Eric Forgy Poisson Bracket

Contents

Classical Concepts

Hamiltonian Vector Field

dH(Y)=ω(X H,Y)d H(Y) = \omega(X_H,Y)

Vector Field

df(X)=X(f)d f(X) = X(f)

Gradient Vector Field

dH(Y)=g(H,Y)d H(Y) = g(\nabla H,Y)

Differential Graded Algebra

d 2=0d^2 = 0
d(AB)=(dA)B+(1) |A|A(dB)d(A B) = (d A)B + (-1)^{|A|} A(d B)

Graded Brackets

[A,B]=AB(1) |A||B|BA[A,B] = A B - (-1)^{|A||B|} B A
{A,B}=AB+(1) |A||B|BA\{A,B\} = A B + (-1)^{|A||B|} B A
d[A,B]=[dA,B]+(1) |A|[A,dB]d[A,B] = [d A,B] + (-1)^{|A|} [A,d B]
d{A,B}={dA,B}+(1) |A|{A,dB}d\{A,B\} = \{d A,B\} + (-1)^{|A|} \{A,d B\}

Noncommutative Concepts

Left Structure Constants

[dx μ,x ν]=C λ μνdx λ[d x^\mu,x^\nu] = \stackrel{\leftarrow}{C^{\mu\nu}_\lambda} d x^\lambda
[x μ,x ν]=0C λ μν=C λ νμ[x^\mu,x^\nu] = 0\quad\implies\quad \stackrel{\leftarrow}{C^{\mu\nu}_\lambda} = \stackrel{\leftarrow}{C^{\nu\mu}_\lambda}
{x μ,x ν}=0C λ μν=C λ νμ\{x^\mu,x^\nu\} = 0\quad\implies\quad \stackrel{\leftarrow}{C^{\mu\nu}_\lambda} = -\stackrel{\leftarrow}{C^{\nu\mu}_\lambda}

Right Structure Constants

[dx μ,x ν]=dx λC λ μν[d x^\mu,x^\nu] = d x^\lambda \stackrel{\rightarrow}{C^{\mu\nu}_\lambda}

Left Components

df= μfdx μd f = \stackrel{\leftarrow}{\partial_\mu f} d x^\mu

Product Rule

d(fg) =(df)g+f(dg) =[df,g]+g(df)+f(dg)\begin{aligned} d(f g) &= (d f)g + f(d g) \\ &= [d f,g] + g(d f) + f(d g) \end{aligned}
Revised on April 27, 2010 at 07:12:36 by Eric Forgy