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This article serves two purposes: to review Bartel’s extension
of Makkai’s anafunctors from Set sans Choice to more gen-
eral sites, and to show that the localisation of a 2-category
of internal categories, functors and transformations at the
class of essential equivalences is calculated by a bicategory
with the same objects and anafunctors for 1-arrows.
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1 introduction

Pronk, in her work on stacks [Pro96], introduced the concept of lo-
calising a bicategory at a class of 1-arrows. She gave axioms that are
analogues of the familiar Gabriel-Zisman axioms for a category of frac-
tions [GZ67]. All this was in order to prove that a certain 2-category of
topological stacks is a localisation of a certain 2-category of topological
groupoids. In the same paper parallel results on differentiable and
algebraic stacks also appear. This work refined Moerdijk’s [Moe88].

In the years since, a number of papers (e.g. [Lan01, Noo05, Ler08,
Car09, Vit10]) have appeared dealing with localising 2-categories of
internal groupoids at a class of weak equivalences. Weak equivalences, in Other examples of

early work on
localising 1-categories
of groupoids are
[Pra89, HS87]

this sense, were introduced by Bunge and Paré [BP79] for groupoids
in a regular category (e.g. a topos), and are an internal version of
fully faithful, essentially surjective functors between internal categories.
Since ‘surjective’ only makes sense in concrete categories, and even
then it is not always useful, we need to introduce a class E of maps
with which to replace the surjection part of ‘essentially surjective’. For
example, in the literature on Lie groupoids, surjective submersions
are universally used. With the class E specified, we refer to weak
equivalences as E-equivalences.

In this paper we generalise the half of Pronk’s result that says a full
sub-2-category Cat ′(S) ⊂ Cat(S) of categories in S admits a localisation
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at the class WE of E-equivalences. More formally, let Cat ′(S) be a full
sub-2-category of Cat(S) with objects internal categories such that all
pullbacks of the source and target maps exist.

Theorem 1.1. If Cat ′(S) admits weak pullbacks and admits base change See definitions 2.15
and 7.1 for details on
base change and
admissible maps
respectively.

along arrows in E, a class of admissible maps in S, then Cat ′(S) admits a
calculus of fractions for WE.

The construction in [Pro96], while canonical, is not very efficient, as
2-arrows are equivalence classes of diagrams, and the hom-categories
are a priori large in the technical sense. While largeness of its own is not
detrimental, it would be desirable to show that the hom-categories are
at least essentially small. This is one motivation for our second result,
which we shall shortly describe. A singleton

Grothendieck
pretopology is one
where all the covering
families consist of a
single map.

In the case that maps belonging to E are refined by covers from a
subcanonical singleton pretopology J, then we can compare the locali-
sation from theorem 1.1 to the bicategory Cat ′ana(S, J) with the same
objects as Cat ′(S) and J-anafunctors for 1-arrows ([Mak96, Bar06], see
definition 5.1). Put simply, anafunctors are spans

X← X[U]
f−→ Y

of internal categories where the left ‘leg’ is a resolution of X by taking
the base change X[U] along a J-cover U → X0. Anafunctors will not
be completely unfamiliar beasts, in that when X is an object of S and
Y is a group object in S, considered as a groupoid with one object,
anafunctors from the former to the latter are precisely Čech cocycles,
and maps of anafunctors are coboundaries.

The second main result of this paper is the following. Note that
Cat ′(S) is a sub-bicategory of both Cat ′ana(S, J) and Cat ′(S)[W−1

E ].

Theorem 1.2. Let Cat ′(S) and E be as in theorem 1.1 and let J be a sub-
canonical singleton pretopology on S which is cofinal in E. Then there is an
equivalence of bicategories

Cat ′ana(S, J) ' Cat ′(S)[W−1
E ]

which is, up to equivalence, the identity on Cat ′(S).

When a weak size axiom holds for J-covers of each object in S, then it
is easy to show that Cat ′ana(S, J) is locally essentially small. This axiom
holds for any reasonable category of geometric objects, for example
manifolds, spaces, schemes, topoi with enough projectives.

We now outline the contents of the paper, which is intended to be
self-contained. Sections one and two cover necessary background on
internal categories and Grothendieck pretopologies, all of which would
be familiar to experts. Section three covers weak equivalences between
internal categories, while section four reviews the theory of internal
anafunctors from [Bar06]. Section five covers the localisation theory for
bicategories from [Pro96], before section six proves the main results of
the paper.

This article is based on material from the author’s PhD thesis. Many
thanks are due to Michael Murray, Mathai Varghese and Jim Stasheff,
supervisors to the author. An Australian Postgraduate Award provided
financial support for this work.

2 internal categories

Internal categories were introduced by Ehresmann [Ehr63], starting
with differentiable and topological categories (i.e. internal to Diff and
Top respectively). We collect here the necessary definitions, terminology
and notation. For a thorough recent account, see [BL04] or [Bar06].

Fix a category S. It will be referred to as the ambient category. We will
assume throughout that S has binary products.
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Definition 2.1. An internal category X in a category S is a diagram

X1 ×X0 X1
m−→ X1

s,t
⇒ X0

e−→ X1

in S such that the multiplication m is associative, the unit map e is a
two-sided unit for m and s and t are the usual source and target. An
internal groupoid is an internal category with an involution

(−)−1 : Xiso1 → Xiso1

satisfying the usual diagrams for an inverse.

Since multiplication is associative, there is a well-defined map X1×X0
X1×X0 X1 → X1, which will also be denoted by m. The pullback in the
diagram in definition 2.1 is

X1 ×X0 X1 //

��

X1

s

��
X1 t

// X0 .

This, and pullbacks like this (where source is pulled back along target),
will occur often. If confusion can arise, the maps in question will be
explicity written, as in X1 ×s,X0,t X1.

Often an internal category will be denoted X1 ⇒ X0, the arrows
m, s, t, e (and (−)−1) will be referred to as structure maps and X1 and
X0 called the object of arrows and the object of objects respectively. For
example, if S = Top, we have the space of arrows and the space of
objects, for S = Grp we have the group of arrows and so on.

The category of internal groupoids is a coreflective subcategory of The object of
isomorphisms of an
internal category can
be constructed from
finite limit data when
S is finitely complete.
In the more general
case we need to
specify a subobject of
isomorphisms.

the category of internal categories (morphisms are internal functors,
see definition 2.5), and so for every internal category X1 ⇒ X0 there is
a subobject Xiso1 ↪→ X1 such that Xiso1 ⇒ X0 is an internal groupoid.

Example 2.2. If X→ Y is an arrow in S admitting iterated kernel pairs,
there is an internal groupoid Č(X) with Č(X)0 = X, Č(X)1 = X×Y X,
source and target are projection on first and second factor, and the
multiplication is projecting out the middle factor in X×Y X×Y X.

Example 2.3. Let S be a category. For each object A ∈ S there is an
internal groupoid disc(A) which has disc(A)1 = disc(A)0 = A and all
structure maps equal to idA. Such a category is called discrete. We have
disc(A×B) ' disc(A)× disc(B).
There is also an internal groupoid codisc(A) with

codisc(A)0 = A, codisc(A)1 = A×A

and where source and target are projections on the first and second
factor respectively. The unit map is the diagonal and composition is pro-
jecting out the middle factor in codisc(A)1 ×codisc(A)0

codisc(A)1 '
A × A × A. Such a groupoid is called codiscrete. Again, we have
codisc(A×B) ' codisc(A)× codisc(B).

Example 2.4. The codiscrete groupoid is obviously a special case of
example 2.2, which is called the Čech groupoid of the map X→ Y. The
origin of the name is that in Top, for maps of the form

∐
IUi → Y, the

Čech groupoid Č(
∐
IUi) appears in the definition of Čech cohomology.

Definition 2.5. Given internal categories X and Y in S, an internal
functor f : X→ Y is a pair of maps

f0 : X0 → Y0 and f1 : X1 → Y1

called the object and arrow component respectively. The map f1 restricts
to a map f1 : Xiso1 → Yiso1 and both components commute with all the
structure maps.
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Example 2.6. If A → B is a map in S, there are functors disc(A) →
disc(B) and codisc(A)→ codisc(B).

Example 2.7. If A→ C and B→ C are maps admitting iterated kernel
pairs, and A→ B is a map over C, there is a functor Č(A)→ Č(B).

Definition 2.8. Given internal categories X, Y and internal functors
f,g : X→ Y, an internal natural transformation (or simply transformation)

a : f⇒ g

is a map a : X0 → Y1 such that s ◦ a = f0, t ◦ a = g0 and the following
diagram commutes

X1
(g1,a◦s)//

(a◦t,f1)
��

Y1 ×Y0 Y1

m

��
Y1 ×Y0 Y1

m // Y1

(1)

expressing the naturality of a. If a factors through Yiso1 , then it is
called a natural isomorphism. Clearly there is no distinction between nat-
ural transformations and natural isomorphisms when Y is an internal
groupoid.

We can reformulate the naturality diagram above in the case that a is
a natural isomorphism. Denote by −a the composite arrow

X0
a−→ Yiso1

(−)−1

−−−−→ Yiso1 ↪→ Y1.

Then the diagram (1) commuting is equivalent to this diagram commut-
ing

X0 ×X0 X1 ×X0 X0
−a×f1×a //

'
��

Y1 ×Y0 Y1 ×Y0 Y1

m

��
X1 g1

// Y1

(2)

a fact we will use repeatedly.

Example 2.9. If X is a category in S, A is an object of S and f,g : X →
codisc(A) are functors, there is a unique natural isomorphism f

∼⇒ g.

Internal categories (resp. groupoids), functors and transformations
form a 2-category Cat(S) (resp. Gpd(S)) [Ehr63]. There is clearly a 2-
functor Gpd(S)→ Cat(S). Also, disc and codisc, described in examples
2.3 and 2.6 are 2-functors S→ Gpd(S), whose underlying functors are
left and right adjoint to the functor

Obj : Gpd(S)→ S, (X1 ⇒ X0) 7→ X0.

Here Gpd(S) is the 1-category underlying the 2-category Gpd(S).
Hence for an internal category X in S, there are functors disc(X0)→ X

and X → codisc(X0), the arrow component of the latter being (s, t) :

X1 → X20.

Definition 2.10. An internal or strong equivalence of internal categories
is an equivalence in this 2-category: an internal functor f : X→ Y such
that there is a functor f ′ : Y → X and natural isomorphisms f ◦ f ′ ⇒ idY ,
f ′ ◦ f⇒ idX.

Many constructions involving internal categories require pullbacks
of the source and target maps. To this end, we shall be interested in a
full sub-2-category Cat ′(S) consisting of objects – internal categories
X1 ⇒ X0 – such that all pullbacks of s and t exist.
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The strict pullback of internal categories

X×Y Z //

��

Z

��
X // Y

in a category with pullbacks is the internal category with objects X0×Y0
Z0, arrows X1 ×Y1 Z1, and all structure maps given componentwise by
those of X and Z.

Definition 2.11. (see, e.g. [EKvdL05]) The isomorphism category of an
internal category X is the internal category denoted XI, with

XI
0 = Xiso1 , XI

1 = (X1 ×s,X0,t X
iso
1 )×X1 (Xiso1 ×s,X0,t X1).

where the fibred product over X1 arises by considering the composition
maps

X1 ×s,X0,t X
iso
1 →X1

Xiso1 ×s,X0,t X1 →X1.

Composition in XI is the same as commutative squares in the case of
ordinary categories. There are two functors s, t : XI → X which have the
usual source and target maps of X as their respective object components.

This construction is an internal version of the functor category
Cat(I,C), since the groupoid I = (◦ '−→ •) does not always exist in-
ternal to S.

Remark 2.12. There is an isomorphism XI
1 ' X

iso
1 ×t,X0,tX1×s,X0,tX

iso
1

given by projecting out the last factor in

(X1 ×s,X0,t X
iso
1 )×X1 (Xiso1 ×s,X0,t X1).

It is easy to see in this form that this pullback exists given our assump-
tions on pullbacks of the source and target maps.

The following lemma is a simple exercise in keeping track of pull-
backs.

Lemma 2.13. If X is an object of Cat ′(S), then so is XI.

The astute reader will recognise the following as an internalisation
of the usual notion of weak pullback

Definition 2.14. The weak pullback X×̃YZ of a diagram of internal cate-
gories

Z

��
X // Y

is given, if it exists, by the strict pullback X×Y,s Y
I ×t,Y Z. There is a

2-commutative square

X×̃YZ

��

// Z

��
'

{� ��������

��������

X // Y
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If the ambient category S has pullbacks, then all weak pullbacks
exist in Cat(S) and Gpd(S). However it is not immediate that all weak
pullbacks exist in Cat ′(S), so we will have to posit it as an additional
hypothesis. Lemma 2.13 ensures that if strict pullbacks exist in Cat ′(S),
then so do weak pullbacks.

Recall that there is a functor Obj : Cat ′(S)→ S, sending an internal
category to its object of objects. Given a category X and a map p : M→
X0 in S, a cartesian lift of p is, amongst other things, a functor with
object component p.

Definition 2.15. For a category X and a map p : M → X0 in S, the
domain X[M] of a cartesian lift X[M] → X of p will be called the base
change of X along p.

If the base change along any map in a given class K of maps exists
for all objects of Cat ′(S), then we say Cat ′(S) admits base change
along maps in K. We can calculate the base change by taking the strict
pullback Note that codisc may

not land in Cat ′(S),
so we work in
Cat(S), then check if
the pullback is in
Cat ′(S). See
example ?? for cases
when this happens.

X[M] //

��

X

��
codisc(M) // codisc(X0)

(3)

in Cat(S), when this pullback exists. The canonical functor in the top
row has p as its object component. If desired we can choose a cartesian
lift for each map in S (using Choice) and get a weak 2-functor with
object component (X,M→ X0) 7→ X[M].

It follows immediately from the definition that given maps N→M

and M→ X0, there is a canonical isomorphism

X[M][N] ' X[N]. (4)

with object component the identity map.

Remark 2.16. If we agree to follow the convention that M×NN = M is
the pullback along the identity arrow idN, then X[X0] = X. This also
simplifies other results of this paper, so will be adopted from now on.

One consequence of this assumption is that the iterated fibre product

M×MM×M . . .×MM,

bracketed in any order, is equal to M. We cannot, however, equate
two bracketings of a general iterated fibred product; they are only
canonically isomorphic.

In all that follows, ‘category’ will mean object of Cat ′(S) and similarly
for ‘functor’ and ‘natural transformation/isomorphism’.

Lemma 2.17. Let X be a category andM→ X0, N→ X0 arrows in S. Then
the following square is a strict pullback

X[M×X0 N] //

��

X[N]

��
X[M] // X

when the various base changes exist.
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Proof. Consider the following cube

X[M×X0 N] //

((QQQQQQQQQQQQQ

��

X[N]

��

&&NNNNNNNNNNNNN

X[M]

��

// X

��

codisc(M×X0 N)

((QQQQQQQQQQQQ
// codisc(N)

&&NNNNNNNNNNN

codisc(M) // codisc(X0)

The bottom and sides are pullbacks, either by definition, or using (4),
and so the top is a pullback. �

The following technical lemma will be useful later. Even though
Obj does not extend to a 2-functor, it captures some of the interaction
between the fibrational nature of Obj and the 2-category nature of
Cat ′(S).

Lemma 2.18. Let f,g : X → Y be functors and a : f ⇒ g a natural isomor-
phism. There is an isomorphism

X20 ×f2,Y20
Y1 ' X20 ×g2,Y20

Y1

commuting with the projections to X20.

Proof. Supressing the canonical isomorphisms X20 ×Y20 Y1 ' X0 ×Y0
Y1 ×Y0 X0, the required isomorphism is

X0 ×f,Y0 Y1 ×Y0,f X0
(id,−a)×id×(a,id)−−−−−−−−−−−−→X0 ×g,Y0 Y1 ×Y0 Y1 ×Y0 Y1 ×Y0,g X0

id×m×id−−−−−−→ X0 ×g,Y0 Y1 ×Y0,g X0.

which is the identity map when restricted to the X0 factors, from which
the claim follows. �

Corollary 2.19. If X = disc(M), the categories Y[M
f−→ Y0] and Y[M

g−→ Y0]

are isomorphic.
PUT STUFF HERE
ABOUT
EXAMPLES OF
CAT’(S)3 sites and covers

The idea of localness is inherent in many constructions in algebraic
topology and algebraic geometry. For an abstract category the concept
of ‘local’ is encoded by a Grothendieck pretopology. Localness is
needed to be able to talk about local sections of a map in a category – a
concept that will replace surjectivity when moving from Set to more
general categories. This section gathers definitions and notations for
later use.

Definition 3.1. A Grothendieck pretopology (or simply pretopology) on a
category S is a collection J of families

{(Ui → A)i∈I}A∈Obj(S)

of morphisms for each object A ∈ S satisfying the following properties

1. (id : A→ A) is in J for every object A.

2. Given a map B → A, for every (Ui → A)i∈I in J the pullbacks
B×A Ai exist and (B×A Ai → B)i∈I is in J.
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3. For every (Ui → A)i∈I in J and for a collection (Vik → Ui)k∈Ki
from J for each i ∈ I, the family of composites

(Vik → A)k∈Ki,i∈I

are in J.

Families in J are called covering families. A category S equipped with a
pretopology J is called a site, denoted (S, J).

Example 3.2. The basic example is the lattice of open sets of a topological
space, seen as a category in the usual way, where a covering family
of an open U ⊂ X is an open cover of U by opens in X. This is to be
contrasted with the pretopology O on Top, where the covering families
of a space are just open covers of the whole space.

Example 3.3. On Grp the class of surjective homomorphisms form a
pretopology.

Example 3.4. On Top the class of numerable open covers (i.e. those
that admit a subordinate partition of unity [Dol63]) form a pretopology.
Much of traditional bundle theory is carried out using this site, for
example, the Milnor classifying space classifies bundles which are
locally trivial over numerable covers [Mil56, Dol63, tD66].

Definition 3.5. Let (S, J) be a site. The pretopology J is called a singleton
pretopology if every covering family consists of a single arrow (U→ A).
In this case a covering family is called a cover.

Example 3.6. In Top, the classes of covering maps, local section admit-
ting maps, surjective étale maps and open surjections are all examples
of singleton pretopologies. The results of [Pro96] pertaining to topolog-
ical groupoids were carried out using the site of open surjections.

Example 3.7. The class Subm of surjective submersions in Diff, the
category of smooth manifolds, is a singleton pretopology.

There are many different and useful pretopologies on the category
Sch of schemes, such as the Zariski, étale, fpqc and Nisnevich pretopolo-
gies (see [] for details of these - need reference/s!)

Definition 3.8. A covering family (Ui → A)i∈I is called effective if A
is the colimit of the following diagram: the objects are the Ui and the
pullbacks Ui ×A Uj, and the arrows are the projections

Ui ← Ui ×A Uj → Uj.

If the covering family consists of a single arrow (U → A), this is the
same as saying U→ A is a regular epimorphism.

Definition 3.9. A site is called subcanonical if every covering family is
effective.

Example 3.10. On Top, the usual pretopology of opens, the pretopology
of numerable covers and that of open surjections are subcanonical.

Example 3.11. In a regular category, the regular epimorphisms form a
subcanonical singleton pretopology.

In fact, the (pullback stable) regular epimorphisms in any category Of course, the
nomenclature was
decided the other way
around;
‘subcanonical’
meaning ‘contained
in the canonical
pretopology’.

form the largest subcanonical singleton pretopology, so it has its own
name.

Definition 3.12. The canonical singleton pretopology R is the largest class
of regular epimorphisms which are pullback stable. It contains all the
subcanonical singleton pretopologies.

Remark 3.13. If U→ A is an effective cover, a functor Č(U)→ disc(B)

gives a unique arrow A→ B. This follows immediately from the fact A
is the colimit of Č(U).
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Definition 3.14. A finitary (resp. infinitary) extensive category is a cat-
egory with finite (resp. small) coproducts such that the following
condition holds: let I be a a finite set (resp. any set), then, given a
collection of commuting diagrams

Xi //

��

Z

��
Ai //

∐
i∈IAi ,

one for each i ∈ I, the squares are all pullbacks if and only if the
collection {Xi → Z}I forms a coproduct diagram.

In such a category there is a strict initial object (i.e. given a map
A→ 0 with 0 initial, we have A ' 0).
Example 3.15. Top is infinitary extensive.

Example 3.16. Ringop is finitary extensive.

In Top we can take an open cover {Ui}I of a space X and replace it
with the single map

∐
IUi → X, and work just as before using this

new sort of cover, using the fact Top is extensive. The sort of sites that
mimic this behaviour are called superextensive.

Definition 3.17. (Bartels-Shulman) A superextensive site is an extensive
category S equipped with a pretopology J containing the families

(Ui →
∐
I

Ui)i∈I

and such that all covering families are bounded; this means that for a
finitely extensive site, the families are finite, and for an infinitary site,
the families are small. The pretopology in this instance will also be
called superextensive.

Example 3.18. Given an extensive category S, the extensive pretopology
has as covering families the bounded collections (Ui →

∐
IUi)i∈I.

The pretopology on any superextensive site contains the extensive
pretopology.

Example 3.19. The category Top with its usual pretopology of open
covers is a superextensive site.

Example 3.20. A topos with the regular pretopology is finitary superex-
tensive, and a Grothendieck topos with the regular pretopology is
infinitary superextensive.

Given a superextensive site, one can form the class qJ of arrows∐
IUi → A.

Proposition 3.21. The class qJ is a singleton pretopology, and is subcanon-
ical if and only if J is.

Proof. Since identity arrows are covers for J they are covers for qJ.
The pullback of a qJ-cover

∐
IUi → A along B → A is a qJ-cover

as coproducts and pullbacks commute by definition of an extensive
category. Now for the third condition we use the fact that in an extensive
category a map

f : B→
∐
I

Ai

implies that B '
∐
I Bi and f =

∐
i fi. Given qJ-covers

∐
IUi → A

and
∐
J Vj → (

∐
IUi), we see that

∐
J Vj '

∐
IWi. By the previous

point, the pullback ∐
I

Uk ×∐
IUi ′

Wi
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is a qJ-cover of Ui, and hence (Uk×∐
IUi ′

Wi → Uk)i∈I is a J-covering
family for each k ∈ I. Thus

(Uk ×∐
IUi ′

Wi → A)i,k∈I

is a J-covering family, and so

∐
J

Vj '
∐
k∈I

(∐
I

Uk ×∐
IUi ′

Wi

)
→ A

is a qJ-cover.
The map

∐
IUi → A is the coequaliser of

∐
I×IUi ×A Uj ⇒

∐
IUi

if and only if A is the colimit of the diagram in definition 3.8. Hence
(
∐
IUi → A) is effective if and only if (Ui → A)i∈I is effective �

Notice that the original superextensive pretopology J is generated by
the union of qJ and the extensive pretopology.

Definition 3.22. Let (S, J) be a site. An arrow P → A in S is called a
J-epimorphism (or simply J-epi) if there is a covering family (Ui → A)i∈I
and a lift

P

��
Ui

>>}
}

}
}

// A

for every i ∈ I. The class of J-epimorphisms will be denoted (J-epi).

This definition is equivalent to the definition in III.7.5 in [MM92].
The dotted maps in the above definition are called local sections, after
the case of the usual open cover pretopology on Top. If the pretopology
is left unnamed, we will refer to local epimorphisms.

One reason we are interested in superextensive sites is the following

Lemma 3.23. If (S, J) is a superextensive site, the class of J-epimorphisms is
precisely the class of qJ-epimorphisms.

If S has all pullbacks then the class of J-epimorphisms form a pre-
topology. In fact they form a pretopology with an additional property –
it is saturated. The following is adapted from [BW84]. Note that what we

are calling a
Grothendieck
pretopology is
referred to as a
Grothendieck
topology in [BW84].

Definition 3.24. A singleton pretopology J is saturated if whenever the
composite V → U→ A is in J, then U→ A is in J.

In fact only a slightly weaker condition on S is necessary for (J-epi)
to be a pretopology.

Example 3.25. Let (S, J) be a site. If pullbacks of J-epimorphisms exist
then the collection (J-epi) of J-epimorphisms is a saturated pretopology.

There is a definition of ‘saturated’ for arbitrary pretopologies, but
we will use only this one. Another way to pass from an arbitrary
pretopology to a singleton one in a canonical way is this:

Definition 3.26. The XX of a pretopology J on an arbitrary category S
is the largest class Jsing ⊂ (J-epi) of those J-epimorphisms which are
pullback stable.

It is clear that (Jsing)sing = Jsing, and that when pullbacks exist,
(J-epi) = Jsing.

Example 3.27. The singleton XX of the class of open covers O in Diff
is Subm, the class of surjective submersions. Notice that all surjective
submersions admit local sections (essentially by the implicit function
theorem), whereas not all maps in (O-epi) are submersions, so that
Osing 6= (O-epi).

10



If J is a singleton pretopology, it is clear that J ⊂ Jsing. In fact Jsing
contains all the covering families of J with only one element when J is
any pretopology.

From lemma 3.23 we have

Corollary 3.28. In a superextensive site (S, J), we have Jsing = (qJ)sing.

One class of extensive categories which are of particular interest is
those that also have finite/small limits. These are called lextensive. For
example, Top is infinitary lextensive, as is a Grothendieck topos. In
contrast, a general topos is finitary lextensive. In a lextensive category

Jsing = (qJ)sing = (J-epi).

Sometimes a pretopology J contains a smaller pretopology that still
has enough covers to compute the same J-epis.

Definition 3.29. If J and K are two singleton pretopologies with J ⊂ K,
such that K ⊂ Jsing, then J is said to be cofinal in K, denoted J 6 K.

Clearly J 6 Jsing for any singleton pretopology J.

Lemma 3.30. If J 6 K, then Jsing = Ksing.

4 weak equivalences

Equivalences in Cat – assuming the axiom of choice – are precisely the
fully faithful, essentially surjective functors. For internal categories,
however, this is not the case. In addition, we need to make use of a
pretopology to make the ‘surjective’ part of essentially surjective mean-
ingful. To start with we shall just assume that our ambient category
is equipped with a class E of morphisms. The following definition
first made its appearence in [BP79] for S finitely complete and regular,
and E the class of regular epimorphisms, in the context of stacks and
indexed categories.

Definition 4.1. [BP79, EKvdL05] Let S be a category with a specified
class E of morphisms. An internal functor f : X→ Y in S is called

1. fully faithful if

X1
f1 //

(s,t)
��

Y1

(s,t)
��

X0 ×X0
f0×f0

// Y0 × Y0

is a pullback diagram

2. essentially E-surjective if the arrow labelled ~ is in E

X0 ×Y0 Y
iso
1

zzuuuuuuuuuu

~

��

��
X0

f0
��

Yiso1

s
yytttttttttt

t
%%JJJJJJJJJJ

Y0 Y0

3. an E-equivalence if it is fully faithful and essentially E-surjective.

The class of E-equivalences will be denoted WE.

11



If (S, J) is a site, then we are interested in the class E = Jsing. The
class of Jsing-equivalences will be denoted WJ and they will, follow-
ing [EKvdL05], be referred to as J-equivalences. If mention of J is
suppressed, they will be called weak equivalences. This usage differs
from loc. cit. where the class of (J-epi)-equivalences are referred to as
J-equivalences. In a finitely complete category there is no difference,
but this definition allows later proofs to hold for non-finitely complete
categories.
Example 4.2. The canonical functor X[M] → X is always fully faithful,
by definition.
Example 4.3. If X→ Y is an internal equivalence, then it is a J-equivalence
for all pretopologies J such that split epimorphisms are contained
in Jsing [EKvdL05]. In fact, if T denotes the trivial pretopology
(only isomorphisms are covers) on a finitely complete category, the
T -equivalences are precisely the internal equivalences.
Remark 4.4. This example does not include Lie groupoids as Osing =

Subm does not contain the split epimorphisms. Internal equivalences
are O-equivalences, but for another reason. In fact we have chosen to
take Jsing-equivalences as standard for non-finitely complete categories
as this reflects the usage in the Lie groupoid literature.

Lemma 4.5. If f : X → Y is a functor such that f0 is in Jsing, then f is
essentially Jsing-surjective.

Corollary 4.6. If (S, J) is a site, X a category in S and (U → X0) is a
covering family (e.g. J is a singleton pretopology), the functor X[U]→ X is a
J-equivalence.

Proof. The object component of the canonical functor X[U] → X is
U → X0 and since it is in J it is in Jsing. Hence as X[U] → X is fully
faithful it is a J-equivalence. �

We now consider some easy results on the behavious of weak equiv-
alences under pullbacks, both strict and weak. First, fully faithful
functors are stable under strict pullback.

Lemma 4.7. If f : X→ Y is fully faithful, and g : Z→ Y is any functor, pr1
in

Z×Y X //

pr1
��

X

f

��
Z g

// Y

is fully faithful whenever the strict pullback exists.

Proof. The following chain of isomorphisms establishes the claim

(Z0 ×Y0 X0)
2 ×Z20 Z1 ' X

2
0 ×Y20 Z1

' (X20 ×Y20 Y1)×Y1 Z1

' X1 ×Y1 Z1,

the last following from the fact f is fully faithful. �

The following terminology is adapted from [EKvdL05], although
strictly speaking this map is only a fibration when model structure
from loc. cit. exists.

Definition 4.8. An internal functor f : X→ Y is called a trivial E-fibration
if it is fully faithful and f0 ∈ E.

Lemma 4.9. If a functor f : X→ Y is an E-equivalence,

X×Y YI t◦pr2−−−→ Y

is a trivial E-fibration.

12



Proof. The object component of t ◦ pr2 is t ◦ pr2, which is in E by
definition as f is essentially E-surjective. Consider now the pullback

(X0 ×Y0 Y
iso
1 )2 ×Y20 Y1

//

��

Y1

��
(X0 ×Y0 Y

iso
1 )2 // Y0 × Y0

Remark 2.12 tells is that the pullback is isomorphic to X20 ×Y20 Y
I
1 in the

pullback

X20 ×Y20 Y
I
1

pr2 //

��

YI
1

pr1
��
Y1

��
X20

// Y0 × Y0

but if f is fully faithful,

X20 ×Y20 Y
I
1 ' X

2
0 ×Y20 Y1 ×Y1 Y

I
1

' X1 ×Y1 Y
I
1,

hence t ◦ pr2 is fully faithful. �

The internal category X ×Y YI is called the mapping path space
construction in [EKvdL05] and if the model structure therein exists, the
above follows from cofibration-acyclic fibration factorisation.

Corollary 4.10. If the weak pullback of an E-equivalence exists, it is again
an E-equivalence.

5 anafunctors

Now assume that J is a subcanonical singleton pretopology on the
ambient category S. In this section we assume that Cat ′(S) admits
base change along arrows in the given pretopology J. This is a slight
generalisation of what is considered in [Bar06], where only Cat ′(S) =

Cat(S) is considered.

Definition 5.1. [Mak96, Bar06] An anafunctor in (S, J) from a category
X to a category Y consists of a cover (U→ X0) and an internal functor

f : X[U]→ Y.

Since X[U] is an object of Cat ′(S), an anafunctor is a span in Cat ′(S),
and will be denoted

(U, f) : X−7→ Y.

Example 5.2. For an internal functor f : X→ Y in S, define the anafunctor
(X0, f) : X−7→ Y as the following span

X
=←− X[X0]

f−→ Y.

We will blur the distinction between these two descriptions. If f =

id : X→ X, then (X0, id) will be denoted simply by idX.

Example 5.3. If U → A is a cover in (S, J) and BG is a groupoid with
one object in S (i.e. a group), an anafunctor (U,g) : disc(A)−7→ BG is
the same thing as a Čech cocycle.

13



Definition 5.4. [Mak96, Bar06] Let (S, J) be a site and let

(U, f), (V ,g) : X−7→ Y

be anafunctors in S. A transformation

α : (U, f)⇒ (V ,g)

from (U, f) to (V ,g) is an internal natural transformation

X[U×X0 V]

yyssssssssss

%%KKKKKKKKKK

X[U]

f
&&LLLLLLLLLLL
α⇒ X[V]

g
yyrrrrrrrrrrr

Y

If α : U×X0 V → Y1 factors through Yiso1 , then α is called an isotrans-
formation. In that case we say (U, f) is isomorphic to (V ,g). Clearly all
transformations between anafunctors between internal groupoids are
isotransformations.

Example 5.5. Given functors f,g : X→ Y between categories in S, and a
natural transformation a : f⇒ g, there is a transformation a : (X0, f)⇒
(X0,g) of anafunctors, given by the component X0 ×X0 X0 = X0

a−→ Y1.

Example 5.6. If (U,g), (V ,h) : disc(A)−7→ BG are two Čech cocycles, a
transformation between them is a coboundary on the cover U×A V →
A.

Example 5.7. Let (U, f) : X−7→ Y be an anafunctor in S. There is an iso-
transformation 1(U,f) : (U, f)⇒ (U, f) called the identity transformation,
given by the natural transformation with component

U×X0 U ' (U×U)×X20 X0
id2U×e−−−−−→ X[U]1

f1−→ Y1 (5)

Example 5.8. [Mak96] Given anafunctors (U, f) : X → Y and (V , f ◦
k) : X → Y where k : V ' U is an isomorphism over X0, a renaming
transformation

(U, f)⇒ (V , f ◦ k)

is an isotransformation with component

1(U,f) ◦ (k× id) : V ×X0 U→ U×X0 U→ Y1.

The isomorphism k will be referred to as a renaming isomorphism.
More generally, we could let k : V → U be any refinement, and this
prescription also gives an isotransformation (U, f)⇒ (V , f ◦ k).

See example 5.11 below for another useful example of an isotransfor-
mation.

We define (following [Bar06]) the composition of anafunctors as
follows. Let

(U, f) : X−7→ Y and (V ,g) : Y−7→ Z

be anafunctors in the site (S, J). Their composite (V ,g) ◦ (U, f) is the
composite span defined in the usual way. It is again a span in Cat ′(S).

X[U×Y0 V]

yyssssssssss
fV

%%KKKKKKKKK

X[U]

}}{{{{{{{{

f
%%LLLLLLLLLLL

Y[V]

yyrrrrrrrrrrr
g

!!BBBBBBBB

X Y Z
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The square is a pullback by lemma 2.17, and the resulting span is an
anafunctor because V → Y0, and hence U×Y0 V → X0, is a cover, and
using (4). We will sometimes denote the composite by (U×Y0 V ,g ◦ fV ).

Remark 5.9. If one does not impose the existence of pullbacks on S (as
in say Diff, see comment 2.20), this composite span still exists, because
V → Y0 is a cover.

Consider the special case when V = Y0, and hence (Y0,g) is just
an ordinary functor. Then there is a renaming transformation (the
identity transformation!) (Y0,g) ◦ (U, f)⇒ (U,g ◦ f), using the equality
U×Y0 Y0 = U. If we let g = idY , then we see that (Y0, idY) is a strict unit
on the left for anafunctor composition. Similarly, considering (V ,g) ◦
(Y0, id), we see that (Y0, idY) is a two-sided strict unit for anafunctor
composition. In fact, we have also proved

Lemma 5.10. Given two functors f : X→ Y, g : Y → Z in S, their composi-
tion as anafunctors is equal to their composition as functors:

(Y0,g) ◦ (X0, f) = (X0,g ◦ f).

Example 5.11. As a concrete and relevant example of a renaming trans-
formation we can consider the triple composition of anafunctors

(U, f) : X−7→ Y,

(V ,g) : Y−7→ Z,

(W,h) : Z−7→ A.

The two possibilities of composing these are(
(U×Y0 V)×Z0W,h ◦ (gfV )W

)
,
(
U×Y0 (V ×Z0W),h ◦ gW ◦ fV×Z0W

)
The unique isomorphism (U×Y0 V)×Z0 W ' U×Y0 (V ×Z0 W) com-
muting with the various projections is then the required renaming
isomorphism. The isotransformation arising from this renaming trans-
formation is called the associator.

A simple but useful criterion for describing isotransformations where
one of the anafunctors involved is a functor is as follows.

Lemma 5.12. An anafunctor (V ,g) : X− 7→ Y is isomorphic to a functor
f : X→ Y if and only if there is a natural isomorphism

X[V]

~~}}}}}}}}
g

  AAAAAAAA

X

f

::∼⇒ Y

In a site (S, J) where the axiom of choice holds – every J-epimorphism In other words,
existence of local
sections is enough to
guarantee a global
section.

has a section – one can prove that every J-equivalence between internal
categories is in fact an internal equivalence of categories. It is precisely
the lack of splittings that prevents this theorem from holding in general
sites. The best one can do in a general site is described in the the
following two lemmas.

Lemma 5.13. Let f : X → Y be a J-equivalence, and choose a cover U → Y0
and a local section s : U → X0 ×Y0 Y

iso
1 . Then there is a functor Y[U] → X

with object component s ′ := pr1 ◦ s : U→ X0.

Proof. The object component is given, we just need the arrow com-
ponent. Denote the local section by (s ′, ι) : U→ X0 ×Y0 Y

iso
1 . Consider

the composite

Y[U]1 ' U×Y0 Y1 ×Y0 U
(s ′,ι)×id×(−ι,s ′)−−−−−−−−−−−−→ (X0 ×Y0 Y

iso
1 )×Y0 Y1 ×Y0 (Yiso1 ×Y0 X0)

↪→ X0 ×Y0 Y3 ×Y0 X0
id×m×id−−−−−−→ X0 ×Y0 Y1 ×Y0 X0 ' X1
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where the last isomorphism arises from f being full faithful. It is clear
that this commutes with source and target, because these are projection
on the first and last factor at each step. To see that it respects identities
and composition, just use the fact that the ι component will cancel with
the −ι component. �

Hence we have an anafunctor Y−7→ X, and the next proposition
tells us this is a pseudoinverse to f (in a sense to be made precise in
proposition 5.19 below).

Lemma 5.14. Let f : X→ Y be a J-equivalence in S. There is an anafunctor

(U, f̄) : Y−7→ X

and isotransformations

ι : (X0, f) ◦ (U, f̄)⇒ idY

ε : (U, f̄) ◦ (X0, f)⇒ idX

Proof. We have the anafunctor (U, f̄) from lemma 5.13. Since the
anafunctors idX, idY are actually functors, we can use lemma 5.12.
Using the special case of anafunctor composition when the second is a
functor, this tells us that ι will be given by a natural isomorphism

X

f

��========

��
Y[U] //

f̄

==||||||||
Y

This has component ι : U→ Yiso1 , using the notation from the proof of
the previous lemma. Notice that the composite f1 ◦ f̄1 is just

Y[U]1 ' U×Y0 Y1 ×Y0 U
ι×id×−ι−−−−−−→ Yiso1 ×Y0 Y1 ×Y0 Y

iso
1 ↪→ Y3

m−→ Y1.

Since the arrow component of Y[U]→ Y is U×Y0 Y1 ×Y0 U
pr2−−→ Y1, ι is

indeed a natural isomorphism using the diagram (2).
The other isotransformation is between (X0×Y0 U, f̄◦pr2) and (X0, idX),

and is given by the arrow

ε : X0×X0 X0×Y0 U ' X0×Y0 U
id×(s ′,a)−−−−−−→ X0×Y0 (X0×Y0 Y1) ' X

2
0×Y20 Y1 ' X1

This has the correct source and target, as the object component of f̄ is
s ′, and the source is given by projection on the first factor of X0 ×Y0 U.
This diagram

(X0 ×Y20 U)2 ×X20 X1

'
��

pr2 // X1

'

��

U×Y0 X1 ×Y0 U

−ι×f×ι
��

(X0 ×Y0 Y
iso
1 )×Y0 Y1 ×Y0 (Yiso1 ×Y0 X0) id×m×id

// X0 ×Y0 Y1 ×Y0 X0

commutes, and using (2) we see that ε is natural. �

Just as there is composition of natural transformations between inter-
nal functors, there is a composition of transformations between internal
anafunctors [Bar06]. This is where the effectiveness of our covers will
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be used in order to construct a map locally over some cover. Consider
the following diagram

X[U×X0 V ×X0W]

vvmmmmmmmmmmmmm

((RRRRRRRRRRRRR

X[U×X0 V]

yyssssssssss

((QQQQQQQQQQQQQQ
X[V ×X0W]

vvmmmmmmmmmmmmmmm

%%KKKKKKKKKK

X[U]

f

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW a⇒ X[V]

g

��

b⇒ X[W]

h

ssgggggggggggggggggggggggggggggg

Y

from which we can form a natural transformation between the leftmost
and the rightmost composites as functors in S. This will have as its
component the arrow

b̃a : U×X0 V×X0W
id×∆×id−−−−−−→ U×X0 V×X0 V×X0W

a×b−−−→ Y1×Y0 Y1
m−→ Y1

in S. Notice that the Čech groupoid of the cover

U×X0 V ×X0W → U×X0W (6)

is
U×X0 V ×X0 V ×X0W ⇒ U×X0 V ×X0W,

using the two projections V ×X0 V → V . Denote this pair of parallel
arrows by s, t : UV2W ⇒ UVW for brevity. In [Bar06], section 2.2.3, we
find the commuting diagram

UV2W
t //

s

��

UVW

b̃a
��

UVW
b̃a

// Y1

(7)

and so we have a functor Č(U×X0 V ×X0 W) → disc(Y1) (this Čech
groupoid is associated to the cover UVW → UW). Our pretopology J
is assumed to be subcanonical, and using remark 3.13 this gives us a
unique arrow ba : U×X0W → Y1, the composite of a and b.

Remark 5.15. In the special case that U×X0 V ×X0W → U×X0W is an
isomorphism (or is even just split), the composite transformation has

U×X0W → U×X0 V ×X0W
b̃a−−→ Y1

as its component arrow. In particular, this is the case if one of a or b is
a renaming transformation.

Example 5.16. Let (U, f) : X−7→ Y be an anafunctor and U ′′
j ′−→ U ′

j−→ U

successive refinements of U → X0 (e.g isomorphisms). Let (U ′, fU ′)
and (U ′′, fU ′′) denote the composites of f with X[U ′] → X[U] and
X[U ′′]→ X[U] respectively. The arrow

U×X0 U
′′ idU×j◦j ′−−−−−−→ U×X0 U→ Y1

is the component for the composition of the isotransformations (U, f)⇒
(U ′, fU ′),⇒ (U ′′, fU ′′) described in example 5.8. Thus we can see that
the composite of renaming transformations associated to isomorphisms
φ1,φ2 is simply the renaming transformation associated to their com-
posite φ1 ◦φ2.

17



Example 5.17. If a : f ⇒ g, b : g ⇒ h are natural transformations be-
tween functors f,g,h : X→ Y in S, their composite as transformations
between anafunctors

(X0, f), (X0,g), (X0,h) : X−7→ Y.

is just their composite as natural transformations. This uses the equality

X0 ×X0 X0 ×X0 X0 = X0 ×X0 X0 = X0,

which is due to our choice in remark 2.16 of canonical pullbacks

The first half of the following theorem is proposition 12 in [Bar06],
and the second half follows because all the constructions of categories
involved in dealing with anafunctors outlined above are still objects of
Cat ′(S).

Theorem 5.18. [Bar06] For a site (S, J) where J is a subcanonical single-
ton pretopology, internal categories, anafunctors and transformations form a
bicategory Catana(S, J). If we restrict attention to a sub-2-category Cat ′(S)
which admits base change for arrows in J, we have an analogous full sub-
bicategory Cat ′ana(S, J).

There is a strict 2-functor Cat ′ana(S, J) → Catana(S, J) which is the
identity on 0-cells and induces isomorphisms on hom-categories. The
following is the main result of this section, and allows us to relate
anafunctors to the localisations considered in the next section.

Proposition 5.19. There is a strict 2-functor

αJ : Cat ′(S)→ Cat ′ana(S, J)

sending J-equivalences to equivalences, and commuting with the respective
inclusions into Cat(S) and Catana(S, J).

Proof. We define αJ to be the identity on objects, and as described
in examples 5.2, 5.5 on 1-cells and 2-cells (i.e. functors and transforma-
tions). We need first to show that this gives a functor Cat ′(S)(X, Y)→
Cat ′ana(S, J)(X, Y). This is precisely the content of example 5.17. Since
the identity 1-cell on a category X in Cat ′ana(S, J) is the image of the iden-
tity functor on S in Cat ′(S), αJ respects identity 1-cells. Also, lemma
5.10 tells us that αJ respects composition. That αJ sends J-equivalences
to equivalences is the content of lemma 5.14. �

6 localising bicategories at a class of 1-cells

Ultimately we are interesting in inverting all weak equivalences in
Cat ′(S) and so need to discuss what it means to add the formal pseu-
doinverses to a class of 1-cells in a 2-category – a process known as
localisation. This was done in [Pro96] for the more general case of a
class of 1-cells in a bicategory, where the resulting bicategory is con-
structed and its universal properties (analogous to those of a quotient)
examined. The application in loc. cit. is to showing the equivalence of
various bicategories of stacks to localisations of 2-categories of smooth,
topological and algebraic groupoids. The results of this article can be
seen as one-half of a generalisation of these results to more general
sites.

Definition 6.1. [Pro96] Let B be a bicategory and W ⊂ B1 a class of
1-cells. A localisation of B with respect to W is a bicategory B[W−1] and
a weak 2-functor

U : B→ B[W−1]
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such that U sends elements of W to equivalences, and is universal
with this property i.e. composition with U gives an equivalence of
bicategories

U∗ : Hom(B[W−1],D)→ HomW(B,D),

where HomW denotes the sub-bicategory of weak 2-functors that send
elements of W to equivalences (call these W-inverting, abusing notation
slightly).

The universal property means that W-inverting weak 2-functors
F : B→ D factor, up to a transformation, through B[W−1], inducing an
essentially unique weak 2-functor F̃ : B[W−1]→ D.

Definition 6.2. [Pro96] Let B be a bicategory B with a class W of 1-cells.
W is said to admit a right calculus of fractions if it satisfies the following
conditions

2CF1. W contains all equivalences

2CF2. a) W is closed under composition
b) If a ∈W and a iso-2-cell a ∼⇒ b then b ∈W

2CF3. For all w : A ′ → A, f : C → A with w ∈ W there exists a 2-
commutative square

P

v

��

g // A ′

w

��
C

f // A

'
z� }}}}}}

}}}}}}

with v ∈W.

2CF4. If α : w◦ f⇒ w◦g is a 2-cell andw ∈W there is a 1-cell v ∈W and
a 2-cell β : f ◦ v⇒ g ◦ v such that α ◦ v = w ◦β. Moreover: when
α is an iso-2-cell, we require β to be an isomorphism too; when
v ′ and β ′ form another such pair, there exist 1-cells u, u ′ such
that v ◦u and v ′ ◦u ′ are in W, and an iso-2-cell ε : v ◦u⇒ v ′ ◦u ′
such that the following diagram commutes:

f ◦ v ◦ u
β◦u +3

f◦ε '

��

g ◦ v ◦ u

g◦ε'

��
f ◦ v ′ ◦ u ′

β ′◦u ′
+3 g ◦ v ′ ◦ u ′

(8)

Remark 6.3. In particularly nice cases (as in the next section), the first
half of 2CF4 holds due to left-cancellability of elements of W, giving us
the canonical choice v = I.

Theorem 6.4. [Pro96] A bicategory B with a class W that admits a calculus
of right fractions has a localisation with respect to W.

From now on we shall refer to a calculus of right fractions as simply
a calculus of fractions, and the resulting localisation as a bicategory
of fractions. Since B[W−1] is defined only up to equivalence, it is of
great interest to know when a bicategory D in which elements of W are
converted to equivalences is itself equivalent to B[W−1]. In particular,
one would be interested in finding such an equivalent bicategory with a
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simpler description than that which appears in [Pro96]. Thanks are due
to Matthieu Dupont for pointing out (in personal communication) that
the statement of proposition 6.5 actually only holds in one direction, as
stated below, not in both, as in [Pro96].

Proposition 6.5. [Pro96] A weak 2-functor F : B→ D which sends elements
of W to equivalences induces an equivalence of bicategories

F̃ : B[W−1]
∼−→ D

if the following conditions hold

EF1. F is essentially surjective,

EF2. For every 1-cell f ∈ D1 there are 1-cells w ∈W and g ∈ B1 such that
Fg

∼⇒ f ◦ Fw,

EF3. F is locally fully faithful.

The following is useful in showing a weak 2-functor sends weak
equivalences to equivalences, because this condition only needs to be
checked on a class that is in some sense cofinal in the weak equivalences.

Theorem 6.6. In the bicategory B and let V ⊂ W be two classes of 1-cells
such that for all w ∈ W, there exists v ∈ V and s ∈ W such that there is an
invertible 2-cell

a

w

��
b v

//

s

>>~~~~~~~~~~~~~~~~
c .

�� �
���

����

Then a weak 2-functor F : B → D that sends elements of V to equivalences
also sends elements of W to equivalences.

Proof. In the following the coherence cells will be implicit. First we
show that Fw has a pseudosection in D for any w ∈W. Let v, s be as
above. Let F̃v be a pseudoinverse of Fv, and let j = Fs ◦ F̃v. Then there
is the following invertible 2-cell

Fw ◦ j⇒ F(w ◦ s) ◦ F̃v⇒ Fv ◦ F̃v⇒ I.

We now show that j is in fact a pseudoinverse for Fw. Since s ∈W,
there is a v ′ ∈ V and s ′ ∈W and a 2-cell giving the following diagram

d

s ′

��

v ′ // a

w

��
b v

//

s

??~~~~~~~~~~~~~~~~
c .

�� �
���

����

�� �
���

����

Apply the functor F, and denote pseudoinverses of Fv, Fv ′ by F̃v, F̃v ′.
Using the 2-cell I⇒ Fv ′ ◦ F̃v ′ we get the following 2-cell

Fd

Fs

��

Fa
F̃v ′oo

Fw

��
Fb

Fv
// Fc

jr \\\\\\\\\\
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Then there is this composite invertible 2-cell

j ◦ Fw⇒ (Fs ◦ F̃v) ◦ (Fv ◦ (Fs ◦ F̃v ′))⇒ (Fs ◦ Fs ′) ◦ F̃v ′ ⇒ Fv ′ ◦ F̃v ′ ⇒ I,

making Fw is an equivalence. Hence F sends all elements of W to
equivalences. �

7 anafunctors are a localisation

In this section we prove the result that Cat ′(S) admits a calculus of
fractions for the E-equivalences, and the bicategory of anafunctors is a
localisation. Note that E is not required to be subcanonical, but rather
that it satisfies a weak saturation condition.

Definition 7.1. Let E be a class of arrows in the ambient category S. E is
called a class of admissible maps if it is a singleton pretopology containing
the split epimorphisms which satisfies the following condition:

(S) If e : A→ B is a split epimorphism, and A e−→ B
p−→ C is in E, then

p ∈ E.

Example 7.2. If E is a saturated singleton pretopology, it is a class of
admissible maps. In particular, E could be Jsing = (J-epi) for a non-
singleton pretopology J on a finitely complete category.

Example 7.3. The singleton pretopology Subm of surjective submersions
on Diff is subcanonical and satisfies condition (S), but does not contain
the split epimorphisms, so is not admissible.

Recall that Cat ′(S) is assumed to be such that all pullbacks of all
source and target maps exist.

Theorem 7.4. Let S be a category with a class E of admissible maps. Assume
the 2-category Cat ′(S) admits base change along maps in E and has weak
pullbacks. Then Cat ′(S) admits a right calculus of fractions for the class WE
of E-equivalences.

Proof. We show the conditions of definition 6.2 hold.
2CF1. Since E contains all the split epis, an internal equivalence is

essentially E-surjective (c.f. example 4.3). Let f : X→ Y be an internal
equivalence, and g : Y → X a pseudoinverse. By definition there are
natural isomorphisms a : g ◦ f⇒ idX and b : f ◦ g⇒ idY . To show that
f is fully faithful, we first show that the map

q : X1 → X20 ×f,Y20 Y1

is a split monomorphism over X20. This diagram commutes

X1 // X20 ×f,Y20 Y1

��
X1 X20 ×gf,X20 X1 ,'oo

by the naturality of a, the marked isomorphism coming from lemma
2.18, giving the desired splitting (call it s). The splitting commutes with
projection to X20 because the isomorphism does. The same argument
implies that

Y1 → Y20 ×X20 X1

is a split monomorphism over Y20 , and this implies the composite arrow

l : X20 ×Y20 Y1 → X20 ×Y20 Y
2
0 ×X20 X1 ' X

2
0 ×gf,X20 X1
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is a split monomorphism. This diagram commutes

X20 ×Y20 Y1
l //

s

��

X20 ×gf,X20 X1
' // X1

X1 q
// X20 ×Y20 Y1 l

// X20 ×gf,X20 X1
' // X1

using naturality again, and so q ◦ s = id, using the fact l is a monomor-
phism. Thus q is an isomorphism, and f is fully faithful.

2CF2 a). That the composition of fully faithful functors is again
fully faithful is trivial. To show that the composition of essentially
E-surjective functors f : X → Y, g : Y → Z is again so, consider the
following diagram

Y0 ×Z0 Z1 //

��

''
Z1

t //

s

��

Z0

X0 ×Y0 Y1 //

��

((
Y1

t //

s

��

Y0 g0
// Z0

X0
f0

// Y0

where the curved arrows are in E by assumption. The lower such arrow
pulls back to an arrow X0 ×Y0 Y1 ×Z0 Z1 → Y0 ×Z0 Z1 (again in E).
Hence the composite

X0 ×Y0 Y1 ×Z0 Z1 → Y0 ×Z0 Z1
t◦pr2−−−→ Z0

is in E, and is equal to the composite

X0×Y0 Y1×Z0 Z1
id×g×id−−−−−−→ X0×Z0 Z1×Z0 Z1

id×m−−−−→ X0×Z0 Z1
t◦pr2−−−→ Z0.

The map

X0 ×Z0 Z1 ' X0 ×Y0 Y0 ×Z0 Z1
id×e×id−−−−−−→ X0 ×Y0 Y1 ×Z0 Z1

is a section of

X0 ×Y0 Y1 ×Z0 Z1
id×g×id−−−−−−→ X0 ×Z0 Z1 ×Z0 Z1

id×m−−−−→ X0 ×Z0 Z1.

Now condition (S) tells us that X0 ×Z0 Z1
t◦pr2−−−→ Z0 is in E, hence g ◦ f

is essentially E-surjective.
2CF2 b). We will show this in two parts: fully faithful functors are

closed under isomorphism, and essentially E-surjective functors are
closed under isomorphism. Let w, f : X→ Y be functors and a : w⇒ f

be a natural isomorphism. First, let w be essentially E-surjective. That
is,

X0 ×w,Y0,s Y1
t◦pr2−−−→ Y0 (9)

is in E. Now note that the map

X0×f,Y0,s Y1
(id,−a)×id−−−−−−−→ X0××w,Y0,sY1×t,Y0,s Y1

id×m−−−−→ X0×w,Y0,s Y1
(10)

is an isomorphism, and so the composite of (10) and (9) is in E. Thus f
is essentially E-surjective.

Now let w be fully faithful. Thus

X1
w //

��

Y1

��
X0 ×X0 // Y0 × Y0
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is a pullback square. Using lemma 2.18 there is an isomorphism

X1 ' X0 ×w,Y0,s Y1 ×t,Y0,w X0 ' X0 ×f,Y0,s Y1 ×t,Y0,f X0.

The composite of this with projection on X20 is (s, t) : X1 → X20, and the
composite with

pr2 : X0 ×f,Y0,s Y1 ×t,Y0,f X0 → Y1

is just f1 by the diagram 2, and so this diagram commutes

X1

'

$$JJJJJJJJJJ

  

''
X20 ×f2,Y20

Y1 //

��

Y1

��
X20

f20

// Y20

i.e. f is fully faithful.
2CF3. The existence of a 2-commuting square is easy: take the weak

pullback (definition 2.14) which exists by definition. 2CF3 follows from
4.10.

2CF4. Section 4.1 in [Pro96] shows that given a natural transformation

Y

w

  AAAAAAAA

X

f

>>}}}}}}}}

g
  AAAAAAAA ⇓ a Z

Y

w

>>}}}}}}}}

where w is fully faithful (e.g. w is in WE), there is a unique a ′ : f⇒ g

such that

Y

w

  AAAAAAAA

X

f

>>}}}}}}}}

g
  AAAAAAAA ⇓ a Z

Y

w

>>}}}}}}}}

= X

f

��

g

EE⇓a ′ Y
w // Z .

This is the first half of 2CF4, where v = idX. If v ′ : W → X ∈WE such
that there is a transformation

X

f

  AAAAAAAA

W

v ′
=={{{{{{{{

v ′ !!CCCCCCCC ⇓ b Y

X

g

>>}}}}}}}}
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satisfying

X

f

  AAAAAAAA

W

v ′
=={{{{{{{{

v ′ !!CCCCCCCC ⇓ b Y
w // Z

X

g

>>}}}}}}}}

=

Y

w

  AAAAAAAA

W
v ′ // X

f

>>}}}}}}}}

g
  AAAAAAAA ⇓ a Z

Y

w

>>}}}}}}}}

= W
v ′ // X

f

��

g

EE⇓a ′ Y
w // Z ,

(11)

we can choose a J-cover U→ X0, a functor u ′ : X[U]→W and a natural
isomorphism

X[U]

u ′

}}zzzzzzzz
u

!!CCCCCCCC

W

v ′

::⇐ ε X

where, since J ⊂ E, u ∈WE, and since v ′ ◦u ′ '⇒ u, we have v ′ ◦u ′ ∈WE
by 2CF2 a) above as required by 2CF4. The uniqueness result from
Pronk’s argument, together with equation (11) to give us

X

f

  AAAAAAAA

W

v ′
=={{{{{{{{

v ′ !!CCCCCCCC ⇓ b Y

X

g

>>}}}}}}}}

= W
v ′ // X

f

��

g

EE⇓a ′ Y .

We paste this with ε,

X[U]

u

$$

u ′ ""DDDDDDDD
ε ⇓ X

f

��@@@@@@@@

W

v ′
=={{{{{{{{{

v ′ !!DDDDDDDDD ⇓ b Y

X

g

>>}}}}}}}}

=

X[U]

u ′

��

u

��
W

v ′
// X

f

��

g

EE⇓a ′ Y

ε

��
� �
� �
�

� �
� �
�

,

which is precisely the diagram (8) with v = idX. Hence 2CF4 holds. �

Remark 7.5. If we replace the assumption that E contains the split epi-
morphisms by the slightly weaker assumption that all internal equiv-
alences in Cat ′(S) are E-equivalences, then theorem 7.4 still holds as
split epimorphisms are only used to prove 2CF1. By a result of [MM05]
that internal equivalences of Lie groupoids are Subm-equivalences, we
recover the result that theorem 7.4 holds for Lie groupoids and the class
of Subm-equivalences, as well as for various sub-2-categories, such as
proper étale Lie groupoids aka orbifolds.

Definition 7.6. Given a singleton pretopology J and a class E of admis-
sible maps, we say E is admissible for J if J 6 E.
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Example 7.7. Jsing is a class of admissible maps for J if Jsing contains
the split epimorphisms. A saturated singleton pretopology is a class of
admissible maps for itself.

If E is a class of admissible maps for J, E-equivalences are J-equivalences
and so WE ⊂WJ. This means that the 2-functor αJ in proposition 5.19

sends E-equivalences to equivalences. We use this fact and proposition
6.5 to show the following.

Theorem 7.8. Let (S, J) be a site with a subcanonical singleton pretopology
J and let E be a class of admissible maps for J. Then there is an equivalence of
bicategories

Cat ′ana(S, J) ' Cat ′(S)[W−1
E ]

Proof. Let us show the conditions in proposition 6.5 hold.
EF1. αJ is the identity on 0-cells, and hence surjective on objects.
EF2. This is equivalent to showing that for any anafunctor (U, f) : X−7→

Y there are functors w,g such that w is in WE and

(U, f) ∼⇒ αJ(g) ◦αJ(w)−1

where αJ(w)−1 is some pseudoinverse for αJ(w).
Let w be the functor X[U]→ X (this has object component in J ⊂ E,

hence is an E-equivalence) and let g = f : X[U]→ Y. First, note that

X[U]

~~}}}}}}}}
=

""EEEEEEEE

X X[U]

is a pseudoinverse for

αJ(w) =

X[U][U]

=

zzvvvvvvvvv

""EEEEEEEEE

X[U] X

.

Then the composition αJ(f) ◦αJ(w)−1 is

X[U×U U×U U]

xxqqqqqqqqqqqq

&&MMMMMMMMMMMM

X Y

which is isomorphic to (U, f) by the renaming transformation arising
from the isomorphism U×U U×U U ' U.

EF3. If a : (X0, f) ⇒ (X0,g) is a transformation of anafunctors for
functors f,g : X → Y, it is given by a natural transformation with
component

X0 ×X0 X0 → Y1.

But we have declared X0 ×X0 X0 = X0. Hence we get a unique natural
transformation a : f⇒ g such that a is the image of a ′ under αJ. �

We now give a series of results following from this theorem, using
basic properties of pretopologies from section 3.

Corollary 7.9. When J and K are two subcanonical singleton pretopologies
on S such that Jsing = Ksing, there is an equivalence of bicategories

Cat ′ana(S, J) ' Cat ′ana(S,K).

Using corollary 7.9 we see that using a cofinal pretopology gives an
equivalent bicategory of anafunctors.

If E is any class of admissible maps for subcanonical J, the bicategory
of fractions inverting WE is equivalent to that of J-anafunctors. Hence
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Corollary 7.10. Let E be a class of admissible maps for the subcanonical
pretopology J. There is an equivalence of bicategories

Cat ′(S)[W−1
E ] ' Cat ′(S)[W−1

J ]

where of course WJ = WJsing .

Finally, if (S, J) is a superextensive site (like Top with its usual pre-
topology of open covers), we have the following result which is useful
when J is not a singleton pretopology.

Corollary 7.11. Let (S, J) be a superextensive site where J is a subcanonical
pretopology. Then

Cat ′(S)[W−1
Jsing

] ' Cat ′ana(S,qJ).

Proof. This essentially follows from the corollary to lemma 3.23. �

Obviously this can be combined with previous results, for example
if K 6 qJ, for J a non-singleton pretopology, K-anafunctors localise
Cat ′(S) at the class of J-equivalences.

8 size considerations

The 2-category Cat ′(S) is locally small, similar to the case of the 2-
category of small categories (and in fact the latter is cartesian closed).
However the construction of B[W−1] given by Pronk, even for a locally
small bicategory B is a priori not necessarily locally small (or even
locally essentially small). Recall that the axiom of choice for a site (S, J)
is that for all J-epimorphisms p : P → A there exists a section of p. This
is too strong an assumption in practice. In many algebraic situations
one has projective covers, for instance in Grp (every group has an
epimorphism from a free group). We can rephrase this by saying the
full subcategory of Grp/G consisting of the epimorphisms has a weakly
initial object. More generally one could ask only that the category of
all singleton covers of an object (see definition 8.3 below) has a set of
weakly initial objects. This is the content of the axiom WISC below. We
first give some more precise definitions.

Definition 8.1. A category C has a weakly initial set I of objects if for
every object A of C there is an arrows O→ A from some object O ∈ I.

Every small category has a weakly initial set, namely its set of objects.

Example 8.2. The category Field of fields has a weakly initial set, con-
sisting of the prime fields {Q, Fp|p prime}. To contrast, the category
of sets with surjections for arrows doesn’t have a weakly initial set of
objects.

Definition 8.3. Let (S, J) be a site. For any object A, the category of covers
of A, denoted J/A has as objects the covering families (Ui → A)i∈I and
as morphisms (Ui → A)i∈I → (Vj → A)j∈Jtuples consisting of a
function r : I→ J and arrows Ui → Vr(i) in S/A.

When J is a singleton pretopology this is simply a full subcategory
of S/A. We now define the axiom WISC, due to Mike Shulman, which
in a sense limits how much Choice fails to hold. Let (S, J) be a site.

WISC (Weakly Initial Set of Covers). For every objectA of S, the category
J/A has a weakly initial set of objects.

When S is Set with surjections as covers, this is implied by the
axiom COSHEP (category of sets has enough projectives). Without the
condition that this is a set of objects (as opposed to a class or large set)
then this would be true of all sites.

26



Example 8.4. Any regular category with enough projectives with the
regular pretopology satisfies WISC.

Example 8.5. Assuming Choice in the metalogic – that is, in Set –
(Top, O) and (Diff, O) satisfy WISC.

Choice may be more than is necessary here; it would be interesting
to see if WISC in (Set, surjections) is enough to prove WISC in these
cases, analogous to how enough injectives in a topos proves enough
injectives for abelian group objects therein.

Lemma 8.6. If (S, J) satisfies WISC, then so does (S, Jsing).

Lemma 8.7. If (S, J) is a superextensive site, (S, J) satisfies WISC if and only
if (S,qJ) does.

Proposition 8.8. Let (S, J) be a site with a subcanonical singleton pretopol-
ogy J, satisfying WISC. Then Cat ′ana(S, J) is locally essentially small.

Proof. Let I(A) be a weakly initial set for J/A. Consider the locally
full sub-2-category of Cat ′ana(S, J) with the same objects, and arrows
those anafunctors (U, f) : X−7→ Y such that U → X0 is in I(X0). Every
anafunctor is then isomorphic, by the generalisation of example 5.8, to
one in this sub-2-category. �

Corollary 8.9. Any localisation Cat ′(S)[W−1
Jsing

], when it exists, is locally
essentially small for (S, J) satisfying WISC.
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