Eric Forgy Discrete Martingales

Content

Introduction

The following material reviews some aspects of martingales from the perspective of discrete stochastic calculus. In particular, it is illustrated how different choices of basis vectors, i.e. basis 1-forms, for the same underlying process lead to well known Ito and Stratonovich representations in the continuum limit.

In what follows, we consider a binary tree to be a directed graph 𝒒=(𝒒 0,𝒒 1)\mathcal{G} = (\mathcal{G}_0,\mathcal{G}_1), where 𝒒 0\mathcal{G}_0 is the set of nodes of the tree and 𝒒 1\mathcal{G}_1 is the set of directed edges of the tree. Each node (i,j)βˆˆπ’’ 0(i,j)\in\mathcal{G}_0 of the tree is indexed by two integers representing its position in space and time. For instance, consider the following diagram.

β€’ (i+1,j+1) β†— (i,j) β€’ β†˜ β€’ (iβˆ’1,j+1)\begin{matrix} {} & {} & {} & \bullet & (i+1,j+1) \\ {} & {} & \nearr & {} & {}\\ (i,j) & \bullet & {} & {} & {} \\ {} & {} & \searr & {} & {}\\ {} & {} & {} & \bullet & (i-1,j+1) \end{matrix}

We think of time as flowing left to right and the node’s position in time is marked by the second index jj.

In ForgySchreiber2004 and references therein (particularly those of Dimakis & Mueller-Hoissen), it is shown that a unique discrete calculus is associated to every directed graph. This discrete calculus has an associative product and a derivation satisfying the graded Leibniz rule

d(Ξ±Ξ²)=(dΞ±)Ξ²+(βˆ’1) |Ξ±|Ξ±(dΞ²)d(\alpha\beta) = (d\alpha)\beta + (-1)^{|\alpha|}\alpha(d\beta)

and

d 2=0.d^2 = 0.

Thus, the discrete calculus is more than a mere approximation, but is a rigorously defined mathematical framework associated to any given directed graph.

The binary tree is a particularly nice directed graph with a particularly nice discrete calculus as shown in Forgy2004. On a binary tree, there are two classes of objects of interest: discrete 0-forms and discrete 1-forms. A discrete 0-form is essentially a function whose value at every node in the tree is given and is expressed as

f=βˆ‘ (i,j)βˆˆπ’’ 0f(i,j)e (i,j),f = \sum_{(i,j)\in\mathcal{G}_0} f(i,j) \mathbf{e}^{(i,j)},

where e (i,j)\mathbf{e}^{(i,j)} can be thought of as a basis vector associated to the node (i,j)(i,j). In other words, a function on a binary tree can be thought of as a linear combination of node basis vectors.

A discrete 1-form is essentially a linear combination of directed edge basis vectors

Ξ±=βˆ‘ (i,j)βˆˆπ’’ 0α← +(i,j)e (i,j)(i+1,j+1)+βˆ‘ (i,j)βˆˆπ’’ 0α← βˆ’(i,j)e (i,j)(iβˆ’1,j+1).\alpha = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\leftarrow}{\alpha}_+(i,j) \mathbf{e}^{(i,j)(i+1,j+1)} + \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\leftarrow}{\alpha}_-(i,j) \mathbf{e}^{(i,j)(i-1,j+1)}.

What is particularly unique about discrete calculus as compared to the usual continuum calculus is that discrete 0-forms and discrete 1-forms do not commute. See Forgy2004 for more details, but defining coordinate 0-forms

t=βˆ‘ (i,j)βˆˆπ’’ 0t(i,j)e (i,j)t = \sum_{(i,j)\in\mathcal{G}_0} t(i,j) \mathbf{e}^{(i,j)}
x=βˆ‘ (i,j)βˆˆπ’’ 0x(i,j)e (i,j)x = \sum_{(i,j)\in\mathcal{G}_0} x(i,j) \mathbf{e}^{(i,j)}

we end up with the coordinate basis 1-forms

dt=βˆ‘ (i,j)βˆˆπ’’ 0Ξ”t[e (i,j)(i+1,j+1)+e (i,j)(iβˆ’1,j+1)]d t = \sum_{(i,j)\in\mathcal{G}_0} \Delta t \left[\mathbf{e}^{(i,j)(i+1,j+1)} + \mathbf{e}^{(i,j)(i-1,j+1)}\right]
dx=βˆ‘ (i,j)βˆˆπ’’ 0Ξ”x[e (i,j)(i+1,j+1)βˆ’e (i,j)(iβˆ’1,j+1)].d x = \sum_{(i,j)\in\mathcal{G}_0} \Delta x \left[\mathbf{e}^{(i,j)(i+1,j+1)} - \mathbf{e}^{(i,j)(i-1,j+1)}\right].

These satisfy the commutative relations

[dx,x]=(Ξ”x) 2Ξ”tdt[d x, x] = \frac{\left(\Delta x\right)^2}{\Delta t} d t
[dt,x]=[dx,t]=Ξ”tdx[d t, x] = [d x, t] = \Delta t d x
[dt,t]=Ξ”tdt.[d t, t] = \Delta t d t.

In the current discussion, we always set

Ξ”t=(Ξ”x) 2\Delta t = \left(\Delta x\right)^2

and any continuum limit is taken while maintaining this relation. Therefore, the commutative relations we are concerned with here are

[dx,x]=dt[d x, x] = d t
[dt,x]=[dx,t]=Ξ”tdx[d t, x] = [d x, t] = \Delta t d x
[dt,t]=Ξ”tdt[d t, t] = \Delta t d t

and in the continuum limit all commutative relations vanish except [dx,x]=dt[d x,x] = d t.

Left and Right Components

On a binary tree 𝒒=(𝒒 0,𝒒 1)\mathcal{G} = (\mathcal{G}_0,\mathcal{G}_1), there are two basic representations of coordinate basis elements to consider: left and right bases. The two are closely related and both sum to the same coordinate basis 1-forms

dt=βˆ‘ (i,j)βˆˆπ’’ 0dt←(i,j)=βˆ‘ (i,j)βˆˆπ’’ 0dtβ†’(i,j)d t = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\leftarrow}{d t}(i,j) = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d t}(i,j)
dx=βˆ‘ (i,j)βˆˆπ’’ 0dx←(i,j)=βˆ‘ (i,j)βˆˆπ’’ 0dxβ†’(i,j)d x = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\leftarrow}{d x}(i,j) = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d x}(i,j)

Given a 0-form

f=βˆ‘ (i,j)βˆˆπ’’ 0f(i,j)e (i,j)f = \sum_{(i,j)\in\mathcal{G}_0} f(i,j) \mathbf{e}^{(i,j)}

we have left multiplication

fdt=βˆ‘ (i,j)βˆˆπ’’ 0f(i,j)dt←(i,j) f d t = \sum_{(i,j)\in\mathcal{G}_0} f(i,j) \stackrel{\leftarrow}{d t}(i,j)
fdx=βˆ‘ (i,j)βˆˆπ’’ 0f(i,j)dx←(i,j) f d x = \sum_{(i,j)\in\mathcal{G}_0} f(i,j) \stackrel{\leftarrow}{d x}(i,j)

and right multiplication

(dt)f=βˆ‘ (i,j)βˆˆπ’’ 0dtβ†’(i,j)f(i,j) (d t)f = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d t}(i,j) f(i,j)
(dx)f=βˆ‘ (i,j)βˆˆπ’’ 0dxβ†’(i,j)f(i,j). (d x)f = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d x}(i,j) f(i,j).

The left component form is to be used when multiplying functions on the left and vice versa. Multiplying on the left and right are not equivalent due to the noncommutativity of discrete 0-forms and discrete 1-forms.

Left Bases

The left basis 1-forms

dt←(i,j)=Ξ”t[e (i,j)(i+1,j+1)+e (i,j)(iβˆ’1,j+1)]\stackrel{\leftarrow}{d t}(i,j) = \Delta t\left[\mathbf{e}^{(i,j)(i+1,j+1)} + \mathbf{e}^{(i,j)(i-1,j+1)}\right]
dx←(i,j)=Ξ”x[e (i,j)(i+1,j+1)βˆ’e (i,j)(iβˆ’1,j+1)]\stackrel{\leftarrow}{d x}(i,j) = \Delta x\left[\mathbf{e}^{(i,j)(i+1,j+1)} - \mathbf{e}^{(i,j)(i-1,j+1)}\right]

correspond to the tree element

β€’ e (i+1,j+1) β†— e (i,j) β€’ β†˜ β€’ e (iβˆ’1,j+1)\begin{matrix} {} & {} & {} & \bullet & \mathbf{e}^{(i+1,j+1)} \\ {} & {} & \nearr & {} & {}\\ \mathbf{e}^{(i,j)} & \bullet & {} & {} & {} \\ {} & {} & \searr & {} & {}\\ {} & {} & {} & \bullet & \mathbf{e}^{(i-1,j+1)} \end{matrix}

and can be inverted resulting in

e (i,j)(i+1,j+1)=12Ξ”tdt←(i,j)+12Ξ”xdx←(i,j)\mathbf{e}^{(i,j)(i+1,j+1)} = \frac{1}{2\Delta t} \stackrel{\leftarrow}{d t}(i,j) + \frac{1}{2\Delta x} \stackrel{\leftarrow}{d x}(i,j)
e (i,j)(iβˆ’1,j+1)=12Ξ”tdt←(i,j)βˆ’12Ξ”xdx←(i,j).\mathbf{e}^{(i,j)(i-1,j+1)} = \frac{1}{2\Delta t} \stackrel{\leftarrow}{d t}(i,j) - \frac{1}{2\Delta x} \stackrel{\leftarrow}{d x}(i,j).

Any discrete 1-form

Ξ±=βˆ‘ (i,j)βˆˆπ’’ 0α← +(i,j)e (i,j)(i+1,j+1)+βˆ‘ (i,j)βˆˆπ’’ 0α← βˆ’(i,j)e (i,j)(iβˆ’1,j+1)\alpha = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\leftarrow}{\alpha}_+(i,j) \mathbf{e}^{(i,j)(i+1,j+1)} + \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\leftarrow}{\alpha}_-(i,j) \mathbf{e}^{(i,j)(i-1,j+1)}

may be expressed in terms of left bases via

Ξ±=βˆ‘ (i,j)βˆˆπ’’ 0[α← +(i,j)+α← βˆ’(i,j)2Ξ”t]dt←(i,j)+βˆ‘ (i,j)βˆˆπ’’ 0[α← +(i,j)βˆ’Ξ±β† βˆ’(i,j)2Ξ”x]dx←(i,j).\alpha = \sum_{(i,j)\in\mathcal{G}_0} \left[\frac{\stackrel{\leftarrow}{\alpha}_+(i,j)+\stackrel{\leftarrow}{\alpha}_-(i,j)}{2\Delta t}\right] \stackrel{\leftarrow}{d t}(i,j) + \sum_{(i,j)\in\mathcal{G}_0} \left[\frac{\stackrel{\leftarrow}{\alpha}_+(i,j)-\stackrel{\leftarrow}{\alpha}_-(i,j)}{2\Delta x}\right] \stackrel{\leftarrow}{d x}(i,j).

In particular, the discrete 1-form

df=βˆ‘ i,j[f(i+1,j+1)βˆ’f(i,j)]e (i,j)(i+1,j+1)+βˆ‘ i,j[f(iβˆ’1,j+1)βˆ’f(i,j)]e (i,j)(iβˆ’1,j+1)d f = \sum_{i,j} \left[f(i+1,j+1)-f(i,j)\right] \mathbf{e}^{(i,j)(i+1,j+1)} + \sum_{i,j} \left[f(i-1,j+1)-f(i,j)\right] \mathbf{e}^{(i,j)(i-1,j+1)}

may be expressed in terms of left bases via

df=βˆ‘ i,j[f(i+1,j+1)βˆ’2f(i,j)+f(iβˆ’1,j+1)2Ξ”t]dt←(i,j)+βˆ‘ i,j[f(i+1,j+1)βˆ’f(iβˆ’1,j+1)2Ξ”x]dx←(i,j).d f = \sum_{i,j} \left[\frac{f(i+1,j+1)-2 f(i,j)+f(i-1,j+1)}{2\Delta t}\right] \stackrel{\leftarrow}{d t}(i,j) + \sum_{i,j} \left[\frac{f(i+1,j+1)-f(i-1,j+1)}{2\Delta x}\right] \stackrel{\leftarrow}{d x}(i,j).

It was shown in Section 5.1 of Forgy2004, that the continuum limit of the above expression

df=(βˆ‚ tf+12βˆ‚ x 2f)dt+(βˆ‚ xf)dxd f = \left(\partial_t f + \frac{1}{2} \partial_x^2 f\right) d t + \left(\partial_x f\right) d x

corresponds to the Ito formula of stochastic calculus.

Right Bases

The right basis 1-forms

dtβ†’(i,j)=Ξ”t[e (iβˆ’1,jβˆ’1)(i,j)+e (i+1,jβˆ’1)(i,j)]\stackrel{\rightarrow}{d t}(i,j) = \Delta t\left[\mathbf{e}^{(i-1,j-1)(i,j)} + \mathbf{e}^{(i+1,j-1)(i,j)}\right]
dxβ†’(i,j)=Ξ”x[e (iβˆ’1,jβˆ’1)(i,j)βˆ’e (i+1,jβˆ’1)(i,j)]\stackrel{\rightarrow}{d x}(i,j) = \Delta x\left[\mathbf{e}^{(i-1,j-1)(i,j)} - \mathbf{e}^{(i+1,j-1)(i,j)}\right]

correspond to the tree element

e (i+1,jβˆ’1) β€’ β†˜ β€’ e (i,j) β†— e (iβˆ’1,jβˆ’1) β€’ \begin{matrix} \mathbf{e}^{(i+1,j-1)} & \bullet & {} & {} & {} \\ {} & {} & \searr & {} & {} \\ {} & {} & {} & \bullet & \mathbf{e}^{(i,j)} \\ {} & {} & \nearr & {} & {} \\ \mathbf{e}^{(i-1,j-1)} & \bullet & {} & {} & {} \end{matrix}

and can be inverted resulting in

e (iβˆ’1,jβˆ’1)(i,j)=12Ξ”tdtβ†’(i,j)+12Ξ”xdxβ†’(i,j)\mathbf{e}^{(i-1,j-1)(i,j)} = \frac{1}{2\Delta t} \stackrel{\rightarrow}{d t}(i,j) + \frac{1}{2\Delta x} \stackrel{\rightarrow}{d x}(i,j)
e (i+1,jβˆ’1)(i,j)=12Ξ”tdtβ†’(i,j)βˆ’12Ξ”xdxβ†’(i,j).\mathbf{e}^{(i+1,j-1)(i,j)} = \frac{1}{2\Delta t} \stackrel{\rightarrow}{d t}(i,j) - \frac{1}{2\Delta x} \stackrel{\rightarrow}{d x}(i,j).

Any discrete 1-form

Ξ±=βˆ‘ (i,j)βˆˆπ’’ 0e (iβˆ’1,jβˆ’1)(i,j)Ξ±β†’ +(i,j)+βˆ‘ (i,j)βˆˆπ’’ 0e (i+1,jβˆ’1)(i,j)Ξ±β†’ βˆ’(i,j)\alpha = \sum_{(i,j)\in\mathcal{G}_0} \mathbf{e}^{(i-1,j-1)(i,j)}\stackrel{\rightarrow}{\alpha}_+(i,j) + \sum_{(i,j)\in\mathcal{G}_0} \mathbf{e}^{(i+1,j-1)(i,j)}\stackrel{\rightarrow}{\alpha}_-(i,j)

may be expressed in terms of left bases via

Ξ±=βˆ‘ (i,j)βˆˆπ’’ 0dtβ†’(i,j)[Ξ±β†’ +(i,j)+Ξ±β†’ βˆ’(i,j)2Ξ”t]+βˆ‘ (i,j)βˆˆπ’’ 0dxβ†’(i,j)[Ξ±β†’ +(i,j)βˆ’Ξ±β†’ βˆ’(i,j)2Ξ”x].\alpha = \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d t}(i,j)\left[\frac{\stackrel{\rightarrow}{\alpha}_+(i,j)+\stackrel{\rightarrow}{\alpha}_-(i,j)}{2\Delta t}\right]+ \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d x}(i,j)\left[\frac{\stackrel{\rightarrow}{\alpha}_+(i,j)-\stackrel{\rightarrow}{\alpha}_-(i,j)}{2\Delta x}\right].

In particular, the discrete 1-form

df=βˆ‘ (i,j)βˆˆπ’’ 0e (iβˆ’1,jβˆ’1)(i,j)[f(i,j)βˆ’f(iβˆ’1,jβˆ’1)]+βˆ‘ (i,j)βˆˆπ’’ 0e (i+1,jβˆ’1)(i,j)[f(i,j)βˆ’f(i+1,jβˆ’1)]d f = \sum_{(i,j)\in\mathcal{G}_0} \mathbf{e}^{(i-1,j-1)(i,j)} \left[f(i,j)-f(i-1,j-1)\right] + \sum_{(i,j)\in\mathcal{G}_0} \mathbf{e}^{(i+1,j-1)(i,j)} \left[f(i,j)-f(i+1,j-1)\right]

may be expressed in terms of right bases via

df=βˆ’βˆ‘ (i,j)βˆˆπ’’ 0dtβ†’(i,j)[f(i+1,jβˆ’1)βˆ’2f(i,j)+f(iβˆ’1,jβˆ’1)2Ξ”t]+βˆ‘ (i,j)βˆˆπ’’ 0dxβ†’(i,j)[f(i+1,jβˆ’1)βˆ’f(iβˆ’1,jβˆ’1)2Ξ”x].d f = -\sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d t}(i,j)\left[\frac{f(i+1,j-1)-2 f(i,j)+f(i-1,j-1)}{2\Delta t}\right] + \sum_{(i,j)\in\mathcal{G}_0} \stackrel{\rightarrow}{d x}(i,j)\left[\frac{f(i+1,j-1)-f(i-1,j-1)}{2\Delta x}\right].

The continuum limit of the above expression is given by

df=dt(βˆ‚ tfβˆ’12βˆ‚ x 2f)+dx(βˆ‚ xf)d f = d t \left(\partial_t f - \frac{1}{2} \partial_x^2 f\right) + d x \left(\partial_x f\right)

as introduced in Section 4 of Forgy2002.

Mixed Components

Given the left and right bases

e (i,j)(i+1,j+1)=12Ξ”tdt←(i,j)+12Ξ”xdx←(i,j)\mathbf{e}^{(i,j)(i+1,j+1)} = \frac{1}{2\Delta t} \stackrel{\leftarrow}{d t}(i,j) + \frac{1}{2\Delta x} \stackrel{\leftarrow}{d x}(i,j)
e (i,j)(iβˆ’1,j+1)=12Ξ”tdt←(i,j)βˆ’12Ξ”xdx←(i,j).\mathbf{e}^{(i,j)(i-1,j+1)} = \frac{1}{2\Delta t} \stackrel{\leftarrow}{d t}(i,j) - \frac{1}{2\Delta x} \stackrel{\leftarrow}{d x}(i,j).
e (iβˆ’1,jβˆ’1)(i,j)=12Ξ”tdtβ†’(i,j)+12Ξ”xdxβ†’(i,j)\mathbf{e}^{(i-1,j-1)(i,j)} = \frac{1}{2\Delta t} \stackrel{\rightarrow}{d t}(i,j) + \frac{1}{2\Delta x} \stackrel{\rightarrow}{d x}(i,j)
e (i+1,jβˆ’1)(i,j)=12Ξ”tdtβ†’(i,j)βˆ’12Ξ”xdxβ†’(i,j).\mathbf{e}^{(i+1,j-1)(i,j)} = \frac{1}{2\Delta t} \stackrel{\rightarrow}{d t}(i,j) - \frac{1}{2\Delta x} \stackrel{\rightarrow}{d x}(i,j).

we can define a mixed basis

e (i,j)(i+1,j+1)=14Ξ”tdt←(i,j)+14Ξ”tdtβ†’(i+1,j+1)+14Ξ”xdx←(i,j)+14Ξ”xdxβ†’(i+1,j+1)\mathbf{e}^{(i,j)(i+1,j+1)} = \frac{1}{4\Delta t} \stackrel{\leftarrow}{d t}(i,j)+ \frac{1}{4\Delta t} \stackrel{\rightarrow}{d t}(i+1,j+1) + \frac{1}{4\Delta x} \stackrel{\leftarrow}{d x}(i,j)+\frac{1}{4\Delta x} \stackrel{\rightarrow}{d x}(i+1,j+1)
e (i,j)(iβˆ’1,j+1)=14Ξ”tdt←(i,j)+14Ξ”tdtβ†’(iβˆ’1,j+1)βˆ’14Ξ”xdx←(i,j)βˆ’14Ξ”xdxβ†’(iβˆ’1,j+1)\mathbf{e}^{(i,j)(i-1,j+1)} = \frac{1}{4\Delta t} \stackrel{\leftarrow}{d t}(i,j)+ \frac{1}{4\Delta t} \stackrel{\rightarrow}{d t}(i-1,j+1) - \frac{1}{4\Delta x} \stackrel{\leftarrow}{d x}(i,j)-\frac{1}{4\Delta x} \stackrel{\rightarrow}{d x}(i-1,j+1)

so that an arbitrary discrete 1-form may be expressed as

Ξ± =βˆ‘ (i,j)βˆˆπ’’ 0[α← +(i,j)+α← +(iβˆ’1,jβˆ’1)+Ξ±β†’ βˆ’(i,j)+Ξ±β†’ βˆ’(i+1,jβˆ’1)4Ξ”t]dt↔(i,j) +βˆ‘ (i,j)βˆˆπ’’ 0[α← +(i,j)+α← +(iβˆ’1,jβˆ’1)βˆ’Ξ±β†’ βˆ’(i,j)βˆ’Ξ±β†’ βˆ’(i+1,jβˆ’1)4Ξ”x]dx↔(i,j)\begin{aligned}\alpha &= \sum_{(i,j)\in\mathcal{G}_0} \left[\frac{\stackrel{\leftarrow}{\alpha}_+(i,j)+\stackrel{\leftarrow}{\alpha}_+(i-1,j-1)+\stackrel{\rightarrow}{\alpha}_-(i,j)+\stackrel{\rightarrow}{\alpha}_-(i+1,j-1)}{4\Delta t}\right]\stackrel{\leftrightarrow}{d t}(i,j) \\ &\quad+\sum_{(i,j)\in\mathcal{G}_0} \left[\frac{\stackrel{\leftarrow}{\alpha}_+(i,j)+\stackrel{\leftarrow}{\alpha}_+(i-1,j-1)-\stackrel{\rightarrow}{\alpha}_-(i,j)-\stackrel{\rightarrow}{\alpha}_-(i+1,j-1)}{4\Delta x}\right]\stackrel{\leftrightarrow}{d x}(i,j)\end{aligned}

where

dt↔(i,j)=dt←(i,j)+dtβ†’(i,j)\stackrel{\leftrightarrow}{d t}(i,j) = \stackrel{\leftarrow}{d t}(i,j) + \stackrel{\rightarrow}{d t}(i,j)

and

dx↔(i,j)=dx←(i,j)+dxβ†’(i,j).\stackrel{\leftrightarrow}{d x}(i,j) = \stackrel{\leftarrow}{d x}(i,j) + \stackrel{\rightarrow}{d x}(i,j).

These mixed basis 1-forms correspond to the tree elements

e (i+1,jβˆ’1) β€’ β€’ e (i+1,j+1) β†˜ β†— β€’ β†— β†˜ e (iβˆ’1,jβˆ’1) β€’ β€’ e (iβˆ’1,j+1)\begin{matrix} \mathbf{e}^{(i+1,j-1)} & \bullet & {} & {} & {} & \bullet & \mathbf{e}^{(i+1,j+1)} \\ {} & {} & \searr & {} & \nearr & {} & {} \\ {} & {} & {} & \bullet & {} & {} & {} \\ {} & {} & \nearr & {} & \searr & {} & {} \\ \mathbf{e}^{(i-1,j-1)} & \bullet & {} & {} & {} & \bullet & \mathbf{e}^{(i-1,j+1)} \end{matrix}

Using this mixed basis, the differential becomes

df =βˆ‘ (i,j)βˆˆπ’’ 0[f(i+1,j+1)βˆ’f(iβˆ’1,jβˆ’1)+f(iβˆ’1,j+1)βˆ’f(i+1,jβˆ’1)4Ξ”t]dt↔(i,j) +βˆ‘ (i,j)βˆˆπ’’ 0[f(i+1,j+1)βˆ’f(iβˆ’1,jβˆ’1)βˆ’f(iβˆ’1,j+1)+f(i+1,jβˆ’1)4Ξ”x]dx↔(i,j)\begin{aligned}d f &= \sum_{(i,j)\in\mathcal{G}_0} \left[\frac{f(i+1,j+1)-f(i-1,j-1)+f(i-1,j+1)-f(i+1,j-1)}{4\Delta t}\right]\stackrel{\leftrightarrow}{d t}(i,j) \\ &\quad+\sum_{(i,j)\in\mathcal{G}_0} \left[\frac{f(i+1,j+1)-f(i-1,j-1)-f(i-1,j+1)+f(i+1,j-1)}{4\Delta x}\right]\stackrel{\leftrightarrow}{d x}(i,j)\end{aligned}

The continuum limit of the above expression is given by

df=(βˆ‚ tf)β€’dt+(βˆ‚ xf)β€’dxd f = \left(\partial_t f\right)\bullet d t + \left(\partial_x f\right)\bullet d x

which corresponds to the Stratonovich representation.

Discrete Martingales

On a binary tree, a discrete martingale is a function ff that has no drift, i.e. the time component of the differential dfd f vanishes. The value of the time component obviously depends on the definition of the time basis function. Different time bases will correspond to different time components for the same underlying process. Above, we have considered three distinct coordinate basis elements: 1. Left Basis (Ito) - dt←(i,j)\stackrel{\leftarrow}{d t}(i,j) 1. Right Basis (???) - dtβ†’(i,j)\stackrel{\rightarrow}{d t}(i,j) 1. Mixed Basis (Stratonovich) - dt↔(i,j)\stackrel{\leftrightarrow}{d t}(i,j)

For a process to be a discrete martingale under the left basis (Ito) representation, i.e. a left martingale, the process must satisfy

βˆ‚ t←f=βˆ‘ (i,j)βˆˆπ’’ 0[f(i+1,j+1)βˆ’2f(i,j)+f(iβˆ’1,j+1)2Ξ”t]e (i,j)=0.\stackrel{\leftarrow}{\partial_t} f = \sum_{(i,j)\in\mathcal{G}_0} \left[\frac{f(i+1,j+1)-2 f(i,j)+f(i-1,j+1)}{2\Delta t}\right] \mathbf{e}^{(i,j)} = 0.

As mentioned above, this has a nice continuum limit given by

βˆ‚ tf+12βˆ‚ x 2f=0.\partial_t f + \frac{1}{2} \partial_x^2 f = 0.

In other words, for a process to be a left martingale, it must satisfy the heat/diffusion equation.

Similarly, for a process to be a discrete martingale under the right basis representation, i.e. a right martingale, the process must satisfy

βˆ‚ tβ†’f=βˆ’βˆ‘ (i,j)βˆˆπ’’ 0[f(i+1,jβˆ’1)βˆ’2f(i,j)+f(iβˆ’1,jβˆ’1)2Ξ”t]e (i,j)=0.\stackrel{\rightarrow}{\partial_t} f = -\sum_{(i,j)\in\mathcal{G}_0} \left[\frac{f(i+1,j-1)-2 f(i,j)+f(i-1,j-1)}{2\Delta t}\right] \mathbf{e}^{(i,j)} = 0.

This also has a nice continuum limit given by

βˆ‚ tfβˆ’12βˆ‚ x 2f=0.\partial_t f - \frac{1}{2} \partial_x^2 f = 0.

In other words, for a process to be a right martingale, it must satisfy the time-reversed heat/diffusion equation.

When it comes to the mixed basis, i.e. the Stratonovich representation, things are little more tricky. In this case, the condition for the process to be a mixed martingale is

βˆ‘ (i,j)βˆˆπ’’ 0[f(i+1,j+1)βˆ’f(iβˆ’1,jβˆ’1)+f(iβˆ’1,j+1)βˆ’f(i+1,jβˆ’1)4Ξ”t]e (i,j)=0.\sum_{(i,j)\in\mathcal{G}_0} \left[\frac{f(i+1,j+1)-f(i-1,j-1)+f(i-1,j+1)-f(i+1,j-1)}{4\Delta t}\right] \mathbf{e}^{(i,j)} = 0.

One solution to this would be

f(i,j)=c,βˆ€(i,j)βˆˆπ’’ 0,f(i,j) = c,\forall (i,j)\in\mathcal{G}_0,

i.e. a constant. This corresponds to the continuum limit

βˆ‚ tf=0.\partial_t f = 0.

However, there is another solution that can be thought of as a kind of β€œnoise”. For instance, consider the process

c β€’ β€’ βˆ’c β†˜ β†— β€’0 β†— β†˜ βˆ’c β€’ β€’ c\begin{matrix} c & \bullet & {} & {} & {} & \bullet & -c \\ {} & {} & \searr & {} & \nearr & {} & {} \\ {} & {} & {} & \stackrel{0}{\bullet} & {} & {} & {} \\ {} & {} & \nearr & {} & \searr & {} & {} \\ -c & \bullet & {} & {} & {} & \bullet & c \end{matrix}

that either toggles between some constant value cc and βˆ’c-c or remains fixed at zero depending on its position in space. Although its behavior in the continuum limit would be quite violent (and non-smooth), this process would nonetheless be a Stratonovich (mixed) martingale.

References

Appendix

The following material comes from a post on the Azimuth forum. I hope to spell out some additional technical details here.

Note: My RSS reader is telling me a few comments have flown by as I type this slowly, so this may seem a bit out of place, but I’ve been meaning to expand on some things I’ve said and this is a fleeting moment.

I tend to be cavalier with preciseness, but for any purposes I’ve ever coming across, saying β€œa martingale is a stochastic process with no drift” is usually good enough.

I like to β€œthink geometrically” in terms of differential forms and a stochastic process (for many purposes) is an exact form

df.d f.

In my paper, we have the left component (Ito) representation (Equation 54):

df=(βˆ‚ ΞΌf)dx ΞΌ+(βˆ‚ tf+12g ΞΌ,Ξ½βˆ‚ ΞΌβˆ‚ Ξ½f)dtd f = \left(\partial_\mu f\right) d x^\mu + \left(\partial_t f + \frac{1}{2} g^{\mu,\nu} \partial_\mu\partial_\nu f\right) d t

and the right component (nameless?) representation (Equation 55):

df=dx ΞΌ(βˆ‚ ΞΌf)+dt(βˆ‚ tfβˆ’12g ΞΌ,Ξ½βˆ‚ ΞΌβˆ‚ Ξ½f).d f = d x^\mu \left(\partial_\mu f\right) + d t \left(\partial_t f - \frac{1}{2} g^{\mu,\nu} \partial_\mu\partial_\nu f\right).

I’ve always found it miraculous that these are both merely different representations of the same underlying stochastic process, i.e. exact 1-form, dfd f and both are derived from the simple commutative relation

[dx,x]=dt.[d x, x] = d t.

The Stratonovich representation is the average of the two and the second order terms cancel out:

df=12[(βˆ‚ ΞΌf)dx ΞΌ+dx ΞΌ(βˆ‚ ΞΌf)]+12[(βˆ‚ tf)dt+dt(βˆ‚ tf)].d f = \frac{1}{2} \left[\left(\partial_\mu f\right) d x^{\mu} + d x^{\mu} \left(\partial_\mu f\right)\right] + \frac{1}{2} \left[\left(\partial_t f\right) d t + d t \left(\partial_t f\right)\right].

You can artificially make this look like the usual differential by defining a symmetrizing product

df=(βˆ‚ ΞΌf)β€’dx ΞΌ+(βˆ‚ tf)β€’dtd f = \left(\partial_\mu f\right)\bullet d x^\mu + \left(\partial_t f\right)\bullet d t

where

(βˆ‚ ΞΌf)β€’dx ΞΌ=12[(βˆ‚ ΞΌf)dx ΞΌ+dx ΞΌ(βˆ‚ ΞΌf)].\left(\partial_\mu f\right)\bullet d x^\mu = \frac{1}{2} \left[\left(\partial_\mu f\right) d x^{\mu} + d x^{\mu} \left(\partial_\mu f\right)\right].

When doing things in left component (Ito) representation, the drift term vanishes, i.e. you have a β€œleft” martingale, when

βˆ‚ tf+12g ΞΌ,Ξ½βˆ‚ ΞΌβˆ‚ Ξ½f=0.\partial_t f + \frac{1}{2} g^{\mu,\nu} \partial_\mu\partial_\nu f = 0.

When doing things in the right component (nameless?) rrepresentation, the drift term vanishes, i.e. you have a β€œright” martingale, when

βˆ‚ tfβˆ’12g ΞΌ,Ξ½βˆ‚ ΞΌβˆ‚ Ξ½f=0.\partial_t f - \frac{1}{2} g^{\mu,\nu} \partial_\mu\partial_\nu f = 0.

I said above (cavalierly) that there are no Stratonovich martiginales because they’d have to satisfy both the heat equation and time-reversed heat equation simultaneously. That probably isn’t quite right. The actual condition is that you need

(βˆ‚ tf)β€’dt=12[(βˆ‚ tf)dt+dt(βˆ‚ tf)]=0.\left(\partial_t f\right)\bullet d t = \frac{1}{2} \left[\left(\partial_t f\right) d t + d t \left(\partial_t f\right)\right] = 0.

Based on what has been said above, I would not be at all surprised if the above expression defines a form of β€œnoise”.

A cool thing about this is that there is a finite/discrete version of everything above and we can check what that relation for Stratonovich martingales means in a finite world (which is easier for me to interpret). Here is the paper:

Revised on February 4, 2011 at 06:52:27 by Eric Forgy