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1 Introduction

The mathematical space has an extremely simple
structure in the small. To whatever small dimen-
sions one proceeds, there is always the same — apart
from a “similarity transformation”. This seems to be

too simple to accomodate a map of the real events.
E. Schridinger!

An adequate mathematical description of nature has to involve ‘geometric’ structures beyond smooth
manifolds. In particular, one has to admit fractal sets which appear in many natural systems and
especially as strange attractors in nonlinear dynamical systems. It is also widely believed that quantum
theory should revise our present conception of space and time. Proposals have been made towards a
fundamental discrete and even noncommutative structure of space-time (see [2] for a short review with a
large collection of references).

Manifolds, which are usually taken to model spaces and space-times in physical theories, are in partic-
ular topological spaces. The latter are in correspondence with commutative associative algebras. Given
an abstract commutative algebra, it determines a topological space on which the elements of the algebra
are realized as functions. On the other hand, the algebra of functions on a topological space defines a com-
mutative and associative algebra. Instead of dealing with topological spaces, we may study commutative
associative algebras. This point of view suggests a drastic generalization, namely to dispense with the
requirement of commutativity of the algebra. Does it make sense to regard a (certain) noncommutative
algebra as a kind of ‘space’ in which physical phenomena can be described? Indeed, an important example
is provided by the canonical quantization procedure. Given a phase space, the classical observables are
functions on it, i.e., functions of coordinates ¢’ and conjugate momenta p;. Quantization replaces them
by operators (on a Hilbert space) satisfying the Heisenberg commutation relations [¢¢, p;] = ZTL(S; The
(suitably restricted) algebra generated by operators satisfying these relations is the Heisenberg algebra.
It may serve as an example of a ‘noncommutative space’ (see [3, 4], in particular). A ‘noncommutative
torus’ appears as a ‘noncommutative Brillouin zone’ in a treatment of the quantum Hall effect [5]. Fur-
ther examples are provided by ‘quantum groups’ which are noncommutative analogues of (the algebra of
functions on) a classical group.

Whereas in classical differential geometry the introduction of geometric structures essentially begins
with the notion of a vector field, this appears not to be the adequate concept to start with in generalizing
geometric concepts to an associative algebra 4.2 Instead, it is more convenient to first introduce the
concept of a differential form. The algebra A is extended to a ‘differential algebra’ on which further
geometric structures are then built. In the case of the algebra of smooth functions on a (smooth) manifold
there is a natural choice for such a differential algebra, namely the algebra of (ordinary) differential
forms. For a general algebra there is no distinguished differential algebra and one has to understand
what the significance is of the different choices. Even in the case of the algebra of smooth functions on
a manifold, there is no longer a good argument to single out the ordinary calculus of differential forms.
Indeed, the exploration of other differential calculi opened a door to a whole new world of geometry and
applications in physics, as well as relations with other fields of mathematics. Indeed, differential calculi
on commutative (associative) algebras and their noncommutative geometries shall occupy a considerable
part of this report.?

The formalism of noncommutative geometry is an extremely radical abstraction of ordinary differential
geometry. It includes the latter as a special case, but allows a huge variety of structures which may or

IThis is my translation of the original German “Der mathematische Raum hat eine iiberaus einfache Struktur im
Kleinen. Zu wie kleinen Dimensionen man auch iibergeht, es liegt immer wieder dasselbe vor — abgesehen von einer
“Ahnlichkeitstransformation”. Das scheint zu einfach zu sein, um eine Landkarte des wirklichen Geschehens darin un-
terzubringen.” [1].

2See [6], however. On (the algebra of functions on) a finite set there is no derivation except the trivial one (which maps
all functions to zero).

3A ‘noncommutative’ geometry on a commutative algebra is characterized by noncommutativity of functions and (gen-
eralized) differentials.



may not be of any real use in mathematics or physics. An immediate prospect is that in this framework
we have the possibility to ‘deform’ ordinary differential geometry and models built on it while keeping
basic concepts and (simple) recipes on which the models are based.

Section 2 introduces to differential calculus on associative algebras and, in particular, commutative
algebras. Section 3 is devoted to gauge theory on algebras, i.e., connections in noncommutative geometry.
Section 4 presents some applications of the formalism in the context of integrable models and soliton
equations. Some concluding remarks are collected in section 5.

This report is meant as an elementary introduction to some modern developments. We are not at all
trying to cover the existing literature in the already wide field of noncommutative geometry. For various
aspects quite remote from our selection, we refer to [7, 8], for example. Rather, we present various
examples of applications in physics and cross relations with other areas of mathematics which are of
relevance for physics. Our presentation should provide the reader with an easy access to understanding
basic ideas behind and the usefulness of the new mathematical concepts.

An earlier report on various aspects of differential calculus on commutative algebras appeared in [9].
Though some of the material presented there is basically taken over to the present report with some
improvements, a considerable amount of new results has been obtained since then. To a large extent this
concerns my own work jointly with Aristophanes Dimakis.

2 Differential calculi on associative algebras

Let A be an associative algebra® with unit I. A differential calculus on A is a Z-graded associative
algebra (over R, respectively C)°

A =P (A (2.1)

r>0

where the spaces Q"(A) are A-bimodules® and Q°(A) = A. There is a (R~ respectively C-) linear map

d: Q"(A) — Q" (A) (2.2)

with the following properties,
? =0 (2.3)
dlww') = (dw)w' + (=1)"wdw' (2.4)

where w € Q"(A) and w' € Q(A). The last relation is usually referred to as the (generalized) Leibniz
rule. Assuming that T extends to a unit element in €, the Leibniz rule and the identity 11 = T imply

af = 0. (2.5)

We shall furthermore assume that d generates the spaces Q"(A) for r > 0 in the sense that Q"(A)
AdQ 1 (A) A. Using the Leibniz rule, every element of Q" (A) can be written as a linear combination
of monomials ag da; - - - da,. The action of d is then determined by

-~

d(ag day - - -da,) = dag day - - - da,. . (2.6)

Ezamples.
1. Setting Q"(A) = {0} for r > 0 and d = 0 provides us with a trivial example, the smallest possible

4More precisely, we consider only algebras over IR or C. Finite linear combinations of elements of A with coefficients in
R or €, respectively, and also finite products are again elements of .A. The multiplication is assumed to be associative.

5Though in many interesting cases one has Q7 (.A) = {0} when r is larger than some r9 > 0, one also encounters examples
where Q(A) is actually an infinite sum. In such a case we should define Q(A) as the space of finite sums.

6Hence its elements, called r-forms, can be multiplied from left and right by elements of A.

7A technical problem arises if infinite sums of r-forms are admitted.



differential calculus.
2. There is also a largest differential calculus on A. Let

QA =D a; @b | Y aib; =0, a;,b; € A} (2.7)

(where only finite sums are admitted).® Then a — I ® a — a ® I defines a linear map d : A — Q1 (A)
satisfying (2.4) for w,w’ € A. The space of r-forms is defined as

Q7(A) ::Ql(A) @4 Q(A) ®A"'®A01(A),’ r>0 (2.8)

~~

r-times

where the tensor product is now over A (which means that elements of A can be commuted from one
side to the other). In order to extend the operator d to Q(A), we next define its action on 1-forms. Since
every l-form can be written as a linear combination of terms of the form w = a (I ® b — b ® 1) with
a,be A, it is sufficient to specify the action of d on such terms:

dw = (I®a—a®I) @4 (I®b-b® 1)
= I®ab-1I0abl-aIb+abx 1. (2.9)

Via the Leibniz rule (with respect to the product ® 4) the linear operator d then extends to the whole
differential algebra. The differential calculus (2(.A), d) is universalin the sense that every other differential
calculus can be derived from it (as a quotient Q(A)/Z where 7 is a two-sided ideal in (A) closed under

a, ie., a7 c f) In the mathematical literature it is usually called universal differential envelope. Q

Between the smallest (trivial) and the biggest (universal) differential calculus there is a large variety
of further differential calculi on an algebra 4. In contrast to the preceding two examples, they depend
on the algebra under consideration. Some of them are distinguished via specific properties of the algebra
or structures which can be defined on it.

Ezxamples.

3. In case of a group, it is natural to require that the left and right action of the group on itself extends to
a differential algebra (on the algebra of functions) on the group. More generally, in case of Hopf algebras
(including quantum groups) there is a coaction which one might wish to extend to act on a differential
calculus on the Hopf algebra. This leads to the notions of left-, right- and bi-covariant differential calculi
[10].

4. If Ais a C*-algebra, there is a representation p : A — B(#) in terms of bounded operators on a
Hilbert space H. Let D be an operator on H such that [D, p(A)] C B(#H). Then p induces a representation
p: QA) = B(H) via

aoday ---da, = plao) [D, plar)] -~ [D, plar)] (2.10)

~2
Though this construction takes care of the Leibniz rule, the property d = 0 would severely constrain the
possible choices of an operator D. Rather, one defines

Q(A)p := Q(A)/{kerp + d kerp} (2.11)

which carries the structure of a differential calculus. Here it is the choice of the operator D which
determines the differential calculus. If M is a smooth manifold with a Riemannian metric, choosing 4 =
C° (M) and for D the Dirac operator, the differential algebra turns out to be isomorphic with the algebra
of (ordinary) differential forms on M. Behind all this is the idea of a ‘quantum mechanical approach’
towards geometry. Suppose that in some way we obtain from measurements a set of ‘geometrical” data
which form the spectrum of some selfadjoint operator D. Notions of classical differential geometry, or
generalizations thereof, may then be derived from this operator. The construction outlined above is due
to A. Connes (see [11], in particular).

8The tensor product is over IR, respectively C.



5. Let A be the (commutative) algebra of smooth functions on a differentiable manifold M. The
algebra of smooth differential forms together with the exterior derivative d is a differential calculus on A.
From other differential calculi on A it is distinguished by the property that functions and differentials
commute, i.e., [f,dh] = 0 for all f,h € A. Using (2.4), this implies anticommutativity of 1-forms, a
property which is intimately related to our classical conception how to measure volumes. Originally
differentials were introduced in a rather naive way with the interpretation of being ‘infinitesimally small’.
Modern mathematics put them on a rigorous footing as objects acting on vector fields. See also [12, 13].
6. Superspace differential forms [14, 3]. These play an important role in the context of supersymmetric
field theories. Q

Further examples are treated in more detail in the following subsections.

Remark. In general, we have to face the problem of ‘differentiability’, i.e., the applicability of d to
the algebra A. In case of commutative algebras we are familiar with corresponding notions, whereas
the treatment of noncommutative algebras requires a more sophisticated machinery like that of Connes
sketched above. But the problem of applicability of d extends to (A), of course. In the following we
shall treat differentials as algebraic objects and mostly leave aside the question how to introduce them
in a perhaps more satisfactory way or how to ‘realize’ them.

2.1 Differential calculi on a finite set

Let M be a finite set and A the algebra of all C-valued functions on it. A is generated by {e;} where
ei(j) = di; for i,j € M. These functions satisfy the two identities

€;€; = (Sij €, Ze,- =1. (212)
i

The following result shows that there are no ‘vector fields’ in the sense of derivations on a finite set.

Lemma. There are no derivations 0 : A — A besides 0 = 0.

Proof: 1f 9 is a derivation on A, so that it satisfies the product rule of differentiation, then from the first
equation of (2.12) one finds

(0e;) €; + e; 0e; = Oe;
which implies
€; (861) €; = 0.
Writing Oe; = ). fi(k) e, with constants f;(k), we get
0=e; (Z fi(k)ex) ei = fi(i) e
k
and thus f;(7) = 0 for all i € M. Furthermore,

Oei =Y filk)ewei+e Y filk)er =2 fi(i)ei =0
k k

and therefore 9 = 0. Q

As a consequence of the identities (2.12) and the Leibniz rule, the differentials de; of a differential
calculus on A are subject to the following relations,

de; €ej = —¢e; dej + 61’]’ dej R Z de; =0. (213)
i

Without additional constraints, we are dealing with the universal differential calculus (Q(A), a) Intro-
ducing the 1-forms

ey =eide; (i #]) (2.14)



one finds the following.

Lemma. {e;;}iz; is a basis over C of the space Q! of universal 1-forms.

Proof: First we show completeness. By definition, a 1-form is a linear combination of terms of the form
f(dg)h with f,g,h € A. Now

flg)h = Y f(i)e;g(j) de;j h(k) ek

3,5,k
= > 1) () h(k) e; (—e; dey, + by dey,)
=

= Zf — ()] h(j) e; de;
= Zf — g(i)]h(j) e; de;

i#]
= Y f(@)[9() — g(@)] () es; -

To demonstrate linear independence of the e;; let us assume that

Z Cij €45 = 0

i#j
with constants ¢;;. Using e; e, = d;5 €5 and

€ij €k = €; aej er = ¢€; [—ej &ek + 6jk aek] = 0jk €45
for i # j, we have
0=ex (Z Cij €ij) €1 = Ckl €kl -

i#]
Since e # 0 in the universal calculus, this implies ¢ = 0. Q@
Lemma. All first order differential calculi are obtained from the universal one by setting some of the e;;

to zero.

Proof: A general theorem (see [15], for example) tells us that all first order differential calculi are obtained
as the quotient of Q! by a two-sided ideal (A-sub-bimodule) in Q. So we have to determine all two-sided
ideals in Q. First we note that, as a consequence of the relations ey, eij = O €5 and egj e = Ojk €k,
{ce;j | ¢ € C} is such an ideal and moreover a primitive one, it has no proper subideals. Since {e;;}ix;
is a basis of Q! over C, it follows that every two-sided ideal is a union of such primitive ones. @

Let us associate with each nonvanishing e;; of some differential calculus (Q2,d) an arrow from the
point ¢ to the point j :

€ij 75 0 <= ie — ej. (215)

The universal (first order) differential calculus then corresponds to the complete digraph where all vertices
are connected with each other by a pair of antiparallel arrows. Other first order differential calculi are
obtained by deleting some of the arrows.

Hence, the choice of a (first order) differential calculus on a finite set means choosing a connection
structure on it. This is not just an abstract correspondence since the formula for the differential of a
function f € A precisely displays this structure:’

df = Z ) ei - (2.16)

9More precisely, the summation runs over all 4,j with ¢ # j. Note that e;; has not been defined. We may, however, set
e;; = 0.



Returning to the universal calculus, concatenation of the 1-forms e;; leads to the (r — 1)-forms
€iy..ip P Ciyiy Ciniz " Cip_yi, - (2.17)
The significance of these forms should be evident from the following.

Lemma. Let r > 1. Then the forms e;, ; constitute a basis of Q=1 over C. Q

r

We omit the proof. The special forms (2.17) satisfy the simple relations

€iy.oiin €j1.ds = Oipjy €ixoipmjrods - (2.18)
In particular, this implies
fei .= fli1) €. i, €ir.i, [ =ei.q f(ir) . (2.19)
for f € A. Furthermore, we have
dei = 3 (esi—ei) (2.20)
J

de;; = Z(ekij — €ikj + €ijk) (2.21)
k

where the dots stand for corresponding formulas for the differentials of the higher basis forms. The first
equation is a special case of (2.16). In a ‘reduced’ differential calculus (£2,d) where not all of the e;; are
present, the possibilities to build (nonvanishing) higher forms e;, . ; are restricted and the above formulas
for de;, ..., impose further constraints on them. An example is treated in the following subsection.

A discrete set together with a differential calculus on it has been named a discrete differential manifold
in [16] and some general properties have been studied there.

2.1.1 Differential calculi and topology

Let us consider the differential calculus on a 3-point set associated with the following graph:

2

0 @ = 1

The nonvanishing basis 1-forms are thus eg1, €12, €29. The only basis 2-forms we can construct from these
are epie, €120 and esg;. But ejg = 0 implies

3

0 =deig = Z(eklo —e1ko + €e1ok) = —€120 (2.22)
k=1

and similarly ep12 = e291 = 0 as a consequence of epy = e2; = 0. Hence there are no 2-forms and we can
assign the dimension 1 to the 3-point set with the differential calculus specified above.'® The action of d
can be visualized as follows. In our example, we have

deg = €20 — €01, d61 = €p1 — €12, d62 = €12 — €20 . (223)

10This notion of dimension is a local one. In general, it varies from subgraph to subgraph.



This determines the following diagram,!*

0 1 2
O-forms

1-forms
01 12 20

If in the expression for de; a 1-form ej;, appears on the rhs, an arrow is drawn between the vertices
representing the O-form e; and the 1-form ej;. The sign of a term on the rhs of (2.23) determines its
orientation. This scheme extends to higher order forms via (2.21).

An interpretation. An n-dimensional manifold can be covered with a finite set M = {Uy} of sets Uy,
which are homeomorphic to open balls in R"™. The global topology of the space is then encoded in the
way in which these sets intersect. The overlap relations can be expressed using a Hasse diagram. How
this works is explained with an example:

The corresponding Hasse diagram is

o
p—
[N

The points of the upper row represent the three big sets U,, a = 1,2, 3, depicted in the last figure. Those
of the lower row represent the intersection sets. If a line connects two points in different (neighbouring)
rows, this means that the set which the lower point represents is a subset of the one for which the upper
point stands. A vertex together with all lower lying vertices which are connected to it forms an open
set. In the present case, {01}, {12}, {20}, {0,01, 20}, {1,01, 12}, {2, 12,20} are the open sets (besides the
empty and the whole set). Ignoring the additional structure encoded in the orientation of the arrows in
the previous diagram relating O-forms and 1-forms, what we have there is just the Hasse diagram. We

n our example, this diagram does not contain more information than the triangle digraph we started with. This is so
since here we did not impose restrictions on the universal differential calculus on the level of r-forms with » > 1 (besides
those induced by the restrictions on the 1-form level).



conclude that a differential calculus on a finite set determines a topology on the set. For an exploration of
these relations see [17, 16]. In particular, the formalism gives an answer to the question how to discretize a
field theory on a manifold in such a way that global topological properties are preserved. It also appears
to be of interest in the context of attempts to formulate a theory of unprecise space and space-time
measurements avoiding the notion of a (sharp) point (see [18, 19], for example).

2.1.2 The Ritz-Rydberg principle

Let v;; be the frequency of emitted (or absorbed) light in an electronic transition from level i to level j
in an atom. Then there is an addition law,

Vij + Vjk = Vik (2.24)

which is known from the period before the birth of quantum mechanics as the Ritz-Rydberg combination
principle. Let us define

V= Z Vij €ij - (225)
i,

Then
dv = Z Vij (erij — €ikj + €ijk)
.5,k
= ) ik — vik + vij) € (2.26)
.5,k

in terms of which the above combination principle becomes dv = 0, i.e., v is closed. If the first cohomology
group of the differential calculus is trivial (so that every closed 1-form is exact), then we have v = d(H/h)
with a function H = )" F, e,. This is the energy if & is taken to be Planck’s constant. The cohomology
condition is satisfied in particular for the universal differential calculus. See also [7, 17].

2.1.3 A lattice differential calculus
Let M = Z™". For a,b € M we define a differential calculus by
eab 70 < b=a+f where [ = (6;) . (2.27)

This corresponds to an oriented lattice graph, a finite part of which is drawn below.

Y
Y
Y
Y
Y

10



In this example we are actually dealing with an infinite set and thus infinite sums in some formulas which
requires special care. Introducing the lattice coordinate functions

zh = Z at e, (2.28)
a

one obtains'?
[, 2] = 64 da” (2.29)

using (2.18). {dz*} is a left A-module basis of Q!. We will return to this example in section 2.2.1.

2.1.4 Representations of first order differential calculi on finite sets

We have seen that first order differential calculi on a set of IV elements are in bijective correspondence
with digraphs with N vertices (and at most a pair of antiparallel arrows between any two vertices). Let
us define an N x N-matrix D in the following way: D;; = 1 if there is an arrow from ¢ to j and
D;j = 0 otherwise. In graph theory this matrix is known as the adjacency matriz of the digraph. It
encodes the complete structure of the digraph. We should then expect that the (first order) differential
calulus determined by a digraph can be expressed in terms of the adjacency matrix. How to construct a
derivation d : A — Q!(A) with this matrix? The easiest way to obtain a derivation is via a commutator,

df := D, f] (2.30)

which, of course, only makes sense if the elements of A4 can be represented as N x N-matrices. The
simplest way of achieving this is via

f(1) 0
;o . (2.31)
0 f(N)

Representing e;; as the N x N-matrix F;; with a 1 in the ith row and jth column and zeros elsewhere,
the above expression for df in terms of D is precisely our formula (2.16). Note that the adjacency matrix
represents »_; . €;;.

Proceeding beyond 1-forms, the above representation will not respect the Zs-grading of a differential
algebra Q(A). Therefore, one considers instead a ‘doubled’ representation'?

Ei 0 0 E
e; < 0 E;; > N €ij (Ez 0” > . (232)

The grading can be expressed in terms of a grading operator which in our case is given by

Y= ( é _01 ) . (2.33)

It is selfadjoint and satisfies

¥=1, yD=-Dy ~yf=fv (2.34)

75;:(% %T> f::<10” ?) (2.35)

121et us give a proof for the one-dimensional case (n = 1). Using dz = Za ade, = Za b @ (€ba —€ab) = Za a(ea—1,0 —
€a,at1) = Za €a,a+1 we find [dz,z] = Ea p 0leaat1,ep] = Ea €a,a+1 = dz.

)

13See also [20] for further generalizations.

with

11



where f has to be represented as in (2.31).

The above representations of (first order) differential calculi make contact with Connes’ formalism (cf
also example 4 in the beginning of section 2). It should be noticed that D in the present context is not, in
general, a selfadjoint operator (on the Hilbert space C). The ‘doubling’ in (2.32) leads to a selfadjoint
operator on the Hilbert space H = C2N, however. (A,’H,@) is an example of an even spectral triple, a
basic structure in Connes’ approach to noncommutative geometry. According to Connes [21] (see also
[11] for a refinement), a spectral triple (A,’H,f)) consists of an involutive algebra A of operators on a
Hilbert space ‘H together with a selfadjoint operator D satisfying some technical conditions. It is called
even when there is a grading operator 7 as in our example.

2.1.5 Connes’ distance function for differential calculi on finite sets

Let (A, H,D) be a spectral triple. A state on A is a linear map ¢ : A — C which is positiv, i.e.,
¢(a*a) > 0 for all a € A, and normalized, i.e., ¢(I) = 1. According to Connes, the distance between two
states ¢ and ¢’ is given by

d(¢,¢') := sup{|p(a) — ¢'(a)| ; a € A, |[[D,a]|| < 1} . (2.36)

Given a set M, each point p € M defines a state ¢, via ¢,(f) := f(p) for all functions f on M. The
above formula then becomes

d(p,p') :== sup{|f(p) — f(P); f € A, [I[D, fIl < 1} . (2.37)
In the following, we give some simple examples (see also [22]).

Ezample 1. The universal first order differential calculus on a set of two elements p, ¢ is described by a
graph consisting of two points which are connected by a pair of antiparallel arrows. Its adjacency matrix

18
D= < ! é ) (2.38)

0 f(p) - f(a@) ) _ (2.39)

so that

Then

||[D;f]||2 = SUP||¢||:1||[D;f] 1/’||2 = sup||¢||:1|f(p) - f(q)|2 (|1/J1|2 + |1/12|2) =[f(p) - f(q)|2 (2.40)

for ¢ € C?. It follows that Connes’ distance function defined with the adjacency matrix gives d(p,q) = 1
in this case. See also [21].

Ezample 2. Let us consider the first order differential calculus on a set of IV elements determined by the
following graph.

*—> 00— 00— - - 0—>0

The corresponding adjacency matrix is

py=| e (2.41)

[y

12



With a complex function f we associate a real function h via
h1 2:0, hi+1 Z:hi+|fi+1—fi| izl,...,N—l. (242)
where f; := f(i), numbering the consecutive lattice sites by 1,..., N. Then |h;y1 — hi| = |fi+1 — fi| and

D, f1¢1l = D, h] 4| (2.43)

for all 1 € €C*V. As a consequence, in calculating the supremum over all functions f in the definition of
Connes’ distance function, it is now sufficient to consider only real functions (see also [23] for a related
example). Since Dy is hermitean, the matrix i [Dy, f] is then also hermitean and its norm is equal to
the maximal absolute value of its eigenvalues. For N = 2 one finds the characteristic polynomial

det (z [Da, f] — A 1) = X202 = (fo — £1)?) (2.44)

(with a real constant A) and for arbitrary N > 2

det (z Dn, f]— A 1) = (A2 = (fn — fn—1)?) det ([ﬁN_l, 1= 1) . (2.45)

This implies
I[Dn, fll = max {|f2 — ful,. ... |fn — Fn—1l} (2.46)
from which we conclude that d(i, ) = |i — j|- v

2.2 A class of noncommutative differential calculi on a commutative algebra

Let A be the associative and commutative algebra over R (or C) freely generated by elements z#, pu =
1,...,n. For example, the * could be the canonical coordinates on R" (or C"). The ordinary differential
calculus on A has the property [dz*,z"] = 0, i.e., differentials and functions commute. Relaxing this
property, there is a class of noncommutative differential calculi such that'4

[dzt, "] = C* \, da™ (2.47)

with structure functions C* . (z*) which have to satisfy some consistency condition. First, we have

[de#,2"] = (dz")a” —z” dat
= d(ztz” —z¥a") — 2 da¥ + (da”) 2* = [dz”, zH] . (2.48)
———
=0
Assuming the differentials dz#, = 1,...,n, to be linearly independent'®, this implies
on, = Cvh,, . (2.49)
Furthermore,

0 = ([dz* z"]—CH,dz") 2>
[(dz*) 2*, 2] — C*  (dz®) 2™
[a* dzt + ", da?, z”] — O, (x* da™ + C"* , dzP)
o [dat, 2¥] + O, [de? 2] — 2 OM  da”® — C*, C™, da”
= (Crr,Cr, —Cm,CP,) da" (2.50)

which leads to

CM,C" = C", CM (2.51)

140n the rhs of this equation we are using the summation convention.
I5More precisely, we assume here that the dz# form a left A-module basis of Q!(.A).
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or, in terms of the matrices C* with entries (C*)", := C*¥,,,

creY =cren. (2.52)

(2.51) has been given in [24] (see also [25] for some earlier results).

For constant C*", and n < 3, a classification of all solutions of the consistency conditions (2.49) and

Remark. Defining a product on an n-dimensional vector space over R (or C) with basis ¢* by
g gr = O g

with constants C*¥,;, the two conditions (2.49) and (2.51) mean that we are dealing with a commutative
and associative algebra. The classification of first order differential calculi on R" (or C") with constant
structure functions thus corresponds to the classification of commutative associative algebras. Q

2.2.1 The simplest example

Let A be the algebra of all functions on IR. It is generated by the canonical coordinate function x. The
simplest deformation of the ordinary differential calculus on A is then determined by

[dz, 2] = £da (2.53)
where / is a constant which we will choose to be real and positive. This is a special case of the commutation
structure (2.47) considered in the previous subsection and we encountered it already in section 2.1.3.
Written in the form

dea = (z+ () de, (2.54)

the above commutation relation extends to A as

dz f(z) = f(z + £)dz . (2.55)
Furthermore,
Af = (@saf)de= 3 (Oref) [dr,a]
1 1
= 70w f)dz, 2] = 1df 7]
= (A(fr— )~ [fda]) = 5(de f - fdo)
= I+ 0 - f@)]de (2.56)

so that the left partial derivative defined via the first equality turns out to be the right discrete derivative,
ie.,

Orof = F[fla+0) = f(@)]. (2.57)

| =

Introducing a right partial derivative via df = dz 0_, f, an application of (2.55) shows that it is the left
discrete derivative, i.e.,

0.0f = 4lf(e) - flo - 0] (2.5%)

An indefinite integral should have the property

/df = f + ‘constant’ (2.59)

14



where ‘constants’ are functions annihilated by d. These are just the functions with period ¢ (so that
flz+10) = f(x)). It turns out that every function can be integrated and an explicit formula can be found
in [26].

Ezxample. Using the Leibniz rule,

/azdaz = /d:v2 - / (dr)z =2°—lz— /azdx + periodic function (2.60)
——
=(z+0)de
and thus
1 .o .
/:cdx =32 (x — ¢) + periodic function . (2.61)
In [25] a recursion formula is given for the integral of an arbitrary monomial in x. Q@

Since the indefinite integral is only determined up to the addition of an arbitrary function with period
(, it defines a definite integral only if the region of integration is an interval the length of which is a
multiple of ¢ (or a union of such intervals). Then one obtains

zo+nt n—1
/ fl@ydz =€ > f(zo+kl) (2.62)
zo—mft k——m
and in particular
xo+o0 o0
/ fleyde =€ > flxo+ke). (2.63)
Lo—00 k=—o0

The integral thus simply picks out the values of f on a lattice with spacings ¢ and forms the Riemann
integral for the corresponding piecewise constant function on IR.

All this shows that the differential calculus with £ > 0 is also well-defined on the algebra of functions
on a lattice with spacings £.

2.2.2 ¢-Calculus
Let us consider the new coordinate

y = ¢/t (2.64)
with ¢ € C\ {0}, not a root of unity. Using (2.56), we have

1
dy = qT ydz (2.65)

and with the help of (2.55) the commutation relation (2.53) is transformed into
dyy = qydy . (2.66)
The generalized partial derivatives with respect to the new coordinate y are defined by
df =0, f dy = dyd_,f (2.67)
and turn out to be the q-derivatives

flay) — fly)

Oyyfly) = -1y

(2.68)

15



These satisty the ‘quantum plane’ relation
0—yOry —q04y0—y =0 (2.69)

and g-deformed canonical commutation relations with the coordinate function y (regarded as an operator),
ie.,

O_yy—q lyd_y=1, Oiyy—qydy, =1. (2.70)

Moreover, choosing zo = 0 in (2.63), one finds

o0 0+o0 _
| tww = [ fee) S v da

— 00

(@—1) > flyko) y(ko)

k=—o0
= (¢-1) > flg"d (2.71)
k=—o0

which is the Jackson g-integral. We have indeed established it as an ‘integral’, associated with a non-
commutative differential calculus. The above equations show that there is a method to perform a change
of variables under the g-integral, something mathematicians have actually been looking for (cf [27], p.
46). For further details we refer to [26]. ¢-Calculus has various applications (see [27], in particular). It
experienced a revival in the context of integrable models and quantum groups (see [28], for example).

2.2.3 Lattice differential calculus
The ‘lattice differential calculus’ considered in subsection 2.2.1 generalizes to higher dimensions as follows,
[dzH, "] = £6" da”, (2.72)
a relation which we already encountered in subsection 2.1.3.1¢ More generally,
de" f(z) = f(z + ") da” (2.73)
with (z 4+ 0#)Y ;=¥ + " £ and f € A, where A is the space of all functions on R".

Agssuming that the dz*, u = 1,...,n, constitute a basis of the space of 1-forms as a left and as a right
A-module, we can introduce left and right partial derivatives via

df =8y, f dat = da" 9, f . (2.74)
Then we find
0ruf = 1S+ 0~ f@],  uf = 7 (@)~ fle = 0] (2.75)
Acting with d on (2.72) leads to
det dz” = —dz” dz* . (2.76)

This property allows us to introduce a Hodge * operator in the familiar way,

1
*(datt . datr) = 1 Z ettt oy, L d (2.77)

16More generally, we may consider [daz®,z"] = £* §*¥ da¥ with (possibly) different constants €%, u = 1,...,n. Note that
there is no summation over repeated indices in these commutation relations.
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where €, ..., is totally antisymmetric with €;,.,, = 1 and indices are raised with ¢ or n*”, in analogy
with the cases of Euclidean and Minkowski geometry. The extension to arbitrary forms is done via'”

*x(wf)=f*w (2.78)
for fe Aand w e Q".

An indefinite integral is determined by the property
/df = f + ‘constant’ (2.79)

where a ‘constant’ is a function with period ¢ in each argument. It therefore only defines a definite
integral over special sets, namely those which are a union of hypercubes with edges of length ¢. Then it
turns out that

w(1)+l zo+L
/ / f(z)da' - da™ = 0" f(x0) (2.80)

1 n
0 0

(cf [25]). Choosing a decomposition of R™ into such hypercubes, we obtain

fleyds =" Y flzo+kl). (2.81)

R" keZn

The integral depends on the choice of a point 2y € IR" which determines how the lattice £Z™ is embedded
in IR"™. The above formulas show that we could have started equally well with the algebra of functions
on the lattice £Z" instead of the algebra of functions on R". Thus (2.72) defines a differential calculus
on a lattice.

Ezample. The Lagrangian for a free massive scalar field ¢ on Euclidean space R" reads
L=dpAxdp+m>dpAxop (2.82)

in terms of ordinary differential forms. This expression also makes sense for the deformed differential
calculus introduced above. Then

dpxdgp = 04,0 da* x(0y,pda”)
= Dyt dat xds” (Dyu8)(z — )
= Oyp¢ da” (0400)(x — ") xda”
= O04u® (0400)(x + €* — ) da* x dz”
= 010 (04,0)(x + * —£”) M dat ... da"™

= ) (0449)° dz' .. .da" (2.83)
1
and
dpxd=d(x)? x1=¢(x)>dz’ ... da" (2.84)
shows that S = [;. £ is the usual lattice action for the free scalar field. v

2.2.4 A class of noncommutative differential calculi on smooth manifolds

The following is taken from [29, 30, 31] to which we refer for further information.

17 An alternative (different) definition would be x (f w) = f »w. In the applications discussed below, however, the ‘twist’
in (2.78) appears to be essential.
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Let A be the algebra of smooth functions on a smooth n-dimensional manifold M, i.e., 4 = C*(M).
Let x* be local coordinate functions and g*¥ the corresponding components of a symmetric tensor field
on M. We define a differential calculus (€2,d) via

[dat, 2" = g"' T (2.85)
where 7 is a 1-form satisfying
[r, 2] =0, 7*=0, dr=0. (2.86)

Furthermore, we assume that dz* and 7 constitute a basis of Q! as a left .A-module. The differential of
a function f can then be expressed as follows,

df =0, f 7+ O, f dat (2.87)
where 8, and 8, are generalized (left) partial derivatives.

Lemma.

df = %g‘“’@ua,,f 7+ 0, f da (2.88)

Proof: Exploiting the Leibniz rule, we find
) (f1) T+ 0 (fh) da = d(fh) = (df) h+ f dh

B, f)Th + (8,f) dat h+ f (B:h) T + f (D,h) dat

(B f)h+ fO-h+ g™ Buf O h) T + (8, f) h+ fDuh)dz”

using
[dz*, h] = [dh, z*] = 8, h [dz”, a"] .

Hence

Q‘»

W(fh) = Ouf)h+fOuh

Or(fh) = (e f)h+ fOrh+g" DufOuh.

According to the first equation, 5# is a derivation. But derivations on C'°°(M) are vector fields. Using
dua” = o,

which follows from the above formula for df, we conclude that

b= s =10,

Writing d- as O, = % g"" 0,0, + 6 with an operator J, the other equation which we obtained from the
evaluation of the Leibniz rule is turned into 6(fh) = (df) h + f 0h, so that ¢ is a derivation and thus a
vector field. Using 0;2* = 0 one finds § = 0. Q

Lemma. If g"” are the components of a symmetric tensor field and 7 a scalar 1-form on M, then the
commutation relations (2.85) are coordinate-independent (and thus define a global structure on M).

Proof:
[da” 2" = [Brz" T+ O Az, z” ]
O [da?,a”]
N [dx”l,x)‘]
Ozt O [dz”, 2]
= 8>\$“’ 8,#3”’ g T

11
= gtv r.
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Relation with bicovariant differential calculus on quantum groups.

The structure of a (Lie) group can be reformulated as an algebraic structure on the space of functions
on the group. This leads to a commutative Hopf algebra. Such an algebra can then be deformed into
a noncommutative Hopf algebra. The analogy with the canonical quantization procedure motivated the
name quantum group. An exampleis SLy(2), ¢ € C, which is a deformation of (the algebra of functions on)
SL(2,C). It is the algebra A generated by elements 2%, k = 1,...,4, which satisfy certain commutation
relations and the ‘g-determinant’ constraint z'z* — ¢ 2?2 = T (with a unit element T). The additional
Hopf algebra structure can be used to narrow down the large number of possible differential calculi on
such an algebra and leads to the concept of a bicovariant differential calculus [10]. Of particular interest
appear to be those calculi for which the dimension of the space of 1-forms (as a left or right A-module)
coincides with the number of generators of A. For SL,(2) this is four or three, depending whether one
believes that the above quadratic constraint should eliminate one of the generators. It turns out that
there are no three-dimensional bicovariant calculi. There are two four-dimensional bicovariant calculi
which both do not yield the ordinary differential calculus on SL(2,C) in the classical limit ¢ — 1. One
of them has the form (2.85) after elimination of z* via the determinant constraint [32] (see also [30, 31]).

Relation with proper time theories and stochastic calculus on manifolds.
When 7 = v dt where ¢ is a parameter (extra coordinate), we may consider (smooth) functions f(z#,t)
depending also on ¢. (2.87) then has to be replaced by'®

df = (0, + %g‘“’ 8,0,) f dt + 0, f da* . (2.89)

1. Let v = —ih. The (generalized) partial derivative associated with ¢ is then the operator ih 0, +
(h2 /2) g"¥ 0,0, which appears in the Schrédinger equation of quantum mechanics. If g"* is the Minkowski
metric, this is the five-dimensional Schrodinger operator of proper time quantum theory (see [33] for a
review). The noncommutative differential calculus may thus be viewed as a basic structure underlying
such proper time theories. See [34, 29].

2. The formula (2.89), with a positive definite metric v g*¥, is known in the theory of stochastic processes
as the Ito formula. This suggests that the noncommutative differential calculus provides us with a
convenient framework to deal with stochastic processes on manifolds [35]. Up to first order there is
indeed a translation [30] to the (It6) calculus of stochastic differentials. In contrast to the Ito calculus,
our differential calculus admits an extension to higher order forms. It is not known, however, whether
there is a stochastic interpretation of the higher order forms. See also [31]. For an application of the
formalism to kinetic theory see [36].

There are differential calculi with (generalized) partial derivatives which are differential operators of
n-th order with an arbitrary n € IN [24]. See also section 4.2 for an example.

3 Connections in noncommutative geometry

We start with a rather abstract definition of a connection'® and then deduce familiar formulas from it
(though still their contents is pretty much unfamiliar, in general).

Let (Q,d) be a differential calculus on an associative algebra A. A connection on a left A-module T
is a C-linear map
V:I=QtouT (3.90)
such that
V(fy)=df ®ar+fVy (3.91)

18In the proof of the first Lemma, the operator § now becomes ;.
9In the context of classical differential geometry this is due to Koszul. It has been generalized to the framework of
noncommutative geometry by Karoubi and Connes.
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for all f € A and v € I'. This extends to a linear map
V:Qosal 2 Qoul (3.92)
via
Vix¥)=dy ¥+ (-1)"x VU (xeQ, TeQaoal). (3.93)
The curvature of V is the map V2.

If T has a basis e, A=1,...,n, then

v = yaet  (ya€ A (3.94)
Vy = dys®aq eA+7A VeA = (dya —vB ABA)®A e . (3.95)
—_————
= D’)/A

Here we have introduced connection 1-forms A% g via

Vet =i —Adp @€l . (3.96)
Furthermore,
Viy = d(dya —y8 APa) @4 et — (dya — v AB4) Ve
= —7a(dAp + A% A%p) @4 e (3.97)
=. FAB

where the curvature (or field strength) 2-form
F=dA+AA (3.98)
appears. A gauge transformation is given by
e et = atp el (3.99)
with @ € GL(n, A). This induces the following transformation laws,

A = A=aAa'+ada? (3.100)
F — F =aFa". (3.101)

Let Q(A) be a differential calculus on A, V a left .A-module connection on an A-bimodule I and V'
a connection on a left A-module I". Is is possible to build from these a left A-module connection Vg, on
the left A-module ' @ 4 I 7 In classical differential geometry we only need to introduce a connection on
1-forms. It then induces a connection on arbitrary tensor fields. Is there a similar construction in the
more general framework? Obviously the naive ansatz Vg = V ®id’ +id ® V' does not work since the
last part maps into the wrong space. What is needed is a suitable ‘twist map’ ¥y : T®@4 Q! — Q' @4
which may depend on the connection V. This suggests the ansatz

Vo =V®id + (¥y ®id) o (ido V') . (3.102)
Then Vg is a left A-module connection iff ¥y is an A-bimodule homomorphism with the property
Uy(y@adf) =V )= (V) f. (3.103)

If such a map exists, then V is called extensible. See [37] for an analysis of the extension problem for
connections and for related references.
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3.1 Connections on a finite set

Let (©2,d) be a differential calculus on the algebra A of functions on a finite set (cf section 2.1). A
connection 1-form can be expressed as

A= Z A,‘j €ij (3104)
(%

where A;; are m x m-matrices with entries in €. We introduce

Uyj =1+ Aij fori#j, Uiz =1. (3105)

Lemma. Under a gauge transformation with a € GL(m, A),

Ui = a(i)Uga(j)™". (3.106)

Proof: We only need to consider the components U;; with i # j which are collected in

U .= Zeij + A= ZUijeij .

i,J (Y]
With A’ =aAa=! 4+ ada™! we find
U = Z eij + A
i,j
= Y ej+tada +a ) [a()™ —ai) e
i,j i,

= adal+a Zeij a(j) ' =aUa™
i,j

Za(i) Uija(j) ™" ey

i,j

using (2.16) and (2.19). Q

For the curvature (or field strength) of A we get

F=dA+AA=> (U Uy — Us)eiji - (3.107)
i,7,k

Ui; should be regarded as a ‘transport operator’ (which maps a vector at point j to one at point 7).
Vanishing curvature, i.e., F' = 0 then means (oriented) path independence of the transport.

Example. Let us consider the differential calculus determined by the following digraph on a set of four
points.

3e—»e2

0 1

From the basis 1-forms e;; we can only build the two-forms egi» and egs2 by concatenation. The rules
of differential calculus impose the relation egza = —eg12 (cf section 2.1.1). Now (3.107) becomes F =
(U01U12 — U03U32) €012- Hence F' = 0 means U01U12 = U03U32. @
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3.1.1 Involutions, ‘symmetric’ differential calculi, and the Higgs potential

On the algebra A of complex functions on M there is a natural involution given by complex conjugation:
(fh)* = h* f*. This extends to some differential calculi if we require that (df)* = —d(f*) where f € A.
As a consequence, using the Leibniz rule we have

62} = €j; (3108)

so that the digraph associated with the (first order) differential calculus has to be symmetric (in the sense
that if two vertices are connected by an arrow, then also the reverse arrow must be present).2’ Hence,
the involution only exists on differential calculi with symmetric graphs.

A connection 1-form A is anti-Hermitean if

Al =—4 where Af = Zefj A;rj = ZAL- e = ZAI]- €ji . (3.109)
2 i,J i,J

The dagger extends the involution % to matrices of forms. For matrices of 0-forms it means taking the
Hermitean conjugate matrix. The above condition implies

Ul =Uj; . (3.110)

Ezample. Let us consider M = Z> = {0,1} with the universal differential calculus. The only basis
1-forms are eg; and e;o. Concatenation only yields the 2-forms egyg and ejg;. The involution acts on
them as follows,

€010 = €010, €jg1 = €101 - (3.111)
For an anti-Hermitean connection, (3.107) reduces to
F = (Up1 Uro — Ugo) €010 + (Uro Upt — Ur1) €101 = (67 ¢ — 1) eoro + (¢ 9" — 1) e101 (3.112)
where we introduced ¢ := Ujg. Defining a Hermitean inner product on the space of 2-forms by
(€010, €010) = (e101,€101) =1, (ep10,€101) =0 (3.113)
and a Yang-Mills action as
Sym :=tr(F,F), (3.114)

the latter is gauge invariant under gauge transformations with af = ¢~!. Inserting the above expression
for F', one finds

Syar = 2tr (¢f ¢ — 1)* (3.115)

which physicists recognize as a Higgs potential, a substantial ingredient of the action for the standard
model of elementary particles. Extending the space to R* x Zs, ¢ indeed becomes a field on R* and
in this way one recovers the Higgs field in elementary particle physics models (see [39]). Such a result is
not too surprising since it has been known for quite a while that dimensional reduction of a pure gauge
theory on a space R* x S? leads to Higgs fields [40]. One should think of Z, as a discretization of the
sphere S2. A really new aspect is that on a discrete set one can accomodate different gauge groups. ©

20Gee also [38] for some aspects of noncommutative geometry of symmetric digraphs (i.e., symmetric first order differential
calculi).
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3.2 Connections on a lattice

Let us now choose A as the algebra of all functions on R"™ (or on an n-dimensional lattice with spacings
¢) and the differential calculus introduced in section 2.2.3 with £ > 0. A connection 1-form A can
then be expressed as A = A, da* with matrices A, (the entries of which are functions). We introduce
left-coeflicients of its field strength F' via

F = F,, dz" da” (3.116)
and define?!
Ft:=F, da" dz” (3.117)

where the dagger acts on matrices of functions by Hermitean conjugation. An analogue of the classical
Yang-Mills action is

Sy oy = /EYM where Ly := tr(FJr *F) . (3.118)

Here the integral and the x-operator are those of section 2.2.3. In the definition of the x-operator we
choose the Euclidean metric for what follows. Using

FtxF = FJV daz” dz¥ x Fyy dz" da? = FJ,,(:U) Fox(z 4+ 04 + 07 — 05 — ) da* dz” * (dz" dz?)
= QFJ,,(:U) F* (z)dat - - da" (3.119)
one finds
Ly = 2tr[F, (2)T F* (2)]d"z . (3.120)

Lemma. Ly is invariant under unitary gauge transformations.

Proof: From
F'=aFa "' =a(x)F,(z)a(z + "+ ")~ dzt dz”
we get
rt' = a o+ 0"+ ") Fyy(x) a(z)t da” da” .
With af = a~! this implies
Fl,(2) = a(x + " + ) F (2) a(2) .
Hence

tr[F, ()T F* (2)] = trla(z + 0 + 7)) F ()T a(x) ™ alz) F* (z) a(z + 04 + €)™Y
= tr[F, (2)! F*(2)]

using the cyclicity of trace. Q
Let us introduce
1 1
U:=3 ;dxﬂ + A= Uu(w)da. (3.121)

In the following, we prove some properties of U. We then express Sy in terms of U, (z) and establish
contact with a familiar formulation of lattice gauge theory.

21 This definition differs from that in section 3.1.1. The latter cannot be used here because the lattice differential calculus
is not symmetric (cf section 2.1.3).
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Lemma.
U=aUa™ !

Proof:

1
U = 7 de“ +aAa! = (da)a™?
m

1 » 1 »
= 3 zﬂ:dx“ +aAda — Zz[a(x-i-ﬁ") —a(z)]dz* a

"

1
a (Z de”-l—A) a !
o

using (2.73).
Lemma.
=dA+ A2 =U?.

Proof:

. 1 .
2 _ 2
v = 62 E dz# dz” +Z E (det A+ Adat)+ A

= = Z dz# dz” % Z dz* A, (x)dz”  +Adz*) + A?
w

= A, (x+ ") daH da¥
= 3 Z (z + ") — A, (z)] dz* dz” + A?

= dA + A%
Now we have
1
F = U*= 7 Uu(z) Uy, (z + ¢#) dz* da”
1 v 14
= o [U,(z) Uy(x+ *) = Uy(x) Uy (z + €7)] dat da
and
1
tr[F, (z)T F*(z)] = 201 tr[U, (z + ) U, (2)T U*(2) U (2 + %)
~U,(z + " U, (2)T U (z) U*(z + £)] .

Assuming

-1
Ul =U;
(which restricts the connection), this becomes
= tr[F (2)f F* (2)]
- e4 Ztr Uy(z+ ") U, (2) " U (2) UF (2 + £7)]
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where 1 is the unit matrix in the gauge group. For the Yang-Mills action we now obtain

Svw =gz [ U @U e+ ) Ulo+ )7 Uo) % (3128)

using the cyclicity of the trace. The integral sums the values of the integrand on a hypercubic lattice (cf
section 2.2.3). The result is then precisely the action of lattice gauge theory [41, 42]. Regarding U, (x)
as a transport operator from the lattice site z to the neighbouring site = + ¢, the action involves a
summation over all transports (‘Wilson loops’) around plaquettes of the hypercubic lattice (see the figure
below).

Ui (ZL“O + 62)71

UQ(ZU())_I UQ(iUo +€1)

Lo Uy (zo)

The lattice version of gauge theory is crucial for numerical calculations in high energy physics, giving
insight into nonperturbative features of the corresponding quantum theory. In particular, this concerns
the problems of quark confinement and masses of elementary particles.

3.3 Linear connections in noncommutative geometry

A connection is called a linear connection when the module I is the space of 1-forms, i.e., [' = Q!. Hence
it is a map

V:Q = 0te,0f (3.129)
such that
V(fw)=df osw+fVw  (feA weQh). (3.130)
It extends to a map
Qa0 - Q0! (3.131)
via
Vixw) =dx @4 w+ (=1)" x Vw (x Q). (3.132)

Besides the curvature V2 we now have torsion
T:=d—-moV (3.133)
where
T e 502 (3.134)
is the canonical projection.
If Q' has a left A-module basis 6%, i = 1,...,n, then

w=w; ", Vw = Dw; ®4 6" V3 = - @467 (3.135)
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where

Dw,- = dw,- — Wy wj,- = d’wi — wj sz ek (3136)

. . . 1 .
QY dw'; + wipwk; = 5 i ok o' . (3.137)

The 1-forms w?; and the 0-forms Ffj, R'ji are defined by these formulas. Under a change of basis (i.e.,
a gauge transformation)

0 a';07  (a';) € GL(n, A) (3.138)
we have

w; = w;(a”h); (3.139)

Dw; + Duw;(a™"); (3.140)

w' = apwh (@) +alrd(e (3.141)

QY = d Qe (3.142)

But Rijkl does not transform in such a simple way as long as elements of .4 do not commute with 1-forms.
As a consequence, there is no direct analogue of the Ricci tensor (which appears in the field equations of
general relativity). For the torsion we find

T(0") = d0' — 7o VO = db +w'; 67 . (3.143)

The classical Cartan formulas for curvature and torsion are thus carried over without any change to the
general framework. As a consequence, also the first and second Bianchi identities hold unchanged, i.e.,

DT(0) = dT'0)+wT(F) =086 (3.144)
DO = dQ+wQ—-Quw=0 (3.145)

in matrix notation.

Remark. So far we only considered connections on a left A-module. There are corresponding formulas
for right A-module connections. Since Q! is a bi-module, there are indeed left and also right connections.
These have to be distinguished. Though V : Q! — Q! @4 Q! looks very much ‘symmetric’, the two
factors Q' on the right hand side play very different roles. Q

3.3.1 Linear connections on finite groups

Very simple examples of spaces which can be equipped with geometric structures are given by finite sets
and in particular finite groups. The left and the right action of the group on itself can then be used to
narrow down the possibilities of differential calculi, connections, and tensor fields by imposing a symmetry
condition. We shall not go much into all that here (see [37] for more details).

Let G be a finite group. There are left-covariant and right-covariant differential calculi.?? The
universal differential calculus is both, left- and right-covariant, i.e., bicovariant. We introduce the left-
invariant Maurer-Cartan forms

09 = €h-g,h ‘= Z €h.g,h (g S G) (3146)
helG

where e, j, := e, dey, for g # h and e, , = 0, cf. section 2.1. Each other left-covariant differential calculus
is obtained by setting some of the Y to zero. Note that ¢ = 0 where e is the unit element in G. The
nonvanishing 69 then constitute a basis over € of the space of 1-forms. One also obtains an analogue of
the Maurer-Cartan equation of classical Lie group differential geometry,

dge = —C" 6292 (3.147)

22More generally, such concepts apply to Hopf algebras including quantum groups, see [10].
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with

057gr = _6!’; — 6!,;/ + 65,!]/ . (3148)

There are also right-invariant Maurer-Cartan forms
A (3.149)

in the universal differential calculus and all other right-covariant differential calculi on G are obtained by
setting some of them to zero.

For a bicovariant differential calculus on G there is a unique bimodule homomorphism o : Q'® 40! —
Q! @4 Q! such that

ol @aw)=w®40 (3.150)

for all left-invariant 1-forms 6 and right-invariant 1-forms w (which are linear combinations of Maurer-
Cartan forms with coefficients in C). The map o satisfies the braid equation.

An example of an extensible (left .A-module) linear connection on G with a bicovariant differential
calculus is given by

VOw=posw—oweap), p::Z&q. (3.151)
9EG

It satisfies V(?)09 = 0 (i.e., the left-invariant Maurer-Cartan forms are covariantly constant) and, as a
consequence, has vanishing curvature. This connection has torsion, however, and it is bi-invariant. It is
a perfect analogue of the classical connection which determines the ‘+-parallelism’ on a Lie group [43].

An example of a torsion-free connection is given by
VO" = —Cg g 02 ©462. (3.152)

It is left-/right-invariant for a left-/right-covariant differential calculus on G. This connection is not
extensible, in general (cf [37]).

In this subsection we have touched upon a new approach towards geometry of finite groups. So far
this is ‘just’ mathematics and applications in a physical context are still missing. If discrete spaces and
concepts of discrete space-time are addressed, one should expect the above concepts to be of similar use
as their counterparts in ordinary differential geometry.

4 Applications in the context of integrable models and soliton
equations

For two-dimensional o-models there is a construction of an infinite sequence of conserved currents [44]
which can be formulated neatly in terms of ordinary differential forms. This then suggests to generalize
the notion of a o-model to noncommutative differential calculi such that the construction of conservation
laws still works. In this way one obtains a simple though very much non-trivial application of the
formalism developed in the previous sections. Our presentation is based on [45, 46].

In the second part of this section we reveal some interesting relations between certain noncommutative
differential calculi on R? and R?, and the KdV and KP equation, respectively. This material is taken
from [47].
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4.1 Generalized integrable o-models

Let A be an associative and commutative algebra with unit I and (£2,d) a differential calculus on it.
Furthermore, let x : Q' — Q! be an invertible linear map such that

*(wf)=f*w (4.153)
and
wxw' =w' *xw . (4.154)
In addition, we require that
dw=0 <& w=x%x*dy (4.155)

with some function x. Furthermore, let a € GL(n, A) and A := a!da. Then

Fi=dA+AA =0 (4.156)

since da=! = —a~! (da) a~!. The above definitions are made in such a way that the field equation of a
generalized o-model

dxA=0 (4.157)

and the construction of an infinite set of conservation laws in two dimensions [44] generalize to a much
more general framework.

Lemma. If d* A =0, then
d*Dyx =D *dy

for an n X n matrix x with entries in A, where Dy :=dx + A x.
Proof: Using the two relations (4.153) and (4.154) we find

d*(Aij Xjk) = d(Xjk *Aij) = (dek) *Ai]’ +Xjk d*Ai]’ = Aij *deIc

and thus
dx Dy =dxdy +d(*4Ax) =dxdxy + Axdy =D xdy .
Q
Let
I o 0
ORI A (4.158)
S N
0 0 1
Then
JW =Dy =4 (4.159)
so that
dx JW =0 (4.160)
as a consequence of the field equation. Thus, using (4.155),
JO = dy® (4.161)
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with a matrix x"). Now, let JU™ be a conserved current, i.e.,

J0 = wdy (™ (4.162)
Then
Jm+h = D™ (m > 0) (4.163)
is also conserved since
dxJHD = dx D™ = Dxdy™ = DJ™ = D2y(m=D
= FxmVY=0 (m>1) (4.164)

using the Lemma and (4.156). Starting with J(!), we obtain an infinite set of conserved currents. In
case of the ordinary differential calculus on a two-dimensional Riemannian manifold, this construction
reduces to that described in [44].

Let us (formally) define

xi= 3 A (4.165)
m>0

with a constant A # 0. Then (4.162) and (4.163) lead to

*dy = ADy . (4.166)
As a consequence of this equation we have
0=dxDx'; = Dxdx’; + x*; dx A, (4.167)
(cf the proof of the Lemma) and
Dxdy=AD?’x=AFx. (4.168)

With A = a~! da, the integrability condition of the linear equation (4.166) is the field equation (4.157).

We have extended the definition of (a class of) generalized o-models to a rather general framework
of noncommutative geometry, though still with the restriction to a commutative algebra A. But already
for commutative algebras with noncommutative differential calculi (where functions and differentials do
not commute, in general) a huge set of possibilities for integrable models appears. We refer to [45, 46)
for further details and results.

4.1.1 A simple example: recovering the Toda lattice

Let A be the (commutative) algebra of functions on IR x ¢Z which are smooth in the first argument.
Here (Z stands for the one-dimensional lattice with spacings £ > 0. A special differential calulus on A
is then determined by the following commutation relations,

[dt,t] =0, [dz,z]=(dz, [dt,z]=[dz,t]=0 (4.169)

where ¢t and z are the canonical coordinate functions on R and ¢Z, respectively. As a consequence, we
have

dt f(t,z) = f(t,x)dt, dx f(t,z) = f(t,z+ ) dx (4.170)

and

df:f'dt+%{f(t,a:+€)—f(t,x)}da: (4.171)
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where f := 8f/0t. Furthermore, acting with d on (4.169), we obtain
dtdz = —dzdt, dtdt=0=dzdx, (4.172)

but this familiar anticommutativity of the differentials does not extend to general 1-forms.
We define a generalized Hodge operator by

*dt = —dz, *dr = —dt (4.173)

which copies the familiar rules for the Hodge operator associated with the two-dimensional Minkowski
metric. The action of x extends to Q! via (4.153). It is now easily verified that (4.154) and (4.155) are
indeed satisfied. Therefore, the construction of conservation laws does work in the case under consider-
ation. Let us look at the simplest generalized o-model where a is just a function (i.e., a 1 X l-matrix).
Let us write

o = ¢ alt) (4.174)
with a function g. Then
A=elde "= —q,dt + %(eq’rq’chl —1)dx (4.175)
where g (t) := q(t,kl), k € Z.?> Now
*A = ¢y do — %(eq’“—“q’“ —1)dt (4.176)
and
0O=dsd= (q‘k + %(eqrqw - er—lq'e)) dt de (4.177)

which is the nonlinear Toda lattice equation [48]. In this way a new and simple understanding of its
complete integrability has been achieved. We have revealed a ‘geometry’ behind the Toda lattice equation.
Generalizations of the Toda lattice are obtained by replacing the function a with a GL(n, A)-matrix [45].

Remark. Consider a linear chain of equal particles with mass m connected by springs. If ¢, is the
displacement of the nth particle from its equilibrium position, then the equations of motion are

mgn =V (g1 — @) = V'(@n — ¢n-1) (4.178)
where —V'(r) = —dV/dr is the force of the spring when stretched by the amount r. In case of the
nonlinear Toda lattice model, the potential is taken to be

Vi(r) := % e’ +ar (4.179)

with constants @ > 0 and b > 0. For small r this is a harmonic oscillator potential. The equations of
motion now read

mi, = a [e*b(q"*q"*l) — e*b(q"“*q")] (4.180)
By a rescaling of the ¢, we can achieve b = 1 and recover (4.177). With
Tn = qn+1 — qn (4.181)
the equations of motion take the form

m#, = 0[2 e—brn _ e—b?‘n+1 _ e—b?“n—l] . (4182)

23More precisely, we should regard k as the canonical coordinate function on Z.

30



A special solution is given by

et 1= % w? [cosh(kn + wt)] ™2 (4.183)

with w = y/ab/m sinh k. This is a pulselike wave, a ‘soliton’. There are in fact multi-soliton general-
izations of this solution. Several solitons can move on the lattice, interact and afterwards emerge with
the same shape they had before the scattering. The Toda lattice plays a role in the modelling of the
propagation of sound waves through a crystal lattice and several other physical problems. Q@

4.2 Soliton equations and the zero curvature condition

Famous soliton equations are known to admit zero curvature formulations (see in particular [49]). For
example, the KdV and sine-Gordon equation are obtained from the equation

Fi=dA+AAA=0 (4.184)

where A is a special SL(2,C) connection. It is essential here to deal with a noncommutative matrix
algebra since otherwise the nonlinear term A A A would drop out. The situation is very different for
a noncommutative differential calculus where AA # 0 in general already for a single 1-form A, i.e., a
GL(1,R)-connection.

4.2.1 A noncommutative differential calculus and the KdV equation

Given some partial differential operators, we may look for a differential calculus in which they appear
as generalized partial derivatives. If such operators emerge from a certain mathematical or physical
problem, there is some hope (but no guarantee) to gain an improved understanding of the underlying
mathematical structure in this way.

As an example, let us consider A = C*(IR?) and the two differential operators

A 0 o? 02

O == 5 + ab prel A:=b 507 (4.185)
where a, b are constants and ¢,z coordinates on IR*. The two differential operators appear (for a special
choice of the constants) in the Zakharov-Shabat scheme as ‘undressed operators’ from which the Korteweg-
deVries?* (KdV) equation is recovered (see [50], section 6.2, for example). In order to incorporate these
operators as generalized partial derivatives of a differential calculus, we make the following ansatz for the
(generalized) differential of a function f € A,

Af = (fo + ab foe) dt + foda + b for € (4.186)

using the abbreviation f; := 0f/0t and a l-form £. So far we only require that {d¢,dz,&} is a left
A-module basis of the space of 1-forms Q' (so that every 1-form can be expressed as a linear combination
of dt,dx, £ with coefficients in A to the left of these special 1-forms, as in the above expression for df).
Now we have to find the commutation relations which the basis 1-forms satisfy with a function f € A.
These are obtained using the Leibniz rule. One finds

dtf = fdt (4.187)
§f = [&+3afe (4.188)
def = fdo+2bf, &+ 3abfo,dt. (4.189)

24The KdV equation describes the propagation of shallow water waves. In 1844 John Scott Russel reported on an
observation of a heap of water in the Edinburgh-Glasgow channel which kept its shape and velocity over several miles. He
also performed laboratory experiments, generating such water ‘solitons’ by dropping a weight at one end of a water channel.
In 1895 Korteweg and deVries derived a nonlinear equation (which now carries their names) describing the propagation
of shallow water waves and showed the existence of solutions with the proposed behaviour. In 1965 Zabusky and Kruskal
discovered that two such solitons emerge unchanged from a collision. Zakharov and Faddeev in 1971 used the inverse
scattering theory (invented by Gardner, Greene, Kruskal and Miura) to prove complete integrability of the KdV equation.
The latter appears in a variety of different physical systems like ion-acoustic and magnetohydrodynamic waves in a plasma,
anharmonic lattices, longitudinal dispersive waves in elastic rods, pressure waves in liquid gas bubble mixtures, rotating
flow down a tube, and thermally excited phonon packets in low temperature nonlinear crystals.
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In terms of the coordinates ¢,z the only nonvanishing commutators are thus
[dz,z] = 2b¢, [€, 2] = 3adt . (4.190)

Applying d to these equations, using the Leibniz rule, d*> = 0 and the commutation relations again, leads
to

dtdt =dtde +dedt =¢(E=€6dt+dtE=Ede+dzé =0 (4.191)
and the less familiar relation
d¢ = —% dedz . (4.192)
The most general GL(1,R) connection 1-form is
A=wdt+vdr +u (4.193)

where u,v,w € A. Evaluation of the zero curvature condition

F=dA+AA=0 (4.194)
leads to the following set of equations,
1 2
—Eu-l—vz +v° = 0 (4.195)
v +abvype +3abv vy, +3auv, —w, = 0 (4.196)
Ut + abUyyy + 3auuy —bwy, +bv (3au, —2w), = 0 (4.197)

where the first equation reminds us of the Miura transformation (see [50], for example). The third

equation obviously decouples from the others if we choose??
3
w, = 2 algy - (4.198)
(4.197) then becomes
1
up + 3auu, — 3 abtgyy =0 (4.199)

which for a = =2, b = 1 is the KdV equation (see [50], for example). With the help of (4.195), the
equation (4.196) is turned into

1
v — iab Vpww + 3abv?v, =0 (4.200)

which is known as a ‘modified KdV equation’ [50].2¢ It is surprising that both, the KdV and the mKdV
equation appear jointly in our mathematical scheme.

In the above differential calculus it is consistent to impose the additional condition that the 1-form &
is closed, i.e. d¢ = 0. The above formulas remain valid, except that now dz dz = 0. The zero curvature
condition is then slightly less restrictive. It still leads to (4.196) and (4.197), but (4.195) is replaced
by the weaker equation § u = v, + v? + X with a function A(). For constant A\ we rediscover what is
sometimes referred to as the ‘Miura-Gardner transformation’.

25Taking (4.195) into account, one finds a more general solution of the decoupling problem, namely w, = % QG Uzy + CUz
with a constant c¢. This takes care of the freedom of Galilean transformations of the KdV equation. See [47] for details.

26 The modified KdV equation describes acoustic waves in certain anharmonic lattices as well as Alfén waves in a colli-
sionless plasma, for example.
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4.2.2 From KdV to KP

The differential calculus associated in the previous subsection with the KdV equation involved a 1-form ¢
which could not be expressed as the differential of some coordinate, at least as long as we do not extend
the algebra C*°(IR?). It is indeed tempting, however, to replace it by A = C*(IR*) and ¢ by dy where y
is the third coordinate. Using the Leibniz rule and the commutativity of the algebra A, we find

3adt = [, 2] = [dy, z] = [dx, y] (4.201)

which determines the minimal extension of the differential calculus considered in the last subsection.
Then

dtf=fdt, dyf=fdy+3af,dt, def=fde+2bf,dy+3a(fy+0bfs)dt (4.202)
and
df = (fi +3a fuy + ab foue) dt + (fy + b frr) dy + fo dz . (4.203)
The basis 1-forms dt, dz, dy satisfy the ordinary Grassmann commutation relations.

The zero curvature condition F' = 0 for a 1-form A = w dt + udy + v dx leads to the set of equations

Uy = Uy +b(vy + v?), (4.204)
Wy = U+ 30Uy + abvyey + 3auv, + 3av(vy + bvgg) (4.205)
Wy + bWy = U+ 3aUzy + abugyy +3auuy — v (2bwy — 3a (uy +bugy)) - (4.206)

The next step parallels that of the KdV case treated in the previous subsection. v is obviously eliminated
from the last equation by setting

3a 3a
=% Uy + 5 Ugy - (4.207)

Taking (4.204) into account, (4.206) then reduces to

Wy

3 b
wy = up + ?a Ugy — % Ugpe + 3A UL, . (4.208)

Now there is an integrability condition. Comparing the results obtained by differentiating (4.207) with
respect to y and (4.208) with respect to x, we obtain

b 3
(uy — % Uprr + 3QUUL), — ot Uyy =0 (4.209)

which is the Kadomtsev-Petviashvili (KP) equation (for the choices of the constants a, b mentioned earlier,
see [50] for example).?7

Let us now turn to the equation for v which resulted from the zero curvature condition. Taking (4.207)
into account, we have

3a 3a ab
5% Uy = v + ) Uy — 5 Vpps — 3abv§ + 3avvy + 3auv, . (4.210)

Expressing v as
V= (g (4.211)
with a function ¢, (4.204) becomes

Up = Qoy + b (Goe + 43)a (4.212)

2TRelaxing the restriction to strictly one-dimensional waves in the derivation of the KdV equation, one is led to the KP
equation [51]. See also [52]. Quite surprisingly, the KP equation appears in various mathematical problems.
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and thus
u = qy+ b (‘Jmc + qz) +f (4'213)

where f is a function which does not depend on x, i.e. f(¢,y). Now we can eliminate u from (4.210) and
obtain

ab 3a
-2 %(qyy +£,)=0. (4.214)
Expressing f as f = h, with a function h(t,y), a field redefinition ¢ — ¢ — h eliminates f from the last
equation and we get

(Qt — C(qy Qraz + abqg)w + 3a (Qy + f) Qea —

ab 3a
(Qt —CQqg — 5 Quaw + ab qg)z + 3a Qy Qee — 2_be3; =0. (4'215)

This equation may be called a ‘modified KP equation’ (mKP). Given a solution ¢ of the mKP equation,
then u determined by (4.213) is a solution of the KP equation.

Although it is quite striking that the KdV and the KP equation are so nicely related to a certain
differential calculus, it is not yet clear what is really behind all that. In particular, it still has to be seen
in which way one could profit from this observation.

5 Final remarks

In this report we have collected many examples which, according to our opinion, contribute to an un-
derstanding of what noncommutative geometry is all about. More precisely, we have concentrated on
examples where the basic algebra A is commutative, i.e., we dealt with noncommutative geometry of
topological spaces (like discrete sets and manifolds). It should be clear from this report that already on
this level, noncommutative geometry leads into a huge new world of interesting structures and possibil-
ities for applications in mathematics and physics. Only a tiny portion of it has been explored so far.

In principle, all those classical models and theories which can be (nicely) formulated in terms of
(ordinary) differential forms can be deformed to noncommutative differential calculi. But there is no
guarantee, of course, that this procedure leads to something really interesting. From an exercise to a
nontrivial result is still a long way. It is good to have a kind of guiding principle. Some of my own
work with A. Dimakis originally aimed at a formulation of discrete gravity (an alternative to Regge
calculus) in the framework of noncommutative geometry. This problem is still not satisfactorily solved,
but on the way I think we made some nice observations. The guiding principle behind our construction
of generalized o-models (including the Toda lattice) was of a technical nature. The idea was to deform
ordinary o-models in such a way that the known construction of an infinite set of conserved currents still
works.

Again, we have to stress that our collection of material and references only displays a very small
portion of the field of noncommutative geometry. The material which we presented in these lectures
centers around own work and was not intended to cover much about different approaches and results
of other authors. Actually, applications of noncommutative geometry to commutative algebras have not
really been taken much into consideration by other authors, except for the example of the two (and three)
point set which plays a crucial role in the particle physics models of Connes and Lott [39] (see also [53]
for a ‘gravity’ approach).

Acknowledgment. I have to thank the organizers of the conference and in particular Claus Lammerzahl
and Alfredo Macias for an enjoyable time in Mexico.
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