
SEMANTICS OF HIGHER INDUCTIVE TYPES

PETER LEFANU LUMSDAINE AND MICHAEL SHULMAN

In this note we will explain a certain type of categorical semantics for a certain
class of higher inductive types. Specifically, we will consider higher inductive types
which have only 0-constructors and 1-constructors, and for which the domains
and codomains of the 1-constructors are strictly natural. The former restriction
is merely for convenience; there seems no obstacle to generalizing the methods
presented herein to higher constructors. The latter is more basic, although a gen-
eralization to “coherently natural” transformations might perhaps be possible.

We will define what it means to have semantics for such a higher inductive defini-
tion in any category with “strictly Reedy-functorial path objects”. This assumption
simplifies the definitions, and additionally gives a natural way to make sense out
of judgmental computation rules for 1-constructors as well as 0-constructors. How-
ever, it should not be necessary.

Finally, we will also show that such semantics do exist in a reasonably wide class
of model categories. Cisinski and Gepner–Kock have shown that any (∞, 1)-topos
can be presented by some model category in this class, while Lumsdaine–Warren
have shown that any model category in this class admits a strictly coherent model
of type theory. Thus, higher inductive types exist in the internal type theory of
any (∞, 1)-topos.

1. An explicit simple case

The general construction involves a lot of category-theoretic technology, so in
this introductory section we explain a very simple case more explicitly. Consider
the “standard” set-theoretic model. This is not homotopical, but higher inductive
types (at least with 0- and 1-constructors) are still interesting and—surprisingly—
nontrivial. Not only do they include quotient types, but they also include free
algebras for arbitrary (infinitary) algebraic theories, which are known to be impos-
sible to construct in ZF. Higher inductive sets allow us to define a set inductively
and quotient it by an equivalence relation at the same time.

Concretely, the basic idea is to define not just the higher inductive set W gener-
ated by some list of constructors, but to define, for any set X, the higher inductive
set WX generated by those constructors together with an additional constructor
X → WX . Categorically, this means that rather than merely constructing an ini-
tial object in some category of algebras, we will construct a left adjoint to the
forgetful functor from the category of algebras to Set—or equivalently, a monad on
Set inducing the given category of algebras. The initial algebra we are interested
in is the image of the initial set ∅ under this left adjoint; the rest of the monad
makes possible an inductive argument over the list of constructors.

A little more precisely, in this section we will sketch a proof of the following
informally stated theorem.
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Theorem 1.1. For any suitable list of 0-constructors and 1-constructors defining
a higher inductive type W , there is a monad T on Set such that:

• For any Y , the data required by the eliminator to specify a function WX → Y ,
where WX is the higher inductive type generated by the given constructors
together with X → WX , is precisely a T -algebra structure on Y together with
a function X → Y .

Therefore, we can take WX to be TX, and in particular W to be T∅.

We should think of the elements of TX as some sort of “trees” or “formal expres-
sions”, whose nodes or generators come from X, whose branching type is specified
by the 0-constructors, but which are quotiented by some equivalence relation gen-
erated by the 1-constructors.

We will prove Theorem 1.1 by induction on the number of constructors. If
there are no constructors, then we can take T to be the identity monad. Thus,
assume that the monad Tn exists, with unit ηX : X → TnX and multiplication
µX : T 2

nX → TnX; we will construct Tn+1.
Suppose first that the (n+ 1)st constructor is a 0-constructor, whose arguments

are specified by an endofunctor F : Set → Set. Generally F is some sort of
polynomial functor, or a finite product of such, but on the semantic side all we
need of it is that it is accessible, meaning that it preserves colimits of sufficiently
long transfinite sequences

X0 → X1 → X2 → · · · → Xω → Xω+1 → · · · .

In fact, for simplicity let us assume that it preserves colimits of countable sequences.
We will also suppose that Tn has the same property (this will follow inductively by
the construction).

Now adding an extra 0-constructor means that the input data to the eliminator
at Y is augmented by a function FY → Y . Thus, in order for Tn+1 to have
the desired property, to give a Tn+1-algebra structure on Y must be equivalent to
giving a Tn-algebra structure together with a function FY → Y . This is equivalent
to saying that Tn+1X must be the free object generated by X in the category of
Tn-algebras Y equipped with functions FY → Y .

We will define by induction a diagram as follows:

TnX0
Tx0 //

t0

��

TnX1
Tx1 //

t1

��

TnX2
Tx2 //

t2

��

· · ·

X0
x0 // X1

x1 // X2
x2 // X3

x3 // · · ·

FX0
Fx0

//

f0

OO

FX1
Fx1

//

f1

OO

FX2
Fx2

//

f2

OO

· · ·

such that ti ◦ ηXi = xi for each i. (In fact, we will use this as a definition of xi.)
Let X0 = X, and let X1 = TnX + FX, with t0 and f0 the inclusions. At each
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subsequent stage, we let Xi+2 be the coequalizer of the two composites

TnXi

Tnη

##GGGGGGGGG

T 2
nXi

µ
;;wwwwwwwww

T 2
nXi Tnti

// TnXi+1
// (TnXi+1 + FXi+1)

with ti+1 and fi+1 being the components of the quotient map.
Let Tn+1X := X∞ = colim(Xi) be the colimit of the sequence of xi’s. Since F

and Tn preserve these sequential colimits, we have an induced map

F (X∞) = F (colim(Xi)) ∼= colim(FXi) −→ colim(Xi) = X∞

and likewise Tn(X∞) → X∞. By construction, we can show that this morphism
Tn(X∞)→ X∞ makes X∞ into a Tn-algebra, and verify that it is freely generated
by X.

Intuitively, what is happening is this. Starting from X = X0, we first generate
all equivalence classes of trees on X specified by the first n constructors (this is
TnX), as well as all 1-stage trees on X with a single branching node specified by
the (n+ 1)st constructor (this is FX). Together these form X1.

Next, we do the same thing to X1 instead of X. This gets us Tn-trees that can
contain subnodes labeled by F , and similarly F -trees that can contain subnodes
labeled by F or by Tn-trees. However, it also gives us Tn-trees containing subnodes
labeled by Tn-trees, which duplicate some of the trees we already had in X1. The
coequalizer gets rid of these by forcing them to be equal to the result of “removing
the parentheses”.

Finally, we repeat this over and over, gradually allowing deeper and deeper
nestings of F -labeled trees inside of our Tn-labeled trees, until in the limit the
sequence converges.

As the simplest possible example, note that when n = 0, so that T0 is the identity
monad, then the coequalizer does nothing, so that we have simply

X0 = X

X1 = X + F (X0)

X2 = X + F (X1)

X3 = X + F (X2)

...

which is the usual transfinite construction of the free monad on an endofunctor, i.e.
the set of F -labeled trees.

Now suppose instead that the (n + 1)st constructor is a 1-constructor. In this
case, we again have an (accessible) endofunctor F : Set → Set, but also two
natural transformations u, v : F → Tn, representing the domain and codomain of
the equality (or path) we are intending to glue in. Syntactically, this makes sense,
since each of u and v is an expression involving the arguments to this constructor
(hence their domain is F ) and possibly the previous constructors (which exist as
operations on any set of the form TnX).

In this case, the additional input data required for the eliminator at Y is the
information that the composites FY ⇒ TnY → Y are equal. Thus, in order for
Tn+1 to be as desired, to give a Tn+1-algebra structure on Y must be equivalent to
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giving a Tn-algebra structure with this property. Hence, Tn+1X must be the free
object generated by X in the category of Tn-algebras with this property.

We now perform a closely analogous construction. We define a sequence

TnX0
Tx0 //

t0

��

TnX1
Tx1 //

t1

��

TnX2
Tx2 //

t2

��

· · ·

X0
x0 // X1

x1 // X2
x2 // X3

x3 // · · ·

such that ti ◦ ηXi
= xi for each i, and moreover ti ◦ uXi

= ti ◦ vXi
. We let X0 = X,

and let X1 be the coequalizer of uX , vX : FX ⇒ TnX, with t0 the quotient map.
At each subsequent stage, we let Xi+2 be the colimit of the diagram

TnXi

Tnη

##GGGGGGGGG FXi+1

u

��

v

��

T 2
nXi

µ
;;wwwwwwwww

T 2
nXi

Tnti // TnXi+1

with ti+1 the obvious induced map. We let Tn+1X := X∞ = colim(Xi) as before,
and show that this has the right universal property.

Intuitively, what is happening in this case is that starting from X, we generate
all the Tn-labeled trees, then impose the equivalence relation specified by F , u, and
v. This gives us X1, the coequalizer of u, v : FX ⇒ TnX.

However, it is no longer obvious that the quotient is a Tn-algebra. Thus, we have
to once again freely generate the Tn-labeled trees on X1, impose the equivalence
relation specified by F , u, and v, and also force the new Tn-algebra structure
to agree with what we did have coming from X1. Then we repeat this until it
converges.

We now present in more detail a construction which generalizes the above sketch
in the following ways.

• It works in a general homotopical context, rather than Set, thereby producing
models of higher inductive types in intensional type theory.

• In particular, this necessitates ensuring that all objects are fibrant and that
enough maps are fibrations.

• It allows parameters and indices in the higher inductive definitions.
• It allows the arguments of each constructor to depend on previous constructors

in some way. It is not clear whether this is useful, or whether there is a good
way to represent the appropriate type of dependency syntactically.

2. A reminder about indexed categories

Recall that a C -indexed category is a pseudofunctor D : C op → Cat . Thus it
consists of for each Γ ∈ C , a category DΓ, and restriction or “pullback” functors
f∗ : DΓ → DΓ′ . The canonical example is DΓ = C /Γ, if C has pullbacks. We will
generally abuse notation by denoting this C -indexed category also by C .

More generally, for any ∆ ∈ C we have a C -indexed category “C /∆”, defined by
(C /∆)Γ = C /(∆ × Γ). Similarly, if ∆ ∈ C /Γ, we have a (C /Γ)-indexed category

“C /∆” defined by (C /∆)f :Γ′→Γ = C /f∗∆.
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A C -indexed functor is a pseudonatural transformation, consisting of functors
FΓ : DΓ → E Γ commuting up to specified isomorphism with pullback. And a C -
indexed natural transformation is a modification, consisting of compatible natural
transformations FΓ → GΓ.

We say that a C -indexed category D is fiberwise cocomplete if each category
DΓ is cocomplete and each functor f∗ preserves colimits. Similarly, it is fiberwise
locally presentable if each DΓ is locally presentable.

3. A reminder about free constructions

If T is an endofunctor of a category C , then an algebraically-free monad on T
is a monad P whose category of monad-algebras is equivalent, over C , to the cate-
gory of endofunctor-algebras for T . It follows that P is also the free monad on T , in
the sense of a left adjoint from the category of monads to the category of endofunc-
tors. When C is locally presentable and T is accessible, then the algebraically-free
monad always exists; it can be constructed by a certain transfinite colimit (see §1).

Similarly, if {Ti} is a small diagram in the category of monads on C , then
an algebraic colimit of it is a monad P whose category of monad-algebras is
equivalent, over C , to the category of objects equipped with compatible algebra
structures for each Ti. It follows that P is also a colimit of {Ti} in the category of
monads. When C is locally presentable and each Ti is accessible, then the algebraic
colimit always exists, and can also be obtained as a transfinite colimit.

We will invoke these general facts in order to avoid having to give explicit trans-
finite constructions as we did in §1.

4. What we need from a category

Let C be a category equipped with a class of maps called fibrations closed under
pullback. We denote a fibration by A� Γ. We assume that C satisfies the requisite
hypotheses so that we can apply some coherence theorem to it and obtain a model of
dependent type theory in which dependent types are represented by the fibrations.

The primary other thing we need from C is a good weak factorization system,
in order to model identity types. We say that a morphism is an acyclic cofibration
if it has the left lifting property with respect to all fibrations. We require that

• Every morphism of C factors as an acyclic cofibration followed by a fibration.
• The pullback of an acyclic cofibration along a fibration is an acyclic cofibration.
• The pullback of an acyclic cofibration between fibrations along any morphism

into the base of the fibrations is an acyclic cofibration.

These assumptions are satisfied in any right proper model category whose cofibra-
tions are the monomorphisms, such as simplicial sets.

The identity type of a dependent type A � Γ is then given by factoring the
diagonal A→ A×Γ A as an acyclic cofibration followed by a path object fibration
PΓA � A ×Γ A. The actual such factorization depends on the details of how
the coherence theorem is implemented. Typically it is obtained by performing a
factorization once in a universal case and then pulling back, so as to obtain strict
preservation under substitution.

We will assume furthermore that our path objects are chosen functorially. By
this we mean that there is a C -indexed functor P : C → C which sends A ∈ C /Γ to
PΓA, as above, and indexed natural transformations IdC → P ⇒ IdC factoring the
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diagonal such that if A � Γ is a fibration, the induced factorization A → PΓA →
A×Γ A consists of an acyclic cofibration and a fibration.

This implies that in the internal type theory of C , there is a term map giving a
judgmentally functorial action on identity types. (Because P is an indexed functor,
map is stable under pullback, and thus visible to the internal type theory.) Since
map preserves reflexivity judgmentally (this is the naturality of IdC → P ), it is
propositionally equal to any such “map” term defined using the eliminator J, but
there seems no reason for it to be judgmentally equal to any of them.

We will also assume that for any fibration B � A over Γ, the induced map to
the pullback

PΓB

## ""

  

•
_� //

��

B ×Γ B

��

PΓA // A×Γ A

is a fibration. In other words, “P takes fibrations to Reedy fibrations.” In par-
ticular, this implies that P preserves fibrations, i.e. the map PΓB → PΓA is a
fibration.

The stronger condition means that we may use PΓB to model “dependent iden-
tity types”:

(4.1) (x, y : A), (p : x = y), (z : B(x)), (w : B(y)) ` (z =B
p y) type

Since B → PΓB is still an acyclic cofibration, these dependent identity types satisfy
the rules for an inductively defined family:

Inductive dep_eq {A} {B:A->Type} :

forall (x y:A), (x=y) -> B x -> B y -> Type :=

| dep_refl : forall (x:A) (z:B a), dep_eq x x (refl x) z z.

This is provably equivalent to the more usual type transpz = w, but there seems no
reason for them to be identical.

Moreover, the functoriality of P on sections of fibrations gives a specified term
apd in the type theory, valued in the dependent identity types. Again, since this
apd preserves reflexivity, it is propositionally equal to any “apd” defined using J,
but there seems no reason for it to be judgmentally the same.

Neither of these extra assumptions on path objects is strictly necessary to define
what it means to have higher inductive types. In their absence, rather than defining
categories of algebras AlgI as we will do in §5, we must define separately instead
what it means to be an algebra, an algebra fibration, and an algebra section of
an algebra fibration. We should probably do this eventually, in order to make
completely precise the sense in which our “semantics” are the semantics of some
syntax in type theory, since the syntactic categories of type theory will generally
not satisfy these additional assumptions. But we leave that to the future.

Moreover, in order to construct higher inductive types in §6, we will need these
extra assumptions, which do in fact hold in our examples. In fact, they hold in any
simplicial model category, where PΓA is the simplicial path object of A in C /Γ,
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defined as the pullback:

PΓA //

��

AI

��

Γ // ΓI.

where I denotes the simplicial interval (the 1-simplex) and XI the cotensor. That
this gives a path object was observed by Warren, and it is obviously functorial.
The Reedy-fibration property follows from the fact that C /Γ is a simplicial model
category (also proven by Warren), together with the facts that B � A is a fibration
and the inclusion of the endpoints into I is a cofibration of simplicial sets.

By a homotopy between morphisms f, g : A → B over Γ we will mean a lifting
of (f, g) : A → B ×Γ B to PΓB. Functoriality of path objects means that if we
have such a homotopy H and a morphism k : B → C, then we have a composite
homotopy (Pk)H between kf and kg, and moreover (P`)(Pk)H = (P (`k))H. A
homotopy is constant if it factors through B → PΓB; such a factorization must be
unique since B → PΓB is split monic.

5. Higher inductive types

A higher inductive definition is specified by a list of constructors, which (for the
purposes of this note) may be either 0-constructors or 1-constructors. We will not
get into the details of syntax here; instead we will merely say what any syntax must
supply semantically in order for the semantics to work.

Let Γ be a fibrant object of C representing the parameters, and let ∆ � Γ be a
fibration, representing the indices. The semantics of a higher inductive definition I
with parameters Γ and indices ∆ will be determined by a (C /Γ)-indexed category
AlgI , whose objects we call I-algebras, equipped with an indexed functor UI :
AlgI → C /∆.

Knowing this, we can define inductively what we require of the syntax. If In
denotes the higher inductive definition specified by the first n constructors, then:

(i) If the (n+1)st constructor is a 0-constructor, the syntax must yield a fibration
Θ � Γ, a (C /Γ)-indexed functor F : Algn → C /Θ, and a morphism s : Θ→
∆ over Γ. Usually, F is a dependent polynomial that knows nothing about
In, i.e. of the form

(5.1) Algn
Un // C /∆

p∗
// C /Ψ

q∗ // C /Θ

for some diagram

∆ oo
p

Ψ
q
// // Θ.

in C /Γ. It might also be a finite product of such functors. However, allow-
ing the domain of F to be Algn in theory may allow the arguments of one
constructor to refer to the previous constructors.

(ii) If the (n + 1)st constructor is a 1-constructor, the syntax must yield Θ and
F as above, but also two morphisms s, t : Θ → ∆ over Γ, a homotopy
H : s ∼ t, and two (C /Γ)-indexed natural transformations u : s!F → Un and
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v : t!F → Un, with components

FX
uX //

vX
//

��

X

��

Θ
s //

t
// ∆.

The naturality of u, v is the stickiest point in practice. It is difficult to
ensure syntactically, and moreover a number of examples that we would like
to include are merely “coherently” natural rather than strictly so. For now,
however, we restrict to the strictly natural case, which still includes a large
number of useful examples.

We can now define each Algn, beginning the induction with Alg0 = C /∆. If
Algn is given, along with a 0-constructor as above, then an In+1-algebra consists
of an In-algebra X together with a morphism c : FX → X over s, i.e. such that
the following square commutes:

(5.2)

FX
c //

��

X

��

Θ s
// ∆.

An In+1-algebra morphism is, of course, an In-algebra morphism which commutes
with the c’s.

On the other hand, if we have a 1-constructor as above, then an In+1-algebra
consists of an In-algebra together with a homotopy d : uX ∼ vX over Γ (that is, a
map FX → PΓX), which also lies over H : s ∼ t in the obvious sense (using func-
toriality of path objects). An In+1-algebra morphism is an In-algebra morphism
which commutes with the d’s (using again the functoriality of path objects).

Both definitions extend to (C /Γ)-indexed categories in an obvious way, since all
the assumed structure is indexed. Indeed, until further notice, all categories, func-
tors, and transformations we consider will be (C /Γ)-indexed whether we mention
it or not.

Definition 5.3. A higher inductive type specified by a signature I as above
consists of

(i) a fibration W � ∆,
(ii) which is an I-algebra, such that

(iii) for any morphism f : Φ→ Γ with Φ fibrant, any I-algebra fibrationB � f∗W
has an I-algebra section.

It should hopefully be evident in what sense asking for W to be an I-algebra
gives it the desired constructors. Regarding the eliminator, the structure required
on B � W relating to the 0-constructors is as usual, whereas for a 1-constructor
it amounts to giving an inhabitant of the dependent identity type (4.1) over the
1-constructor path in W .

Asking that the eliminator give an I-algebra section gives a judgmental compu-
tation rule for the 0-constructors, as usual, while for the 1-constructors it also gives
a judgmental computation rule, using the specified dependent identity types and
the specified term apd.
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Finally, the “weak stability” of this universal property under pullback along maps
of parameters f : Φ → Γ is necessary for substitution in type theory to hold. The
coherence theorems (Voevodsky, Lumsdaine–Warren) ensure that the eliminator
can then be made strictly functorial under substitution.

The way that this works is as follows. Suppose Ũ � U is a specified fibration
which we regard as a “universe of types”. It might be a global universe or a local

universe. We say that a fibration is U -small if it is a pullback of Ũ � U along some
unspecified map. By a U -named fibration over X we mean simply a map X → U ,

regarded as naming the corresponding pullback of Ũ . Thus, U -named fibrations
form a set and are strictly functorial.

Lemma 5.4. Suppose that each functor F appearing in the definition of I preserves
fibrations. Then the functor

(C /Γ)op −→ Set

(f : Φ→ Γ) 7→ {U -named I-algebra fibrations over f∗W}

is representable, and the representing object is a fibration gn : Γn � Γ.

Note that the assumption holds for dependent polynomial functors (5.1).

Proof. We define Γn by induction on n. Let Γ0 be the dependent product of W ×U
along the composite fibration

W � ∆ � Γ.

This is a fibration since dependent product along fibrations preserves fibrations. A
morphism Φ → Γ0 is then equivalent to a morphism f : Φ → Γ together with a
U -named fibration over f∗W , as desired.

Now suppose gn : Γn � Γ is defined and represents U -named In-algebra fi-
brations over W , with a universal such fibration Bn � g∗nW . If the (n + 1)st

constructor is a 0-constructor, specified by Θ, F , and s as above, then since g∗nW
is an In+1-algebra, we have a morphism cn+1 : Fg∗nW → g∗nW . Moreover, since F
preserves fibrations, we have a fibration FBn � Fg∗nW . Now pull (cn+1)∗Bn back
along the fibration FBn � Fg∗nW , and then take the dependent product along the
composite fibration

(5.5) FBn � Fg∗nW � g∗nΘ � Γn.

Call the result Γn+1. Since local exponentials and dependent products preserve
fibrations, we have a fibration Γn+1 � Γn, and it is straightforward to check that
Γn+1 has the right universal property.

Next, suppose the (n + 1)st constructor is a 1-constructor, specified by data
as above. Since g∗nW is an In+1-algebra, we have a homotopy dn+1 : Fg∗nW →
PΓn(g∗nW ) between ug∗nW and vg∗nW . Let Q be the pullback

Q //

��

_� Bn ×Γn Bn

��

PΓn(g∗nW ) // g∗nW ×Γn g∗nW.

Then dn+1 together with uBn and vBn induce a map d′ : FBn → Q. By the
assumption that path objects take fibrations to Reedy fibrations, we have a fibration
PΓnBn � Q. Now pull PΓnBn back to FBn along d′, and then take the dependent
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product along (5.5). We again obtain a fibration Γn+1 � Γn, which has the correct
universal property. �

We then obtain coherence for the eliminator as follows. By the preceeding lemma,
we have a universal U -named I-algebra fibration B � g∗W . By Definition 5.3(iii)
applied to g, this has an I-algebra section. Therefore, by pullback we obtain a
section of any U -named I-algebra fibration B � f∗W , which is strictly functorial.

Corollary 5.6. If each functor F preserves fibrations, then it suffices to assume
Definition 5.3(iii) when f is a fibration.

Proof. By the above argument, it suffices to perform the eliminator when f is the
universal map gn : Γn � Γ defined for some U (in a global universe model) or
class of U ’s (in a local one). (If we only wanted to derive (iii) as stated, it would

suffice to take Ũ � U to be B � f∗W itself.) But by Lemma 5.4, any such gn is
a fibration. �

6. Constructing HITs

Having defined what it means for higher inductive types to exist, we now describe
one class of models in which we can construct them. We suppose that C is a locally
presentable, locally cartesian closed, right proper, cofibrantly generated, simplicial
model category whose cofibrations are the monomorphisms. For instance, simplicial
sets are such a model category. More generally, Cisinski and Gepner–Kock have
shown that any (∞, 1)-topos can be presented by a model category of this sort.

We define path objects PΓA using cotensors with I, as in §4. Note that cotensor-
ing with I has a left adjoint given by tensoring with I, so that a homotopy between
morphisms f, g : A→ B can equally be regarded as a morphism A⊗ I→ B.

Local cartesian closure implies that pullbacks preserve colimits, so that C is
fiberwise cocomplete regarded as a C -indexed category, and likewise for all of its
slices.

Suppose further that each indexed functor F is indexed-accessible. By this we
mean that for sufficiently large κ, it preserves κ-filtered colimits in each fiber cate-
gory, with κ independent of the fiber. This is the case for a dependent polynomial
functor (4.1), since the rank κ depends only on the size of the fibers of Ψ � Θ,
which do not increase under pullback.

Lemma 6.1. For every n, the following hold.

(i) The (C /Γ)-indexed category Algn is fiberwise cocomplete and fiberwise locally
presentable.

(ii) The pullback functors of Algn have right adjoints, which commute with the
forgetful functors Un : Algn → C /∆.

(iii) The forgetful functor Algn+1 → Algn is indexed-monadic with an indexed-
accessible monad.

Proof. Beginning with Alg0 = C /∆, the first two statements hold since C is locally
presentable and locally cartesian closed. Thus, suppose inductively that they hold
for Algn. We will show (iii), and then deduce (i) and (ii).

If the (n + 1)st constructor is a 0-constructor specified by Θ, F , and s as in
§5, then consider the indexed-accessible functor s!F : Algn → C /∆. By (iii)
inductively, the forgetful functor Un : Algn → C /∆ has an indexed and indexed-
accessible left adjoint, say Ln. Then Lns!F is an indexed endofunctor of Algn,
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and an endofunctor-algebra for it is precisely an object of Algn equipped with the
structure (5.2), hence an object of Algn+1.

In each fiber, let Tn+1 denote the algebraically-free monad generated by Lns!F ,
which exists since Lns!F is accessible and Algn is locally presentable. It is con-
structed using a transfinite colimit, and is accessible. Moreover, the construction
of Tn+1 is preserved by pullback: pullback preserves colimits as Algn is fiberwise
cocomplete, and the length of the transfinite sequences depends only on the ranks
κ, which are uniform in the parameters since Lns!F is indexed-accessible. Thus
Tn+1 is an indexed-accessible indexed monad, and its monad-algebras are the same
as endofunctor-algebras for Lns!F . This shows (iii) in the case when the (n+ 1)st

constructor is a 0-constructor.
Now suppose instead the (n + 1)st constructor is a 1-constructor, specified by

Θ, F , s, t, H, u, and v as in §5. Let Ln be the left adjoint of Un, as above; then
by adjunction u and v correspond to natural transformations Lns!F → IdAlgn

and
Lnt!F → IdAlgn

.

For any X ∈ Algn, the composites FX → Θ
s−→ ∆ and FX → Θ

t−→ ∆ and
the homotopy H : s ∼ t yield a morphism FX ⊗ I → ∆. Together these form
an indexed-accessible functor F ⊗ I : Algn → C /∆, which comes with two natural
transformations from s!F and t!F respectively. Moreover, to extend X ∈ Algn to an
object ofAlgn+1 is equivalent to giving an extension of [uX , vX ] : s!FX+t!FX → X
along the map s!FX + t!FX → FX ⊗ I.

We have a diagram as shown on the left below in the category of indexed-
accessible endofunctors of Algn.

Lns!F + Lnt!F
[u,v]
//

��

IdAlgn

Ln(F ⊗ I)

Lns!F + Lnt!F
[u,v]
//

��

IdAlgn

Ln(F ⊗ I)

Since IdAlgn
is a monad, if we generate algebraically-free monads from the endofunc-

tors on the left, we have an induced diagram as above on the right, in the category
of indexed-accessible monads on Algn. Let Tn+1 be the algebraic monad-pushout.
Since the free constructions and monad colimits are all performed by transfinite col-
imit constructions and all the functors are indexed-accessible, Tn+1 is an indexed
monad. Moreover, a Tn+1-algebra is, by the universal property of algebraically-free
monads and the adjunction Ln a Un, precisely an object of Algn+1. This shows (iii)
when the (n+ 1)st constructor is a 1-constructor; we now move on to (i) and (ii).

The category of algebras for an accessible monad on a locally presentable cate-
gory is always locally presentable. Its colimits are constructed using a transfinite
iteration of the monad and colimits in the base category. Thus, since these are
all preserved by pullback and Tn+1 is an indexed monad, it follows that Algn+1 is
fiberwise cocomplete and fiberwise locally presentable, i.e. (i) holds.

Finally, since each pullback functor of Algn is a strong monad morphism relative
to the fiberwise parts of Tn+1, it follows by doctrinal adjunction that their right
adjoints (which exist by hypothesis) are lax monad morphisms. Hence, they induce
functors between the categories of algebras (namely, the fibers of Algn+1), which
are right adjoint to the pullback functors. This shows (ii). �
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In particular, the forgetful functor Un : Algn → C /∆ is a composite of monadic
functors. The composite of monadic functors may not be monadic, and we do not
know whether these are in general. However, in the case when the arguments of
each constructor are independent of the other constructors, it is true.

Lemma 6.2. If each F : Algn → C /∆ factors through Un : Algn → C /∆ via an
indexed-accessible functor F ′ : C /∆→ C /∆, then each Un is indexed-monadic.

Proof. Assume by induction that Un is monadic, with monad T̂n on C /∆. Suppose
first that the (n + 1)st constructor is a 0-constructor. Then since F = F ′Un, an

object of Algn+1 is just an object of Algn (that is, a T̂n-monad-algebra) which also

has an F ′-endofunctor-algebra structure. Thus, if we let F ′ be the algebraically-free

monad on F ′, then we can take T̂n+1 to be the algebraic monad-coproduct of T̂n
and F ′.

In the 1-constructor case, we have two transformations u, v : F = F ′Un ⇒ Un.
But by the mate correspondence, these are equivalent to a pair of transformations

F ′ ⇒ UnLn = T̂n. Now an object of Algn+1 consists of an object of Algn (that is,

a T̂n-monad-algebra) together with a homotopy between the two composites

F ′X
u //

v
// T̂nX

// X

which restricts to H in ∆. Similarly to before, the homotopy H makes F ′ ⊗ I into
an endofunctor of C /∆, and we have the left-hand diagram below in the category
of endofunctors on C /∆.

F ′ + F ′ //

��

T̂n

F ′ ⊗ I

F ′ + F ′ //

��

T̂n

F ′ ⊗ I.

Thus, we can let T̂n+1 be the algebraic monad-pushout of the right-hand diagram
above in the category of monads on C /∆. �

Of course, we would now like to take our higher inductive type (with n construc-
tors) to be the initial object of Algn. However, this object may not be a fibration
over ∆. Thus, we need to fibrantly replace it in a controlled way.

Henceforth, we drop our abuse of notation that all categories are implicitly
(C /Γ)-indexed. Thus, Algn now denotes what was previously the fiber of Algn
over 1Γ, and so on.

Let J be the set of generating acyclic cofibrations in C /∆ (this is the set of
all morphisms in C /∆ whose underlying morphism in C is a generating acyclic
cofibration there). By Garner’s small object argument, there is a monad R on
C /∆ such that every fibrant object (that is, every fibration over ∆) admits an
R-algebra structure.

In fact, an R-algebra structure is precisely a choice of all possible lifts against
maps in J . More generally, there is a codomain-preserving monad R on the arrow
category of C /∆, whose algebras are morphisms equipped with a choice of all

possible lifts against J . Let AlgRn denote the (unindexed) category of In-algebras
equipped with an R-algebra structure on their underlying object in C /∆, and
morphisms of In-algebras that are also R-algebra morphisms.
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Lemma 6.3. The forgetful functor AlgRn → Algn is (unindexed) monadic, and in
particular has a left adjoint Rn.

Proof. Consider the set of maps Ln(J ) in Algn. Since Algn is locally presentable,
Garner’s argument applies to this set of maps to construct a similar monad Rn on
Algn. Moreover, by adjunction, an Rn-algebra structure on X is just an R-algebra
structure on UnX. �

We note that in the special case of Lemma 6.2, AlgRn is also monadic over C /∆.

The monad is simply the algebraic monad-coproduct of T̂n and R.
Finally, we can define W to be the initial object of AlgRn . By construction, W is

clearly a fibration over ∆ with the structure of an object of Algn. Thus, it remains
to show the dependent elimination property.

Lemma 6.4. Any morphism B � W in Algn which is a fibration in C has a
section in Algn.

Proof. Since B � W is a fibration, we can give it an R-algebra structure. But W
also has a given R-algebra structure, which is to say that W → 1 has an R-algebra
structure. Garner has shown that R-algebras have a natural composition law: if f
and g are R-algebras, then gf has a canonical R-algebra structure such that the
commutative square

f
//

gf
��

g
��

is a morphism of R-algebras. Therefore, the object B has an R-algebra structure
such that the morphism B �W becomes a morphism of R-algebras. Since it is by
assumption a morphism of Algn, this means that it becomes a morphism of AlgRn .

But W is the initial object of AlgRn , so any morphism in AlgRn with codomain W
must have a section. This section is, of course, also a section in Algn. �

What’s left of Definition 5.3(iii) is the weak stability of this universal property
under pullback along maps into Γ. If R were an indexed monad, we would be done,
but unfortunately it is not. Fortunately, however, Corollary 5.6 implies that it is
sufficient to consider weak stability under pullback along fibrations, and in this case
we can use dependent products to solve our problem.

For a morphism f : Φ→ Γ, regarded as an object of C /Γ, we will write AlgΦ
n for

the corresponding fiber category of the indexed category Algn, leaving the structure
morphism f implicit.

Lemma 6.5. If f : Φ � Γ is a fibration, then any morphism B � f∗W in AlgΦ
n

which is a fibration in C has a section in AlgΦ
n .

Proof. By Lemma 6.1, f∗ has a right adjoint which lifts to Algn; denote it by f∗.
Moreover, since f∗ acts on underlying objects by dependent product in C , and f is
a fibration, f∗ preserves fibrations. Therefore, f∗B � f∗f

∗W is a fibration which
is also a morphism in AlgΓ

n. Pulling it back along the unit map W → f∗f
∗W , we

obtain the hypotheses of Lemma 6.4, and hence a lift of the unit to a map W → f∗B
in AlgΓ

n. By adjointness, this yields a section of B � f∗W in AlgΦ
n . �

This completes the proof of the following.
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Theorem 6.6. Let C be a locally presentable, locally cartesian closed, right proper,
cofibrantly generated, simplicial model category whose cofibrations are the monomor-
phisms. Let I be a specification for a higher inductive type in C , for which each
functor F preserves fibrations and is indexed-accessible (such as if they are depen-
dent polynomials (5.1)). Then the corresponding higher inductive type exists. �

As remarked previously, any (∞, 1)-topos can be presented by a model category
satisfying the above assumptions. It is an open problem whether such a model
category can always be found which also includes strict universe objects satisfying
the univalence axiom. This is known to be possible for certain restricted classes of
(∞, 1)-topoi, notably∞Gpd (the simplicial set model of Voevodsky) and presheaves
of such on direct categories and elegant Reedy categories (Shulman).

Moreover, any model category that presents an (∞, 1)-topos does include univa-
lent “weak universe objects”, arising simply from fibrant presentations of the object
classifiers of the underlying (∞, 1)-topos. In the type theory, these weak universes
give rise to universes of “codes for types” which are “weakly a la Tarski”, in the
sense that the coercion from codes to types respects the type-forming operations
only up to equivalence. However, this should be sufficient for most purposes related
to higher inductive definitions, where what we usually need is “large eliminations”
out of a higher inductive type into a univalent universe.
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