simeq Hom_{PDE($\mathbf{H}_{/M}$)}(M, \mathcal{E}).

Discussion

- Jets and PDEs internal to Cahiers Topos H:
 - Maximally relaxed (within smooth geometry) regularity conditions on spaces of dependent variables and PDEs.
 - Infinitesimals, formal sections give intrinsic and intuitive notion of a PDE category. No need to appeal to Cartan distribution as proxy for formal solutions. When comparable, coincides with Vinogradov's.
 - All constructions inherently independent of (even the existence of) choices of local coordinates.
- J-comonad and J-coalgebra structure of PDEs suggests natural generalization to more general contexts of Synthetic Differential Geometry (super-, derived-, stack-, . . . manifolds).
- ► **Future:** study symmetries; non-integrable infinitesimal symmetries, could be *truly infinitesimal* in SDG.
- Future: study PDEs on derived higher super-stacks...
- ▶ Future: How to compare with Beilinson-Drinfeld's *D*-schemes?

Thank you for your attention!