Homotopy Type Theory

Marc Bezem¹

¹Department of Informatics Bergen University

Spring 2016

Practical Matters

- Lecturer: Marc Bezem (Baker Hall 152)
- Occasionally: guest lecturers?
- Place and time:
 - ▶ Baker Hall 150
 - ► Monday 13h30 16h30, exercises/lectures
 - ► Wednesday 13h30 16h30, exercises/lectures
- Textbook (link): Homotopy Type Theory
- ► Lecture Notes: these slides HoTT.pdf + DTUA.pdf

Untyped Lambda Calculus

- ► A formalism for binding variables and substitution
- Binder Zoo: quantification, integrals, generalized products, functions, ...
- ► Terms: $M, N ::= x \mid MN \mid \lambda x. M$
- ► Examples of terms: $y, \lambda x. x, \lambda x. (\lambda y. x), \lambda x. (\lambda y. y(yx))$
- ▶ Binding x in M (lambda abstraction): λx . M
- ► Intention to unbind (application): MN
- ▶ Actual unbinding (β -contraction): ($\lambda x. M$) $N \rightarrow M[x := N]$
- Substitution:
 - $\triangleright x[x := N] \equiv N$
 - $\mathbf{v}[x := N] \equiv y \ (y \not\equiv x)$
 - $(MM')[x := N] \equiv (M[x := N])(M'[x := N])$
 - ▶ $(\lambda y. M)[x := N] \equiv \lambda y. (M[x := N]) (y \not\equiv x, \text{ avoiding } caption)$

Terminology and Notation

- Avoid caption by renaming bound variables
- ▶ Technically better, but hard to read (De Bruijn): f.e. $\lambda\lambda 1$
- ► Application left-associative : $M_1M_2...M_n \equiv (...(M_1M_2)...M_n)$
- ► Abstraction right-associative : $\lambda x_1 x_2 \dots x_n$. $M \equiv \lambda x_1 (\lambda x_2 \dots (\lambda x_n M))$
- ► Convenient combination: $(\lambda x_1 x_2 ... x_n. M) M_1 M_2 ... M_n$
- lacktriangledown A free variable in a term is a variable that is not bound by a λ
- ▶ Reducible expression (redex): ($\lambda x. M$)N

Reduction

- ► Examples of contraction: $(\lambda xy. x)z \rightarrow \lambda y. z$, $(\lambda xy. x(xy))f \rightarrow \lambda y. f(fy)$, $(\lambda x. xx)(\lambda x. xx) \rightarrow ...$
- ▶ Reduction is contraction of a subterm (ind. def.): if $M \to M'$, then $MN \to M'N$, $NM \to NM'$, $\lambda x. M \to \lambda x. M'$
- Reductions may be iterated: ^{*}→ is the reflexive and transitive closure of → (zero steps, one-step or many-step reduction)
- ▶ Convertibility: $=_{\beta}$ is the transitive, symmetric and reflexive closure of \rightarrow
- Convertibility is a congruence wrt. application and abstraction
- ► THEOREM (confluence): if $M =_{\beta} N$, then M and N have a common reduct R, that is, $M \stackrel{*}{\to} R \stackrel{*}{\leftarrow} N$
- ► COR: lambda calculus is consistent, $\lambda xy. x \neq_{\beta} \lambda xy. y$

Useful encodings

- ▶ Booleans: true $\equiv \lambda xy. x$, false $\equiv \lambda xy. y$
 - ▶ Negation: $\neg \equiv \lambda b$. b(false)(true)
 - ▶ Conjunction: $\land \equiv \lambda b.\ b(\lambda x.\ x)(\lambda x.\ false)$
 - ▶ Remarkable: \land false $x =_{\beta}$ false, but NOT $\land x$ fal $=_{\beta}$ false
- ▶ Natural numbers (Church): $\underline{0} \equiv \lambda fx. x$, $\underline{1} \equiv \lambda fx. fx$,

$$\underline{2} \equiv \lambda f x. f(f x) \dots$$
, in general $\underline{n} \equiv \lambda f x. f^n x$

- ▶ Successor: $S \equiv \lambda nfx$. nf(fx) (indeed $S\underline{0} =_{\beta} \underline{1}$, $S\underline{1} =_{\beta} \underline{2}$,...)
- Addition: $+ \equiv \lambda nm. \, nSm \, (+\underline{0}x =_{\beta} x, \, NOT \, + x\underline{0} =_{\beta} x)$
- ▶ Multiplication: $* \equiv \lambda nm. n(+m)\underline{0}$
- Exponentiation: $e \equiv \lambda nm. \ m(*n)\underline{1}$
- ► Fixpoint operator: $Y \equiv \lambda f. ((\lambda x. f(xx))(\lambda x. f(xx)))$
- COR: lambda calculus is Turing complete
- ▶ COR: lambda calculus is 'inconsistent', $Y(\neg) =_{\beta} \neg (Y(\neg))$

Chapter 1 — Type Theory

- ▶ Judgment: t: T (logical stuff inside t, T)
- ▶ Assumption: judgment of the form x : T(x a variable)
- Context: list of assumptions Γ (with different variables)
- ▶ Typing: a judgment in a context, notation $\Gamma \vdash t : T$
- ► Example: $f: A \rightarrow A, x: A \vdash f(fx): A$
- ► Type theory: system of rules to derive typings
- ► Two notions of equality:
 - ▶ definitional (or judgmental) equality: $a \equiv b \ (\beta, \eta, \iota, \delta, ...)$
 - propositional equality (logical operations): a type $a =_A b$

Function types

- ▶ If A and B are types, then so is their function type $A \rightarrow B$
- Introduction rule:

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : A \to B}$$

Elimination rule:

$$\frac{\Gamma \vdash f : A \to B \quad \Gamma \vdash a : A}{\Gamma \vdash fa : B}$$

No product types needed (but they will come nevertheless):

$$\frac{\Gamma, x : A, y : B \vdash t : C}{\Gamma, x : A \vdash \lambda y : B \cdot t : B \to C}$$
$$\Gamma \vdash \lambda x : A \cdot \lambda y : B \cdot t : A \to (B \to C)$$

Universes and families of types

- ▶ Universe of types: \mathcal{U} , 'A is a type' becomes judgment A : \mathcal{U}
- ▶ Rather not \mathcal{U} : \mathcal{U} , but \mathcal{U}_0 : \mathcal{U}_1 , . . .
- ▶ Formation rule for \rightarrow :

$$\frac{\Gamma \vdash A : \mathcal{U} \quad \Gamma \vdash B : \mathcal{U}}{\Gamma \vdash A \to B : \mathcal{U}}$$

Introduction rule for functions:

$$\frac{\Gamma \vdash A : \mathcal{U} \quad \Gamma \vdash B : \mathcal{U} \quad \Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A : t : A \to B}$$

This includes:

$$\frac{\Gamma \vdash \textit{U} : \textit{U}_1 \quad \Gamma \vdash \textit{U}' : \textit{U}_1}{\Gamma \vdash (\textit{U} \rightarrow \textit{U}') : \textit{U}_1} \qquad \frac{\vdash \textit{U}_0 : \textit{U}_1 \quad \textit{A} : \textit{U}_0 \vdash (\textit{A} \rightarrow \textit{A}) : \textit{U}_0}{\vdash (\textit{\lambda} \textit{A} : \textit{U}_0 . \textit{A} \rightarrow \textit{A}) : \textit{U}_0 \rightarrow \textit{U}_0}$$

▶ Type family: $B: A \to \mathcal{U}$ with $A: \mathcal{U}$, example $B \equiv \lambda n: Nat. \mathbb{R}^n$

Dependent product types, aka Π-types

- ▶ Given $A: \mathcal{U}, B: A \rightarrow \mathcal{U}$ and a: A, we have $Ba: \mathcal{U}$
- ▶ Dependent product type: $\Pi x: A. Bx$ (or $\Pi A B$)
- Formation rule for Π-type:

$$\frac{\Gamma \vdash A : \mathcal{U} \quad \Gamma \vdash B : A \to \mathcal{U}}{\Gamma \vdash \Pi x : A \cdot Bx : \mathcal{U}}$$

Introduction rule for Π-type:

$$\frac{\Gamma \vdash A : \mathcal{U} \quad \Gamma \vdash B : A \to \mathcal{U} \quad \Gamma, x : A \vdash t : Bx}{\Gamma \vdash \lambda x : A \cdot t : \Pi x : A \cdot Bx}$$

- ▶ Π -type is the type of dependent functions (co-domain varies), examples: element of infinite product, $\lambda n: Nat. \vec{0}(n) : \Pi Nat B$
- Elimination rule for Π-types:

$$\frac{\Gamma \vdash f : \Pi x : A. Bx : \mathcal{U} \quad \Gamma \vdash a : A}{\Gamma \vdash fa : Ba} \quad \text{so, e.g., } \vec{0}(3) : \mathbb{R}^3$$

Type constructors

- Type Zoo is ever extending (social process!)
- ▶ Type constructors, so far: \rightarrow , Π
- ▶ Actually, $A \rightarrow B$ is a special case: $\prod A(\lambda x : A.B)$
- How to systematically manage the Type Zoo
 - Name a new type constructor
 - Formation: how to construct types with the new constructor
 - ▶ Introduction: how to construct elements of the new type
 - ▶ Elimination: how to destruct (work with) these elements
 - Computation: how to simplify desconstruction (β, ι)
 - ightharpoonup Optional: uniqueness principle for condestruction (η)
- ► Example: \rightarrow , abstraction, application, β -, η -reduction $(\lambda x.\ t)a \rightarrow_{\beta} t[x:=a], \ \lambda x.\ fx \rightarrow_{\eta} f$

Products (1)

- ► Type constructor: ×, idea: cartesian product
- ► Formation rule for (non-dependent) product:

$$A: \mathcal{U} \quad B: \mathcal{U}$$

 $A \times B: \mathcal{U}$

Introduction rule for product:

$$\frac{a:A:\mathcal{U}\quad b:B:\mathcal{U}}{(a,b):A\times B}$$

▶ Elimination rules for product:

$$\frac{p:A\times B}{pr_1p:A} \qquad \frac{p:A\times B}{pr_2p:B}$$

► Computation rules for pairs and projections:

$$ightharpoonup pr_1(a,b)
ightarrow_{\iota} a, \ pr_2(a,b)
ightarrow_{\iota} b$$

▶ Optional: $(pr_1p, pr_2p) \rightarrow_{\eta} p$

Products (2)

▶ We can infer the following jugment:

$$\lambda f: A \rightarrow B \rightarrow C. \ \lambda p: A \times B. \ f(pr_1p)(pr_2p): (A \rightarrow B \rightarrow C) \rightarrow (A \times B \rightarrow C)$$

As an alternative to the pr_i 's, we can postulate:

$$rec_{A\times B}:\Pi C:\mathcal{U}.\left(A{\rightarrow}B{\rightarrow}C\right){\rightarrow}\left(A{\times}B{\rightarrow}C\right)$$

- ... and recover the projections:
 - $ightharpoonup pr_1 \equiv rec_{A \times B} A(\lambda a: A. \lambda b: B. a) : A \times B \rightarrow A$
 - ▶ $pr_2 \equiv rec_{A \times B} B (\lambda a: A. \lambda b: B. b) : A \times B \rightarrow B$
- Computation rule for the recursor:

$$rec_{A\times B}\ C\ g\ (a,b)\rightarrow_{\iota} g\ a\ b$$

▶ This works well in general, we like recursors

Products (3)

► Syntactic sugar can impair understanding: pair := g

$$rec_{A \times B} C g (pair a b) \rightarrow_{\iota} g a b$$

- Keep in mind: recursor replaces constructor by other term
- ► Still possible: $A = \{a\}, B = \{b\}, A \times B = \{(a, b), p\}, pr_1p = a, pr_2p = b\}$
- Will be solved (propositionally) by an induction principle (dependent version of rec_{A×B})
- ▶ This also helps: $(pr_1p, pr_2p) \rightarrow_{\eta} p$
- Q: how does this relate to cartesian products in category theory?

Products (0)

- Formation: $\mathbf{1}:\mathcal{U}$, idea: empty product
- ► Introduction: ★: 1
- ▶ Elimination: $rec_1 : \Pi C: \mathcal{U}. \ C \to \mathbf{1} \to C$
- ▶ Computation: $(rec_1 \ C \ c \ \star) \rightarrow_{\iota} c$
- $ightharpoonup Q: \star \rightarrow_{\eta}?$

Induction

► We can infer the following jugment (short):

$$f: \Pi x: A. \Pi y: B. C(x,y) \vdash \lambda p. f(pr_1p)(pr_2p): \Pi p: A \times B. C(pr_1p, pr_2p)$$

but NOT the following jugment:

$$f: \Pi x: A. \Pi y: B. C(x,y) \vdash \lambda p. f(pr_1p)(pr_2p): \Pi p: A \times B. C p$$

• ... unless we have $(pr_1p, pr_2p) \rightarrow_{\eta} p$, or postulate:

$$ind_{A\times B}:\Pi C:A\times B{
ightarrow} \mathcal{U}.\left((\Pi x:A.\ \Pi y:B.\ C(x,y))
ightarrow\Pi p:A\times B.\ C\ p
ight)$$

► Computation rule for the dependent eliminator (induction):

$$ind_{A\times B}\ C\ f\ (a,b)\rightarrow_{\iota} f\ a\ b$$

▶ We like induction (but it does not give us $(pr_1p, pr_2p) \rightarrow_{\eta} p$)

Induction on * and more

- ▶ Formation: $\mathbf{1}$: \mathcal{U} , idea as a set: $\{\star\}$
- ▶ Introduction: ★: 1
- ▶ Dependent elimination: $ind_1 : \Pi C: \mathbf{1} \to \mathcal{U}. C \star \to \Pi x: \mathbf{1}. C x$
- ▶ Computation: $(ind_1 C c \star) \rightarrow_{\iota} c$
- Provable (short):

$$refl_{\star}: (\star =_{1}\star) \vdash ind_{1}(\lambda x:1.(x=_{1}\star)) refl_{\star}: \Pi x:1.(x=_{1}\star)$$

- ► Computation: $ind_1(\lambda x: \mathbf{1}.(x=_1\star)) refl_\star \star \to_\iota refl_\star$
- ▶ Define: $C \equiv \lambda p : A \times B : (pr_1p, pr_2p) =_{A \times B} p$
- ▶ On the blackboard: inhabitant of $\Pi p: A \times B$. C p
- More on equality types and refl later

Dependent pairs and Σ -types

- ▶ Dependent pair (a, b): type of b depends on a, b: Ba
- ▶ Σ -type, type of dependent pairs: Σx :A. Bx (or ΣAB)
- ▶ $\Sigma x:A$. Bx where $B:A \rightarrow U$ can be seen as an indexed sum
- Formation rule for Σ -type:

$$\frac{A:\mathcal{U}\quad B:A\to\mathcal{U}}{\Sigma x:A.\ Bx:\mathcal{U}}$$

Introduction rule for Σ-type:

$$\frac{A: \mathcal{U} \quad B: A \rightarrow \mathcal{U} \quad a: A \quad b: Ba}{(a,b): \Sigma x: A. Bx}$$

Elimination rules for Σ-types:

$$\frac{d: \Sigma x: A. Bx: \mathcal{U}}{pr_1 d: A} \qquad \frac{d: \Sigma x: A. Bx: \mathcal{U}}{pr_2 d: B(pr_1 d)}$$

Recursion and induction for Σ -types

Define the recursor:

$$rec_{\Sigma AB}: \Pi C: \mathcal{U}. (\Pi x: A. (Bx \rightarrow C)) \rightarrow (\Sigma AB \rightarrow C)$$

- ... and recover the first projection:
 - ▶ $pr_1 \equiv rec_{\Sigma AB} A (\lambda ab. a) : \Sigma A B \rightarrow A$
- ▶ Define the dependent eliminator:

$$ind_{\Sigma AB}: \Pi C: (\Sigma AB \rightarrow \mathcal{U}). (\Pi x:A. \Pi y:Bx. C(x,y)) \rightarrow (\Pi p:\Sigma AB. Cp)$$

... and recover also the second (dependent) projection:

$$pr_2 \equiv ind_{\sum AB} (\lambda p: \sum AB. B(pr_1p)) (\lambda ab. b) : \Pi p: \sum AB. B(pr_1p)$$

▶ Computation rules: $rec/ind_{\sum AB} C g(a, b) \rightarrow_{\iota} g a b$

The Axiom of Choice

▶ For $A : \mathcal{U}, B : \mathcal{U}, R : A \rightarrow B \rightarrow \mathcal{U}$, find ac with

ac :
$$(\Pi x:A. \Sigma y:B. R \times y) \rightarrow \Sigma f:A \rightarrow B. \Pi x:A. R \times (fx)$$

we discuss this on the blackboard (see 1.6 of the book)

Use of Σ -types (and other types)

- A group is a set with operations satisfying axioms
- ▶ A Σ -type: ΣA : \mathcal{U} . $(A \rightarrow A \rightarrow A) \times ((A \rightarrow A) \times A)$
- This captures only the signature
- We let products and pairs associate to the right
- We assume sensible precedence rules
- Taking one group axiom into account:

$$\Sigma A: \mathcal{U}. \Sigma m: A \rightarrow A \rightarrow A. \Sigma i: A \rightarrow A. \Sigma u: A. (\Pi x: A. mux =_A x)$$

► More axioms:

$$\Sigma A: \mathcal{U}. \Sigma m: A \rightarrow A \rightarrow A. \Sigma i: A \rightarrow A. \Sigma u: A. (Ax1 \times Ax2 \times ...)$$

This can be considered to be the type of groups

Coproducts

- ► Type constructor: +, idea: disjoint union
- Formation rule for coproduct:

$$\frac{A:\mathcal{U}\quad B:\mathcal{U}}{A+B:\mathcal{U}}$$

Introduction rules for coproduct:

$$\frac{a:A:\mathcal{U}}{inl\ a:A+B} \qquad \frac{b:B:\mathcal{U}}{inr\ b:A+B}$$

► Elimination rule for coproduct:

$$\frac{s:A+B \quad f:A\to C \quad g:B\to C}{case \ s \ f \ g:C}$$

- Computation rules for coproducts and injections:
 - case (inl a) $f g \rightarrow_{\iota} fa$, case (inr b) $f g \rightarrow_{\iota} gb$
 - ▶ Optional: case s inl inr \rightarrow_n s

Recursion and induction for +

We prefer a recursor:

$$rec_{A+B}: \Pi C: \mathcal{U}. (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow A+B \rightarrow C$$

- ▶ ... and define: $case_f g \equiv rec_{A+B} f g$
- ▶ We define a dependent eliminator ind_{A+B} of type:

$$\sqcap C:A+B \rightarrow \mathcal{U}. (\sqcap x:A. \ C(\mathit{inl}\ x)) \rightarrow (\sqcap y:B. \ C(\mathit{inr}\ y)) \rightarrow \sqcap s:A+B. \ C\ s$$

- Computation rules:
 - $rec/ind_{A+B} C f g (inl a) \rightarrow_{\iota} fa$
 - $rec/ind_{A+B} \ C \ f \ g \ (inr \ b) \rightarrow_{\iota} gb$

The empty coproduct

- ▶ Formation: $\mathbf{0}$: \mathcal{U} , set analogue: \emptyset
- Introduction: nope
- ► Elimination:
 - ▶ $rec_0 : \Pi C: \mathcal{U}. \mathbf{0} \to C$
 - ▶ $ind_0 : \Pi C: \mathbf{0} \rightarrow \mathcal{U}. \Pi x: \mathbf{0}. C x$
- ▶ Computation rules: none $(rec_0 C s \rightarrow ?)$
- ▶ Induction principle known as ex falso [[sequitur] quodlibet] (C)
- $(rec_0 \, \mathbf{0})$ and $(\lambda x : \mathbf{0} : x)$ are only extensionally equal

Booleans

- ightharpoonup 2 = 1 + 1 (p. 45), beating Principia Mathematica (p. 362!)
- ▶ Formation: 2 : *U*
- ▶ Introduction: 0₂ : 2, 1₂ : 2
- Elimination:
 - $rec_2: \Pi C: \mathcal{U}. C \to C \to \mathbf{2} \to C$
 - ▶ $ind_2 : \Pi C: \mathbf{2} \rightarrow \mathcal{U}. \ C(0_2) \rightarrow C(1_2) \rightarrow \Pi x: \mathbf{2}. \ C \times \mathbf{4}$
- Computation:
 - lacktriangledown ind/rec₂ C c₀ c₁ 0₂ ightarrow c₀, ind/rec₂ C c₀ c₁ 1₂ ightarrow c₁
- Exercise:
 - $ightharpoonup refl_0: (0_2 = 20_2), refl_1: (1_2 = 21_2) \vdash ? : \Pi x : \mathbf{2}. (x = 20_2) + (x = 21_2)$
- Discussion:
 - (Π 2 (Rec₂ U A B)), (Σ 2 (Rec₂ U A B))
 - ▶ $A \rightarrow 2$: 'decidable subsets' of $A : \mathcal{U}$

Natural numbers

- ► Formation: N : U
- Introduction: 0 : N and Sx : N if x : N
- Elimination:
 - \blacktriangleright $it_{\mathbb{N}}: \Pi C: \mathcal{U}. \ C \to (C \to C) \to \mathbb{N} \to C$
 - $rec_{\mathbb{N}}: \Pi C: \mathcal{U}. \ C \to (\mathbb{N} \to C \to C) \to \mathbb{N} \to C$
 - ▶ $ind_{\mathbb{N}} : \Pi C: \mathbb{N} \rightarrow \mathcal{U}. \ C0 \rightarrow (\Pi x: \mathbb{N}. \ Cx \rightarrow C(Sx)) \rightarrow \Pi x: \mathbb{N}. \ Cx$
- Computation:
 - $it_{\mathbb{N}} \operatorname{Ccf} 0 \to_{\iota} c, it_{\mathbb{N}} \operatorname{Ccf} (Sx) \to_{\iota} f(it_{\mathbb{N}} \operatorname{Ccfx})$
 - $ightharpoonup rec_{\mathbb{N}} Ccf 0 \rightarrow_{\iota} c, rec_{\mathbb{N}} Ccf (Sx) \rightarrow_{\iota} fx (rec_{\mathbb{N}} Ccfx)$
 - ▶ induction $ind_{\mathbb{N}}$ has the same rules as $rec_{\mathbb{N}}$
- ▶ Interdefinable: $it_{\mathbb{N}}$ (iterator) and $rec_{\mathbb{N}}$ (primitive recursion)

Useful encodings

- ► Example: $double \equiv it_{\mathbb{N}} \mathbb{N} 0 (\lambda x : \mathbb{N}. S(Sx))$
 - ▶ double $0 \rightarrow_{\iota} 0$
 - ▶ double $(Sn) \rightarrow_{\iota} (\lambda x: \mathbb{N}. S(Sx))(double n) \rightarrow_{\beta} S(S(double n))$
- ▶ Right-recursive addition: $add \equiv \lambda x : \mathbb{N}$. $it_{\mathbb{N}} \mathbb{N} \times S$
- Left-recursive addition:

$$adl \equiv it_{\mathbb{N}} (\mathbb{N} \rightarrow \mathbb{N}) (\lambda x : \mathbb{N}. x) (\lambda f : \mathbb{N} \rightarrow \mathbb{N}. S \circ f)$$

- ▶ $adl\ 0 \rightarrow_{\iota} \lambda x: \mathbb{N}.\ x$, so $adl\ 0\ m \rightarrow_{\iota} m$
- ▶ $adl(Sn) \rightarrow_{\iota} S \circ (adl n)$, so $adl(Sn) m \rightarrow_{\iota} (S \circ (adl n)) m \rightarrow_{\beta} S(adl n m)$
- Right-recursive multiplication:

$$mult \equiv \lambda x, y: \mathbb{N}. it_{\mathbb{N}} \mathbb{N} 0 (add x) y$$

Proofs by induction

- We prove in the context ...
 - ▶ $refl_{\mathbb{N}} : \Pi x : \mathbb{N} . (x =_{\mathbb{N}} x)$ (later: axiom)
 - ▶ $funcS : \Pi x, y : \mathbb{N} . (x =_{\mathbb{N}} y) \rightarrow (Sx =_{\mathbb{N}} Sy)$ (later: provable)
- ... on the blackboard:
 - ightharpoonup \vdash ? : $\Pi x: \mathbb{N}$. (add $0 x =_{\mathbb{N}} x$))
 - ightharpoonup \vdash ? : $\Pi x: \mathbb{N}$. (double (add x (S0)) $=_{\mathbb{N}} S(S(double x)))$
 - \vdash ?: $\Pi x: \mathbb{N}$. (add $x \circ 0 =_{\mathbb{N}} x$) (no induction needed!)
- Discussion

Pattern Matching

▶ Instead of $f \equiv rec_{A+B} \ C \ g_0 \ g_1$:

$$\begin{cases} f(inl a) = g_0 a \\ f(inr b) = g_1 b \end{cases}$$

Instead of

$$f \equiv rec_{A \times B} C \lambda a : A \cdot \lambda b : B \cdot (a \text{ term of type } C \text{ in } a \text{ and } b) :$$

$$f(a,b) = (a \text{ term of type } C \text{ in } a \text{ and } b)$$

▶ Instead of double $\equiv it_{\mathbb{N}}\mathbb{N} \ 0 \ (\lambda x:\mathbb{N}.\ S(Sx))$:

$$\begin{cases} double 0 &= 0 \\ double (S x) &= S(S(double x)) \end{cases}$$

... and of course not

$$\begin{cases} f 0 = 0 \\ f(Sx) = f(S(S(x))) \end{cases}$$

Propositions as Types

Correspondence:

true	false	$if_{-}then_{-}$	not _	and	or	for all	exists
1	0	> _	_− → 0	×	+	Пх:А. Рх	$\Sigma x:A. Px$

- ▶ We prove some constructive tautologies on the blackboard
- ► E.g., $(\Pi x:A. \Pi y:A. (Px \rightarrow Qxy)) \rightarrow \Pi x:A. (Px \rightarrow \Pi y:A. Qxy)$

Identity Types

- ▶ Formation: $Id_Aab : \mathcal{U}$ if $A : \mathcal{U}$ and a, b : A
- ▶ Notation: Id_Aab or $a =_A b$ or even just a = b
- ▶ Introduction: refl : Πx :A. $Id_A x x$, notation refl_a for (refl a)
- ▶ Elimination: ind_{Id_A} has type 'for every unary predicate C on the path space of A, and every function mapping points x to a proof of $C(x, x, refl_x)$, there exists a function mapping paths (x, y, p) with $p: x =_A y$ to a proof of C(x, y, p)' (book!)
- ▶ Computation: $ind_{Id_A} C c x x refl_X \rightarrow_{\iota} c x$
- ► Example: with $C \equiv \lambda x, y : A. \lambda p : (x =_A y). (y =_A x)$ we get

$$ind_{Id_A} C refl : \Pi x, y : A. (x =_A y \rightarrow y =_A x)$$

Path induction and based path induction

▶ Path induction (two lines): $\Pi C:(\Pi x, y:A. (x =_A y \to U)).$

$$(\Pi x:A.\ C \times x\ refl_x) \rightarrow (\Pi x, y:A.\ \Pi p:(x=_A y).\ C \times y\ p)$$

▶ Based path induction: $\Pi a:A$. $\Pi C:(\Pi y:A$. $(a =_A y \to \mathcal{U}))$.

$$C \text{ a refl}_a \rightarrow (\Pi y : A. \Pi p : (a=_A y). C y p)$$

- Equivalence on the blackboard (book!):
 - Path induction follows easily from based path induction
 - ▶ Based path induction follows from one 'universal' instance of path induction, 'pulling out' $\Pi y:A$. $\Pi p:(a=_A y)$.

$$D \text{ a } y \text{ } p \equiv \Pi C: (\Pi y: A. (a =_A y \rightarrow \mathcal{U})). \text{ } C \text{ a } refl_a \rightarrow C \text{ } y \text{ } p$$

Homotopy theory

- ▶ Path in a topological space X: continuous map $[0,1] \rightarrow X$
- ▶ Problem for the foundations: [0,1]
- HoTT = synthetic homotopy theory
- Striking: induction for identity types fits very well
- Pointwise equality of paths too fine (2-way trip = stay home?)
- ▶ Homotopy between $p, q : [0,1] \rightarrow X$: a continuous

$$H: [0,1] \times [0,1] \to X$$
 such that $H(t,0) = p(t), \ H(t,1) = q(t)$

- Picture: image of square 'fills space between p and q in X'
- ► Example: h(t) = 1 |1 2t|, $H(t, z) = z \cdot h(t)$.

More homotopy theory

- ▶ Path $p:[0,1] \rightarrow X$, start point p(0), end point p(1)
- ▶ Loop: p(0) = p(1), loop at x_0 : $p(0) = x_0 = p(1)$
- ▶ Based homotopy: as above, with $H(0, y) = x_0 = H(1, y)$
- ightharpoonup Q: homotopic loops at x_0 that are not *based* homotopic?
- ▶ Fundamental group: loops at x_0 modulo based homotopy
- ▶ Homotopy between $f, g: X \rightarrow Y$: easy generalization
- ▶ Homotopy between X, Y in TOP: $f: X \to Y, g: Y \to X$, $f \circ g$ and id_Y homotopic, $g \circ f$ and id_X homotopic
- Invariant: homotopic spaces have isomorphic fundamental groups (for every $x \in X$ we have $\pi_1(X,x) \cong \pi_1(Y,f(x))$)

Higher dimensional paths

- ► Homotopies: "paths between paths", 2-dimensional paths
- ► Homotopies form a topological space (Q: how?)
- ▶ Paths between homotopies: 3-dimensional paths
- ▶ ... and so on, an infinite tower called ∞-groupoid
- Weak groupoid (only up to homotopy), not group
- ▶ Q: how to compose $p, q : [0, 1] \rightarrow X$ if $p(1) \neq q(0)$?

Homotopy type theory

- Path in a type A: $p: x =_A y$
- ▶ 2-Path in a type A: path in $x =_A y$, for x, y : A
- ► More explicitly: $p2q: p =_{x=A^y} q$, for $p, q: x =_A y$
- What about the groupoid structure?
- ▶ $_{-}^{-1} \equiv ind_{Id_A} C \text{ refl } x \text{ } y : (x =_A y \rightarrow y =_A x), \text{ with } C \equiv \lambda x, y : A. \lambda p : (x =_A y). (y =_A x), \text{ satisfies } refl_a^{-1} =_{\iota} refl_a$
- ▶ Concatenation operator $_{-} \cdot _{-} : (x = y) \rightarrow (y = z) \rightarrow (x = z)$
- ▶ LEM: for all $A : \mathcal{U}, x, y, z, w : A, p : x=y, q : y=z, r : z=w$
 - 1. $p = refl_x \cdot p = p \cdot refl_y$
 - 2. $p \cdot p^{-1} = refl_x$, $p^{-1} \cdot p = refl_y$
 - 3. $(p^{-1})^{-1} = p$
 - 4. $p \cdot (q \cdot r) = (p \cdot q) \cdot r$
- Proofs on blackboard

Loop spaces

- ▶ Loop space: $\Omega(A, a) \equiv (a =_A a)$ (with $refl_a : a =_A a$)
- ▶ NOT provable: $\Pi p:(a =_A a). p =_{(a =_A a)} refl_a$
- ► Group: $\Omega(A, a)$, $refl_a$, -• -, -1 (modulo $=_{\Omega(A, a)}$)
- ► This group is not necessarily commutative
- ► The loop space of the loop space:

$$\Omega^2(A,a) \equiv (refl_a =_{(a=Aa)} refl_a)$$

- ► THM 2.1.6 (Eckmann-Hilton): $\Omega^2(A, a)$ is commutative
- ▶ Book: picture good, proof improved in current version (09/13)
- ► Fair attempt on the blackboard: by *based* path induction

$$\Pi a, b : A, p, q : (a = b), \alpha : (p = q). \Pi c : A. \Pi r : (b = c). p \cdot r = q \cdot r$$

... and a lot more (proof assistant dearly missed)

Q to the topologists

If we have full freedom of definition, then we can define the following predicate on the path space of some topological space X:

$$\mathit{Cxyp} \equiv (x = y \land p = \mathit{refl}_x)$$

By path induction: all continuous $p:[0,1] \to X$ are constant. Restrict path induction to continuous C, that is, C boolean valued and continuous wrt the discrete topology on the booleans. Q: what is the simplest (or: a simple) topological space X validating path induction, but not all paths constant? (A: [0,1])

Pointed types and loop spaces

- $\mathcal{U}_{\bullet} \equiv \Sigma A: \mathcal{U}. A$
- ▶ Pointed type: $(A, a) \in \mathcal{U}_{\bullet}$ for $A \in \mathcal{U}$ and $a \in A$
- ▶ Pointed loop space: $\Omega(A, a) \equiv ((a =_A a), refl_a)$
- Iterated: $\Omega^0(A, a) \equiv (A, a)$,

$$\Omega^{n+1}(A,a) \equiv \Omega^n(\Omega(A,a))$$

Functions as functors

- Type A as a category:
 - ▶ Objects a: A
 - Arrows $p: a =_A b$ for a, b: A
- ▶ Function $f: A \rightarrow B$ as a functor (in TOP: f continuous)
 - ▶ LEM: For all x, y : A there is $ap_f : (x =_A y) \rightarrow (fx =_B fy)$
 - ▶ Proof: easy path induction $(ap_f refl_x =_\iota refl_{fx})$
- ▶ Shorthand: $f(p) \equiv (ap_f p)$ (application, action on paths)
- ▶ LEM: for all $f: A \rightarrow B$, $g: B \rightarrow C$, $p: x =_A y$, $q: y =_A z$
 - 1. $f(p \cdot q) =_{fx=_B fz} f(p) \cdot f(q)$
 - 2. $f(p^{-1}) =_{fy=Afx} f(p)^{-1}$
 - 3. $g(f p) =_{g(f \times) = c g(f \vee)} (g \circ f)(p)$
 - 4. $id_A x =_{\beta} x$, $id_A(p) =_{x=_{AY}} p$

Transport

- ▶ Functor $f: A \rightarrow B$ maps paths in A to paths in B
- ▶ For $B: A \rightarrow \mathcal{U}$ and $f: \Pi x : A$. Bx this is not so easy ...
- ... because Bx and By are different types
- ▶ Type family $B: A \rightarrow \mathcal{U}$ is a non-dependent function (of types)
- ▶ LEM: for all x, y : A and $p : x =_A y$ there is $p_* : Bx \to By$
- ▶ Proof: easy path induction $((refl_x)_* =_\iota id_{Bx})$
- ▶ Longhand: $transport^B p \equiv p_*$, so $transport^B p : Bx \rightarrow By$
- We can now lift paths in A to the total space $\sum AB$ (picture)
- ightharpoonup COR: for all $x, y : A, p : x =_A y, u : Bx$ there is

$$lift(u,p):(x,u)=(y,p_*u)$$

- ▶ Type family B: fibration with base A
- ▶ Q: actually, the fibration is $fst: (\Sigma AB) \rightarrow A$

Heavy transport

- ▶ Picture of transport with dependent function $f : \Pi x : A. Bx$
- ▶ LEM: for all x, y : A and $p : x =_A y$ there is $apd_f : (x =_A y) \rightarrow (p_*(fx) =_{BV} fy)$ with $apd_f refl_x =_\iota refl_{fx}$

▶ LEM: if
$$P: A \to \mathcal{U}$$
 with $Px = B$ fixed, then for all $x, y: A$, $p: x =_A y$ and $b: B$ there is $tpc_p^B b: transport^P p b =_B b$

▶ LEM: for $f: A \rightarrow B$ and p: x = A y we have

$$apd_f(p) = (tpc_p^B(fx)) \cdot (ap_f p)$$

- ▶ LEM: if $P: A \rightarrow \mathcal{U}$, $p: x =_A y$, $q: y =_A z$, and u: Px, then $(q_* \circ p_*) u = (p \cdot q)_* u$
- ▶ LEM: if $f: A \to B$, $P: B \to \mathcal{U}$, $p: x =_A y$, and u: P(fx), $transport^{P \circ f} \ p \ u = transport^P \ f(p) \ u$
- ► LEM 2.3.11: book

Homotopies

▶ DEF: Let $f,g:\Pi x$: A. Px for $P:A \to \mathcal{U}$. A homotopy from f to g is a dependent function of type $f \sim g$, where

$$(f \sim g) \equiv \Pi x : A. fx =_{Px} gx$$

- ▶ NB: $f \sim g$ is NOT the same as $f =_{\Pi x: A. Px} g$
- ▶ LEM: homotopy is an equivalence relation:
 - $ightharpoonup ?r: \Pi f: (\Pi x: A. Px). (f \sim f)$
 - ?s: Πf , g:(Πx :A. Px). ($f \sim g \rightarrow g \sim f$)
 - ? $t : \Pi f, g, h: (\Pi x: A. Px). (f \sim g \rightarrow (g \sim h \rightarrow f \sim h))$
- ▶ LEM: if $H: f \sim g$ for $f, g: A \rightarrow B$, and $p: x =_A y$, then $Hx \cdot g(p) = f(p) \cdot Hy$ (naturality, picture, proof by induction)
- ▶ COR: if $H: f \sim id_A$ for $f: A \rightarrow A$, and x: A, then H(fx) = f(Hx) (picture, proof by cancelling Hx)

Equivalences

- ▶ DEF: For $f: A \to B$, a *quasi-inverse* is a triple (g, α, β) with $g: B \to A$ and $\alpha: g \circ f \sim id_A$, $\beta: f \circ g \sim id_B$.
- ▶ DEF: the type qinv(f) of quasi-inverses of f is

$$\Sigma g: B \to A. ((f \circ g \sim id_B) \times (g \circ f \sim id_A))$$

- Examples:
 - ightharpoonup ?: $qinv(id_A)$ for $id_A: A \rightarrow A$
 - ? : $qinv(p \cdot _)$ for $p \cdot _$: $y = z \rightarrow x = z$
 - ? : $qinv(transport_p^P)$ for $transport_p^P : Px \rightarrow Py$
- qinv not well-behaved: nonequal inhabitants

Equivalences and Univalence

▶ DEF: For $f: A \rightarrow B$, the type *isequiv*(f) is

$$(\Sigma g: B \to A. (f \circ g \sim id_B)) \times (\Sigma h: B \to A. (h \circ f \sim id_A))$$

- ▶ LEM: (i) $qinv(f) \rightarrow isequiv(f)$; (ii) $isequiv(f) \rightarrow qinv(f)$
- ▶ Proof: (i) take g = h; (ii) use $g \sim h \circ f \circ g \sim h$
- ▶ LEM: for all e_1, e_2 : isequiv(f) we have $e_1 =_{isequiv(f)} e_2$
- ▶ Proof: postponed (interaction between = and \times , Σ)
- ▶ DEF: $(A \simeq B) \equiv \Sigma f : A \to B$. isequiv(f)
- ▶ LEM: For all $A, B : \mathcal{U}$ there is $idtoeqv : (A =_{\mathcal{U}} B) \rightarrow (A \simeq B)$
- ▶ Proof: by induction, using *isequiv*(*id*_A)
- ▶ Univalence Axiom: for all $A, B : \mathcal{U}$, isequiv(idtoeqv); hence:

$$(A =_{\mathcal{U}} B) \simeq (A \simeq B)$$

Type equivalence

- ▶ An equivalence $e: A \simeq B$ is a pair (f, p) with $f: A \to B$ and p: isequiv(f); sometimes p is left implicit
- lackbox LEM: Type equivalence is an equivalence relation on \mathcal{U} :
 - ▶ For any $A : \mathcal{U}$, $id_A : A \rightarrow A$ is an equivalence
 - ▶ For any $f: A \simeq B$ we have an equivalence $f^{-1}: B \simeq A$
 - ▶ For any $f:A \simeq B$ and $g:B \simeq C$ we have $g \circ f:A \simeq C$
- Proofs:
 - ▶ $id_A : A \rightarrow A$ is its own quasi-inverse; hence an equivalence
 - ▶ If $f: A \to B$ is an equivalence, it has a quasi-inverse $f^{-1}: B \to A$, which is also an equivalence
 - ▶ If $f : A \simeq B$ and $g : B \simeq C$, take their quasi-inverses ...

Structuralism

- Will turn out very different:
 - ▶ 'Two pairs are equal if they are componentwise equal'
 - 'Two functions are equal if they are pointwise equal'
- ► Type formers: $\times, +, \Sigma, \Pi, \mathcal{U}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbb{N}, Id$
- ▶ A lot of structural properties to investigate:
 - equality (example: lemma below)
 - transport
 - action on path
- ▶ LEM: $(x =_{A \times B} y) \simeq ((pr_1x =_A pr_1y) \times (pr_2x =_B pr_2y))$
- Proof on the blackboard

Equality in cartesian products

- ► LEM: $(x =_{A \times B} y) \simeq ((pr_1x =_A pr_1y) \times (pr_2x =_B pr_2y))$
- ▶ Proof: isequiv(λp :($x =_{A \times B} y$).($pr_1(p), pr_2(p)$)), by:
 - 1. define the function in the 'other' direction (notation: $pair^{-}$)
 - 2. prove that pair is a quasi-inverse
- ▶ $pair^{=}$: introduction rule for $x =_{A \times B} y$, elimination:
 - 1. $ap_{pr_1}: (x =_{A \times B} y) \to (pr_1x =_A pr_1y)$
 - 2. $ap_{pr_2}: (x =_{A \times B} y) \to (pr_2x =_B pr_2y)$
- yielding propositional computation rules:
 - 1. $(ap_{pr_1}(pair^{=}(p,q))) = p$ for $p:(pr_1x =_A pr_1y)$
 - 2. $(ap_{pr_2}(pair^{=}(p,q))) = q$ for $q : (pr_2x =_B pr_2y)$
- ▶ and a propositional uniqueness principle: $r = pair^{-}(ap_{pr_1}r, ap_{pr_2}r)$ for $r : (x =_{A \times B} y)$
- ▶ plus a lot of other componentwise *propositional* equalities

Transport and action in cartesian products

- ▶ THM: If $A, B: Z \to U$, $p: z =_Z w$ and $x: ((Az) \times (Bz))$, then $p_*x =_{(Aw) \times (Bw)} (p_*(pr_1x), p_*(pr_2x))$
- Proof: path induction plus propositional uniqueness
- ► Functoriality of ap under cartesian products: let $g: A \to A'$, $h: B \to B'$ and define $f: (A \times B) \to (A' \times B')$ by $f \equiv \lambda x: A \times A'. (g(pr_1x), h(pr_2x))$. Then:
- ► THM: if also $x, y : A \times B$, $p : (pr_1x) =_A (pr_1y)$ and $q : (pr_2x) =_B (pr_2y)$, we have (picture)

$$f(pair^{=}(p,q)) =_{fx=fy} pair^{=}(g(p),h(q))$$

Proof: by induction on pairs and paths

Equality and transport in Σ -types

▶ THM: let $P: A \rightarrow \mathcal{U}$ and $w, w': \Sigma x: A. Px$. Then:

$$(w =_{\sum_{X:A.P_X}} w') \simeq \sum_{p:pr_1w=pr_1w'} (p_*(pr_2w) = pr_2w')$$

▶ THM: let $P:A \to \mathcal{U}$ and $Q:(\Sigma x:A.Px) \to \mathcal{U}$. Then $\lambda x:A.(\Sigma u:Px.Q(x,u))$ is a type family such that for p:x=y and $(u,z):(\Sigma u:Px.Q(x,u))$ we have:

$$p_*(u,z) =_{\sum u: Py. \ Q(y,u)} (p_*u, lift(u,p)_*z)$$

- ► Generalizes: $p_*x =_{(Aw)\times(Bw)} (p_*(pr_1x), p_*(pr_2x))$
- Time for a picture!

The unit type

- ► THM: for all $x, y : \mathbf{1}$ we have $(x = y) \simeq \mathbf{1}$.
- Proof: exercise
- lacktriangle Pitfall: don't start proving $(\star=\star)\simeq 1$

Equality in Π-types

▶ Wanted, for $A: \mathcal{U}, B: A \rightarrow \mathcal{U}$ and $f,g: \Pi x:A. Bx$:

$$(f = g) \simeq (\Pi x : A. fx =_{Bx} gx)$$

By an easy path induction (to be viewed as elimination):

happly:
$$(f = g) \rightarrow (\Pi x: A. fx =_{Bx} gx)$$

- Axiom (function extensionality): isequiv(happly)
- Quasi-inverse of happly (to be viewed as introduction):

funext :
$$(\Pi x: A. fx =_{Bx} gx) \rightarrow (f = g)$$

- Propositional equalities (use functional extensionality):
 - ► happly (funext h) = h
 - $\alpha = funext(happly \alpha)$ • $refl_f = funext(\lambda x: A. refl_{fx})$
 - $\alpha^{-1} = \text{funext} (\lambda x : A. (\text{happly } \alpha x)^{-1})$
 - $\bullet \ \alpha \bullet \beta = funext(\lambda x : A. (happly \alpha x) \bullet (happly \beta x))$

Transport in Π -types

- Let $A, B: X \to \mathcal{U}$ and define $A2B \equiv \lambda x: X.$ ($Ax \to Bx$). Given a path $p: x_1 =_X x_2$, there are two natural ways to transport $f: Ax_1 \to Bx_1$ to $Ax_2 \to Bx_2$ (picture):
 - 1. by applying $transport^{A2B} p : (Ax_1 \rightarrow Bx_1) \rightarrow (Ax_2 \rightarrow Bx_2)$
 - 2. by transporting any given $a: Ax_2$ first back to Ax_1 , applying f, and then transporting the result in Bx_1 to Bx_2

These two ways turn out to be propositionally equal.

► LEM: under conditions as above:

$$transport^{A2B} p f = \lambda a : Ax_2 . transport^B p (f(transport^A p^{-1} a))$$

- Proof: by path induction
- ► This was only the non-dependent case ... (see the book)

Univalence

- ▶ $idtoeqv : (A =_{\mathcal{U}} B) \rightarrow (A \simeq B)$ defined by path induction
- ▶ Univalence Axiom: for all A, B : U, isequiv(idtoeqv); hence:

$$(A =_{\mathcal{U}} B) \simeq (A \simeq B)$$

- ▶ Abuse of notation: $(f, p) : A \simeq B$ identified with $f : A \to B$
- A different view on univalence:
 - ▶ Introduction (postulated): $ua : (A \simeq B) \rightarrow (A =_{\mathcal{U}} B)$
 - ▶ Elimination (transport): $[pr_1 \circ] idtoeqv : (A =_{\mathcal{U}} B) \to (A \to B)$
 - Propositional computation rule: idtoequiv (ua f) = f
 - ▶ Propositional uniqueness: p = ua (istoeqv p), so $refl_A = uaid_A$
- ► LEM: $(uaf) \cdot (uag) = ua(g \circ f); (uaf)^{-1} = ua(f^{-1})$
- ▶ LEM: for $B: A \to \mathcal{U}$, $p: x =_A y$ we have (no UA!):

$$p_* \equiv transport^B p =_{Bx \to By} idtoequiv (ap_B p)$$

Identity types

- ▶ THM: if $f: A \to B$ is an equivalence, then for all a, a': A we have the equivalence $ap_f: (a =_A a') \to (fa =_B fa')$
- ► Transport in families of identity types, with $p: x_1 =_A x_2$. LEM: for $p: x_1 =_A x_2$ and $q: Px_1$ for superscript $P: A \to \mathcal{U}$
 - 1. $transport^{\lambda x:A.(a=_{A}x)} p q = q \cdot p$
 - 2. $transport^{\lambda x:A.(x=A)} p q = p^{-1} \cdot q$
 - 3. $transport^{\lambda x:A.}(x=Ax) p q = p^{-1} \cdot q \cdot p$
 - 4. $transport^{\lambda x:A. (fx=_Bgx)} p q = (ap_f p)^{-1} \cdot q \cdot (ap_g p)$ for $f,g:A \rightarrow B$
 - 5. $transport^{\lambda x:A. (fx=_Bgx)} p q = (apd_f p)^{-1} \cdot p_*(q) \cdot (apd_g p)$ for $f, g: \Pi x:A. Bx$

Proofs by pictures

► THM: for $p: a =_A a'$, $q: a =_A a$, and $r: a' =_A a'$ we have:

$$((transport^{\lambda x:A.(x=_Ax)}pq)=r)\simeq (q\cdot p=p\cdot r)$$

Coproducts

- ▶ Coproducts are interesting: try defining $f: A + B \rightarrow A$...
- ► Hopefully (proof not obvious, too special):
 - 1. $(inl a_1 = inl a_2) \simeq (a_1 = a_2)$ 2. $(inr b_1 = inr b_2) \simeq (b_1 = b_2)$
 - 3. $(inl\ a = inr\ b) \simeq \mathbf{0}$
 - 3. (inl a = inr b) \simeq **U** Idea: combine 1,3 (2,3) and generalize! (Q: 1,2,3,4?)
- Fix $a_0: A$; then $P \equiv \lambda x: A+B$. (inl $a_0 = x$): $A+B \rightarrow \mathcal{U}$.
- ▶ Wanted: $P(inl \ a) \simeq (a_0 = a)$ and $P(inr \ b) \simeq \mathbf{0}$
- ▶ Define *code* : $A+B \rightarrow \mathcal{U}$ recursively by

$$code(inl a) \equiv (a_0 = a)$$
 $code(inr b) \equiv \mathbf{0}$

- ▶ Define encode : $\Pi x:A+B$. $\Pi p:(inl\ a_0 = x)$. $(code\ x)$ and decode : $\Pi x:A+B$. $\Pi c:(code\ x)$. $(inl\ a_0 = x)$
- ▶ Prove that $encode(x, _)$ and $decode(x, _)$ are quasi-inverses

Coproducts (ctnd)

- ▶ THM: for all x : A + B we have $((inl\ a_0) = x) \simeq (code\ x)$
- Details on the blackboard
- COR (of the proof):
 - $encode(inl\ a): ((inl\ a_0) = (inl\ a)) \rightarrow (a_0 = a)$
 - encode(inr b): $((inl a_0) = (inr b)) \rightarrow \mathbf{0}$
- ▶ Transport: for $A, B: X \to \mathcal{U}$ and $p: x_1 =_X x_2$:
 - $transport^{\lambda x:X.(Ax+Bx)} p(inl a) = inl(transport^A p a)$
 - $transport^{\lambda x:X.(Ax+Bx)} p(inr b) = inr(transport^B p b)$

Natural numbers

- ▶ We define $code : \mathbb{N} \to \mathbb{N} \to \mathcal{U}$ such that: THM: for all $m, n : \mathbb{N}$ we have $(m = n) \simeq (code\ m\ n)$
- Details on the blackboard (or in book)
- COR: we have (inhabited)
 - ▶ $\Pi m: \mathbb{N}. ((Sm) = 0) \rightarrow \mathbf{0}$, as $code((Sm), 0) \equiv \mathbf{0}$
 - ► $\Pi n, m: \mathbb{N}. ((Sm) = (Sn)) \rightarrow (m = n), \text{ as } code(Sm, Sn) \equiv code(m, n)$
- ► COR: N is a *set* (type in which paths are unique)

Transporting structure

- ► $SGS(A) \equiv \Sigma m: A \rightarrow A \rightarrow A$. $\Pi x, y, z: A$. (mx(myz) = m(mxy)z)
- ▶ $SG \equiv \Sigma A: \mathcal{U}. SGS(A)$
- ▶ If $e: A =_{\mathcal{U}} B$, then $transport^{SGS}ua(e): SGS(A) \rightarrow SGS(B)$
- ▶ For (m, a): SGS(A), $transport^{SGS}ua(e)(m, a) \equiv (m', a')$ with
 - $m' = ua(e)_* m \equiv transport^{\lambda X. X \to X \to X} ua(e)m$
 - lacksquare $a' = transport^{\lambda(X,m)}. \stackrel{Assoc(X,m)}{Assoc(X,m)} (pair^{=}(ua(e), refl_{m'})) a$

where $Assoc(X, m) \equiv \Pi x, y, z: X. (mx(myz) = m(mxy)z)$

- ▶ NB: $pair^{=}(ua(e), refl_{m'}) : (A, m) = (B, m')$ (Thm. 2.7.2/4)
- ▶ Indeed (m', a') : SGS(B) (no need to reprove)
 - $ightharpoonup m': B \rightarrow B \rightarrow B$
 - $ightharpoonup a': Assoc(B, m') \equiv \Pi x, y, z:B. (m'x(m'yz) = m'(m'xy)z)$

Some calculations

- ▶ If $p: A =_{\mathcal{U}} B$, then $transport^{\lambda X:\mathcal{U}.X} p: A \to B$
- ▶ Also: $[pr_1 \circ] idtoeqv : (A =_{\mathcal{U}} B) \to (A \to B)$
- ▶ Verbatim the same: $transport^{\lambda X:\mathcal{U}.X} \equiv idtoeqv$
- ▶ Hence: $transport^{\lambda X:\mathcal{U}.X}$ and ua are each other's quasi-inverse
- ▶ So: transport $\lambda X: \mathcal{U} \cdot X$ ua(e)⁻¹ = e⁻¹
- ► Recall back-and-forth technique for $transport^{\lambda X. AX \to BX}$
- ► Then: $m'b_1b_2 \equiv (transport^{\lambda X.X \to X \to X} ua(e)m)b_1b_2 = tspt^{\lambda X.X} ua(e)(m(tspt^{\lambda X.X} ua(e)^{-1}b_1)(tspt^{\lambda X.X} ua(e)^{-1}b_2))$ = $e(m(e^{-1}b_1)(e^{-1}b_2))$ (recall $e: A \to B$ equivalence)
- ▶ Algebraic proof of Assoc(B, m') not needed (equal to a')

Equality of semigroups

▶ By Thm. 2.7.2: the type $(A, m, a) =_{SG} (B, m', a')$ is equal to type of pairs

$$p_1$$
: $A =_{\mathcal{U}} B$
 p_2 : transport $^{SGS}p_1(m, a) = (m'a')$

where by univalence $p_1 = ua(e)$ for some equivalence e and $p_2 = (p_3, p_4)$ is a pair of proofs with p_3 of type

$$\Pi y_1, y_2: B. (e(m(e^{-1}y_1)(e^{-1}y_2)) = m' y_1 y_2$$

which is equivalent to

$$\Pi x_1, x_2:A.(e(m x_1 x_2) = m'(e x_1)(e x_2)$$

... recovering the notion of semigroup isomorphism

Universal properties

▶ LEM: $\lambda f. (pr_1 \circ f, pr_2 \circ f)$ is an equivalence

$$(X \to (A \times B)) \to ((X \to A) \times (X \to B))$$

- ... and also for type families (see book)
- ► EXC: define an equivalence

$$((A+B)\to X)\to ((A\to X)\times (B\to X))$$

► For $A: \mathcal{U}, B: \mathcal{U}, R: A \to B \to \mathcal{U}$, ac is an equivalence

ac :
$$(\Pi x: A. \Sigma y: B. R \times y) \rightarrow \Sigma f: A \rightarrow B. \Pi x: A. R \times (fx)$$

- ▶ Cartesian closure: $((A \times B) \to C) \simeq (A \to (B \to C))$
- ... and also for type families (see book)

Sets

▶ A set is a type in which paths are unique:

$$isSet(A) \equiv \Pi x, y:A. \Pi p, q:(x =_A y). p =_{x=_A y} q$$

- ▶ Examples: 0, 1, N
- ▶ Proofs: trivial, $\Pi x, y : \mathbf{1}$. $(x =_{\mathbf{1}} y) \simeq \mathbf{1}$ (picture), and $\Pi x, y : \mathbb{N}$. $(x =_{\mathbb{N}} y) \simeq code(x, y)$
- ▶ Most type forming operations preserve sets:
 - if A and B are sets, then so are $A \times B$ and A + B
 - ▶ if A is a set and $B: A \rightarrow \mathcal{U}$ such that Bx is a set for every x: A, then $\sum AB$ is a set (by 'structuralism')
 - ▶ if A is any type and $B: A \rightarrow \mathcal{U}$ such that Bx is a set for every x: A, then $\prod AB$ is a set (using function extensionality twice!)
- Proof of last: if f, g: ΠAB, p, q: f = g, then by fun.ext. p = funext(happly p) and q = funext(happly q). By assumption on Bx, happly px = happly qx for all x: A. Hence, again by fun.ext. happly p = happly q, so p = q.

Sets (ctnd)

- ▶ The universe is not a set: $isSet(\mathcal{U}) \rightarrow \mathbf{0}$
- Proof: we construct by univalence $p: \mathbf{2} = \mathbf{2}$ with $(p =_{\mathbf{2} = \mathbf{2}} refl_{\mathbf{2}}) \to \mathbf{0}$. Define the equivalence $e: \mathbf{2} \to \mathbf{2}$ by e(0) = 1, e(1) = 0 (e is its own quasi-inverse). If $ua(e) =_{\mathbf{2} = \mathbf{2}} refl_{\mathbf{2}}$, then $\mathbf{0}$ gets inhabited by $e = idtoeqv(ua(e)) = idtoeqv refl_{\mathbf{2}} = id_{\mathbf{2}}$,
- ▶ Definition of *h*-levels (later also levels -2, -1):
 - ▶ $0 type(A) \equiv isSet(A) \equiv \Pi x, y:A. \Pi p, q:(x =_A y). p =_{x=_A y} q$
 - ▶ $1 type(A) \equiv \Pi x, y : A. isSet(x =_A y) \equiv ...$
- ▶ LEM: inhabited $isSet(A) \rightarrow 1type(A)$
- Proof on blackboard (uses Lemmas 2.3.4 and 2.11.2)

Types vs. propositions

- ▶ THM: UA conflicts with for all $A : \mathcal{U}, (\neg \neg A) \rightarrow A$
- More precisely:
 - ▶ without UA, $\Pi A: \mathcal{U}. ((\neg \neg A) \rightarrow A)$ consistent
 - ▶ with UA, $\neg \Pi A: \mathcal{U}. ((\neg \neg A) \rightarrow A)$ is inhabited
- Intuition: under UA, there cannot be a natural choice operator selecting an element from every non-empty type
- ▶ Proof: assume $f: \Pi A: \mathcal{U}. (((A \to \mathbf{0}) \to \mathbf{0}) \to A)$. We construct an inhabitant of $\mathbf{0}$. Take $e: \mathbf{2} \simeq \mathbf{2}$ as above. Use that f acts on ua(e) by

$$apd_fua(e): (transport^{\lambda A.(\neg \neg A) \rightarrow A}ua(e)(f\mathbf{2})) = f\mathbf{2}$$

Rest on blackboard (use back-and-forth and $(\neg \neg 2) \simeq 1$)

- ▶ COR: UA conflicts with for all $A : \mathcal{U}, A + (\neg A)$
- Conclusion: we cannot use all types as propositions

Mere propositions

- ▶ Wanted: \mathcal{V} , UA consistent with $\Pi A: \mathcal{V}. ((\neg \neg A) \rightarrow A)$
- ▶ Examples: $\mathbf{0}, \mathbf{1} : \mathcal{V}$, but not $\mathbf{2} : \mathcal{V}$ (UA: \simeq -naturality)
- ▶ Mere proposition: $isProp(P) \equiv \Pi x, y:P.(x =_P y)$
- ▶ Level 0: $isSet(A) \simeq \Pi x, y:A. isProp(x =_A y)$
- ▶ LEM: inhabited $isProp(P) \rightarrow P \rightarrow (P \simeq 1)$
- ▶ LEM: *isProp* is closed under × (UA not needed)
- ▶ LEM: isProp(P) and $P \simeq Q$, then isProp(Q) (UA not needed)
- ▶ LEM: with funext, if $A : \mathcal{U}$ and $B : A \to \mathcal{U}$ such that isProp(Bx) for every x : A, then $isProp(\Pi x : A : Bx)$.
- ightharpoonup COR: P o Q is a mere proposition whenever Q is
- ▶ NB: isProp is not closed under +, nor Σ

More on Mere propositions

- ▶ LEM: if P, Q are mere propositions with $P \rightarrow Q$, $Q \rightarrow P$, then $P \simeq Q$.
- ▶ LEM: Every mere proposition is a set (cf. Lemma 3.1.8)
- ▶ LEM: for every type A, isProp(A) and isSet(A) are mere propositions
- ▶ Proof: use funext. If f, g : isProp(A), then $fxy, gxy : x =_A y$, hence fxy = gxy since A is a set. Analogously for isSet(A) (use Lemma 3.1.8).
- ► The HoTT laws of excluded middle and double negation:
 - ▶ $LEM_{-1} \equiv \Pi A: \mathcal{U}. isProp(A) \rightarrow (A + \neg A)$
 - ► $DNL_{-1} \equiv \Pi A: \mathcal{U}. isProp(A) \rightarrow ((\neg \neg A) \rightarrow A)$

Both are equivalent, independent, consistent with UA

Decidability, subtypes and subsets

- ▶ Under LEM_{-1} , no need for +, nor Σ , for doing logic
- ▶ For $A : \mathcal{U}$ and $B : A \to \mathcal{U}$, localized forms of LEM_{-1} :
 - ▶ *A* is *decidable* if $A + \neg A$
 - ▶ B is decidable if Πx :A. $(Bx + \neg Bx)$
 - ▶ A has decidable equality if $\Pi x, y:A.((x =_A y) + \neg (x =_A y))$
- ightharpoonup Example: LEM_{-1} implies that sets have decidable equality
- For $A: \mathcal{U}$ and $P: A \to \mathcal{U}$ such that isProp(Px) for all x: A, if $(x, p), (x, q): \Sigma x: A. Px$, then p = q, and we write:

$$\{x:A \mid Px\} \equiv \Sigma x:A. Px$$

▶ EXC 3.3: Σx :A. Px is a set if A is a set and $P: A \to \mathcal{U}$ such that isSet(Px) for all x: A

Propositional truncation

- Propositional truncation (or 'squash') hides all info about inhabitants beyond their mere existence.
- NEW: this is a higher inductive type (Chapter 6)!
- ▶ Formation: ||A|| : *U* if A : *U*
- Introduction, both for objects and paths:
 - ▶ |a| : ||A|| if a : A
 - $x = \|A\| y \text{ if } x, y : \|A\|$
- ▶ Elimination: defining $f : ||A|| \rightarrow B$ means
 - ightharpoonup specifing f|a|:B for all a:A
 - ▶ making sure f|a| = ||A|| f|b| for all a, b : A
- ▶ Only 'constant' functions, or better: if isProp(B), any $g: A \rightarrow B$ defines $f: ||A|| \rightarrow B$ with f|a| = ga
- ▶ EXC: isProp(||P||), $isProp(P) \simeq (P \simeq ||P||)$, for all P : U

Traditional logic, unique choice

 Under UA: like propositions as types, but with mere propositions

- ► LEM₋₁, decidability: mathematical axioms
- ▶ LEM (unique choice): if $P : A \rightarrow \mathcal{U}$ such that
 - 1. Px is a mere proposition for all x : A
 - 2. for each x : A we have ||Px|| (so, $\Pi x : A$. ||Px|| inhabited)

Then $\Pi x: A. Px$ (proof: $isProp(Px) \rightarrow ||Px|| \rightarrow Px$)

- Choice can sometimes be refined to unique choice
- Homework: read 3.9 and 3.10

The Axiom of Choice (AC)

- ▶ Let isSet(X), and $A: X \to \mathcal{U}, P: \Pi x: X. (Ax \to \mathcal{U})$ such that
 - 1. Ax is a set for all x : X
 - 2. Pxa is a mere proposition for all x: X, a: Ax

Then AC asserts

$$(\Pi x{:}X.\,\|\Sigma a{:}Ax.\,Pxa\|) \to \|\Sigma f{:}(\Pi x{:}X.\,Ax).\,\Pi x{:}X.\,Px(fx)\|$$

▶ LEM: AC is equivalent to, with $Y: X \to \mathcal{U}$ such that Yx sets,

$$(\Pi x:X. \|Yx\|) \rightarrow \|\Pi x:X. Yx\|$$

- ▶ Proof: use that ac is an equivalence (2.15.7) and that Yx is equally expressive as $\Sigma a: Ax. Pxa$ (subset!)
- Discussion

Contractible types

- Contractible type: inhabited mere proposition
- ▶ DEF: $isContr(A) \equiv \Sigma a:A$. $\Pi x:A$. a = x
- ▶ LEM: logical equivalences (Q: why not \simeq ?) isContr(A) \iff (A \times isProp(A)) \iff (A \simeq 1)
- ► LEM: isProp(isContr(A)), for all A
- ▶ Proof: first para in book + $isProp(\Pi x:A. a' = x)$
- ▶ $isContr(A) \rightarrow isContr(isContr(A)) + other closure properties$
- ▶ *isContr* not closed under +

Retraction

- ► Retraction: ± half of an equivalence (Q: OK?)
- ▶ DEF: $r: A \to B$ retraction if there is $s: B \to A$ (the section of r) such that $r \circ s \sim id_B$. Then we call B a retract of A.
- ▶ LEM: if B a retract of A, then $isContr(A) \rightarrow isContr(B)$
- ▶ LEM: for all $A : \mathcal{U}$ and a : A, isContr($\sum x : A : a = x$)
- ▶ LEM: let $P: A \rightarrow \mathcal{U}$ be a type family
 - 1. if each Px is contractible, then $A \simeq \Sigma x : A. Px$
 - 2. if A is contractible with center a : A, then $Pa \simeq \Sigma x$:A. Px
- ▶ LEM: $isProp(A) \simeq \Pi x, y:A$. $isContr(x =_A y)$

Equivalences

- ▶ Wanted: $XYZequiv(f) \leftrightarrow qinv(f)$ and isProp(XYZequiv(f))
- ▶ Q: desirable or really needed that isProp(XYZequiv(f))?
- ▶ LEM: $qinv(f) \rightarrow (qinv(f) \simeq \Pi x : A \cdot x =_A x))$ for all $f : A \rightarrow B$
- ▶ Book: for some $A: \mathcal{U}$, $\Pi x: A. x =_A x$ not contractible
- Some information is missing from qinv(f) ...
- ► Three alternative (equivalent) definitions:
 - 1. ishae(f), adds coherence info to qinv(f)
 - 2. biinv(f) ($\equiv isequiv(f)$, splits quasi-inverse in two
 - 3. isContr(f), imposes contractibility of fibers

Half Adjoint Equivalences

▶ DEF: for $f: A \rightarrow B$, the type ishae(f) is

$$\Sigma g: B \to A. \Sigma \alpha: (g \circ f \sim id_A). \Sigma \beta: (f \circ g \sim id_B). \Pi x: A. f(\alpha x) = \beta(fx)$$

- **Diff** with qinv(f): 1 vs. last Π-type
- ▶ Logically equivalent: last Π -type Πx :A. $g(\beta x) = \alpha(gx)$
- ▶ LEM: for any $f: A \rightarrow B$, $qinv(f) \rightarrow ishae(f)$
- ▶ Proof: take 'the' g and α from qinv(f). Define

$$\beta'b \equiv \beta(f(gb))^{-1} \cdot f(\alpha(gb)) \cdot (\beta b)$$

- Find (τa) : $(f(\alpha a) = \beta'(fa))$ (see book)
- ▶ DEF: The *fiber* of $f: A \rightarrow B$ over b: B is

$$fib_f(b) \equiv \sum x : A. (fx = b)$$

▶ LEM: if ishae(f), then any $fib_f(b)$ is contractible

Bi-invertible maps

- ▶ DEF: for $f: A \rightarrow B$. define:
 - 1. $linv(f) \equiv \Sigma g: B \rightarrow A. (g \circ f \sim id_A)$
 - 2. $rinv(f) \equiv \Sigma g: B \rightarrow A. (f \circ g \sim id_B)$
 - 3. $biinv(f) \equiv (linv(f) \times rinv(f))$ (that is, isequiv(f))
- ▶ LEM: if qinv(f), then linv(f) and rinv(f) are contractible
- ▶ Proof: $\Sigma g: B \to A$. $(g \circ f = id_A)$ is a fiber and $qinv(_{-} \circ f)$
- ▶ DEF: for $f: A \rightarrow B$, $(g, \alpha): linv(f)$, $(g, \beta): rinv(f)$ define:
 - 1. $lcoh(f, g, \alpha) \equiv \Sigma \beta : (f \circ g \sim id_B) \cdot \Pi y : B \cdot (g(\beta y) = \alpha(gy))$
 - 2. $rcoh(f, g, \beta) \equiv \Sigma \alpha : (g \circ f \sim id_A) . \Pi x : A. (f(\alpha x) = \beta(fx))$
- ▶ Intuition: $lcoh(f, g, \alpha)$ expresses that 'g is also right inverse, plus coherence'

A Mere Proposition

- ▶ LEM: for all $f: A \rightarrow B$, $(g, \alpha): linv(f)$, $(g, \beta): rinv(f)$ 1. $lcoh(f, g, \alpha) \equiv \Pi y : B.(f(gy), \alpha(gy)) =_{fib_g(gy)} (y, refl_{gy})$ 2. $rcoh(f, g, \beta) \equiv \Pi x : A.(g(fx), \beta(fx)) =_{fib_f(fx)} (x, refl_{fx})$
- ▶ LEM: if ishae(f), then $lcoh(f, g, \alpha)$ and $rcoh(f, g, \beta)$ are contractible for any (g, α) : linv(f), (g, β) : rinv(f)
- ▶ LEM: ishae(f) is a mere proposition, for any $f: A \rightarrow B$
- ▶ Proof: $\Sigma(g,\beta)$:rinv(f). $rcoh(f,g,\beta)$ is contractible
- ▶ LEM: biinv(f) is a mere proposition for any $f: A \rightarrow B$, and $biinv(f) \simeq ishae(f)$

Contractible fibers

▶ DEF: for $f: A \rightarrow B$, we define:

$$isContr(f) \equiv \Pi y : B. isContr(fib_f(y))$$

- ▶ LEM: $isContr(f) \rightarrow ishae(f)$, for any $f : A \rightarrow B$
- Proof: blackboard, or latest pdf of book
- REM: converse has been shown already
- ▶ LEM: isContr(f) is a mere proposition for any $f: A \rightarrow B$, and $isContr(f) \simeq ishae(f)$
- ▶ LEM: if $f: A \to B$ such that $B \to isequiv(f)$, then isequiv(f)
- ▶ THM (summing up): $biinv(f) \simeq ishae(f) \simeq isContr(f)$

Bijections, surjections and embeddings

- ▶ DEF: for sets $A, B : \mathcal{U}$, we call an equivalence a bijection
- ▶ DEF: for *types* $A, B : \mathcal{U}, f : A \rightarrow B$, we define:
 - 1. f is a surjection if for all b: B we have $||fib_f(b)||$ (inhabited)
 - 2. f is a split surjection if $\Pi b:B$. $\Sigma a:A$. (f(a) = b)
 - 3. f is an embedding if for all x, y : A we have isequiv (ap_f)
 - 4. f is an injection if f an embedding and A, B sets
- ▶ REM: last clause iff $\Pi x, y:A$. $(fx =_B fy) \rightarrow (x =_A y)$
- ► THM: isequiv(f) iff (isEmbedding(f) and isSurjection(f))
- ▶ COR: $isequiv(f) \simeq (isEmbedding(f) \times isSurjection(f))$

Fiberwise equivalences

- ▶ DEF: for $P, Q: A \rightarrow \mathcal{U}$, we call $f: \Pi x : A. (Px \rightarrow Qx)$ a fiberwise equivalence if $fx: (Px \simeq Qx)$ for all x: A
- ▶ DEF: for $P, Q: A \rightarrow \mathcal{U}$, $f: \Pi x : A$. $(Px \rightarrow Qx)$, we define:

$$total(f) \equiv \lambda w. (pr_1w, f(pr_1w, pr_2w)) : (\Sigma x:A. Px) \rightarrow (\Sigma x:A. Qx)$$

► THM: for $f: \Pi x: A. (Px \rightarrow Qx), x: A$ and v: Qx

$$fib_{total(f)}(x, v) \simeq fib_{fx}(v)$$

► THM: f is a fiberwise equivalence iff total(f) is an equivalence

Univalence implies weak extensionality

▶ DEF: the weak extensionality principle is: for all $P: A \rightarrow \mathcal{U}$

$$(\Pi x: A. isContr(Px)) \rightarrow isContr(\Pi x: A. Px)$$

- Intuition: if co-domain singleton, there is only one function
- ▶ LEM: if $pr_1:(\Sigma x:A.\ Px) o A$ and a:A , then $fib_{pr_1}(a) \simeq Pa$
- ▶ LEM: if UA and $A, B, X : \mathcal{U}, e : A \simeq B$, then ([$pr_1 \circ$] $e \circ _-$) defines an equivalence ($X \to A$) $\to (X \to B)$
- ► THM: if UA and $P: A \to \mathcal{U}$ is a family of contractible types, then $\Pi x: A$. Px is (a retract of $fib_{\alpha}(id_{A})$ and so) contractible
- ▶ Proof: assume UA and a family of contractible types $P:A \to \mathcal{U}$. Then $pr_1:(\Sigma x:A.Px) \to A$ is an equivalence, defining an equivalence $\alpha:(A \to \Sigma x:A.Px) \to (A \to A)$. $fib_{\alpha}(id_A) = \Sigma f:(A \to \Sigma x:A.Px).(pr_1 \circ f = id_A)$, retract ...

Weak extensionality implies extensionality

- ▶ Recall: happly $f g : (f = g) \rightarrow (\Pi x : A. fx =_{Px} gx)$
- ▶ Recall: funext $f g : (\Pi x : A. fx =_{Px} gx) \rightarrow (f = g)$
- ▶ To prove (where $\Pi A P$ abbreviates $\Pi x:A. Px$):

$$\Pi A: U. \Pi P: (A \rightarrow \mathcal{U}). \Pi f, g: (\Pi A P). is equiv(happly f g))$$

▶ Proof: we show that *total*(*happly f*) is an equivalence

$$(\Sigma g:(\Pi A P). (f = g)) \rightarrow (\Sigma g:(\Pi A P). \Pi x:A. fx =_{Px} gx))$$

Lhs contractible, it suffices that rhs is contractible too. Rhs is retract of $\Pi x:A$. $\Sigma u:Px$. (fx=u), which is contractible by weak extensionality. (Retraction uses $=_{\eta}$, not extensionality.)

Inductive Types

- Inductive type: type of objects that are freely generated by constructors (roughly, functions with the inductive type as co-domain), plus an elimination principle (induction)
- Examples:
 - 1. **0** without constructors; $ind_0 C : \Pi x : \mathbf{0}. Cx$
 - 2. **1** with constructor \star : **1**; $ind_1 C : C(\star) \rightarrow \Pi x : \mathbf{1}$. Cx
 - 3. **2** with constructors 0_0 , 1_1 : **2**; $ind_2 C$: $C(0) \rightarrow C(1) \rightarrow \Pi x$: **2**. Cx
 - 4. \mathbb{N} with constructors $0 : \mathbb{N}$ and $S : \mathbb{N} \to \mathbb{N}$; usual induction
- ▶ Recursion: non-dependent elimination ($C = \lambda x : \overline{I} \cdot A$)

Inductive Types (ctnd)

- More examples:
 - 1. $A \times B$ with constructor $(_,_): A \to B \to A \times B$; induction $ind_{A \times B} C: (\Pi a: A. \Pi b: B. C(a, b)) \to \Pi p: A \times B. Cp$
 - 2. A + B with constructors $inl : A \rightarrow A + B$, $inr : B \rightarrow A + B$; $ind_{A+B} C : (\Pi a:A. C(inl a)) \rightarrow (\Pi b:B. C(inr b)) \rightarrow \Pi s:A+B. Cs$
 - 3. List A with constructors $nil:List\ A$, $cons:A \rightarrow (List\ A) \rightarrow (List\ A)$; $ind_{List\ A}\ C:C\ nil \rightarrow \Pi a:A.\ \Pi\ell:List\ A.\ C(cons\ a\ \ell) \rightarrow \Pi\ell:List\ A.\ C\ \ell$
- ▶ Uniqueness principle: under *funext*, induction and recursion yield unique functions in $\Pi x: \mathbb{T}$. Cx
- ► Example of uniqueness in case of N on blackboard (recall $ind_N Ce_0 e_S 0 =_{\iota} e_0$, $ind_N Ce_0 e_S (Sn) =_{\iota} e_S n (ind_N Ce_0 e_S n)$)

Uniqueness of Inductive Types

- ▶ Y.a. inductive type: \mathbb{N}' with constructors $0' : \mathbb{N}'$, $S' : \mathbb{N}' \to \mathbb{N}'$
- ▶ Looks familiar ..., but this is not N
- Induction very similar, with computation rules ind $C e_0 e_S 0' =_{\iota} e_0$, ind $C e_0 e_S (S'n) =_{\iota} e_S n (ind C e_0 e_S n)$ where $n : \mathbb{N}'$, $e_0 : C 0'$, $e_S : \Pi n : \mathbb{N}'$. $(Cn \to C(S'n))$
- ▶ Define $f \equiv rec_{\mathbb{N}} \mathbb{N}' \ 0' \ (\lambda n: \mathbb{N}. \ S') : \mathbb{N} \to \mathbb{N}',$ $g \equiv rec_{\mathbb{N}'} \mathbb{N} \ 0 \ (\lambda n: \mathbb{N}'. \ S) : \mathbb{N}' \to \mathbb{N};$ prove $\mathbb{N} \simeq \mathbb{N}'.$
- ▶ Discuss options to define $d' \equiv double' : \mathbb{N}' \to \mathbb{N}'$ and prove

$$\Pi n: \mathbb{N}'. (double'(S'n) = S'(S'(double'n)))$$

▶ HoTT: transport along $\mathbb{N} = \mathbb{N}'$, $(\mathbb{N}, S, d) = (\mathbb{N}', S', d')$

W-Types

- Purpose: encoding inductive types uniformly
- ▶ Formation: if $A : \mathcal{U}$ and $B : A \to \mathcal{U}$, then $W \land B : \mathcal{U}$
- ▶ Intuition: the type of A-labelled, B(a)-branching wf trees
- ▶ One constructor: sup : Πa :A. $(Ba \rightarrow W A B) \rightarrow W A B$
- Examples:
 - $ho N^W \equiv W \mathbf{2} (rec_2 \mathcal{U} \mathbf{0} \mathbf{1}) \text{ (why?)}$
 - ▶ $0^W \equiv \sup 0_2 (rec_0 N^W)$, $S^W \equiv \lambda n: N^W . \sup 1_2 (\lambda y: \mathbf{1}. n)$ (!)
 - List $A \equiv W(\mathbf{1} + A) (rec_{(\mathbf{1}+A)} \mathcal{U} \mathbf{0} \lambda a. \mathbf{1})$ (why?)
 - ▶ $nil \equiv sup(inl*)(rec_0(List A))$, cons on blackboard
- Exercise: find the W-type for labeled binary trees
- ▶ Exercise 5.7: $(C \rightarrow \mathbf{0}) \rightarrow C$ is not a valid constructor type

Induction in W-Types

- ▶ Recall: $sup : \Pi a:A. ((Ba \rightarrow W A B) \rightarrow W A B)$
- ▶ Intuition for induction: to prove Px for all x : WAB it suffices to show that P is closed under sup. That is, for all a : A and $f : Ba \rightarrow WAB$, if (IH) for all b : Ba we have P(fb), then P(sup a f).
- ▶ Intuition for recursion: to define $h: WAB \to C$ it suffices to define $h(\sup af)$, for all a: A and $f: Ba \to WAB$, using function values h(fb) for b: Ba (and possibly a, and f as predecesor).
- ► Examples: $dbI^W \equiv rec_{N^W} N^W e$, with $e \ 0 \equiv \lambda f, g : \mathbf{0} \rightarrow N^W . \ 0^W$ and $e \ 1 \equiv \lambda f, g : \mathbf{1} \rightarrow N^W . \ (S^W(S^W(g \star)))$
- Exercise: define a predecessor $N^W \to N^W$

Homotopy-initial algebras

- ▶ N-algebra: a type C with objects c_0 : C and c_S : C \rightarrow C
- Formal definition: a Σ -type $\mathbb{N}Alg$ (on blackboard)
- ▶ \mathbb{N} -homomorphism between \mathbb{N} -algebras $(C, c_0, c_S), (D, d_0, d_S)$
- ▶ Formal definition: an even bigger Σ -type $\mathbb{N}Hom(_,_)$
- N-algebras thus form a category
- ► H-initial N-algebra 1:

$$isHinit_{\mathbb{N}}(I) \equiv \Pi C: \mathbb{N}Alg. isContr(\mathbb{N}Hom(I, C))$$

- ► THM: any two h-initial N-algebras are equal
- ▶ THM: the \mathbb{N} -algebra $(\mathbb{N}, 0, S)$ is h-initial
- ► THM: any W-algebra (W A B, sup) is h-initial
- ▶ We skip 5.5–8

Higher Inductive Types

- Inductive type: constructors freely generate the objects
- Higher inductive type: some constructors generate objects of this type, called *points*, but others may generate *paths*, or even *higher paths*.
- Key Q: what is the equivalent of 'freely'? Induction?
- ▶ Example: the circle \mathbb{S}^1 (cf. $\mathbb{N}, \mathbf{2}$):
 - ightharpoonup a point constructor base : \mathbb{S}^1
 - ▶ a path constructor loop : base $=_{\mathbb{S}^1}$ base.
- ▶ Generation: takes the relevant operations into account
 - ▶ On the point level: none (the type has no apriori structure)
 - ➤ On the path level: groupoid structure (•, refl, ⁻¹)
 - Not: loop = refl_{base}, loop loop = refl_{base}

Higher Inductive Types

- ightharpoonup Example: the circle \mathbb{S}^1 :
 - ightharpoonup a point constructor base : \mathbb{S}^1
 - ▶ a path constructor loop : base $=_{\mathbb{S}^1}$ base.
- ▶ What is base $=_{\mathbb{S}^1}$ base? (should be \mathbb{Z})
- ▶ Later: a path constructor $merid: A \rightarrow (N =_{Susp(A)} S)$ generates higher paths in Susp(A) from paths in A
- ► Example: the 2-dimensional sphere S²:
 - ightharpoonup a point constructor base : \mathbb{S}^2
 - ▶ a 2-path constructor surf : $refl_{base} =_{base=base} refl_{base}$.
- ▶ We have surf $\neq refl_{refl_{base}}$. What is base $=_{\mathbb{S}^2}$ base? Book: there is an unexpected 3-path, cf. the Hopf fibration

Induction in HITs

- ▶ Induction in \mathbb{N} : to prove $\Pi x: \mathbb{N}$. Px, it suffices to have *base* in the fiber above 0, and *step* 'acting on the fibers above S'.
- ▶ By analogy, in \mathbb{S}^1 : to prove $\Pi x: \mathbb{S}^1$. Px, it suffices to have b in the fiber above base, and ℓ 'acting on the fiber(s) above loop'.
- Want means 'fiber(s) above loop : base = base'?
- ▶ **Not**: a path b = b in the fiber above P(base) (cf. $refl_{base}$)
- ▶ **But**: transport of *b* along loop plus a path loop_{*}(*b*) = *b*
- ▶ Recall transport $Px \rightarrow Py$, $P(base) \rightarrow P(base)$
- ▶ Example: torus as fibration $P \to \mathbb{S}^1$, Fig. 6.1,2
- ▶ Induction: $b: P(\mathsf{base})$ and $\ell: b =_{\mathsf{loop}}^P b$ define $f: \Pi x: \mathbb{S}^1. Px$ with $f(\mathsf{base}) =_{\ell} b$ and $\mathsf{apd}_f(\mathsf{loop}) = \ell$ (propositionally!)
- ► The last equality: a pragmatic choice (!)

Recursion in HITs

- ▶ Recursion: if $B: \mathcal{U}$, then b: B and $\ell: (b =_{\mathsf{loop}}^P b)$ define $f: \mathbb{S}^1 \to B$ with $f(\mathsf{base}) =_{\ell} b$ and $\mathsf{apd}_f(\mathsf{loop}) = \ell$
- ▶ Recall the following transport lemmas, with $P: A \rightarrow U$, $f: A \rightarrow B$, x, y: A, $p: x =_A y$:
 - ▶ $f(p) \equiv ap_f p : fx =_B fy$ (Lem. 2.2.1)
 - ▶ $p_* \equiv transport^P p : Px \rightarrow Py$ (Lem. 2.3.1)
 - if $g : \Pi x : A. Px$, then $apd_g p : p_*(gx) =_{Pv} gy$ (Lem. 2.3.4)
 - if $P \equiv \lambda x$: A. B, b: B, then $tpc_p^B b$: $(p_*b = b)$ (Lem. 2.3.5)
 - if $P \equiv \lambda x$: A. B, then $tpc_p^B(fx) \cdot ap_f p = apd_f p$ (Lem. 2.3.8)
- ▶ LEM: a: A and $p: a =_A a$ define a unique (!) $f: \mathbb{S}^1 \to A$ with $f(\mathsf{base}) =_\iota a$ and $ap_f(\mathsf{loop}) = p$
- ► COR: $(\mathbb{S}^1 \to A) \simeq \Sigma x : A. (x =_A x)$ (univ. prop. of the circle)

The Interval

- ▶ The *interval I* is the HIT generated by:
 - ightharpoonup a point constructor $0_I:I$
 - a point constructor 1_I: I
 - ▶ a path constructor $seg : 0_I =_I 1_I$.
- ▶ Recursion: the following data defines a unique $f: I \rightarrow B$
 - ▶ points $b_0 : B, b_1 : B,$ a path $s : b_0 =_B b_1$
- ▶ Induction: the following data defines a unique $f: \Pi x:I.Px$
 - ▶ points $b_0 : P0_I$, $b_1 : P1_I$, a path $s : b_0 =_{seg}^P b_1$
- ▶ *I* is contractible; *I* gives function extensionality by magic (!)

Properties of the Interval

- ▶ LEM: the interval / is contractible.
- ▶ Proof. Take 1_I as the center. By induction we prove $\Pi x:I$. Px for $Px \equiv (x =_I 1_I)$. Take $seg: P0_I$ and $refl_{1_I}: P1_I$. We also need an inhabitant of $seg=_{seg}^P refl_{1_I}$. The latter type is $seg_*(seg) = refl_{1_I}$. By Lemma 2.11.2 we have $seg_*(seg) = seg^{-1} \cdot seg$ (picture) and by Lemma 2.1.4 $refl_{1_I} = seg^{-1} \cdot seg$.
- ▶ LEM: the interval I gives function extensionality (!)
- ▶ Proof. Let $f, g: A \to B$ and $p: \Pi x: A$. $fx =_B gx$. For every x: A, define $\tilde{p}_x: I \to B$ by $\tilde{p}_x 0_I \equiv fx$, $\tilde{p}_x 1_I \equiv gx$, $\tilde{p}_x(seg) = p$. Define $q: I \to (A \to B)$ by $q: I = \lambda x: A$. $(\tilde{p}_x: I)$. Then $q: 0_I =_{\eta} f$ and $q: 1_I =_{\eta} g$ and so $q(seg): f =_{A \to B} g$.

More on the Circle

- ▶ LEM: the circle \mathbb{S}^1 is non-trivial: loop $\neq refl_{base}$.
- ▶ Proof. If loop = $refl_{base}$, then define for any x:A and p:x=x a function $f:\mathbb{S}^1\to A$ by $f(base)\equiv x$ and f(loop)=p. By functoriality of ap_f we get $p=refl_x$. So $\Pi x:A$. $\Pi p:(x=x)$. $(p=refl_x)$, which implies that A is a set (by path induction). Contradiction for $A=\mathcal{U}$, Example 3.1.9.
- ▶ LEM: the type $\Pi x:\mathbb{S}^1$. (x=x) has an element that is not equal to $\lambda x:\mathbb{S}^1$. $refl_x$.
- Proof. Define $f: \Pi x: \mathbb{S}^1$. (x = x) by induction taking $f(\mathsf{base}) \equiv \mathsf{loop}$ and $f(\mathsf{loop}) : \mathsf{loop}_*(\mathsf{loop}) = \mathsf{loop}$. By Lemma 2.11.2, with type family $\lambda x: \mathbb{S}^1$. (x = x), $\mathsf{loop}_*(\mathsf{loop}) = \mathsf{loop}^{-1} \cdot \mathsf{loop} \cdot \mathsf{loop}$, so $f(\mathsf{loop}) = \mathit{refl}_{\mathsf{loop}}$ is OK. By happly , the previous lemma implies $f \neq \lambda x: \mathbb{S}^1$. refl_x .
- ▶ COR: if $\mathbb{S}^1 = \mathcal{U}_n$, then \mathcal{U}_n is not a 1-type (?)

The 2-Sphere

- ▶ Recall: the 2-dimensional sphere S²:
 - ightharpoonup a point constructor base : \mathbb{S}^2
 - ▶ a 2-path constructor surf : $refl_{base} =_{base=base} refl_{base}$.
- ▶ Recursion: the following data defines a unique $f: \mathbb{S}^2 \to B$
 - ▶ a point b : B, a path $s : refl_b =_{b=B} b refl_b$
 - we get $f(base) \equiv b$, and $apap_f(surf) = s$ (!)
- ▶ Induction: the following data defines a unique $f: \Pi x: \mathbb{S}^2$. Px
 - ▶ a point b: P base, a path $s: refl_b =_{surf}^{P} refl_b ...$
 - ... and this gets complicated with trtr along a 2-path ...

Suspensions

- ▶ For any A : U we define a HIT Susp(A) by :
 - ▶ two point constructors N, S : Susp(A)
 - ▶ a path constructor merid : $A \rightarrow (N =_{Susp(A)} S)$
- ▶ NB: the path constructor generates higher paths in Susp(A)
- Recursion: the following data defines a unique f : Susp(A) → B
 - ▶ points n, s : B, a path function $m : A \rightarrow n =_B s$
- Induction: the following data defines a unique f: Πx:Susp(A). Px
 - ▶ points n: P(N), s: P(S), and $m: \Pi a: A.$ $(n =_{merid(a)}^{P} s)$
- ▶ LEM: $Susp(\mathbf{0}) \simeq \mathbf{2}$, $Susp(\mathbf{2}) \simeq \mathbb{S}^1$, $\mathbb{S}^{n+1} \simeq Susp(\mathbb{S}^n)$
- ▶ Proofs: easy, medium (uses 2.11.3), difficult
- ► LEM 2.11.3 implies: $tr^{\lambda x.(hx=x)}pq = h(p^{-1}) \cdot q \cdot p$

The torus

- ▶ The *torus* is the HIT *T*² defined by :
 - ightharpoonup a point $b: T^2$
 - two paths p, q : b = b
 - ▶ a 2-path $t: p \cdot q = q \cdot p$
- ▶ Intuition: put r = q and s = r in

- Very tricky induction principle (because of the 2-path)
- ► LEM: $T^2 \simeq \mathbb{S}^1 \times \mathbb{S}^1$

Truncation

- For every A : U we define the HIT ||A|| : U by:
 - ▶ a function $|_{-}|: A \rightarrow ||A||$
 - ▶ a path function $path : \Pi x, y : ||A|| \cdot (x =_{||A||} y)$
- ▶ Recursion: the following data defines a function $f : ||A|| \to B$ satisfying $f|a| \equiv ga$ and $ap_f(path(|a|, |a|')) = p(a, a')$:
 - ▶ a function $g: A \rightarrow B$ and a path function $p: \Pi x, y:B. (x =_B y)$
- ▶ LEM: ||2|| gives function extensionality
- ▶ Proof: let $f, g : A \rightarrow B$ and $p : f \sim g$. Define $p_x : \mathbf{2} \rightarrow \Sigma y : B$. $f_X =_B y$. Note that $\Sigma y : B$. $f_X =_B y$ is contractible. etc.

Homotopy *n*-levels

- Intuition: no interesting homotopy above dimension n
- Definition of homotopy *n*-levels:
 - $is(-2)type(A) \equiv isContr(A)$ (equivalent $A \simeq 1$)
 - $is(-1)type(A) \equiv \prod x, y:A. is(-2)type(x =_A y)$ (isProp(A))
 - $is(0)type(A) \equiv \Pi x, y:A. is(-1)type(x =_A y) (isSet(A))$
 - ► $is(n+1)type(A) \equiv \Pi x, y:A. is(n)type(x =_A y) \ (n \ge -2)$
- ▶ Idea: understanding a space through its (higher) path spaces
- \triangleright Later: *n*-truncation, trivializing homotopy above dimension *n*
- ▶ Later: *n*-connected, that is, *n*-truncation is contractible, means no interesting homotopy in or below dimension *n*
- ▶ \mathbb{S}^1 is not an 0-type, \mathbb{S}^{n+1} is not an *n*-type
- ▶ CONJ: \mathcal{U} is not an *n*-type for any *n*

Closure properties of homotopy *n*-levels

- ▶ LEM: if $p: X \to Y$ a retraction and X is an n-type, then Y is an n-type $(n \ge -2)$
- ▶ Proof: induction on $n \ge -2$. Base case easy. Assume OK for n and let $s: Y \to X$ with homotopy $\epsilon: p \circ s \sim 1$. Assume $\Pi x, x' : X$. $is(n)type(x =_X x')$, to prove $is(n)type(y =_Y y')$ for all y, y' : Y. Let y, y' : Y, then $sy =_X sy'$ is an n-type. By IH it suffices that $y =_Y y'$ is a retract of $sy =_X sy'$. Take ap_s and $t(q) \equiv \epsilon_y^{-1} \cdot p(q) \cdot \epsilon_{y'}$ and use naturality of ϵ (picture).
- ▶ COR: if $X \simeq Y$ and X is an n-type, then so is Y $(n \ge -2)$
- ▶ LEM: if X is an n-type, then X is also an (n+1)-type $(n \ge -2)$. So, the levels are cumulative.
- ▶ Proof: by induction on $n \ge -2$

More closure properties of homotopy *n*-levels

- ▶ LEM: if $f: X \to Y$ an embedding and Y is an n-type, then so is X ($n \ge -1$)
- ▶ Proof: $x =_X x' \simeq fx =_Y fx'$ for embedding f. NB $f: \mathbf{0} \to \mathbf{1}$
- ▶ LEM: for $A: \mathcal{U}, B: A \to \mathcal{U}$, if Ba is an n-type for every a: A, then ΠAB is an n-type $(n \ge -2)$
- ▶ LEM: for $A: \mathcal{U}, B: A \to \mathcal{U}$, if A is an n-type and Ba is an n-type for every a: A, then $\sum AB$ is an n-type, for all $n \ge -2$
- ▶ LEM: for $A : \mathcal{U}$, is(n)type(A) is a mere proposition $(n \ge -2)$
- ▶ DEF: n-type $_{\mathcal{U}} = \Sigma X$: \mathcal{U} . is(n)type(X), for all $n \ge -2$
- ▶ LEM: n-type $_{\mathcal{U}}$ is an (n+1)-type, for all $n \ge -2$
- ▶ Proofs: by induction on $n \ge -2$

Uniqueness of Identity Proofs

- Axiom UIP(X): for all x, y : X and $p, q : x =_X y$ we postulate p = q (NB $UIP(X) \equiv isSet(X)$)
- Axiom K(X): for all x : X and $p : x =_X x$ we postulate $p = refl_x$
- ▶ LEM: *K*(*X*) ≃ *UIP*(*X*)
- ▶ LEM: if $R: X \to X \to \mathcal{U}$ a reflexive mere relation implying $=_X$, then (1) isSet(X) and (2) $\Pi x, y:X.$ ($Rxy \simeq (x =_X y)$)
- ▶ Proof: note that (1) and (2) are equivalent; prove, e.g., K(X)
- ▶ COR: if $\neg\neg(x =_X y) \rightarrow (x =_X y)$, then X is a set
- ▶ COR: if $(x = x y) \lor \neg (x = x y)$, then X is a set
- ▶ COR: \mathbb{N} is a set (prove by induction that $=_{\mathbb{N}}$ is decidable)

n-Truncations

- Idea: n-truncation removes all interesting homotopy above dimension n
- ▶ DEF: for every *A* : *U*, define:
 - ▶ (-2)-truncation: $||A||_{-2} \equiv 1$ ('contractible' truncation)
 - ▶ (-1)-truncation: $||A||_{-1} \equiv ||A||$ (propositional truncation)
 - ▶ (0)-truncation: $\|A\|_0$ is defined as a HIT with two constructors: a function $|-|_0:A\to\|A\|_0$, and a path function $2path:\Pi x,y:\|A\|_0.\Pi p,q:(x=_{\|A\|_0}y).(p=_{x=_{\|A\|_0}y}q)$
- ▶ The general definition in the book uses \mathbb{S}^{n+1} (complicated)
- ▶ LEM: for all $n \ge -2$ we have that $||A||_n$ is an n-type
- Induction, recursion, properties ...

n-Connectedness

- Idea: n-connectness expresses that there is no interesting homotopy in and below dimension n
- ▶ DEF: for types $A : \mathcal{U}$, $conn_n(A) \equiv isContr(\|A\|_n)$
- ▶ DEF: function $f: A \rightarrow B$ is n-connected, if for any b: B, the fiber of f in b is connected, $conn_n(fib_f(b))$
- ▶ DEF: function $f: A \rightarrow B$ is n-truncated, if for any b: B, the fiber of f in b is n-truncated, $is(n)type(fib_f(b))$
- ► LEM: any function factors as an *n*-connected function followed by an *n*-truncated function (generalized epi-mono-decomposition)