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a b s t r a c t

In a paper published in 1939, Ernest Nagel described the role that projective duality had played in the
reformulation of mathematical understanding through the turn of the nineteenth century, claiming that
the discovery of the principle of duality had freed mathematicians from the belief that their task was to
describe intuitive elements. While instances of duality in mathematics have increased enormously
through the twentieth century, philosophers since Nagel have paid little attention to the phenomenon.
In this paper I will argue that a reassessment is overdue. Something beyond doubt is that category
theory has an enormous amount to say on the subject, for example, in terms of arrow reversal, dualising
objects and adjunctions. These developments have coincided with changes in our understanding of
identity and structure within mathematics. While it transpires that physicists have employed the term
‘duality’ in ways which do not always coincide with those of mathematicians, analysis of the latter
should still prove very useful to philosophers of physics. Consequently, category theory presents itself as
an extremely important language for the philosophy of physics.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Phenomena covered by the term duality have long fascinated
mathematicians. While the classification of the five platonic solids
is recorded in Book XIII of Euclid's Elements, in what is sometimes
called ‘Book XV’, but believed to be written much later in the 6th
century AD by Isidore of Miletus, or perhaps his student, a cube is
inscribed in an octahedron and an octahedron inscribed in a cube.
This pattern continues, of course, to the other Platonic solids,
where the dodecahedron and icosahedron are found to be dual to
each other, and the tetrahedron self-dual.

By the middle of the nineteenth century, various ‘algebraic’
approaches to logic had been developed, and it had been observed
that a logical duality obtained on switching propositions and their
negations at the same time as switching ‘and’ and ‘or’. For
example, De Morgan duality asserts that

� :ðp4qÞ3:p3:q,
� :ðp3qÞ3:p4:q.

Meanwhile in analysis it had been found that problems involving
solutions to differential equations could be transformed by Fourier

analysis, where the transform of a product of functions is equal to
the convolution of the individual transforms, and the transform of
the convolution of two functions is the product of the individual
transforms.

However, the pinnacle of the nineteenth century interest in
duality was reached with projective duality in geometry. Texts
would be laid out in parallel columns showing the proofs of dual
theorems, with the necessary exchange of ‘point’ and ‘line’,
‘collinear’ and ‘concurrent’, and so on. For example, we have the
following dual theorems, attributed to Pascal and Brianchon:

� Given a hexagon inscribed in a conic section, each of the three
pairs of opposite sides determines a point, and these three
points are collinear.

� Given a hexagon circumscribed on a conic section, each of the
three pairs of opposite vertices determines a line, and these
three lines are concurrent.

Duality also came to fascinate physicists through this century.
Maxwell understood topics in optics from the perspective of
projective geometry, but a more significant manifestation appeared
in electromagnetism. Already Faraday had seen that one could
anticipate new phenomena by the interchange of electric and
magnetic terms. If a fluctuating magnetic field could produce a
current in a wire, a fluctuating current should move the needle of a
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nearby compass, indicating a generated magnetic field. This duality
was present in Maxwell's own equations for electromagnetism
in a vacuum, which reveal invariance under the exchange E-B
and B-�E.

What is notable about these initial appearances of duality is
their tendency to broaden, deepen and merge. The duality of the
Platonic solids would lead to dual complexes in Poincaré's analysis
situs, and hence to Poincaré duality, relating aspects of a space in
complementary dimensions. Logical duality would lead to inver-
sion of order structures such as lattices, and there merge with
similar ideas coming from projective geometry. Pontrjagin dual
groups would later be devised to understand Poincaré and other
dualities in algebraic topology, and in turn would explain the
duality of Fourier analysis. Meanwhile in physics, in his theory of
special relativity, Einstein would exploit Maxwellian symmetry
which would come to be understood as electric–magnetic duality.
In the 1920s Fourier analysis was seen to underlie wave-particle
duality of quantum mechanics via the transformation between
position space and momentum space. Later in 1931, Dirac seeking
a quantum version of electromagnetism was led by electric–
magnetic duality to predict the existence of magnetic monopoles.

Right up to the present day, mathematicians' and physicists'
fascination with duality shows no sign of abating, from the pure
realm of number theory to theoretical physics. For example, we
hear that

It has long been suspected that the Langlands correspondence
is somehow related to various dualities observed in quantum
field theory and string theory. Both the Langlands correspon-
dence and the dualities in physics have emerged as some sort of
non-abelian Fourier transforms. (Geometric Langlands Program
Project, 2007)

This is part of an intense interaction between theoretical physi-
cists, mathematical physicists and pure mathematicians, in parti-
cular work in the field of ‘geometric representation theory’.
Analogies between number theory and quantum field theory are
widespread, resting on such observations as Michael Atiyah's from
the 1970s that the Montonen–Olive dual charge group coincides
with the Langlands dual group, and leading to Witten and
Kapustin's identification of one side of homological mirror sym-
metry with one side of the categorical Langlands correspondence,
itself understood as a consequence of S-duality (see Frenkel,
2009). Dualities lie at the core of each side of the analogy.

If cutting-edge physics and mathematics have converged on
similar structures, what might philosophers of each discipline
achieve if they bring their respective backgrounds to think about
manifestations of duality? Philosophers of physics have a long-
standing interest in situations where two apparently different
theories deliver the same empirical predictions. While with gauge
equivalent theories it does not seem unreasonable to treat them as
variations of the ‘same’ theory, this appears less plausible in the
case of dual string theories. Since mathematics treats dualities
between apparently different kinds of mathematical entity, we
might expect philosophers of mathematics to be able to be of
some service here. However, a search through The Oxford Hand-
book of Philosophy of Mathematics and Logic (Shapiro, 2005) reveals
that the phenomenon of duality has made very little impression
on the discipline in the Anglophone world. On the other hand,
from the perspective of the philosophy of mathematical practice
(see Mancosu, 2008), if we are to describe the nature of current
mathematics, such a central, thematic concept as duality deserves
treatment, and, together with Ralf Krömer, I have begun this task
(Krömer & Corfield, 2014). That we have an audience in the
philosophy of physics should give us great encouragement.

At the very least, from the mathematical side there should be
some attempt to convey what kind of thing mathematical duality
is, whether it is a circumscribable concept about which it may be
possible to forge a general mathematical theory, or rather a much
looser, family resemblance kind of notion. A glance at The
Princeton Companion to Mathematics entry for duality may incline
us to the latter viewpoint:

Duality is an important general theme that has manifestations
in almost every area of mathematics … Despite the importance
of duality in mathematics, there is no single definition that
covers all instances of the phenomenon. (Gowers, Barrow-
Green, & Leader, 2008, p. 187)

So does mathematical duality shape up to be an exhaustively
definable concept, or will it retain an elusive quality, which allows
it to manifest itself from time to time in Protean fashion in
different portions of mathematics? Well, even if not exhaustible,
there is already a theoretical framework in which it is possible to
draw together much of what is designated as duality. That frame-
work is provided by category theory, and a major thrust of this
paper is to support the idea that the ability to formulate results at
such a high level of generality indicates how category theory may
provide indispensable insights into the subject matter of mathe-
matics. Set theoretic resources are far too weak in this regard.

Category theory will also provide insight into another notable
aspect of the mathematical treatment of duality. While many early
forms that we have seen related things of a similar nature –

points–lines, functions–functions, groups–groups, logical expres-
sions–logical expressions – later dualities expanded to allow
different kinds of entity to be related: theories–models, spaces–
quantities. Some have looked to subsume these different faces
under the so-called ‘Isbell duality’ which governs many relation-
ships between geometry and algebra.

As we proceed, we will have to come to understand the
differences between physicists' and mathematicians' uses of the
word ‘duality’. It transpires that these diverge considerably, and
yet this should not stand in the way of a dialogue. On the one
hand, there is interesting physics to be found employing genuine
mathematical duality, while on the other, even if on occasions a
case of physical duality is better described as a case of mathema-
tical equivalence, we should find that the constructions I describe
here are still useful. In particular, there are indications of a close
resemblance between string dualities and the so-called 'Morita
equivalence' (see Okada, 2009). In his paper, Morita (1958) treated
both equivalences (‘isomorphisms’) of module categories, but also
‘dualities’ of such categories. They arise through similar construc-
tions where a ‘bimodule’ mediates between two settings.

I will return to this matter below. First, however, let us set the
scene to see what philosophy has had to say about duality in
mathematics until now.

2. Philosophers on mathematical duality

To date philosophers have found surprisingly little to say about
this feature of mathematics, especially in the Anglophone world.
One notable exception was Ernest Nagel who in his 1939 paper
explained how the discovery of duality in projective geometry
liberated mathematics from the idea that it was dealing with
specific elements bearing a set of defining properties. Before we
come to look more closely at this paper, it is worth noting that
Nagel is dealing here merely with one episode in the history of
mathematics' treatment of duality, an episode that had run its
course decades earlier. With the further advantage of hindsight
three-quarters of a century after Nagel, we should expect new
issues to have arisen.
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The key to understanding Nagel's paper is to recall that he was
a full-blooded logical empiricist. As such he wanted to use the
history of mathematics to support some of that doctrine's tenets:
the reduction of mathematics to logic, the denial of geometry as
synthetic a priori, the sharp separation of mathematical from
physical geometry, etc.

It is a fair if somewhat crude summary of the history of geometry
since 1800 to say that it has led from the view that geometry is
the apodeictic science of space to the conception that geometry,
in so far as it is part of natural science, is a system of “conven-
tions” or “definitions” for ordering and measuring bodies.
The object of the present essay is to trace in part the develop-
ment of the shift in point of view just indicated. This change
owes next to nothing to the speculations of professional
philosophers and logicians, and is the outcome of technical
needs and advances of mathematics proper. Nevertheless, it has
had a profound influence upon modern conceptions of logic
and methodology … (Nagel, 1939, p. 143)

We find here then a justification of Nagel's beliefs about the place
of logic within mathematics as arising from the internal struggles
of the field. Philosophy is to come to hold such views through a
study of the practice of mathematics, a lesson that was largely
forgotten over succeeding decades.

Regarding geometry in particular, he claims

The liberation of geometrical terms from their usual but narrow
interpretation first required a thoroughgoing denial of the need
for absolute simples as the foundation for a demonstrative
geometry. Such a liberation was in large measure the conse-
quence of the discovery of the principle of duality and of the
manifold extensions and applications which were made of it.
(Nagel, 1939, p. 179)

So where Euclid saw the need to define the point (“that which has no
parts”) and the straight line (“that which lies evenly on its points”),
Nagel observes that we need not see geometry as resting on any such
‘absolute simples’. The possibility of interchanging ‘point’ and ‘line’
while retaining truth indicates that mathematical geometry is not the
study of some specific spatial entities, but is merely the investigation
of a body of theories given in the (then) modern axiomatic way.

His paper culminates in three theses:

� “The distinction between a pure and an applied mathematics
and logic has become essential for any adequate understanding
of the procedures and conclusions of the natural sciences.”

� “Familiarity with the techniques of implicit definitions of terms
and the method of their constructive explication is of equal
importance for comprehending scientific method and contem-
porary discussions of it.”

� “And the concepts of structure, isomorphism, and invariance,
which have been fashioned out of the materials to which the
principle of duality is relevant, dominate research in mathe-
matics, logic, and the sciences of nature.” (Nagel, 1939, p. 217)

From the logical empiricist viewpoint, philosophers of physics
would appear to have a more interesting role to play since there is
the important task of understanding the coordinating principles
relating these structures to the world. On the other hand, even
accepting Nagel's division of labour, there would have been gainful
employment for philosophers of mathematics to think hard about
his third point. Unfortunately, this chance was lost by the con-
tinued failure to keep abreast of the most important developments
in theorising about the “concepts of structure, isomorphism, and
invariance.” Arriving at an account of mathematical duality as
currently treated forces us back to this task.

Turning briefly away from the Anglophone world, I should
mention a French attempt to deal with duality, namely, in the
work of Albert Lautman. Indeed, I treated this case in a paper
which discusses his work (Corfield, 2010). Lautmanwas working at
the same time as Nagel, but threw himself into the intricacies of
contemporary mathematics. Unlike Nagel, he believed mathe-
matics is about something, or rather that there is something
‘above’ mathematics which realises itself in the unfolding of
mathematical theories, and elsewhere. The main point of my essay
was to remark that there is no need to see these high level ideas as
existing outside of mathematics. Since the time of Lautman's tragic
early death, and due in no small part to the efforts of many of the
mathematicians he knew, a mathematical language did emerge
which could treat these high-level thematic ideas. Let us turn to
this new language now.

3. General category theoretic approaches to duality

Before we begin on the category theoretic treatment of duality,
it is worth pointing out that from the viewpoint of mathemati-
cians, physicists display a certain looseness when it comes to using
terms ‘duality’, ‘symmetry’ and ‘reciprocity’. Sometimes duality is
used merely to designate a non-trivial equivalence. Indeed it is
possible to understand homological mirror symmetry, a case of
T-duality, as simply an equivalence of A1-categories (Kontsevich,
1995). In my view it is preferable to retain ‘duality’ for kinds of
involution with some form of structural reversal. For example,
where one set, A, forms a part of a larger set, B, via an injection, the
lattice of subsets of B projects onto that of A. Sets and the kinds of
lattice that are formed by their subsets thus present us with a
duality in the proper mathematical sense.

Naturally, even within mathematics itself there may be differ-
ent views on whether something merits the term. The role of the
Langlands ‘dual’ LG in the number-theoretic Langlands program is
not as symmetric as in the geometric Langlands program, which is
in turn governed by the physicists’ S-duality, since it essentially
serves as an ingredient for the construction of automorphic L-
functions from Galois representations in G. In a comment to a
message to Sarnak, Langlands (2014), who did not himself coin the
phrase ‘dual group’ remarks

This duality [electric–magnetic duality/S-duality] is quite dif-
ferent than the functoriality and reciprocity introduced in the
arithmetic theory [ordinary Langlands]. (Langlands, 2014)

The exchange of root data which govern this operation convinced
someone to call this a ‘dual’, where we might prefer the term
‘reciprocal’.

Let us first turn to some indisputable forms of mathematical
duality of relevance to physics. These occur when we rely on a
pairing A� B-C, and use maps from B to C to represent elements
of A and maps from A to C to represent elements of B. A typical
case involves some collection of entities, and then real or other
valued functions on that collection. Then we may be able to
reconstruct an element of the collection from information of
where it is sent by the functions. Cases of this situation include
the classic algebraic coordinatisation of a space, where a point is
given by a tuple of coordinates. A more elaborate version, where C
is allowed to vary, includes the reconstruction of an integer from
all of its remainders modulo the primes, an idea at the heart of
modern algebraic geometry.

This form of duality is what Shahn Majid calls representational
duality, and is what he intends in his claim “as physics improves
its structures tend to become self-dual” (Majid, 2012, p. 117). It also
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underlies the algebra–geometry duality of the following
table (nLab, duality in physics):

Algebra Geometry
Poisson algebra Poisson manifold
deformation quantisation geometric quantisation
algebra of observables space of states
Heisenberg picture Schrödinger picture
AQFT FQFT

Higher Algebra Higher Geometry
Poisson n-algebra n-plectic manifold
En-algebras higher symplectic geometry
BD-BV quantisation higher geometric

quantisation
factorisation algebra of

observables
extended quantum field
theory

factorisation homology cobordism representation

Note that while by default “deformation quantisation” refers to
formal deformation quantisation and may appear not to be able to
provide a proper dual for geometric quantisation, there is a “full”
Cn-algebraic version, although details of the full duality have not
been completely worked out. A case which is thought to be
amenable to such treatment is the geometric quantisation of a
Poisson manifold as the holographic boundary theory of a 2d
Poisson–Chern–Simons theory which it seems gives a geometric-
dual analogue of the interpretation by Cattaneo and Felder of
Kontsevich deformation quantisation as the boundary of the
perturbative Poisson sigma-model.1

Looking now for a more systematic framework for duality, the
first point to make is that you cannot begin to understand its
categorical treatment without the fundamental notion of an
adjunction. Taken in its ordinary and original sense, this is as a
weakened form of inverse to a functor between categories. Say I
have a functor F : C-D. I want to know how the image, F(x), of an
object, x, of C, behaves in D insofar as maps out of it are arranged.
Say I have an object, y, in D. Now, arrows from F(x) to y can be
understood from the perspective of the original category C if there
is a right adjoint to F, let us say G, which means that
HomDðFðxÞ; yÞffiHomCðx;GðyÞÞ. It is no accident that this (natural)
isomorphism bears a strong resemblance to the defining property
of adjoint operators on Hilbert spaces, where if A is a continuous
linear operator on a space H, then its adjoint An satisfies the
equation 〈Ax; y〉¼ 〈x;Any〉, for x; yAH. Indeed, there is a setting in
‘enriched’ category theory in which adjoint operators and adjoint
functors coincide (Baez, 1996).

A standard example to give now is a free-underlying adjunction
between the category of sets and that of some algebraic structure,
such as groups:

HomSetðx;UnderlyingðyÞÞffiHomGroupðFreeðxÞ; yÞ

On the other hand, in the case of the underlying functor from
topological spaces to sets, U : Top-Sets, this functor has both a left
adjoint, placing the discrete topology on a set, and a right adjoint,
placing the codiscrete topology on a set.

Adjunctions are almost everywhere in mathematics, as Saun-
ders Mac Lane told us (1971, p. 103), and are at the heart of the
category theoretic view of mathematics.

Essentially everything that makes category theory nontrivial
and interesting beyond groupoid theory can be derived from
the concept of adjoint functors. (nLab, adjunctions)

In view of the new foundational program known as homotopy
type theory (Univalent Foundations Program, 2014), which takes
groupoids and their higher versions to be the basic forms of
mathematical entities, this is a powerful statement.

Now any adjunction restricted to the fixed points of each
category results in an adjoint equivalence.2 An object of a category
is fixed by the adjunction if the result of applying the two functors
in turn is isomorphic to the original object. This may not yield
anything interesting, especially if there are no fixed points as in
the free group example above. In the case of the adjoints to the
underlying functor of topological spaces, on the other hand, we
find equivalences between discrete spaces and sets and between
codiscrete spaces and sets.

To bring duality in here, we need an adjunction to operate
between one category and the dual or opposite of another, that is,
the category with arrows reversed. Then this will induce a dual
equivalence on fixed points. For example, we can see Pontrjagin
duality between the category of abelian groups and that of
compact topological abelian groups in this way. We will see a
method to generate interesting dualities of this kind below.

As often happens in category theory, this construction is found
to have a much broader setting. Here the definition of adjunction
can be formulated in such a way that it can be ‘internalised’ within
any (weak) 2-category, a device with objects, 1-morphisms
between them and 2-morphisms between these (see Lack, 2010,
Section 2.1). The ordinary setting is where we consider the
2-category of categories, functors and natural transformations.
But there are some simple kinds of (one object) 2-category, which
amount to categories with a form of multiplication, a monoidal
category. An easy example here is the category of vector spaces,
which considered as a 2-category has a single object, morphisms
labelled by vector spaces so that composition is equivalent
to taking the tensor product, and linear transformations as
2-morphisms. In this setting an object with a right adjoint (which
by the symmetry of tensor products here is also a left adjoint)
works out to be an object, A, with maps 1-A� DðAÞ and
DðAÞ � A-1, satisfying relevant equations. This structure is pre-
sent for a finite vector space and its dual. Note that in the
representation of such situations by string diagrams, as employed
in Bob Coecke's pictorial approach to quantum mechanics, the
relevant maps are cups and caps (Coecke, 2005).

We can tell a similar story at a higher level, namely with
monoidal 2-categories. An example of this is the 2-category of
categories, profunctors and profunctor morphisms, which parallels
the shift from the category of sets and functions to that of sets and
relations. A profunctor between two categories, C and D is a functor
Dop � C-Set, similar to the definition of a relation between two
sets X and Y as a map X � Y-2. In the same spirit as with adjoint
duals of vector spaces, we find here that each category has a dual,
namely its opposite. The existence of such a dual is a very important
feature of categories. Indeed for the category of categories this is the
only proper symmetry, or autoequivalence.

One way to generate the kinds of adjunction that lead to
interesting dualities is a construction known as the nucleus of a
profunctor (see Willerton, 2015, Section 3 for details). This yields a
dual adjunction between SetC

op

and SetD. The profunctor closely
resembles the kernel in an integral transform, transforming func-
tions on one side (here presheaves) to functions on the other (here
copresheaves), so is very much like a categorified Fourier transform.

1 My thanks to Nick Teh for raising the issue of the extent of the quantisation
duality in the table, and to Urs Schreiber for providing me with details for this
response (see his MathOverflow answer http://mathoverflow.net/a/135928/447).

2 Lambek et al. (1982) give a list of examples, illustrating what he calls the
‘Hericlitian principle of the unity of opposites’.
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To make clearer sense of this construction it is easier to move to
what is known as enriched category theory. The idea here is that in
ordinary category theory the maps between two objects form a
set, HomCðx; yÞASet. But the definition of a category can easily be
modified to allow objects of other categories to be these Hom-
objects. Monoidal categories with their product to allow composi-
tion and a tensor unit to allow an identity fit the bill.

Surprisingly, choosing to enrich with the very simple poset of
truth values generates interesting examples. A truth value-
enriched category is a poset. Now we can treat sets as discrete
posets so that given a relation between two sets, we can set up an
adjunction between their power sets. The resulting dualities
include famous cases such as

1. Algebraic geometry: the classic duality between affine varieties
and radical ideals.

2. Number theory: The correspondence from Galois theory
between intermediate field extensions and subgroups of the
Galois group.

3. Linear algebra: duality between linear subspaces and
annihilators.

4. Logic: duality between sets of sentences which are closed under
logical consequence and the set of models of the theory.

5. Convex geometry: duality between closed convex sets and
convex hulls.

6. Analysis: lower closed subsets and upper closed subsets, in other
words, Dedekind cuts, real numbers (together with 71).3

Some of these cases may be better described by relying on the
partial order structure of each side. Other than truth values, an
important choice is to enrich in Ab, the category of abelian groups.
For a very nonstandard example, it is possible to enrich in the
extended real numbers, where enriched categories here are a kind
of (non-symmetric) metric space in which points may be infinitely
far apart. In this way Fenchel–Legendre duality can be generated
(see Willerton, 2015).

Returning to the standard enriching category Set, and the Hom-
profunctor for a category, Hom : ðc; dÞ↦Homðc; dÞ, we have an
adjunction between the category of presheaves on the category
and the opposite of the category of its copresheaves. Examples of
this kind are often referred to as Isbell conjugates. If C is chosen as a
category of test spaces, we find here an adjunction between spatial
entities probed by members of C, and algebraic things co-probed
by them. We can also restrict to subcategories of these presheaves,
for instance, functors preserving various limits, or sheaves, often
finding dual equivalences.

This brings us close to a notion which goes by various names,
including the picturesque ‘objects keeping summer and winter
homes’, where a dualising object, V, belongs to two categories, and
gives rise to a dual adjunction by taking maps into it in the
respective categories.

Many dualities arise from such a V being describable in two ways:

� 2 as a space (with discrete topology) and as a Boolean algebra:
Stone duality between Stone spaces and Boolean algebras

� R=Z as a compact Hausdorff topological abelian group and as a
plain abelian group: Pontrjagin duality (Fourier duality a
special case).

� A ground field as a vector space and as a linearly compact
vector space over itself: Lefschetz duality.

The category Set itself possesses a huge amount of structure
and so can be seen as belonging to a variety of different

2-categories. For example, it is a category with finite products,
and it is also a category with all limits, filtered colimits, and
regular epimorphisms. This sets up a logical duality between first-
order theories and their collections of models:

Models¼Homfp�CatðAlgebraic theory; SetÞ
Algebraic theory¼Homlfcre�CatðModels; SetÞ

which is established by Forssell in his thesis (2008). He writes
there

…instances of the algebra–geometry duality can be seen to
manifest a syntax-semantics duality between an algebra of
syntax and a geometry of semantics. (Forssell, 2008, p. 2)

This example is rather like Tannaka–Krein duality (a noncommu-
tative extension of Pontrjagin duality) which allows one to recover
a group from its category of representations (and underlying
functor to vector spaces).

About this kind of dualising object, Lawvere and Rosebrugh
wrote

� Formal duality concerns mere arrow reversal in the relevant
diagrams.

� Concrete duality, on the other hand, occurs in situations where
a new diagram is formed from an old one by exponentiating
each object with respect to a given dualising object, e.g., X
becomes VX, with V being the dualising object. The arrows are
naturally reversed in the new diagram.

They continue

Not every statement will be taken into its formal dual by the
process of dualising with respect to V, and indeed a large part
of the study of mathematics

space vs: quantity

and of logic

theory vs: example

may be considered as the detailed study of the extent to which
formal duality and concrete duality into a favorite V correspond
or fail to correspond. (Lawvere & Rosebrugh, 2003, p. 122).

As mentioned in the introduction, there are commonalities
between the setting of some of the duality constructions we have
seen and that of what is known as Morita equivalence. At the heart
of each is something playing a mediating role between two
worlds, whether dualising object or bimodule.

Finally, on the mathematical side, I would like to mention
another favourite topic of Lawvere's. We saw above that the
underlying functor from topological spaces to sets had an adjoint
on each side. This induces an adjoint pair on Top. Such induced
adjoint pairs generate a range of dual constructions: product/
coproduct, universal/existential quantifiers, idempotent monads
and comonads (representing modalities such as possibility and
necessity), etc. Ways of capturing geometric forms of space
through the concept of ‘cohesion’ involve a chain of four adjoints,
so inducing a triple of adjoints on a category (Corfield,
forthcoming; Schreiber, 2013), and are suggesting ways to see
why there is something ‘geometric’ and even ‘differential’ going on
in number theory, as the Langlands Program suggests.

4. Philosophical reflections and conclusions

We moved from a network of instances of duality in the
introduction to a network of categorical constructions that cover
most examples of interest. All constructions revolve around the3 Thanks to Willerton (2013) for these examples.
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fundamental concept of adjunction, and yet there is unlikely to be
a single monolithic account of duality. Be that as it may, we should
note the power of the resources of category theory to capture such
a high level concept. Someone who cares only for the ability of a
‘foundational’ language to capture ‘in principle’ all pieces of
mathematical reasoning may reassure themselves that set theory
could in principle speak about particular cases of duality, but I
would find hopelessly implausible any claim that it can be done in
anything like as ‘natural’ (Corfield, 2003, Section 9.8) and sys-
tematic a way as with category theory. This is because fundamen-
tally at stake in many cases of mathematical duality is the
existence of one nontrivial autoequivalence of the 1-category,
and indeed ð1;1Þ-category, of categories, which sends a category
to its opposite.

The right way to treat ‘sameness’ between categories is the
notion of equivalence. Should this incline us to identify opposite
categories? Well, no, since they are not equivalent so long as they
are not self-dual. Consider now cases where we can find ‘concrete’
descriptions of the two sides of a duality. This means providing a
certain kind of underlying functor to the category of sets, which
means we are taking these entities to be a certain kind of
structured set. The opposite of such a functor goes from the
opposite category to the opposite of the category of sets, which
can be described as the category of complete atomic Boolean
algebras. A category of entities which may be viewed as sets with a
simple structure is dual to one whose objects may be viewed as
complete atomic Boolean algebras with simple structure, so
perhaps quite complicated as structured sets. This failure of self-
duality in the category of sets can be seen from the behaviour of
two of its objects ∅ and 1, the singleton set. As initial and terminal
objects, were Set self-dual, they would behave in a dual way.
However, maps into ∅ amount to the identity from ∅. Maps out of
1 amount to the elements of any set.

Singling out Set as part of the criterion for what makes a
category ‘concrete’ introduces symmetry-breaking into the cate-
gory of categories. I considered this fundamental asymmetry in an
article comparing the ‘coalgebra’ of unfolding and decomposition
to the ‘algebra’ of construction and composition (Corfield, 2011).
What makes the category of sets so special that we take it as a
default? Certainly it has many pleasant properties, or better
universal characterisations. On the other hand, we may want to
place ourselves in more intrinsically ‘dual’ settings such as the
self-dual category of sets and relations, Rel.4 In John Baez's paper
‘Quantum Quandaries’ (Baez, 2004) we find exposition of the
observation that many categories involved in physics, such as the
various cobordism categories of topological quantum field theory,
and the category of Hilbert spaces, are monoidal but not cartesian.
As we saw above in the case of the category of vector spaces, this
means there is a form of product of two objects not generally
equipped with projections, one manifestation of this in physics
being that the state of two interfering quantum systems cannot
generally be given by a state of each. We can see this non-cartesian
flavour already in the shift from Set to Rel, and also as we move
from functions to spans or correspondences, right up to the
appearance of monoidal ð1;nÞ-categories with full duals as targets
for extended topological quantum field theories (Lurie, 2009). This
is a central part of the appearance of genuine mathematical
duality in physics.

Turning now to the theme of other contributions to this
journal, physical dualities in string theory, let us see how close
they are to mathematical duality proper. Well, T-duality in its
topological form is related to Fourier–Mukai duality, which

concerns integral transforms through a kernel, so resembles a
‘categorified’ Fourier transform. However, there are extra choices
to be made and any given string background may have none, one
or more than one “T-duals”. Mirror symmetry does arise through a
genuine Z2 action on the Hodge diamond, but then a Z2-action by
itself doesn't need to be called a duality. For example, reflecting a
plane in a line, we don't speak of a duality between reflected
points. Electric–magnetic duality can be thought of as a Z2-action
on the parameter space of (super-)Yang-Mills theory and hence is
perhaps closer in some ways to being justifiably called a duality,
but on the other hand, it is a form of S-duality which is a vestige of
a larger symmetry by a SLð2;ZÞ action.

It seems that at stake is the complexity of local Lagrangian
gauge QFT, whose “moduli space” contains some obvious and
some rather subtle equivalences. The issue seems to be one of
understanding notions of sameness and difference when deal-
ing with such complicated moduli spaces of field theories
which may involve orbifolds, stacks, higher gauge groups (in
the sense of one object n-groupoids) and other such construc-
tions from current geometry. Morita theory is lurking behind
the scenes here, and can be found associated to several items
mentioned in the paragraph above, such as the Fourier–Mukai
transform. We should have every expectation then that the
resources provided by natural language or the philosopher's
traditional tool, predicate logic, are far from optimal to deal
with these situations.

Before embarking on such a project it would be important to
understand the corresponding treatment of covariance in general
relativity, where for a spacetime Σ and an object of field values
Fields one constructs a configuration space by forming the ‘action
groupoid’ for the action of Diff ðΣÞ on the space of functions
½Σ; Fields� (Schreiber, 2013). This is the right way to retain the
relevant identifications, where forming the simple quotient loses
important information. As a simple illustration of the difference
between a quotient and corresponding action groupoid, take a
finite set X and the action of Sym(X) upon it. Since the action is
clearly transitive, the quotient is trivial. The action groupoid by
contrast has elements of X as objects and morphisms between any
x and y in X labelled by permutations sending x to y. This retains
important structure at a point, for example, the isotopy group at x
is the stabiliser there.

It seems plausible that similar considerations will help us with
QFT. We will have spaces of geometric data – such as manifolds,
Riemannian structures, and torus bundles – providing charts for an
atlas of the space of QFTs. Understanding how dualities are ways to
identify charts in this picture will be key. It seems in the case of
T-duality what may be governing the identification structure is the
smooth T-duality 2-group (nLab, smooth T-duality 2-group), an idea
due to Thomas Nikolaus.

Rather than predicate logic, the philosopher of physics of the
future looking for a formalism to treat such subtle issues of
equivalence may well need to learn homotopy type theory
(Univalent Foundations Program, 2014), along with its ‘cohe-
sive’, ‘linear’, and ‘directed’ variants, which is supremely well-
adapted to express a properly structuralist notion of sameness
and difference. It has also been employed by Urs Schreiber to
formalise Lagrangian quantum field theory (Schreiber, 2014).
Schreiber has proposed that we consider duality in the sense of
QFT in terms of a ‘homotopified’ equivalence relation, known as
an ‘effective epimorphism’, imposed on the collection of Lagran-
gian data (nLab, duality in physics). This would suggest we not
only think of dualities relating examples of Lagrangian data
which are quantised to equivalent QFTs, but also consider higher
‘dualities of dualities’, for example, equivalences between
equivalences of Calabi–Yau manifolds in homological mirror
symmetry.

4 For an interesting discussion of the relative importance of Set and Rel and the
possibility of combining them see http://mathoverflow.net/q/121031/447.
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Taking the ‘principle of duality’ to refer to the full range of
constructions treated in this article, Nagel's claim, quoted in
Section 2, that

…the concepts of structure, isomorphism, and invariance,
which have been fashioned out of the materials to which the
principle of duality is relevant, dominate research in mathe-
matics, logic, and the sciences of nature. (Nagel, 1939, p. 217)

would appear to hold every bit as true today. As in the case of
projective geometry and the rise of axiomatic geometry in the
Hilbertian mode, described by Nagel, through the internal
demands of their discipline, many involving dualities, mathema-
ticians have forged deeper understandings of invariance and
higher equivalence. Making sense of such understandings, philo-
sophers of mathematics have a role to play in creating a dialogue
with philosophers of physics who are looking to interpret the
dualities and equivalences found in current physics.
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