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1. Introduction

There is confusion afoot as to what the practice-oriented philos-
ophy of mathematics is about. What are its practitioners trying to
achieve? If they succeed, why should we take these achievements
to be philosophical? What is clear is that philosophers of this stripe
take the case study, some description of an episode in the history of
mathematics, whether ancient or recent, as a central component of
their work. But what then are these case studies for? In that they
describe pieces of real mathematics in favourable or unfavourable
terms, passing judgment on them, these philosophers seem to be
interfering in mathematicians’ own affairs. In that they describe
mathematical practice detachedly, aren’t they merely engaging in
an observational practice, like a historian or a sociologist?

Recognising some justice in the charge that we have not made
ourselves plain, I would like here to explain more clearly what I
take myself to be trying to do. My starting point is the observation
that the ways in which mathematical activity is regimented have
undergone considerable reforms through the course of the history
of the discipline. One cannot do in the twenty-first century what
was done in the seventeenth or nineteenth centuries. This is not
merely a question of adopting acceptable levels of rigour. It is also
a question of how one is living the life of a mathematician, how one
is contributing to a living practice of intellectual enquiry which has
ll rights reserved.
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absorbed many of the finest minds since antiquity, and perhaps
staking a claim for one’s work to be included within a future his-
tory of mathematics. Now, if we take these changes in the way
mathematical activity is assessed to be at least partially justifiable,
we should be able to understand both the reasons for these
changes and how they are good reasons.

A second observation, which lends importance to mathematics
as a discipline, is that while there are significant reformations of
practice and reformulations of theory, there is also a substantial
conservatism. The position Euclidean geometry holds in the body
of mathematics may be very different these days from the time
of Euclid, for instance, due to Felix Klein, we have had a view of
it for well over a century as concerning the properties preserved
by a certain group of transformations, but still Pythagoras’s theo-
rem holds true within that geometry. The Babylonian recipe for
finding the positive root of a type of quadratic equation still works
four millennia later, even if it is now a very elementary part of
algebra. There is a something of which mathematics is the study
and of which we are gaining a clearer understanding. Mathemati-
cians’ minds are becoming more adequate to their object. They
know better the nature of space and quantity, and the nature of
our minds’ understanding of space and quantity (see Cartier
(2001) and Lawvere (2005)). Mathematics as a discipline thus re-
veals itself to be a vibrant tradition of intellectual enquiry, where
oalgebra. Studies in History and Philosophy of Science (2011), doi:10.1016/
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radical transformation of conception is possible, but only accept-
able once it has passed the severest test of making sense of centu-
ries of earlier work while casting new light into the murky fringes
of our current understanding.

As philosophers, in what relation do we stand to this living
tradition if neither external observer nor director of operations?
An intermediate position for the philosopher is one Collingwood
tried to capture in his 1935 letter The Present Need of a
Philosophy.

If the philosopher is no pilot, neither is he a mere spectator,
watching the ship from his study window. He is one of the
crew; but what, as such, is his function? (Collingwood, 1989,
p. 167)

His answer is that philosophy may provide ‘reasoned conviction’
concerning the desirability and feasibility of certain projects. The
project which concerns him in the letter, as is fitting for someone
writing in the 1930s, is no less than that of bringing about improve-
ments in human relations: ‘‘personal and social morality, economic
organization, international relationship.’’ The philosopher is to pro-
vide reasoned conviction that ‘‘progress is possible and that the
problems of moral and political life are in principle soluble’’. I set
myself the easier task of providing reasoned conviction that pro-
gress in mathematics is possible and desirable. It may seem that
this is a modest task in view of the widely acknowledged success
of mathematics, but there is much about the nature and value of
this success that is not widely understood and as such needs to
made explicit.

To address these issues we must steep ourselves in allusive
episodes from the history of mathematics. Our case studies must
convey aspects of the experience of reasoning like a mathemati-
cian. A problem then ensues. If one is to reconstruct the complex
thought processes of mathematicians, one must enjoy their work
in something approximating the way they enjoy it themselves.
Also one must write in a way that makes readers want to catch
enough of the drift of the mathematical thought to appreciate
what is going on. Since case study material requires a consider-
able investment of time on the part of the reader to discern its
salience, they may well make the economic decision to pass that
work by. It is tempting then to write in a way which makes one
appear to be a passionate advocate for that thought, acting as
though the reader would be a fool to leave it aside. However,
as I have said, it is not our primary purpose to act as advocate
for a particular theoretical and practical outlook, but rather to
make a study of wherein the rationality of the reformation of out-
look resides. Our case studies will have to be carefully chosen to
allow easiest access to deep waters.

Now the way I have phrased the topics of study as the regula-
tion and reformation of the activity of a community would suggest
I take it to be a political matter. I would have no objection to this
characterisation. For one thing, it will allow me to borrow from
Collingwood again.

The progress of a people from a primitive to an advanced polit-
ical condition, therefore, is not the imposition of order on what
was once orderless. It is the substitution of one order for
another; and (so far is it from being true that evolution intro-
duces heterogeneity and complication into a previously homo-
geneous world) a civilized political system, like a civilized
grammar, is often far less complicated than a barbaric. What,
then, is the criterion of political progress? On what principle
do people adopt a new political system as better than one
already in existence? . . . When the political spirit of a society
is no longer satisfied with its existing structure, no longer finds
that structure to express its own political aspirations, it alters it.
(Collingwood, 1989, p. 102)
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We should be interested, then, in situations where an intellectual
community is no longer satisfied with a conceptual framework,
when it finds it insufficient to express its thought.

The case material for this paper, chosen to show how mathe-
matical aspirations could find new expression, goes by the name
coalgebra. This choice has the advantage that, as I shall explain la-
ter, an earlier part of the story has already appeared in the prac-
tice-oriented literature. First, then, we shall need to understand
the nature of coalgebra, which, as its name suggests, is defined
by its relation to algebra. Of course, the term ‘algebra’ does not pick
out a static body of theories. Corry’s study (2007) amply illustrates
this fact for the period from 1890 to 1930, where a huge transfor-
mation in what is counted as algebra takes place. So coalgebra is a
dual to algebra in a very specific recent sense of the term, one
which owes much to a category theoretic outlook. But even if the
formulation of coalgebra requires a recent theoretical framework,
this does not mean we should neglect possible earlier foreshado-
wings. So a second point to address in this paper is whether or
not coalgebraic ways of thinking are to be glimpsed in the past. Fi-
nally, to the extent that we recognise coalgebra as a viable enter-
prise, we may wonder what would be at stake in considering it
to be not the less well-known cousin of algebra, but as of no less
importance than algebra itself. We begin with an exposition of ba-
sic examples from coalgebra, contrasting them with their dual
algebraic constructions.

As we shall see, computer scientists have been drawn to coalge-
bra partly because of the resources it provides to represent infinite
data structures. One aim of this paper is to provide evidence to the
reader that conceptual reformulation of such a basic concept as
that of infinity continues outside of set theory, and its inaccessible
and Woodin cardinals. This paper is the second of a pair which
treats new ways of thinking about infinite structures as directly
concerning the working mathematician and computer scientist.
The first of these papers (Corfield, 2011) looks at the robustness
of infinite structures defined by universal properties.

2. Coalgebra versus algebra

In recent years we hear powerful claims from the keyboards of
theoretical computer scientists that a new world of mathematics is
being opened up. Here are two such claims, the first taken from a
conference announcement,

Over the last two decades, coalgebra has developed into a field of
its own, presenting a mathematical foundation for various kinds
of dynamical systems, infinite data structures, and logics. Coalge-
bra has an ever growing range of applications in and interactions
with other fields such as reactive and interactive system theory,
object oriented and concurrent programming, formal system
specification, modal logic, dynamical systems, control systems,
category theory, algebra, analysis, etc. (CMCS10, 2010)

the second from an as yet unfinished draft of a textbook,

The area of coalgebras has emerged with a unifying claim. It
aims to be the mathematics of computational dynamics. It com-
bines notions and ideas from the mathematical theory of
dynamical systems and from the theory of state-based compu-
tation. The area of coalgebra is still in its infancy, but promises a
perspective on uniting, say, the theory of differential equations
with automata and process theory, by providing an appropriate
semantical basis with associated logic. (Jacobs, n.d., p. iii)

Interestingly enough, this logic is taken to be that favourite of phi-
losophers—modal logic. Coalgebra is seen as the right way of formu-
lating it and extending its scope in a way suitable for computer
science.
oalgebra. Studies in History and Philosophy of Science (2011), doi:10.1016/
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Coalgebras are simple but fundamental mathematical struc-
tures that capture the essence of dynamic or evolving systems.
The theory of universal coalgebra seeks to provide a general
framework for the study of notions related to (possibly infinite)
behavior such as invariance, and observational indistinguish-
ability. When it comes to modal logic, an important difference
with the algebraic perspective is that coalgebras generalize
rather than dualize the model theory of modal logic. Many
familiar notions and constructions, such as bisimulations and
bounded morphisms, have analogues in other fields, and find
their natural place at the level of coalgebra. Perhaps even more
important is the realization that one may generalize the concept
of modal logic from Kripke frames to arbitrary coalgebras. In
fact, the link between (these generalizations of) modal logic
and coalgebra is so tight, that one may even claim that modal
logic is the natural logic for coalgebras—just like equational
logic is that for algebra. (Venema, 2007, p. 332)

To give the definition of a coalgebra we have no choice but to intro-
duce some category theory. Readers with little knowledge of the
subject need not be alarmed since its use will be very light. In
any case, if they have a serious interest in understanding contempo-
rary mathematics they will have to learn category theory sooner or
later. If the coalgebraic community are right in their sense of the
importance of their movement, this can only enhance the case of
the broader category theoretic community. On the other hand, that
it is necessary for coalgebraicists to use category theory may incline
us to believe in the novelty of coalgebra, category theory itself aris-
ing in the 1940s. Having said this, let’s at least admit the possibility
that while the rendition of coalgebra by category theory was neces-
sary for it to be presented as a unified field, that fragments of this
way of thinking are of considerably older date.

The ingredients of a coalgebra are simple. We need a category,
and for our purposes we shall largely consider Set, the category
whose objects are sets and whose arrows are functions. We also
need an endofunctor, which is something that will systematically
map sets to other sets, so that a function f : X ? Y gets sent to a
function between the images of X and Y.

Take the functor which acts on a set by adding to it a single ele-
ment, or, in other words, which forms the disjoint union of the set
with a singleton, let us say {⁄}. How this functor acts on functions
should be clear. Let us designate this functor F(X) = 1 + X. Then F(f)
is a function from 1 + X to 1 + Y, which operates as f on X, and
which sends ⁄ to ⁄.

Now another definition: an algebra for this functor F is merely a
choice of a set X and a function f : F(X) � 1 + X ? X. The value of f on
⁄ is an element of X, and f also maps the set X to itself. In other
words, the choice of f corresponds to the choice of a constant in
X and of a unary operation on X. There are clearly very many
choices of algebra for F. However, one stands out as special

s : 1þN! N; where sð�Þ ¼ 0; and sðnÞ ¼ nþ 1:

The natural numbers with the zero constant, 0, and the successor
function, s, is indeed special. It is the initial object in the category
of F-algebras. This means that for any other F-algebra there is a un-
ique algebra morphism to it from N. While this phrasing may be
unfamiliar to readers, who may be wondering what has been
gained, the property of initiality is a powerful one, having as conse-
quences others which may be much more familiar.

Indeed, the ordinary principle of mathematical induction is
equivalent to the fact that there is no smaller subalgebra of N, a
general property of initial algebras being that injections be isomor-
phisms. In other words, we cannot carve out a subset of N with the
properties that it contains 0 and for every number its successor,
without capturing all of the natural numbers. On the other hand,
when we use a recursive definition to define a function we are
Please cite this article in press as: Corfield, D. Understanding the infinite II: C
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relying on the unique existence of an arrow out of N. So I can de-
fine a function indexed by the natural numbers by specifying an F-
algebra. There is such an algebra f : 1þN! N, with f(⁄) = 1 and
f(n) = 3n. The unique arrow to this algebra tells us of the existence
of a recursively defined function g(0) = 1 and g(s(n)) = 3g(n), that is,
g(n) = 3n.

There is always the danger when one reassures readers that a
new construction they have learned entails a range of things they
already knew, that they will wonder about the point of putting
old wine in new bottles. In this case we could point to the re-
sources within this framework of a systematic understanding of
induction so that other examples of initial algebras give rise to
their own variant kinds of induction and recursion, for example,
on lists or trees. We shall focus instead, however, on how
formulating things this way has also given rise to a dual theory,
that of terminal or final coalgebras, leading to coinduction and
corecursion.

So let’s now take our first look at the opposite kind of mathe-
matics, coalgebra. We shall start with the same functor as above
F(X) = 1 + X, but this time we look for coalgebras of F. One of these
is a set T with a function g, g : T ? 1 + T � F(T). The arrow has been
reversed. When fed an element of T, g either returns with an ele-
ment of T or with ⁄. We can think of this as a partial function from
T to itself. Where g is undefined it results in output ⁄.

Again there’s a special coalgebra for this functor, namely the fi-
nal or terminal coalgebra. In this case it is the so-called extended
natural numbers, N � N [ f1g. The coalgebra function from N to
1þN is predecessor,

predðnÞ ¼
� if x ¼ 0
n� 1 if x ¼ n > 0
1 if x ¼ 1:

8><
>:

A way of illustrating the semantics of coalgebras is via the no-
tion of a black box. In this case the box has an inaccessible internal
state. Every time I press a button, either the box shows a green
light or else a red light. If the green light is shown, I can press
the button again, the machine whirrs away and again either shows
red or green. If it shows red however, the machine has frozen and
no further response occurs. The final coalgebra represents all pos-
sible distinct behaviours, here the number of times green shows
before the machine freezes on red. It is possible that this will never
happen, so we include1 as a possible behaviour. The predecessor
function maps the behaviour of a machine to the same behaviour
where the first light is discounted. For finite positive numbers this
results simply in reducing the number by one. It is undefined on
zero, and it leaves 1 unchanged.

Perhaps we can begin to glimpse why some computer scientists
are so excited about coalgebra, sensing that it will provide them
with models for their systems. Think of a computer running an
operating system. In certain respects it seems hard to understand
it as a Turing machine calculating an output from a completely
specified input given to it before it starts functioning. Instead we
tell our computers to open new programs and to connect to other
machines while performing a range of other functions. Our com-
puter continually adjusts itself to our demands as new instructions
are piled on. It could not wait until the input is complete since it
could not know when this had happened.

Now we can look for consequences of terminality dual to induc-
tion and recursion. Well, we know that every F-coalgebra has a un-
ique map to N, as a terminal coalgebra, and this allows for
corecursion. On the other hand, every surjection out of N must
be an isomorphism, and this is coinduction. Let’s illustrate these.
We can use corecursion to define addition for extended natural
numbers by specifying a function to make N�N into a coalgebra
which will force the unique morphism to the final coalgebra to
oalgebra. Studies in History and Philosophy of Science (2011), doi:10.1016/
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be the addition we want. So we define k : N�N! N�Nþ 1, such
that

kðn;mÞ ¼
ðpredðnÞ;mÞ if n – 0
ðn; predðmÞÞ if n ¼ 0; m – 0
� if n ¼ m ¼ 0:

8><
>:

The idea to keep in mind is that we are defining as output a pair of
extended naturals whose sum is the predecessor of that of the in-
put, unless both inputs are zero in which case the output is ⁄. We
have then an F-coalgebra, so we know that there must be a coalge-
bra function from N�N to N. If you follow things through, you will
be able to see that this is the desired addition, agreeing with stan-
dard addition for finite natural numbers.

Then we can use coinduction to show that this extended addi-
tion is commutative. We just need to show a so-called bisimulation
R for which (n + m)R(m + n). The way to think of a bisimulation is as
a relation which pairs together entities which behave in the same
way. As we know there can be no surjection out of N which sends
distinct elements to the same place—it is as coarse as it can be—any
bisimulation must be contained within the identity relation. All we
need do then to establish an identity between terms denoting ele-
ments of N is to find a relation between them, such that when the
coalgebra function is applied the respective outputs are still re-
lated. This is possible for sums written in both orders.

A very important characteristic of initial algebras and terminal
coalgebras is that they are fixed points for their functors, that is,
isomorphic to their images, and indeed they are least and greatest
fixed points respectively. Let’s now consider some other algebras
and coalgebras. Take the functor F(X) = 1 + A � X, for a fixed set A.
Searching for the least fixed point, we put in as little as possible.
So we build up in stages from the empty set, taking any existing
set of lists to a new set which includes the empty list and all lists
generated by adding an element of A to the old lists. All finite lists
of A elements are generated this way and nothing else, so these
lists form the elements of the initial algebra for F. But a larger set
is fixed by F, namely, the set of A-streams, or finite and infinite lists
of A elements. This in fact is the final coalgebra.

Again, coalgebras are about observation. We can think of a coal-
gebra f : X ? 1 + A � X as observing about an entity whether it con-
tains something A-detectable or not, and if so which element of A it
detects. Having observed something it modifies it. The final coalge-
bra has as elements all possible outcomes of the behaviour you
might observe. Do you still have observations to add as list ele-
ments? If ever no, we have a finite list. If always yes, we have an
infinite list. And there’s no other behaviour that can be detected.

Imagine we have a function d : A ? A, and we want to extend it
to d0 which acts on a list of elements of A to give the list of the
members’ images. Doing things the algebraic-recursive way, we
need to define d0 on the constructors, that is on the empty list,
and on a list r0 which is a :: r. First, we want that d0 of the empty
list be the empty list. Second, we want d0(a :: r) = d(a) :: d0(r). Now
extending d to A-streams the coalgebraic-corecursive way, we
need to define d0 on the destructors, d0(r) = d(head(r)) :: d0(tail(r)),
if r is not empty, otherwise d0(r) is empty. In general, if the func-
tion to be specified appears in the term defining it, use of the induc-
tion principle requires that repeated unfolding of the definition
makes the arguments smaller and smaller, whereas use of the
coinduction principle requires that more and more information
about the result can be generated.

Let me give a flavour of some of the other regularly used
coalgebras.

� X ? F(X) = D(X), the set of probability distributions on X:
Markov chain on X.
� X ? F(X) = P(X), the powerset on X: Binary relation on X.
Please cite this article in press as: Corfield, D. Understanding the infinite II: C
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� X ? F(X) = XA � B: Deterministic automaton.
� X ? F(X) = P(XA � B): Nondeterministic automaton.
� X ? F(X) = A � X � X, for a set of labels A: labelled binary trees.

Coalgebra might be said to lie more on the side of semantics. Coal-
gebras are models for types of transition systems. We must know
the possibilities for movement from one state of the system to
another. Here we can see the connection with modal logic. Possible
worlds models for a modal theory are based on the idea of a collec-
tion of worlds with an accessibility relation defined on it. In other
words, possible worlds form a coalgebra for the powerset functor
(see Cîrstea et al., 2011).

By contrast there is a syntactical flavour to algebra. I can define a
language in terms of basic terms in a set X and constructors,
elements of a signature operating on tuples of elements of X to gen-
erate new terms. The full language is then closed under term con-
struction. It is a minimal fixed point, containing constructed terms
and only these. The language may contain infinitely many terms,
and yet each term is constructed from finitely many symbols.

3. Finsler, Aczel and non-well-founded sets

So we have a duality between, on the one hand, the algebraic
syntax of terms constructed from primitives and operators, and,
on the other, coalgebraic models of systems and the observations
we can make on them, which may be thought of as a kind of
destruction. This raises the question of why the explicit appearance
of coalgebra occurred so late in the day. Mathematics has sought to
provide methods for physics in which we model dynamical sys-
tems and their observability. Why haven’t we seen coalgebra be-
fore now? To give an adequate response to this question we
need to dive back into the past.

One landmark in the history of coalgebra was the book Non-
well-founded Sets published by Peter Aczel in 1988. In this book Ac-
zel shows us that it is possible to work with a set theory which al-
lows for sets flouting the Axiom of Foundation. Recall that this
axiom states that no set can have an infinitely long membership
chain. In other words, there is no infinite path along branches from
the root in a set’s membership tree. By contrast, non-well-founded
sets allow for infinitely extended trees. But we’ve seen that possi-
bly infinite data structures such as trees are often elements of a
terminal coalgebra. And indeed we find this to be the case here.
In the most recent formulation of the approach, known as algebraic
set theory (Awodey, 1998), we take as category, V, the category of
all classes. Now upon the category of all classes there acts an endo-
functor which maps a class to the class of all subsets of elements of
that class. Note that I specified ‘subset’ rather than ‘subclass’. A
general rule is that no thingie will be the same ‘size’ as the collec-
tion of its subthingies. But as we’re only gathering together subsets
from a class it is possible we may have a fixed point, and indeed we
do, with two extreme cases corresponding to an initial algebra and
a terminal coalgebra. The initial algebra is the class of all well-
founded sets; the terminal coalgebra is the class of all non-
well-founded sets. We can think of the latter as a system where
for any state, that is, set, we can destroy it to yield a set of sets.
We can represent the set as an infinite tree—each node represents
a set and it has a set of branches emerging from it corresponding to
its elements. Now we see the resemblance with the previous
section. Well-founded sets don’t allow for infinitely deep trees just
as the elements of the initial algebra for X ? A + A � X � X are finite
labelled binary trees.

But what is the motivation for this work? Well, Aczel had drawn
inspiration from computer science:

The original stimulus for my own interest in the notion of a
non-well-founded set came from a reading of the work of Robin
oalgebra. Studies in History and Philosophy of Science (2011), doi:10.1016/
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Milner in connection with his development of a mathematical
theory of concurrent processes. (Aczel, 1988, p. xix)

Non-well-founded sets were then used after Aczel published his
book in attempts to model situations semantics (Barwise and Moss,
1996), where circular situations can occur, that is, when a situation
includes facts about that same situation. Perhaps then we could say
that coalgebraic thinking owes its origins wholly to strands within
cognitive science. However, Aczel was aware that he was also tap-
ping into a mainstream mathematical way of thinking. Both kinds of
extremal reasoning, the algebraic minimal and the coalgebraic max-
imal, occur in mathematics:

Thus, in the case of the axiom system for the natural numbers,
the extremal axiom is the principle of mathematical induction,
which is a minimalisation axiom, as it expresses that no objects
can be subtracted from the domain of natural numbers while
keeping the truth of the other axioms. The axiom systems for
Euclidean Geometry and the real numbers involve on the other
hand completeness axioms. These are maximalisation axioms;
i.e. they express that the domain of objects cannot be enlarged
while preserving the truth of the other axioms. (Aczel, 1988, p.
106)

I shall take up the real numbers in the next section.
Aczel also observes that debates around the Axiom of Founda-

tion go back to the Foundational Crisis. When he proposes his
own anti-foundation axiom, AFA, he discusses it in relation to other
such axioms, including FAFA (for Paul Finsler) and SAFA (for Dana
Scott). He notes that

Although Fraenkel’s idea of a minimalising extremal axiom for
set theory failed to give rise to a categorical axiom system it
led eventually to the formulation of FA. It is in (Finsler, 1926)
that we see a formulation of an axiom system for set theory
using an extremal axiom of the dual character of a maximalising
axiom. This also fails to be a categorical axiom system having
similar difficulties to Fraenkel’s extremal axiom. Finsler appears
to have been unresponsive to the criticisms of his idea. (Aczel,
1988, p. 107)

He also poses the problem of accounting for the fact that Finsler’s
ideas were neglected for so long.

It is surprising that it has taken over 50 years for this ‘‘success’’
to come about, whereas Fraenkel only had to wait a handful of
years. (Aczel, 1988, p. 107)

Let’s look a little further into this matter. Paul Finsler is the mathe-
matician known perhaps best for his generalised geometry, but he
also worked on foundational questions concerning sets. His influ-
ence on twentieth century set theory, at least before Aczel, has been
rather limited however due to the perception that his theory had
been shown to be inconsistent. This turns out to be a mistake as
we shall see. This story won’t be new to anyone who has read Rev-
olutions in Mathematics (Gillies, 1992), because contained in this
volume is a chapter by Herbert Breger on Finsler’s set theory, ‘A Res-
toration that Failed’ (Breger, 1992).

In this chapter, Breger is illustrating what he sees as the shape
of a revolution. The revolutionary in his case study, however, is not
Finsler but Hilbert. For Breger, it is Hilbert who introduces a new
style of axiomatisation, which he and his followers have the task
of passing off as always having been there. Finsler, he argues, con-
tinues in what he takes to be an older tradition, and indeed at-
tempts to restore it. For Finsler, the axiomatiser is trying to
capture some existing system by specifying features of the field
sufficiently fully that the maximally large system which meets
the specifications is the desired one. The system of all sets was cer-
tainly something to be captured in this way. So, rather than worry
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about the set theoretic paradoxes by controlling their construction,
building them bottom up from the empty set and various construc-
tions while maintaining consistency, instead Finsler defines the
system of sets to be that collection which is maximal with respect
to certain properties.

Breger tells us the story of how by 1928 Finsler’s approach was
thoroughly misunderstood, allowing Reinhold Baer to dismiss Fins-
ler’s set theory as inconsistent in a four page paper. Baer showed that
any system satisfying Finsler’s axioms can be extended, hence that
there is no maximal such system. But in doing so he was using differ-
ent rules of set formation from Finsler. Baer’s strategy was to con-
sider a system of sets, R, satisfying Finsler’s axioms, then adjoin to
this system the set N consisting of every set A of R which is not an
element of itself. According to Baer the new system is a larger system
satisfying Finsler’s axioms. But why should N be considered a set?

To Zermelo, Fraenkel, Baer, and others, the idea of definite prop-
erty is inseparably connected with the notion of set, the under-
lying philosophy being that well-formed definitions create the
object. (Breger, 1992, p. 261)

Finsler did not accept this rule and was left to face a lonely battle.
We hear about him still writing in 1969, the year before his death,
on how the continuum hypothesis remains open in his set theory, in
what he calls ‘classical mathematics’. That so many decades had to
pass before what was valuable in Finsler’s work could be appreci-
ated by someone else may cause us to reflect on the lack of flexibil-
ity of thought that may afflict a discipline. On the other hand,
perhaps we could say that a formal apparatus for dealing with max-
imal axioms had first to become available.

Something in Baer’s argument may remind the reader of the
argument against omnipotence. If God is all powerful, why can’t
he make something so vast that he is unable to move it? The objec-
tor here imagines that merely writing down a well-formed power
property entails that a maximally powerful being would have to
possess it. The Finslerian version would look to describe a being
with logically consistent properties which is maximally powerful.
Just because you can set down in words a power which is inconsis-
tent with other powers, here the power to make something too
large for you to move, does not mean that a maximally powerful
being should possess it. It may happen however that there is no
way to form a unique maximal system, just as not every functor
gives rise to a terminal coalgebra.

This metaphysical aside resonates with Breger’s observation
that

To the revolutionary, the most striking difference between
Zermelo’s and Finsler’s axioms is the certain ontological flavour
of Finsler’s axioms. To the conservative, the philosophical back-
ground of Zermelo’s axioms is the implicit assumption that sets
do not exist unless they can be derived from given sets by axi-
omatically fixed rules. Axiom 3 [the axiom of completeness] is
of particular interest. It is the analogue of Hilbert’s somewhat
problematic axiom of completeness for geometry. Weyl and
Fraenkel purposefully took the contrary into consideration,
namely an axiom of restriction postulating the minimal system
which fulfils the other axioms. Weyl’s and Fraenkel’s axiom is
obviously motivated by the revolutionary idea that axioms
and definitions create objects, and that sets which are too big
should not be brought into existence, whereas Finsler’s axiom
of completeness is motivated by the conservative idea that big
sets exist anyway, so set theory should investigate them.
(Breger, 1992, pp. 258–259)

Let us remind ourselves of Hilbert’s completeness axiom:

V.2: Line completeness. To a system of points, straight lines, and
planes, it is impossible to add other elements in such a manner that
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the system thus generalized shall form a new geometry obeying all
of the five groups of axioms. In other words, the elements of geom-
etry form a system which is not susceptible of extension, if we
regard the five groups of axioms as valid.

If it strikes the reader as odd that Hilbert should be both instrumen-
tal in the axiomatisation of set theory in the minimal fashion, and,
as the axiomatiser of Euclidean geometry, ready to use maximal
axioms, then it should be observed that one can perfectly well de-
fine maximal axioms in a minimally defined set theory. As for
why he felt obliged to define his foundational system in minimal
terms, perhaps this reflects the burning issue of the consistency of
mathematics in toto. Breger writes

The different philosophical backgrounds imply different conse-
quences for the consistency topic. The consistency of arithmetic
and Euclidean geometry had not been a problem as long as the
Platonistic interpretation of the objects had been self-evident.
(Breger, 1992, p. 259)

But while this interpretation satisfied Finsler, who never saw the
need for a minimal-axiomatisation of set theory, Hilbert was suffi-
ciently concerned by what mathematicians of the turn of the nine-
teenth century had discovered about potential inconsistency that he
wanted to provide such an axiomatisation.

A striking lesson we learn from this episode is how what appear
to be irreconcilable metaphysical differences end up becoming rec-
oncilable mathematical differences: Finsler’s sets as the terminal
coalgebra and Hilbert and followers’ sets as the initial algebra for
an endofunctor on the category of classes. A similar kind of meta-
physical deflation occurred in the case of quaternions. Recall the in-
tense Kantian and Coleridgean metaphysical motivation behind
William Hamilton’s drive to reformulate mathematical physics in
quaternionic terms. The quaternions today have their place in the
family of normed division algebras, and find applied usage in com-
puter graphics applications, but without bearing the huge responsi-
bility with which Hamilton wanted to burden them. Similarly we
can happily live with the coexistence of minimal-algebraic and max-
imal-coalgebraic thinking in contemporary mathematics.
4. Coalgebraic reals and analysis

Any time there is a representation of a mathematical entity as
composed of elements which are completed infinities of some kind,
this may be a candidate for coalgebraic reformulation. If that entity
is also maximal in some sense, it is very likely. Now we have already
seen Aczel point out the real numbers as a maximally complete kind
of system, and of course real numbers may have infinitely long
expansions, but it took until the late 1990s for someone to put the
reals in a coalgebraic setting. Then Peter Freyd discovered that the
real interval [0, 1] is indeed a coalgebra and announced it in a note
to a web-based discussion group (Freyd, 1999). Let C be the category
of bipointed sets, by which we are to understand sets X equipped
with two distinct basepoints x�, x+. You can wedge together any
two bipointed sets X and Y to form a new bipointed set X _ Y. In
the act of wedging we are to identify x+ and y�, and take as the
two named points of the new set x� and y+. Then this operation is
an endofunctor W : X ´ X _ X of C. Moreover, we have that

� The initial W-algebra is the set of dyadic rationals in [0, 1], with
0 and 1 as basepoints.
� The terminal W-coalgebra is the set [0, 1], again with the end-

points as basepoints.

Here dyadic rational means a rational whose denominator is a
power of 2. In other words the initial algebra consists of all num-
bers in [0, 1] with finite binary (as opposed to decimal) expansions,
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0 � b1b2 � � � bn, whereas the terminal coalgebra consists of all num-
bers in [0, 1] with any (possibly infinite) binary expansions,
0 � b1b2 � � � , where certain identifications take place, for example,
so that 0 � 1111 � � � = 1.

As for the whole set of real numbers, no-one has yet described
this in coalgebraic terms. Freyd, however, has developed an ‘alge-
braic real analysis’ in a paper of that name (Freyd, 2008), and
claims there that [0, 1] is the more fundamental object.

For reasons that can easily be considered abstruse we were led
to the belief that the closed interval–not the entire real line–is
the basic structure of interest. (Freyd, 2008, p. 215)

Freyd goes on to develop a real analysis using this coalgebraic char-
acterisation of the reals. It is interesting to read Freyd describe how
what he ‘‘needed was someone to kick me into coalgebra mode’’.
This idea that coalgebra requires a shift in thinking is echoed by
Bart Jacobs:

The author’s experiences in lecturing about coalgebras is that
the material in itself is usually not seen as difficult, but that it
takes a subtle change of view (with respect to the traditional
algebraic approach) to be able to appreciate, recognise and
apply the coalgebraic notions and techniques. (Jacobs, n.d., p. 2)

The ‘kick’ Freyd received came from a paper by Pavlović and Pratt
(1999)—‘On Coalgebra of Real Numbers’. The first of these authors
had also worked on casting the calculus in coalgebraic form. Let’s
see now how we might have foreseen coalgebra cropping up in this
basic field of mathematics. In a paper with Escardó, entitled ‘Calcu-
lus in Coinductive Form’, the authors write:

Coinduction is often seen as a way of implementing infinite
objects. Since real numbers are typical infinite objects, it may
not come as a surprise that calculus, when presented in a suit-
able way, is permeated by coinductive reasoning. What is sur-
prising is that mathematical techniques, recently developed in
the context of computer science, seem to be shedding a new
light on some basic methods of calculus.

We introduce a coinductive formalization of elementary calcu-
lus that can be used as a tool for symbolic computation, and
geared towards computer algebra and theorem proving. So
far, we have covered parts of ordinary differential and differ-
ence equations, Taylor series, Laplace transform and the basics
of the operator calculus. (Pavlović and Escardó, 1998, p. 408)

The trick here is to see Taylor series for real functions as streams of
coefficients. For example,

expðxÞ ¼ 1þ xþ x2=2!þ x3=3!þ � � �

we represent as the stream ½1;1;1;1; . . .�. Now the destructors for a
stream correspond to

headðrÞ ¼ f ð0Þ; tailðrÞ ¼ f 0:

Then f = exp is the unique function for which f(0) = 1, f0 = f, as can be
seen by forming the stream r for which head(r) = 1, tail(r) = r. ex-
p = 1 :: exp. We are then shown a wide variety of coalgebraic con-
structions in elementary calculus.

The authors remark,

In essence, calculus is coinductive programming. It consists
mostly of using final fixpoints and constructing various trans-
forms between them. When applying standard methods for
solving differential equations, we are actually using coinduc-
tion without realising it! (Pavlović and Escardó, 1998, pp.
8–9)

Again we run up the question of why it took so long for the coalge-
braic-coinductive perspective to emerge. Pavlović and Pratt ask
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Why would so foundational a principle wait for the late 20th
century to be discovered? . . . the idea was put forward that
coinduction is new only by name, while it had actually been
around for a long time, concealed within the infinitistic meth-
ods of mathematical analysis. Roughly, the idea is that

induction
arithmetic

	 coinduction
analysis

:

The basic passage to infinity in elementary calculus is coinduc-
tive, dual to the inductive passage to infinity in elementary arith-
metic. (Pavlović and Pratt, 2002, p. 106)

So if analysis is well-described coalgebraically, we have evi-
dence for the claim that coalgebra has been around for a very long
time, but unrecognised as such. I would argue that what was nec-
essary for its recognition was for category theory to become a read-
ily available language. Now that it is available we find coalgebraic
work on self-similarity by a category theorist showing that any gi-
ven compact metrizable space has a terminal-coalgebra character-
ization (Leinster, 2007). Then we find that symbolic dynamics is
based on the existence of a cofree coalgebra in the category of com-
plete metric spaces (Rutten, 2000, Section 18). And there are many
more episodes in the coalgebraic characterisation of mathematics,
see (Turi and Rutten, 1998). But if coalgebra is rightly regarded as
being pervasive throughout mathematics, ought we to view it as an
equal partner to algebra, or perhaps just an offshoot? Let us now
address this question.
5. The status of coalgebra

The reader should by now have a sense of why the ‘co’ in ‘coal-
gebra’, but perhaps is wondering why the ‘algebra’. What does a
map from FX ? X have to do with anything we meet in algebra?
We saw some basic examples of F-algebras, such as the natural
numbers, but we don’t usually consider them as ‘algebraic’. When
we think of algebra, we think of groups, rings, fields, modules. So
let’s take one of the simplest algebraic structures, the monoid, to
show the connection.

A monoid is a set with a binary operation, m, and an identity
element, e, satisfying basic equations expressing the identity prop-
erties of e and the associativity of m. We can now see how one of
these can be considered as an algebra for a functor. Consider the
functor, F, which sends a set to the set of finite strings of its ele-
ments. For example, F({x, y}) has members such as yyxxx and
xxxyyxxxxx, and the empty string e. Then an ordinary monoid is
an algebra for this functor, that is, a map f : FX ? X for some set
X. If you like, f carries out the multiplication operating in the mono-
id. For example, F({x, y}) is itself an F-algebra, indeed a free one.
There is a map F(F({x, y})) ? F({x, y}), which acts on strings of
strings to give strings. For example,

ðxyxÞðxxyyÞðyxÞ#xyxxxyyyx:

Any monoid is in the same way an F-algebra. Monoids are algebras,
then, in the sense of this paper.

Where then are the comonoids? These should be a special
case of F-coalgebras. But now something about the category of
sets comes into play, and this may account for the delay in hit-
ting on the idea of coalgebra. Comonoids in Sets and categories
of that type (cartesian monoidal category) are as boring as they
can be. On each set we can place precisely one comonoid struc-
ture—our choices are also forced upon us. The coidentity opera-
tion sends elements to ⁄, and the comultiplication acts as
duplication. The equivalent of the property in a monoid that
multiplication by the identity element leaves an element un-
changed, is that when you duplicate an element, then erase
one copy, you’re back to where you started.
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So we have to look elsewhere for interesting comonoids,
away from cartesian monoidal categories. Now one of the most
frequently encountered non-cartesian categories, where product
is not simply set product, is VectF, the category of vector spaces
over a field F and linear mappings. In this category for every
map resembling a multiplication on a vector space A 
 A ? A,
there is a comultiplication on the dual space A⁄? A⁄ 
 A⁄.
Unsurprisingly then, interesting comonoids are to be found in
VectF. But now we encounter terminological confusion—a como-
noid within Vect is called a ‘coalgebra’, to mirror the fact that
a monoid in Vect is called an ‘algebra’. Indeed, this is the envi-
ronment in which the term ‘coalgebra’ first arose. It is unfortu-
nate that these names have been given to very specific
examples of a much more general concept. But we learn an
important lesson that to find interesting objects with structure
which is dual to the frequently encountered algebraic structures,
we need to distance ourselves from Set and Set-like categories.
Category theory again does well explaining global features of
the collection of a certain kind of entity.

What if we took the category which is the opposite of Set it-
self, that is, we keep the objects the same but reverse the ar-
rows, so that an arrow from A ? B corresponds to a function
from B to A? In turns out that this category is equivalent to
CABA, the category of complete atomic Boolean algebras, a result
which is a part of Stone duality (Johnstone, 1982). Now a com-
onoid in CABA is a monoid in Set, and vice versa. So now we find
the monoids in CABA to be very limited. Each such Boolean alge-
bra supports precisely one monoid structure, while it may sup-
port plenty of different comonoids. Had we taken CABA to be
the natural category for our work, we might see coalgebra as
the more basic. But normally we define Boolean algebras in
terms of sets with various structure and properties. Viewing
matters in terms of the whole category of sets, should make
us wonder whether there is something about the asymmetry
of Set which inclines us to use it.

So now we may be left wondering whether it is possible that we
should have followed Finsler in opting for a more coalgebraic ap-
proach to mathematics. Let us review the situation at which we
have arrived. It seems clear that explicitly coalgebraic mathematics
is still a fringe activity, most frequently seen in computer science.
But we can react to this state of affairs in very different ways.

1. It is not a distinction worth making—a coalgebra for (C, F) is an
algebra for (Cop, Fop).

2. It is a distinction worth making, but there’s plenty of coalgebra-
ic thinking going on—it’s just not flagged as such.

3. Coalgebra is a small industry providing a few tools for specific
situations, largely in computer science, but with occasional uses
in topology, etc.

We are less likely to be inclined to believe (1) if we think
there is something which breaks the symmetry in mathematics
and leads us to favour working in certain kinds of category.
The category of sets possesses a great number of properties,
some pairs of which, such as completeness and cocompleteness,
are dual, but many of which are not. If these latter unmatched
properties are valued over their duals then we have grounds to
distinguish algebra from coalgebra. On the other hand, a cate-
gory such as Rel, with objects sets and arrows binary relations
between domain and codomain, is self-dual. In any case we
may need to use algebraic and coalgebraic reasoning within
the same setting, requiring us to distinguish them. Positions
(2) and (3) are now in direct competition. I hope I have given
sufficient evidence for position (2), having shown that a consid-
erable amount of mathematics is readily interpretable as
coalgebraic.
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6. Conclusion

In this paper I have told a part of the story of how some of the
component pieces of the emerging field of coalgebra have come
together. We saw that an important impetus was provided by
computer scientists needing to capture a certain kind of data struc-
ture, the identity of whose composition is revealed by an unfolding
or destruction. The maximal fixed point for this process of unfold-
ing was seen to be an entity of great significance—it measures the
collection of all observable behaviours. It was important then to
understand how this picture was the dual of an already understood
one: the minimal fixed point under a process of construction. An
instantiation of these dual pictures was found to have been at play
in the foundational debate of the 1920s between Finsler and
Hilbert’s followers, but without the coalgebraic framework it was
not possible to recognise the duality relating the two sides of the
debate. It took well over half a century for this to become clear.
Seen from the modern perspective, we no longer need choose
between the passionately held metaphysical beliefs fuelling the
debate. Rather, we can take both sides to have had mathematisable
ideas which can both be accommodated. So where, as Breger tells
us, van der Waerden could take the Finsler–Baer axiomatisation
dispute to be a metaphysical one, as when he told Finsler,

If sets are pre-existing objects, then you are right; but if sets are
made by human beings, then Baer is right. (Breger, 1992, p.
262),

both approaches could be pursued in computer science. There the
relevant distinction concerns data which is guaranteed to be fully
unfoldable by a program and codata which can be operated on as
and when it unfolds, even if this process is potentially unending.
It is interesting to see once more how metaphysical ideas can mu-
tate into practical effects which may be given a very different inter-
pretation. Given the coalgebraic understanding of modal logic
alluded to earlier, a not unrelated case of metaphysical mutation
concerns the centuries of philosophical thought devoted to the
modalities which had yielded by the late twentieth century a range
of modal logics, many used in computer science, including one of
which is used very effectively as a practical tool in model checking.

A fuller account of coalgebra would talk about coalgebras in the
narrow sense, that is, coalgebras as structures on vector spaces or
modules, encountered frequently in representation theory and
mathematical physics (Brouder, 2005), and of the somewhat re-
lated use of coalgebras to capture decomposition in combinatorics
(Joni and Rota, 1979). Unlike in situations where products are
determined by their underlying sets, here there are rich opportuni-
ties to study dualised algebraic operations, and indeed to study the
interplay of algebraic and coalgebraic operations, or in other words
the interplay between composition and decomposition, or con-
struction and destruction. This occurs in the widely studied con-
cepts of Hopf algebras and quantum groups. If we take the Hopf
algebra motif and instantiate it in the category of sets, the coalge-
braic part ‘collapses’ to give that workhorse of mathematics—the
group. We can see the group construct, therefore, as a projection
of a self-dual construct into the non-self-dual world of sets.

Neither the theory of codata, nor the theory of Hopf algebras
force us out of the setting of set theory, if we do not wish to leave.
We can, if we choose, find models in ordinary set theory. But it is
worth reflecting how issues of duality throw into relief the choice
that is made when opting for sets, and whether it is optimal. We
seem to have a predisposition to want to represent our experience
of the world as arrows from sets to sets, according to the arrow of
time where an effect determines its cause, and multiple causes
may bring about the same effect. However, insights from many
areas suggest that we might choose better in some situations. For
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example, Baez (2006) explains how away from the world of med-
ium sized objects, general relativity and quantum field theory
may find better homes in categories which are not set-like, where
there exists a duality lacking in the set environment.

Mathematics is a fascinating mangle of practice, to use a term of
Pickering (1995). Ingredients of different passages and styles of
thought fall into the mix, their origins often unrespected, to be
worked over, blended and then fed on for more mangling. It is
not for us as philosophers to dictate how the story of coalgebra
might go from here, which isn’t to say that the telling of the story
in a certain way could not resound with someone and affect the
way the story continues. What we can comment on is what we
take to be most important features of the way stories unfold, and
about how we take the process to be going well or badly. Where
the willingness to deal with the practical demands of defining cer-
tain data types with mathematics still considered by some to be
too abstract reflects well on the computer scientists concerned,
the missed encounter between Baer and Finsler reflects a lack of
openness which delayed the progress of the coalgebraic approach.
But this is not so surprising. In The Idea of History Collingwood re-
marks that

. . .nothing is harder than for a given generation in a changing
society, which is living in a new way of its own, to enter sympa-
thetically into the life of the last. It sees that life as a mere
incomprehensible spectacle, and seems driven to escape from
sympathy with it by a kind of instinctive effort to free itself
from parental influences and bring about the change on which
it is blindly resolved. (Collingwood, 1946, p. 326)

At some stage, however, the effort of coming to terms with the past
must be made,

. . .progress is not the replacement of the bad by the good, but of
the good by the better. In order to conceive a change as a pro-
gress, then, the person who has made it must think of what he
has abolished as good, and good in certain definite ways. This,
he can only do on condition of his knowing what the old way
of life was like, that is, having historical knowledge of his soci-
ety’s past while he is actually living in the present he is creating:
for historical knowledge is simply the re-enactment of past expe-
riences in the mind of the present thinker. Only thus can the two
ways of life be held together in the same mind for a comparison
of their merits, so that a person choosing one and rejecting the
other can know what he has gained and what he has lost, and
decide that he has chosen the better. In short: the revolutionary
can only regard his revolution as a progress in so far as he is also
an historian, genuinely re-enacting in his own historical thought
the life he nevertheless rejects. (Collingwood, 1946, p. 326)

With the contemporary understanding of the duality between alge-
bra and coalgebra in place, we are now in a position to recognise
what was good in Finsler’s thinking and in that of Hilbert and his
followers, and how it has been possible to improve on both.
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