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Understanding the Infinite I: Niceness, Robustness,
and Realism†

David Corfield∗

This paper treats the situation where a single mathematical construction
satisfies a multitude of interesting mathematical properties. The exam-
ples treated are all infinitely large entities. The clustering of properties is
termed ‘niceness’ by the mathematician Michiel Hazewinkel, a concept
we compare to the ‘robustness’ described by the philosopher of science
William Wimsatt. In the final part of the paper, we bring our findings to
bear on the question of realism which concerns not whether mathemati-
cal entities exist as abstract objects, but rather whether the choice of our
concepts is forced upon us.

1. Introduction

This is the first of a pair of papers on new ways of thinking about some of
the infinitely large entities met with in mathematics. In the second paper
[Corfield, forthcoming], we shall see how mathematicians and computer
scientists were led to a new formulation in their dealings with a cer-
tain kind of possibly infinitary situation. One type of infinite entity fre-
quently emerges as the collection of behaviours of a dynamical system
as it unfolds. For example, the extended natural numbers, essentially the
ordinary natural numbers with a single infinite element adjoined and a pre-
decessor function, captures the behaviour of the simplest black box which,
each time we press a button, emits a beep or falls forever silent. This so-
called coalgebraic conception of potentially endless unfolding, decompo-
sition, or destruction is very pervasive. We see it operating even in analysis
in the treatment of a Taylor series as an infinite list of coefficients, where
evaluation at 0 gives the head of the list and differentiation the tail.

The pervasiveness of high-level concepts, such as the coalgebraic, is
itself rather common—examples include broad themes such as duality,
symmetry, and deformation. For example, duality may be seen in: pro-
jective geometry between lines and points; platonic solids, e.g., between
the dodecahedron and icosahedron; Stone duality between certain spaces
and algebras; Fourier analysis; Poincaré duality between the homology and
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2 CORFIELD

cohomology of complementary dimensions; duality between syntactic the-
ories and semantic models; Pontryagin duality for locally compact abelian
groups, and so on (see [Corfield, 2010b, §2]).

In this paper I would like to consider what might be thought to be the
converse, or better dual, kind of phenomenon, where rather than a sin-
gle concept or theme manifesting itself time and again in a wide range of
entities, instead we have a single entity in which many concepts manifest
themselves at the same time. Following [Hazewinkel, 2009a], I shall call
this phenomenon niceness. The examples of nice entities I will treat in this
paper are always infinitely large. The superposition of many interesting
properties in the same object explains why they crop us so frequently, and
suggests an answer to the puzzle as to why, when there are many possible
infinitely large structures that mathematicians could study, some of them
act almost as ‘attractors’. There is an inevitability to them in that they are
encountered when one steps out in a certain direction. Now this ‘attractor’
phenomenon might be attributed to many factors. Possibly humans have a
limited number of ways of thinking and so work with entities constructed
out of choices from a restricted menu. Or perhaps research mathematicians
have been socialised to work in a limited set of ways with the same result.
What I wish to propose in this paper is that we explore a third type of
answer, one which uses the resources of mathematics itself to argue that,
insofar as mathematics deals with ‘possible structures’, there are certain
privileged members.

As with many problems in the philosophy of mathematics, it is worth
our while scouring the philosophy of science literature for their treat-
ment of analogous problems. I shall begin this paper, therefore, with some
thoughts on parallels with the notion of ‘robustness’ described by philoso-
phers of science. I think it quite reasonable to attribute to a form of math-
ematical robustness the sense a mathematician may have that he or she
is dealing with something of real importance. With the freedom afforded
them by a lack of empirical constraint, it is very reassuring to mathemati-
cians when their constructions are found to be derivable along multiple
paths, especially if those paths display a mutual independence.

The major part of this paper then studies examples where mathemati-
cal entities enjoy many compatible properties. As far as I am aware there
has only been one attempt to address the problem of why such proper-
ties tend to cluster in the same entity. So after giving some examples of
some privileged structures, including well-known ones such as the inte-
gers and rationals, along with lesser known ones, I shall discuss this soli-
tary account—Michiel Hazewinkel’s ‘Niceness Theorems’ [2009a]. Here,
as a mathematician addressing mathematicians, Hazewinkel describes and
partially explains the occurrence of situations in which we find coexist-
ing properties. Niceness, the coexistence of many properties, could then
be said to be a form of mathematical robustness. Success in drawing the
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UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 3

attention of philosophers to the existence of such phenomena, and to forms
of explanation of this niceness would be reward enough, but perhaps we
can push a little harder on the door Hazewinkel has opened for us.

2. The Robustness of Mathematical Entities

In his paper ‘The ontology of complex systems’ William Wimsatt explains
how he chooses to approach the issue of scientific realism through the
concept of robustness.

Things are robust if they are accessible (detectable, measurable,
derivable, definable, producible, or the like) in a variety of indepen-
dent ways. [Wimsatt, 2007, p. 196]

It is worth placing this thesis into the context of philosophy of science
of recent decades. Until the ‘experimental turn’, the philosophy of sci-
ence largely treated science in terms of the representational capacity of its
language through the relationship between theory and observation. Hilary
Putnam’s no-miracles argument [1975, p. 73] argued that our scientific the-
ories were so successful that it would be a miracle if their terms, including
those designating unobservable entities, did not successfully refer. Larry
Laudan [1981] responded by pointing out that the historical record should
lead us to be pessimistic that all the terms of our theories refer. Successful
theories had spoken of ‘caloric’ and of the ‘ether’, and these were later
dispensed with. A final moment in this dialectic was reached when real-
ists argued that something real had been captured by successful theories,
even if theoretical terms were later revised, and that it was on account of
this something that the theory’s empirical success was made possible. For
some it was the ‘structure’ of the theory (e.g., [Worrall, 1989]). The the-
ory of caloric embodied a structure which later theories of heat have only
refined, and likewise for the theory of electromagnetism and the ether.

With Ian Hacking’s Representing and Intervening [1983], we were pro-
vided with a different point of emphasis. According to his account, we
should believe in the existence of electrons not because the term ‘electron’
features in a very successful physical theory with many empirical con-
firmations, but because we have such a manipulative grasp on electrons
that we can use them for a variety of ends. We can shoot them at televi-
sion screens to make pictures, use them to cure skin cancer (beta radia-
tion), and so on. This led to his famous motto—‘If you can spray them,
then they are real.’ Although Wimsatt worked out his theory of robustness
prior to Hacking’s work, we can see him as integrating the manipulative
and theoretical approaches to scientific realism. He notes, about his own
criterion, that ‘A related but narrower criterion (experimental manipula-
bility via different means) has since been suggested by Hacking [1983]’,

 at T
em

plem
an Library, U

niversity of K
ent on S

eptem
ber 17, 2010

philm
at.oxfordjournals.org

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


4 CORFIELD

but that ‘the independent means of access are not limited to experimental
manipulations but can range all the way from non-interventive observation
or measurement to mathematical or logical derivation, with many stops in
between.’ [Wimsatt, 2007, p. 196].

We can illustrate this notion of robustness in the context of Jupiter’s
moons, whose reality was up for debate when Galileo let leading
astronomers of his day look towards the planet through his telescope. Even
if the telescope had proved its worth on Earth, allowing merchants to tell
which ship was heading towards port beyond the range of the naked eye,
this did not completely guarantee its accuracy as an astronomical instru-
ment. How do we know that light travels and interacts with matter in the
same way in the superlunary realm as down here on Earth? How could
we trust this optical device when what appeared to the eye to be a single
source of light, a star, was split in two in the telescope’s image? Of course,
by now the moons are very robust for us. We can send probes close to their
surfaces to report back on phenomena such as the Masubi Plume on Io. Our
knowledge of optics tells us that Galileo’s telescope was sufficiently reli-
able. We have an array of means to tell us that its discrimination of the
single star into two points of light reflected the fact that many stars are
binary. We also have theories of the formation of planets and their satel-
lites. We can predict so accurately where they will be in years to come that
we can send probes millions of miles to meet them. We have expectations
of their composition, and so on. In sum, the weight of all the theoretical
and practical considerations bearing on the moons of Jupiter forces us to
accept their existence.

Perhaps for our mathematical purposes we should look to scientific
entities where robustness has been established in large part through math-
ematical or logical derivation. Aside from our ability to spray them, the
behaviour of electrons is described and derived by quantum electrodynam-
ics. From this theory the value of the anomalous magnetic dipole moment
of the electron can be calculated to an accuracy of twelve places. Wimsatt
is right to want to wed this kind of consideration with the manipulative
control we have over electrons. The collection of theoretical, experimen-
tal, and technological accounts which in some respect bear on the electron
would fill a very large library. We may still want to say, however, that for
an entity to be rightfully called real it is essential that there be an abil-
ity to point to its physical effects. For example, a warrant for the reality
of electrons will mention an early reference to them, perhaps even a bap-
tismal moment along the lines of ‘This phenomenon is caused by nega-
tively charged particles—let us call them electrons’. Certainly enormous
theoretical refinement has taken place, but at some stage there was a point-
ing out of something in the world as being brought about by the action of
the proposed entity, and the list of such phenomena has only lengthened
since. Even in situations where a theory predicts the existence of an entity
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UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 5

before it has been observed or produced, such as Dirac’s prediction of a
positively charged counterpart to the electron from solutions to the Dirac
equation, we might want to place priority in the warrant for its reality on
the subsequent experiments, in this case those that revealed the existence
of positrons.

So then, does an analogous mathematical robustness constituted solely
by a number of derivations have a bearing on anything we may want to
call ‘mathematical reality’? Deprived of the opportunity to spray mathe-
matical entities, it would appear that we are left with mere derivation, and,
however many independent paths there are to derive an entity, this may
well not be enough to persuade those unconvinced of the need to postulate
abstract entities to change their minds. However, looking a little closer at
the debate in the philosophy of science, we see there a distinction between
the question of the ontological commitments a successful theory should
require of us, and a question Ian Hacking raises in The Social Construc-
tion of What? [1999]. Hacking describes a ‘sticking point’ between those
who believe that we could have just as successful a collection of natural
sciences as we do today but which employ very different concepts, and
those who think our success is dependent on our having found something
approximating to our current concepts. Rather than wonder what our the-
oretical and practical grasp of the electron warrants us to believe about
the referent of ‘electron’—a particle, a structure, nothing—instead we ask
whether we could have a successful physics without something closely
approximating the notion of an electron and the technological practices
known to rely upon the notion.

Now we can come to analogues of these two questions operating in the
philosophy of mathematics. The first [Corfield, 2010a] I have called the
question of external realism, the second the question of internal realism.1

The former is the more common debate within analytic philosophy. It won-
ders whether our ontology can be stretched to include abstract objects,
such as numbers and sets, and worries how we might come to know them.
The latter debate concerns differences within mathematics as to why some
entities and properties are central, and others are of insignificant interest.
It asks whether we could have a mathematics as successful as the contem-
porary one but with very different concepts. Criteria for success here, as in
science, are up for debate, but would include the resolution of outstanding
problems, the melding together of apparently disparate mathematical theo-
ries, and the provision of powerful applications. Considerations of robust-
ness in mathematics, it seems to me, pertain much more to the latter inter-
nal realist debate, and it is that one to which I wish to contribute. A library
of all works bearing on, say, the complex numbers, including monographs

1 The reader should note some affinity to Carnap’s distinction between external and
internal questions [Carnap, 1950].
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6 CORFIELD

on algebraic number theory, Hilbert space theory, complex analysis, Rie-
mann surfaces, treatments of matrix groups over C, Mandelbrot and Julia
sets, applications in control theory via the Laplace transform, and signal
analysis via the Fourier transform, 2-dimensional potential flow in fluid
dynamics, spinors in general relativity, quantum field theory, and so on,
would rival our library dedicated to the electron.

Now, when we read in the quotation above Wimsatt saying ‘Things
are robust. . . ’, he might be thought to be speaking merely about physical
entities, perhaps particles or genes or galaxies. But he is quick to note that

. . . robustness plays a similar role also in the judgement of properties,
relations, and even propositions, as well as for the larger structures—
levels and perspectives. . . [Wimsatt, 2007, p. 196]

By levels he means ‘hierarchical divisions of stuff (paradigmatically but
not necessarily material stuff) organized by part-whole relations, in which
wholes at one level function as parts at the next (and at all higher) levels’
[Wimsatt, 2007, p. 201]. Perspectives occur when causal relations between
parts of complex systems become too rich for simple analysis by levels.
What is clear then is that Wimsatt is not a reductionist aiming to take the
ontology of the natural science to be composed of a single kind of thing.

When looking for robust mathematical things we might likewise con-
sider more than mere entities. Considering the following division of the
subject matter of mathematics (due to Albert Lautman [2006, p. 223])
into entities, facts, theories, and ideas. We might readily argue that there
are robust theories which apply in a variety of settings, such as coho-
mology which may be applied to topological spaces, algebraic varieties,
groups, and so on. We may also consider robust ideas, such as duality,
whose extent we sketched above as an example of a pervasive idea. The
robustness of theories and ideas may be thought to reveal itself through
their pervasiveness. However, in this paper I shall mostly consider mathe-
matical entities. Robust facts such as the fundamental theorem of algebra
which states that any complex polynomial has a complex root, with its
many diverse proofs, can be phrased in terms of one of the properties of
the complex numbers, that of being algebraically closed. The very many
different proofs of the theorem reflect relations between the many other
properties of the complex numbers. This coincidence of properties in an
entity is what we focus on in this paper.

Restricting ourselves to entities, we might have included numbers such
as π . This number famously crops up extremely frequently, from the cir-
cumference of a Euclidean circle, to the normalising constant in the nor-
mal distribution, to values of the Riemann zeta function. Like the exam-
ples we shall cover, we can account partially for its multiple appearances,
here in terms of the theory of periods (see [Kontsevich and Zagier, 2001]).
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UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 7

Other prevalent entities include special functions, elliptic curves, and sim-
ple finite groups. In what follows, however, I have decided to focus mainly
on entities picked out by category theory. It is not completely common
knowledge amongst philosophers, even those who agree that category the-
ory has already proved itself to be a powerful organising language, that it
can be used to pick out special entities. That story should be told.

3. Universal Objects

A good first example of a special entity is the collection of natural num-
bers.2 There is little more to this entity than the notion of ‘start and pro-
ceed’. Any time we have a set with a designated element and a self-
mapping, there is a unique way to label elements of this set with natural
numbers, so that the designated element receives the label zero and the
sequence of images of this element are labelled by the natural numbers.
The sequence may repeat itself after a certain point, and enter a cycle, but
this is something the essential ‘start and proceed’ entity could not do. It has
to be able to label sequences with cycles of all possible lengths, as well as a
non-cycling sequence. Also, the set whose members we are labelling may
very well include elements which are not contained in the sequence. This
is something the natural numbers cannot have. They have just what they
need and nothing more.

We can give more technical characterisations of the natural numbers, as
may be seen in the companion paper [Corfield, forthcoming]. They form
the free monoid on one generator. A monoid is a set with a binary associa-
tive operation for which there is an identity element. Being the free such
monoid, given any monoid with designated element, m, there is a unique
mapping of monoids so that 1 is sent to m. We should note here that the
natural numbers as monoid has another property—its binary operation is
commutative. For an alternative characterisation, let us consider the cate-
gory, 2, with two objects and a single non-identity arrow going between
them. This is a representation of the notion of process. If we could glue
together start and end points of this process then we could repeat it end-
lessly. We can do precisely this by identifying the inclusions of the objects
in 2. We say that the natural numbers form the coequaliser of the two dis-
tinct maps, or functors, from the category 1, a single object with identity
arrow, to the category 2.

A first characterisation of the integers is as the group completion of the
monoid constituted by the natural numbers, in other words we simply add
inverses. To our set, its designated element, and its self-mapping, we are

2 I shall be viewing anything which occurs as an object in a category as a single entity,
even when from the perspective of set theory such objects are formed by bringing together
a set of elements.
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8 CORFIELD

adding the ability to undo the mapping. It inherits the commutativity of the
natural numbers; so we say that the integers form the free abelian group on
one generator. This entity is neatly captured by the idea of winding a string
around a peg. The different ways of wrapping the string are assigned dif-
ferent integers, where two windings are given the same integer if one can
be wiggled to the other without taking loops off the peg. A more technical
formulation takes the integers as the coequaliser of the two maps from 1 to
I, where I is the category with two objects and an arrow in both directions,
so that their composites are identities for the objects. The category I is the
embodiment of the notion of an isomorphism.

Now the main observation of Hazewinkel is that simple things often
come along with extra properties or structure. Let us show this in the case
of the integers. After they introduce us to addition for two integers, our
teachers show us that there is a multiplication, which is compatible in cer-
tain ways with addition, for example, a × (b + c) = (a × b) + (a × c). In
sum, the integers form a ring. What we probably will not learn is that the
multiplication and ring structure for the integers follow merely from the
fact of their being the free abelian group on one generator. Let us now
sketch why this is so. To do so I shall have to introduce another category-
theoretic construction, that of an adjunction. Adjunctions are ways of com-
paring two categories via two functors, the maps which go between cate-
gories. So in this case we have a pair of functors between the category of
sets and the category of abelian groups. Given a set, X , we can form the
free abelian group with elements of X as generators, F(X). Essentially,
elements of this abelian group will be linear combinations of elements of
X , that is, items of the form 3x1 − 7x2 + 5x3 of any finite length with
integer coefficients. To do things properly we should also explain what
happens to functions f : X → Y . Fortunately the map from linear combi-
nations of elements of X to linear combinations of elements of Y should
be obvious, e.g.,

3x1 − 7x2 + 5x3 �→ 3 f (x1) − 7 f (x2) + 5 f (x3).

The second functor, U , takes an abelian group, A, and strips off its group
structure, leaving its underlying set. One important characteristic of adjoint
functors corresponds in this case to the fact that for a set X and an abelian
group A, the collection of functions between X and U (A) is isomorphic
to the collection of abelian-group homomorphisms between F(X) and A,
or Hom Ab(F(X), A) ∼= HomSet(X, U (A)). The resemblance between this
isomorphism and an equation defining the adjoint of a linear operator is
what gave the construction its name. Suffice it to say that ‘adjoints occur
almost everywhere in many branches of Mathematics’ [Mac Lane 1971,
p. 107].
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UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 9

Now in the special case where X is a singleton {∗} and A is the free
abelian group on one generator F({∗}), we have

Hom Ab(Z, Z) = Hom Ab(F({∗}), F({∗}))
= HomSet({∗}, U (F({∗})))(by the adjunction)

= U (F({∗}))
= U (Z).

This says that there is one abelian-group map from Z to itself for every
integer. For an integer n, this works by sending 1 to n, and in general m to
n × m. Then there is an evaluation map

Hom Ab(F{∗}, F{∗}) × F{∗} → F{∗},
which corresponds to multiplication

Z × Z → Z.

A fancy way of saying all of this is to say that Z is a monoid object in Ab,
which is a category-theoretic definition of a ring. In fact the integers form
the free ring on no elements, or, in other words, the initial ring.

This exposition of how the ring structure of the set of integers derives
from its property of being the free abelian group on one generator has
perhaps been too hasty for the reader. To give a detailed exposition of this
result would, however, take up much more space than I have available.
The essential lesson to be learned from this exercise is fortunately a simple
one—it is sometimes possible to give a mathematical proof of the fact that
entities defined by universal properties possess further properties. Special
objects may well have further special properties.

Looking now beyond the integers we might want to provide an inverse
to multiplication. To give it its technical name we form the field of frac-
tions. This is part of a much more general construction of taking the injec-
tive hull of the integers amongst abelian groups. In the process the rationals
pick up more of the integers’ structure. They are not just a ring, but an
ordered ring, inheriting an order from the integers. The order structure
of the rationals has another characterisation. It is the Fraı̈ssé limit of all
finite linear orders. What does this mean? Consider all finite ordered sets
with order-preserving injections. The order of the rationals is constructed
as the direct limit of this filtered set of finite orders. This means that all
finite ordered sets may be embedded in the rationals. Furthermore, any
order-preserving mapping between two finite subsets of the rationals may
be extended to an automorphism of all of the rationals. This property is
termed homogeneity. The integers do not have this property as can be
shown by the fact that there is an isomorphism between {0, 1} and {0, 2} as
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10 CORFIELD

ordered subsets of the integers which cannot be extended to an automor-
phism of the whole set. We say that the integers as an order lack density,
while the rationals are dense and homogeneous.

We shall see a universal characterisation of the closed real interval in
the companion paper [Corfield, forthcoming]. Turning now to properties
of the whole set of reals, we know that it is complete in two ways due
to (i) Dedekind—every set with an upper bound has a least upper bound;
(ii) Cauchy—Cauchy sequences converge. These two corresponding ways
of completing the rationals are examples of more general constructions:
the Dedekind-MacNeille completion of a lattice; and the Cauchy comple-
tion of a metric space. Through the former construction they inherit an
order from the rationals. They are also Archimedean; every element has a
multiple larger than 1, and indeed the reals form the largest Archimedean
field. The reals have many other properties including forming a connected
locally compact Hausdorff abelian topological group.

An important lesson, however, is that just because there is a strong
force leading you in one direction from a given place, does not mean that
there will not be others pointing elsewhere. Indeed, we can impose differ-
ent metrics on the rationals, and complete them so as to form other fields.
By doing so we must give up on the notion of an order. These are the p-
adic fields, defined for each prime p. From this perspective the reals are
the quirky completion; taking up this direction of thought mathematicians
speak of the reals as the completion of the rationals at ‘the prime at infin-
ity’. Very many formulas are best derivable by bundling together the reals
along with its sister completions.

For each prime p the norm of a rational number q is p−n where q =
pn · a/b, with a and b both integers coprime to p. The real norm is just
|q|. One can easily show then that the product of the real and p-adic norms
of a rational is 1, although this may not impress, as the p-adic norms may
be thought to have been selected for this result. But there are surprising
results which suggest that the set of completions of the rationals belong
with one another. For example, that gem of a discovery by Euler that

∏

p

1

1− 1
p2

= π2

6

can be construed as expressing something about all the completions of
the rationals simultaneously [Manin, 1996, p. 522]. The so-called adèle
ring for the rationals is a (restricted) product of all of these completions,
and its many good properties, including local compactness and Pontrjagin
self-duality, allow for the techniques of harmonic analysis, such as Fourier
analysis, to be applied right at the heart of number theory.

Why the reals have been privileged as a completion of the rationals
is an important question. The coincidence of so many good properties
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UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 11

must play a part, and especially the preservation of the rationals’ order-
ing. Today, however, we hear of speculative proposals to model physical
space with other completions than the reals, or rather with the product of
all the completions, the adèle ring.

On the fundamental level our world is neither real, nor p-adic; it is
adèlic. For some reasons reflecting the physical nature of our kind of
living matter (e.g., the fact that we are built of massive particles), we
tend to project the adèlic picture onto its real side. We can equally
well spiritually project it upon its non-Archimedean side and calcu-
late most important things arithmetically. [Manin, 1996, p. 523]

Kato poetically phrases his thoughts on the situation as follows:

As the night sky, mathematics has two hemispheres: the archimedean
hemisphere and the non-archimedean hemisphere. For some reasons,
the latter hemisphere is usually under the horizon of our world, and
the study of it is historically always behind the study of the former.
[Kato, 1993, p. 50]

Mysterious properties of zeta values seem to tell us (in a not so loud
voice) that our universe has the same properties: The universe is not
explained just by real numbers. It has p-adic properties. . . We our-
selves may have the same properties. Are there physical meanings of
zeta elements? [Kato, 1993, p. 159]

Manin alludes to our physical composition prompting us to see the reals
first. This kind of consideration is clearly of huge importance. Our dis-
covery first of Euclidean geometry must owe much to our perception of
space approximating it. Similarly the appearance to us of living in a three-
dimensional world must account for our mathematical treatment of knot-
ted circles in 3-space before knotted spheres in 4-space. A thorough treat-
ment of the constraints acting on mathematicians, including—beyond the
physical—also historical, psychological, and sociological factors, is some-
thing called for in [Corfield, 2003, chap. 1]. The central message of this
paper is that we should not overlook the constraints which mathematics
itself can describe.

So far I have covered characterisations of well-known entities. Yet we
can form others of equal importance to mathematics, but lesser known. For
example, Symm, the collection of symmetric polynomials in a countably
infinite set of variables, is the free ‘λ-ring’. We shall see in the next section
that it possesses a bewildering array of properties, making it an extremely
robust entity. But there are many other special structures. To name three:
the Rado random graph, the Fraı̈ssé limit of finite graphs, which contains
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12 CORFIELD

every countable graph as an induced subgraph and possesses a compati-
ble group structure; the von Neumann algebra Type II hyperfinite factor,
which is closed under the formation of 2× 2matrices with entries from the
factor; and, the infinite-dimensional complex projective space, CP∞, the
direct limit of finite-dimensional complex projective space as the dimen-
sion approaches infinity, which can be taken as the space of all pure states
of the quantum system whose Hilbert space has countable dimension and
as the classifying space for complex line bundles. It is important to note
that all entities mentioned so far have been infinitely large; as we shall see,
it is easier for infinitely large structures to possess many properties.

4. Hazewinkel and Niceness

Let us now turn to the one treatment that I have managed to find on the
topic of this paper, mathematical reasons for the appearance and utility of
certain pervasive mathematical structures. Michiel Hazewinkel has this to
say in his paper ‘Niceness theorems’:

It appears that many important mathematical objects (including
counterexamples) are unreasonably nice, beautiful and elegant. They
tend to have (many) more (nice) properties and extra bits of structure
than one would a priori expect . . . [2009a, p. 107]

Just as with the integers and the reals, we appear to get out of them more
than we put in. Hazewinkel continues

These ruminations started with the observation that it is difficult for,
say, an arbitrary algebra to carry additional compatible structure. To
do so it must be nice, i.e., as an algebra be regular (not in the technical
sense of this word), homogeneous, everywhere the same,. . . It is for
instance very difficult to construct an object that has addition, mul-
tiplication and exponentiation, all compatible in the expected ways.
[2009a, pp. 107–108]

This points us to something we have seen concerning the Fraı̈ssé construc-
tion of the limit of finite linear orders. This limit, the rationals as ordered
set, is sufficiently homogeneous that it can support a compatible addition,
multiplication, and indeed a whole field structure. The reals are also homo-
geneous and support a field structure, inheriting these properties from the
rationals.

Next Hazewinkel lists five phenomena:

(1) Objects with a great deal of compatible structure tend to have a nice
regular underlying structure and/or additional nice properties: ‘Extra
structure simplifies the underlying object’. . .
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(2) Universal objects. That is mathematical objects which satisfy a uni-
versality property. They tend to have:

(a) a nice regular underlying structure
(b) additional universal properties (sometimes seemingly com-

pletely unrelated to the defining universal property)

(3) Nice objects tend to be large and inversely large objects of one kind
or another tend to have additional nice properties. For instance, large
projective modules are free.

(4) Extremal objects tend to be nice and regular. ([That] [t]he symmetry
of a problem tends to survive in its extremal solutions is one of the
aspects of this phenomenon; even when (if properly looked at) there
is bifurcation (symmetry breaking) going on.)

(5) Uniqueness theorems and rigidity theorems often yield nice objects
(and inversely). They tend to be unreasonably well behaved. I.e. if
one asks for an object with such and such properties and the answer
is unique the object involved tends to be very regular. This is not
unrelated to 4. [2009a, p. 108]

Indeed, 5 is not unrelated to 4. In fact, we may say of all of 1–5 that they are
‘not unrelated’. In sum, we may say that universally defined entities tend
to be regular, large (generally infinitely large), and have more compatible
structure and properties than we would expect from their definition.

Consider, for instance, Hazewinkel’s ‘star example’—Symm, the ring
of symmetric functions in a countably infinite number of indeterminates.
I shall quote here at length from another of Hazewinkel’s papers ‘Witt
Vectors Part 1’. There he says:

Symm, the Hopf algebra of the symmetric functions is a truly amaz-
ing and rich object. It turns up everywhere and carries more extra
structure than one would believe possible. For instance it turns up
as the homology of the classifying space BU and also as the coho-
mology of that space, illustrating its self-duality. It turns up as the
direct sum of the representation spaces of the symmetric group and
as the ring of rational representations of the infinite general linear
group. This time it is Schur duality that is involved. It is the free λ-
ring on one generator. It has a nondegenerate inner product which
makes it self-dual and the associated orthonormal basis of the Schur
symmetric functions is such that coproduct and product are positive
with respect to these basis functions . . . Symm is also the represent-
ing ring of the big Witt vectors and the covariant bialgebra of the
formal group of the big Witt vectors (another manifestation of its
auto-duality) . . .

As the free λ-ring on one generator it of course carries a λ-ring
structure. In addition it carries ring endomorphisms which define a
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14 CORFIELD

functorial λ-ring structure on the rings W (A) =CRing(Symm, A)
for all unital commutative rings A. A sort of higher λ-ring structure.
Being self-dual there are also co-λ-ring structures and higher co-λ-
ring structures (whatever those may be).

Of course, Symm carries still more structure: it has a second mul-
tiplication and a second comultiplication (dual to each other) that
make it a co-ring object in the category of algebras and, dually,
(almost) a ring object in the category of coalgebras.

The functor represented by Symm, i.e. the big Witt vector functor,
has a comonad structure and the associated coalgebras are precisely
the λ-rings.

All this by no means exhausts the manifestations of and structures
carried by Symm. It seems unlikely that there is any object in math-
ematics richer and/or more beautiful than this one, and many more
uniqueness theorems are needed. [2009b, pp. 327–328]

Hazewinkel spends a large part of his paper [2009a] making sense of the
connections between these many varied characterisations of Symm. I think
there is little point even beginning to sketch the mathematical concepts
mentioned here.3 What we can say is that while more work needs to be
done to systematise these findings mathematically, the kinds of construc-
tion at stake are of a piece with the simpler case explained above of the
ring structure on the integers. The important thing to focus on here is
that it is possible to give a mathematical explanation of why we will find
extra structure in some situations. In the next section we will try to make
sense of this style of explanation by contrast with other styles, but first
I would like to extend this discussion of universal entities to take in whole
categories.

As well as locating nice objects within a particular category, we can
also find nice categories, that is, categories with nice properties. There is
an interesting tale to tell in this regard about how, after Grothendieck in the
1960s, mathematicians have opted to work with nice categories of objects
rather than categories of nice objects when required to make the choice.
We can understand sometimes why a collection of nice objects does not
form a nice category. The former will have properties less likely to be
preserved by category-theoretic constructions. Better then to embed them
in something larger on which these constructions can be made. A classic
case is that of manifolds. These are typically the objects of study of dif-
ferential geometers. However the category of manifolds lacks many nice

3 For a reasonably gentle treatment of the related category of Schur functors, see
http://ncatlab.org/nlab/show/Schur+functor.
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UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 15

properties, including the possession of equalizers and coequalizers. For
example, two diffeomorphic submanifolds of a manifold need not inter-
sect in another submanifold. There are many ways to rectify this problem
by expanding what we take to be a smooth space. Again, mathematicians
would rather have a definition of smooth space that allowed the collec-
tion of them to possess what are taken to be good properties, even if
under this definition we include spaces that might not otherwise have been
considered.

All the same, sometimes it happens that a category of ordinary objects
already possesses nice properties. Take for example the category of sets
and functions. It has a universal characterisation as the free cocomplete
category on one object. On top of this it has many other properties, includ-
ing being complete. This means it has products and equalizers. But it
has much more, including a form of exponentiation. The set of func-
tions from B to A, designated AB , allows for an adjunction HomSet(B ×
C, A) ∼= HomSet(C, AB). Set also has a subobject classifier, allowing
us to characterise power sets P(A) = 2A. In sum, Set is a special cat-
egory known as a topos. This means it supports a form of higher-order
logic [Lambek and Scott, 1988].

For a pair of more geometric examples, let us now consider the cate-
gory of braids and the category of tangles. Braids are arrows in a category
in which an object is a finite set of points in a plane. A braid is a collection
of possibly interweaving threads joining one set of such points to a sec-
ond, necessarily equal-sized set. This category is the free braided monoidal
category, and it possesses extra structure represented by the binary opera-
tion where, given two braids, we replace each strand of the first braid by
a copy of the second in a process known as cabling. In the case of tan-
gles, again we take an object of the category to be a finite collection of
points sprinkled on a plane. But now an arrow going from a first plane
to a second plane of points is a collection of threads each linking two
points either in the same plane or in different planes, along with a col-
lection of knots sitting between the two planes. They can be tangled up
with each other anyhow, as the name suggests. The category of tangles
may be described universally. In this case, we are dealing with the free
braided monoidal category with duals on one object [Shum, 1994]. The
freeness of this entity, and the ensuing mapping from it to similarly struc-
tured categories, is part of what is called quantum topology (see chap. 10
of [Corfield, 2003]). Again at the level of categories there are mathemat-
ical reasons for the coincidence of many properties in a single category
when it is definable by a universal property amongst categories of the
same kind. In these cases, it is usually preferable to take the categories
of the same kind to form a higher-dimensional category, here a 2-category
or bicategory.
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5. Arguing for Contingency

So with Hazewinkel we see the emergence of a type of mathematical
explanation for the niceness of some mathematical entities, and conse-
quently of their pervasiveness. They have more properties than we would
expect from their initial characterisation, which makes it more probable
that mathematicians will come across them in their work. For instance, in
view of the very many properties which coincide in Symm, it is hardly
surprising that this structure has been repeatedly encountered. Now let us
consider how these observations might be seen to bear on the spectrum of
opinion concerning the ‘internal reality’ of mathematical entities. I shall
designate opposing wings of this spectrum as ‘realist’ and ‘nominalist’ as
in [Hacking, 1999, p. 82], who scores positions from 1 to 5 (see [Corfield,
2003, pp. 12–14]). The very extremes of this spectrum are perhaps held by
nobody, but it should be helpful to sketch them.

Extreme realist: There is very little freedom as to how to develop math-
ematical concepts. We should not be surprised that mathematics developed
for internal reasons finds application in the physical sciences. We expect
different cultures to arrive at the same concepts. Were we able to commu-
nicate with other civilisations in the universe, we would be able to under-
stand their mathematics.

Extreme nominalism: There is a huge amount of freedom as to how to
develop mathematical concepts. The reason concepts are selected is down
to who happens to be influential at the time. A huge effort is expended
making these choices look natural retrospectively, but the very large num-
ber of choices made as we extend our theories means we might have had a
very different mathematics. We underestimate the otherness of the mathe-
matics of different times and different cultures by rewriting it in our own
terms.

Explicit positioning of oneself on the internal realist spectrum is fairly
rare, and yet writings reflecting such positioning are reasonably common.
For some examples of work towards the nominalist end other than the
ones I shall treat here, see [Bloor 1976; 1994] and [Ruelle 1988; 2000].
Possible strategies for different wings of the internal realism spectrum run
as follows.

Diachronic—Look at the historical development of the field to assess the
choices made along the way:

• Nominalism: Contingent choices based on idiosyncracies of the
mathematicians concerned set the future conditions of the use of a
concept.

• Realism: Independent paths unexpectedly leading to the same con-
struction suggest that details of the origins of a concept are of little
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UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 17

importance, and that this construction would have been found come
what may.

Synchronic—Consider the field as we know it to be now:

• Nominalism: A specific current construction seems baroque and
arbitrary.

• Realism: That constructions fit together with other constuctions into
a larger scheme, possessing many nice properties, is part of a family,
and explains and is explained by other things.

Let us see an example of a synchronic nominalist claim:

Stated in realist terms, the extended number system [of the complex
numbers—DC] is presumed in effect to stake out a ‘natural kind’
of reality. Far from ‘carving reality at the joints’, however, the sys-
tem can be shown to feature a flagrantly gerrymandered fragment
of heterogeneous reality that is hardly suited to enshrinement at the
centre of a serious science like physics, not to mention a rigorous
one like pure mathematics. Couched in these ultra-realist terms, the
puzzle might be thought to be one that someone with more pragmatic
leanings—the system works, doesn’t it?—need not fret over; and in
fact such a one might even look forward to exploiting it to the dis-
comfort of the realist. Fair enough. I should be happy to have my
discussion of this Rube Goldberg contraption (as the extended num-
ber system pretty much turns out to be) serve as a contribution to the
quarrel between anti-realist and realist that is being waged on a broad
front today [Benardete, 1989, p. 106].

The claim that the system of complex numbers—the algebraic completion
of the reals, a field extension of degree 2, with its accompanying theory of
complex analysis and Riemann surfaces—is ‘flagrantly gerrymandered’
seems to me to be a very difficult one to maintain. Certainly constructions
of the mathematics of the past couple of centuries may look convoluted,
but one must be careful not to mistake this appearance for reality. Never
was there a more integral part of mathematics than that surrounding the
complex numbers.

A diachronic approach seems more likely to work for the nominalist as
with [Pickering, 1997], which tells the story of Hamilton’s work on quater-
nions. Histories of a practice of this type delight in bringing contingency
to centre stage—things could have been so very different. What is very
noticeable in such histories is that often the very early days of a practice
are treated. This gives the advantage of only needing to study a handful
of people with all their idiosyncracies. The underlying thought is that if
so much could have been so different while the course of a practice was
being set, how different things could be decades later. And, if we can find a

 at T
em

plem
an Library, U

niversity of K
ent on S

eptem
ber 17, 2010

philm
at.oxfordjournals.org

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


18 CORFIELD

sharp change of direction away from the original pioneer’s intentions late
on our story, so much the better. Most of the original thinking guiding the
practice will be revealed to be ‘just a story’. Any number of such stories
might have governed at that time, leading mathematics in very different
directions.

So, in Pickering’s paper, with the pace of research so slow, we can
dwell on Hamilton’s idiosyncratic Coleridgean and Kantian metaphysical
views, and we can tell the story of the quaternions as having ‘mutated over
time into the vector analysis central to modern physics’ (p. 45). Hamilton
had failed to reach his original goals, only achieving ‘a local association
of calculation with geometry rather than a global one. He had contructed
a one-to-one correspondence between a particular algebraic system and a
particular geometric system, not an all purpose link between algebra and
geometry, considered as abstract, all-encompassing entities’ (p. 59). The
quaternions could not form the required calculus for reasoning about enti-
ties in three-dimensional space. Even after Hamilton had considered mul-
tiplication on just the imaginary part, where the product of two lines could
be an ordinary number or another imaginary, ‘. . . the association of alge-
bra with geometry remained local. No contemporary physical theories, for
example, spoke of entities in three-dimensional space obeying Hamilton’s
rules’ (p. 60). ‘It was only in the 1880s, after Hamilton’s death, that Josiah
Willard Gibbs and Oliver Heaviside laid out the fundamentals of vector
analysis, dismembering the quaternion system into more useful parts in
the process. This key moment in the delocalization of quaternions was
also the moment of their disintegration’ (p. 60).

From this an innocent reader might take it that, by and large, that was
that as far as the quaternions were concerned, and that from the 1880s they
fell into disuse. Such a reader would be surprised then to learn of a paper
by Gsponer and Hurni [2005] which documents the study of the quater-
nions and allied algebras in mathematics and physics, the vast majority of
which has taken place since 1900, in the form of an analytic bibliography
of 1430 references. This raises the question of whether, with so many man-
hours devoted to the extraction of whatever can be found to be useful about
quaternions and their relationships with other mathematical structures, the
first few decades of their use tell us very much. Although it makes for
engaging history, do we learn so much about the ways in which mathemat-
ics operates at its highest level of organisation from the quixotic quests of
individuals, rather than from an account of the work carried out by droves
of workers, most of whom have sunk into obscurity?

Indeed, there is a danger in what is called ‘one-pass history’. If we
follow up the story of the quaternions we can find substantial reworking
since the nineteenth century. We now know that they form one of four
normed division algebras: real numbers, complex numbers, quaternions,
octonions.
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The real numbers are the dependable breadwinner of the family, the
complete ordered field we all rely on. The complex numbers are a
slightly flashier but still respectable younger brother: not ordered, but
algebraically complete. The quaternions, being noncommutative, are
the eccentric cousin who is shunned at important family gatherings.
But the octonions are the crazy old uncle nobody lets out of the attic:
they are nonassociative. [Baez, 2002, p. 145]

There is a ‘Cayley-Dickson’ construction which allows us to pass along the
line, doubling the dimension but systematically losing a property at each
step so that as we pass from the reals to the complex numbers to the quater-
nions to the sedenions we successivly lose the properties: elements being
identical to their conjugates, commutativity, associativity, the division-
algebra property [Baez, 2002, p. 154]. So there is a 16-dimensional alge-
bra, but within it we have lost the ability to divide by a nonzero element.
For most purposes, mathematicians take this to be a step too far, and so
decide to take the 1, 2, 4, and 8-dimensional members to compose the
family.

Now, one can of course respond to this effort to find a place for the
quaternions by saying that the only reason anyone ever came to the notion
of normed division algebra in the first place was a somewhat arbitrary
choice, part of whose motivation was to make sense of the quaternions
themselves. Small wonder then that the quaternions seem so natural. Had
we achieved a different extension of the complex numbers we would have
found an overarching concept which would have made that extension
appear to fit nicely with the complex numbers and reals. The worry being
expressed here is that we fall into calling concepts ‘natural’ because of
a lack of imagination as to how things might have gone differently. But
then how easy is it to find appropriate extensions? The realist tends to
believe that the options are usually very limited, at least options which
make good mathematical sense, according to prevailing views on the ends
of mathematics. In the case of normed division algebras, we learn that ‘the
octonions are important because they tie together some algebraic struc-
tures that otherwise appear as isolated and inexplicable exceptions’ [Baez,
2002, p. 147]. As Baez goes on to explain, there are three infinite families
of classical simple Lie algebras associated with the reals, complex num-
bers, and quaternions, and then five ‘exceptional’ such algebras. These five
have all been found to be related to the octonions. Thus, normed division
algebras are intimately related to simple Lie algebras, providing evidence
for their naturalness.

Realist strategies for demonstrating robustness are:

1. Diachronic: Independent discovery means the idiosyncracy of origi-
nators is irrelevant. It would be a miracle if many people came across
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the same construction and there were not some good mathematical
reason for this.

2. Synchronic: Mathematical demonstrations show how constructions
fit snugly into the larger scheme of things.

Both strategies trade on an independence, the first blatantly so, the sec-
ond via independent links to the existing body of mathematics. But, in the
first case, how can we establish whether two paths to the same or simi-
lar construction are independent? We may not know of the communication
taking place at the time. And if the supposedly independent discovery hap-
pens years later, it will be hard to know whether it was truly made without
knowledge of the first. As for synchronic accounts, on the other hand, per-
haps the ‘larger scheme of things’ itself arises from attempts to accommo-
date the discovery, to make it appear natural. Where Vladimir Arnold in
‘Polymathematics’ [2001] finds many triples or ‘trinities’ in mathematics
modelled on that of the triple 〈real, complex, quaternion〉, one might say
that this is just to fish for analogies of an already accepted construction.
Fishing is hard, says the realist, and so the debate would continue.

6. Conclusion

The notion of multiple possible characterisations and hence routes to the
study of Symm and other universally defined structures, is a new weapon
in the arsenal of the internal realist, although one might concede that there
is work to be done to resist the charge that the very language used in this
justification is the product of the victory of a certain body of thought which
need not have occurred. We would need to do further work to support the
idea of a certain independence of construction in the metaposition which
Hazewinkel has begun to describe in terms of niceness, where structures
can be shown to possess more properties than are apparent from their ini-
tial characterisation. It may seem unlikely that disagreements of this kind
will be decided to each side’s satisfaction. But even if the question of
internal realism is unresolvable, still the debate is worth pursuing since
it would help to bring to light some less noticed features of mathematics.
In particular, we could expect to acquire a much clearer picture of how
existing mathematics may best be described as fitting together, and of how
the perception of new opportunities to make pieces of mathematical the-
ory fit together drives research. It would be very interesting to see how
mathematicians assess the power of methods which allow new forms of
description of this fitting together to emerge.

We set out from Wimsatt’s interesting challenge to the philosophy of
the natural sciences to reconsider the reality of what science deals with
through the lens of robustness:
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Things are robust if they are accessible (detectable, measur-
able, derivable, definable, producible, or the like) in a variety of
independent ways. . . [T]he independent means of access are not lim-
ited to experimental manipulations but can range all the way from
non-interventive observation or measurement to mathematical or
logical derivation, with many stops in between. [Wimsatt, 2007,
p. 196].

We have seen that a form of multiple determination also occurs in mathe-
matics, giving support to the thought expressed by the French mathemati-
cian, Alain Connes, that

The scientific life of mathematicians can be pictured as a trip inside
the geography of the ‘mathematical reality’ which they unveil grad-
ually in their own private mental frame. . . The really fundamental
point in that respect is that while so many mathematicians have been
spending their entire life exploring that world they all agree on its
contours and on its connexity: whatever the origin of one’s itinerary,
one day or another if one walks long enough, one is bound to reach a
well known town i.e. for instance to meet elliptic functions, modular
forms, zeta functions. ‘All roads lead to Rome’ and the mathematical
world is ‘connected’. [Connes unpublished, pp. 2, 3]

What I have concentrated on in this paper are phenomena where we
can understand mathematically why certain infinitely large ‘well known
towns’ lie on the confluence of many routes, displaying a form of math-
ematical robustness. It is quite possible there will be such towns which
we will not be able to explain via universal characterisation. Here I hope
to have conveyed some insight, via Hazewinkel’s idea of niceness, into
the reasons why in many entities a multitude of interesting properties are
forced to coincide. I believe that a thorough study of such phenomena will
amply reward philosophers of mathematics.

References

Arnol’d, V.I. [2000]: ‘Polymathematics: Is mathematics a single science or a set
of arts?’ in [Arnol’d et al., 2000], pp. 403–416.

Arnol’d, V.I., M. Atiyah, P. Lax, and B. Mazur, eds, [2000]: Mathematics:
Frontiers and Perspectives, Providence, R.I.: American Mathematical
Society.

Baez, J. [2002]: ‘The octonions’, Bulletin of the American Mathematical Society
(N.S.) 39, 145–205.

Benardete, J. [1989]: Metaphysics: The Logical Approach. Oxford: Oxford
University Press.

Bloor, D. [1976]: Knowledge and Social Imagery. London: Routledge.

 at T
em

plem
an Library, U

niversity of K
ent on S

eptem
ber 17, 2010

philm
at.oxfordjournals.org

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


22 CORFIELD

——— [1994]: ‘What can the sociologist of knowledge say about 2+ 2= 4’, in
P. Ernest, ed., Mathematics, Education and Philosophy, pp. 21–32. London:
Falmer.

Carnap, R. [1950]: ‘Empiricism, semantics, and ontology’, Revue Internationale
de Philosophie 4, 20–40.

Connes, A. [unpublished]: ‘A view of mathematics’. http://www.alainconnes.org/
docs/maths.pdf.

Corfield, D. [2003]: Towards a Philosophy of Real Mathematics. Cambridge:
Cambridge University Press.

——— [2010a]: ‘Nominalism versus realism’, Newsletter of the European Math-
ematical Society 75, 23–25.

——— [2010b]: ‘Albert Lautman et la réalité des mathématiques’, Philosophi-
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Mac Lane, S. [1971]: Categories for the Working Mathematician. Berlin:

Springer.
Manin, Y. [1996]: ‘Reflections on arithmetical physics’, in Mathematics as

Metaphor: Selected Essays of Yuri I. Manin, pp. 518–528. Singapore: World
Scientific.

Pickering, A. [1997]: ‘Concepts and the mangle of practice: Constructing quar-
ternions’, in B. Herrnstein Smith and A. Plotnitsky, eds, Mathematics, Sci-
ence, and Postclassical Theory, pp. 40–82. Durham, N.C.: Duke University
Press.

 at T
em

plem
an Library, U

niversity of K
ent on S

eptem
ber 17, 2010

philm
at.oxfordjournals.org

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


UNDERSTANDING THE INFINITE I: NICENESS, ROBUSTNESS, AND REALISM 23

Putnam, Hilary [1975]: ‘What is mathematical truth?’, reprinted in Philosoph-
ical Papers 1: Mathematics, Matter and Method, pp. 60–78. Cambridge:
Cambridge University Press, 1979.

Ruelle, D. [1988]: ‘Is our mathematics natural? The case of equilibrium statis-
tical mechanics’, Bulletin of the American Mathematical Society (N.S.) 19,
259–268.

——— [2000]: ‘Conversations on mathematics with a visitor from outer space’,
in [Arnol’d et al., 2000], pp. 251–259.

Shum, M. [1994]: ‘Tortile tensor categories’, Journal of Pure and Applied Alge-
bra 93, 57–110.

Wimsatt, William [2007]: ‘The ontology of complex systems: Levels of organi-
zation, perspectives, and causal thickets’, in Re-engineering Philosophy for
Limited Beings, pp. 193–240. Cambridge, Mass: Harvard University Press.

Worrall, J. [1989]: ‘Structural realism: The best of both worlds?’, Dialectica
43, 99–124.

 at T
em

plem
an Library, U

niversity of K
ent on S

eptem
ber 17, 2010

philm
at.oxfordjournals.org

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/

	Introduction
	The Robustness of Mathematical Entities
	Universal Objects
	Hazewinkel and Niceness
	Arguing for Contingency
	Conclusion

