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We live in interesting times!

A new foundational language for mathematics has just appeared.



Why I might have predicted the second coming

I came to philosophy on a diet of:

I Imre Lakatos

I Albert Lautman

I Category theory and categorical logic



Albert Lautman

I Proto-category theorist: thematic similarities everywhere.

I Rather than accord logic philosophical priority over other parts
of mathematics, we should consider it as any other branch, a
place where key ideas recurrently manifest themselves.



My Masters thesis - categorical logic

Question: What should we make of the two kinds of semantics for
intuitionistic logic?

I Proof theoretic

I Topological

Categorical logic went some way to explaining this. Topos theory
combines the logical and the spatial.

Constructive type theory as ‘internal language’ of a topos.



In the intervening 24 years...

I However much one speaks of ‘the rich, lived experience of the
mathematician’, ‘mathematics as a tradition of intellectual
enquiry’, etc., there were always those philosophers content
with set theory who claim that nothing goes beyond its
bounds.

I Many of the ‘rebels’ turned to category theory (Marquis,
McLarty, me), and yet categories can be thought of as sets or
classes with a certain structure.

I However much one protests that set theory has lost contact
with the conceptual content of mathematics, still it is possible
to maintain mathematics to be the accumulation of timeless
truths in the framework of first-order logic + axioms of set
theory.



Maybe this time

I Where Homotopy Type Theory differs is in having logic
already contained intrinsically within it.

I Just as 1960s algebraic geometry gave rise to the topos, so
2000s mathematics gave rise to the ∞-topos.

I Homotopy type theory is the internal language of ∞-toposes.



My recent Concepts paper

Two theses:

1. This new foundational language, homotopy type theory,
provides an important perspective from which to understand
varieties of mathematical concept.

2. Mathematics displays vertical unity, so that concepts met in
elementary and in research level mathematics are related.



Vertical unity
Vertical unity is a term introduced by Borovik to indicate that the
products of mathematical research never completely depart from
the kinds of concepts accessible to those with little mathematical
training.

...‘recreational’, ‘elementary’, ‘undergraduate’ and
‘research’ mathematics are no more than artificial
subdivisions of a single continuous spectrum” (Borovik
2005, p. 1).

Where we may take justifiable delight in the ‘horizontal’ unity
provided by far-flung analogies between apparently different fields,

[t]he vertical unity of mathematics, with many simple
ideas and tricks working both at the most elementary and
at rather sophisticated levels, is not so frequently
discussed – although it appears to be highly relevant to
the very essence of mathematics education. (Borovik
2005, p. 10)



Analogies between logic and arithmetic

If we assign the values 1 to True and 0 to False, then forming the
conjunction (“and”) of two propositions, the resulting truth value
is formed very much as a product of numbers chosen from {0, 1} is
formed:

I Unless both values are 1, the product will be 0.

I Unless both truth values are True, the truth value of the
conjunction will be False.

It is natural then to wonder if the disjunction (“or”) of two
propositions corresponds to addition. Here things don’t appear to
work out precisely. In the case of ‘True or True’, we seem to be
dealing with an addition capped at 1.



Implication

I (A ∧ B)→ C is True if and only if A→ (B → C ) is True.

I c(a×b) = (cb)a

A proof of an implication is a mapping of proofs. Very much the
approach of Martin-Löf and Dummett.

Similarly, these arithmetic quantities measure the cardinalities of
sets of functions.



I We can explain this analogy via Type theory.

I Basic judgements involve declaring something to be of a
certain type, a : A, and declaring of two elements of a type
that they are equal, a = b : A.

I Intensional type theories add the twist that an identity is not
just a proposition but a type in itself IdA(a, b).

I Propositions are then taken as a certain kind of type
(sometimes called ‘mere propositions’ when proof irrelevance
assumed).



We have a hierarchy of types:

... ...
2 2-groupoid
1 groupoid
0 set
-1 mere proposition
-2



An important part of Martin-Löf type theory is the notion of a
dependent type, denoted

x : A ` B(x) : Type.

Here the type B(x) depends on an element of A, as in

I Days(m) for m : Month

I Players(t) for t : Team



It’s helpful to have in mind the imagery of spaces fibred over other
spaces:

Two useful constructions we can apply to these types are
dependent sum and dependent product: total space and sections.



In general we can think of this dependent sum as sitting ‘fibred’
above the base type A, as one might imagine the collection of
league players lined up in fibres above their team name.

Likewise an element of the dependent product is a choice of a
player from each team, such as Captain(t).



Dependent sum Dependent product∑
x :A B(x) is the collection of

pairs (a, b) with a : A and b :
B(a)

∏
x :A B(x), is the collection of

functions, f , such that f (a) :
B(a)

When A is a set and B(x) is a
constant set B: The product
of the sets.

When A is a set and B(x) is
a constant set B: The set of
functions from A to B.

When A is a proposition and
B(x) is a constant proposi-
tion, B: The conjunction of
A and B.

When A is a proposition and
B(x) is a constant proposi-
tion, B: The implication A→
B.



I Consider the case where A is a set, and B(a) is a proposition
for each a in A.

I Perhaps A is the set of animals, and B(a) states that a
particular animal, a, breathes.

I Then an element of the dependent sum is an element a of A
and a proof of B(a), so something witnessing a breathing
animal.

I Meanwhile an element of the dependent product is a mapping
from each a : A to a proof of B(a).

I There will only be such a mapping if B(a) is true for each a.

I If this were the case, we would have a proof of the universal
statement ‘for all x in A, B(x)’, in our example, ‘All animals
breathe.’



I Returning to the dependent sum, this is almost expressing the
existential quantifier ‘there exists x in A such that B(x)’,
except that it’s gathering all such a for which B(a) holds, or,
in our case, gathering all breathing animals.

I As we have seen before in the capped addition of the Boolean
truth values in a disjunction, to treat this dependent sum as a
proposition, there needs to be a ‘truncation’ from set to
proposition, so that we ask merely whether this set is
inhabited, in our case ‘Does there exist a breathing animal?’

I This extra step should be expected as existential
quantification resembles forming a long disjunction.

I That we don’t need to adapt for universal quantification
tallies with the straightforward form of the product of Boolean
values.



The bottom line is that homotopy type theory for the lower levels
of the hierarchy encapsulates:

I Propositional logic

I (Typed) predicate logic

I Structural set theory

It is a structural theory par excellence. It seems impossible to say
anything more by speaking of ‘the structure of A’ or ‘places in the
structure of A’.



Constructivity

I Unless otherwise specified, HoTT adopts a constructive
outlook.

I But there’s no difficulty in adding in classical principles if
these are required.

I However, then one loses computational benefits, interpretation
in wider range of settings, etc.



Variants

I Plain HoTT

I Cohesive HoTT

I Directed HoTT

I Linear HoTT



What to do then?

I Give a historical/relativised a priori/Dynamics of Reason style
account of what’s happening?

I Redo analytic philosophy (language, metaphysics, etc.) with a
much better formalism.



Given a plain type, A, we can turn any type C into one dependent
on A by formulating x : A ` (A× C )(x) := C . If A and C are sets,
think of lining up a copy of C over every element of A, the product
of the two sets projecting down to the first of them, A× C → A.

Now, we can think of approximating an inverse to this process,
which would need to send A-dependent types to plain types. Such
approximations, or adjoints do indeed exist. Left adjoint to this
mapping is dependent sum, and right adjoint is dependent product.
The fact that these are adjoints may be rendered as follows, for B
a type depending on A:

I HomC(
∑

x :A B,C ) ∼= HomC/A(B,A× C )

I HomC(C ,
∏

x :A B) ∼= HomC/A(A× C ,B)



Were these A, B and C sets, then their cardinalities would satisfy:

I c
∑

i bi =
∏

i c
bi

I (
∏

i bi )
c =

∏
i (bi )

c

So a pupil being taught that, say, 35 × 75 = 215 is being exposed
to the shadow of an instance of an important adjunction, which in
turn, as with all of the discussion above of dependent sums and
products, works for types up and down the hierarchy of n-types.



I In homotopy type theory, the way to express that a set, A, is
acted on by a group, G , is to write it as a dependent type
∗ : BG ` A(∗) : Type.

I The type BG is a version of the group G , but where we’re
taking it to be a single object with looping arrows labelled by
each group element.

I Applying the dependent sum construction from the last
section, we find that

∑
∗:BG A(∗) is a type with structure that

of the action groupoid, which should indicate to us that the
concept is a fundamental one.

I Similarly we can form the dependent product, which in this
case is composed of the ‘fixed points’ of the action, those
elements of the set left unchanged by all elements of the
group.


