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HoTT

- Introduction

Untyped Lambda Calculus

>

>

A formalism for binding variables and substitution

Binder Zoo: quantification, integrals, generalized products,
functions, ...

Terms: M, N ::=x | MN | Ax. M

Examples of terms: y, Ax. x, Ax. (Ay. x), Ax. (Ay. y(yx))
Binding x in M (lambda abstraction): Ax. M

Intention to unbind (application): MN

» Actual unbinding (3-contraction): (Ax. M)N — M[x := N]
» Substitution:

» x[x =N =N
> ylxi=N=y(y #x)
» (MM')[x := N] = (M[x := N])(M’[x := N])

» (Ay. M)[x := N] = Ay. (M[x := N]) (y £ x, avoiding caption)
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Terminology and Notation

» Avoid caption by renaming bound variables
» Technically better, but hard to read (De Bruijn): f.e. AA1

» Application left-associative :
M1M2...MnE ((MlMg)Mn)

» Abstraction right-associative :
AX1X2 .. Xp. M = Ax1. (Axa. ... (Axp. M))

» Convenient combination: (Axix2...xp. M)Mi My ... M,
> A free variable in a term is a variable that is not bound by a A
» Reducible expression (redex): (Ax. M)N
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Reduction

Examples of contraction: (Axy.x)z — Ay. z,
(Axy. x(xy))f = Ay. f(fy), (Ax. xx)(Ax. xx) — ...

Reduction is contraction of a subterm (ind. def.):
if M — M’, then MN — M'N, NM — NM', Ax. M — \x. M’

Reductions may be iterated: — is the reflexive and transitive
closure of — (zero steps, one-step or many-step reduction)

Convertibility: =g is the transitive, symmetric and reflexive
closure of —

Convertibility is a congruence wrt. application and abstraction

THEOREM (confluence): if M =g N, then M and N have a
common reduct R, thatis, M 5 R <& N

COR: lambda calculus is consistent, Axy.x #g Axy.y
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Useful encodings

» Booleans: true = Axy. x, false = Axy.y

» Negation: = = A\b. b(false)(true)

» Conjunction: A = Ab. b(Ax. x)(Ax. false)

» Remarkable: Afalsex =g false, but NOT Ax fal =4 false
Natural numbers (Church): 0 = Afx. x, 1 = Ax. fx,
2= Mx.f(fx) ... ,in general n = Ax. f"x
Successor: S = Anfx. nf(fx) (indeed S0 =31, S1=52,...)
Addition: + = Anm. nSm (+0x = x, NOT +x0 =3 x)
Multiplication: * = Anm. n(+m)0
Exponentiation: e = Anm. m(xn)1
Fixpoint operator: Y = Af. ((Ax. f(xx))(Ax. f(xx)))
COR: lambda calculus is Turing complete

COR: lambda calculus is ‘inconsistent’, Y(—) =g =(Y(—))

v

>
>
>
>

v

v

v
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Chapter 1 — Type Theory

» Judgment: t: T (logical stuff inside t, T)

» Assumption: judgment of the form x : T (x a variable)
» Context: list of assumptions I (with different variables)
» Typing: a judgment in a context, notation 't : T

» Example: f:A— A, x: AFf(fx): A

» Type theory: system of rules to derive typings

» Two notions of equality:

» definitional (or judgmental) equality: a = b (5,7,¢,9,...)
» propositional equality (logical operations): a type a=4 b
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Function types

» If A and B are types, then so is their function type A — B
» Introduction rule:
MNx:AFt:B
N-Xx:At:A— B

» Elimination rule:

If:A—-B TrFa:A
N-fa:B

» No product types needed (but they will come nevertheless):
MNx:Ay:BFt:C
Mx:AFAy:B.t:B—C
M= Ax:A Ay:B.t:A— (B— ()
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Universes and families of types

v

Universe of types: U, ‘A is a type' becomes judgment A : U
Rather not U : U, but Uy : U, . ..
Formation rule for —:

r-A:U THEB:U
r-A—=B:U

v

v

Introduction rule for functions:

rN-A:U TH-B:U T,x:AFt: B
MN- A t:A— B

v

This includes:
rl—U:Z/[l rl—Ul:Ul FUOIul AZUoF(A%A)ZUO

v

FI—(U—>U’):M1 F()\AZUQ.A%A):Uo—)Uo

v

Type family: B : A — U with A : U, example B = An:Nat.R"
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Dependent product types, aka [l-types

Given A: U, B:A— U and a: A, we have Ba: U
Dependent product type: Mx:A. Bx (or [ AB)
Formation rule for lM-type:

N-A:U T-EB:A—U
N-MNx:A. Bx: U

v vy

v

Introduction rule for MN-type:
NrN-A:Ud TFB:A—-U TI,x:AFt:Bx
N Ax:A.t: TIx:A. Bx

v

M-type is the type of dependent functions (co-domain varies),
examples: element of infinite product, An:Nat.0(n) : N Nat B
Elimination rule for IM-types:

[Ef:MxABx:U TFHa:A .
M- fa: Ba so, e.g., 0(3):R3

v
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Type constructors

v

Type Zoo is ever extending (social process!)

v

Type constructors, so far: —, Tl

Actually, A — B is a special case: [TA(Ax:A. B)
How to systematically manage the Type Zoo

v

v

Name a new type constructor

Formation: how to construct types with the new constructor
Introduction: how to construct elements of the new type
Elimination: how to destruct (work with) these elements
Computation: how to simplify desconstruction (3, ¢)
Optional: uniqueness principle for condestruction ()

vV v vV v VY

v

Example: —, abstraction, application, 8-, n-reduction
(Ax.t)a =g t[x = a], Ax.fx =, f
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Products (1)

» Type constructor: X, idea: cartesian product
» Formation rule for (non-dependent) product:
AU B:U
AxB:U

v

Introduction rule for product:
a:A:U b:B:U
(a,b): Ax B

v

Elimination rules for product:
p:AxB p:AxB
prip: A prop : B
» Computation rules for pairs and projections:
» pri(a,b) —, a, pra(a, b) =, b
» Optional: (prip, prap) =, P
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Products (2)

» We can infer the following jugment:

AM:A—=B—C. A\p:AxB. f(prip)(prap) : (A=B—C) — (AxB—C)

v

As an alternative to the pr;'s, we can postulate:

recaxg : NMCU.(A-B—C) — (AxB—C()

» ... and recover the projections:
> pri = recaxg A(Aa:A. Ab:B. a) : AXxB—A
> pry = recaxg B(Aa:A. \b:B.b) : AxB—B

Computation rule for the recursor:

v

recaxg Cg(a,b) —, gab

v

This works well in general, we like recursors
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Products (3)

» Syntactic sugar can impair understanding: pair :== g

recaxg C g (pairab) —, gab

v

Keep in mind: recursor replaces constructor by other term

v

Still possible:

A= {a}, B={b}, AxB={(a,b),p}, pnp=a, pnp=>b
Will be solved (propositionally) by an induction principle
(dependent version of recaxg)

v

v

This also helps: (prip, prap) =y p

v

Q: how does this relate to cartesian products in category
theory?
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Products (0)

» Formation: 1:U, idea: empty product

v

Introduction: % : 1
Elimination: rec; : NC:U.C -1 — C
Computation: (reci Cc*) —, ¢

v

v

v

Q: x =7
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Induction

» We can infer the following jugment (short):

f:Nx:ANy:B.C(x,y) = Ap. f(prip)(prap) : Np:AxB. C(prip, prap)
> ... but NOT the following jugment:

f:Nx:A.Ny:B.C(x,y) = Ap.f(prip)(prap) : Mp:AxB.Cp

> ... unless we have (prip, prop) —y p, or postulate:

indaxg : MC:AXB—U. ((Mx:A.My:B. C(x,y)) — MNp:AxB. C p)
» Computation rule for the dependent eliminator (induction):

indaxg Cf(a,b) —, fab

» We like induction (but it does not give us (prip, prap) =y, p)
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Induction on x and more

» Formation: 1:U, idea as a set: {*}

> Introduction: % : 1

» Dependent elimination: indy : MC:1 - U. Cx — MNx:1. Cx
» Computation: (indy Ccx) —, ¢

» Provable (short):
refl, : (x=1%) I indy (Ax:1. (x=1%)) refl, : Mx:1. (x=1%)
» Computation: indy (Ax:1. (x=1%)) refl, x —, refl,
» Define: C = Ap:AxB. (prip, prap) =axB P
» On the blackboard: inhabitant of MNp:AxB. Cp

> More on equality types and refl later
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Dependent pairs and X-types

Dependent pair (a, b): type of b depends on a, b: Ba

Y -type, type of dependent pairs: £x:A. Bx (or X AB)

> x:A. Bx where B : A — U can be seen as an indexed sum
Formation rule for ¥-type:

A:U B:A—-U
Yx:A.Bx: U

vV v.vy

v

Introduction rule for X-type:

A:U B:A—-U a:A b:Ba
(a,b) : Tx:A. Bx

v

Elimination rules for 2 -types:

d:>Xx:A.Bx:U d:YXxA.Bx:U
prid : A prad : B(prid)
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Recursion and induction for >-types
> Define the recursor:
recy ag : NC:U. (MNx:A. (Bx—C)) - (X AB—C)

» ... and recover the first projection:
» prp =recy apA(Nab.a) : TAB—A

Define the dependent eliminator:

v

indsag : MC:(XAB—U). (Mx:A.My:Bx. C(x,y)) = (Mp:X AB. Cp)
» ... and recover also the second (dependent) projection:

pra = inds ag (Ap:X AB.B(prip)) (Aab. b) : MNp:X AB. B(prip)

v

Computation rules: rec/inds ag Cg(a,b) —, gab
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The Axiom of Choice

» ForA:U, B:U, R: A— B —= U, find ac with
ac: (Mx:A.Zy:B.Rxy) = Xf:A—B.TMx:A. R x (x)

» we discuss this on the blackboard (see 1.6 of the book)
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Use of X-types (and other types)

> A group is a set with operations satisfying axioms
A T-type: TAU.(A—A—=A) x ((A—=A) x A)

This captures only the signature

v

v

v

We let products and pairs associate to the right

» We assume sensible precedence rules

v

Taking one group axiom into account:
YAU. ZmA—-A—-A LI A=A ZuA. (Mx:A. mux =4 x)
> More axioms:

YAU. TmA—-A—A LI A—A ZuA. (AxL X Ax2 X ...)

v

This can be considered to be the type of groups
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Coproducts

v

Type constructor: +, idea: disjoint union

» Formation rule for coproduct:
AU B:U
A+B:U
» Introduction rules for coproduct:
a:A: U b:B:U
inla: A+ B inrb: A+ B
» Elimination rule for coproduct:

s:A+B f:A—-C g:B—C

casesf g:C

v

Computation rules for coproducts and injections:
» case (inl a) f g —, fa, case (inr b) f g —, gb
» Optional: case s inl inr =, s
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Recursion and induction for +

» We prefer a recursor:
recarg : MNCU. (A—-C) — (B—-C) - A+B = C

> ... and define: case _f g=recarg f g

> We define a dependent eliminator inday g of type:
NC:A+B—U. (Nx:A. C(inl x)) — (Ny:B. C(inry)) — Ns:A+B.Cs

» Computation rules:
» rec/indarg C f g(inla) —, fa
» rec/indarg C f g (inrb) —, gb
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The empty coproduct

» Formation: 0 : U, set analogue: ()
> Introduction: nope
» Elimination:

» recog: NCU.0 — C
> indg : MC:0—U.MNx:0. C x

Computation rules: none (recg Cs — 7?)

v

v

Induction principle known as ex falso [[sequitur| quodlibet] (C)

v

(recg 0) and (Ax:0. x) are only extensionally equal
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Booleans

» 2=1+1 (p. 45), beating Principia Mathematica (p. 362!)
» Formation: 2 : U/
» Introduction: 03 :2, 15:2
» Elimination:
» recy:NCU.C—-C—=2—C
> indy : NC:2—U. C(02) — C(12) — MNx:2. Cx
» Computation:
» ind/recy C cyc1 02 — o, ind/reca Ccocy 1o — ¢
» Exercise:
> reflo:(02:202), ref/l:(12:212) F?:Mx:2. (X:202) + (X:212)
» Discussion:

» (M2 (RecaUd AB)), (X 2 (RecaUd AB))
» A — 2: 'decidable subsets’ of A : U
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Natural numbers

» Formation: N : U

Introduction: 0: N and Sx : N if x: N
Elimination:

» ity:NMCU.C—(C—-C)—-N—=C

» reeqy :NMCUC—H(N—-C—>C)=>N=C

» indy : MC:N—=U. CO — (Mx:N. Cx — C(5x)) — Nx:N. Cx
Computation:

» itnCcf0 —, ¢, ity Cef (Sx) —, f(ity Cefx)

» reayCcf0 —, ¢, recyCef (Sx) —, fx(recy Cefx)

» induction indy has the same rules as recy

v

v

v

v

Interdefinable: ity (iterator) and recy (primitive recursion)
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Useful encodings

» Example: double = ity NO (Ax:N. 5(5x))
» double0 —, 0
» double (5n) —, (Ax:N. §(5x))(double n) — 3 S(S(double n))

» Right-recursive addition: add = Ax:N. ity Nx S

> Left-recursive addition:
adl = ity (N—=N) (Ax:N. x) (A\f:N—=N.S o f)
» adl0 —, Ax:N.x, so adl0Om —, m
» adl(Sn) —, S o (adl n), so
adl (Sn)m —, (S o (adl n)) m —z S(adl nm)

» Right-recursive multiplication:

mult = Ax, y:N. ity N0 (add x) y



HoTT
LFoundations
L Chapter 1

Proofs by induction

» We prove in the context ...

» refly : Mx:N. (x =y x) (later: axiom)

» funcS : MNx,y:N. (x =n y) — (Sx =n Sy) (later: provable)
» ... on the blackboard:

» F?:Mx:N. (add 0 x =y x))

» 7 : MNx:N. (double (add x (50)) =n S(S(double x)))

» 7 :Mx:N. (add x 0 =y x) (no induction needed!)

» Discussion



HoTT
LFoundations
L Chapter 1

Pattern Matching

» Instead of f = recays C go g1:

f(inla) = goa
f(inrb) = gib

> Instead of
f = recaxpg C Aa:A. Ab:B. (a term of type C in a and b):

f(a,b) = (aterm of type C in a and b)
» Instead of double = ityN 0 (Ax:N. 5(5x)):

double 0 =0
double (S x) = S(S(double x))

» ... and of course not

I
o

{ fo
F(Sx) = F(5(5(x))
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Propositions as Types

» Correspondence:

true

false

if _then_

not _

and

or

for all ...

exists ...

1

0

- -

_—=0

X

_l’_

Mx:A. Px

2 x:A. Px

» We prove some constructive tautologies on the blackboard
» Eg., (Mx:A.My:A. (Px — Qxy)) — MNMx:A. (Px — MNy:A. Qxy)
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Identity Types

» Formation: Idagab: U if A:U and a,b: A
» Notation: ldpab or a=4 b or even just a= b
» Introduction: refl : Tx:A. Ida x x, notation refl, for (refl a)

» Elimination: indjq, has type 'for every unary predicate C on
the path space of A, and every function mapping points x to a
proof of C(x, x, refly), there exists a function mapping paths
(x,y,p) with p: x =4 y to a proof of C(x,y,p)" (book!)

» Computation: indjg, C cxx refly —, cx

» Example: with C = Ax, y:A. Ap:(x=ay). (¥ =a x) we get

indig, Crefl : Tx, y:A.(x =4y = y =4 X)
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Path induction and based path induction

» Path induction (two lines): MC:(MNx, y:A.(x =ay — U)).
(Nx:A. C x x refly) — (MNx, y:A.Np:(x=4ay). C xy p)
» Based path induction: Ma:A.NC:(My:A.(a=ay — U)).
Carefl, — (Ny:A.Mp:(a=ay). Cy p)

» Equivalence on the blackboard (book!):

» Path induction follows easily from based path induction
» Based path induction follows from one ‘universal’ instance of
path induction, ‘pulling out’ My:A.Mp:(a=ay). -

Dayp=NC:(Ny:A.(a=ay —U)).Carefl, > Cyp
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Homotopy theory

» Path in a topological space X: continuous map [0, 1] — X

» Problem for the foundations: [0, 1]

» HoTT = synthetic homotopy theory

» Striking: induction for identity types fits very well

» Pointwise equality of paths too fine (2-way trip = stay home?)

» Homotopy between p, g : [0,1] — X: a continuous
H :[0,1]x[0,1] — X such that H(t,0) = p(t), H(t,1) = q(t)

» Picture: image of square ‘fills space between p and g in X’
» Example: h(t) =1—|1—2t|, H(t,z) = z- h(t).
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More homotopy theory

» Path p:[0,1] — X, start point p(0), end point p(1)

» Loop: p(0) = p(1), loop at xp: p(0) = xo = p(1)

» Based homotopy: as above, with H(0,y) = xo = H(1,y)
» Q: homotopic loops at xg that are not based homotopic?
» Fundamental group: loops at xp modulo based homotopy
» Homotopy between f, g : X — Y easy generalization

» Homotopy between X, Y in TOP: f: X = Y, g: Y = X,
f o g and idy homotopic, g o f and idx homotopic

> Invariant: homotopic spaces have isomorphic fundamental
groups (for every x € X we have 71 (X, x) = (Y, f(x)))
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Higher dimensional paths

v

Homotopies: "paths between paths”, 2-dimensional paths

v

Homotopies form a topological space (Q: how?)

v

Paths between homotopies: 3-dimensional paths

> ... and so on, an infinite tower called co-groupoid

v

Weak groupoid (only up to homotopy), not group
Q: how to compose p, q : [0,1] — X if p(1) # q(0)?

v
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Homotopy type theory

> Pathinatype A: p:x=4y
» 2-Path in a type A: pathin x =y, for x,y : A
» More explicitly: p2q: p=x—,, q. for p,g: x=ay
» What about the groupoid structure?
» “l=indg, Crefilxy:(x=ay —y =a x), with
C = Ax, y:A. Ap:(x=ay). (y =a x), satisfies refl,™* =, refl,
» Concatenation operator _*_: (x =y) = (y = z) = (x = 2)
» LEM: forall A: U, x,y,z,w: A, p:x=y, q:y=z, r:z=w

1. p=reflg=p=p-refl,
2. prpt=refly, ptep=refl,
-1
3.(p7Y) =0
4. p+(qer)=(p=q)-r
» Proofs on blackboard
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Loop spaces

Loop space: Q(A,a) = (a =4 a) (with refl, : a =4 a)
NOT provable: Mp:(a =4 a). p =(a—,z) refla

Group: Q(A, a), refl;, _+_, _~! (modulo =Q(A,2))
This group is not necessarily commutative

vV V. v v Y

The loop space of the loop space:
Q?(A, a) = (refl, =(a=pa) refla)

» THM 2.1.6 (Eckmann-Hilton): Q2(A, a) is commutative
» Book: picture good, proof improved in current version (09/13)
» Fair attempt on the blackboard: by based path induction

MNa,b: A, p,g:(a=0b), ai(p=gq).Nc:ANr(b=c).pr=q-r

v

.. and a lot more (proof assistant dearly missed)
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Q to the topologists

If we have full freedom of definition, then we can define the
following predicate on the path space of some topological space X:

Cxyp = (x = y A p = refly)

By path induction: all continuous p : [0,1] — X are constant.
Restrict path induction to continuous C, that is, C boolean valued
and continuous wrt the discrete topology on the booleans.

Q: what is the simplest (or: a simple) topological space X
validating path induction, but not all paths constant? (A: [0,1])
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Pointed types and loop spaces

v

Us =TAU. A

Pointed type: (A,a) € Us for AcU and ac A
Pointed loop space: Q(A, a) = ((a=a a), refl,)
lterated: QO0(A, a) = (A, a),

v

v

v

Q™A a) = Q"(Q(A, a))

v

Q%(A,a) = Q(a =a a), refl,) = (refl, =(5—,2) refla, refles,)
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Functions as functors

v

Type A as a category:
» Objects a: A
» Arrows p:a=p bforab: A

Function f : A— B as a functor (in TOP: f continuous)
» LEM: For all x,y : A thereis apr : (x =a y) — (fx =g fy)
» Proof: easy path induction (aps refl, =, refls)

v

v

Shorthand: f(p) = (apr p) (application, action on paths)

» LEM: forall f:A— B, g:B—C, p:x=ay, q:y=az
L f(p - q) ~fx=gfz f(p) b f(q)

F(PY) =h—ui F(p) "

- &(f p) =g(p0=ca(r) (€0 )(P)

idax =g X, ida(p) =x=ay P

AN
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Transport

YV V. vV vV Y vV VvV VY

v

Functor f : A — B maps paths in A to paths in B

For B: A— U and f : Tx:A. Bx this is not so easy ...

... because Bx and By are different types

Type family B : A — U is a non-dependent function (of types)
LEM: for all x,y : Aand p: x =4 y there is p, : Bx — By
Proof: easy path induction ((refly). =, idpx)

Longhand: transport® p = p., so transport® p : Bx — By

We can now lift paths in A to the total space ¥ A B (picture)
COR: for all x,y : A,p:x =4y, u: Bx there is

lift(u, p) : (x,u) = (v, p«u)

Type family B: fibration with base A
Q: actually, the fibration is fst : (XAB) — A
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Heavy transport

» Picture of transport with dependent function f : lNx:A. Bx

» LEM: for all x,y : Aand p: x =4 y there is
apdr : (x =ay) = (p«(fx) =gy fy) with apdy refl, =, reflg
LEM: if P: A — U with Px = B fixed, then for all x,y : A,
p:x=payand b: B thereis tpch b : transport pb =g b
LEM: for f : A— B and p: x =4 y we have

v

v

apde(p) = (tpcg (x)) * (aprp)
LEM:if P:A—>U,p:x=ay,q:y =a2z and u: Px, then

v

(geop)u=(p=q)eu
LEM:if f:A— B, P:B—U, p:x=ay, and u: P(fx),
Pof

v

transport™°" p u = transport® f(p) u

LEM 2.3.11: book

v
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Homotopies

> DEF: Let f,g : Nx:A. Px for P: A— U. A homotopy from f
to g is a dependent function of type f ~ g, where

(f ~ g) =Nx:A. fx =py gx

» NB: f ~ g is NOT the same as f =ny.4.px &
» LEM: homotopy is an equivalence relation:
» ?r: Nf:(Nx:A. Px).(f ~f)
» ?7s:Nf, g:(Mx:A.Px).(f ~g > g ~f)
» ?t:Nf, g, h(Nx:A.Px).(f ~g = (g ~h—f ~h))
» LEM:if H: f ~gforf,g: A— B,and p: x =4 y, then
Hx - g(p) = f(p) * Hy (naturality, picture, proof by induction)
» COR:if H: f ~ida for f : A— A, and x : A, then
H(fx) = f(Hx) (picture, proof by cancelling Hx)
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Equivalences

v

DEF: For f : A — B, a quasi-inverse is a triple (g, «, ) with
g:B—>Aanda:gof ~idy, B:fog~idg.

v

DEF: the type ginv(f) of quasi-inverses of f is

Yg:B— A ((fog~idg) x (gof ~ida))

v

Examples:
> ?7:qinv(ida) for ida: A — A
» ?:qinv(p-)forp_iy=z—=>x=z
> 7 qinv(transport};3 ) for transport,’; : Px — Py

» ginv not well-behaved: nonequal inhabitants
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Equivalences and Univalence

>

vV V. V. YV VvV VY

DEF: For f : A — B, the type isequiv(f) is
(Zg:B = A.(fog ~idg)) x (Eh:B — A.(ho f ~ ida))

LEM: (i) qinv(f) — isequiv(f); (ii) isequiv(f) — qinv(f)
Proof: (i) take g = h; (ii) use g~ hofog~h

LEM: for all e1, e : isequiv(f) we have e1 =jsequiv(f) €2

Proof: postponed (interaction between = and X, ¥)

DEF: (A~ B) = Xf:A — B.isequiv(f)

LEM: For all A, B : U there is idtoeqv : (A =y B) - (A~ B)
Proof: by induction, using isequiv(ida)

Univalence Axiom: for all A, B : U, isequiv(idtoeqv); hence:

(A=y B)~ (A~ B)
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Type equivalence

» An equivalence e : A~ B is a pair (f, p) with f : A— B and
p : isequiv(f); sometimes p is left implicit
» LEM: Type equivalence is an equivalence relation on :
» Forany A:U, ida: A— Ais an equivalence
» For any f : A~ B we have an equivalence f"1: B~ A
» Foranyf:A~Bandg: B~ Cwehavegof:A~C
» Proofs:

> ida : A — As its own quasi-inverse; hence an equivalence
» If f : A— B is an equivalence, it has a quasi-inverse
f~1: B — A, which is also an equivalence

» If f: A~ B and g : B ~ C, take their quasi-inverses ...
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Structuralism

» Will turn out very different:
» ‘Two pairs are equal if they are componentwise equal’
» ‘Two functions are equal if they are pointwise equal’
» Type formers: x,+,%,1,U4,0,1,2,N, Id
> A lot of structural properties to investigate:
» equality (example: lemma below)
> transport
» action on path
» LEM: (x =axB ¥) =~ ((prix =a priy) x (prax =g pra2y))
» Proof on the blackboard
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Equality in cartesian products

v

LEM: (x =axB ¥) = ((prix =a priy) X (pr2x =g pray))
Proof: isequiv(Ap:(x =axs y)- (pri(p), pr2(p))). by:

1. define the function in the ‘other’ direction (notation: pair=)
2. prove that pair= is a quasi-inverse

v

» pair=: introduction rule for x =44 y, elimination:

1 apPpr, - (X —AxB Y) — (prlx =A prl}/)
2. appr, 1 (X =axB ¥) = (prax =g pray)

» vielding propositional computation rules:
1. (appr,(pair=(p,q))) =p for p: (prnx =a pny)
2. (appr,(pair=(p,q))) = q for q: (prax =g pry)
» and a propositional uniqueness principle:
r = pair=(appnr,apprnt) for r:(x =axsy)
» plus a lot of other componentwise propositional equalities
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Transport and action in cartesian products

» THM: If AAB:Z - U, p:z=z w and x : ((Az) x (Bz)),
then p.x =(aw)x(8w) (P+(prix), p«(prax))
Proof: path induction plus propositional uniqueness

v

v

Functoriality of ap under cartesian products: let g: A — A/,
h: B — B’ and define f : (AxB) — (A'xB’) by

f = M:AxA . (g(prix), h(prax)). Then:

THM: if also x,y : AXB, p: (prix) =a (pr1y) and

q : (prax) =g (pr2y), we have (picture)

v

f(pair=(p,q)) =s=r pair—(g(p), h(q))

v

Proof: by induction on pairs and paths
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Equality and transport in >-types

» THM: let P: A — U and w,w’ : Tx:A. Px. Then:
(W =¥ x:A. Px W/) ~ Z (p*(prW) = pI’QW/)
p:priw=prw’

» THM: let P: A— U and Q : (¥x:A. Px) — U. Then
Ax:A. (Zu:Px. Q(x, u)) is a type family such that for
p:x=yand (u,z): (Zu:Px. Q(x, u)) we have:

p*(u,z) =X u:Py. Q(y,u) (P*U, /ift(ua p)*Z)

> Generalizes: p.x  =(aw)x(Bw) (P+(Pr1x), p«(pr2x))
» Time for a picture!
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The unit type

» THM: for all x,y : 1 we have (x =y) ~ 1.
> Proof: exercise

» Pitfall: don't start proving (x = x) ~ 1
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Equality in -types
» Wanted, for A: U4, B: A— U and f, g : Mx:A. Bx:
(f = g) ~ (Nx:A. fx =px gx)

v

By an easy path induction (to be viewed as elimination):

happly : (f = g) — (MNx:A. fx =gy gx)

v

Axiom (function extensionality): isequiv(happly)
Quasi-inverse of happly (to be viewed as introduction):

v

funext : (Mx:A. fx =gy gx) = (f = g)

v

Propositional equalities (use functional extensionality):
happly (funext h) = h

» « = funext (happly @)

> refly = funext (Ax:A. reflg.)

a1 = funext (Ax:A. (happly ax)™")

a8 = funext (Ax:A. (happly ax) * (happly 8 x))

v

v

v
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Transport in [-types

» Let A, B: X — U and define A2B = Ax:X. (Ax — Bx).
Given a path p : x; =x xp, there are two natural ways to
transport f : Ax; — Bxj to Axo — Bxa (picture):
1. by applying transport®?8 p : (Ax; — Bx1) — (Axo — Bx)
2. by transporting any given a : Axp first back to Axy, applying f,
and then transporting the result in Bx; to Bx;

These two ways turn out to be propositionally equal.

» LEM: under conditions as above:

A2B

transport™?8 p f = \a:Axy. transport® p (f(transport” p~1 a))

» Proof: by path induction

» This was only the non-dependent case ... (see the book)
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Univalence

» idtoeqv : (A =y B) — (A ~ B) defined by path induction
» Univalence Axiom: for all A, B : U, isequiv(idtoeqv); hence:

(A=y B) ~ (A~ B)

Abuse of notation: (f,p) : A ~ B identified with f : A— B
A different view on univalence:
» Introduction (postulated): va: (A~ B) — (A=y B)
» Elimination (transport): [prio]idtoeqv : (A=y B) — (A — B)
» Propositional computation rule: idtoequiv (uaf) = f
» Propositional uniqueness: p = wua (istoeqv p), so refly = uaida
LEM: (vaf)+(uag) = ua(gof); (vaf)™' =ua(f 1)
LEM: for B: A— U, p:x =4y we have (no UA!):

vy

v

v

ps = transport® p =B« By Idtoequiv (apgp)
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Identity types

» THM: if f : A— B is an equivalence, then for all a,a’ : A we
have the equivalence aps : (a =4 a') — (fa=p fa’)

» Transport in families of identity types, with p : x3 =4 xo.
LEM: for p: x; =a x2 and g : Pxy for superscript P: A— U

1.

transport™A-(2=aX) p g = g+ p
1

2. transport?A-(x=43) p g = p~l. g
3.
4. transport™A (5=58) p g = (aprp) '+ g - (apgp)

transport™A-(=a¥) pg = p~lugp

forf,g:A— B
transport™A- (F=e8%) p q = (apdrp) " p.(q) * (apdgp)
for f,g : Mx:A. Bx

Proofs by pictures
» THM: for p:a=pa,q:a=4a, and r: a =, a’ we have:

Ax:A. (x=4ax)

((transport pa)=r (g p=p-r)
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Coproducts

>

Coproducts are interesting: try defining f : A+ B — A ...

» Hopefully (proof not obvious, too special):

1. (m/ a; = inl 32) (31 = 32)
2. (inr by = inr by) ~ (by = by)
3. (inla=inrb)~ 0
(

Idea: combine 1,3 (2,3) and generalize! (Q: 1,2,3,47)
Fix ag : A; then P = AxtA+B.(inlag = x) : A+B — U.
Wanted: P(inla) ~ (ap = a) and P(inrb) ~ 0

Define code : A+B — U recursively by

code (inl a) = (ap = a) code (inrb) =0

Define encode : MNx:A+B.[Mp:(inl ag = x). (code x)
and  decode : Nx:A+B.Tc:(code x). (inl ag = x)

Prove that encode(x, ) and decode(x, ) are quasi-inverses
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Coproducts (ctnd)

v

THM: for all x : A+ B we have ((inl ag) = x) ~ (code x)
Details on the blackboard
COR (of the proof):
» encode(inl a) : ((inl ag) = (inl a)) — (ag = a)
» encode(inr b) : ((inl ag) = (inr b)) — 0
Transport: for A,B: X — U and p: x1 =x Xo:
> transport™<X- (A<tBx) b (in] 3) = inl (transport™ p a)
> transport™X-(AtBx) b (inr b) = inr (transport® p b)

v

v

v
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Natural numbers

v

We define code : N — N — U such that:
THM: for all m, n: N we have (m = n) ~ (code m n)
Details on the blackboard (or in book)
COR: we have (inhabited)
» MNm:N.((Sm) =0) — 0, as code((Sm),0) =0
» Mn, mN. ((Sm) = (5n)) = (m = n), as
code(Sm, Sn) = code(m, n)

» COR: N is a set (type in which paths are unique)

v

v
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Transporting structure

» SGS(A) = LmA—A—=A Nx,y, z:A. (mx(myz) = m(mxy)z)
» SG =XAU.S5GS(A)

» If e : A=y B, then transport°®°ua(e) : SGS(A) — SGS(B)

» For (m, a) : SGS(A), transport>°ua(e)(m, a) = (m’,a") with

» m’ = ua(e).m = transport*X- X2 X=X ya(e)m
> a' = transport X:m)- Assoc(X;m)(pair=(ya(e), refl,y)) a

where Assoc(X, m) = x, y, z:X.(mx(myz) = m(mxy)z)
» NB: pair=(ua(e), refly) : (A,m) = (B, m’) (Thm. 2.7.2/4)
» Indeed (m’,a") : SGS(B) (no need to reprove)

»m:B—-B—B
» @ : Assoc(B,m') =Mx,y,z:B.(m'x(m'yz) = m'(m'xy)z)
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Some calculations

If p: A=y B, then transport’™ U Xp: A - B
Also: [prio]idtoeqv : (A =y B) — (A — B)

Verbatim the same: transport*Y-X = jdtoeqv

tAXU-X and ua are each other's quasi-inverse

Hence: transpor

So: transport™XU-X ya(e)™H = e~

Recall back-and-forth technique for transport?X-AX—BX

Then: m'byby = (transport™- X=X=Xya(e)m)by by =
tspt*X- X ua(e)(m (tspt™*- X ua(e) L by ) (tspt** X ua(e) " by))
=e(m(e1h) (e thy)) (recall e : A— B equivalence)
Algebraic proof of Assoc(B, m’) not needed (equal to a’)
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Equality of semigroups

» By Thm. 2.7.2: the type (A, m,a) =s¢ (B, m,a") is equal to
type of pairs

pp : A=yB
p2 : transport>®°p; (m,a) = (m'a)

where by univalence p; = wva(e) for some equivalence e and
p2 = (p3, pa) is a pair of proofs with p3 of type

My1,y2:B. (e(m (e y1) (e 1y2)) = m' y1 y
which is equivalent to
Mx1, x0:A. (e (mx1x2) = m' (ex1) (e x2)

> ... recovering the notion of semigroup isomorphism
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Universal properties
» LEM: \f.(pri o f,praof)is an equivalence
(X = (AxB)) = (X = A) x (X — B))

» ... and also for type families (see book)

v

EXC: define an equivalence

((A+B) = X) = ((A—= X) x (B —= X))

v

For A:U, B:U,R: A— B — U, ac is an equivalence

ac: (Mx:A.Zy:B.Rxy) = Xf:A—B.Tx:A. R x (x)

v

Cartesian closure: (Ax B) - C)~(A— (B — ())

» ... and also for type families (see book)
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Sets

v

A set is a type in which paths are unique:
isSet(A) = Nx, y:A.Mp, q:(x =4 y). p =x=,y q
Examples: 0,1, N

» Proofs: trivial, Nx, y:1.(x =1 y) ~ 1 (picture), and

Mx, y:N. (x =y y) =~ code(x, y)
Most type forming operations preserve sets:
» if Aand B are sets, thensoare Ax Band A+ B
» if Ais asetand B : A— U such that Bx is a set for every
x: A, then Z AB is a set (by ‘structuralism’)
» if Ais any type and B : A — U such that Bx is a set for every
x : A, then A B is a set (using function extensionality twice!)
Proof of last: if f,g:MAB, p,q: f =g, then by fun.ext.
p = funext(happly p) and q = funext(happly q). By
assumption on Bx, happly px = happly q x for all x : A.
Hence, again by fun.ext. happly p = happly q, so p = q.
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Sets (ctnd)

The universe is not a set: isSet(Ud) — 0

Proof: we construct by univalence p : 2 = 2 with

(p =22 refl) — 0. Define the equivalence e : 2 — 2 by

e(0) =1, e(1) = 0 (e is its own quasi-inverse). If

ua(e) =2 reflp, then 0 gets inhabited by

e = idtoeqv(ua(e)) = idtoeqv refly = id,

Definition of h-levels (later also levels —2, —1):
» Otype(A) = isSet(A) = MNx, y:A.Np,q:(x =4 yY). p =x=ny q
» ltype(A) =MNx, y:A. isSet(x =a y) = ...

LEM: inhabited isSet(A) — 1type(A)

Proof on blackboard (uses Lemmas 2.3.4 and 2.11.2)
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Types vs. propositions

>

THM: UA conflicts with for all A: U, (——A) — A

» More precisely:

» without UA, MA:U. ((——A) — A) consistent
» with UA, =MA:U. ((——A) — A) is inhabited

Intuition: under UA, there cannot be a natural choice
operator selecting an element from every non-empty type

Proof: assume f : MAU. (((A— 0) — 0) — A). We
construct an inhabitant of 0. Take e : 2 ~ 2 as above. Use
that f acts on ua(e) by

apdrua(e) : (transport™ (""A=Aya(e) (£2)) = £2

Rest on blackboard (use back-and-forth and (——2) ~ 1)
COR: UA conflicts with for all A: U, A+ (—A)
Conclusion: we cannot use all types as propositions
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Mere propositions

» Wanted: V, UA consistent with MA:V. ((-—A) — A)

» Examples: 0,1:V, but not 2: V (UA: ~-naturality)

» Mere proposition: isProp(P) = Nx,y:P.(x =p y)

> Level 0: isSet(A) ~ MNx, y:A. isProp(x =4 y)

» LEM: inhabited isProp(P) — P — (P ~ 1)

» LEM: isProp is closed under x (UA not needed)

» LEM: isProp(P) and P ~ Q, then isProp(Q) (UA not needed)

» LEM: with funext, if A: U and B : A — U such that
isProp(Bx) for every x : A, then isProp(Mx:A. Bx).

» COR: P — @ is a mere proposition whenever @ is

» NB: isProp is not closed under +, nor &
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More on Mere propositions

» LEM: if P, @ are mere propositions with P — @, Q@ — P,
then P ~ Q.

» LEM: Every mere proposition is a set (cf. Lemma 3.1.8)

» LEM: for every type A, isProp(A) and isSet(A) are mere
propositions

» Proof: use funext. If f, g : isProp(A), then fxy,gxy : x =4y,

hence fxy = gxy since A is a set. Analogously for isSet(A)
(use Lemma 3.1.8).
» The HoTT laws of excluded middle and double negation:
» LEM_; = NAU. isProp(A) — (A+ —A)
» DNL_; = NAU. isProp(A) — ((——A) — A)

Both are equivalent, independent, consistent with UA
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Decidability, subtypes and subsets

» Under LEM_1, no need for +, nor X, for doing logic
» For A:U and B : A — U, localized forms of LEM_:

» A is decidable if A+ —A
» B is decidable if Mx:A. (Bx + —Bx)
» A has decidable equality if Nx, y:A.((x =ay) + ~(x =4 y))

v

Example: LEM_; implies that sets have decidable equality

For A:U and P : A — U such that isProp(Px) for all x : A, if
(x,p),(x,q) : x:A. Px, then p = g, and we write:

v

{x:A| Px} = Ix:A. Px

EXC 3.3: Xx:A.Pxisasetif Aisasetand P: A— U such
that isSet(Px) for all x : A

v
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Propositional truncation

» Propositional truncation (or ‘squash’) hides all info about
inhabitants beyond their mere existence.
» NEW: this is a higher inductive type (Chapter 6)!
» Formation: ||A|| :U if A: U
» Introduction, both for objects and paths:
> |a| : |A] ifa: A
> x=a) y if X,y [|A]
» Elimination: defining f : ||A|| — B means
» specifing f|a] : Bforalla: A
» making sure f|a| =4 f|b| forall a,b: A
» Only ‘constant’ functions, or better: if isProp(B), any
g : A — B defines f : ||A|| — B with f|a] = ga
» EXC: isProp(||P|), isProp(P) ~ (P ~ ||P||), for all P : U



HoTT
- Foundations
L Chapter 3

Traditional logic, unique choice

» Under UA: like propositions as types, but with mere
propositions

P+ Q| PVQ |3(x:A).Px
P=yQ ||P+ Q| ||Zx:A. Px||

v

LEM_,, decidability: mathematical axioms
LEM (unique choice): if P : A — U such that

1. Px is a mere proposition for all x : A
2. for each x : A we have ||Px|| (so, Mx:A.| Px|| inhabited)

Then MNx:A. Px (proof: isProp(Px) — ||Px|| — Px)
Choice can sometimes be refined to unique choice
» Homework: read 3.9 and 3.10

v

v
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The Axiom of Choice (AC)

> Let isSet(X), and A: X — U, P:Mx:X.(Ax — U) such that

1. Axis asetforall x: X
2. Pxa is a mere proposition for all x : X, a: Ax

Then AC asserts
(Mx:X. || Xa:Ax. Pxal|) — || ZF:(Mx:X. Ax). Mx:X. Px(x)]|
» LEM: AC is equivalent to, with Y : X — U such that Yx sets,
(Mx:X. || Yx||) = [IMx:X. Yx]|

» Proof: use that ac is an equivalence (2.15.7) and that Yx is
equally expressive as ¥ a:Ax. Pxa (subset!)

» Discussion
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Contractible types

» Contractible type: inhabited mere proposition
» DEF: isContr(A) = Xa:A.lx:A.a = x
» LEM: logical equivalences (Q: why not ~7)
isContr(A) <= (A x isProp(A)) <— (A~1)
» LEM: isProp(isContr(A)), for all A
» Proof: first para in book + isProp(MNx:A.a" = x)
» isContr(A) — isContr(isContr(A)) + other closure properties

» jsContr not closed under +
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Retraction

Retraction: + half of an equivalence (Q: OK?)

DEF: r : A — B retraction if there is s : B — A (the section
of r) such that ros ~ idg. Then we call B a retract of A.

LEM: if B a retract of A, then isContr(A) — isContr(B)
LEM: for all A:U and a: A, isContr(Xx:A.a = x)

> LEM: let P: A — U be a type family

1. if each Px is contractible, then A ~ ¥ x:A. Px
2. if Ais contractible with center a: A, then Pa ~ Y x:A. Px

LEM: isProp(A) ~ INx, y:A. isContr(x =4 y)



HoTT
- Foundations
L Chapter 4

Equivalences

v

Wanted: XYZequiv(f) <> qinv(f) and isProp(XYZequiv(f))
Q: desirable or really needed that isProp(XYZequiv(f))?
LEM: ginv(f) — (qinv(f) ~ MNx:A.x =5 x)) forall f : A— B
Book: for some A : U, MNx:A.x =4 x not contractible

v

v

v

v

Some information is missing from ginv(f) ...

v

Three alternative (equivalent) definitions:
1. ishae(f), adds coherence info to ginv(f)
2. biinv(f) ( = isequiv(f), splits quasi-inverse in two
3. isContr(f), imposes contractibility of fibers
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Half Adjoint Equivalences
» DEF: for f : A— B, the type ishae(f) is
Yg:B— AXa(gof ~ida). Z5:(f o g ~idg).Mx:A. f(ax) = p(fx)

Diff with ginv(f): 1 vs. last MN-type

Logically equivalent: last MN-type MNx:A. g(5x) = a(gx)

LEM: for any f : A — B, qinv(f) — ishae(f)

Proof: take ‘the’ g and « from ginv(f). Define
B'b=5(f(gh)) " - f(a(gb)) - (5b)

Find (7a) : (f(«aa) = p'(fa)) (see book)

» DEF: The fiberof f : A— B over b: B'is

fibr(b) = Lx:A. (fx = b)

vV vV v Y

» LEM: if ishae(f), then any fibs(b) is contractible
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Bi-invertible maps

» DEF: for f : A — B, define:
1. linv(f)=Xg:B— A (gof ~ids)
2. rinv(f)=Xg:B— A (fog ~idg)
3. biinv(f) = (linv(f) x rinv(f)) (that is, isequiv(f))
LEM: if ginv(f), then linv(f) and rinv(f) are contractible
Proof: ¥g:B — A.(g o f = ida) is a fiber and ginv(_o f)
DEF: for f : A— B, (g,«) : linv(f), (g, ) : rinv(f) define:
1. lcoh(f,g,a) = XB:(f o g ~idg).My:B.(g(By) = a(gy))
2. reoh(f,g,B) = XLa:(gof ~ida). Mx:A. (f(ax) = B(fx))

Intuition: lcoh(f, g, ) expresses that ‘g is also right inverse,
plus coherence’

v

v

v

v
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A Mere Proposition

v

LEM: for all f : A— B, (g, ) : linv(f), ( B) : rinv(f)
y)) =

1. leoh(f,g,a) = MNy:B.(f(gy), a(g y) (v, reflgy )
2. rcoh(F g, 5) = A (g(A), AUE) =i (x.refs))

LEM: if ishae(f), then Icoh(f, g, ) and rcoh(f, g, 3) are
contractible for any (g, «) : linv(f), (g, 8) : rinv(f)

LEM: ishae(f) is a mere proposition, for any f : A— B
Proof: X (g, B):rinv(f). rcoh(f,g,f) .... is contractible

LEM: biinv(f) is a mere proposition for any f : A — B, and
biinv(f) ~ ishae(f)
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Contractible fibers

» DEF: for f : A — B, we define:
isContr(f) = My:B. isContr(fibs(y))

» LEM: isContr(f) — ishae(f), forany f : A— B

» Proof: blackboard, or /atest pdf of book

» REM: converse has been shown already

» LEM: isContr(f) is a mere proposition for any f : A — B, and
isContr(f) ~ ishae(f)

» LEM: if f : A — B such that B — isequiv(f), then isequiv(f)

» THM (summing up): biinv(f) ~ ishae(f) ~ isContr(f)
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Bijections, surjections and embeddings

v

DEF: for sets A, B : U, we call an equivalence a bijection
DEF: for types A,B : U, f : A — B, we define:

1. f is a surjection if for all b: B we have ||fibs(b)|| (inhabited)
2. fis a split surjection if Mb:B.Xa:A.(f(a) = b)

3. f is an embedding if for all x,y : A we have isequiv(apr)

4. f is an injection if f an embedding and A, B sets

REM: last clause iff INx, y:A.(fx =g fy) = (x =a y)
THM: isequiv(f) iff (isEmbedding(f) and isSurjection(f))
COR: isequiv(f) ~ (isEmbedding(f) x isSurjection(f))

v

v

v

v
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Fiberwise equivalences

» DEF: for P,Q: A — U, we call f:MNx:A.(Px — Qx) a
fiberwise equivalence if fx : (Px ~ Qx) for all x : A

» DEF: for P,Q: A— U, f : Nx:A.(Px — Qx), we define:
total(f) = Aw. (pnw, f(pnw, prnw)) : (Xx:A. Px) — (Ix:A. Qx)
» THM: for f: Mx:A. (Px — @x), x : Aand v : Qx

fibsorai(r) (X, v) = fibs(v)

» THM: f is a fiberwise equivalence iff total(f) is an equivalence
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Univalence implies weak extensionality

» DEF: the weak extensionality principle is: for all P: A — U
(Nx:A. isContr(Px)) — isContr(INx:A. Px)

» Intuition: if co-domain singleton, there is only one function

» LEM: if pry : (Ex:A.Px) — Aand a: A, then fiby, (a) ~ Pa

» LEM: if UA and A, B, X :U, e: A~ B, then ([pric]eo )
defines an equivalence (X — A) — (X — B)

> THM: if UA and P : A — U is a family of contractible types,
then lMx:A. Px is (a retract of fib,(ida) and so) contractible

> Proof: assume UA and a family of contractible types
P:A—U. Then pr; : (Xx:A. Px) — A is an equivalence,
defining an equivalence a: (A — £x:A. Px) — (A — A).
fibo(ida) = Lf:(A—Xx:A. Px).(priof = ida), retract ...
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Weak extensionality implies extensionality

» Recall: happly f g : (f = g) = (Mx:A. fx =py gx)
» Recall: funext f g : (Mx:A. fx =pyx gx) — (f = g)
» To prove (where 1 A P abbreviates lNx:A. Px):

NA:U.NP:(A-=U).Nf, g:(MAP). isequiv(happly f g))
» Proof: we show that total(happly f) is an equivalence
(Zg:(MAP).(f=g)) = (Zg:(MAP).Nx:A. fx =py gx))

Lhs contractible, it suffices that rhs is contractible too. Rhs is
retract of Mx:A. Xu:Px. (fx = u), which is contractible by
weak extensionality. (Retraction uses =, not extensionality.)
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Inductive Types

» Inductive type: type of objects that are freely generated by
constructors (roughly, functions with the inductive type as
co-domain), plus an elimination principle (induction)

» Examples:

1. 0 without constructors; indy C : Mx:0. Cx

2. 1 with constructor x : 1; indy C : C(*) — MNx:1. Cx

3. 2 with constructors 0g, 11 : 2; ind2 C : C(0)—C(1)—Mx:2. Cx
4. N with constructors 0: N and S : N — N; usual induction

» Recursion: non-dependent elimination (C = Ax:il. A)
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Inductive Types (ctnd)

» More examples:

1. A x B with constructor (_,_) : A— B — A x B; induction
indaxg C : (Ma:A.Mb:B. C(a, b)) — Np:AxB. Cp

2. A+ B with constructors inl : A— A+ B,inr : B— A+ B;
indayg C : (Na:A. C(inl a))—(Nb:B. C(inr b))—Ms:A+B. Cs

3. List A with constructors nil:List A, cons:A—(List A)—(List A);
indpista C:C nil — Na:A.NE:List A. C(cons al)—Ne:List A. CY

» Uniqueness principle: under funext, induction and recursion
yield unique functions in INx:iT. Cx

» Example of uniqueness in case of N on blackboard (recall
indy Cepes0 =, ep, indyCepes(Sn) =, esn(indy Cepesn))
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Uniqueness of Inductive Types

» Y.a. inductive type: N with constructors 0’ : N, §' : N/ — N
» Looks familiar ..., but this is not N

» Induction very similar, with computation rules
ind Ceyes0 =, ey, ind Ceyes(S'n)=, esn(ind C eyes n)
where n: N'| ey : C0', es: Nn:N'.(Cn — C(S5'n))

» Define f = reeyN' 0’ (An:N. §') : N — N,
g =reay NO(AmN'.S) : N — N; prove N ~ N,

» Discuss options to define d’ = double’ : N’ — N’ and prove

Nn:N'. (double’ (S'n) = S'(S'(double’n)))

» HoTT: transport along N=N', (N, S,d) = (N, 5, d")
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W-Types

» Purpose: encoding inductive types uniformly

» Formation: if A: U4/ and B: A— U, then WAB : U

» Intuition: the type of A-labelled, B(a)-branching wf trees
» One constructor: sup : MNa:A.(Ba— WAB) - WAB

» Examples:

NY = W2 (recatd01) (why?)

0W = sup 0y (reco NW), SW = An:N" . sup1, (\y:1.n) (1)
List A=W (1 + A) (recaya)U 0 )a. 1) (why?)

nil = sup (inlx) (reco (List A)), cons on blackboard

v

vV vy

» Exercise: find the W-type for labeled binary trees
» Exercise 5.7: (C — 0) — C is not a valid constructor type
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Induction in W-Types

Recall: sup: Ma:A.((Ba— WAB) — WAB)

Intuition for induction: to prove Px for all x : W AB it
suffices to show that P is closed under sup. That is, for all
a:Aandf:Ba— WAB, if (IH) for all b: Ba we have

P(f b), then P(supaf).

Intuition for recursion: to define h: W AB — C it suffices to
define h(supaf), foralla: Aand f: Ba— W AB, using
function values h(f b) for b : Ba (and possibly a, and f as
predecesor).

Examples: db/" = recyw N e, with e0 = \f, g:0—N" . oW
and el =\, gl 1N . (SY(SY(g«)))

Exercise: define a predecessor NW — NW
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Homotopy-initial algebras

>

N-algebra: a type C with objects ¢cp: Cand cs: C — C
Formal definition: a X-type NAlg (on blackboard)
N-homomorphism between N-algebras (C, co, cs), (D, do, ds)
Formal definition: an even bigger Y-type NHom(_, _)
N-algebras thus form a category

H-initial N-algebra /:

isHinity(l) = NC:NAlg. isContr(NHom(!I, C))

THM: any two h-initial N-algebras are equal
THM: the N-algebra (N, 0, S) is h-initial
THM: any W-algebra (W A B, sup) is h-initial
We skip 5.5-8
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Higher Inductive Types

» Inductive type: constructors freely generate the objects

» Higher inductive type: some constructors generate objects of
this type, called points, but others may generate paths, or
even higher paths.

» Key Q: what is the equivalent of ‘freely’? Induction?
» Example: the circle S (cf. N, 2):

» a point constructor base : S*

» a path constructor loop : base =g base.
» Generation: takes the relevant operations into account

» On the point level: none (the type has no apriori structure)
» On the path level: groupoid structure (x, refl, 1)
» Not: loop = reflyase, loop = loop = reflyase
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Higher Inductive Types

v

Example: the circle S!:

» a point constructor base : S*
» a path constructor loop : base =g base.

What is base =g1 base? (should be Z)

Later: a path constructor merid : A — (N =susp(4) S)
generates higher paths in Susp(A) from paths in A
Example: the 2-dimensional sphere S:

v

v

v

» a point constructor base : S?
» a 2-path constructor surf : reflyase =pase—base r€flbase-

We have surf # reflp,,.. What is base =g base? Book:
there is an unexpected 3-path, cf. the Hopf fibration

v


http://en.wikipedia.org/wiki/Hopf_fibration
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Induction in HITs

>

Induction in N: to prove lNx:N. Px, it suffices to have base in
the fiber above 0, and step ‘acting on the fibers above S'.

By analogy, in S': to prove Mx:S!. Px, it suffices to have b in
the fiber above base, and ¢ ‘acting on the fiber(s) above loop'.

Want means ‘fiber(s) above loop : base = base'?

Not: a path b = b in the fiber above P(base) (cf. reflyase)
But: transport of b along loop plus a path loop,(b) = b
Recall transport Px — Py, P(base) — P(base)

Example: torus as fibration P — S!, Fig. 6.1,2

Induction: b: P(base) and £ : b={ _ b define f : Mx:S™. Px

“loo

with f(base) =, b and apd¢(loop) = ¢ (propositionally!)
The last equality: a pragmatic choice (!)
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Recursion in HITs

» Recursion: if B: U, then b: B and ¢: (b :{ZOP b) define
f : S — B with f(base) =, b and apds(loop) = ¢
» Recall the following transport lemmas, with
P.:A—=U,f :A=>B, x,y:A p:x=pYy:
f(p) = apsp : fx =g fy (Lem. 2.2.1)
ps = transport®p : Px — Py (Lem. 2.3.1)
if g : Mx:A. Px, then apdp : p.(gx) =p, gy (Lem. 2.3.4)
if P=Ax:A.B, b: B, then tpcgb: (p.b = b) (Lem. 2.3.5)
if P = Ax:A. B, then tpc(fx)* apsp = apdsp (Lem. 2.3.8)
» LEM: a: Aand p: a =g a define a unique (!) f:S* — A
with f(base) =, a and apr(loop) = p
» COR: (S — A) ~ Ix:A. (x =4 x) (univ. prop. of the circle)

vV vYyVvVvyy

v
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The Interval

The interval I is the HIT generated by:

> a point constructor 0; : /
» a point constructor 1; : /
» a path constructor seg : 0; =; 1.

» Recursion: the following data defines a unique f : | — B
> points by : B, by : B, a path s: by =g by

Induction: the following data defines a unique f : [x:/. Px
> points by : POy, by : P1;, a path s : by :_:;g b1

| is contractible; | gives function extensionality by magic (!)

v

v

v
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Properties of the Interval

» LEM: the interval [/ is contractible.

» Proof. Take 1; as the center. By induction we prove lx:/. Px
for Px = (x =; 1/). Take seg : P0; and refl, : P1;. We also
need an inhabitant of seg :Sig refl,. The latter type is
segi(seg) = refl;,. By Lemma 2.11.2 we have
seg.(seg) = seg ! * seg (picture) and by Lemma 2.1.4
refl,, = seg ™! * seg.

» LEM: the interval / gives function extensionality (!)

> Proof. Let f,g: A— B and p: Nx:A. fx =g gx. For every
x : A, define p : | — B by p.0; = fx, px 1) = gx,
Px(seg) = p. Define q: 1 — (A — B) by gi = Ax:A. (P« i).
Then q0; =, f and g1, =, g and so q(seg) : f =4, &-
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More o

>

>

n the Circle

LEM: the circle St is non-trivial: loop # reflyase.

Proof. If loop = refly,se, then define for any x : A and

p:x = x a function f : St — A by f(base) = x and

f(loop) = p. By functoriality of aps we get p = refly. So
Mx:A.Mp:(x = x). (p = refly), which implies that A is a set
(by path induction). Contradiction for A = U, Example 3.1.9.
LEM: the type Mx:S!. (x = x) has an element that is not
equal to Ax:St. refl,.

Proof. Define f : Mx:S!. (x = x) by induction taking

f(base) = loop and f(loop) : loop, (loop) = loop. By

Lemma 2.11.2, with type family Ax:St. (x = x),

loop, (loop) = loop™! = loop * loop, so f(loop) = refligop is OK.
By happly, the previous lemma implies f # Ax:S. refl,.
COR: if St = U, then U, is not a 1-type (?)
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The 2-Sphere

» Recall: the 2-dimensional sphere S:
» a point constructor base : S?
» a 2-path constructor surf : reflyase =pase—base r€flbase.
» Recursion: the following data defines a unique f : S> — B
» a point b: B, a path s : refl, =p—,p reflp
» we get f(base) = b, and apapr(surf) = s (!)
» Induction: the following data defines a unique f : Mx:S?. Px

» a point b: Pbase, a path s : refl, :_furf refl, ...
» ... and this gets complicated with trtr along a 2-path ...
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Suspensions

» For any A : U we define a HIT Susp(A) by :
» two point constructors N, S : Susp(A)
> a path constructor merid : A — (N =susp(a) S)
» NB: the path constructor generates higher paths in Susp(A)

» Recursion: the following data defines a unique
f: Susp(A) — B
» points n,s: B, a path function m: A— n=gs

» Induction: the following data defines a unique
f : Nx:Susp(A). Px
» points n: P(N), s: P(S), and m: Na:A.(n :Zen.d(a) s)
» LEM: Susp(0) ~ 2, Susp(2) ~ S, ™1 ~ Susp(S")
» Proofs: easy, medium (uses 2.11.3), difficult

» LEM 2.11.3 implies: tr’* ("x=X)pgq = h(p~™)+qp
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The torus
» The torus is the HIT T2 defined by :
» a point b: T?
> two paths p,g: b=0»b
» a2-patht:pg=q-p
» Intuition: put r=qg and s=rin

» Very tricky induction principle (because of the 2-path)
» LEM: T2~ St x St
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Truncation

» For every A : U we define the HIT ||A]| : U by:
» a function || : A — || Al
» a path function path : MNx, y:[|Al|. (x =4 ¥)
» Recursion: the following data defines a function f : ||A|| — B
satisfying f|a] = ga and apr(path(|al, |a]")) = p(a, '):
» a function g : A—B and a path function p: Mx,y:B.(x =g y)
» LEM: ||2]|| gives function extensionality
> Proof: let f,g: A—B and p: f ~ g. Define
px:2—>Xy:B.fx=py. Notethat Xy:B.fx =g y is
contractible. etc.
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Homotopy n-levels

» Intuition: no interesting homotopy above dimension n

» Definition of homotopy n-levels:

» is(—2)type(A) = isContr(A) (equivalent A~ 1)
is(—1)type(A) = MNx, y:A. is(—=2)type(x =a y) (isProp(A))
» is(0)type(A) = Nx, y:A.is(—1)type(x =a y) (isSet(A))

» is(n+ 1)type(A) = Nx, y:A.is(n)type(x =a y) (n > =2)

Idea: understanding a space through its (higher) path spaces

v

Later: n-truncation, trivializing homotopy above dimension n

Later: n-connected, that is, n-truncation is contractible,
means no interesting homotopy in or below dimension n

St is not an O-type, S is not an n-type
CONJ: U is not an n-type for any n
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Closure properties of homotopy n-levels

» LEM: if p: X — Y a retraction and X is an n-type, then Y is
an n-type (n > —2)

» Proof: induction on n > —2. Base case easy. Assume OK for
nandlet s: Y — X with homotopy € : pos ~ 1. Assume
Mx, x":X.is(n)type(x =x x'), to prove is(n)type(y =y y') for
all y,y’: Y. Let y,y' : Y, then sy =x sy’ is an n-type. By IH
it suffices that y =y y’ is a retract of sy =x sy’. Take aps
and t(q) = 6;1 * p(q) * €,» and use naturality of € (picture).

» COR: if X ~ Y and X is an n-type, then sois Y (n > —2)

» LEM: if X is an n-type, then X is also an (n+ 1)-type
(n > —2). So, the levels are cumulative.

» Proof: by induction on n > —2
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More closure properties of homotopy n-levels

» LEM: if f : X — Y an embedding and Y is an n-type, then so
is X (n>—1)
» Proof: x =x x’' ~ fx =y fx' for embedding f. NB f:0 — 1

> LEM: for A: U, B: A— U, if Bais an n-type for every a: A,
then M A B is an n-type (n > —2)

> LEM: for A: U, B: A— U, if Ais an n-type and Ba is an
n-type for every a: A, then X AB is an n-type, for all n > —2

» LEM: for A: U, is(n)type(A) is a mere proposition (n > —2)

» DEF: n-typey = LX:U. is(n)type(X), for all n > —2

» LEM: n-typey is an (n+ 1)-type, for all n > —2

» Proofs: by induction on n > -2
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Uniqueness of ldentity Proofs

» Axiom UIP(X): for all x,y : X and p,q: x =x y we postulate
p = q (NB UIP(X) = isSet(X))

» Axiom K(X): for all x : X and p : x =x x we postulate
p = refl,

> LEM: K(X) ~ UIP(X)

» LEM: if R: X — X — U a reflexive mere relation implying
=x, then (1) isSet(X) and (2) MNx, y:X.(Rxy ~ (x =x y))

» Proof: note that (1) and (2) are equivalent; prove, e.g., K(X)

» COR: if ==(x =x y) — (x =x y), then X is a set

» COR: if (x =x y) V(x =x y), then X is a set

» COR: N is a set (prove by induction that =y is decidable)
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n-Truncations

v

Idea: n-truncation removes all interesting homotopy above
dimension n
DEF: for every A : U, define:

> (—2)-truncation: [|A|| _, =1 (‘contractible’ truncation)

» (—1)-truncation: [[A]| _; = [|A]| (propositional truncation)

> (0)-truncation: [|A[|, is defined as a HIT with two
constructors: a function ||, : A — ||A||,, and a path function

2path : Nx, y:[[Allo-Np, q:(x =), ¥)- (P =x=4,y 9)
The general definition in the book uses S"*1 (complicated)
LEM: for all n > —2 we have that ||A|| is an n-type

v

v

v

v

Induction, recursion, properties ...
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n-Connectedness

> Idea: n-connectness expresses that there is no interesting
homotopy in and below dimension n

» DEF: for types A : U, conn,(A) = isContr(||A]l,)

» DEF: function f : A — B is n-connected, if for any b : B, the
fiber of f in b is connected, conn,(fibs(b))

» DEF: function f : A — B is n-truncated, if for any b : B, the
fiber of f in b is n-truncated, is(n)type(fibs(b))

» LEM: any function factors as an n-connected function
followed by an n-truncated function (generalized
epi-mono-decomposition)
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