
Type-theoretic Expressivism

David Corfield

Kent

15 February, 2024

David Corfield (Kent) Type-theoretic Expressivism 15 February, 2024 1 / 47



Why HoTT and its modal variants?

Provides an alternative foundation for mathematics

Inherently structuralist language

Closer to natural language and informal mathematical language than
FOL (cf. Lean)

Possesses ‘intrinsic’ modalities (necessity and possibility in terms of
variation over any type)

Some other modalities relate to geometric qualities

Linear ‘intrinsic’ modalities relate to quantum physics: measurement,
preparation, etc.

Modal HoTT guides new mathematics and new physics (I and II).
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https://ncatlab.org/schreiber/show/Topological+Quantum+Gates+in+Homotopy+Type+Theory
https://ncatlab.org/schreiber/show/Quantum+Certification+via+Linear+Homotopy+Types


Regarding the latter, something is brewing here, cf. my Thomas Kuhn,
Modern Mathematics and the Dynamics of Reason and some more details
here.

A new logic for a new mathematics for a new physics

Modal HoTT provides a stellar example of computational trinitarianism or
computational trilogy.
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http://philsci-archive.pitt.edu/id/eprint/21265
http://philsci-archive.pitt.edu/id/eprint/21265
https://ncatlab.org/davidcorfield/show/HomePage#Sydney
https://ncatlab.org/nlab/show/computational+trilogy


nLab: computational trinitarianism/trilogy

Bob Harper
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nLab: computational trinitarianism/trilogy

In one recent guise (Urs Schreiber):

Or perhaps we should speak of a 5-fold relation: Category theory, Logic,
Physics, Topology, Computation.
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Philosophy

Can we make HoTT speak more directly to philosophy?

Plenty of possibilities:

Anywhere you think to use first-order logic

Anywhere you think to use modal logic

Ryle’s category mistakes, Ofra Magidor

Amie Thomason on Metaphysics made easy

...

Robert Brandom on most things

Let’s try out his logical expressivism.
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Sketch of an approach

Logical expressivism has been developed by Brandom and others to
understand logical vocabulary in terms of what it makes explicit about
inferential practice.

This expressivism is applied to common logical connectives such as
propositional implication, conjunction and negation.

There are type theories for which such connectives arise by the
restriction of more general constructions.

We can give an expressivist reading of these more general
constructions.

We should have a broader understanding of the range of logic.

We should be expressivist about this broader range.
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Reasons to take something as ‘logical’

From a Trinitarian perspective:

Logical language: formation, introduction, elimination, computation
(FIEC) rules

Category theory: suitable adjunctions

Computation: makes explicit general aspects of our reasoning
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Dependent types in mathematics

Let k be a field, V a finite-dimensional vector space over k , and f an
endomorphism of V . Then define E (V , k, f ), the eventual image of f , as
the vector space which is the intersection of all f n(V ). Show f (E ) = E .

k : Field ,V : FinVect(k), f : Endo(V , k) ⊢ E (V , k , f ) : FinVect(k)

k : Field ,V : FinVect(k), f : Endo(V , k) ⊢ g : (f (E ) = E )
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Dependent types in natural language

Let x be an author, y one of their books, and z a character from this
book. The question arises as to whether z ’s appearance in y is somewhat
autobiographical.

x : Author , y : Book(x), z : Character(x , y) ⊢ Autobiographical(x , y , z) :
Prop

If this is generally the case, then

x : Author , y : Book(x), z : Character(x , y) ⊢ a : Autobiographical(x , y , z)

Whenever an author creates a character for a book, there’s always
something autobiographical about it.

David Corfield (Kent) Type-theoretic Expressivism 15 February, 2024 10 / 47



Judgment structure

The expressivity of our logic is determined by which judgments are allowed:

x : A ⊢ b : B

x : A, y : B, z : C ⊢ d : D

x : A, y : B, z : C , p : P(x), q : Q(y , z), r : R ⊢ s : S(x , y , z)

x : A, y : B(x), z : C (x , y) ⊢ d : D(x , y , z)

variants with multiple consequents

(Cf. Mike Shulman’s treatment of this here.)
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https://golem.ph.utexas.edu/category/2018/04/what_is_an_ntheory.html


Note that first-order reasoning doesn’t typically exploit the full resources
of the third pattern:

x : A, y : B, z : C , p : P(x), q : Q(y , z), r : R ⊢ s : S(x , y , z)

Usually first-order logic is untyped (or unityped), so no A, B, C :

(((((((((
x : A, y : B, z : C ,P(x),Q(y , z),R ⊢ S(x , y , z)

The domain remains implicit, and all variables range over it.

Note also that we don’t show elements of the premises and conclusion.
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Brandom’s account of logic: Inferentialism

Logical (hyper)inferentialism: We should understand logical
constants in terms of their associated rules of inference which dictate
what justifies our assertion of compound propositions involving them,
and what justified assertion of such compound propositions entitles us
to assert further.

This is neatly captured in logical frameworks couched in terms of
introduction and elimination rules.

Introduction
A ⊢ B

A→ B

Elimination
A→ B A

B
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Category theory!

Introduction
C ,A ⊢ B

C ⊢ A→ B

Elimination
A→ B A

B

These rules relate to the fact that ∧A is adjoint to A→,

(Intro) Hom(C ∧ A,B) ≃ Hom(C ,A→ B)

(Elim) A∧ (A→ B) ⊢ B, counit for the comonad from the adjunction.
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Computational trinitarianism prevails

Logical constructions arise from a ‘web of adjunctions’ of elementary
operations.

E.g., conjunction is right adjoint to duplication:

Hom((C ,C ), (A,B)) ≃ Hom(C ,A ∧ B)

.

Again the elimination rule is the counit, whereas for the left adjoint

Hom((A,B), (C ,C )) ≃ Hom(A ∨ B,C ),

the introduction rule is the unit of the adjunction.
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Brandom’s account of logic: Expressivism

Logical Expressivism: “the expressive role that distinguishes logical
vocabulary is to make explicit the inferential relations that articulate
the semantic contents of the concepts expressed by the use of
ordinary, nonlogical vocabulary.” (Brandom 2018, p. 70)

For each bit of vocabulary to count as logical in the expressivist
sense, one must say what feature of reasoning, to begin with, with
nonlogical concepts, it expresses.(Ibid., p. 70)

(R. Brandom 2018, From logical expressivism to expressivist logic: sketch of a program and some implementations, Philosophical

Issues, 28, Philosophy of Logic and Inferential Reasoning, 2018 doi:10.1111/phis.12116)
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Expressivism and implication

The meaning of → is given by introduction-elimination rules.

Expressivism: It doesn’t matter which propositions are involved. The
logical constant → allows us to consider an inferential step explicitly.
Rather than wonder whether to agree to the assertation of B on the basis
of the assertion of A, I may consider the assertation of A→ B.

Intuitionistic conditionals in the broadest sense let us assert that
there is a procedure for turning an argument for the premises of
an inference into an argument for the conclusion. (Ibid., p. 70)
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However, from HoTT’s perspective this is a restriction of type rules to
propositions. Why not extend inferentialism and expressivism to the full
type theory?

Note: A proposition is a type of a certain kind, and a set is a type of
another kind. There are other kinds of type.

For a type A,

isProp(A) is a proposition stating that any two elements of A are
equal.

isSet(A) is a proposition stating that the identity types of A, x =A y ,
are propositions.
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Dependent product/function types

Omitting mention of general contexts, the rules for dependent product
(function) types in HoTT are:

Formation
⊢ A : Type x : A ⊢ B(x) : Type

⊢
∏

x : A B(x) : Type

Elimination
⊢ f :

∏
x : A B(x) ⊢ a : A

⊢ f (a) : B(a)

Introduction
x : A ⊢ b : B(x)

⊢ λx .b :
∏

x : A B(x)
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Reduction to propositional logic

In propositional logic there are no dependent types, and each type is a
proposition.

The type formation rule becomes:

A : Prop B : Prop

A→ B : Prop

Elimination becomes
A→ B A

B

Introduction becomes
A ⊢ B

A→ B
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Reduction to first-order logic

Reduction to untyped first-order logic. There is only one non-dependent
type, the universe of discourse, which is left unnotated.

Predicates and relations are dependent propositions (so dependent types).
Since this calculus doesn’t signify elements of propositions, we just write a
formula to indicate that it is true.

The type formation rule becomes:

B(x) is a predicate

∀xB(x) is a proposition
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Reduction to first-order logic

Term introduction becomes

B(x)

∀xB(x)
Consideration of contexts affect choices of variables.

Term elimination becomes

∀xB(x)
B(t)
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Category theory again

There is a context extension functor from C → C/A:

⊢ B : Type 7→ x : A ⊢ B : Type

this is sending a type B to the projection

A× B
↓
A

Note how basic the context extension operation is – a kind of weakening.
I’m speaking and then make some comment that I won’t allude to again. I
return to my theme. Your assent to the deductive reasoning shouldn’t
depend on the aside.
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Category theory again

Dependent product is the right adjoint functor to this context extension
functor.

Again introduction and elimination follow from this adjunction and the
associated counit.

Elimination = counit

⊢ f :
∏

x : A B(x) ⊢ a : A

⊢ f (a) : B(a)

(a, f ) : A×
∏
x : A

B(x) 7→ f (a) : B(a)
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Expressivism for dependent product

Formation rule

When people consider two propositions, A and B, they may consider the
proposition A→ B.

When people consider a predicate, B(x), they may consider the
proposition ∀xB(x).

When people consider a type, B(x), depending on a type A, they may
consider the type

∏
x : A B(x). E.g., states and the choice of head-of-state;

cities and the choice of favourite attraction; soccer teams and their top
scorers ...
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Expressivism for introduction rule of dependent product

When people assent to proposition A and then because of this they assert
B, then they can review this inference by naming it, indication of an
element that makes A→ B true.

When people consider a non-specifed entity (often indicated by the
indefinite article), and judge it to have a certain quality, then they can
review this judgment by wondering if it’s the case that all things (of that
kind) have the property. E.g., we agree that when a stranger appears, then
we should fear them. This becomes a rule to consider: ‘All strangers
should be feared’.
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Expressivism for introduction rule of dependent product

In the full dependent type case, when people refer to a kind, and for each
element of that kind, another kind. Then if for each element of the first
kind, they judge there to be an element of the dependent kind, then
provide a term for that assignment.

They might give it a name. E.g., goalkeeper or captain of a football team.

Or the altitude of a plane along its flight path.

Known as a section in mathematics. They capture something like named
or regular assignments, rules or laws.
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Similar story for dependent sum/pair

In propositional logic, for conjunction there are the standard FIEC rules.

Conjunction expresses co-assertion, useful when we’re uttering
propositions, and I want to know if it’s from both of P and Q that I’m
supposed to assent to R following.

Similarly with dependent sum. FIEC rules. Adjunction, left adjoint to
context extension.
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Expressivism for dependent sum/pair

If I have a type and a dependent type, then it’s useful to form the
dependent sum type.

E.g., Authors and their books: I might consider pairs – (Dickens, Great
Expectations); (Austen, Pride and Prejudice); ...

Then we can define functions out of such types, e.g.,

z :
∑

x :Author

Book(x) ⊢ first edition(z) : Year
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Where are we?

Inferentialism: meaning of dependent product and dependent sum are
given by FIEC rules.

FIEC rules are the type-theoretic rendition of category-theoretic
adjunctions.

These adjunctions are to context extension, a basic operation.

Restricted use of type constructions yields logical operations.

Unrestricted use is allowing us to make explicit aspects of our
inferential practice.

Unrestricted constructions are logical?
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Still logical expressivism?

Have we strayed beyond ‘logic’ by taking up this broader perspective?

Recall that Brandom just needed us to “make explicit the inferential
relations that articulate the semantic contents of the concepts expressed
by the use of ordinary, nonlogical vocabulary”.

Features of reasoning include asking for information and understanding
such requests, receiving and understanding information, conducting
inference, then assertion, and acceptance by others.

We request information by asking questions. Questions need to be
well-formed – I need to know what you’re asking of me. In wondering
whether your question is well-formed I may articulate to myself what I find
problematic. This takes us beyond propositions.
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Questions

Questions and answers can puzzle us:

Which fruit are ripe now? Blackberries, cherries, and wolves.

Which fruit were chordate yesterday?

I expect things to type check. I can make explicit my puzzlement using the
language of types.
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Questions

Aarne Ranta proposes four kinds of question with a single answer:

1 P?, for a proposition P

2 P or Q, which one?

3 Who, when, what X , which X , whither, whence, whose, how, how
much/many/ long?: to be understood as (Wh x : A)B(x)?, for a
proposition B(x) depending on A.

4 Iterated question: Who read which book? Who did what to whom?
This is (Wh x : A)(y : B)R(x , y)?, etc.

These may all be construed as (Wh x : A)B(x), asking for the element of
a dependent sum.
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Questions

Why not just say that we ask for type listings in general?

What are the options before us?

Doomsday Book: Who lives here and what are their possessions?

Which fruit are ripe now?

How can I share these items (fairly)?
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[The] performances Brandom dubs “assertions” have ... no recog-
nizable subsentential semantic structure, but are internally simple,
un-structured semantic “blobs”. Accordingly, Brandom owes us
a theory, couched in normative pragmatic terms, of subsentential
expressions – names and predicates – and their meaning, and of
how speakers may combine and recombine names and predicates
in ever-new ways so as to produce and understand ever-new asser-
tions and declarative sentences. (Ronald Loeffler 2018, Brandom,
p.85)

Propositions are types and are formed by type constructions. Combining
and recombining names and predicates requires type discipline (cf. Ryle on
type-trespasses and type-pranks), but much more is involved.
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Identity type

For any type, A, and any two elements of that type, a and b, it’s
reasonably for me to ask a =A b?

In the reduction to first-order logic, this applies solely to elements of the
single non-dependent type, the domain. As a relation this is a dependent
proposition, hence contains at most one element, hence we don’t mention
any term in it. So we can form for any two elements of the domain the
proposition s = t.

From the HoTT perspective this derives from the general construction
a =A b, which applies to types themselves, A =Type B.

Identity types have FIEC rules and arise from an adjunction (Patrick
Walsh, Categorical harmony and path induction).
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Expressivism for identity

Consider two reports from scouts as to the appearance of a stranger. It’s
reasonable to ask whether they’re speaking of the same person. I don’t ask
of the person reported by the first scout whether they’re the same as the
number 5 or the property of being blue.

If I have guests to stay, I may wonder if I have the right number of beds
via the type of isomorphisms, Guest =Type Bed .

In physics we need to go to higher equivalences to allow gauge-of-gauge
transformations, g =gauge g ′.
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List

The List type constructor

A : Type ⊢ List(A) : Type

Comes with FIEC rules. Constructors for the empty list and to append
element of A at head of a list.

If you’ve given me several answers to a question asking for elements of a
type, it’s useful to consider them all in a list.
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Propositional truncation

If you have a type A, it’s useful to have a type ||A||. Sometimes I just care
that a type is inhabited, not the identity of its elements.

I ask “Is the house occupied?” “Yes, X lives there and so does Y, I think
perhaps Z too.” “I don’t care who lives there, it just matters whether it’s
occupied or not.”

We can apply this construction to any type. It comes with its own FIEC
rules. Truncation as left adjoint to inclusion of propositions.

It allows the HoTT version of the existential quantifier from dependent
sum.

Many propositions we employ have used it, e.g., ||Guest =Type Bed ||, an
element of which means we can match guests to beds (without saying who
sleeps in which).
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Empty type

So far these constructions have always concerned type formation processes
which depend on the assertion of some already established types.

Are there any presuppositionless types in our system?

Two basic examples are the empty type and the unit type. Consider the
empty type first:

Type formation rule

0 : Type

Term introduction rule: None
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Empty type

Term elimination rule (non-dependent)

⊢ D : Type

x : 0 ⊢ indD(x) : D

Computation rule: None

Why should we take 0 to be a logical construction?

FIEC rules arise from the left adjoint to the functor

C → ∗

For a proposition, P, negation is expressed with it: ¬P = P → 0.
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In terms of expressivism, why is it useful?

Someone asks a question: A? and you say A = 0. If A’s a proposition, this
says A is false. If A is set, this says A is empty.

The empty type makes explicit some part of inferential practice:

Which of our allies has come to support us? None!

Who are the occupants of that house? No-one

Is that house occupied? No
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Unit type

Once we have 0, then we can generate

1 ≃
∏
x :0

0 ≃ 0→ 0

.

FIEC rules from right adjoint to terminal functor. Useful for speaking
about the truth of a proposition.

But now N ≃ List(1). Still logical?
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Arithmetic

It is useful when doing arithmetic to have types for each finite cardinality.
This is achieved by defining (inductively):

n : N :⊢ Fin(n) : Type

Each Fin(n) has precisely n elements.

This is useful when counting, since to say of a set of entities that it has m
elements is to say that it’s equivalent to Fin(m). Then we can combine
sets and count using the fact that

m, n : N ⊢ Fin(m) + Fin(n) ≃ Fin(m + n)
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Inductive types

If we’re happy with Identity types, List, product, coproduct, dependent
sum, 0, 1, Booleans, N, Fin(n), as logical, then note that they are all
instances of inductive types. Why not allow them all as logical?

Then || − || is a higher inductive type. If we allow all of these as logical, we
let ourselves in for constructions needed for a synthetic algebraic topology.
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Modality

If context extension and its adjoints are logical, then so should be the
composites, A∗∏

x :A B(x), A∗∑
x :A B(x).

But these act as modal operators. Dependent product followed by context
extension for a typed predicate concerns the invariance of a property of an
entity as the entity varies over its type, □A.

This construction speaks to Brandom on the Sellars-Kant thesis (cf.
Chap.4 of my Modal HoTT book). To make an empirical claim properly,
we need to know whether it holds true under kinds of variation.

Variants for variational arrows: W → ∗, W → V (accessible worlds
relation), T1 ⇒ T0 (temporal type theory), A← C → B (Behavioral
mereology).
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In summary

Dependent type theory appears to be a form of logic.

We see this from an inferentialist perspective, FIEC rules and
adjunctions.

But also from an expressivist perspective, it makes explicit aspects of
our ordinary inference.

From the perspective of HoTT, we seem to need to move the line
separating the logical from the mathematical.

Perhaps there is no such line.
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