
On the Cubical Model of Homotopy Type Theory
— work in progress —

Steve Awodey
Carnegie Mellon University

Deutsche Mathematiker-Vereinigung
Hamburg, September 2015

Why Cubical HoTT?
I Basic MLTT has a constructive character that makes it

well-suited for use in computational proof assistants: strong
normalization of terms, decidability of type-checking,
decidability of judgemental equality, canonicity, etc.

I But when we add new axioms like Univalence and HITs, this
constructive character is spoiled. Instances of UA cannot
always be eliminated, and new primitive terms of higher
Id-type need not reduce to normal forms.

I A “normalization up to homotopy” algorithm could
partially restore the constructive character of the system.

I But, as recently shown by Coquand et al., a system with
additional cubical structure seems to allow for such extensions
while still retaining a constructive character.

I This could lead to a proof of normalization up to homotopy
for the original system via an interpretation. Moreover, it
could also serve on its own as the basis of a new generation of
proof assistants based on cubical HoTT.

Why Cubical HoTT?
I Basic MLTT has a constructive character that makes it

well-suited for use in computational proof assistants: strong
normalization of terms, decidability of type-checking,
decidability of judgemental equality, canonicity, etc.

I But when we add new axioms like Univalence and HITs, this
constructive character is spoiled. Instances of UA cannot
always be eliminated, and new primitive terms of higher
Id-type need not reduce to normal forms.

I A “normalization up to homotopy” algorithm could
partially restore the constructive character of the system.

I But, as recently shown by Coquand et al., a system with
additional cubical structure seems to allow for such extensions
while still retaining a constructive character.

I This could lead to a proof of normalization up to homotopy
for the original system via an interpretation. Moreover, it
could also serve on its own as the basis of a new generation of
proof assistants based on cubical HoTT.

Why Cubical HoTT?
I Basic MLTT has a constructive character that makes it

well-suited for use in computational proof assistants: strong
normalization of terms, decidability of type-checking,
decidability of judgemental equality, canonicity, etc.

I But when we add new axioms like Univalence and HITs, this
constructive character is spoiled. Instances of UA cannot
always be eliminated, and new primitive terms of higher
Id-type need not reduce to normal forms.

I A “normalization up to homotopy” algorithm could
partially restore the constructive character of the system.

I But, as recently shown by Coquand et al., a system with
additional cubical structure seems to allow for such extensions
while still retaining a constructive character.

I This could lead to a proof of normalization up to homotopy
for the original system via an interpretation. Moreover, it
could also serve on its own as the basis of a new generation of
proof assistants based on cubical HoTT.

Why Cubical HoTT?
I Basic MLTT has a constructive character that makes it

well-suited for use in computational proof assistants: strong
normalization of terms, decidability of type-checking,
decidability of judgemental equality, canonicity, etc.

I But when we add new axioms like Univalence and HITs, this
constructive character is spoiled. Instances of UA cannot
always be eliminated, and new primitive terms of higher
Id-type need not reduce to normal forms.

I A “normalization up to homotopy” algorithm could
partially restore the constructive character of the system.

I But, as recently shown by Coquand et al., a system with
additional cubical structure seems to allow for such extensions
while still retaining a constructive character.

I This could lead to a proof of normalization up to homotopy
for the original system via an interpretation. Moreover, it
could also serve on its own as the basis of a new generation of
proof assistants based on cubical HoTT.

Why Cubical HoTT?
I Basic MLTT has a constructive character that makes it

well-suited for use in computational proof assistants: strong
normalization of terms, decidability of type-checking,
decidability of judgemental equality, canonicity, etc.

I But when we add new axioms like Univalence and HITs, this
constructive character is spoiled. Instances of UA cannot
always be eliminated, and new primitive terms of higher
Id-type need not reduce to normal forms.

I A “normalization up to homotopy” algorithm could
partially restore the constructive character of the system.

I But, as recently shown by Coquand et al., a system with
additional cubical structure seems to allow for such extensions
while still retaining a constructive character.

I This could lead to a proof of normalization up to homotopy
for the original system via an interpretation. Moreover, it
could also serve on its own as the basis of a new generation of
proof assistants based on cubical HoTT.

Cubical HoTT: Recent work

Why cubical?

I Some success was had by Licata-Harper (2011) and Shulman
(2013) in verifying the homotopy canonicity conjecture at low
dimensions, using methods based on groupoids.

I In recent and current work, Coquand and collaborators have
devised an approach based on a constructive interpretation
of HoTT in (different versions of) cubical sets, which are a
form of ∞-groupoids.

I Cubical sets are a combinatorial model of homotopy theory,
introduced by Kan and still used in algebraic topology. Like
the more familiar simplicial sets, they provide a more
algebraic setting to study the homotopy theory of spaces.

I Voevodsky’s original model of UA used classical simplicial
sets and is not constructive. Known models of HITs are also
based on classical methods from the theory of ∞-toposes.

Cubical HoTT: Recent work

Why cubical?

I Some success was had by Licata-Harper (2011) and Shulman
(2013) in verifying the homotopy canonicity conjecture at low
dimensions, using methods based on groupoids.

I In recent and current work, Coquand and collaborators have
devised an approach based on a constructive interpretation
of HoTT in (different versions of) cubical sets, which are a
form of ∞-groupoids.

I Cubical sets are a combinatorial model of homotopy theory,
introduced by Kan and still used in algebraic topology. Like
the more familiar simplicial sets, they provide a more
algebraic setting to study the homotopy theory of spaces.

I Voevodsky’s original model of UA used classical simplicial
sets and is not constructive. Known models of HITs are also
based on classical methods from the theory of ∞-toposes.

Cubical HoTT: Recent work

Why cubical?

I Some success was had by Licata-Harper (2011) and Shulman
(2013) in verifying the homotopy canonicity conjecture at low
dimensions, using methods based on groupoids.

I In recent and current work, Coquand and collaborators have
devised an approach based on a constructive interpretation
of HoTT in (different versions of) cubical sets, which are a
form of ∞-groupoids.

I Cubical sets are a combinatorial model of homotopy theory,
introduced by Kan and still used in algebraic topology. Like
the more familiar simplicial sets, they provide a more
algebraic setting to study the homotopy theory of spaces.

I Voevodsky’s original model of UA used classical simplicial
sets and is not constructive. Known models of HITs are also
based on classical methods from the theory of ∞-toposes.

Cubical HoTT: Recent work

Why cubical?

I Some success was had by Licata-Harper (2011) and Shulman
(2013) in verifying the homotopy canonicity conjecture at low
dimensions, using methods based on groupoids.

I In recent and current work, Coquand and collaborators have
devised an approach based on a constructive interpretation
of HoTT in (different versions of) cubical sets, which are a
form of ∞-groupoids.

I Cubical sets are a combinatorial model of homotopy theory,
introduced by Kan and still used in algebraic topology. Like
the more familiar simplicial sets, they provide a more
algebraic setting to study the homotopy theory of spaces.

I Voevodsky’s original model of UA used classical simplicial
sets and is not constructive. Known models of HITs are also
based on classical methods from the theory of ∞-toposes.

Cubical HoTT: Recent success
Cubes rule!

I The cubical model suggests enriching the type theory itself
with some additional cubical operations and equations
which are present in the model, and which allow calculations
that are otherwise available only “up-to-homotopy”. This
makes the system more computational.

I Coquand et al. have programmed a proof checker for such a
cubical type theory, in which all terms — including those
involving UA and some HITs — compute to normal forms.

I Brunerie and Licata (LICS 2015) have a variant system of
cubical HoTT in which e.g. the proof that T2 ' S1 × S1 is
short and sweet (in contrast to the original “heroic” proof in
plain HoTT first given by Sojakova in 2013).

I The cubical setting seems to be better suited to HoTT than
the simplicial one (or the globular one). It may also be of
some use in homotopy theory (cf. recent work by Jardine,
Grandis, Williamson, and others).

Cubical HoTT: Recent success
Cubes rule!

I The cubical model suggests enriching the type theory itself
with some additional cubical operations and equations
which are present in the model, and which allow calculations
that are otherwise available only “up-to-homotopy”. This
makes the system more computational.

I Coquand et al. have programmed a proof checker for such a
cubical type theory, in which all terms — including those
involving UA and some HITs — compute to normal forms.

I Brunerie and Licata (LICS 2015) have a variant system of
cubical HoTT in which e.g. the proof that T2 ' S1 × S1 is
short and sweet (in contrast to the original “heroic” proof in
plain HoTT first given by Sojakova in 2013).

I The cubical setting seems to be better suited to HoTT than
the simplicial one (or the globular one). It may also be of
some use in homotopy theory (cf. recent work by Jardine,
Grandis, Williamson, and others).

Cubical HoTT: Recent success
Cubes rule!

I The cubical model suggests enriching the type theory itself
with some additional cubical operations and equations
which are present in the model, and which allow calculations
that are otherwise available only “up-to-homotopy”. This
makes the system more computational.

I Coquand et al. have programmed a proof checker for such a
cubical type theory, in which all terms — including those
involving UA and some HITs — compute to normal forms.

I Brunerie and Licata (LICS 2015) have a variant system of
cubical HoTT in which e.g. the proof that T2 ' S1 × S1 is
short and sweet (in contrast to the original “heroic” proof in
plain HoTT first given by Sojakova in 2013).

I The cubical setting seems to be better suited to HoTT than
the simplicial one (or the globular one). It may also be of
some use in homotopy theory (cf. recent work by Jardine,
Grandis, Williamson, and others).

Cubical HoTT: Recent success
Cubes rule!

I The cubical model suggests enriching the type theory itself
with some additional cubical operations and equations
which are present in the model, and which allow calculations
that are otherwise available only “up-to-homotopy”. This
makes the system more computational.

I Coquand et al. have programmed a proof checker for such a
cubical type theory, in which all terms — including those
involving UA and some HITs — compute to normal forms.

I Brunerie and Licata (LICS 2015) have a variant system of
cubical HoTT in which e.g. the proof that T2 ' S1 × S1 is
short and sweet (in contrast to the original “heroic” proof in
plain HoTT first given by Sojakova in 2013).

I The cubical setting seems to be better suited to HoTT than
the simplicial one (or the globular one). It may also be of
some use in homotopy theory (cf. recent work by Jardine,
Grandis, Williamson, and others).

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Variations on cubical sets

The category of cubical sets is the functor category

SetC
op

of presheaves on the category C of cubes.

There are various different flavors of cubical sets in the literature,
based on different categories C of cubes:

I Cm = the free monoidal category on an interval 1→ I← 1,

I Cmc = the free monoidal category on an
interval with connections ∧ and ∨.

I Cs = the free symmetric monoidal category on an interval.

I Cc = the free cartesian category on an interval.

I Cd = the free cartesian category on a distributive lattice.

The more structure one puts into the index category of cubes, the
more “algebraic” the resulting model of type theory will be.

Cartesian cubes

Like the simplicial category ∆, each of these cube categories can be
presented by generating face and degeneracy maps (plus others).

But the cartesian cube category also has a simple description in
terms of its Lawvere dual:

Definition
The cartesian cube category C = Cc is the opposite of the
category B of finite, strictly bipointed sets,

C =def Bop .

Write the bipointed sets:

[n] = {0, x1, ..., xn, 1}

So C has the objects: [0], [1], ..., [n], ..., which we regard dually as
the basic n-cubes.

Cartesian cubes

Like the simplicial category ∆, each of these cube categories can be
presented by generating face and degeneracy maps (plus others).

But the cartesian cube category also has a simple description in
terms of its Lawvere dual:

Definition
The cartesian cube category C = Cc is the opposite of the
category B of finite, strictly bipointed sets,

C =def Bop .

Write the bipointed sets:

[n] = {0, x1, ..., xn, 1}

So C has the objects: [0], [1], ..., [n], ..., which we regard dually as
the basic n-cubes.

Cartesian cubes

Like the simplicial category ∆, each of these cube categories can be
presented by generating face and degeneracy maps (plus others).

But the cartesian cube category also has a simple description in
terms of its Lawvere dual:

Definition
The cartesian cube category C = Cc is the opposite of the
category B of finite, strictly bipointed sets,

C =def Bop .

Write the bipointed sets:

[n] = {0, x1, ..., xn, 1}

So C has the objects: [0], [1], ..., [n], ..., which we regard dually as
the basic n-cubes.

Cartesian cubes

Like the simplicial category ∆, each of these cube categories can be
presented by generating face and degeneracy maps (plus others).

But the cartesian cube category also has a simple description in
terms of its Lawvere dual:

Definition
The cartesian cube category C = Cc is the opposite of the
category B of finite, strictly bipointed sets,

C =def Bop .

Write the bipointed sets:

[n] = {0, x1, ..., xn, 1}

So C has the objects: [0], [1], ..., [n], ..., which we regard dually as
the basic n-cubes.

Cartesian cubes

C is the free finite-product category on the bipointed object:

[0]→ [1]← [0] ,

which is then the universal cartesian interval.

The basic cubes are then just the finite powers of [1],

[n] = [1]× ...× [1] .

The maps are those that can be composed from the ×-structure
and the basic points 0, 1 : [0]⇒ [1].

They can also be represented syntactically as the terms of a very
simple algebraic theory.

Cartesian cubes

C is the free finite-product category on the bipointed object:

[0]→ [1]← [0] ,

which is then the universal cartesian interval.

The basic cubes are then just the finite powers of [1],

[n] = [1]× ...× [1] .

The maps are those that can be composed from the ×-structure
and the basic points 0, 1 : [0]⇒ [1].

They can also be represented syntactically as the terms of a very
simple algebraic theory.

Cartesian cubes

C is the free finite-product category on the bipointed object:

[0]→ [1]← [0] ,

which is then the universal cartesian interval.

The basic cubes are then just the finite powers of [1],

[n] = [1]× ...× [1] .

The maps are those that can be composed from the ×-structure
and the basic points 0, 1 : [0]⇒ [1].

They can also be represented syntactically as the terms of a very
simple algebraic theory.

Cartesian cubes

C is the free finite-product category on the bipointed object:

[0]→ [1]← [0] ,

which is then the universal cartesian interval.

The basic cubes are then just the finite powers of [1],

[n] = [1]× ...× [1] .

The maps are those that can be composed from the ×-structure
and the basic points 0, 1 : [0]⇒ [1].

They can also be represented syntactically as the terms of a very
simple algebraic theory.

Cartesian cubical sets

Definition
The category cSet of (cartesian) cubical sets is the presheaves
on C. It is thus equal to the covariant functors on B,

SetC
op

= SetB .

The cubes in cSet are the representable functors:

In = homC(−, [n]) .

The interval object I = homC(−, [1]) generates all the other
cubes, which are closed under finite products and satisfy:

In × Im ∼= In+m .

Cartesian cubical sets

Definition
The category cSet of (cartesian) cubical sets is the presheaves
on C. It is thus equal to the covariant functors on B,

SetC
op

= SetB .

The cubes in cSet are the representable functors:

In = homC(−, [n]) .

The interval object I = homC(−, [1]) generates all the other
cubes, which are closed under finite products and satisfy:

In × Im ∼= In+m .

Cartesian cubical sets

Definition
The category cSet of (cartesian) cubical sets is the presheaves
on C. It is thus equal to the covariant functors on B,

SetC
op

= SetB .

The cubes in cSet are the representable functors:

In = homC(−, [n]) .

The interval object I = homC(−, [1]) generates all the other
cubes, which are closed under finite products and satisfy:

In × Im ∼= In+m .

Cartesian cubical sets

The interval 1 + 1→ I in cSet is universal, in the following sense.

Theorem (A. 2015)

The category cSet of cubical sets is the classifying topos for
strictly bipointed objects (X , a, b, a 6= b).

I This allows us to relate cSet to other logical and homotopical
models in toposes.

I Other models of type theory, such as Top and sSet, have a
canonical comparision with cSet.

I Since C is a test category in the sense of Grothendieck,
cSet has “the same” homotopy theory as classical spaces.

I Moreover, the geometric realization cSet // Top preserves
finite products.

Cartesian cubical sets

The interval 1 + 1→ I in cSet is universal, in the following sense.

Theorem (A. 2015)

The category cSet of cubical sets is the classifying topos for
strictly bipointed objects (X , a, b, a 6= b).

I This allows us to relate cSet to other logical and homotopical
models in toposes.

I Other models of type theory, such as Top and sSet, have a
canonical comparision with cSet.

I Since C is a test category in the sense of Grothendieck,
cSet has “the same” homotopy theory as classical spaces.

I Moreover, the geometric realization cSet // Top preserves
finite products.

Cartesian cubical sets

The interval 1 + 1→ I in cSet is universal, in the following sense.

Theorem (A. 2015)

The category cSet of cubical sets is the classifying topos for
strictly bipointed objects (X , a, b, a 6= b).

I This allows us to relate cSet to other logical and homotopical
models in toposes.

I Other models of type theory, such as Top and sSet, have a
canonical comparision with cSet.

I Since C is a test category in the sense of Grothendieck,
cSet has “the same” homotopy theory as classical spaces.

I Moreover, the geometric realization cSet // Top preserves
finite products.

Cartesian cubical sets

The interval 1 + 1→ I in cSet is universal, in the following sense.

Theorem (A. 2015)

The category cSet of cubical sets is the classifying topos for
strictly bipointed objects (X , a, b, a 6= b).

I This allows us to relate cSet to other logical and homotopical
models in toposes.

I Other models of type theory, such as Top and sSet, have a
canonical comparision with cSet.

I Since C is a test category in the sense of Grothendieck,
cSet has “the same” homotopy theory as classical spaces.

I Moreover, the geometric realization cSet // Top preserves
finite products.

Cartesian cubical sets

The interval 1 + 1→ I in cSet is universal, in the following sense.

Theorem (A. 2015)

The category cSet of cubical sets is the classifying topos for
strictly bipointed objects (X , a, b, a 6= b).

I This allows us to relate cSet to other logical and homotopical
models in toposes.

I Other models of type theory, such as Top and sSet, have a
canonical comparision with cSet.

I Since C is a test category in the sense of Grothendieck,
cSet has “the same” homotopy theory as classical spaces.

I Moreover, the geometric realization cSet // Top preserves
finite products.

Path spaces in cubical sets

The interval 1 + 1→ I endows each cubical set A with a
canonical path object,

AI → A1+1 ∼= A× A .

The object AI has the special property,

AI
n
∼= hom(In,AI) ∼= hom(In × I,A)

∼= hom(In+1,A) ∼= An+1.

So an n-cube of paths in A is an n + 1-cube in A.

This combinatorial specification makes this path object very
well-behaved. For example, it has not only a left adjoint
(“cylinder”) but also a right adjoint,

X × I a Y I a ZI .

Path spaces in cubical sets

The interval 1 + 1→ I endows each cubical set A with a
canonical path object,

AI → A1+1 ∼= A× A .

The object AI has the special property,

AI
n
∼= hom(In,AI) ∼= hom(In × I,A)

∼= hom(In+1,A) ∼= An+1.

So an n-cube of paths in A is an n + 1-cube in A.

This combinatorial specification makes this path object very
well-behaved. For example, it has not only a left adjoint
(“cylinder”) but also a right adjoint,

X × I a Y I a ZI .

Path spaces in cubical sets

The interval 1 + 1→ I endows each cubical set A with a
canonical path object,

AI → A1+1 ∼= A× A .

The object AI has the special property,

AI
n
∼= hom(In,AI) ∼= hom(In × I,A)

∼= hom(In+1,A) ∼= An+1.

So an n-cube of paths in A is an n + 1-cube in A.

This combinatorial specification makes this path object very
well-behaved. For example, it has not only a left adjoint
(“cylinder”) but also a right adjoint,

X × I a Y I a ZI .

Path spaces in cubical sets

Lemma
The interval I in cSet satisfies the “domain equation”

II ∼= I + 1 .

Something similar happens in the object classifier and in the
Schanuel topos. We can use this to calculate the right adjoint ZI.

Corollary

For the “amazing right adjoint” ZI, we have:

ZI(n) ∼= Hom(In, ZI) ∼= Hom((In)I, Z)
∼= Hom((II)n, Z) ∼= Hom((I + 1)n, Z)

∼= Hom(In + Cn
n−1I

n−1 + · · ·+ Cn
1 I + 1, Z)

∼= Zn × Z
Cn
n−1

n−1 × · · · × Z
Cn
1

1 × Z0,

where Cn
k =

(n
k

)
is the usual binomial coefficient.

Path spaces in cubical sets

Lemma
The interval I in cSet satisfies the “domain equation”

II ∼= I + 1 .

Something similar happens in the object classifier and in the
Schanuel topos. We can use this to calculate the right adjoint ZI.

Corollary

For the “amazing right adjoint” ZI, we have:

ZI(n) ∼= Hom(In, ZI) ∼= Hom((In)I, Z)
∼= Hom((II)n, Z) ∼= Hom((I + 1)n, Z)

∼= Hom(In + Cn
n−1I

n−1 + · · ·+ Cn
1 I + 1, Z)

∼= Zn × Z
Cn
n−1

n−1 × · · · × Z
Cn
1

1 × Z0,

where Cn
k =

(n
k

)
is the usual binomial coefficient.

Path spaces as identity types

We will use the canonical pathobject AI to interpret the Id-type,

IdA = AI .

This implies some new type-theoretic equations and conditions,
such as:

IdIdA = (AI)I ∼= AI×I ,

IdA+B = (A + B)I ∼= AI + BI = IdA + IdB ,

and generally, the Id-type of a colimit is a colimit of Id-types.

The interpretation is thus not expected to be conservative —
indeed, one hopes to determine some new cubical laws that may
be soundly added to the original theory

Path spaces as identity types

We will use the canonical pathobject AI to interpret the Id-type,

IdA = AI .

This implies some new type-theoretic equations and conditions,
such as:

IdIdA = (AI)I ∼= AI×I ,

IdA+B = (A + B)I ∼= AI + BI = IdA + IdB ,

and generally, the Id-type of a colimit is a colimit of Id-types.

The interpretation is thus not expected to be conservative —
indeed, one hopes to determine some new cubical laws that may
be soundly added to the original theory

Path spaces as identity types

We will use the canonical pathobject AI to interpret the Id-type,

IdA = AI .

This implies some new type-theoretic equations and conditions,
such as:

IdIdA = (AI)I ∼= AI×I ,

IdA+B = (A + B)I ∼= AI + BI = IdA + IdB ,

and generally, the Id-type of a colimit is a colimit of Id-types.

The interpretation is thus not expected to be conservative —
indeed, one hopes to determine some new cubical laws that may
be soundly added to the original theory

Path spaces as identity types

In order to use AI as the Id-type, we are led to ask:

When does AI → A× A satisfy the rules for Id-types?

Theorem (A. 2015)

The path space AI → A× A satisfies the rules for Id-types if

1. The obect A is a Kan complex.

2. The dependent types B → A are Kan fibrations.

The notions of Kan complex and Kan fibration are determined
by the usual box-filling conditions.

Proof.
1. Reduce Id-elim to transport and contraction.
2. Transport follows from path-lifting, i.e. 1-box filling.
3. Contraction follows from 1-box filling for AI → A× A.
4. 1-box filling in AI → A× A is 2-box filling in A.

Path spaces as identity types

In order to use AI as the Id-type, we are led to ask:

When does AI → A× A satisfy the rules for Id-types?

Theorem (A. 2015)

The path space AI → A× A satisfies the rules for Id-types if

1. The obect A is a Kan complex.

2. The dependent types B → A are Kan fibrations.

The notions of Kan complex and Kan fibration are determined
by the usual box-filling conditions.

Proof.
1. Reduce Id-elim to transport and contraction.
2. Transport follows from path-lifting, i.e. 1-box filling.
3. Contraction follows from 1-box filling for AI → A× A.
4. 1-box filling in AI → A× A is 2-box filling in A.

Path spaces as identity types

In order to use AI as the Id-type, we are led to ask:

When does AI → A× A satisfy the rules for Id-types?

Theorem (A. 2015)

The path space AI → A× A satisfies the rules for Id-types if

1. The obect A is a Kan complex.

2. The dependent types B → A are Kan fibrations.

The notions of Kan complex and Kan fibration are determined
by the usual box-filling conditions.

Proof.
1. Reduce Id-elim to transport and contraction.
2. Transport follows from path-lifting, i.e. 1-box filling.
3. Contraction follows from 1-box filling for AI → A× A.
4. 1-box filling in AI → A× A is 2-box filling in A.

Path spaces and identity types

The last step of the foregoing is a special case of the following:

Lemma
The following are equivalent for a cubical set A.

1. (n + 1)-box filling in A,

2. n-box filling in AI → A× A,

3. 1-box filling in AIn → A∂In .

This can be used to prove a converse of the foregoing theorem:
the box-filling conditions for cubical sets follow from the Id-rules
together with Σ-types.

Path spaces and identity types

The last step of the foregoing is a special case of the following:

Lemma
The following are equivalent for a cubical set A.

1. (n + 1)-box filling in A,

2. n-box filling in AI → A× A,

3. 1-box filling in AIn → A∂In .

This can be used to prove a converse of the foregoing theorem:
the box-filling conditions for cubical sets follow from the Id-rules
together with Σ-types.

Cubical Lumsdaine

We can use the foregoing lemma to derive a cubical version of
“Lumsdaine’s Theorem” (aka “Lumsdaine-van den Berg-Garner”):

Theorem (A. 2015)

Every type A in MLTT gives rise to a cubical ∞-groupoid (a
cubical set satisfying the box-filling conditions).

We first need to determine the cubical nerve of a type A,
i.e. a cubical set N(A):

N(A)0 // N(A)1
oo

oo //
// N(A)2

oo

oo

oo

oo

//
//

//
. . .

oo

oo

oo

oo

oo

oo

with:
N(A)n ∼= “n-cubes in A”

Cubical Lumsdaine

We can use the foregoing lemma to derive a cubical version of
“Lumsdaine’s Theorem” (aka “Lumsdaine-van den Berg-Garner”):

Theorem (A. 2015)

Every type A in MLTT gives rise to a cubical ∞-groupoid (a
cubical set satisfying the box-filling conditions).

We first need to determine the cubical nerve of a type A,
i.e. a cubical set N(A):

N(A)0 // N(A)1
oo

oo //
// N(A)2

oo

oo

oo

oo

//
//

//
. . .

oo

oo

oo

oo

oo

oo

with:
N(A)n ∼= “n-cubes in A”

Cubical nerve of a type

A pre-cubical structure on a type A arises as follows:

Consider the type-theoretic path object:

P(X) =
∑
x ,y :X

IdX (x , y) .

We have the usual (reflexive) globular maps:

A // P(A)
oo

oo
// PP(A)

oo

oo

oo

oo
// . . .

oo

oo

Since P also acts on maps by the “map on paths” operation,
there are also the successive images of these maps under P:

A // P(A)
oo

oo
//

//

PP(A)
oo

oo

oo

oo

oo

oo
//

//

//

. . .
oo

oo

oo

oo

oo

oo

Cubical nerve of a type

A pre-cubical structure on a type A arises as follows:
Consider the type-theoretic path object:

P(X) =
∑
x ,y :X

IdX (x , y) .

We have the usual (reflexive) globular maps:

A // P(A)
oo

oo
// PP(A)

oo

oo

oo

oo
// . . .

oo

oo

Since P also acts on maps by the “map on paths” operation,
there are also the successive images of these maps under P:

A // P(A)
oo

oo
//

//

PP(A)
oo

oo

oo

oo

oo

oo
//

//

//

. . .
oo

oo

oo

oo

oo

oo

Cubical nerve of a type

A pre-cubical structure on a type A arises as follows:
Consider the type-theoretic path object:

P(X) =
∑
x ,y :X

IdX (x , y) .

We have the usual (reflexive) globular maps:

A // P(A)
oo

oo
// PP(A)

oo

oo

oo

oo
// . . .

oo

oo

Since P also acts on maps by the “map on paths” operation,
there are also the successive images of these maps under P:

A // P(A)
oo

oo
//

//

PP(A)
oo

oo

oo

oo

oo

oo
//

//

//

. . .
oo

oo

oo

oo

oo

oo

Cubical nerve of a type

A pre-cubical structure on a type A arises as follows:
Consider the type-theoretic path object:

P(X) =
∑
x ,y :X

IdX (x , y) .

We have the usual (reflexive) globular maps:

A // P(A)
oo

oo
// PP(A)

oo

oo

oo

oo
// . . .

oo

oo

Since P also acts on maps by the “map on paths” operation,
there are also the successive images of these maps under P:

A // P(A)
oo

oo
//

//

PP(A)
oo

oo

oo

oo

oo

oo
//

//

//

. . .
oo

oo

oo

oo

oo

oo

Cubical nerve of a type

Rearranging, we find the usual cubical structure:

A // P(A)
oo

oo //
// PP(A)

oo

oo

oo

oo

//
//

//
. . .

oo

oo

oo

oo

oo

oo

But we would need P to be strictly functorial for the cubical
identities to hold!

Instead, we need a more elaborate dependent indexing of the
successive steps to make the cubical identities hold. This is still
not a cartesian cubical set (it lacks diagonals!), but only a
monoidal one.

In cubical type theory we expect to have a cartesian cubical nerve.

Cubical nerve of a type

Rearranging, we find the usual cubical structure:

A // P(A)
oo

oo //
// PP(A)

oo

oo

oo

oo

//
//

//
. . .

oo

oo

oo

oo

oo

oo

But we would need P to be strictly functorial for the cubical
identities to hold!

Instead, we need a more elaborate dependent indexing of the
successive steps to make the cubical identities hold. This is still
not a cartesian cubical set (it lacks diagonals!), but only a
monoidal one.

In cubical type theory we expect to have a cartesian cubical nerve.

Cubical nerve of a type

Rearranging, we find the usual cubical structure:

A // P(A)
oo

oo //
// PP(A)

oo

oo

oo

oo

//
//

//
. . .

oo

oo

oo

oo

oo

oo

But we would need P to be strictly functorial for the cubical
identities to hold!

Instead, we need a more elaborate dependent indexing of the
successive steps to make the cubical identities hold. This is still
not a cartesian cubical set (it lacks diagonals!), but only a
monoidal one.

In cubical type theory we expect to have a cartesian cubical nerve.

Cubical nerve of a type

Rearranging, we find the usual cubical structure:

A // P(A)
oo

oo //
// PP(A)

oo

oo

oo

oo

//
//

//
. . .

oo

oo

oo

oo

oo

oo

But we would need P to be strictly functorial for the cubical
identities to hold!

Instead, we need a more elaborate dependent indexing of the
successive steps to make the cubical identities hold. This is still
not a cartesian cubical set (it lacks diagonals!), but only a
monoidal one.

In cubical type theory we expect to have a cartesian cubical nerve.

Cubical nerve of a category

A similar example is the cubical nerve N(A) of a category A.
As a “pathobject” we can take the arrow category:

P(A) = A→

which is strictly functorial.

N(A)n is then the set of commutative n-cubes in A, i.e.

Cat(2n,A) ,

where 2 = (· → ·) is the single-arrow category.

We also have the usual “realization a nerve” adjunction,

cSet // Cat ,oo

given by Kan extension along C // Cat, the cartesian classifying
map of the interval 1→ 2← 1 in Cat.

Cubical nerve of a category

A similar example is the cubical nerve N(A) of a category A.
As a “pathobject” we can take the arrow category:

P(A) = A→

which is strictly functorial.

N(A)n is then the set of commutative n-cubes in A, i.e.

Cat(2n,A) ,

where 2 = (· → ·) is the single-arrow category.

We also have the usual “realization a nerve” adjunction,

cSet // Cat ,oo

given by Kan extension along C // Cat, the cartesian classifying
map of the interval 1→ 2← 1 in Cat.

Cubical nerve of a category

A similar example is the cubical nerve N(A) of a category A.
As a “pathobject” we can take the arrow category:

P(A) = A→

which is strictly functorial.

N(A)n is then the set of commutative n-cubes in A, i.e.

Cat(2n,A) ,

where 2 = (· → ·) is the single-arrow category.

We also have the usual “realization a nerve” adjunction,

cSet // Cat ,oo

given by Kan extension along C // Cat, the cartesian classifying
map of the interval 1→ 2← 1 in Cat.

Cubical nerve of a category

Theorem (A. 2015)

The cartesian nerve functor N : Cat // cSet is full and faithful.

I This uses the diagonals in an essential way and fails for the
monoidal version of cubical sets.

I As in sSets, the categories A with a Kan nerve N(A) are
exactly the groupoids.

I Cubical analogues of the orientals, the homotopy
coherent nerve, and the notions of quasicategory and
∞-topos have not yet been studied.

I We expect the (cubical nerve of) the category of types in
cubical homotopy type theory to be a cubical ∞-topos.

Cubical nerve of a category

Theorem (A. 2015)

The cartesian nerve functor N : Cat // cSet is full and faithful.

I This uses the diagonals in an essential way and fails for the
monoidal version of cubical sets.

I As in sSets, the categories A with a Kan nerve N(A) are
exactly the groupoids.

I Cubical analogues of the orientals, the homotopy
coherent nerve, and the notions of quasicategory and
∞-topos have not yet been studied.

I We expect the (cubical nerve of) the category of types in
cubical homotopy type theory to be a cubical ∞-topos.

Cubical nerve of a category

Theorem (A. 2015)

The cartesian nerve functor N : Cat // cSet is full and faithful.

I This uses the diagonals in an essential way and fails for the
monoidal version of cubical sets.

I As in sSets, the categories A with a Kan nerve N(A) are
exactly the groupoids.

I Cubical analogues of the orientals, the homotopy
coherent nerve, and the notions of quasicategory and
∞-topos have not yet been studied.

I We expect the (cubical nerve of) the category of types in
cubical homotopy type theory to be a cubical ∞-topos.

Cubical nerve of a category

Theorem (A. 2015)

The cartesian nerve functor N : Cat // cSet is full and faithful.

I This uses the diagonals in an essential way and fails for the
monoidal version of cubical sets.

I As in sSets, the categories A with a Kan nerve N(A) are
exactly the groupoids.

I Cubical analogues of the orientals, the homotopy
coherent nerve, and the notions of quasicategory and
∞-topos have not yet been studied.

I We expect the (cubical nerve of) the category of types in
cubical homotopy type theory to be a cubical ∞-topos.

Cubical nerve of a category

Theorem (A. 2015)

The cartesian nerve functor N : Cat // cSet is full and faithful.

I This uses the diagonals in an essential way and fails for the
monoidal version of cubical sets.

I As in sSets, the categories A with a Kan nerve N(A) are
exactly the groupoids.

I Cubical analogues of the orientals, the homotopy
coherent nerve, and the notions of quasicategory and
∞-topos have not yet been studied.

I We expect the (cubical nerve of) the category of types in
cubical homotopy type theory to be a cubical ∞-topos.

Univalence in cubical sets

The rough idea is this:

I A path c : IdU (A,B) in the universe U of types corresponds
to a map c : I→ U , since IdU = UI.

I Such a map determines a fibration C → I over the 1-cube,
with C0 = A and C1 = B.

I Since there is a (distinguished) path p : IdI(0, 1) in I,
and C → I is a fibration, we have the transport map

p∗ : A = C0 → C1 = B ,

which is an equivalence A ' B.

I This is the map IdU (A,B)→ A ' B which by UA is
supposed to have an inverse.

I Given an equivalence e : A ' B, we can build a suitable
fibration A +e B → I using the mapping cylinder
construction from homotopy theory.

Univalence in cubical sets

The rough idea is this:

I A path c : IdU (A,B) in the universe U of types corresponds
to a map c : I→ U , since IdU = UI.

I Such a map determines a fibration C → I over the 1-cube,
with C0 = A and C1 = B.

I Since there is a (distinguished) path p : IdI(0, 1) in I,
and C → I is a fibration, we have the transport map

p∗ : A = C0 → C1 = B ,

which is an equivalence A ' B.

I This is the map IdU (A,B)→ A ' B which by UA is
supposed to have an inverse.

I Given an equivalence e : A ' B, we can build a suitable
fibration A +e B → I using the mapping cylinder
construction from homotopy theory.

Univalence in cubical sets

The rough idea is this:

I A path c : IdU (A,B) in the universe U of types corresponds
to a map c : I→ U , since IdU = UI.

I Such a map determines a fibration C → I over the 1-cube,
with C0 = A and C1 = B.

I Since there is a (distinguished) path p : IdI(0, 1) in I,
and C → I is a fibration, we have the transport map

p∗ : A = C0 → C1 = B ,

which is an equivalence A ' B.

I This is the map IdU (A,B)→ A ' B which by UA is
supposed to have an inverse.

I Given an equivalence e : A ' B, we can build a suitable
fibration A +e B → I using the mapping cylinder
construction from homotopy theory.

Univalence in cubical sets

The rough idea is this:

I A path c : IdU (A,B) in the universe U of types corresponds
to a map c : I→ U , since IdU = UI.

I Such a map determines a fibration C → I over the 1-cube,
with C0 = A and C1 = B.

I Since there is a (distinguished) path p : IdI(0, 1) in I,
and C → I is a fibration, we have the transport map

p∗ : A = C0 → C1 = B ,

which is an equivalence A ' B.

I This is the map IdU (A,B)→ A ' B which by UA is
supposed to have an inverse.

I Given an equivalence e : A ' B, we can build a suitable
fibration A +e B → I using the mapping cylinder
construction from homotopy theory.

Univalence in cubical sets

The rough idea is this:

I A path c : IdU (A,B) in the universe U of types corresponds
to a map c : I→ U , since IdU = UI.

I Such a map determines a fibration C → I over the 1-cube,
with C0 = A and C1 = B.

I Since there is a (distinguished) path p : IdI(0, 1) in I,
and C → I is a fibration, we have the transport map

p∗ : A = C0 → C1 = B ,

which is an equivalence A ' B.

I This is the map IdU (A,B)→ A ' B which by UA is
supposed to have an inverse.

I Given an equivalence e : A ' B, we can build a suitable
fibration A +e B → I using the mapping cylinder
construction from homotopy theory.

Univalence in cubical sets

The rough idea is this:

I A path c : IdU (A,B) in the universe U of types corresponds
to a map c : I→ U , since IdU = UI.

I Such a map determines a fibration C → I over the 1-cube,
with C0 = A and C1 = B.

I Since there is a (distinguished) path p : IdI(0, 1) in I,
and C → I is a fibration, we have the transport map

p∗ : A = C0 → C1 = B ,

which is an equivalence A ' B.

I This is the map IdU (A,B)→ A ' B which by UA is
supposed to have an inverse.

I Given an equivalence e : A ' B, we can build a suitable
fibration A +e B → I using the mapping cylinder
construction from homotopy theory.

