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1 IntroductionThe correspondence between \spaces" and \commutative algebras" is by nowfamiliar in mathematics and in theoretical physics. This correspondence al-lows an algebraic translation of various geometrical concepts on spaces interms of the appropriate algebras of functions on these spaces. Replacingthese commutative algebras by noncommutative algebras, i.e. forgettingcommutativity, leads then to noncommutative generalizations of geometrieswhere notions of \spaces of points" are not involved. Such a noncommutativegeneralization of geometry was a need in physics for the formulation of quan-tum theory and the understanding of its relations with classical physics. Infact, the relation between spectral theory and geometry has been implicitelyunderstood very early in physics.Gel'fand's transformation associates to each compact topological spaceXthe algebra C(X) of complex continuous functions on X. Equipped with thesup norm, C(X) is a commutative unital C�-algebra. One of the main pointsof Gel'fand theory is that the correspondence X 7! C(X) de�nes an equiva-lence between the category of compact topological spaces and the category ofcommutative unital C�-algebras. The compact space X is then identi�ed tothe spectrum of C(X), (i.e. to the set of homomorphisms of unital �-algebrasof C(X) into C equipped with the weak topology). LetX be a compact spaceand let E(X) denote the category of �nite rank complex vector bundles overX. To any vector bundle E of E(X) one can associate the C(X)-module�(E) of all continuous sections of E. The module �(E) is a �nite projectiveC(X)-module and the Serre-Swan theorem asserts that the correspondenceE 7! �(E) de�nes an equivalence between the category E(X) and the cate-gory P(C(X)) of �nite projective C(X)-modules. Thus the compact spacesand the complex vector bundles over them can be replaced by the commuta-tive unital C�-algebras and the �nite projective modules over them. In thissense noncommutative unital C�-algebras provide \noncommutative gener-alizations" of compact spaces whereas the notion of �nite projective rightmodule over them is a corresponding generalization of the notion of complexvector bundle. It is worth noticing here that for the latter generalizationone can use as well left modules but these are not the only possibilities (seebelow) and that something else has to be used for the generalization of thenotion of real vector bundle. 3



Remark 1. Let X be an arbitrary topological space, then the algebra Cb(X)of complex continuous bounded functions on X is a C�-algebra if one equipsit with the sup norm. In view of Gel'fand theory one has Cb(X) = C(X̂) (asC�-algebras), where X̂ denotes the spectrum of Cb(X). The spectrum X̂ is acompact space and the evaluation de�nes a continuous mapping e : X 7! X̂with dense image (e(X) = X̂). The compact space X̂ is called the Stone-�Cech compacti�cation of X and the pair (e; X̂) is characterized (uniquely upto an isomorphism) by the following universal property: For any continuousmapping f : X 7! Y of X into a compact space Y there is a unique con-tinuous mapping f̂ : X̂ 7! Y such that f = f̂ � e. Notice that e : X 7! X̂is generally not injective and that it is an isomorphism, i.e. X = X̂ , if andonly if X is compact. The above universal property means that X̂ is thebiggest compacti�cation of X . For instance if X is locally compact then eis injective, i.e. X � X̂ canonically, but X̂ is generally much bigger than theone point compacti�cation X [ f1g of X, (e.g. for X = R the canonicalprojection R̂! R[ f1g has a huge inverse image of 1).If instead of (compact) topological spaces one is interested in the geome-try of measure spaces, what replaces algebras of continuous functions are ofcourse algebras of measurable functions. In this case the class of algebras isthe class of commutativeW �-algebras (or von Neumann algebras). The non-commutative generalizations are therefore provided by general (noncommu-tative)W �-algebras. It has been shown by A. Connes that the correspondingnoncommutative measure theory (i.e. the theory of von Neumann algebras)has a very rich structure with no classical (i.e. commutative) counterpart(e.g. the occurrence of a canonical dynamical system) [12].In the case of di�erential geometry, it is more or less obvious that theappropriate class of commutative algebras are algebras of smooth functions.Indeed if X is a smooth manifold and if C is the algebra of complex smoothfunction on X, (C = C1(X)), one can reconstruct X with its smooth struc-ture and the objects attached to X, (di�erential forms, etc.), by starting fromC considered as an abstract (commutative) unital �-algebra. As a set X canbe identi�ed with the set of characters of C, i.e. with the set of homomor-phisms of unital �-algebras of C into C ; its di�erential structure is connectedwith the abundance of derivations of C which identify with the smooth vec-tor �elds on X as well known. In fact, in [50], J.L. Koszul gave a powerfulalgebraic generalization of di�erential geometry in terms of a commutative4



(associative) algebra C, of C-modules and connections (called derivation lawsthere) on these modules. For the applications to di�erential geometry, C isof course the algebra of smooth functions on a smooth manifold and the C-modules are modules of smooth sections of smooth vector bundles over themanifold.In this approach what generalizes the vector �elds are the derivations ofC (into itself). The space Der(C) of all derivations of C is a Lie algebra anda C-module, both structures being connected by [X; fY ] = f [X;Y ] +X(f)Yfor X;Y 2 Der(C) and f 2 C. Using the latter property one can extract, (byC-multilinearity), a graded di�erential algebra generalizing the algebra of dif-ferential forms, from the graded di�erential algebra C^(Der(C); C) of C-valuedChevalley-Eilenberg cochains of the Lie algebra Der(C) (with its canonical ac-tion on C). This construction admits a generalization to the noncommutativecase; it is the derivation-based di�erential calculus ([25], [26], [27],[34] [35])which will be described below. As will be explained (see also [26] and [27])this is the right di�erential calculus for quantum mechanics, in particular weshall show that the corresponding noncommutative symplectic geometry isexactly what is needed there.For commutative algebras, there is another well-known generalization ofthe calculus of di�erential forms which is the K�ahler di�erential calculus [6],[43], [52], [58]. This di�erential calculus is \universal" and consequently func-torial for the category of (associate unital) commutative algebras. In theselectures we shall give a generalization of the K�ahler di�erential calculus forthe noncommutative algebras. By its very construction, this di�erential cal-culus will be functorial for the algebra-homomorphisms mapping the centersinto the centers. More precisely this di�erential calculus will be shown tobe the universal di�erential calculus for the category of algebra AlgZ whoseobjects are the unital associative C -algebras and whose morphisms are thehomomorphisms of unital algebras mapping the centers into the centers. Thisdi�erential calculus generalizes the K�ahler di�erential calculus in the sensethat it reduces to it for a commutative (unital associative C ) algebra. Thislatter property is in contrast with what happens for the so-called universaldi�erential calculus, which is universal for the category Alg of unital associa-tive C -algebras and of all unital algebra-homomorphisms, the constructionof which will be recalled in these lectures.5



Concerning the generalizations of the notion of module over a commuta-tive algebra C when one replaces it by a noncommutative algebra A, thereare the notion of right A-module and the dual notion of left A-module, butsince a module over a commutative algebra is also canonically a bimodule (ofa certain kind) and since a commutative algebra coincides with its center,there is a notion of bimodule over A and also the notion of module overthe center Z(A) of A which are natural. The \good choices" depend on thekind of problems involved. Again categorial notions can be of some help. Aswill be explained in these lectures, for each category of algebras there is anotion of bimodule over the objects of the category. Furthermore, for thecategory Algcom of unital commutative associative C -algebras the notionof bimodule just reduces to the notion of module. Again, like for the uni-versal di�erential calculus, for the notion of bimodule it is immaterial for acommutative algebra C whether one considers C as an object of Algcom orof AlgZ whereas the notion of bimodule over C in Alg is much wider.This problem of the choice of the generalization of the notion of mod-ule over a commutative algebra C when C is replaced by a noncommutativealgebra A is closely connected with the problem of the noncommutative gen-eralization of the classical notion of reality. If C is the algebra of complexcontinuous functions on a topological space or the algebra of complex smoothfunctions on a smooth manifold, then it is a �-algebra and the (real) alge-bra of real functions is the real subspace Ch of hermitian (i.e. �-invariant)elements of C. More generally if C is a commutative associative complex�-algebra the set Ch of hermitian elements of C is a commutative associativereal algebra. Conversely if CR is a commutative associative real algebra, thenits complexi�cation C is canonically a commutative associative complex �-algebra and one has Ch = CR. In fact the correspondence C 7! Ch de�nesan equivalence between the category of commutative associative complex�-algebras and the category of commutative associative real algebras, (themorphisms of the �rst category being the �-homomorphisms). This is incontrast with what happens for noncommutative algebras. Recall that anassociative complex �-algebra is an associative complex algebra A equippedwith an antilinear involution x 7! x� such that (xy)� = y�x�, (8x; y 2 A).From the fact that the involution reverses the order of the product it followsthat the real subspace Ah of hermitian elements of a complex associative�-algebra is generally not stable by the product but only by the symmetrizedJordan product x�y = 12(xy+yx). Thus Ah is not (generally) an associative6



algebra but is a real Jordan algebra. Therefore, one has two natural choicesfor the generalization of an algebra of real functions : either the real Jor-dan algebra Ah of hermitian elements of a complex associative �-algebra Awhich plays the role of the algebra of complex functions or a real associativealgebra. In these lectures we take the �rst choice which is dictated by quan-tum theory (and spectral theory). This choice has important consequenceson the possible generalizations of real vector bundles and, more generally, ofmodules over commutative real algebras.Let C be a commutative associative �-algebra and let Mh be a Ch-module. The complexi�ed M = Mh � iMh = Mh
RC of Mh is canon-ically a C-module. Furthermore there is a canonical antilinear involution(� + i	) 7! (� + i	)� = � � i	 (�;	 2 Mh) for which Mh is the setof �-invariant elements. This involution is compatible with the one of C inthe sense that one has (x�)� = x��� for x 2 C and � 2 M; M will besaid to be a �-module over the commutative �-algebra C. In view of theabove discussion what generalizes C is a noncommutative �-algebra A andwe have to generalize the �-module M and its \real part" Mh. However itis clear that there is no noncommutative generalization of a �-module overA as right or left module. The reason is that, since the involution of A re-verses the order in products, it intertwines between actions of A and actionsof the opposite algebra A0, i.e. between a structure of right (resp. left)module and a structure of left (resp. right) module. Fortunately, as alreadymentioned, a C-module is canonically a bimodule (of a certain kind) andthe above compatibility condition can be equivalently written (x�)� = ��x�.This latter condition immediately generalizes for A, namely a �-bimoduleover the �-algebra A is a bimodule M over A equipped with an antilinearinvolution � 7! �� such that (x�y)� = y���x�, (8x; y 2 A, 8� 2 M). Thereal subspace Mh = f� 2 Mj�� = �g of the �-invariant element of Mcan play the role of the sections of a real vector bundle (for some speci�ckind of �-bimodule M). Since a commutative algebra is its center, one canalso generalize �-modules over C by �-modules over the center Z(A) of Aand modules over Ch by modules over Z(A)h. In a sense these two types ofgeneralizations of the reality (for modules) are dual ([34], [27]) as we shallsee later. The main message of this little discussion is that notions of realityforce us to consider bimodules and not only right or left modules as general-ization of vector bundles, [34], [27], [18], [61].7



Remark 2. One can be more radical. Instead of generalizing an associativecommutative R-algebra CR by the Jordan algebra Ah of hermitian elementsof an associative complex �-algebra A, one can more generally choose to gen-eralize CR by a real Jordan algebra JR ( not a priori a special one). Thecorresponding generalization of a CR-module could be then a Jordan bimod-ule over JR [44] instead of the real subspace of a �-bimodule over A, (whatis a Jordan bimodule will be explained later). We however refrain to dothat because it is relatively complicated technically for a slight generaliza-tion practically.In these lectures we shall be interested in noncommutative versions ofdi�erential geometry where the algebra of smooth complex functions on asmooth manifold is replaced by a noncommutative associative unital com-plex �-algebra A. Since there are commutative �-algebras of this sort whichare not (and cannot be) algebras of smooth functions on smooth manifolds,one cannot expect that an arbitrary �-algebra as above is a good noncom-mutative generalization of an algebra of smooth functions. What is involvedhere is the generalization of the notion of smootheness. It is possible to char-acterize among the unital commutative associative complex �-algebras theones which are isomorphic to algebras of smooth functions, however thereare several inequivalent noncommutative generalizations of this characteri-zation and no one is universally accepted. Thus although it is an interestingsubject on which work is currently in progress [30], we shall not discuss ithere. This means that if the algebra A is not \good enough", some of ourconstructions can become a little trivial.The plan of these notes is the following. After this introduction, in Sec-tion 2 we recall the de�nition of graded di�erential algebras and of variousconcepts related to them; we state in particular the result of D. Sullivanconcerning the structure of connected �nitely generated free graded comu-tative di�erential algebras and we review H. Cartan's notion of operationof a Lie algebra in a graded di�erential algebra. In Section 3, we explainthe equivalence between the category of �nite dimensional Lie algebras andthe category of the free connected graded commutative di�erential algebraswhich are �nitely generated in degree 1 (i.e. exterior algebras of �nite di-mensional spaces equipped with di�erentials); we describe several examplesrelated to Lie algebras such as the Chevalley-Eilenberg complexes, the Weilalgebra (and we state the result de�ning the Weil homomorphism) and we8



introduce the graded di�erential algebras of the derivation-based calculus.In Section 4, we start in an analogous way as in Section 3, that is we explainthe equivalence between the category of �nite dimensional associative alge-bras and the category of free connected graded di�erential algebras whichare generated in degree 1 (i.e. tensor algebras of �nite dimensional spacesequipped with di�erentials); we describe examples related to associative al-gebras such as Hochschild complexes. In Section 5, we introduce categoriesof algebras and we de�ne the associated notions of bimodules which we followon several relevant examples. In Section 6 we recall the notion of �rst orderdi�erential calculus over an algebra and we introduce our generalization ofthe module of K�ahler di�erentials and discuss its functorial properties; wealso recall in this section the de�nition and properties of the universal �rstorder calculus. In Section 7 we introduce the higher order di�erential calculiand discuss in particular the universal one as well as our generalization ofK�ahler exterior forms; we give in particular their universal properties andstudy their functorial properties. In Section 8 we introduce another newdi�erential calculus, the diagonal calculus, which, although not functorial,is characterized by a universal property and we compare it with the otherdi�erential calculi attached to an algebra. In Section 9 we de�ne and studynoncommutative Poisson and symplectic structures and show their relationwith quantum theory. In Section 10 we describe the theory of connections onmodules and on bimodules; in the latter case we recall in particular the gen-eralization of the proposal of J. Mourad (concerning linear connections) anddescribe its basic properties and its relations with the theory of �rst-order op-erators in bimodules. In Section 11 we discuss in some examples the relationsbetween connections in the noncommutative setting and classical Yang-Mills-Higgs models. Section 12 which serves as conclusion contains some furtherremarks concerning in particular the di�erential calculus on quantum groups.Apart from in x5, an algebra without other speci�cation shall alwaysmean a unital associative complex algebra and by a �-algebra without otherspeci�cation we shall mean a unital associative complex �-algebra. Giventwo algebras A and B in this sense, a (A;B)-bimodule is a vector space Mequipped with linear maps A 
M ! M and M
 B ! M denoted bya 
 m 7! am and m 
 b 7! mb respectively such that (aa0)m = a(a0m),m(bb0) = (mb)b0, (am)b = a(mb), 1lm = m and m1l = m, 8a; a0 2 A,8b; b0 2 B, 8m 2 M where 1l denotes the unit of A as well as the one of B. InSection 5 we shall de�ne for a more general algebra A a notion of A-bimodule9



which is relative to a category of algebras; the notion of (A;A)-bimodule asabove is the notion of A-bimodule for the category Alg of unital associativecomplex algebras. A complex C will be a Z-graded vector space (over C )equipped with a homogeneous endomorphism d of degree �1 and such thatd2 = 0. If d is of degree �1, C is said to be a chain complex, its elementsare called chains and d is called the boundary; if d is of degree +1, C is saidto be a cochain complex, its elements are called cochains and d is called thecoboundary. The graded vector space H(C) = Ker(d)=Im(d) is called thehomology of C if C is a chain complex and the cohomology of C if C is acochain complex.2 Graded di�erential algebrasA graded algebra will be here a unital associative complex algebra A whichis a Z-graded vector space A = �n2ZAn such that Am:An � Am+n. A homo-morphism of graded algebras will be a homomorphism of the correspondinggraded vector spaces (i.e. a homogeneous linear mapping of degree 0) whichis also a homomorphism of unital algebras. A graded algebra A is said tobe graded commutative if one has xy = (�1)mnyx, 8x 2 Am and 8y 2 An.Most graded algebras involved in these lectures will be N-graded, i.e. An = 0for n � �1. A graded algebra A is said to be 0-connected or connected if itis N-graded with A0 = C 1l, where 1l denotes the unit of A. An example ofconnected graded algebra is the tensor algebra over C of a complex vectorspace E which will be denoted by T (E). In this example, the graduation isthe tensorial degree which means that the degree 1 is given to the elementsof E. The exterior algebra V(E) of E is an example of connected gradedcommutative algebra, (the graduation being again induced by the tensorialdegree).More generally let C = �n Cn be a Z-graded complex vector space andlet T (C) be the tensor algebra of C. One has C � T (C) and we equipthe algebra T (C) with the unique grading of algebra which induces on Cthe original grading. Since this is not the usual grading of the tensor al-gebra we shall denote the corresponding graded algebra by T(C). Thegraded algebra T(C) is characterized (uniquely up to an isomorphism) bythe following universal property: Any homomorphism of graded vector spaces� : C ! A of the graded vector space C into a graded algebra A extends10



uniquely as a homomorphism of graded algebras T(�) : T(C) ! A. Let Ibe the graded two-sided ideal of T(C) generated by the graded commutators r 
 's � (�1)rs's 
  r with  n, 'n 2 Cn and let F(C) denote the quotientgraded algebra T(C)=I. Then F(C) is a graded commutative algebra whichcontains again C as graded subspace. The graded commutative algebra F(C)is characterized (uniquely up to an isomorphism) by the following universalproperty, (which is the graded commutative counterpart of the above one):Any homomorphism of graded vector spaces � : C ! A of the graded vectorspace C into a graded commutative algebra A extends uniquely as a homo-morphism of graded commutative algebras F(�) : F(C) ! A. Notice thatT(C) (resp. F(C)) is connected if and only if Cn = 0 for n � 0 and thatT(C) = T (C) (resp. F(C) = V(C)) as graded algebras if and only if Cn = 0for n 6= 1. Notice also that, as algebra F(C) = V(�r C2r+1) 
 S(�sC2s)where S(E) denotes the symmetric algebra of the vector space E. The gradedalgebra T(C) will be refered to as the free graded algebra generated by thegraded vector space C whereas the graded algebra F(C) will be refered to asthe free graded commutative algebra generated by the graded vector spaceC. Finally, a �nitely generated free graded algebra will be a graded algebraof the form T(C) for some �nite dimensional graded vector space C whereasan algebra of the form F(C) for some �nite dimensional graded vector spaceC will be called a �nitely generated free graded commutative algebra.If A and A0 are two graded algebras, their tensor product A
 A0 will behere their skew tensor product which means that the product in A 
 A0 isde�ned by (x 
 x0)(y 
 y0) = (�1)m0nxy 
 x0y0 for x0 2 A0m0 , y 2 An, x 2 Aand y0 2 A0. With this convention, the tensor product of two (or more)graded commutative algebras is again a graded commutative algebra. If Cand C 0 areZ-graded complex vector spaces one has F(C�C 0) = F(C)
F(C 0).By a graded �-algebra we here mean a graded algebra A = �nAn equippedwith an involution x 7! x� satisfying(i) x 2 An ) x� 2 An (homogeneity of degree = 0)(ii) (�x + y)� = ��x� + y�; 8x; y 2 A and 8� 2 C (antilinearity)(iii) (xy)� = (�1)mny�x�; 8x 2 Am and 8y 2 An.Notice that Property (iii) implies that if A is graded commutative thenone has (xy)� = x�y�, (8x; y 2 A). 11



For a graded algebra A, there is, beside the notion of derivation, the no-tion of antiderivation: A linear mapping � : A! A is called an antiderivationof A if it satis�es �(xy) = �(x)y + (�1)mx�(y) for any x 2 Am and y 2 A.However the best generalizations of the notions of center and of derivationsare the following graded generalizations. The graded center Zgr(A) of A isthe graded subspace of A generated by the homogeneous elements x 2 Am(m 2Z) satisfying xy = (�1)mnyx, 8y 2 An and 8n 2Z, (i.e. Zgr(A) is thegraded commutant of A in A). The graded center is a graded subalgebra of Awhich is graded commutative. A graded derivation of degree k of A, (k 2Z),is a homogeneous linear mappingX : A! A which is of degree k and satis�esX(xy) = X(x)y+(�1)kmxX(y) for x 2 Am and y 2 A. Thus a homogeneousgraded derivation of even (resp. odd) degree is a derivation (resp. antideriva-tion). The vector space of all these graded derivations of degree k will bedenoted by Derkgr(A) and the graded vector space Dergr(A) = �k2ZDerkgr(A)of all graded derivations is a graded Lie algebra for the graded commutator[X;Y ]gr = XY � (�1)k`Y X, X 2 Derkgr(A), Y 2 Derg̀r(A). If x 2 Am,one de�nes a graded derivation of degree m of A, denoted by adgr(x), bysetting adgr(x)y = xy � (�1)mnyx = [x; y]gr for y 2 An. The graded sub-space of Dergr(A) generated by these ad(x), (when x runs over Am and mruns overZ), is denoted by Intgr(A) and its elements are called inner gradedderivations of A. It is an ideal of the graded Lie algebra Dergr(A) and thequotient graded Lie algebra will be denoted by Outgr(A). Notice that thegraded center Zgr(A) is stable by the graded derivations of A and that thisleads to a canonical homomorphism Outgr(A) ! Dergr(Zgr(A)) since theinner graded derivations vanish on Zgr(A). If A is a graded �-algebra, thenZgr(A) is stable by the involution, (i.e. it is a graded �-subalgebra of A), onede�nes in the obvious manner an involution on Dergr(A) and one has then(adgr(x))� = �adgr(x�) for x 2 A. One recovers the usual ungraded notionsfor an ordinary (ungraded) algebra A by considering A as a graded algebrawhich has non zero elements only in degree 0.Finally a graded di�erential algebra is a graded algebra A = �n Anequipped with an antiderivation d of degree 1 satisfying d2 = 0, (i.e. dis linear, d(xy) = d(x)y + (�1)mxd(y) 8x 2 Am and 8y 2 A, d(An) � An+1and d2 = 0); d is the di�erential of the graded di�erential algebra. Noticethat then the graded center Zgr(A) of A is stable by the di�erential d andthat it is therefore a graded di�erential subalgebra of A which is graded com-mutative. A graded di�erential �-algebra will be a graded di�erential algebra12



A which is also a graded �-algebra such that d(x�) = (d(x))�; 8x 2 A.Given a graded di�erential algebra A its cohomology H(A) is a gradedalgebra. Indeed the antiderivation property of d implies that Ker(d) is asubalgebra of A and that Im(d) is a two-sided ideal of Ker(d) and the homo-geneity of d implies that they are graded. If A is graded commutative thenH(A) is also graded commutative and if A is a graded di�erential �-algebrathen H(A) is a graded �-algebra.If A0 and A00 are two graded di�erential algebras their tensor productA0
A00 will be the tensor product of the graded algebras equipped with thedi�erential d de�ned byd(x0 
 x00) = d(x0)
 x00 + (�1)n0x0 
 dx00; 8x0 2 A0n0 and 8x00 2 A00:For the cohomology, one has the K�unneth formula [60]H(A0 
 A00) = H(A0)
H(A00)for the corresponding graded algebra.Remark 3. More generally if A0 and A00 are (co)chain complexes of vectorspaces with (co)boundaries denoted by d, then one de�nes a (co)boundary don the graded vector space A0 
 A00 by the same formula as above and onehas the K�unneth formula H(A0
A00) = H(A0)
H(A00) for the correspondinggraded vector spaces of (co)homologies [60].Let A be a graded di�erential algebra which is connected, i.e. such thatA = C 1l � A+ where A+ is the ideal of elements of strictly positive degrees.Then A will be said to be minimal or to be a minimal graded di�erentialalgebra if it satis�es the condition of minimality [59]:dA � A+:A+ (minimal condition).A free graded di�erential algebra is a graded di�erential algebra which isof the form T(C) for some graded vector space C as a graded algebra whereasa free graded commutative di�erential algebra is a graded di�erential algebrawhich is of the form F(C) as a graded algebra.13



For instance if C is a cochain complex, its coboundary extends uniquelyas a di�erential of T(C) and also as a di�erential of F(C). The correspondinggraded di�erential algebra which will be again denoted by T(C) and F(C)when no confusion arises will be refered to respectively as the free gradeddi�erential algebra generated by the complex C and the free graded commu-tative di�erential algebra generated by the complex C. One can show (byusing the K�unneth formula) that one has in cohomology H(T(C)) = T(H(C))and H(F(C)) = F(H(C)). We let the reader guess the universal propertieswhich characterize T(C) and F(C) and to deduce from these the functorialcharacter of the construction. A free graded (resp. graded commutative)di�erential algebra will be said to be contractible if it is of the form T(C)(resp. F(C)) for a cochain complex (of vector spaces) C such that H(C) = 0(trivial cohomology). In Theorem 1 below we shall be interested in freegraded commutative contractible di�erential algebras which are connectedand �nitely generated; such a di�erential algebra is a �nite tensor product
� F(C e� � C de�) with the e� of degrees � 1 (connected property).Concerning the structure of connected �nitely generated free graded com-mutative di�erential algebras, one has the following result [59].THEOREM 1 Every connected �nitely generated free graded commutativedi�erential algebra is the tensor product of a unique minimal one and a uniquecontractible one.This result has been for instance an important constructive ingredient inthe computation of the local B.R.S. cohomology of gauge theory [37], [24].There is probably a similar statement for the non graded commutativecase (i.e. for connected �nitely generated free graded di�erential algebras)in which the tensor product is replaced by the free product of unital algebras.An operation of a Lie algebra g in a graded di�erential algebra A [9], [41]is a linear mapping X 7! iX of g into the space of antiderivations of degree�1 of A such that one has (8X;Y 2 g)(i) iXiY + iY iX = 0 i.e. [iX; iY ]gr = 0(ii)LXiY � iY LX = i[X;Y ] i.e. [LX ; iY ]gr = i[X;Y ]where LX denotes the derivation of degree 0 of A de�ned byLX = iXd + diX = [d; iX]gr14



for X 2 A. Property (ii) above implies(iii) LXLY � LY LX = L[X;Y ]; (8X;Y 2 g)which means that X 7! LX is a Lie algebra-homomorphism of g into theLie algebra of derivations of degree 0 of A. The de�nition implies that LXcommutes with the di�erential d for any X 2 g.Given an operation of g in A as above, an element x of A is said to behorizontal if iX(x) = 0 (8X 2 g), invariant if LX(x) = 0 (8X 2 g) and basicif it is both horizontal and invariant i.e. if iX(x) = 0 = LX(x) (8X 2 g).The set AH of horizontal elements is a graded subalgebra of A stable by therepresentation X 7! LX of g. The set AI of invariant elements is a gradeddi�erential subalgebra of A and the set AB of basic elements is a graded dif-ferential subalgebra of AI (and therefore also of A). The cohomologies of AIand AB are called respectively invariant cohomology and basic cohomology ofA and are denoted by HI(A) and HB(A).A prototype of graded di�erential algebra is the graded di�erential alge-bra 
(M) of di�erential forms on a smooth manifold M . We shall discussvarious generalizations of it in these lectures. Let P be a smooth principalbundle with structure group G and with basis M . One de�nes an operationX 7! iX of the Lie algebra g of G in the graded di�erential algebra 
(P )of di�erential forms on P by letting iX be the contraction by the verticalvector �eld corresponding to X 2 g. Then the elements of 
(P )H are thehorizontal forms in the usual sense, 
(P )I is the di�erential algebra of thedi�erential forms which are invariant by the action of G on P whereas thegraded di�erential algebra 
(P )B is canonically isomorphic to the gradeddi�erential algebra 
(M) of di�erential forms on the basis. The terminologyadopted above for operations comes from this fundamental example. In [24],[25] very di�erent kinds of operations of Lie algebras in graded di�erentialalgebras have been considered.3 Examples related to Lie algebrasLet g be a �nite dimensional complex vector space with dual space g�. LetX;Y 7! [X;Y ] be an antisymmetric bilinear product on g, i.e. a linearmapping [�; �] : V2 g ! g of the second exterior power of g into g. Thedual of the bracket [�; �] is a linear mapping of g� into V2 g�(= (V2 g)�) and15



such a linear mapping of g� into V2 g� has a unique extension as a gradedderivation � of degree 1 of the exterior algebra Vg�. Conversely, given agraded derivation � of degree 1 of V g�, the dual of � : g� ! V2 g� is abilinear antisymmetric product on g(= (g�)�) and � is the unique gradedderivation of degree 1 of V g� which extends the dual of this antisymmetricproduct. Thus to give an antisymmetric product [�; �] on g is the same thingas to give a graded derivation � of degree 1 of the exterior algebra V g�. Fornotational reasons one usually introduces the antiderivation d = ��, i.e. theunique antiderivation of Vg� such thatd(!)(X;Y ) = �!([X;Y ])for ! 2 g� and X;Y 2 g. We shall call d the antiderivation of V g� corre-sponding to the bilinear antisymmetric product on g.LEMMA 1 The bilinear antisymmetric product [�; �] on g satis�es the Jacobiidentity if and only if the corresponding antiderivation d of V g� satis�esd2 = 0.i.e. g is a Lie algebra if and only if V g� is a graded di�erential algebra (forthe d corresponding to the bracket of g).Proof. One has d2 = 12 [d; d]gr so d2 is a derivation (a graded derivationof degree 2) of Vg�. Since, as unital algebra V g� is generated by g�,d2 = 0 is equivalent to d2(g�) = 0. On the other hand by de�nition onehas d(!)(X;Y ) = �!([X;Y ]), for ! 2 g� and X;Y 2 g, and, by the an-tiderivation property one has for X;Y;Z 2 g3!d2(!)(X;Y;Z) = (d(!)(X; [Y;Z])� d(!)([X;Y ]; Z)) + cycl (X;Y;Z)i.e. d2(!)(X;Y;Z) = !([[X;Y ]; Z] + [[Y;Z];X] + [[Z;X]; Y ]). Therefored2(!) = 0 8! 2 g� is equivalent to the Jacobi identity for [�; �]. �Thus to give a �nite dimensional Lie algebra is the same thing as togive the exterior algebra of a �nite dimensional vector space equipped witha di�erential, that is to give a �nitely generated free graded commutativedi�erential algebra which is generated in degree 1. Such a graded di�erentialalgebra is automatically connected and minimal. This is why, as pointed outin [59], the connected �nitely generated free graded commutative di�erential16



algebras which are minimal constitute a natural categorical closure of �nitedimensional Lie algebras. In fact such generalizations of Lie algebras occurin some physical models [5].Let g be a �nite dimensional Lie algebra, then the cohomology H(g) of gis the cohomology of V g�. More generally, Vg� is the basic building blockto construct the cochain complexes for the cohomology of g with values inrepresentations.Assume that g is the Lie algebra of a Lie group G. Then by identify-ing g with the Lie algebra of left invariant vector �elds on G one de�nes acanonical homomorphism of �g� into the graded di�erential algebra 
(G) ofdi�erential forms on G, (in fact onto the algebra of left invariant forms). Thisinduces a homomorphism of H(g) into the cohomology H(G) of di�erentialforms on G which is an isomorphism when G is compact.In the following, we consider the symmetric algebra Sg�, (i.e. the algebraof polynomials on g), to be evenly graded by giving the degree two to itsgenerators, i.e. by writing (Sg�)2n = Sng� and (Sg�)2n+1 = 0. With thisconvention Sg� is graded commutative and one de�nes the graded commuta-tive algebra W (g) by W (g) = �g� 
Sg�. Let (E�) be a basis of g with dualbasis (E�) and let us de�ne correspondingly generators A� and F � of W (g)by A� = E� 
 1l and F � = 1l 
 E� so that W (g) is just the free connectedgraded commutative algebra (freely) generated by the A�'s in degree 1 andthe F �'s in degree 2. It is convenient to introduce the elements A and F ofg
W (g) de�ned by A = E� 
A� and F = E� 
 F �. One then de�nes theelements dA� and dF � of W (g) by settingdA = E� 
 dA� = �12[A;A] + FdF = E� 
 dF � = �[A;F ]where the bracket is the graded Lie bracket obtained by combining thebracket of g with the graded commutative product of W (g). One then ex-tends d as an antiderivation of W (g) of degree 1. One has d2 = 0, and sincean alternative free system of homogeneous generators of W (g) is providedby the A�'s and the dA�'s, W (g) is a connected free graded commutativedi�erential algebra which is contractible and which is refered to as the Weilalgebra of the Lie algebra g [9], [41]. It is straightforward to verify that onede�nes an operation of g in W (g) by setting iX(A�) = X� and iX(F �) = 017



for X = X�E� 2 g and by extending iX as an antiderivation of W (g).Since W (g) is contractible, its cohomology is trivial; the same is true forthe invariant cohomology HI(W (g)) of W (g), i.e. one has H0I (W (g)) = Cand HnI (W (g)) = 0 for n � 1 [9] (see also in [24]). The graded subalge-bra of horizontal elements of W (g) is obviously 1l 
 Sg� so it follows thatthe graded subalgebra of basis elements of W (g) is just 1l 
 IS(g) whereIS(g) denotes the algebra of invariant polynomials on g (with the degree2n given in W (g) to the homogeneous polynomials of degree n). On theother hand one has d(1l 
 IS(g)) = 0 and it is easily seen that the corre-sponding homomorphism 1l
IS(g)! HB(W (g)) onto the basic cohomologyof W (g) is an isomorphism. Therefore, one has H2nB (W (g)) = InS (g) andH2n+1B (W (g)) = 0, where InS (g) denotes the space of invariant homogeneouspolynomials of degree n on g. Let now P be a smooth principal bundle withbasis M and with structure group G such that its Lie algebra is g. Onehas the canonical operation X ! iX of g in 
(P ) de�ned at the end oflast section. Given a connection ! = E� 
 !� 2 g 
 
1(P ) on P , there isa unique homomorphism of graded di�erential algebras 	 : W (g) ! 
(P )such that 	(A�) = !�. This homomorphism satis�es 	(iX(w)) = iX(	(w))for any X 2 g and w 2 W (g). It follows that it induces a homomor-phism in basic cohomomogy ' : HB(W (g)) ! HB(P ), i.e. a homomor-phism of IS(g) into the cohomology H(M) of the basis M of P , such that'(InS (g)) � H2n(M), (it is an homormorphism of commutative algebras).One has Im(') � Hev(M) = �pH2p(M).THEOREM 2 The above homomorphism ' : IS(g) ! Hev(M) does notdepend on the choice of the connection ! on P .That is ' only depends on P ; it is called the Weil homomorphism of theprincipal bundle P . Before leaving this subject, it is worth noticing here thatthere is a very interesting noncommutative (or quantized) version of the Weilalgebra of g in the case where g admits a nondegenerate invariant symmetricbilinear form, i.e. for g reductive, where Sg� is replaced by the envelopingalgebra U(g) and where �g� is replaced by the Cli�ord algebra C`(g) of thebilinear form, which has been introduced and studied in [1].In these lectures the Lie algebras involved will be generally not �nite di-mensional and some care must be taken with respect to duality and tensorproducts. For instance, if g is not �nite dimensional then the dual of the Lie18



bracket [�; �] : V2 g ! g is a linear mapping � : g� ! (V2 g)� and one onlyhas an inclusion V2 g� � (V2 g)�. In the following we give the formulationadapted to this more general situation.Let g be a Lie algebra, letE be a representation space of g (i.e. a g-moduleor, as will be explained in Section 5, a g-bimodule for the category Lie ofLie algebras) and let X 7! �(X) 2 End(E) denote the action of g on E. AnE-valued (Lie algebra) n-cochain of g is a linear mapping X1 ^ � � � ^Xn 7!!(X1; : : : ;Xn) of Vn g into E. The vector space of these n-cochains willbe denoted by C n̂(g; E). One de�nes a homogeneous endomorphism d ofdegree 1 of the N-graded vector space C^(g; E) = �n C n̂(g; E) of all E-valuedcochains of g by settingd(!)(X0; : : : ;Xn) =Pnk=0(�1)k�(Xk)!(X0; k_: : :;Xn)+P0�r<s�n(�1)r+s!([Xr;Xs];X0 r_: : : s_: : : Xn)for ! 2 C n̂(g; E) and Xi 2 g. It follows from the Jacobi identity and from�(X)�(Y ) � �(Y )�(X) = �([X;Y ]) that d2 = 0. Thus equipped with d,C^(g; E) is a cochain complex and its cohomology, denoted by H(g; E), iscalled the E-valued cohomology of g. When E = C and � is the trivialrepresentation � = 0, it is the cohomology H(g) of g. One veri�es that if gis �nite dimensional, it is the same as the cohomology of V g�; in fact in thiscase one has C^(g; E) = E 
V g�.Assume now that E is an algebra A (unital, associative, complex) andthat g acts on A by derivations, i.e. that one has �(X)(xy) = �(X)(x)y +x�(X)(y) for X 2 g and x; y 2 A. Then C^(g;A) is canonically a gradeddi�erential algebra. Indeed the product is obtained by taking the productin A after evaluation and then antisymmetrizing whereas, the derivationproperty of the action of g implies that d is an antiderivation. The trivialrepresentation � = 0 in C is of this kind, this is whyH(g) is a graded algebra.More generally, the vector space Der(A) of all derivations of A into itselfis a Lie algebra and therefore C^(Der(A);A) is a graded-di�erential algebra.Furthermore, Der(A) is also a module over the center Z(A) of A and onehas [X; zY ] = z[X;Y ] +X(z)Y from which it follows that the graded subal-gebra 
Der(A) of C^(Der(A);A) which consists of Z(A)-multilinear cochainsis stable by the di�erential and is therefore a graded di�erential subalgebra19



of C^(Der(A);A). Since 
0Der(A) = A, a smaller di�erential subalgebra isthe smallest di�erential subalgebra 
Der(A) of C^(Der(A);A) containing A.WhenM is a \good" smooth manifold (�nite dimensional, paracompact, etc.)and A = C1(M) then 
Der(A) and 
Der(A) both coincide with the gradeddi�erential algebra 
(M) of di�erential forms onM . In general, the inclusion
Der(A) � 
Der(A) is a strict one even when A is commutative (e.g. for thesmooth functions on a 1-dimensional manifold). The di�erential calculusover A (see in Sections 7, 8) using 
Der(A) (or 
Der(A)) as generalizationof di�erential forms will be refered to as the derivation-based calculus, [25],[26], [27], [28], [29], [33], [34], [35], [36]. If A is a �-algebra, one de�nes an in-volution X 7! X� on Der(A) by setting X�(a) = (X(a�))� and an involution! 7! !� on C^(Der(A);A) by setting !�(X1; : : : ;Xn) = (!(X�1 ; : : : ;X�n))�.So equipped C^(Der(A);A) is a graded di�erential �-algebra and 
Der(A) aswell as 
Der(A) are stable by the involution and are therefore also gradeddi�erential �-algebras.One de�nes a linear mapping X 7! iX of g into the homogeneous en-domorphisms of degree �1 of C^(g; E) by setting iX(!)(X1; : : : ;Xn�1) =!(X;X1; : : : ;Xn�1) for ! 2 C n̂(g; E) and Xi 2 g. ThenX 7! LX = iXd+diXis a representation of g in C^(g; E) by homogeneous endomorphisms of de-gree 0 which extends the original representation � in E = C 0̂(g; E), i.e.LX � E = �(X) for X 2 g. In the case where E is an algebra A and where gacts by derivations on A, we have seen that C^(g;A) is a graded di�erentialalgebra and it is easy to show that X 7! iX is an operation of the Lie algebrag in the graded di�erential algebra C^(g;A); in fact properties (i) and (ii)of operations (see last section) hold already in C^(g; E) for any g-module E.In particular one has the operation X 7! iX of the Lie algebra Der(A)in the graded di�erential algebra C^(Der(A);A) de�ned as above. It is nothard to verify that the graded di�erential subalgebras 
Der(A) and 
Der(A)are stable by the iX (X 2 Der(A)). The corresponding operations will berefered to as the canonical operations of Der(A) in 
Der(A) and in 
Der(A).4 Examples related to associative algebrasLet A be a �nite dimensional complex vector space with dual space A� andlet x; y 7! xy be an arbitrary bilinear product on A, i.e. a linear mapping20




2A ! A where 
2A denotes the second tensor power of A. The dual ofthe product is a linear mapping of A� into 
2A� and again such a linearmapping uniquely extends as a graded derivation � of degree 1 of the tensoralgebra T (A�) = �n�0
n A�. Conversely, given such a graded derivation � ofdegree 1 (i.e. an antiderivation of degree 1) of T (A�), the dual mapping ofthe restriction � : A� ! 
2A� of � to A� is a bilinear product on A whichis such that � is obtained from it by the above construction. Thus, to givea bilinear product on A is the same thing as to give an antiderivation ofdegree 1 of T (A�). Again, for notational reasons, it is usual to consider theantiderivation d = ��, i.e. the unique antiderivation of T (A�) such thatd(!)(x; y) = �!(xy)for ! 2 A� and x; y 2 A. We shall call this d the antiderivation of T (A�)corresponding to the bilinear product of A.LEMMA 2 The bilinear product on A is associative if and only if the cor-responding antiderivation of T (A�) satis�es d2 = 0.i.e. A is an associative algebra if and only if T (A�) is a graded di�erentialalgebra (for the d corresponding to the product of A).Proof. By de�nition, one has for ! 2 A� and x; y; z 2 Ad(d(!))(x; y:z) = d(!)(x; yz)� d(!)(xy; z) = !((xy)z � x(yz)):Therefore the product of A is associative if and only if d2 vanishes on A�but this is equivalent to d2 = 0 since d2 is a derivation and since the (unital)graded algebra T (A�) is generated by A�. �Therefore to give a �nite dimensional associative algebra is the same thingas to give a �nitely generated free graded di�erential algebra which is gen-erated in degree 1. Again such a graded di�erential algebra is automaticallyconnected and minimal. The situation is very similar to the one of last sec-tion except that here one has not graded commutativity. So one can considerin particular that the connected �nitely generated free graded di�erential al-gebras which are minimal constitute a natural categorical closure of �nitedimensional associative algebras, i.e. a natural generalization of the notionof associative algebra. 21



Let A be a �nite dimensional associative algebra; we shall see that ifA has a unit then the cohomology of the graded di�erential algebra T (A�)is trivial. Nevertheless T (A�) is the basic building block to construct theHochschild cochain complexes. Namely if M is a (A;A)-bimodule then thegraded vector space of M-valued Hochschild cochains of A is the gradedspace M
 T (A�) and the Hochschild coboundary dH is given bydH(!)(x0; : : : ; xn) = x0!(x1; : : : ; xn) + (IM 
 d)(!)(x0; : : : ; xn)+(�1)n+1!(x0; : : : ; xn�1)xnfor ! 2 M
 (
nA�) and xi 2 A.In these lectures we shall have to deal with in�nite dimensional algebraslike algebras of smooth functions and their generalizations so again (as inlast section) one has to take some care of duality and tensor products.Let A be now an arbitrary associative algebra and let C(A) denote thegraded vector space of multilinear forms on A, i.e. C(A) = �nCn(A) whereCn(A) = (
nA)� is the dual of the n-th tensor power of A. One hasT (A�) � C(A) and the equality T (A�) = C(A) holds if and only if A is�nite dimensional. The product of T (A�) (i.e. the tensor product) canoni-cally extends to C(A) which so equipped is a graded algebra. Furthermoreminus the dual of the product of A is a linear mapping of C1(A) = A� intoC2(A) = (A 
A)� which also canonically extends as an antiderivation d ofC(A) which is a di�erential as consequence of the associativity of the productof A. It is given by:d!(x0; : : : ; xn) = nXk=1(�1)k!(x0; : : : ; xi�1xi; : : : ; xn)for ! 2 Cn(A) and xi 2 A. The graded di�erential algebra C(A) is thegeneralization of the above T (A�) for an in�nite dimensional algebra A. Asannounced before the cohomology of C(A) is trivial whenever A has a unit.LEMMA 3 Let A be a unital associative algebra (over C ). Then the coho-mology H(C(A)) of C(A) is trivial in the sense that one has:H0(C(A)) = C and Hn(C(A)) = 0 for n � 1:22



Proof. By de�nition C(A) is connected so H0(C(A)) = C is obvious. For! 2 Cn(A) with n � 1 let us de�ne h(!) 2 Cn�1(A) by h(!)(x1; : : : ; xn�1) =!(1l; x1; : : : ; xn�1), 8xi 2 A. One hasd(h(!)) + h(d(!)) = ! for any ! 2 Cn(A) with n � 1which implies Hn(C(A)) = 0 for n � 1. �If M is a (A;A)-bimodule, then the graded vector space of M-valuedHochschild cochains of A is the graded vector space C(A;M) of multilinearmappings of A into M, i.e. Cn(A;M) is the space of linear mappings of
nA into M, equipped with the Hochschild coboundary dH de�ned bydH(!)(x0; : : : ; xn) = x0!(x1; : : : ; xn) +d(!)(x0; : : : ; xn)+(�1)n+1!(x0; : : : ; xn�1)xnfor ! 2 Cn(A;M), xi 2 A and where d is \the obvious extension" toC(A;M) of the di�erential d of C(A). When A is �nite dimensional allthis reduces to the previous de�nitions, in particular in this case one hasC(A;M) =M
 T (A�). The cohomology H(A;M) of C(A;M) is the M-valued Hochschild cohomology of A or the Hochschild cohomology of A withcoe�cients in M. The M-valued Hochschild cochains of A which vanisheswhenever one of their arguments is the unit 1l of A are said to be normal-ized Hochschild cochains. The graded vector space C0(A;M) of M-valuednormalized Hochschild cochains is stable by the Hochschild coboundary dHand it is well known and easy to show that the injection of C0(A;M) intoC(A;M) induces an isomorphism in cohomology, i.e. the cohomology ofC0(A;M) is again H(A;M). Notice that a M-valued Hochschild 1-cocycle(i.e. an element of C1(A;M) in Ker(dH)) is a derivation � of A in M, andthat it is automatically normalized. IfN is another (A;A)-bimodule then thetensor product over A ofM and N , (M;N ) 7! M
AN , induces a product(�; �) 7! �[ �, the cup product [ : C(A;M)
C(A;N )! C(A;M
AN )such that Cm(A;M) [ Cn(A;N ) � Cm+n(A;M
AN ) de�ned by(� [ �)(x1; : : : ; xm+n) = �(x1; : : : ; xm)
A �(xm+1; : : : ; xm+n)for � 2 Cm(A;M); � 2 Cn(A;N ) and xi 2 A. If P is another (A;A)-bimodule and if  2 Cp(A;P), one has:(� [ �) [  = � [ (� [ ). Further-more one has dH(� [ �) = dH(�) [ � + (�1)m� [ d(�) for � 2 Cm(A;M),23



� 2 C(A;N ). This implies in particular that C(A;A) is a graded di�eren-tial algebra (when equipped with the cup product and with dH). In fact,C(A;A) has a very rich structure which was �rst described in [40]. Aspointed out in [40], its cohomology H(A;A) which inherits from this struc-ture is graded commutative (as graded algebra for the cup product). Thecohomology H(A;A) is a sort of graded commutative Poisson algebra.A unital associative algebra A is said to be of Hochschild dimension n ifn is the smaller integer such that Hk(A;M) = 0 for any k � n+ 1 and any(A;A)-bimoduleM. The Hochschild dimension of the algebra C [X1 ; : : : ;Xn]of complex polynomials with n indeterminates is n. If one considers A asthe generalization of the algebra of smooth functions on a noncommutativespace then its Hochschild dimension n is the analog of the dimension of thenoncommutative space.In spite of the triviality of the cohomology of C(A), several complexeswith nontrivial cohomologies can be extracted from it. Let S : C(A)! C(A)and C : C(A)! C(A) be linear mappings de�ned byS(!)(x1; : : : ; xn) = X�2Sn "(�)!(x�(1); : : : ; x�(n))and C(!)(x1; : : : ; xn) = X2Cn "()!(x(1); : : : ; x(n))for ! 2 Cn(A), xi 2 A and where Sn is the group of permutations off1; : : : ; ng and Cn is the subgroup of cyclic permutations, ("(�) denotingthe signature of the permutation �). The mapping C(A) S! S(C(A)) is ahomomorphism of graded di�erential algebras of C(A) onto the graded di�er-ential algebra C^(ALie) of Lie algebra cochains of the underlying Lie algebraALie with values in the trivial representation of ALie in C ; (Notice that theproduct of C^(ALie) is not induced by the inclusion C^(ALie) � C(A)).The cohomology of Im(S) = C^(ALie) is therefore the Lie algebra cohomol-ogy of ALie. On the other hand, (see Lemma 3 in [13] part II), one hasC � d = dH � C where dH is the Hochschild coboundary of C(A;A�) andtherefore (Im(C); dH) is a complex the cohomology of which coincides withthe cyclic cohomology H�(A) of A up to a shift �1 in degree [13].24



Let us de�ne for a 2 A the homogeneous linear mapping ia of degree �1of C(A) into itself by settingia(!)(x1; : : : ; xn�1) = n�1Xk=0(�1)k!(x1; : : : ; xk; a; xk+1; : : : ; xn�1)2103 for ! 2 Cn(A) with n � 1 and xi 2 A, and by setting ia(C0(A)) = 0.For each a 2 A, ia is an antiderivation of C(A) and it is easy to verifythat a 7! ia is an operation of the Lie algebra ALie in the graded di�erentialalgebra C(A). The homotopy h used in the proof of Lemma 3 commutes withthe La's which implies that the invariant cohomology HI (C(A)) of C(A) isalso trivial. The basic cohomology of C(A) for this operation has been calledbasic cohomology of A and denoted by HB(A) in [31]. It is given by thefollowing theorem [31]THEOREM 3 The basic cohomology HB(A) of A identi�es with the al-gebra IS(ALie) of invariant polynomials on the Lie algebra ALie wherethe degree 2n is given to the homogeneous polynomials of degree n, that isH2nB (A) = InS (ALie) and H2n+1B (A) = 0:The proof of this theorem which is not straightforward uses a familiartrick in equivariant cohomology to convert the operation i of ALie into adi�erential.Two algebras A and B (associative unital, etc.) are said to be Moritaequivalent if there is a (A;B)-bimodule U and a (B;A)-bimodule V suchthat one has an isomorphism of (A;A)-bimodules U 
B V ' A and anisomorphism of (B;B)-bimodules V 
A U ' B. This is an equivalence re-lation and this induces an equivalence between the category of right A-modules (resp. left A-modules, (A;A)-bimodules) and the category of rightB-modules (resp. left B-modules, (B;B)-bimodules). The algebras Mm(A)and Mn(A) of m�m matrices and of n � n matrices with entries in A areMorita equivalent for any m;n 2 N; in fact the (Mm(A);Mn(A))-bimoduleMmn(A) of rectangular m� n matrices and the (Mn(A);Mm(A))-bimoduleMnm(A) of rectangular n � m matrices with entries in A are such thatMn(A) =Mnm(A)
Mm(A)Mmn(A) andMm(A) =Mmn(A)
Mn(A)Mnm(A),(the tensor products overMm(A) andMn(A) being canonically the usual ma-tricial products). 25



An important property of Hochschild cohomology and cyclic cohomology(and of the corresponding homologies) is their Morita invariance [45], [52],[60]. More precisely if A and B are Morita equivalent with U and V as aboveand if M is a (A;A)-bimodule (resp. N is a (B;B)-bimodule) one has acanonical isomorphism H(A;M) ' H(B;V 
AM
A U), (resp. H(B;N ) 'H(A;U 
BN 
B V)) in Hochschild cohomology and also H�(A) ' H�(B) incyclic cohomology. In contrast, the Lie algebra cohomology H(ALie) andthe basic cohomology HB(A) are not Morita invariant since for instance forA = Mn(C ) they depend on the number n 2 N whereas Mn(C ) is Moritaequivalent to C .5 Categories of algebrasIn this section we consider general algebras over C . That is by an algebrawe here mean a complex vector space A equipped with a bilinear prod-uct m : A 
 A ! A. Given two such algebras A and B, an algebrahomomorphism of A into B is a linear mapping ' : A ! B such that'(m(x
 y)) = m('(x)
 '(y)), (8x; y 2 A), i.e. ' �m = m � ('
 ').Let us de�ne the category A to be the category such that the class Ob(A)of its objects is the class of all algebras (in the above sense) and such thatfor any A;B 2 Ob(A) the set HomA(A;B) of morphisms from A to B is theset of all algebra homomorphisms of A into B.A subcategory of A will be called a category of algebras. Thus a cate-gory C is a category of algebras if Ob(C) is a subclass of Ob(A) and if, forany A;B 2 Ob(C), one has HomC(A;B) � HomA(A;B). We now list somecategories of algebras which will be used later.1. The category Alg of unital associative algebras: Ob(Alg) is the classof all complex unital associative algebras and for any A;B 2 Ob(Alg),HomAlg(A;B) is the set of all algebra homomorphisms mapping the unitof A onto the unit of B.2. The category AlgZ is the subcategory of Alg de�ned by Ob(AlgZ) =Ob(Alg) and for any A;B 2 Ob(AlgZ), HomAlgZ (A;B) is the set of all' 2 HomAlg(A;B) mapping the center Z(A) of A into the center Z(B) of B,26



i.e. such that '(Z(A)) � Z(B).3. The category Jord of complex unital Jordan algebras: Ob(Jord) is theclass of all complex unital Jordan algebras and for anyA;B 2 Ob(Jord), HomJord(A;B) is the set of all algebra homomorphismsmapping the unit of A onto the unit of B.4. The category Algcom of unital associative and commutative algebras:Ob(Algcom) is the class of all complex unital associative commutative al-gebras and for anyA;B 2 Ob(Algcom), HomAlgcom(A;B) = HomAlg(A;B).5. The category Lie of Lie algebras: Ob(Lie) is the class of all complex Liealgebras and for any A;B 2 Ob(Lie), HomLie(A;B) = HomA(A;B).Remark 4. If A 2 Ob(Alg) and B 2 Ob(Algcom), one hasHomAlg(A;B) = HomAlgZ (A;B).On the other hand if A and B are objects of Algcom thenHomAlgcom(A;B) = HomJord(A;B):Thus Algcom is a full subcategory of Alg, of AlgZ and of Jord, i.e. forany A;B 2 Ob(Algcom) one has :HomAlgcom(A;B) = HomAlg(A;B) = HomAlgZ (A;B) = HomJord(A;B)In order to discuss reality conditions we shall also need categories of �-algebras. By a �-algebra we here mean a general complex algebra A asabove equipped with an antilinear involution x 7! x� such that m(x
 y)� =m(y� 
 x�), (i.e. such that it reverses the order in the product). If A and Bare �-algebras, a �-algebra homomorphism of A into B is an algebra homo-morphism ' of A into B which preserves the involutions, i.e. '(x�) = '(x)�for x 2 A. One de�nes the category of algebras �-A to be the category whereOb(�-A) is the class of �-algebras and such that for any A;B 2 Ob(�-A),Hom�-A(A;B) is the set of �-algebra homomorphisms of A into B. A sub-category of �-A will be called a category of �-algebras and one de�nes inthe obvious manner the categories of �-algebras �-Alg, �-AlgZ, �-Jord,�-Algcom, �-Lie corresponding to the above examples 1, 2, 3, 4, 5.Let C be a category of algebras and let A be an object of C with productdenoted by a 
 a0 7! aa0 (a; a0 2 a). A complex vector space E will be27



said to be a A-bimodule for C if there are linear mappings A
 E ! E andE
A ! E, denoted by a
e 7! ae and e
a 7! ea (a 2 A; e 2 E) respectively,such that the direct sum A� E equipped with the product(a� e)
 (a0 � e0) 7! aa0 � (ae0 + ea0)is an object of C and such that the canonical linear mappingsi : A ! A� E and p : A� E ! Ade�ned by i(a) = a � 0 and p(a � e) = a (8a 2 A and 8e 2 E) are mor-phisms of C. In other words E is a A-bimodule for C if A � E is equippedwith a bilinear product vanishing on E 
 E and such that A� E 2 Ob(C) ,i 2 HomC(A;A� E) and p 2 HomC(A� E;A).For the category A this notion of bimodule is not very restrictive. In fact,if A is an algebra (i.e. A 2 Ob(A)) then a A-bimodule for A is simply acomplex vector space E with two bilinear mappings corresponding to linearmappings A
 E ! E and E 
A ! E as above. These two linear mappingswill be always denoted by a
e 7! ae and e
a 7! ea and called left and rightaction of A on E. Let us describe what restrictions occur for the categoriesof algebras of examples 1, 2, 3, 4, 5.1. Let A be a unital associative complex algebra with product denoted bya
 a0 7! aa0 and unit denoted by 1l. Then, E is a A-bimodule for Alg if andonly if one has (i) (aa0)e = a(a0e) and 1le = e(ii) e(aa0) = (ea)a0 and e1l = e(iii) (ae)a0 = a(ea0)for any a; a0 2 A and e 2 E. Conditions (i) express the fact that E is a leftA-module in the usual sense, conditions (ii) express the fact that E is a rightA-module in the usual sense whereas, completed with the compatibility con-dition (iii), all these conditions express the fact that E is a (A;A)-bimodulein the usual sense for unital associative algebras.2. Let A be as in 1 above. Then E is a A-bimodule for AlgZ if and only ifit is a A-bimodule for Alg such that one hasze = ez28



for any element z of the center Z(A) of A and e 2 E. This condition ex-presses that as (Z(A); Z(A))-bimodule, E is the underlying bimodule of aZ(A)-module. Such (A;A)-bimodules were called central bimodules over Ain [34], [35] (see also in [27]). We shall keep this terminology here and callcentral bimodule a bimodule for AlgZ .Let E be a A-bimodule for Alg (i.e. a (A;A)-bimodule). One can asso-ciate to E two A-bimodules for AlgZ (i.e. two central bimodules) EZ andEZ . The bimodule EZ is the biggest (A;A)-subbimodule of E which is cen-tral and we denote by iZ the canonical inclusion of EZ into E whereas EZis the quotient of E by the (A;A)-subbimodule [Z(A); E] generated by theze � ez where z is in the center Z(A) of A, e 2 E and we denote by pZthe canonical projection of E onto EZ. The pair (EZ ; iZ) is characterized bythe following universal property: For any (A;A)-bimodule homomorphism� : N ! E of a central bimoduleN into E, there is a unique (A;A)-bimodulehomomorphism �Z : N ! EZ such that � = iZ � �Z. The pair (EZ ; pZ) ischaracterized by the following universal property: For any (A;A)-bimodulehomomorphism ' : E !M of E into a central bimoduleM there is a unique(A;A)-bimodule homomorphism 'Z : EZ ! M such that ' = 'Z � pZ . Infunctorial language, this means that E 7! EZ is a right adjoint and thatE 7! EZ is a left adjoint of the canonical functor IZ from the category ofA-bimodules for AlgZ in the category of A-bimodules for Alg. Notice alsothat E is central if and only if E = EZ which is equivalent to E = EZ and thatifM and N are two A-bimodules for AlgZ (i.e. two central bimodules) thenone has (M
N )Z = M
Z(A)N . One has the further following stabilityproperties for the A-bimodules for AlgZ: Every subbimodule of a centralbimodule is central, every quotient of a central bimodule is central and anyproduct of central bimodules is central. For all this, we refer to [35].3. Let J be a complex unital Jordan algebra with product denoted byx 
 y 7! x � y (x; y 2 J ) and unit 1l. Then E is a J -bimodule for Jord ifand only if one has(i) xe = ex and 1le = e(ii) x((x � x)e) = (x � x)(xe)(iii) ((x � x) � y)e� (x � x)(ye) = 2((x � y)(xe)� x(y(xe)))for any x; y 2 J and e 2 E. Such a bimodule for Jord is called a Jordanmodule over J [44] which is natural since, in view of (i), there is only one29



bilinear mapping of J � E into E.4. Let C be a unital associative commutative complex algebra. Then E is aC-bimodule for Algcom if and only if it is a C-bimodule for Alg such thatone has ce = ecfor any c 2 C and e 2 E. This means that a C-bimodule for Algcom is thesame thing as (the underlying bimodule of) a C-module in the usual sense.Since the center of C coincides with C, Z(C) = C, this implies that it is alsothe same thing as a C-bimodule for AlgZ , as announced in the introduction.Notice that in the case of a C-bimodule for Alg one generally has ce 6= ec.5. Let g be a complex Lie algebra with product (Lie bracket) denoted byX 
 Y 7! [X;Y ] for X;Y 2 g. Then, E is a g-bimodule for Lie if and onlyif one has (i) Xe = �eX(ii) [X;Y ]e = X(Y e)� Y (Xe)for any X;Y 2 g and e 2 E. Condition (i) shows that again there is onlyone bilinear mapping of g � E into E and (ii) means that E is the space ofa linear representation of g; Thus a g-bimodule for Lie is what is usuallycalled a g-module (or a linear representation of g).One de�nes in a similar way the notion of �-bimodule for a category �-Cof �-algebras. Namely, if A 2 Ob(�-C), a complex vector space E will besaid to be a A-�-bimodule for �-C if A � E is equipped with a structureof �-algebra with product vanishing on E 
 E such that A � E 2 Ob(�-C),i 2 Hom�-C(A;A� E) and p 2 Hom�-C(A� E;A).One can easily describe what is a �-bimodule for the various categories of�-algebras. If A is a �-algebra, we also denote by A the algebra obtained by\forgetting the involution". If A is an object of �-Alg then a A-�-bimodulefor �-Alg is a A-bimodule E for Alg which is equipped with an antilinearinvolution e 7! e� such that (xey)� = y�e�x� for x; y 2 A and e 2 E, i.e. it iswhat has been called in the introduction a �-bimodule over the (unital asso-ciative complex) �-algebra A. A A-�-bimodule for �-AlgZ is then just such30



a �-bimodule over A which is central. If C is a unital associative complexcommutative �-algebra, then a C-�-bimodule for �-Algcom is just what hasbeen called a �-module over the (unital associative complex) commutative�-algebra C.One can proceed similarily with real algebras. However to be in confor-mity with the point of view of the introduction concerning reality, we shallwork with �-algebras and, eventually, extract their hermitian parts as wellas the hermitian parts of the �-bimodules over them.6 First order di�erential calculiThroughout the following A denotes a unital associative complex algebra. Apair (
1; d) where 
1 is a (A;A)-bimodule (i.e. a A-bimodule for Alg) andwhere d : A ! 
1 is a derivation of A into 
1, that is a linear mappingwhich satis�es (the Leibniz rule)d(xy) = d(x)y + xd(y)for any x; y 2 A, will be called a �rst order di�erential calculus over A forAlg or simply a �rst order di�erential calculus over A [61]. If furthermore
1 is a central bimodule (i.e. a A-bimodule for AlgZ), we shall say that(
1; d) is a �rst order di�erential calculus over A for AlgZ. One can moregenerally de�ne the notion of �rst order di�erential calculus over A for anycategory C of algebras such that A 2 Ob(C).Remark 5. If 
1 is a A-bimodule for C a derivation d : A ! 
1 can be de-�ned to be a linear mapping such that a 7! a� d(a) is in HomC(A;A�
1).However, for the category AlgZ this does not impose restrictions on �rst or-der di�erential calculus. Indeed if 
1 is a central bimodule and if d : A! 
1is a derivation one has d(z)a + zd(a) = d(za) = d(az) = ad(z) + d(a)z forany a 2 A and z in the center Z(A) of A, i.e. d(z)a = ad(z) since, by\centrality", zd(a) = d(a)z; again, by centrality z! = !z, 8z 2 Z(A) and8! 2 
1, which �nally implies (z � d(z))(a � !) = (a � !)(z � d(z)) andtherefore z�d(z) 2 Z(A�
1) for any z 2 Z(A) which means that the linearmapping a 7! a� d(a) is in HomAlgZ(A;A� 
1).31



We shall refer to d as the �rst order di�erential; by de�nition it is a 
1-valued Hochschild cocycle of degree 1 of A, i.e. d 2 Z1H(A;
1). Examplesof �rst order di�erentials are thus provided by Hochschild coboundaries i.e.given by d(x) = �x � x� (8x 2 A) for some � 2 
1. We shall now ex-plain that there are \universal �rst order di�erential calculi" for Alg andfor AlgZ which de�ne respectively functors from Alg and from AlgZ in thecorresponding categories of �rst order di�erential calculi. For the case of acommutative algebra, there is also a well-known universal �rst order di�er-ential calculus for Algcom which is the universal derivation into the moduleof K�ahler di�erentials ([6], [52], [58]). We shall see however that it reducesto the universal calculus for AlgZ (Corollary 1).Let m be the product of A; (x; y) 7! m(x
 y) = xy and let 
1u(A) be thekernel of m, i.e. one has the short exact sequence0! 
1u(A) �! A
A m! A! 0of (A;A)-bimodules (A-bimodules for Alg). De�ne du : A ! 
1u(A) bydu(x) = 1l 
 x � x 
 1l, 8x 2 A. One veri�es easily that du is a deriva-tion. The �rst order di�erential calculus (
1u(A); du) over A is characterizeduniquely (up to an isomorphism) by the following universal property [10], [6].PROPOSITION 1 For any �rst order di�erential calculus (
1; d) over A,there is a unique bimodule homomorphism id of 
1u(A) into 
1 such thatd = id � du.Proof. 
1u(A) is generated by du(A) as left module since x�
y� with x�y� = 0is the same thing as x�d(y�). On the other hand du(1l) = 0(= du(1l2) =2du(1l)). Therefore one has a surjective left A-module homomorphism ofA 
 (A=C 1l) onto 
1u(A), x 
 _y 7! xdu(y), which is easily shown to be anisomorphism. Then xdu(y) 7! xd(y) de�nes a left A-module homomorphismid of 
1u(A) into 
1 which is easily shown to be a bimodule homomorphismby using the Leibniz rule for du and for d. One clearly has d = id � du.Uniqueness is straightforward. �Concerning the image of id, let us notice the following easy lemma.LEMMA 4 Let (
1; d) be a �rst order di�erential calculus over A. The32



following conditions are equivalent.(i) 
1 is generated by dA as left A-module.(ii) 
1 is generated by dA as right A-module.(iii) 
1 is generated by dA as (A;A)-bimodule.(iiii) The homomorphism id is surjective, i.e. 
1 = id(
1u(A)).Proof. The equivalences (i), (ii), (iii) follows from (Leibniz rule)ud(v)w = ud(vw)� uvd(w) = d(uv)w � d(u)vwfor u; v; w 2 A whereas the equivalence (iii), (iiii) is straightforward fromthe de�nitions. �Remark 6. Proposition 1 claims that there is a unique bimodule homomor-phism id of 
1u(A) into 
1 mapping the 
1u(A)-valued Hochschild 1-cocycledu on the 
1-valued Hochschild 1-cocycle d. One can complete the state-ment by the following: The 
1-valued Hochschild 1-cocycle d is a Hochschildcoboundary, (i.e. there is a � 2 
1 such that d(a) = �a� a� for any a 2 A),if and only if id has an extension ~{d as a bimodule homomorphism of A
Ainto 
1, [8]. In fact � is then ~{d(1l
 1l), which gives essentially the proof.The �rst order di�erential calculus (
1u(A); du) is universal for Alg, itis usually simply called the universal �rst order di�erential calculus over A.From Proposition 1 follows the functorial property.PROPOSITION 2 Let A and B be algebras and let ' : A ! B be ahomomorphism, (i.e. let A;B 2 Ob(Alg) and let ' 2 HomAlg(A;B)),then there is a unique linear mapping 
1u(') of 
1u(A) into 
1u(B) satisfy-ing 
1u(')(x!y) = '(x)
1u(')(!)'(y) for any x; y 2 A and ! 2 
1u(A) andsuch that du � ' = 
1u(') � du.Proof. One equips 
1u(B) of a structure of (A;A)-bimodule by setting x�y ='(x)�'(y) for x; y 2 A and � 2 
1u(B). Then d = du � ' is a derivation ofA into the (A;A)-bimodule 
1u(B), i.e. (
1u(B); d) is a �rst order di�erentialcalculus overA, and the result follows from Proposition 1 with 
1u(') = id. �One can summarize the content of Proposition 2 by the following: Forany homomorphism ' : A ! B (of unital associative C -algebras) there is aunique (A;A)-bimodule homomorphism 
1u(') : 
1u(A) ! 
1u(B) for whichthe diagram 33



A B
1u(A) 
1u(B)-'?du ?du-
1u(')is commutative. All this was for the category Alg, we now pass to AlgZ .Let [Z(A);
1u(A)] be the subbimodule of 
1u(A) de�ned by[Z(A);
1u(A)] = fz! � !zjz 2 Z(A); ! 2 
1u(A)g:By de�nition the quotient 
1Z(A) = 
1u(A)=[Z(A);
1u(A)] is a central bimod-ule i.e. a A-bimodule for AlgZ. Let pZ : 
1u(A) ! 
1Z(A) be the canonicalprojection and let dZ : A ! 
1Z(A) be de�ned by dZ = pZ � du. Then dZis again a derivation so (
1Z(A); dZ) is a �rst order di�erential calculus overA for AlgZ . It is characterized uniquely (up to an isomorphism) amongthe �rst order di�erential calculi over A for AlgZ by the following universalproperty [35].PROPOSITION 3 For any �rst order di�erential calculus (
1; d) over AforAlgZ, there is a unique bimodule homomorphism id of 
1Z(A) into 
1 suchthat d = id � dZ ; i.e. there is a unique morphism of �rst order di�erentialcalculi over A for AlgZ from (
1Z(A); dZ) to (
1; d).Proof. The unique bimodule homomorphism id : 
1u(A)! 
1 of Proposition1 vanishes on [Z(A);
1u(A)] since 
1 is central. Therefore it factorizes as
1u(A) pZ! 
1Z(A)! 
1through a unique bimodule homomorphism, again denoted id, of 
1Z(A)into 
1 for which one has d = id � dZ . Again, uniqueness is obvious. �Remark 7. Proposition 3 can be slightly improved. One can replace the as-sumption \(
1; d) over A for AlgZ" by \(
1; d) over A such that zd(a) =d(a)z for any a 2 A and z 2 Z(A)" in the statement. That is, what isimportant is that the subbimodule of 
1 generated by dA is central.34



The �rst order di�erential calculus (
1Z(A); dZ) will be called the univer-sal �rst order di�erential calculus overA forAlgZ. Concerning the functorialproperty of this �rst order di�erential calculus, Proposition 2 has the follow-ing counterpart for AlgZ.PROPOSITION 4 Let A and B be algebras as above and let' : A ! B be a homomorphism such that '(Z(A)) � Z(B), (i.e. let A;B 2Ob(AlgZ) and let ' 2 HomAlgZ (A;B)), then there is a unique linear mapping
1Z(') of 
1Z(A) into 
1Z(B) satisfying 
1Z(')(x!y) = '(x)
1Z(')(!)'(y) forany x; y 2 A and ! 2 
1Z(A) and such that dZ � ' = 
1Z(') � dZ.Proof. Again, as in the proof of Proposition 2, 
1Z(B) is a (A;A)-bimoduleby setting x�y = '(x)�'(y) for x; y 2 A and � 2 
1Z(B). Thus Proposition4 follows from Proposition 3 if one can show that this bimodule is central i.e.if '(z)� = �'(z) for any z 2 Z(A) and � 2 
1Z(B). This however followsfrom the fact that 
1Z(B) is central over B and that ' maps the center Z(A)of A into the center Z(B) of B. �Again this can be summarized (by identifying 
1Z(B) with a central bi-module over A via ') as : For any ' 2 HomAlgZ (A;B), there is a uniquehomomorphism of A-bimodules for AlgZ, 
1Z(') : 
1Z(A) ! 
1Z(B), forwhich the diagram A B
1Z(A) 
1Z(B)-'?dZ ?dZ-
1Z(')is commutative.Proposition 3 has the following corollaryCOROLLARY 1 If A is commutative, 
1Z(A) identi�es canonically withthe module of K�ahler di�erentials 
1AjC and dZ identi�es with the correspond-ing universal derivation. 35



Proof. The proof is straightforward since, for a commutative algebra A, acentral bimodule is just (the underlying bimodule of) a A-module and then,Proposition 3 just reduces to the universal property which characterizes the�rst order K�ahler di�erential calculus (see e.g. in [6], [52], [58]). �Remark 8. If A is commutative, the module of K�ahler di�erentials 
1AjCis known to be a version of di�erential 1-forms. There is however a littlesubtility. In fact 
1AjC is the quotient of 
1u(A) which is a commutative al-gebra (a subalgebra of A 
 A) by the ideal (
1u(A))2. If A is the algebraof smooth functions C1(M) on a manifold M , this means that 
1AjC is thealgebra of functions in A 
 A = C1(M) 
 C1(M) vanishing on the diag-onal of M �M modulo functions vanishing to order one on the diagonal ofM �M . On the other hand it is clear (by using the Taylor expansion aroundthe diagonal) that the ordinary di�erential 1-forms are smooth functionsof C1(M � M) vanishing on the diagonal of M � M modulo the func-tions vanishing to order one on the diagonal of M �M . The subtility herelies in the fact that without completion of the tensor product, the inclusionC1(M)
C1(M) � C1(M �M) is a strict one so there is generally a slightdi�erence between 
1C1(M)jC and the module 
1(M) of smooth 1-forms onM . Apart from this, one can consider that (
1Z(A); dZ) generalizes the ordi-nary �rst order di�erential calculus. This is in contrast to what happens for(
1u(A); du). Indeed ifA is an algebra of functions on a set S containing morethan one element, (card(S) > 1), then 
1u(A) consists of functions on S � Swhich vanish on the diagonal and is therefore not the underlying bimoduleof a module (nonlocality) whereas (duf)(x; y) = f(y)�f(x) (x; y 2 S) is the�nite di�erence.7 Higher order di�erential calculiLet A be as before a unital associative complex algebra. A N-graded di�er-ential algebra 
 = �n�0 
n such that the subalgebra 
0 of its elements ofdegree 0 coincides with A, 
0 = A, will be called a di�erential calculus overA for Alg or simply a di�erential calculus over A. If furthermore the 
n(n 2 N) are central bimodules over A, (i.e. A-bimodules for AlgZ), 
 willbe said to be a di�erential calculus over A for AlgZ .Let us de�ne the (A;A)-bimodules 
nu(A) for n � 0 by 
0u(A) = A36



and by 
nu(A) = 
1u(A)
A : : :
A 
1u(A) (n factors) for n � 1. The directsum 
u(A) = �n�0 
nu(A) is canonically a graded algebra, it is the tensoralgebra over A, TA(
1u(A)), of the (A;A)-bimodule 
1u(A). The derivationdu : A ! 
1u(A) has a unique extension, again denoted by du, as a di�erentialof 
u(A): In fact, it is known on A = 
0u(A) and d2u = 0 �xes it on du(A)to be 0 so it is known on the generators of 
u(A) and the extension bythe antiderivation property to the whole 
u(A) is well de�ned and unique;moreover, d2u is a derivation vanishing on the generators and therefore d2u = 0.So equipped, 
u(A) is a graded di�erential algebra [46] which is characterizeduniquely (up to an isomorphism) by the following universal property.PROPOSITION 5 Any homomorphism ' of unital algebras of A into thesubalgebra 
0 of elements of degree 0 of a graded di�erential algebra 
 has aunique extension ~' : 
u(A) ! 
 as a homomorphism of graded di�erentialalgebras.Proof. The (
0;
0)-bimodule 
1 can be considered as a (A;A)-bimodule bysetting x�y = '(x)�'(y) for x; y 2 A and � 2 
1 and then d � ' de�nesa derivation of A into 
1. Therefore, by Proposition 1, there is a uniquebimodule homomorphism '1 : 
1u(A) ! 
1 such that d � ' = '1 � du :A ! 
1 (namely '1 = id�'). The property of 
u(A) to be the tensor alge-bra TA(
1u(A)) implies that ' and '1 uniquely extend as a homomorphism~' : 
u(A) ! 
 of graded algebras. By construction one has ~' � du = d � ~'on A and on duA where it vanishes which implies ~' � du = d � ~' everywhereby the antiderivation property of du and d. �The graded di�erential algebra 
u(A) is called (in view of the aboveuniversal property) the universal di�erential calculus over A (it is universalfor Alg). The functorial property follows immediately: For any homomor-phism ' : A ! B (of unital C -algebras), there is a unique homomorphism
u(') : 
u(A) ! 
u(B) of graded di�erential algebra which extends ' (i.e.' = 
u(') � A). This de�nes the covariant functor 
u from the categoryAlg to the category Dif of graded di�erential algebras (the morphisms beingthe homomorphisms of graded di�erential algebras preserving the units).Proposition 5 is clearly a generalization of Proposition 1. There is anotheruseful generalization of the universality of the Hochschild 1-cocycle a 7! du(a)(which is the content of Proposition 1) and of Remark 6 which is described in37



[8] (see also in [22]) and which we now review (Proposition 6 below). First,notice that (a1; : : : ; an) 7! du(a1) : : : du(an) is a 
nu(A)-valued Hochschild n-cocycle which is normalized (i.e. which vanishes whenever one of the ai isthe unit 1l of A). Second, notice that the short exact sequence of Section 6(before Proposition 1) has the following generalization for n � 10! 
nu(A) �! A

n�1u (A) m! 
n�1u (A)! 02184 as short exact sequence of (A;A)-bimodules, where m is the left multi-plication by elements of A of elements of 
n�1u (A), (the inclusion is canoni-cal). One has the following [8].PROPOSITION 6 Let M be a (A;A)-bimodule and let (a1; : : : ; an) 7!c(a1; : : : ; an) be a normalized M-valued Hochschild n-cocyle. Then, there isa unique bimodule homomorphism ic : 
nu(A)!M such thatc(a1; : : : ; an) = ic(du(a1) : : : du(an)); 8ai 2 A:Furthermore, c is a Hochschild coboundary if and only if ic has an extension~{c as a bimodule homomorphism of A
 
n�1u (A) into M.Proof. We only give here some indications and refer to [8] for the detailedproof. The proof of the �rst part proceeds exactly as the proof of Proposition1: One �rst shows that the mapping a0
 a1
 � � � 
 an 7! a0du(a1) : : : du(an)induces a left module isomorphism of A 
 (
n(A=C 1l)) onto 
nu(A) whichimplies that a0du(a1) : : : du(an) 7! a0c(a1; : : : ; an) de�nes a left module ho-momorphism ic of 
nu(A) into M; the cocycle property of c then impliesthat ic is a bimodule homomorphism. Again uniqueness is straightforward.Concerning the last part, if there is an extension ~{c to A
 
n�1u (A), then cis the Hochschild coboundary of (a1; : : : ; an�1) 7! ~{c(1l 
 du(a1) : : : du(an�1))and conversely, if c is the coboundary of a normalized (n � 1)-cochain c0then one de�nes an extension ~{c by setting ~{c(1l 
 du(a1) : : : du(an�1)) =c0(a1; : : : ; an�1). �Thus, for each integer n � 1, the normalized n-cocycle d[nu , de�nedby d[nu (a1; : : : ; an) = du(a1) : : : du(an), is universal among the normalizedHochschild n-cocyles.By its very construction, 
u(A) is a graded subalgebra of the tensor alge-bra over A, TA(A
A), of the (A;A)-bimodule A
A. Indeed T nA(A
A) is38



the (n+1)-th tensor power (over C ) 
n+1A ofA whereas 
nu(A) = T nA(
1u(A))is the intersection of the kernels of the (A;A)-bimodule homomorphismsmk : 
n+1A ! 
nA de�ned bym1(x0 
 � � � 
 xn) = x0x1 
 x2 
 � � � 
 xn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mn(x0 
 � � � 
 xn) = x1 
 � � � 
 xn�2 
 xn�1xn(i.e. mk is the product in A of the consecutive factors xk�1 and xk). It turnsout that the di�erential of 
u(A) has an extension, again denoted by du, asa di�erential of TA(A
A) which is de�ned bydu(x0 
 � � � 
 xn) = n+1Xk=0(�1)k x0 
 � � � 
 xk�1 
 1l
 xk 
 � � � 
 xnfor xi 2 A where the �rst term of the summation is 1l 
 x0 
 � � � 
 xn andthe last term is (�1)n+1x0 
 � � � 
 xn 
 1l (by convention). So equippedTA(A
A) is a graded di�erential algebra, in fact a di�erential calculus overA, and 
u(A) is a graded-di�erential subalgebra.LEMMA 5 The cohomologies of TA(A
A) and of 
u(A) are trivial in thesense that one has : H0(TA(A 
 A)) = H0(
u(A)) = C andHn(TA(A
A)) = Hn(
u(A)) = 0 for n � 1.Proof. De�ne � : C ! A by �(�) = �1l, one has du � � = 0 so0! C �!A du! A
A du! � � � du!
n+1A du! 
n+2A du! : : :is a cochain complex with coboundary d being du or �. Let ! be a lin-ear form on A such that !(1l) = 1 and de�ne k by k(C ) = 0 and byk(x0
 � � � 
 xn) = !(x0)x1
 � � � 
 xn for n � 0. One has kd+ dk = I whichimplies Hn(TA(A
A)) = 0 for n � 1 and H0(TA(A
A)) = H0(
u(A)) =C . Then Hn(
u(A)) = 0 for n � 1 follows from the fact that one hask(
nu(A)) � 
n�1u (A) for n � 1. �Remark 9. The graded di�erential algebra C(A;A) of A-valuedHochschild cochains of A (see in Section 4) is a di�erential calculus overA. Therefore, by Proposition 5 there is a unique homomorphism � of 
u(A)into C(A;A) of graded di�erential algebras which induces the identity map-ping of A onto itself. This homomorphism extends to TA(A
 A) i.e. as an39



homomorphism � : TA(A 
 A) ! C(A;A) of graded di�erential algebraswhich is given by �(x0
 � � � 
 xn)(y1; : : : ; yn) = x0y1x1 : : : ynxn, [55]. Noticethat �(
u(A)) is contained in the graded di�erential subalgebra C0(A;A) ofthe normalized cochains of C(A;A).In Section 6 we have de�ned the central bimodule 
1Z(A) to be the quo-tient of 
1u(A) by the bimodule [Z(A);
1u(A)] and the derivation dZ ofA into
1Z(A) to be the image of du : A ! 
1u(A). Let IZ be the closed two-sidedideal of 
u(A) generated by [Z(A);
1u(A)] i.e. the two-sided ideal generatedby [Z(A);
1u(A)] and du([Z(A);
1u(A)]). The space IZ is a graded idealwhich is closed and such that IZ \ 
1u(A) = [Z(A);
1u(A)] which impliesthat the quotient 
Z(A) is a graded di�erential algebra which coincides indegree 1 with the above 
1Z(A) and that its di�erential (the image of du)extends dZ : A ! 
1Z(A); this di�erential will be also denoted by dZ . Byconstruction, 
Z(A) is, as graded algebra, a quotient of the tensor algebraover A of the central bimodule 
1Z(A); on the other hand it is easily seenthat tensor products over A of central bimodules and quotients of centralbimodules are again central bimodules [35] so the (A;A)-bimodules 
nZ(A)are central bimodules (
Z(A) = �n 
nZ(A)) and therefore the graded di�er-ential algebra 
Z(A) is a di�erential calculus over A for AlgZ . Proposition5 has the following counterpart for 
Z(A).PROPOSITION 7 Any homomorphism ' of unital algebras of A into thesubalgebra 
0 of elements of degree 0 of a graded di�erential algebra 
 whichis such that '(z)d('(x)) = d('(x))'(z) for any z 2 Z(A) and x 2 A, (dbeing the di�erential of 
), has a unique extension ~'Z : 
Z(A) ! 
 as ahomomorphism of graded di�erential algebras.Proof. By Proposition 5, ' has a unique extension ~' : 
u(A)! 
 as homo-morphism of graded di�erential algebras. On the other hand '(z)d('(x)) =d('(x))'(z) for z 2 Z(A) and x 2 A implies that ~' vanishes on [Z(A);
1u(A)]and therefore also on IZ since it is a homomorphism of graded di�erentialalgebras. Thus ~' factorizes through a homomorphism ~'Z : 
Z(A) ! 
 ofgraded di�erential algebras which extends '. Uniqueness is also straightfor-ward here. �Proposition 7 has the following corollaries.COROLLARY 2 For any di�erential calculus 
 over A for AlgZ , there40



is a unique homomorphism j
 : 
Z(A) ! 
 of di�erential algebras whichinduces the identity mapping of A onto itself.In other words 
Z(A) is universal among the di�erential calculi over Afor AlgZ and this universal property characterizes it (up to an isomorphism).This is why we shall refer to 
Z(A) as the universal di�erential calculus overA for AlgZ.COROLLARY 3 Any homomorphism ' : A ! B of unital algebras map-ping the center Z(A) of A into the center Z(B) of B has a unique extension
Z(') : 
Z(A)! 
Z(B) as a homomorphism of graded di�erential algebras.In fact 
Z is a covariant functor from the category AlgZ to the categoryDif of graded di�erential algebras.In Section 2 it was pointed out that the graded center of a graded al-gebra is stable by the graded derivations. This implies in particular thatthe graded center Zgr(
) of a graded di�erential algebra 
 is a graded dif-ferential subalgebra of 
 which is graded commutative. We have de�ned adi�erential calculus over A for AlgZ to be a graded di�erential algebra 
such that 
0 = A and such that the center Z(A) of A(= 
0) is containedin the center of 
 i.e. in its graded center Zgr(
) since its elements are ofdegree zero in 
. It follows that if 
 is a di�erential calculus overA for AlgZthen the center Z(A) of A generates a graded di�erential subalgebra of 
which is graded commutative and is in fact a graded di�erential subalgebraof the graded center Zgr(
) of 
. This applies in particular to 
Z . If Ais commutative then 
Z(A) is graded commutative since it is generated byA which coincides then with its center. In this case Proposition 7 has thefollowing corollary.COROLLARY 4 If A is commutative 
Z(A) identi�es canonically withthe graded di�erential algebra 
AjC of Cartan-de Rham-K�ahler exterior dif-ferential forms.Proof. Let us recall that 
AjC is the exterior algebra over A of the module
1AjC of K�ahler di�erential, �A
1AjC , equipped with the unique di�erentialextending the universal derivation of A into 
1AjC . From this de�nition andthe universality of the derivation of A into 
1AjC (which identi�es, in viewof Corollary 1, with dZ : A ! 
1Z(A)) it follows that 
AjC is characterized41



by the following universal property: Any homomorphism  of A into thesubalgebra 
0 of the elements of degree 0 of a graded commutative di�eren-tial algebra 
 has a unique extension ~ : 
AjC ! 
 as a homomorphism ofgraded (commutative) di�erential algebras.Let us come back to the proof of Corollary 4. Since 
Z(A) is graded commu-tative with 
0Z(A) = A, the above universal property implies that there isa unique homomorphism of graded di�erential algebras of 
AjC into 
Z(A)which induces the identity mapping of A onto itself. On the other handProposition 7 (or Corollary 2) implies that there is a unique homomorphismof graded di�erential algebras of 
Z(A) into 
AjC which induces the identityof A onto itself. Using again these two universal properties, it follows thatthe above homomorphisms are inverse isomorphisms. �If A is commutative the cohomology of 
Z(A) = 
AjC if often calledthe de Rham cohomology ([52], [43]) in spite of the fact that as explainedin Remark 8, for A = C1(M), 
AjC can be slightly di�erent from the al-gebra of smooth di�erential forms and that therefore there is an ambiguity.Nevertheless 
Z(A) can be considered as a generalization of the graded dif-ferential algebra of di�erential forms which has the great advantage that thecorrespondence A 7! 
Z(A) is functorial (Corollary 3). In contrast to thecohomology of 
u(A), (see Lemma 5), the cohomology HZ(A) of 
Z(A) isgenerally non trivial. Since HZ(A) is a noncommutative generalization ofthe de Rham cohomology and since, by construction, A 7! HZ(A) is a co-variant functor from the category AlgZ to the category of graded algebras,it is natural to study the properties of this cohomology.Let Der(A) denote the vector space of all derivations of A into itself.This vector space is a Lie algebra for the bracket [�; �] de�ned by [X;Y ](a) =X(Y (a))�Y (X(a)) for X;Y 2 Der(A) and a 2 A. In view of Proposition 1,(universal property of (
1u(A); du)), for each X 2 Der(A) there is a uniquebimodule homomorphism iX : 
1u(A) ! A for which X = iX � du. Thishomomorphism of 
1u(A) into A = 
0u(A) has a unique extension as an an-tiderivation of 
u(A) = TA(
1u(A)). This antiderivation which will be againdenoted by iX is of degree �1, (i.e. it is a graded derivation of degree �1). Itis not hard to verify that X 7! iX is an operation of the Lie algebra Der(A)in the graded di�erential algebra 
u(A), (see Section 2 for the de�nition).The corresponding Lie derivative LX = iXdu + duiX is for X 2 Der(A) aderivation of degree 0 of 
u(A) which extends X. This operation will be42



refered to as the canonical operation of Der(A) in 
u(A).Let X 2 Der(A) be a derivation of A and let z 2 Z(A) and ! 2 
1u(A)one has iX([z; !]) = [z; iX(!)] = 0and iX(d([z; !])) = LX([z; !]) = [X(z); !] + [z; LX(!)] = [z; LX(!)]since Z(A) is stable by the derivations of A. This implies that iX(IZ) � IZand therefore that the antiderivation iX passes to the quotient and de�nesan antiderivation of degree �1 of 
Z(A) which will be again denoted by iX.Notice that this (abuse of) notation is coherent with the one used in Propo-sition 3, (A is obviously a central bimodule). The corresponding mappingX 7! iX of Der(A) into the antiderivations of degree �1 of 
Z(A) is againan operation (the quotient of the one in 
u(A)) which will be refered to asthe canonical operation of Der(A) in 
Z(A).Finally if A is a �-algebra, TA(A
A) is a graded di�erential �-algebra ifone equips it with the involution de�ned by (x0 
 � � � 
 xn)� =(�1)n(n+1)2 x�n 
 � � � 
 x�0. Since 
u(A) is stable by this involution, it is also agraded di�erential �-algebra, [61]. Furthermore [Z(A);
1u(A)] is �-invariantwhich implies that the involution of 
u(A) passes to the quotient and inducesan involution on 
Z(A) for which 
Z(A) also becomes a graded di�erential�-algebra. More generally in this case, a di�erential calculus 
 over A willalways be assumed to be equipped with an involution extending the involu-tion of A and such that it is a graded di�erential �-algebra, (notice that if 
is generated by A such an involution is unique).8 Diagonal and derivation-based calculiLet A be a unital associative complex algebra and let M be an arbitrary(A;A)-bimodule. Then the set HomAA(M;A) of all bimodule homomor-phisms of M into A is a module over the center Z(A) of A which willbe refered to as the A-dual of M and denoted by M�A, [34], [27]. Con-versely, if N is a Z(A)-module the set HomZ(A)(N ;A) of all Z(A)-module43



homorphisms of N into A is canonically a (A;A)-bimodule which will bealso refered to as the A-dual of N and denoted by N �A. The A-dual ofa Z(A)-module is clearly a central bimodule over A so the above dualitybetween (A;A)-bimodules and Z(A)-modules can be restricted to a dualitybetween the central bimodules over A and the Z(A)-modules. This latterduality generalizes the duality between modules over a commutative algebra,[34], [27]. Indeed, if A is commutative both central bimodules over A andZ(A)-modules coincide with A-modules and the above duality is then theusual duality between A-modules. Let us come back to the general situationand letM be a (A;A)-bimodule; then one obtains by evaluation a canonicalhomomorphism of (A;A)-bimodule c :M!M�A�A of M into its A-bidualM�A�A = (M�A)�A.LEMMA 6 The following properties (a) and (b) are equivalent for a(A;A)-bimodule M.(a) The canonical homomorphism c :M!M�A�A is injective.(b) M is isomorphic to a subbimodule of AI for some set I.Proof. (a) ) (b). By de�nition M�A�A is a subbimodule of AI with I =HomZ(A)(M�A;A) so if c is injective M is isomorphic to a subbimodule ofM�A�A and therefore also to a subbimodule of AI .(b)) (a). Let ' be a bimodule homomorphism of A into itself. Onehas '(a) = a'(1l) = '(1l)a which implies '(1l) 2 Z(A). Conversely anyz 2 Z(A) de�nes a bimodule homomorphism ' of A into itself by setting'(a) = az (i.e. '(1l) = z). It follows that A�A = Z(A). Let � be a Z(A)-module homomorphism of Z(A) into A. Then �(z) = z�(1l) with �(1l) 2 A.Conversely any a 2 A de�nes such a Z(A)-module homomorphism � by set-ting �(z) = za (i.e. �(1l) = a). It follows that Z(A)�A = A and thereforeA�A�A = A. This immediately implies that if M�AI as subbimodule thenc :M!M�A�A is injective. �An (A;A)-bimoduleM satisfying the equivalent conditions of Lemma 6will be said to be a diagonal bimodule over A, [34], [35] (see also in [27]). Adiagonal bimodule is central but the converse is not generally true. The A-dual of an arbitrary Z(A)-module is a diagonal bimodule. Every subbimoduleof a diagonal bimodule is diagonal, every product of diagonal bimodules isdiagonal and the tensor product overA of two diagonal bimodules is diagonal.44



If A is commutative, a diagonal bimodule over A is simply a A-modulesuch that the canonical homomorphism in its bidual is injective. In particularin this case a projective module is diagonal (as a bimodule for the underlyingstructure).Remark 10. It is a fortunate circumstance which is easy to verify that, for aZ(A)-moduleN , the biduality does not depend onA but only on Z(A). Thatis one has N �A�A = N �� and the canonical homomorphism c : N ! N �� ob-tained by evaluation for the A-duality reduces to the usual one for a moduleover the commutative algebra Z(A).Let M be a (A;A)-bimodule then the canonical image c(M) of M inits A-bidual is a diagonal bimodule. The diagonal bimodule c(M) is theuniversal \diagonalization" ofM in the sense that it is characterized (amongthe diagonal bimodules overA) by the following universal property, [34], [35].PROPOSITION 8 For any homomorphism of (A;A)-bimodules' : M ! N of M into a diagonal bimodule N over A, there is a uniquehomomorphism of (A;A)-bimodules 'c : c(M)!N such that ' = 'c � c.Proof. In view of the de�nition and Lemma 6 (b), it is su�cient to prove thestatement for N = AI for some set I, which is then equivalent to the state-ment for N = A. On the other hand, for N = A, ' 2 HomAA(M;A) =M�Aand one has '(m) =< c(m); ' >= 'c(c(m)) for m 2 M (by the de�nitionsof M�A�A and of the evaluation c) which de�nes 'c uniquely. �One has c(
1u(A)) = c(
1Z(A)) and we shall denote by 
1Diag(A) thisdiagonal bimodule and by dDiag the derivation c � du (or equivalently c � dZ)of A into 
1Diag(A).PROPOSITION 9 For any �rst order di�erential calculus (
1; d) over Asuch that 
1 is diagonal, there is a unique bimodule homomorphism id of
1Diag(A) into 
1 such that d = id � dDiag.Proof. In view of the above universal property of c(
1u(A)), the correspondingcanonical homomorphism of 
1u(A) into 
1 (as in Proposition 1) factorizesthrough a unique homomorphism id : 
1Diag(A)! 
1. �45



In other words, the derivation dDiag : A ! 
1Diag(A) of A into the diag-onal bimodule 
1Diag(A) is universal for the derivations of A into diagonalbimodules over A.Let us recall (see Section 3) that the vector space Der(A) of all derivationsof A into itself is a Lie algebra and also a Z(A)-module and that 
Der(A)was de�ned to be the graded di�erential subalgebra of C^(Der(A);A) gen-erated by A whereas 
Der(A) was de�ned to be the graded di�erential sub-algebra of C^(Der(A);A) which consists of cochains of Der(A) which areZ(A)-multilinear. Clearly C n̂(Der(A);A) is diagonal so the �rst order dif-ferential calculus (C 1̂(Der(A);A); d) satis�es the conditions of Proposition 9which implies that there is a unique bimodule homomorphism id of 
1Diag(A)into C 1̂(Der(A);A) for which d = id � dDiag.PROPOSITION 10 The homomorphism id : 
1Diag(A) ! C 1̂(Der(A);A)is injective, so by identifying 
1Diag(A) with its image (by id), one has canon-ically:
1Diag(A) = 
1Der(A); (
1Diag(A))�A = Der(A) and (
1Diag(A))�A�A = 
1Der(A):Proof. Applying Proposition 9 for 
1 = A leads to the identi�cationHomAA(
1Diag(A);A) = Der(A) that is (
1Diag(A))�A = Der(A), (notice thatone has also (
1u(A))�A = Der(A)). By de�nition one has 
1Der(A) =HomZ(A)(Der(A);A) that is 
1Der(A) = (Der(A))�A and therefore(
1Diag(A))�A�A = 
1Der(A). On the other hand one has id(
1Diag(A)) =
1Der(A) since 
1Der(A) is generated by A (as bimodule). The injectivityof id follows from the fact that 
1Diag(A) is diagonal i.e. that the canonicalhomomorphism in its A-bidual is injective. �Notice that by de�nition one also has (VnZ(A)Der(A))�A = 
nDer(A).Let IDiag be the closed two-sided ideal of 
u(A) generated by the kernelof the canonical homomorphism c of 
1u(A) into its A-bidual. The ideal IDiagis graded such that IDiag \ 
0u(A) = 0 and IDiag \ 
1u(A) = Ker(c) whichimplies that the quotient 
1u(A)=IDiag is a graded di�erential algebra whichis a di�erential calculus over A and coincides in degree 1 with c(
1u(A)) =
1Diag(A). This di�erential calculus will be refered to as the diagonal calculusand denoted by 
Diag(A). The di�erential of 
Diag(A) is the image of du46



and extends the derivation dDiag : A ! 
1Diag(A); this di�erential will bealso denoted by dDiag. Proposition 5 and Proposition 7 have the followingcounterpart for 
Diag(A).PROPOSITION 11 Any homomorphism ' of unital algebras of A into thesubalgebra 
0 of elements of degree 0 of a graded di�erential algebra 
 whichis such that d(A) spans a diagonal bimodule over A (for the (A;A)-bimodulestructure on 
1 induced by ') has a unique extension ~'Diag : 
Diag(A) ! 
as a homomorphism of graded di�erential algebras.Proof. By Proposition 5, ' has a unique extension ~' : 
u(A)! 
 as homo-morphism of graded di�erential algebras. On the other hand the assumptionmeans that d : A ! ~'(
1u(A)) is a derivation and that ~'(
1u(A)) is a di-agonal bimodule over A so, in view of Proposition 9, the homomorphism~' : 
1u(A)! 
1 factorizes through a homomorphism ~'1Diag : 
1Diag(A)! 
1.Thus ~' vanishes on Ker(c) and therefore on IZ since it is a homomorphismof graded di�erential algebras so it factorizes through a homomorphism~'Diag : 
Diag(A) ! 
 of graded di�erential algebras. Uniqueness is againstraightforward. �Thus 
Diag(A) is also characterized by a universal property like 
u(A)and 
Z(A) but in contrast to the cases of 
u(A) and 
Z(A), the correspon-dence A 7! 
Diag(A) has no obvious functorial property. The reason for thisis the fact that the diagonal bimodules are not the bimodules for a categoryof algebras in the sense explained in Section 5.Proposition 11 implies in particular that one has a unique homomorphismof graded di�erential algebra of 
Diag(A) into 
Der(A) which extends theidentity mapping of A onto itself. This homomorphism 
Diag(A)! 
Der(A)is surjective since 
Der(A) is generated by A as di�erential algebra. Further-more in degree 1 it is, in view of Proposition 10, a bimodule isomorphismof 
1Diag(A) onto 
1Der(A). However, for m � 2, the corresponding bimodulehomomorphism of 
mDiag(A) onto 
mDer(A) is not generally injective (i.e. ithas a non trivial kernel). 47



For instance when A coincides with the algebra Mn(C ) of complex n� nmatrices one has
u(Mn(C )) = 
Z(Mn(C )) = 
Diag(Mn(C )) 'C0(Mn(C );Mn (C )) =Mn(C ) 
 T sl(n; C )�whereas
Der(Mn(C )) = C^(sl(n; C );Mn (C )) =Mn(C ) 
^ sl(n; C )� :In fact, in this case, the homomorphism � of Remark 9 is an isomorphismwhich induces the isomorphism of 
u(Mn(C )) onto the di�erential alge-bra C0(Mn(C );Mn (C )) of normalized Hochschild cochains; the latter beingidentical as graded algebra to the tensor product Mn(C ) 
 T sl(n; C )� ofMn(C ) with the tensor algebra over C of the dual of sl(n; C ), (concerning
1Der(Mn(C )) = 
1u(Mn(C )), and 
Der(Mn(C )) = C^(sl(n; C );Mn (C )), see in[25]).In the case where A is the algebra C1(M) of smooth functions on agood smooth manifold (�nite dimensional paracompact, etc.) then one has
Diag(C1(M)) = 
Der(C1(M)) (= 
Der(C1(M))).It is not hard to show that the operations of the Lie algebra Der(A) in
u(A) and in 
Z(A) pass to the quotient to de�ne an operation of Der(A) inthe graded di�erential algebra 
Diag(A) which will be again refered to as thecanonical operation of Der(A) in 
Diag(A). Furthermore, all these operationsof Der(A) pass to the quotient to de�ne an operation of Der(A) in 
Der(A)which coincides with the canonical operation of Der(A) in 
Der(A) de�nedin Section 3.One has the following commutative diagram of surjective homomorphismsof graded di�erential algebras which is also a diagram of homomorphisms ofthe operations of Der(A). 
u(A) 
Z(A)
Diag(A) 
Der(A)-? QQQQQQs ?������+ -48



Furthermore, ifA is a �-algebra there is a canonical involution on 
Diag(A)such that this diagram is also a diagram of graded di�erential �-algebras,(the involutions of 
u(A);
Z(A) and 
Der(A) have been de�ned previouslyin Section 7 and Section 3).9 Noncommutative symplectic geometry andquantum mechanicsLetA be as before a unital associative complex algebra. A Poisson bracket onA is a Lie bracket which is a biderivation on A (for its associative product).That is (a; b) 7! fa; bg is a Poisson bracket if it is a bilinear antisymmetricmapping of A � A into A (i.e. a linear mapping of V2A into A) whichsatis�esffa; bg; cg+ ffb; cg; ag+ ffc; ag; bg = 0 (Jacobi identity)fa; bcg = fa; bgc+ bfa; cg (derivation property)for any elements a; b; c of A. Equipped with such a Poisson bracket, A isrefered to as a Poisson algebra, [38].There is a lot of classical commutative Poisson algebras, for instance thesymmetric algebra S(g) (over C ) of a (complex) Lie algebra g, the algebraC1(M) of smooth functions on a symplectic manifold, etc.. For a noncom-mutative algebra A, a generic type of Poisson bracket f�; �g is obtained bysetting for a; b 2 A fa; bg = i~ [a; b]where [a; b] denotes the commutator in A, i.e. [a; b] = ab � ba, and where~ 2 C is any non zero complex number. We have put a i 2 C in front ofthe right-hand side of the above formula in order that in the case where Ais a �-algebra the Poisson bracket is real, i.e. satis�es fa; bg� = fa�; b�g,whenever ~ is real. The reason why the Poisson brackets proportional to thecommutator are quite generic (in the noncommutative case) is connected tothe following lemma [38].LEMMA 7 LetA be a Poisson algebra, then one has [a; b]fc; dg = fa; bg[c; d]and more generally [a; b]xfc; dg = fa; bgx[c; d] for any elements a; b; c; d andx of A. 49



Proof. The �rst identity is obtained by developing fac; bdg in two di�erentorders by using the biderivation property. The second (more general since1l 2 A) identity is obtained by replacing c by xc in the �rst identity, bydeveloping and by using again the �rst identity. �For more details concerning the \generic side" of Poisson brackets pro-portional to the commutator we refer to [38]. We simply observe here thatthis is the type of Poisson brackets which occurs in quantum mechanics.Our aim is now to develop a (noncommutative) generalization of symplec-tic structures related to the above Poisson brackets. One should start froma notion of di�erential form i.e. from a di�erential calculus 
 over A. Sincefor a Poisson bracket x 7! fa; xg is an element of Der(A) for any a 2 A, itis natural to assume that one has an operation X 7! iX of the Lie algebraDer(A) in the graded di�erential algebra 
. Furthermore we wish to takeinto account the structure of Z(A)-module of Der(A) so we require that 
is a central bimodule over A and that X 7! iX is a Z(A)-linear mapping ofDer(A) into Der�1gr(
). Notice that this Z(A)-linearity is well de�ned since 
central is equivalent to Z(A) � Z0gr(
), (see in Section 2 for the notations).Having such a di�erential calculus, one de�nes a homomorphism � of 
 into
Der(A) by setting �(!)(X1; : : : ;Xn) = iXn : : : iX1! for ! 2 
n. The factthat this de�nes a homomorphism of graded di�erential algebra of 
 intoC^(Der(A);A) follows from the general properties of operations whereas thefact that the image of � is contained in 
Der(A) follows from the Z(A)-linearity. It turns out that even if one uses a general di�erential calculus 
for the symplectic structures, the only relevant parts for the correspondingPoisson structures are the images by � in 
Der(A), (see e.g. in [38]). Oneis then led to the de�nitions of [26], or more precisely to the following slightgeneralizations [27].An element ! of 
2Der(A) will be said to be nondegenerate if, for any x 2A, there is a derivation Ham(x) 2 Der(A) such that one has !(X;Ham(x)) =X(x) for any X 2 Der(A). Notice that if ! is nondegenerate then X 7! iX!is an injective linear mapping of Der(A) into 
1Der(A) but that the converseis not true; the condition for ! to be nondegenerate is stronger than theinjectivity of X 7! iX!. If M is a manifold, an element ! 2 
2Der(C1(M)) isan ordinary 2-form on M and it is nondegenerate in the above sense if and50



only if the 2-form ! is nondegenerate in the classical sense (i.e. everywherenondegenerate).Let ! 2 
2Der(A) be nondegenerate, then for a given x 2 A the deriva-tion Ham(x) is unique and x 7! Ham(x) is a linear mapping of A into Der(A).A closed nondegenerate element ! of 
2Der(A) will be called a symplecticstructure for A.LEMMA 8 Let ! be a symplectic structure for A and let us de�ne an an-tisymmetric bilinear bracket on A by fx; yg = !(Ham(x);Ham(y)). Then(x; y) 7! fx; yg is a Poisson bracket on A.Proof. One has fx; yzg = fx; ygz+ yfx; yg for x; y; z 2 A. Furthermore onehas the identityd!(Ham(x);Ham(y);Ham(z)) = �fx; fy; zgg� fy; fz; xgg� fz; fx; yggwhich implies the Jacobi identity since d! = 0. �Let ! be a symplectic structure for A, then one has[Ham(x);Ham(y)] = Ham(fx; yg);i.e. Ham is a Lie-algebra homomorphism of (A; f; g) into Der(A). We shallrefer to the above bracket as the Poisson bracket associated to the symplecticstructure !. If A is a �-algebra and if furthermore ! is real, i.e. ! = !�,then this Poisson bracket is real and Ham(x�) = (Ham(x))� for any x 2 A.An algebra A equipped with a symplectic structure will be refered to asa symplectic algebra. Thus, symplectic algebras are particular Poisson alge-bras.Remark 11. Let A be an arbitrary Poisson algebra with Poisson bracket(x; y) 7! fx; yg; one de�nes a linear mapping Ham : A ! Der(A) byHam(x)(y) = fx; yg, (i.e. Ham(x) = fx; �g), for x; y 2 A. In this gen-eral setting one also has the identity [Ham(x);Ham(y)] = Ham(fx; yg) sinceit is equivalent to the Jacobi identity for the Poisson bracket.51



IfM is a manifold, a symplectic structure for C1(M) is just a symplecticform on M . Since there are manifolds which do not admit symplectic form,one cannot expect that an arbitrary A admits a symplectic structure.Assume that A has a trivial center Z(A) = C 1l and that all its derivationsare inner (i.e. of the form ad(x); x 2 A). Then one de�nes an element ! of
2Der(A) by setting !(ad(ix); ad(iy)) = i[x; y]. It is easily seen that ! is a sym-plectic structure for which one has Ham(x) = ad(ix) and fx; yg = i[x; y]. Iffurthermore A is a �-algebra, then this symplectic structure is real (! = !�).Although a little tautological, this construction is relevant for quantum me-chanics.Let A be, as above, a complex unital �-algebra with a trivial center andonly inner derivations and assume that there exists a linear form � on Awhich is central, i.e. � (xy) = � (yx), and normalized by � (1l) = 1. Thenone de�nes an element � 2 
1Der(A) by �(ad(ix)) = x � � (x)1l. One has(d�)(ad(ix); ad(iy)) = i[x; y], i.e. ! = d�, so in this case the symplectic form! is exact. As examples of such algebras one can take A =Mn(C ), (a factorof type In), with � = 1n trace, or A = R, a von Neumann algebra which is afactor of type II1 with � equal to the normalized trace. The algebraMn(C ) isthe algebra of observables of a quantum spin s = n�12 while R is the algebraused to describe the observables of an in�nite assembly of quantum spins;two typical types of quantum systems with no classical counterpart.Let us now consider the C.C.R. algebra (canonical commutative relations)ACCR [26]. This is the complex unital �-algebra generated by two hermitianelements q and p satisfying the relation [q; p] = i~1l. This algebra is thealgebra of observables of the quantum counterpart of a classical system withone degree of freedom. We keep here the positive constant ~ (the Planckconstant) in the formula for comparison with classical mechanics, althoughthe algebra for ~ 6= 0 is isomorphic to the one with ~ = 1. We restrictattention to one degree of freedom to simplify the notations but the discussionextends easily to a �nite number of degrees of freedom. This algebra has againonly inner derivations and a trivial center so !(ad( i~x); ad( i~y)) = i~ [x; y]de�nes a symplectic structure for which Ham(x) = ad( i~x) and fx; yg =i~ [x; y] which is the standard quantum Poisson bracket. In this case one can52



express ! in terms of the generators q and p and their di�erentials [26], [27]:! =Xn�0 � 1i~�n 1(n+ 1)![: : : [dp; p]; : : : ; p]| {z }n [: : : [dq; q]; : : : ; q| {z }n ]Notice that this formula is meaningful because if one inserts two derivationsad(ix); ad(iy) in it, only a �nite number of terms contribute to the sum. Incontrast to the preceding case, here the symplectic form is not exact, i.e. itcorresponds to a non vanishing element ofH2(
Der(ACCR)) which is thereforenon trivial. This was guessed in [26] on the basis of the nonexistence of a�nite trace (i.e. central linear form) on ACCR and �nally proved in [38].For ~ = 0, q and p commute and the algebra reduces to the algebra ofcomplex polynomial functions on the phase space R2. Furthermore the limitof fx; yg = i~ [x; y] at ~ = 0 reduces to the usual classical Poisson bracketas well known and, by using the above formula, one sees that the formallimit of ! at ~ = 0 is dpdq. This limit is however very singular since thelimit algebra is the algebra of complex polynomials in two indeterminates,the limit symplectic form is exact and not every derivation is hamiltonian incontrast to what happens for ACCR (i.e. for ~ 6= 0).10 Theory of connectionsThroughout this section, A is a unital associative complex algebra and 
 isa di�erential calculus over A, that is a graded di�erential algebra such that
0 = A with di�erential denoted by d.LetM be a left A-module; a 
-connection onM (or simply a connectionon M if no confusion arises) is a linear mapping r : M! 
1 
AM suchthat one has r(am) = ar(m) + d(a)
A mfor any a 2 A and m 2 M, (
1 
A M being equipped with its canon-ical structure of left A-module). One extends r to 
 
A M by settingr(! 
A m) = (�1)n!r(m) + d(!) 
A m for ! 2 
n and m 2 M (

AMis canonically a left 
-module). It then follows from the de�nitions that r2is a left 
-module endomorphism of 
 
AM which implies that its restric-tion r2 :M! 
2 
AM to M is a homomorphism of left A-modules; this53



homomorphism is called the curvature of the connection r.Not every left A-module admits a connection. IfM is the free A-moduleA
E, where E is some complex vector space, then r = d
 IE is a connec-tion on A
E which has a vanishing curvature (such a connection with zerocurvature is said to be at). If M � A
 E is a direct summand of a freeA-moduleA
E and if P : A
E !M is the corresponding projection, thenr = P � (d 
 IE) is a connection on M. Thus a projective module admits(at least one) a connection. In the case where 
 is the universal di�erentialcalculus 
u(A) the converse is also true: It was shown in [22] that a (left)A-module admits a 
u(A)-connection if and only if it is projective.One de�nes in a similar manner 
-connections on right modules. Namelyif N is a right A-module, a 
-connection on N is a linear mapping r of NintoN
A
1 such that r(na) = r(n)a+n
Ad(a) for any n 2 N and a 2 A.Let M be a left A-module, then its dual M� (i.e. the set of left A-module homomorphisms of M into A) is a right A-module. We denote by< m;n >2 A the evaluation of n 2 M� on m 2 M. Letr be a 
-connectionon M, then one de�nes a unique linear mapping r� of M� into M� 
A 
1by setting (with obvious notations)< m;r�(n) >= d(< m;n >)� < r(m); n >for any m 2 M and n 2 M�. It is easy to verify that r� is a 
-connectionon the right module M� which will be refered to as the dual connection ofr. One de�nes in the same way the dual connection of a connection on aright module.Our aim is now to recall the de�nitions of hermitian modules over a�-algebra A and of hermitian connections. We assume that A is a �-algebrasuch that the convex cone A+ generated by the a�a (a 2 A) is a strict conei.e. such that A+ \ (�A+) = 0. This property is satis�ed for instance by�-algebras of operators in Hilbert spaces. A hermitian structure on a rightA-moduleM [14] is a sesquilinear mapping h :M�M! A such that one has:(i) h(ma; nb) = a�h(m;n)b; 8m;n 2 M and 8a; b 2 A(ii) h(m;m) 2 A+; 8m 2 M and h(m;m) = 0) m = 0:54



A right A-module M equipped with a hermitian structure will be referedto as a hermitian module over A. If M is a hermitian module over A, ahermitian connection on M is a connection r on the right A-module Msuch that one has d(h(m;n)) = h(rm;n) + h(m;rn)for any m;n 2 M with obvious notations. We have chosen to de�ne her-mitian structures on right modules for notational reasons, (we prefer theconvention of physicists for sesquilinearity, i.e. linearity in the second argu-ment); one can de�ne similarily hermitian structures and connections for leftmodules.LetM be a right A-module. The group Aut(M) of all module automor-phisms ofM acts on the a�ne space of all connections onM via r 7! rU =U �r�U�1, U 2 Aut(M), (one canonically has Aut(M) � Aut(M
A
1)).If furthermore A is a �-algebra as above and if h is a hermitian structure onM, then the subgroup of Aut(M) of all automorphisms U which preserveh, i.e. such that h(Um;Un) = h(m;n) for m;n 2 M, will be denoted byAut(M; h) and called the gauge group whereas its elements will be calledgauge transformations; it acts on the real a�ne space of hermitian connec-tions on M.As pointed out before, one-sided modules are not su�cient and one needsbimodules for a lot of reasons. Firstly, in the case where A is a �-algebra, oneneeds �-bimodules to formulate and discuss reality conditions [34], [18], [27](see also in the introduction). Secondly, a natural noncommutative general-ization of linear connections should be connections on 
1, since 
 is taken asan analog of di�erential forms, but this is a (A;A)-bimodule in an essentialway. Thirdly, in order to have an analog of local couplings, one needs tohave a tensor product over A since the latter is the noncommutative versionof the local tensor product of tensor �elds. In short one needs a theory ofconnections for bimodules and any of the above quoted problems shows thatone-sided connections on bimodules (i.e. on bimodules considered as left orright modules) are of no help. The di�culty to de�ne a 
-connection on a(A;A)-bimodule M lies in the fact that a left A-module connection on MsendsM into 
1
AM whereas a right A-module connection onM sendsMintoM
A
1. A solution of this problem adapted to the case whereM = 
155



has been given in [56] and generalized in [32] for arbitrary (A;A)-bimoduleson the basis of an analysis of �rst order di�erential operators in bimodules.This led to the following de�nition [32].Let M be a (A;A)-bimodule; a left bimodule 
-connection on M is aleft A-module 
-connection r on M for which there is a bimodule homo-morphism � :M
A 
1 ! 
1 
AMsuch that r(ma) = r(m)a+ �(m
A d(a))for any a 2 A and m 2 M. Clearly � is then unique under these conditions.One de�nes similarily a right bimodule 
-connection on M to be a right A-module 
-connection r onM for which there is a bimodule homomorphism� : 
1 
AM!M
A 
1 such thatr(am) = ar(m) + �(d(a)
A m)for any a 2 A and m 2 M. When no confusion arises on 
 and on \left-right" we simply refer to this notion as bimodule connection.In the case whereM is the bimodule 
1 itself, a left bimodule 
-connectionis just the �rst part of the proposal of [56] for the de�nition of linear connec-tions in noncommutative geometry; the second part of the proposal of [56]relates � and the product 
1
A
1 ! 
2 so it makes sense only forM = 
1and is there necessary to de�ne the generalization of torsion.It has been shown in [7] (Appendix A of [7]) that on general grounds,the above de�nition is just what is needed to de�ne tensor products over Aof bimodule connections and of left (right) bimodule connections with left(right) module connections. In fact, let r0 be a left bimodule connection onthe bimodule M0 and let r00 be a connection on a left module M00. Thenone de�nes a connection r on the left moduleM0 
AM00 by settingr = r0 
A IM00 + (�0 
A IM00) � (IM0 
A r00)where �0 : M0 
A 
1 ! 
1 
A M0 is the bimodule homomorphism cor-responding to r0. If furthermore M00 is a (A;A)-bimodule and if r00 isa left bimodule connection with corresponding bimodule homomorphism56



�00 : M00 
A 
1 ! 
1 
A M00, then r is also a left bimodule connectionwith corresponding bimodule homomorphism � given by� = (�0 
A IM00) � (IM0 
A �00)of M0 
AM00 
A 
1 into 
1 
AM0 
AM00:LetM be a (A;A)-bimodule and letM� denote the dual ofM consideredas a left A-module. ThenM� is a right A-module as dual of a leftA-module,but it is in fact a bimodule if one de�nes the left action m0 7! am0 of A onM� by < m; am0 >=< ma;m0 > for any m 2 M; a 2 A;m0 2 M�. If ris a left bimodule 
-connection on M then one veri�es that r� is a rightbimodule 
-connection onM� [7] (Appendix B of [7]). Notice that this kindof duality between bimodules is di�erent of the A-duality between bimodulesover A and modules over Z(A) discussed in Section 8.When A is a �-algebra, there is also a generalization of hermitian formson (A;A)-bimodules which has been introduced on [57] and called right her-mitian forms in [34] which is adapted for tensor products over A. If M is a(A;A)-bimodule, then a right hermitian form on M is a hermitian form hon M considered as a right A-module which is such that for the left multi-plication by a 2 A one has h(m;an) = h(a�m;n). One can then de�ne thenotion of right hermitian bimodule connection, (which is in particular a rightbimodule connection).We now explain the relation between the above notion of bimodule con-nection and the theory of �rst order operators in bimodules. Let A andB be unital associative complex algebras and let M and N be two (A;B)-bimodules. We denote by la the left multiplication by a 2 A in M and inN and we denote by rb the right multiplication by b 2 B in M and in N .A linear mapping D of M into N which is such that one has [[D; la]; rb] = 0for any a 2 A and b 2 B is called a �rst-order operator or an operator oforder 1 of M into N [16]. Notice that homomorphisms of left A-modules ofM into N as well as homomorphisms of right B-modules of M into N are�rst-order operators of M into N . The structure of �rst-order operators isgiven by the following theorem [32].THEOREM 4 Let M and N be two (A;B)-bimodules and let D be a �rstorder operator of M into N . Then, there is a unique (A;B)-bimodule ho-57



momorphism �L(D) of 
1u(A)
AM into N and there is a unique (A;B)-bimodule homomorphism �R(D) of M
B 
1u(B) into N such that one has:D(amb) = aD(m)b+ �L(D)(dua
m)b+ a�R(D)(m
 dub)for any m 2 M, a 2 A and b 2 B.For the proof and further informations, see in [32]. It is clear that �L(D)and �R(D) are the appropriate generalization of the notion of symbol in thissetting. We shall refer to them as the left and the right universal symbol ofD respectively.Remark 12. The converse of Theorem 4 is also true. More precisely, let(
1L; dL) be a �rst order di�erential calculus over A, let (
1R; dR) be a �rstorder di�erential calculus over B and let D : M ! N be a linear mappingthen any of the following condition (1) or (2) implies that D is a �rst-orderoperator.(1) There is a (A;B)-bimodule homomorphism �L : 
1L
AM!N suchthat D(am) = aD(m) + �L(dL(a)
m); 8m 2 M and 8a 2 A(2) There is a (A;B)-bimodule homomorphism �R :M
B 
1R ! N suchthat D(mb) = D(m)b+ �R(m
 dR(b)); 8m 2 M and 8b 2 B:LetM be a (A;A)-bimodule and let r be a left A-module 
-connectionon M. It is obvious that r is a �rst-order operator of the (A;A)-bimoduleM into the (A;A)-bimodule 
1 
AM. It follows therefore from the abovetheorem that there is a unique (A;A)-bimodule homomorphism �R(r) ofM
A 
1u(A) into 
1 
AM such that one hasr(ma) = r(m)a+ �R(r)(m
A du(a))for any m 2 M and a 2 A. Therefore, r is a left bimodule 
-connectionon M if and only if �R(r) factorizes through a (A;A)-bimodule homomor-phism � : M
A 
1 ! 
1 
A M as �R(r) = � � (IM 
 id) where IM isthe identity mapping of M onto itself and id is the unique (A;A)-bimodule58



homomorphism of 
1u(A) into 
1 such that d = id � du (see Proposition 1).This implies in particular that any left A-module 
u(A)-connection is a leftbimodule 
u(A)-connection.In the case of the derivation-based di�erential calculus, there is an easynatural way to de�ne connections on left and right modules and on centralbimodules over A, [34]. We describe it in the case of central bimodules (forleft and for right modules, just forget multiplications on the right and on theleft respectively). LetM be a central bimodule overA, i.e. a A-bimodule forAlgZ, a (derivation-based) connection onM is a linear maping r;X 7! rX,of Der(A) into the linear endomorphisms of M such thatrzX(m) = zrX(m);rX(amb) = arX(m)b+X(a)mb+ amX(b)for any m 2 M, X 2 Der(A), z 2 Z(A) and a; b 2 A. One veri�es that sucha connection on the central bimoduleM is a bimodule 
Der(A)-connection onM in the previous sense with a well de�ned �, (modulo some technical prob-lems of completion of the tensor products 
1Der(A)
AM andM
A
1Der(A)).The interest of this formulation is that curvature is straightforwardly de�nedand is a bimodule homomorphism [34]. We refer to [34] (and also to [27]) formore details and in particular for the relation with A-duality. Furthermore,in this frame the notion of reality on connections is obvious. Assume thatA is a �-algebra and that M is a central bimodule which is a �-bimoduleover A then a (derivation-based) connection r on M will be said to be realif one has rX(m�) = (rX(m))� for any m 2 M and any X 2 DerR(A), i.e.X 2 Der(A) with X = X�.The notion of reality in the general frame of bimodule 
-connections isslightly more involved and will not be discussed here.11 Classical Yang-Mills-Higgs modelsAn aspect with no counterpart in ordinary di�erential geometry of the the-ory of 
-connections on A-modules for a di�erential calculus 
 which is notgraded commutative is the generic occurrence of inequivalent 
-connectionswith vanishing curvature (on a �xed A-module). By taking as algebra Athe algebra of functions on space-time with values in some algebra A0, i.e.A = C1(Rs+1)
A0, this led to classical Yang-Mills-Higgs models based on59



noncommutative geometry in which the Higgs �eld is the part of the connec-tion which is in the \noncommutative directions".In the following, we display the case of 
-connections on right modulesover the algebra A = C1(Rs+1)
Mn(C ) of smooth Mn(C )-valued functionson Rs+1 for 
 = 
Der(A).Let us �rst describe the situation for A = Mn(C ). The derivations ofMn(C ) are all inner so the complex Lie algebra Der(Mn(C )) reduces to sl(n)and the real Lie algebra DerR(Mn(C )) reduces to su(n). As already men-tioned in Section 8, one has
Der(Mn(C )) = C^(DerMn(C );Mn(C )) = C^(sl(n);Mn(C ))as can be shown directly [25] and as also follows from the formulas below. LetEk; k 2 f1; 2; : : : ; n2 � 1g be a base of self{adjoint traceless n� n{matrices.The @k = ad(iEk) form a basis of real derivations i.e. of DerR(Mn(C )) =su(n). One has [@k; @`] = Cmk`@m, the Cmk` are the corresponding struc-ture constants of su(n), (or sl(n)). De�ne �k 2 
1Der(Mn(C )) by �k(@`) =�k̀1l.The following formulas give a presentation of the graded di�erential al-gebra 
Der(Mn(C )) [28], [26]:EkE` = gk`1l + (Smk` � i2Cmk`)EmEk�` = �`Ek�k�` = ��`�kdEk = �Cmk`Em�`d�k = �12C k̀m�`�mwhere gk` = g`k, Smk` = Sm̀k are real, gk` are the components of the Killingform of su(n) and Cmk` = �Cm̀k are as above the (real) structure constants ofsu(n).Formula giving the dEk can be inverted and one has�k = � in2g`mgkrE`ErdEmwhere gk` are the components of the inverse matrix of (gk`). The element� = Ek�k of 
1Der(Mn(C )) is real, � = ��, and independent of the choice of60



the Ek, in fact we already met � in Section 9: �(ad(iA)) = A � 1ntr(A)1land ! = d� is the natural symplectic structure for Mn(C ). Furthermore �is invariant, LX� = 0, and any invariant element of 
1Der(Mn(C )) is a scalarmultiple of �. We call � the canonical invariant element of 
1Der(Mn(C )).One has dM = i[�;M ]; 8M 2Mn(C )d(�i�) + (�i�)2 = 0:The �{algebra Mn(C ) is simple with only one irreductible representa-tion in C n . A general �nite right{module (which is projective) is the spaceMKn(C ) ofK�n{matrices with right action ofMn(C ). Then Aut(MKn(C )) isthe group GL(K) acting by left matrix multiplication. The moduleMKn(C )is naturally hermitian with h(�;	) = ��	 where �� is the n � K ma-trix hermitian conjugate to �. The gauge group is then the unitary groupU(K)(� GL(K)). Here, there is a natural origin 0r in the space of connec-tions given by 0r � = �i�� where � 2MKn(C ) and where � is the canonicalinvariant element of 
1Der(Mn(C )). The fact that this de�nes a connectionfollows from 0r (�M) = ( 0r �)M + �i[�;M ]and from the above expression of dM for M 2 Mn(C ). This connection ishermitian and its follows from the above expression for d� that its curvaturevanishes, i.e. ( 0r)2 = 0. Any connection r is of the form r� = 0r � + A�where A = Ak�k with Ak 2MK(C ) and A� means Ak�
�k. The connectionr is hermitian if and only if the Ak are antihermitian i.e. A�k = �Ak. Thecurvature of r is given by r2� = F� (= Fk`�
 �k�`) withF = 12([Ak; A`]�Cmk`Am)�k�`:Thus r2 = 0 if and only if the Ak form a representation of the Lie algebrasl(n) in CK and two such connections are in the same Aut(MKn(C )){orbitif and only if the corresponding representations of sl(n) are equivalent. Thisimplies that the gauge orbits of at (r2 = 0) hermitian connections are inone{to{one correspondence with unitary classes of representations of su(n)in CK , [28]. For instance if n = 2, these orbits are labelled by the number ofpartitions of the integer K. 61



We now come to the case A = C1(Rs+1) 
 Mn(C ). Let x�; � 2f0; 1; : : : ; sg, be the canonical coordinates of Rs+1. One has
Der(C1(Rs+1) 
 Mn(C )) = 
Der(C1(Rs+1)) 
 
Der(Mn(C )) so one cansplit the di�erential as d = d0 + d00 where d0 is the di�erential along Rs+1and d00 is the di�erential of 
Der(Mn(C )). A typical �nite projective rightmodule is C1(Rs+1) 
 MKn(C ). This is an hermitian module with her-mitian structure given by h(�;	)(x) = �(x)�	(x); (x 2 Rs+1). As aC1(Rs+1){module, this module is free (of rank K:n), so d0� is well de�nedfor � 2 C1(Rs+1) 
 MKn(C ). In fact, d0�(x) = @�@x� (x)dx�. A connec-tion on the C1(Rs+1)
Mn(C ){module C1(Rs+1)
MKn(C ) is of the formr� = d0�� i��+A� with A = A�dx�+Ak�k, where the A� and the Ak areK�K matrix valued functions on Rs+1 (i.e. elements of C1(Rs+1)
MK(C ))and where A�(x) = A�(x)�(x)dx�+Ak(x)�(x)�k. Such a connection is her-mitian if and only if the A�(x) and the Ak(x) are antihermitian, 8x 2 Rs+1.The curvature of r is given by r2� = F� whereF = 12(@�A� � @�A� +[A�; A�])dx�dx�+(@�Ak + [A�; Ak])dx��k+12([Ak; A`]�Cmk`Am)�k�`The connectionr is at (i.e. r2 = 0) if and only if each term of the aboveformula vanishes which implies that r is gauge equivalent to a connection forwhich one has A� = 0; @�Ak = 0 and [Ak; A`] = Cmk`A. Furthermore two suchconnections are equivalent if and only if the corresponding representationsof su(n) in CK (given by the constant K �K{matrices A`) are equivalent.So again, the gauge orbits of at hermitian connections are in one-to-onecorrespondence with the unitary classes of (antihermitian) representations ofsu(n) in CK . Again, in the case n=2, the number of such orbits is the numberof partitions of the integerK i.e.cardf(nr)jXr nr:r = Kg:If we consider Rs+1 as the (s + 1){dimensional space{time and if we re-place the algebra of smooth functions on Rs+1 by C1(Rs+1)
Mn(C ) which62



we interpret as the algebra of \smooth functions on a noncommutative gen-eralized space-time". It is clear, from the above expression for the curvaturethat the generalization of the (euclidean) Yang{Mills action for a hermitianconnection r on C1(Rs+1)
MKn(C ) iskFk2 = R ds+1x trn14P(@�A� � @�A� + [A�; A�])2+12P(@�Ak + [A�; Ak])2 + 14P([Ak; A`]�Cmk`Am)2owhere the metrics of space-time is g�� = ��� and where the basis Ek of her-mitian traceless n � n{matrices is chosen in such a way that gk` = �k`, i.e.tr(EkE`) = n�k`. This can be more deeply justi�ed by introducing the ana-log of the Hodge involution on 
Der(Mn(C )), the analog of the integrationof elements of 
n2�1Der (Mn(C )) (essentially the trace) and by combining theseoperations with the corresponding one on Rs+1 to obtain a scalar product on
Der(C1(Rs+1)
Mn(C )) etc. See in [28], [29] for more details.The above action is the Yang{Mills action on the noncommutative spacecorresponding to C1(Rs+1) 
Mn(C ). However it can be interpreted as theaction of a �eld theory on the (s + 1){dimensional space{time Rs+1. At�rst sight, this �eld theory consists of a U(K)-Yang-Mills potential A�(x)minimally coupled with scalar �elds Ak(x) with values in the adjoint repre-sentation which interact among themselves through a quartic potential. Theaction is positive and vanishes for A� = 0 and Ak = 0, but is also vanisheson other gauge orbits. Indeed kFk2 = 0 is equivalent to F = 0, so the gaugeorbits on which the action vanishes are labelled by unitary classes of repre-sentations of su(n) in CK . By the standard semi{heuristic argument, thesegauge orbits are interpreted as di�erent vacua for the corresponding quantumtheory. To specify a quantum theory, one has to choose one and to translatethe �elds in order that the zero of these translated �elds corresponds to thechosen vacuum (i.e. is the corresponding zero of the action). The variablesA�; Ak are thus adapted to the speci�c vacuum '0 corresponding to the trivialrepresentation Ak = 0 of su(n). If one chooses the vacuum '� correspondingto a representation �Rk of su(n), (i.e. one has [�Rk; �R`] = Cmk`�Rn), one mustinstead use the variables A� and �Bk = Ak ��Rk. Making this change of vari-able one observes that components of A� become massive and that the �Bkhave di�erent masses; the whole mass spectrum depends on �. This is very63



analogous to the Higgs mechanism. Here however the gauge invariance isnot broken, the non{invariance of the mass{terms of the A� is compensatedby the fact that the gauge transformation of the �Bk becomes inhomogeneous(they are components of a connection). Nevertheless, from the point of viewof the space-time intepretation this is the Higgs mechanism and the Ak areHiggs �elds.The above models were the �rst ones of classical Yang-Mills-Higgs modelsbased on noncommutative geometry. They certainly admit a natural super-symmetric extension since there is a natural extension of the derivation-basedcalculus to graded matrix algebras [42]. There is also another extension of theabove calculus where C1(Rs+1)
Mn(C ) is replaced by the algebra �End(E)of smooth sections of the endomorphisms bundle of a (nontrivial) smoothvector bundle E (of rank n) admitting a volume over a smooth ((s + 1)-dimensional) manifold [33].The use of the derivation-based calculus makes the above models quiterigid. By relaxing this i.e. by using other di�erential calculi 
, other modelsbased on noncommutative geometry which are closer to the classical versionof the standard model have been constructed [15], [19], [21]. Furthermorethere is an elegant way to combine the introduction of the (spinors) matter�elds with the di�erential calculus and the metric [16] as well as with thereality conditions [18] in noncommutative geometry, (and also with the ac-tion principles [11]). Within this general set-up, one can probably absorbany classical model of gauge theory.A problem arises for the quantization of these classical models based onnoncommutative geometry. Namely is it possible to keep something of thenoncommutative geometrical interpretation of these classical models at thequantum level? The best would be to �nd some B.R.S. symmetry [3] ensur-ing that (perturbative) quantization does not spoil the correspondence withnoncommutative geometry. Unfortunately no such symmetry was discoveredup to now. As long as no progress is obtained on this problem, the non-commutative geometrical interpretation of the gauge theory with Higgs �eldmust be taken with some circumspection in spite of its appealing features.64



12 Conclusion : Further remarksConcerning the noncommutative generalization of di�erential geometry thepoint of view more or less explicit here is that the data are encoded in an al-gebra A which plays the role of the algebra of smooth functions. This is whyalthough we have described various notions in terms of an arbitrary di�er-ential calculus 
, we have studied in some details speci�c di�erential calculi\naturally" associated with A (i.e. which do not depend on other data thanA itself) such as the universal di�erential calculus 
u(A), the generalization
Z(A) of the K�ahler exterior forms, the diagonal calculus 
Diag(A) and thederivation-based calculus. There are other possibilities, for instance someauthors consider that the data are encoded in a graded di�erential algebrawhich plays the role of the algebra of smooth di�erential forms, e.g. [54].This latter point of view can be taken into account here by using an arbi-trary di�erential calculus 
.In all the above points of view, the generalization of di�erential formsis provided by a graded di�erential algebra. This is not always so nat-ural. For instance it was shown in [46] (see also [47]) that the subspace[
u(A);
u(A)]gr of graded commutators in 
u(A) is stable by du and thatthe cohomology of the cochain complex 
u(A)=[
u(A);
u(A)] is closely re-lated to the cyclic homology (it is contained in the reduced cyclic homology),and is also in several respects a noncommutative version of de Rham cohomol-ogy. This complex 
u(A)=[
u(A);
u(A)] (which is generally not a gradedalgebra) is sometimes called the noncommutative de Rham complex [58]. Itis worth noticing that, for A noncommutative, there is no tensor productover A between A-modules (i.e. no analog of the tensor product of vectorbundles) and that therefore the Grothendieck group K0(A) (of classes of pro-jective A-modules) has no product. Thus for A noncommutativeK0(A)
 Cis not an algebra and therefore there is no reason for a cochain complex suchthat its cohomology is a receptacle for the image of the Chern character ofK0(A)
 C to be a graded algebra.Also we did not describe here the approach to the di�erential calculusand to the metric aspects in noncommutative geometry based on generalizedDirac operators (spectral triples) [16], [17], [18] as well as the related super-symmetric approach of [39], see in O. Grandjean's lectures. In these noteswe did not introduce speci�cally generalizations of linear connections and a65



fortiori not generalizations of riemannian structures.Finally we did not discuss di�erential calculus for quantum groups, i.e.bicovariant di�erential calculus [61]. In the spirit of Section 2, let us de�ne agraded di�erential Hopf algebra to be a graded di�erential algebra A whichis also a graded Hopf algebra with coproduct � such that � : A ! A 
 Ais a homomorphism of graded di�erential algebras (i.e. in particular thedi�erential d of A satis�es the graded co-Leibniz rule), with counit " suchthat " � d = 0 and with antipode S homogeneous of degree 0 such thatS � d = d � S. If A is a graded di�erential Hopf algebra, then the subalgebraA0 of elements of degree 0 of A is an ordinary Hopf algebra, i.e. a quantumgroup, and A is a bicovariant di�erential calculus over A0. Notice that ifG is a Lie group then the graded di�erential algebra 
(G) of di�erentialforms on G is in fact a graded di�erential Hopf algebra which is gradedcommutative, (in order to be correct, one has to complete the tensor productin the de�nition of the coproduct or to use, instead of 
(G), the gradeddi�erential subalgebra of forms generated by the representative functions onG).
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