Spectral Sequences in Homotopy Type Theory

Floris van Doorn

Carnegie Mellon University

June 4, 2018

Joint work with Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Egbert Rijke and Mike Shulman.

Outline

- Cohomology in HoTT
- Spectral sequences
- Atiyah-Hirzebruch and Serre spectral sequences for cohomology
- Future work: Spectral sequences for homology

Cohomology

How do we define cohomology?

The usual constructions of singular cohomology is not homotopy invariant.

Cohomology

How do we define cohomology?

The usual constructions of singular cohomology is not homotopy invariant.

Classical theorem: The Eilenberg-MacLane spaces ${\cal K}(A,n)$ classify cohomology.

Recall. The Eilenberg-MacLane space K(A,n) is the unique pointed type X with one nontrivial homotopy group $\pi_n(X) \simeq A$.

Cohomology

We define the reduced cohomology of a pointed type X with coefficients in an abelian group A to be

$$\widetilde{H}^n(X,A) :\equiv \|X \to^* K(A,n)\|_0.$$

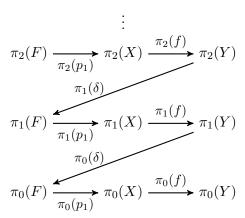
The unreduced cohomology can be defined similarly for any (not necessarily pointed) type X:

$$H^{n}(X, A) :\equiv ||X \to K(A, n)||_{0} = \widetilde{H}^{n}(X + 1, A).$$

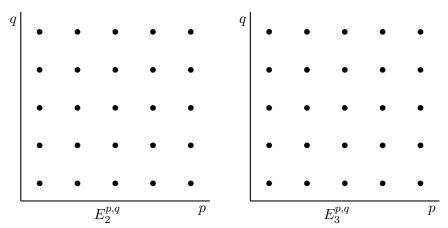
The group structure comes from the equivalence $K(A,n) \simeq^* \Omega K(A,n+1)$.

Long Exact Sequence of Homotopy Groups

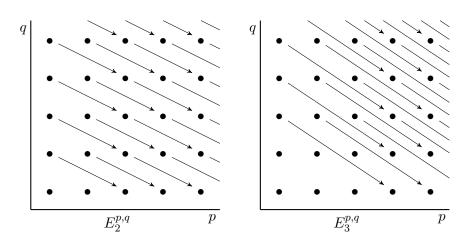
Given a pointed map $f: X \to^* Y$ with fiber F. Then we have the following long exact sequence.



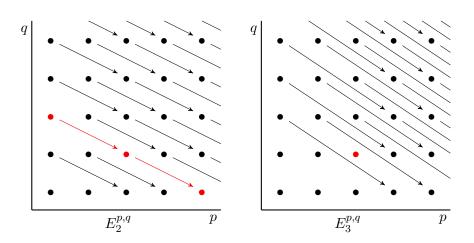
Definition A spectral sequence consists of a family $E_r^{p,q}$ of abelian groups for $p,q:\mathbb{Z}$ and $r\geq 2$. For a fixed r this gives the r-page of the spectral sequence. . . .



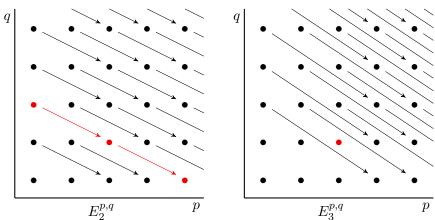
Definition ... with differentials $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ such that $d_r \circ d_r = 0$ (this is cohomologically indexed) ...



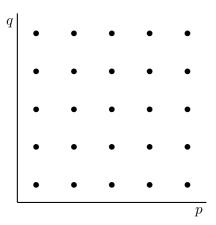
Definition ... and with isomorphisms $\alpha_r^{p,q}: H^{p,q}(E_r) \simeq E_{r+1}^{p,q}$ where $H^{p,q}(E_r) = \ker(d_r^{p,q})/\operatorname{im}(d_r^{p-r,q+r-1})$.



Definition ... and with isomorphisms $\alpha_r^{p,q}: H^{p,q}(E_r) \simeq E_{r+1}^{p,q}$ where $H^{p,q}(E_r) = \ker(d_r^{p,q})/\operatorname{im}(d_r^{p-r,q+r-1})$. The differentials of E_{r+1} are not determined by E_r .

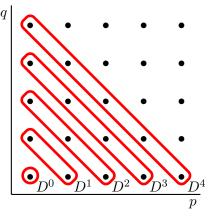


In many spectral sequences the pages converge to $E^{p,q}_{\infty}$.



In many spectral sequences the pages converge to $E^{p,q}_{\infty}$.

And we can get information about the diagonals on the infinity page.



 $E^{p,q}_{\infty}$

For a bigraded abelian group ${\cal C}^{p,q}$ and graded abelian group ${\cal D}^n$ we write

$$E_2^{p,q} = C^{p,q} \Rightarrow D^{p+q}$$

For a bigraded abelian group ${\cal C}^{p,q}$ and graded abelian group ${\cal D}^n$ we write

$$E_2^{p,q} = C^{p,q} \Rightarrow D^{p+q}$$

if there exists a spectral sequence $E_r^{p,q}$ such that

For a bigraded abelian group ${\cal C}^{p,q}$ and graded abelian group ${\cal D}^n$ we write

$$E_2^{p,q} = C^{p,q} \Rightarrow D^{p+q}$$

if there exists a spectral sequence $E_r^{p,q}$ such that

• The second page is $E_2^{p,q} = C^{p,q}$;

For a bigraded abelian group ${\cal C}^{p,q}$ and graded abelian group ${\cal D}^n$ we write

$$E_2^{p,q} = C^{p,q} \Rightarrow D^{p+q}$$

if there exists a spectral sequence $\boldsymbol{E}_r^{p,q}$ such that

- The second page is $E_2^{p,q} = C^{p,q}$;
- ullet The spectral sequence converges to $E^{p,q}_{\infty}$;

For a bigraded abelian group $C^{p,q}$ and graded abelian group \mathbb{D}^n we write

$$E_2^{p,q} = C^{p,q} \Rightarrow D^{p+q}$$

if there exists a spectral sequence $\boldsymbol{E}_r^{p,q}$ such that

- The second page is $E_2^{p,q} = C^{p,q}$;
- ullet The spectral sequence converges to $E^{p,q}_{\infty}$;
- D^n is built up from $E^{p,q}_{\infty}$ for n=p+q in the following way:

For a bigraded abelian group $C^{p,q}$ and graded abelian group \mathbb{D}^n we write

$$E_2^{p,q} = C^{p,q} \Rightarrow D^{p+q}$$

if there exists a spectral sequence $E_r^{p,q}$ such that

- The second page is $E_2^{p,q} = C^{p,q}$;
- ullet The spectral sequence converges to $E^{p,q}_{\infty}$;
- D^n is built up from $E^{p,q}_{\infty}$ for n=p+q in the following way: We have short exact sequences:

$$0 \to E_{\infty}^{0,n} \to D^n \to D^{n,1} \to 0$$

$$\vdots$$

$$0 \to E_{\infty}^{p,q} \to D^{n,p} \to D^{n,p+1} \to 0$$

$$0 \to E_{\infty}^{p+1,q-1} \to D^{n,p+1} \to D^{n,p+2} \to 0$$

$$\vdots$$

$$0 \to E_{\infty}^{n,0} \to D^{n,n} \to 0$$

Serre Spectral Sequence (Special Case)

Theorem. Suppose $f:X\to B$ and $b_0:B$ and let $F:\equiv \mathrm{fib}_f(b_0)$. Suppose that B is simply connected and A is an abelian group. Then

$$E_2^{p,q}=H^p(B,H^q(F,A))\Rightarrow H^{p+q}(X,A).$$

This is only true for unreduced cohomology.

We will compute the cohomology groups of $B=K(\mathbb{Z},2)$ (which is \mathbf{CP}^{∞}).

We define the map $1 \xrightarrow{f} K(\mathbb{Z},2)$ determined by the basepoint $\star : K(\mathbb{Z},2)$. It has fiber

$$\operatorname{fib}_f(\star) = \Omega K(\mathbb{Z}, 2) = K(\mathbb{Z}, 1) = \mathbb{S}^1.$$

The spectral sequence for $A = \mathbb{Z}$ gives

$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

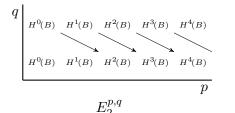
$$E_2^{p,q}=H^p(B,H^q(\mathbb{S}^1))\Rightarrow H^{p+q}(1).$$

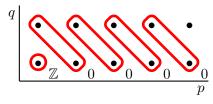
$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

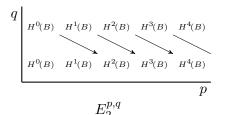


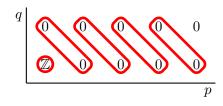


$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

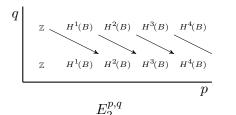


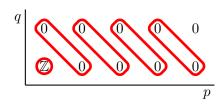


$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

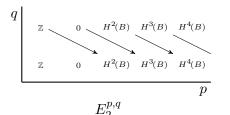


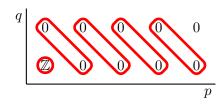


$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

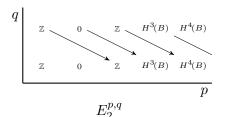


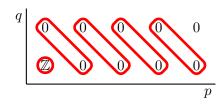


$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$



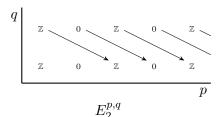


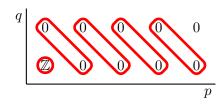
 $E_{\infty}^{p,q}$

$$E_2^{p,q} = H^p(B, H^q(\mathbb{S}^1)) \Rightarrow H^{p+q}(1).$$

$$H^n(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1\\ 0 & \text{otherwise} \end{cases} \qquad H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

$$H^n(1) = \begin{cases} \mathbb{Z} & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$





Spectra

For the general Serre spectral sequence, we need generalized and parametrized cohomology.

An $(\Omega$ -)spectrum is a sequence of pointed types $Y:\mathbb{Z}\to \mathrm{Type}^*$ such that $\Omega Y_{n+1}=Y_n.$

Example. If A is an abelian group, HA: Spectrum where $(HA)_n = K(A, n)$.

A spectrum Y is called n-truncated if Y_k is (n+k)-truncated for all $k:\mathbb{Z}$.

The homotopy groups are $\pi_n(Y) :\equiv \pi_{n+k}(Y_k)$ (which is independent of k and also defined for negative n).

Generalized Cohomology

If X is a type and Y is a spectrum, we have generalized cohomology:

$$H^{n}(X,Y) :\equiv ||X \to Y_{n}||_{0} \simeq \pi_{-n}(X \to Y).$$

We get generalized and parametrized cohomology by replacing functions with dependent functions:

$$H^{n}(X, \lambda x. Yx) := \|\Pi(x : X), Y_{n}(x)\|_{0} \simeq \pi_{-n}(\Pi(x : X), Yx)$$

Here X is a type and $Y: X \to \text{Spectrum}$.

Reduced cohomology is defined similar with basepoint-preserving sections.

Serre Spectral Sequence

Theorem. (Serre Spectral Sequence) If $f:X\to B$ is any map and Y is a truncated spectrum, then

$$E_2^{p,q} = H^p(B,\lambda b.H^q(\mathsf{fib}_f(b),Y)) \Rightarrow H^{p+q}(X,Y).$$

If Y=HA and B is pointed simply connected, then this reduces to the previous case

$$E_2^{p,q} = H^p(B, H^q(\mathsf{fib}_f(b_0), A)) \Rightarrow H^{p+q}(X, A).$$

Atiyah-Hirzebruch Spectral Sequence

Theorem. (Atiyah-Hirzebruch Spectral Sequence) If X is any type and $Y:X\to \operatorname{Spectrum}$ is a family of k-truncated spectra over X, then

$$E_2^{p,q} = H^p(X, \lambda x. \pi_{-q}(Yx)) \Rightarrow H^{p+q}(X, \lambda x. Yx).$$

Atiyah-Hirzebruch Spectral Sequence

Theorem. (Atiyah-Hirzebruch Spectral Sequence) If X is any type and $Y:X\to \operatorname{Spectrum}$ is a family of k-truncated spectra over X, then

$$E_2^{p,q} = H^p(X, \lambda x. \pi_{-q}(Yx)) \Rightarrow H^{p+q}(X, \lambda x. Yx).$$

The Atiyah-Hirzebruch spectral sequence is also true if we replace all cohomologies by reduced cohomologies:

$$E_2^{p,q} = \widetilde{H}^p(X, \lambda x. \pi_{-q}(Yx)) \Rightarrow \widetilde{H}^{p+q}(X, \lambda x. Yx).$$

Construction (1)

Based on the construction (sketch) by Shulman [ncatlab.org/homotopytypetheory/show/spectral+sequences] For pointed types we have the fiber sequence

$$K(\pi_k(Z), k) \longrightarrow ||Z||_k \longrightarrow ||Z||_{k-1}.$$

Construction (1)

Based on the construction (sketch) by Shulman

[ncatlab.org/homotopytypetheory/show/spectral+sequences]

For pointed types we have the fiber sequence

$$K(\pi_k(Z), k) \longrightarrow ||Z||_k \longrightarrow ||Z||_{k-1}.$$

Given $X: \mathrm{Type}^*$ and $Y: X \to \mathrm{Spectrum}$ which are s_0 -truncated. For x: X and $s: \mathbb{Z}$ we have the following fiber sequence of spectra:

$$K(\pi_s(Yx), s) \longrightarrow ||Yx||_s \longrightarrow ||Yx||_{s-1}.$$

Construction (1)

Based on the construction (sketch) by Shulman

[ncatlab.org/homotopytypetheory/show/spectral+sequences]

For pointed types we have the fiber sequence

$$K(\pi_k(Z), k) \longrightarrow ||Z||_k \longrightarrow ||Z||_{k-1}.$$

Given $X : \mathrm{Type}^*$ and $Y : X \to \mathrm{Spectrum}$ which are s_0 -truncated. For x : X and $s : \mathbb{Z}$ we have the following fiber sequence of spectra:

$$K(\pi_s(Yx), s) \longrightarrow ||Yx||_s \longrightarrow ||Yx||_{s-1}.$$

The functor $Y \mapsto \Pi^*(x:X)$, Yx preserves fiber sequences:

$$\Pi^*(x:X), K(\pi_s(Yx), s) \longrightarrow \Pi(x:X), ||Yx||_s \longrightarrow \Pi^*(x:X), ||Yx||_{s-1}.$$

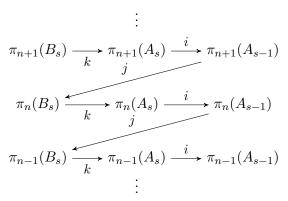
Let's call these types B_s and A_s :

$$B_s \longrightarrow A_s \longrightarrow A_{s-1}$$
.

Construction (2)

$$B_s \longrightarrow A_s \longrightarrow A_{s-1}$$
.

The long exact sequence of this fiber sequence gives:

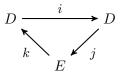


Construction (3)

Define

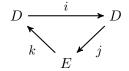
$$E = \bigoplus_{n,s} \pi_n(B_s) \quad \text{and} \quad D = \bigoplus_{n,s} \pi_n(A_s).$$

These long exact sequences give an *exact couple* between bigraded abelian groups.

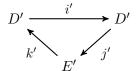


Construction (4)

From an exact couple



we build a derived exact couple



where E' is the (co)homology of E with differential $d := j \circ k : E \to E$.

Construction (5)

We iterate this process, so that we get a sequence of exact couples $(E_r, D_r, i_r, j_r, k_r)$.

Now $(E_r,d_r)_r$ forms the Atiyah-Hirzebruch spectral sequence:

$$E_2^{p,q} = \widetilde{H}^p(X, \lambda x. \pi_{-q}(Yx)) \Rightarrow \widetilde{H}^{p+q}(X, \lambda x. Yx).$$

(We have applied the reindexing (p,q)=(s-n,-s).)

Construction (6)

$$E_2^{p,q} = H^p(X, \lambda x. \pi_{-q}(Yx)) \Rightarrow H^{p+q}(X, \lambda x. Yx).$$

$$E_2^{p,q} = H^p(B, \lambda b. H^q(\mathsf{fib}_f(b), Z)) \Rightarrow H^{p+q}(X, Z).$$

Construction (6)

$$E_2^{p,q} = H^p(X, \lambda x. \pi_{-q}(Yx)) \Rightarrow H^{p+q}(X, \lambda x. Yx).$$

For the Serre spectral sequence, we're given a map $f:X\to B$ and a truncated spectrum Z. We define

$$Y = \lambda(b:B).\mathsf{fib}_f(b) \to Z:B \to \mathsf{Spectrum}$$
.

$$E_2^{p,q} = H^p(B, \lambda b. H^q(\mathsf{fib}_f(b), Z)) \Rightarrow H^{p+q}(X, Z).$$

Construction (6)

$$E_2^{p,q} = H^p(X, \lambda x. \pi_{-q}(Yx)) \Rightarrow H^{p+q}(X, \lambda x. Yx).$$

For the Serre spectral sequence, we're given a map $f:X\to B$ and a truncated spectrum Z. We define

$$Y = \lambda(b:B).\mathsf{fib}_f(b) \to Z:B \to \mathsf{Spectrum}$$
.

Then

$$\pi_{-q}(Yb) = \pi_{-q}(\operatorname{fib}_f(b) \to Z) = H^q(\operatorname{fib}_f(b), Z)$$

$$\begin{split} H^{p+q}(B,\lambda b.Yb) &= \pi_{-(p+q)}(\Pi(b:B), \ \operatorname{fib}_f(b) \to Z) \\ &= \pi_{-(p+q)}((\Sigma(b:B), \ \operatorname{fib}_f(b)) \to Z) \\ &= \pi_{-(p+q)}(X \to Z) \\ &= H^{p+q}(X,Z) \end{split}$$

This gives the Serre spectral sequence

$$E_2^{p,q} = H^p(B, \lambda b. H^q(\mathsf{fib}_f(b), Z)) \Rightarrow H^{p+q}(X, Z).$$

Formalization

- Construction formalized in the Lean proof assistant.
- Available at github.com/cmu-phil/Spectral.
- The formalization took almost 2 years: November 2015 July 2017.
- Formalized by vD, Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Egbert Rijke and Mike Shulman.
- \bullet Formalization is ${\sim}10\text{k-}20\text{k}$ LoC (the total size of Lean-HoTT is 53k LoC).

Applications

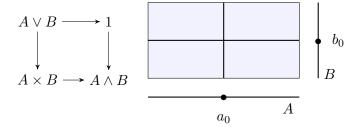
The remainder of the slides is mostly future work.

- We can compute cohomology groups of certain spaces (such as $K(\mathbb{Z},n)$ and ΩS^n).
- We can compute cohomology groups of generalized cohomology theories (K-theory).
- We can construct the Gysin and Wang sequences.

To compute more homotopy groups of spheres, we need the Serre spectral sequence for homology.

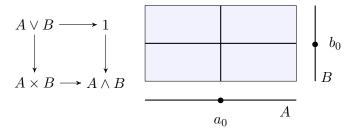
Smash Product

For pointed types A and B, the smash product $A \wedge B$ is the following homotopy pushout.



Smash Product

For pointed types A and B, the smash product $A \wedge B$ is the following homotopy pushout.



Homology with coefficients in a spectrum Y can be defined as

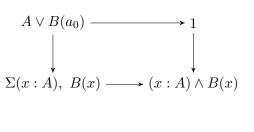
$$\widetilde{H}_n(X,Y) = \pi_n(X \wedge Y) = \operatorname{colim}_k(\pi_{n+k}(X \wedge Y_k)).$$

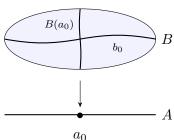
Parametrized Homology

We will also need parametrized homology.

$$\widetilde{H}_n(X, \lambda x. Yx) :\equiv \pi_n((x : X) \wedge Yx)$$

 $(x:A) \wedge B(x)$ is a parametrized version of the smash product, the following homotopy pushout:





Spectral Sequences for Homology

Some challenges:

- Smashing doesn't preserve spectra: we need to apply spectrification.
- We need to prove that smashing preserves fiber sequences.

We should get the corresponding spectral sequences for homology:

$$E_{p,q}^2 = \widetilde{H}_p(X, \lambda x. \pi_q(Yx)) \Rightarrow \widetilde{H}_{p+q}(X, \lambda x. Yx).$$

$$E_{p,q}^2 = H_p(B, \lambda b. H_q(\mathsf{fib}_f(b), Y)) \Rightarrow H_{p+q}(X, Y).$$

Applications

Applications of the homology Serre spectral sequence:

- Serre class theorem (constructively?)
- Hurewicz theorem
- Computation of $\pi_{n+k}(\mathbb{S}^n)$ for $k \leq 3$.