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Observations about Jets
I Work in the category FM of smooth fibered manifolds E → M,

dim M <∞, dim E ≤ ∞ (local dependence on finitely many of at
most countably many coordinates, LocProMfd).

I Jet bundles define a functor J := J∞ : FM → FM that preserves
“sufficiently regular” limits (monos, fibered products, . . . ).

I The jet extension j∞f : M → JE of a section f : M → E :
(a) recalls the original section f = εE ◦ j∞f ,
(b) and knows its own jet extension j∞j∞f = ∆E ◦ j∞f .

I The natural transformations ε : J → id, ∆: J → JJ satisfy

J

J JJ J

id id
∆

ε(J) J(ε)

and
J JJ

JJ JJJ

∆

∆

∆(J)

J(∆)

,

the axioms of a comonad.
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Observations about PDEs

I A sufficiently regular PDE Ek ↪→ JkE can be put into a canonical
first order form ρ1 : Ek+1 ↪→ J1Ek .

I Introduce a new variables u for each component of jkφ of a
solution. Use u = jkφ to solve j1f (jkφ) = 0 for j1u = ρ1(u).

I A sufficiently regular formally integrable PDE E ↪→ JE can be put
into a canonical infinitely prolonged form ρ : E ↪→ JE .

I The canonical form j∞u = ρ(u) satisfies the universal
integrability condition

E JE

JE JJE

ρ

ρ

Jρ

∆E

and of course
E JE

E
id

ρ

εE ,

the axioms of a coalgebra over the comonad J.
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Jets & PDEs :: Comonads & Coalgebras
I Observations due to Marvan (Proc DG&A 1986, PhD 1989).
I The category of differential operators α[f ] = α ◦ j∞f is equivalent to

the co-Kleisli category of J, DiffOp(FM) ' Kl(J). Follows from the
composition formula

(α ◦ β)[f ] = (α ◦ p∞β) ◦ j∞f , where p∞β = Jβ ◦∆.

I Vinogradov’s category of PDEs is equivalent to the Eilenberg-Moore
category of coalgebras over J, PDE(FM) ' EM(J). Morphisms of
coalgebras satisfy

E1 E2

JE1 JE2

ρ1

α

ρ2

Jα

.

I Remaining questions:
I How much can the regularity assumptions be relaxed?
I Can E be a variety, orbifold, stratified, . . . supermanifold, stack, . . . ,

have boundaries, singularities, . . . ?
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Synthetic Differential Geometry (SDG)
I SDG is an axiomatic/categorical approach to the study of smooth

spaces, operations between them and their generalizations.
I We will work specifically with the Cahiers Topos H, introduced by

Dubuc (Cahiers T&GD 1979).
I H has fully faithful embeddings of well-known categories:

Mfd ↪→ LocProMfd ↪→ FrMfd ↪→ DiflSp ↪→ H←↩ FormalMfd

I Objects in H may have algebraic or orbifold singularities, may
have boundaries and corners, could be infinite dimensional, and
may have infinitesimal directions.

I Infinitesimal spaces are particularly well-adapted to the formal
theory of PDEs.

I Literature:
I A. Kock: SDG (CUP 1981), SGM (CUP 2009)
I R. Lavendhome: Basic Concepts of SDG (Springer 1996)
I U. Schreiber: dcct [arXiv:1310.7930]
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Generalized Smooth Spaces

I M ∈ Mfd, dim M = n; Atlas(M) ⊂ C∞(Rn,M).
I CartSp — category of all Rk → Rm smooth;

CartSpdiff(n) — all diffeomorphisms onto image Rn → Rn.
I Functor CartSpdiff(n)op → Set, Rn 7→ Atlas(M), satisfies gluing:

(illustration)

I No harm in extending Atlas(M) ⊂ C∞(−,M) : CartSpop → Set.
I Now C∞(−,M) ∈ Sh(CartSp,Set) is a sheaf with respect to the

“open cover” Grothendieck topology on CartSp.
I Fully faithful Mfd ↪→ SmthSp (Generalized Smooth Spaces):

(Yoneda) SmthSp 3 M ↔ “C∞(−,M)” ∈ Sh(CartSp,Set)
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Cahiers Topos
Sheaves (“C∞(−,M)”) on test spaces (Rk ) are generalized spaces (M).

I FormalCartSp := 〈Rk ,Dk (m),×〉— opposite to the full
subcategory

〈C∞(Rk ),C∞(Rk )/(x1, . . . , xk )m+1,⊗〉 ↪→ CAlgR

of commutative R-algebras, closed under products.
I Ex: f ∈ C∞(Rn × Dk (m)) is a formal power series

f (x1, . . . , xn, ε1, . . . , εk ) =
∑
|I|≤m

fI(x1, . . . , xn)εI.

I Cahiers topos — H := Sh(FormalCartSp,Set):
I closed under all small lim←−(−), lim−→(−) and internal Hom(−,−);
I fully faithful embedding of many categories of “smooth spaces”;
I access to infinitesimals without leaving the category,

e.g., formal disks Dk (∞) := lim←−m
Dk (m).
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Infinitesimals, Formal Disks, Jets
I Take M ∈ Mfd ↪→ H, dim M = n (independent variables);

take (E → M) ∈ H/M (dependent variables, no extra regularity!).
I Every x ∈ M has formal disk neighborhood T∞

x ' Dn(∞)→ M.
I Formal neighborhoods functor T∞ : H/M → H/M , T∞E := T∞M ×M E .
I In “coordinates” f ∈ HomH/M (T∞E ,F ) is of the form

f (x ,u, ε) =
∑
|I|<∞

fI(x ,u)εI (formal series).

I Jets — right adjoint of T∞ a J∞ : H/M → H/M (exists in topos!):

HomH/M (T∞E ,F ) ' HomH/M (E , J∞F ) naturally ∀E ,F ∈ H/M ;

f (x ,u, ε) a f (x ,u,−) ' f̃ (x ,u) = (fI(x ,u))|I|<∞ .

I Right adjoints automatically preserve all limits (monos, fibered
products, . . . ). No need for Marvan’s “sufficient regularity”.

I J : H/M → H/M is a comonad for abstract reasons, due to the
differential cohesion (Schreiber 2013) of H/M .
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Synthetic Geometry of PDEs
I Generalized PDE — E ↪→ J∞F in H/M ; mono is the only

regularity condition needed.
I A Y-family of formal sections σ : T∞Y → JF is holonomic if
σ(x ,u, ε)(∼) = σ(x ,u, ε+∼)(0).

I A Y-family s such that T∞Y s→ E ↪→ JF is holonomic is a Y -family
of formal solutions.

I If E1 → E2 preserves all families of formal solutions, it is a
morphism of generalized PDEs (“prolonged differential operator”).

I There always exists a universal family of formal solutions
T∞E∞ → E such that E∞ ε

↪→ T∞E∞ → E is a mono:

E∞ JF

E JE JJF

(pb)ρ ∆F

εE

E∞ ↪→ E ↪→ JF is exactly the (infinite) prolongation of E ↪→ JF .
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Main Results
I When E∞ ' E , the PDE is formally integrable, has intrinsic

presentation ρ : E ' E∞ ↪→ JE .
I Category PDE(H/M): objects — formally integrable PDEs,

morphisms — preserve all families of formal solutions. Logically
independent from Vinogradov’s definition.

I Thm: DiffOp(H/M) ' Kl(J) and PDE(H/M) ' EM(J); for each
formally integrable PDE, ρ : E ↪→ JE is a J-coalgebra; a morphism
preserving families of formal solutions is a morphism of
coalgebras.

I Because of different definitions/hypotheses, the proof is logically
independent from (but inspired by) Marvan’s.

I The fully faithful embedding FM ↪→ H/M and Marvan’s original
equivalence imply PDE(FM) ' PDEVinogradov(FM).

I Thm: PDE(H/M) is also a topos (hence has all small limits). More
concretely, all finite limits in PDE(H/M) can be computed in H/M .

I Thm: Sol(E) ' HomPDE(H/M )(M, E).

Igor Khavkine (Milan) Synthetic Approach to PDEs 09/06/2017 9 / 10



Discussion

I Jets and PDEs internal to Cahiers Topos H:
I Maximally relaxed (within smooth geometry) regularity conditions

on spaces of dependent variables and PDEs.
I Infinitesimals, formal sections give intrinsic and intuitive notion of a

PDE category. No need to appeal to Cartan distribution as proxy for
formal solutions. When comparable, coincides with Vinogradov’s.

I All constructions inherently independent of (even the existence of)
choices of local coordinates.

I J-comonad and J-coalgebra structure of PDEs suggests natural
generalization to more general contexts of Synthetic Differential
Geometry (super-, derived-, stack-, . . . manifolds).

I Future: study symmetries; non-integrable infinitesimal
symmetries, could be truly infinitesimal in SDG.

I Future: study PDEs on derived higher super-stacks. . .
I Future: How to compare with Beilinson-Drinfeld’s D-schemes?
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Thank you for your attention!


