Domenico Fiorenza straight

Straightforawrd exercise.

Claim. Ogni freccia f:ABf\colon A\to B fattorizza come

AL 1KL 2R 1HR 2B A \xrightarrow{L_1} K \xrightarrow{L_2\cap R_1} H \xrightarrow{R_2} B

per due FS forti innestati (L 1,R 1)(L 2,R 2)(L_1, R_1)\preceq (L_2, R_2).

Proof. Factor ff as a composition

1

with λ i,l iL i,ρ j,r jR j\lambda_i, l_i\in L_i, \rho_j,r_j\in R_j.

Now solving the lifting problems

2

we obtain arrows s,t,a 1,a 2s,t,a_1,a_2. Exploiting the following

Lemma. In a OFS (L,R)(L,R) the left class is right-3-for-2-closed, namely

pq,qLpL p q, q\in L \;\Rightarrow p\in L

and the right class is left-3-for-2-closed, namely

p,pqRqR p, p q\in R\;\Rightarrow q\in R

We obtain that s,tL 2R 1s,t\in L_2\cap R_1, and that a iL iR i=Isoa_i\in L_i\cap R_i= Iso. \blacksquare

Revised on January 19, 2014 at 02:56:52 by Fosco Loregian