
Dependent Type Theory

David Corfield

Evidence Seminar

20 November, 2020

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 1 / 28



As you may know, I’ve published a book on

Modal homotopy type theory,

arguing that it would be a good idea for philosophy take it up as its basic
formalism.

I’ll spare you the ‘modal’ and ‘homotopy’ parts and focus today on

Dependent type theory

I’ll do this via a recent classification of logical systems that includes
‘dependent typing’ as one of its varieties.

This should allow for a useful contrast with first-order logic.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 2 / 28

https://global.oup.com/academic/product/modal-homotopy-type-theory-9780198853404


Motivation from mathematical reasoning

Bucket loads, but for now

Kevin Buzzard’s talk – Is HoTT the way to do mathematics?

Kevin is a number theorist at Imperial College London who is looking to
train his undergraduates to produce computer-checked proofs of
mainstream theory (algebraic geometry, etc.) in the Lean theorem-prover.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 3 / 28

https://www.youtube.com/watch?v=q5-pykbfViA


Why Lean? Well, Lean is based on dependent type theory, and at (12:14)
in the talk Kevin claims of ordinary mathematicians that

They use dependent types, even though they don’t know they are
using dependent types.

My claim:

Mathematicians use dependent types because they are speakers of
natural language. We all use dependent types.

The case for the advantages of DTT over FOL can be made not only for
advanced reasoning such as mathematics, but also for everyday reasoning.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 4 / 28



In the Preface to his book, Type-theoretic Grammar (OUP, 1994), Aarne
Ranta recounts how the idea of studying natural language in dependent
type theory occurred to him in 1986:

In Stockholm, when I first discussed the project with Per Martin-Löf, he
said that he had designed type theory for mathematics, and that natural
language is something else. I said that similar work had been done within
predicate calculus, which is just a part of type theory, to which he replied
that he found it equally problematic. But his general attitude was far
from discouraging: it was more that he was so serious about natural
language and saw the problems of my enterprise more clearly than I,
who had already assumed the point of view of logical semantics. His
criticism was penetrating but patient, and he was generous in telling me
about his own ideas. So we gradually developed a view that satisfied
both of us, that formal grammar begins with what is well understood
formally, and then tries to see how this formal structure is manifested
in natural language, instead of starting with natural language in all it
unlimitedness and trying to force it into some given formalism.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 5 / 28



A distant target

From the very beginning, from the first moment I may almost say, of my
acquaintance with you, your manners impressing me with the fullest belief
of your arrogance, your conceit, and your selfish disdain of the feelings of
others, were such as to form the groundwork of disapprobation, on which
succeeding events have built so immovable a dislike.

A proposition, so a type which ought to be formed by type-formation rules.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 6 / 28



Something simpler for now

Whenever a man’s daughter speaks politely to him, he praises her for
it.

Man(x)&Person(y)&Daughter(y , x)&Event(z)&Speaking(z)&
Agent(z) = y & Object(z) = x & Manner(z) = politely `
∃p(Event(p)&Praising(p)&Agent(p) = x&Object(p) = y&
Reason(p)= z)

x : Man, y : Daughter(x), z : PoliteSpeak(x , y) ` p : Praise(x , y , z)

Then apply universal quantification/dependent product.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 7 / 28



Of course, I’ve made the type-theoretic version look simpler by leaving
some work to do:

Whenever a man’s daughter speaks politely to him, he praises her for
it.

x : Man, y : Daughter(x), z : PoliteSpeak(x , y) ` p : Praise(x , y , z)

I would have to have formed already the types Daughter(x),
PoliteSpeak(x , y), etc.

Note that pronouns match types, and that p is a function.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 8 / 28



Two limitations of (usual) first-order logic

No typing used, so the user has to carve out kinds of entity from a
single domain.

Dependency is limited to predicates and relations.

The first may be rectified by typed first-order logic.

The second requires a major shift in logic.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 9 / 28



Mike Shulman’s classification

As detailed here, when specifying a theory in a logic there are three steps:

Specify the judgment structure

Specify the rules of the deductive structure

Specify the generating types, terms, and axioms

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 10 / 28

https://golem.ph.utexas.edu/category/2018/04/what_is_an_ntheory.html


Mike Shulman’s classification

As detailed here, when specifying a theory in a logic there are three steps:

Specify the judgment structure : 3-theory

Specify the rules of the deductive structure : 2-theory

Specify the generating types, terms, and axioms : 1-theory

Just to say ‘theory’ is enormously ambiguous.

(Numbering relates to the fact that models of an n-theory form an
n-category.)

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 11 / 28

https://golem.ph.utexas.edu/category/2018/04/what_is_an_ntheory.html


Judgment structure

The expressivity of our logic is determined by which judgments are allowed:

x : A ` b : B

x : A, y : B, z : C ` d : D

x : A, y : B, z : C ,P(x),Q(y , z),R ` S(x , y , z)

x : A, y : B(x), z : C (x , y) ` d : D(x , y , z)

variants of first three with multiple consequents

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 12 / 28



Propositional logic as a 2-theory

(Masaki Hara, slides)

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 13 / 28

https://www.slideshare.net/qnighy/proving-decidability-of-intuitionistic-propositional-calculus-on-coq


First-order logic as a 2-theory

(Richard Bornat and Bernard Sufrin, paper)

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 14 / 28

https://www.researchgate.net/profile/Bernard_Sufrin/publication/220458453_Animating_Formal_Proof_at_the_Surface_The_Jape_Proof_Calculator/links/0046351712e010b34b000000/Animating-Formal-Proof-at-the-Surface-The-Jape-Proof-Calculator.pdf?origin=figuresDialog_download


‘Someone is loved by everyone’ implies ‘everyone loves someone’.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 15 / 28



Note that this first-order reasoning doesn’t exploit the full resources of the
third 3-theory:

x : A, y : B, z : C ,P(x),Q(y , z),R ` S(x , y , z)

Usually the first-order logic you see is untyped (or unityped), so no A, B,
C :

(((((((((
x : A, y : B, z : C ,P(x),Q(y , z),R ` S(x , y , z)

The domain remains implicit, and all variables range over it.

Note also that we don’t show elements of the premises and conclusion.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 16 / 28



Philosophers have chosen so far to use a logic that’s less powerful in two
ways: unityping and only dependent propositions (predicates).

It recovers ‘types’ by carving out from the total domain using predicates:
entities that are P.

Surely this is rather odd though.

When we say ‘All humans are mortal’, do we really mean for any
‘thing’ in the universe (time, place, emotion, event, possible
object,...), then if it is the case that the thing is a human, then that
thing is mortal.

Do we say of a binary relation that it makes sense to ask if it holds
for any two entities? ‘Democracy is the mother of the Orca.’

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 17 / 28



I mentioned that types are available in a typed first-order logic, which
allows for propositions depending on types A, B, ..., or in other words,
typed predicates and relations.

For x : A, we might define a predicate B(x).

The big departure now is dependent types:

x : A ` B(x) : Type.

This allows for the natural treatment of the common situation of a
function f : B → A, where we consider the b : B being sent to a given
a : A as a subtype of B.

Assigning players to their team, for t : Team, Player(t) collects players of
the same team.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 18 / 28



Dependent type 2-theories

Some common type formation rules look like first-order logic’s
conjunction, disjunction, implication, quantification, except now they
apply to all types. Propositions are now just a kind of type.

We may want identity types: IdA(a, b).

We may also want a type of (small) types to represent dependent
types.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 19 / 28



This is now a powerful 2-theory in which we can compare types via the
existence of kinds of function, e.g., to compare sizes. Any notion of a
mathematics/logic distinction is made problematic.

Identity only applies within a type. ‘Venus = 3’ is not well-formed.

(We can consider a map T̃ype → Type, from the type of all entities, with
elements (A, a) for a : A, to the type of types.

Identity in this type doesn’t allow us to ask whether a = b. But we can
ask, ‘Does (A, a) = (B, b)?’.)

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 20 / 28



From the 2-theories mentioned (judgment structure + type rules) we then
formulate 1-theories. For instance, to do mathematics we might use FOL
+ set theory.

The excitement of the 3-theory DTT is that we can specify a 2-theory
(HoTT) that’s powerful enough to do maths, and do it ‘naturally’.

We can then devise an applied DTT 1-theory, specifying worldly types and
axioms, to describe the world.

An applied FOL 1-theory is much weaker. If we need more power, we
modify the pure FOL 1-theory, set theory, to a set theory with
atoms/urelements.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 21 / 28



Higher-order logic

Within the same 3-theory as FOL, we find HOL. This is a 2-theory (or
perhaps a family of 2-theories) where rules specify a universe of
propositions.

There are proposed translations between kinds of DTT 2-theory and HOL
2-theory, e.g., Bart Jacobs’ Translating dependent type theory into higher
order logic.

The issue is one of naturalness, like a good programming language over
another, even machine code.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 22 / 28

https://link.springer.com/chapter/10.1007/BFb0037108
https://link.springer.com/chapter/10.1007/BFb0037108


There are interesting things for philosophy of language/metaphysics to
learn from DTT 2-theories, and how we might devise worldly 1-theories.

Ofra Magidor: Category mistakes

Jason Stanley: ‘All truth-conditional effects of extra-linguistic context
can be traced to logical form.’ (Language in Context, OUP, 2007, p.
30)

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 23 / 28

https://golem.ph.utexas.edu/category/2020/02/magidor_on_category_mistakes_a.html


Consider an example from Stanley:

Every time John lit a cigarette, it rained.

Despite appearances this can’t merely be quantification over times. If
John always lights a cigarette in New York and whenever he does it rains
in London, this doesn’t support the proposition. It must rain at the same
location as John.

We might say that the verb ‘rain’ has implicit parameters for time and
place. An achievement, such as ‘John lights a cigarette’, has an associated
time and place. The proposition is claiming that every achievement which
is John lighting a cigarette occurs at a time and place such that it rains
then and there.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 24 / 28



X : Achievement Type, x : X ` t(x) : Time, l(x) : Location

u : Time, v : Location ` Rain(u, v) : Prop

` John lights a cigarette : Achievement Type

Hence,

z : John lights a cigarette ` t(z) : Time; l(z) : Location

`
∏

z:John lights a cigarette Rain(t(z), l(z)) : Prop.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 25 / 28



There are hidden parameters all over the place:

When you say ‘every’, it’s really ‘everyA’: e.g., on returning from the
shop, ‘Every bottle is green’.

Dependency on an element or a proposition is important. When you
say ‘X knows P’, I claim that it’s formed by:

X : Person,P : Proposition, p : P ` X knows P(p) : Prop

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 26 / 28



Stanley speaks of ‘context-dependency’, ‘domain indices’, ‘covert
pronomial elements’, and ‘unpronounced syntactic structure’.

Right! So use a logic that can handle dependency properly.

Please never let me see any untyped first-order logic again in this
department!

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 27 / 28



A distant target

From the very beginning, from the first moment I may almost say, of my
acquaintance with you, your manners impressing me with the fullest belief
of your arrogance, your conceit, and your selfish disdain of the feelings of
others, were such as to form the groundwork of disapprobation, on which
succeeding events have built so immovable a dislike.

A proposition, so a type which ought to be formed by type-formation rules.

Very prominent here is the temporal structure (Secs 2.6 and 4.3 of my
book).

During an initial interval of their acquaintance, which is almost an instant,
disapproval is generated. Subsequent to that a number of events have
occurred in the remaining time interval which have brought about a
powerful dislike.

David Corfield (Evidence Seminar) Dependent Type Theory 20 November, 2020 28 / 28


