
Homotopy type theory: A revolution in the
foundations of mathematics?

David Corfield

University of Kent

7 March 2017



We live in interesting times!

A new foundational language for mathematics has just appeared.



Led by Vladimir Voevodsky, the production of this book required
logicians, computer scientists (European style) and mathematicians
to gather in Princeton for a year.

Amongst the mathematicians, homotopy theorists and category
theorists in particular.



Graeme Segal on The Ubiquity of Homotopy

Much of mathematics is about discovering robust kinds
of structure which organize and illuminate large areas of
the subject. Perhaps the most basic organizing concept
of our thought is space. It leads us to the homotopy
category, which captures many of our geometric
intuitions but also arises unexpectedly in contexts far
from ordinary spaces. Still more is this true of the ‘stable
homotopy’ category, which sits midway between
geometry and algebra.

The theme of my lectures is the strangeness and the
ubiquity of the homotopy and stable homotopy
categories, and how they give us new ideas of what a
space is, and why manifolds and spaces with algebraic
structure play such a special role.



Computational trinitarianism

Constructive logic Programming languages

Category theory

“The central dogma of computational trinitarianism
holds that Logic, Languages, and Categories are but
three manifestations of one divine notion of computation.
There is no preferred route to enlightenment: each
aspect provides insights that comprise the experience of
computation in our lives.” (Robert Harper)



Constructive logic Programming languages

Category theory

Each of these corners comes with a very intricate history.

It’s important then to consider overlaps and differences.



Constructivism in maths

I Dutch philosophy involving denial of excluded middle, and
double negation elimination.

I Often thought to have been defeated in maths at least back in
the 1920s. (‘Like asking a boxer to tie one hand behind his
back’, David Hilbert)

I However, it refused to go away.

I Computer science loves it.



Bad proof of ‘Someone in this room is youngest’

I Assume not, so that for everyone in this nonempty room there
is a younger person.

I Then (without loss of generality) start with me.

I By assumption, I have someone younger than myself, choose
one such person. Then that person has someone younger
again, and so on.

I There is an infinite chain of people which grows ever younger.
Since there are only finitely many people, this sequence must
have at least one person appear repeatedly, and certainly at
least twice. But then that someone is younger than
themselves. Contradiction.

I So it can’t possibly be that no-one is the youngest. So
someone must be the youngest.



This is needlessly non-constructive. Compare this with a
constructive method to name the youngest.

I Place us in any order.

I Take the first person and compare their age with the next
person. Repeat, replacing if and when you find someone
younger.

I Repeat until you reach the end of the line.



Curry-Howard correspondence

The Curry-Howard correspondence associates proofs of
propositions to programs carrying out tasks.

A constructive proof is like an algorithm.

A proof of A implies B corresponds to a recipe which transforms
an input of type A to an output of type B.



Constructivity

I Unless otherwise specified, HoTT adopts a constructive
outlook.

I But there’s no difficulty in adding in classical principles if
these are required .

I However, then one loses computational benefits, interpretation
in wider range of settings, etc.



Type theory: Montague

Montague (from Church) had a sparse type theory with individuals,
e, and truth values t, then properties (e → t). This then allowed
quantifiers (e → t)→ t, and so on.

But if the ‘Battle of Hastings’ and ‘Vlad the Impaler’ are two
terms of type e, it seems as though we ought to be able to ask of
them whether or not they are identical.

We are marginally better off for not being able to ask whether
Julius Caesar is equal to 5.

But a richer type theory will allow us to represent the distinction
between things and events. Philosophers have been led to take
events as a basic ontological category for many reasons, not least
because we can refer to them: ’Did you see that?’



Type theory: Martin-Löf

We don’t ask of an event what its colour is, but where it took
place, its duration and so on.

In the type theory we consider here, we won’t ask of a person and
an event whether they are the same. We will only ask of two terms
whether they’re equal if they belong to the same type.

This isn’t something to be determined. Terms always come typed

I A : Type, a, b : A then (`) IdA(a, b) : Type

I can’t even pose the question of the identity of two terms of
different types.



Dependent types

Types depend on other types,

I m : Months ` Days(m) : Type;

I t : Teams ` Players(t) : Type.

I n : N ` SquareMatrices(n) : Type.

Propositions (as types) do too:

I t : Team ` Plays In London(t) : Prop.

I n : N ` prime(n) : Prop.



A very important idea in maths is the notion of a ‘moduli space’:

I have some space, set,..., and I want to know about certain
structures to place on it. Often I can find an objects such that
maps to that object correspond to a certain kind of structure on
my set/space.

An easy example of this is to equip a set with a designated subset.
The moduli space for such equippings is a two-element set.



One can think of the subset fibred above the set with fibres with 0
or 1 element.

If I ask you to raise your hand if your birth year is even, we can see
this realised.

Person born in even year
↓

Person → 2



One can think of the subset fibred above the set with fibres with 0
or 1 element.

If I ask you to raise your hand if your birth year is even, we can see
this realised.

Person born in even year → 1
↓ ↓

Person → 2



Similarly, dependent types are presented by maps, T : A→ Type
and can be represented as a downward arrow, e.g.:

Players
↓

Teams → Type

Two important constructions, mathematically and in physics are
the total space and the space of sections. This is coded in the type
theory as dependent sum and dependent product.

Players
↓↑

Teams → Type



So with dependent types it’s helpful to have in mind the imagery
of spaces fibred over other spaces:

I Dependent sum is the total space.

I Dependent product is the collection of sections.



In terms of physics, a field is a section of a bundle over space-time.

Principle bundle on spacetime
↓↑

Spacetime → Moduli space



In the case of the birth year property,

I dependent sum picks up the ‘even year born people’,

I dependent product would pick up, were there such a thing, a
proof that each of us is born in an even year.

There will only be such a thing if everyone happens to be born in
an even year.



Analogies between logic and arithmetic

If we assign the values 1 to True and 0 to False, then forming the
conjunction (“and”) of two propositions, the resulting truth value
is formed very much as a product of numbers chosen from {0, 1} is
formed:

I Unless both values are 1, the product will be 0.

I Unless both truth values are True, the truth value of the
conjunction will be False.

It is natural then to wonder if the disjunction (“or”) of two
propositions corresponds to addition. Here things don’t appear to
work out precisely. In the case of ‘True or True’, we seem to be
dealing with an addition capped at 1.



Implication

I (A ∧ B)→ C is True if and only if A→ (B → C ) is True.

I c(a×b) = (cb)a

A proof of an implication is a mapping of proofs. Very much the
approach of Martin-Löf and Dummett.

Similarly, these arithmetic quantities measure the cardinalities of
sets of functions.



I We can explain this analogy via intensional type theory which
adds the twist that an identity is not just a proposition but a
type in itself IdA(a, b).

I Propositions are then taken as a certain kind of type
(sometimes called ‘mere propositions’ when proof irrelevance
assumed).



Dependent sum Dependent product∑
x :A B(x) is the collection of

pairs (a, b) with a : A and b :
B(a)

∏
x :A B(x), is the collection of

functions, f , such that f (a) :
B(a)

When A is a set and B(x) is a
constant set B: The product
of the sets.

When A is a set and B(x) is
a constant set B: The set of
functions from A to B.

When A is a proposition and
B(x) is a constant proposi-
tion, B: The conjunction of
A and B.

When A is a proposition and
B(x) is a constant proposi-
tion, B: The implication A→
B.



The bottom line is that homotopy type theory for the lower levels
of the hierarchy encapsulates:

I Propositional logic

I (Typed) predicate logic

I Structural set theory

It is a structural theory par excellence. It seems impossible to say
anything more by speaking of ‘the structure of A’ or ‘places in the
structure of A’.



n-type hierarchy

Intensional type theory allows for more interesting identity
structures on types:

... ...
2 2-groupoid
1 groupoid
0 set
-1 mere proposition
-2

Forming identity types, idA(a, b), lowers the level.

Higher inductive types are used to construct interesting n-types
such as the 2-sphere.



Category theory

I Formulated in the 1940s, it looks for common constructions
throughout mathematics.

I Entities are gathered together in categories with some relevant
kind of mapping between them.

I The nature of an entity in a category is determined by the
patterns of arrows in and out of it.

I Some categories are especially ‘nice’ and support a ‘logic’ of a
certain strength.

I Toposes are extremely nice, and support an (extensional) type
theory.



Category theory

I ∞-toposes are needed in modern geometry (Lurie).

I Homotopy Type Theory corresponds to their internal
language.

I HoTT = Intensional Martin-Löf type theory + Higher
inductive types + Univalence axiom

I Still a work in progress.



Lawvere on quantifiers

For H is a topos (or ∞-topos) f : X → Y an arrow in H, then
base change induces between over-toposes:

(
∑
f

a f ∗ a
∏
f

) : H/X

f!→
f ∗←→
f∗

H/Y



Lawvere on quantifiers

Take a mapping

Owner : Dog → Person,

then any property of people can be transported over to a property
of dogs, e.g.,

Being French 7→ Being owned by a French person.



We shouldn’t expect every property of dogs will occur in this
fashion.

In other words, we can’t necessarily invert this mapping to send,
say, ‘Pug’ to a property of People.



Lawvere on quantifiers

We can try...

Pug 7→ Owning some pug 7→ ???



Lawvere on quantifiers

But then

Pug 7→ Owning some pug 7→ Owned by someone who owns a pug .

However, people may own more than one breed of dog.



Lawvere on quantifiers

How about

Pug 7→ Owning only pugs 7→ ???



Lawvere on quantifiers

But this leads to

Pug 7→ Owning only pugs 7→ Owned by someone owning only pugs

But again, not all pugs are owned by single breed owners.



Lawvere on quantifiers

In some sense, these are the best approximations to an inverse (left
and right adjoints). They correspond to the type theorist’s
dependent sum and dependent product.

Were we to take the terminal map so as to group all dogs together
(Dog → 1), then the attempts at inverses would send a property
such as ‘Pug’ to familiar things:

‘Some dog is a pug’ and ‘All dogs are pugs’.



What if we take a map Worlds → 1?

We begin to see the modal logician’s possibly (in some world) and
necessarily (in all worlds) appear.



What if we take a map Worlds → 1?

We begin to see the modal logician’s possibly (in some world) and
necessarily (in all worlds) appear.

Things work out well if we form the (co)monads of dependent sum
(product) followed by base change, so that possibly P and
necessarily P are dependent on the type Worlds.

Such composites will be adjoint to each other, expressing their
‘opposition’.

[‘Reader monad’ and ‘write comonad’ are other two composites.]



These constructions applied to our pug case are:

Pug 7→ Owning some pug 7→ Owned by someone who owns a pug .

Pug 7→ Owning only pugs 7→ Owned by someone owning only pugs

We have equivalents of

I P →©P and ©© P →©P

I �P → P and �P → ��P



A context of symmetries

Since types need not just be sets, we should see what happens
when we work in a simple non-set context such as ∗ : BG , for a
group G .

A type in this context is something equipped with an action by G .

For example, a set of 5 objects acted on by the group of order 2:



Then for the unique map BG → 1

I Dependent sum is the quotient (action groupoid, orbits);

I Dependent product is the fixed points of the action.

Consider with Black (1952), a universe empty apart from two
identical spheres. If I cannot describe a differentiating property,
how many spheres are there: 0, 1 or 2?



For the inclusion of a subgroup, H → G , we recover restricted,
induced and coinduced representations.

In full generality, we can work with any map between ∞-groups.



Towards physics

I All very well, but we need to recreate differential topology and
geometry. We have something like the ‘total space’ and ‘space
of sections’ constructions, but we need spatial cohesion and
smoothness.

I To try to do this in plain HoTT would commit the same
mistake as to adopt set theoretic ‘in principle’ foundations.

I We need a tailored way to express spatial cohesion and
smoothness.

I Fortunately, Urs Schreiber and Mike Shulman have developed
Lawvere’s ideas on cohesion to do just this, see dcct.

https://ncatlab.org/nlab/show/cohesive+(infinity,1)-topos
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos


Variants of HoTT

There are ways to expand HoTT:

I Plain HoTT

I Cohesive HoTT

I Directed HoTT

I Linear HoTT (as in the ‘linear’ of ‘linear logic’)

‘Modalities’ can be introduced to allow for spaces to be
constructed by gluing together their parts.



Synthetic theories in mathematics and physics

The idea of synthetic spaces can be summarized as
follows: if all objects in mathematics come naturally with
spatial structure, then it is perverse to insist on defining
them first in terms of bare sets, as is the official
foundational position of most mathematicians, and only
later equipping them with spatial structure. (Mike
Shulman)

We can use a variant of type theory to create sophisticated new
mathematics, e.g., to guide the next twisted differential
cohomology needed by the string theorist, from the twisted
K-theory that describes the B-field-twisted Yang-Mills fields over
D-branes in type II string theory to twisted equivariant elliptic
cohomology in heterotic string theory, and beyond. (Urs Schreiber)



Physics and HoTT

First, pre-quantum geometry ... is naturally axiomatized
in cohesive homotopy type theory; second, quantization
(geometric quantization and path integral quantization,
in fact we find a subtle mix of both) is naturally
axiomatized in linear homotopy-type theory.

In fact we find that linear homotopy type theory provides
an improved quantum logic that, contrary to the
common perception of traditional quantum logic, indeed
serves as a powerful tool for reasoning about what is just
as commonly perceived as the more subtle aspects of
quantum theory, such as the path integral, quantum
anomalies, holography, motivic structure. (Urs Schreiber)



Lawvere’s cohesion

Consider a chain of adjunctions between a category of spaces and
the category of sets. If we take the former to be topological
spaces, then

I One basic mapping takes such a space and gives its underlying
set of points. All the cohesive ‘glue’ has been removed.

I There are two ways to generate a space from a set: one is to
form the space with the discrete topology, where no point
sticks to another.

I The other is to form the space with the codiscrete topology,
where the points are all glued together into a single blob so
that no part is separable,in the sense that any map into it is
continuous.

I Finally, we need a second map from spaces to sets, one which
‘reinforces’ the glue by reducing each connected part to an
element of a set, the connected components functor, π0.



We have

(π0 a Disc a U a coDisc) : Top → Set

These four functors form an adjoint chain, where any of the three
compositions of two adjacent functors
(U ◦ coDisc ,U ◦ Disc , π0 ◦ Disc) from the category of sets to itself
is the identity, whereas, in the other direction, composing adjacent
functors to produce endofunctors on Top
(coDisc ◦ U,Disc ◦ U,Disc ◦ π0) yields two idempotent monads
and one idempotent comonad.

These correspond to the three adjoint modalities of the diagram:∫
` [ ` ]

To participate in such adjoint strings is demanding. By the time
we find another (correctly related) layer, smoothness, or differential
cohesion is expressed.

< ` = ` &

https://ncatlab.org/nlab/show/differential+cohesive+(infinity,1)-topos
https://ncatlab.org/nlab/show/differential+cohesive+(infinity,1)-topos


In a context H of differential cohesion with = the infinitesimal
shape modality, then for any object X ∈ H the comonad

JetX := i∗i∗

for base change along the X -component of the unit of =

H/X

i∗←−−→
i∗

H/=(X ) ,

may be interpreted as sending any bundle over X to its jet bundle.

https://ncatlab.org/nlab/show/jet+comonad


For which bundles is there a map from E to Jet(E )?

Those E which themselves have been pulled back from =(Σ).

Marvan showed that these ‘coalgebras’ are solutions sets of PDEs.

Pulling back from =(Σ) gives a way of comparing infinitesimally
close fibres.



At last, we have a foundational language with the capacity to
make serious contact with mainstream mathematics, including
mathematical physics.






