Showing changes from revision #2 to #3:
Added | Removed | Changed
There are three notions of equipment in the literature:
Wood’s: an identity-on-objects, locally fully faithful pseudofunctor , written , where each has a right adjoint in .
Shulman’s: a framed bicategory, that is, a pseudo double category whose source and target functors form a bifibration.
that of Carboni–Kelly–Verity–Wood: a (normal) pseudofunctor , where is a 1-category.
The last is strictly more general than the others, as are even their starred pointed equipments, i.e. those equipped with a transformation , where the left and right actions of have suitable adjoints. These CKVW equipments should be equivalent to the others if we ask for a transformation making a (pseudo)monad in a suitable bi- or tricategory of ‘biprofunctors’.
Question: Why are these all equivalent?
An Let’s identity-on-objects forget (pseudo)functor about that is locally fully faithful is essentially the same ‘op-connections’ thing as an identity-on-objects functor out of a locally discrete bicategory. In the case of strict 2-categories, these are (by some enriched-category nonsense) precisely the Kleisli objects for monads the (on moment. locally discrete strict 2-categories) in. So we need to know what a biprofunctor is, and to check that biprofunctors form at least a bicategory (if not an equipment) that has well-behaved Kleisli objects.
The A Grothendieck pseudofunctor construction for a monad on a 1-category in should that then give a double category whose underlying span is a the two-sided identity fibration. on objects and locally fully faithful is the same as an identity-on-objects pseudofunctor out of the locally discrete bicategory given by simply throwing away the 2-cells of .
An identity-on-objects pseudofunctor exhibits as the Kleisli object of a monad on in the 2-category of biprofunctors (q.v.). This will be the associated CKVW equipment.
…