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Outline

Cohomology in HoTT
Spectral sequences
Atiyah-Hirzebruch and Serre spectral sequences for cohomology

Future work: Spectral sequences for homology
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Cohomology

How do we define cohomology?

The usual constructions of singular cohomology is not homotopy invariant.
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Cohomology

How do we define cohomology?
The usual constructions of singular cohomology is not homotopy invariant.

Classical theorem: The Eilenberg-MacLane spaces K (A, n) classify
cohomology.

Recall. The Eilenberg-MacLane space K(A,n) is the unique pointed
type X with one nontrivial homotopy group m,(X) ~ A.
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Cohomology

We define the reduced cohomology of a pointed type X with coefficients
in an abelian group A to be

H™(X,A) = || X —=* K(4,n)|o.

The unreduced cohomology can be defined similarly for any (not
necessarily pointed) type X:

H™(X,A):=||X - K(A,n)|jo = H*(X + 1, A).

The group structure comes from the equivalence
K(A,n)~* QK(A,n+1).
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Long Exact Sequence of Homotopy Groups

Given a pointed map f : X —* Y with fiber F.
Then we have the following long exact sequence.

m2(f)

7T2(F) _— > 7T2(X) e 7T2(Y)
m2(p1)

m1(f)

7T1(F) _— > 7T1(X) e 7T1(Y)
m1(p1)
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Spectral Sequences

Definition A spectral sequence consists of a family EX? of abelian
groups for p,q : Z and r > 2. For a fixed r this gives
the r-page of the spectral sequence. ...

q q
[} [} [} [ ) [ [} [} [ ) [ [
[ ] [} [ ] [ ] [ ] [} [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ J [ J [ J [ ] [ ] [ ] [ ] [ ] [ ] [ ]
qu p E?z?q p
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Spectral Sequences

Definition ... with differentials d2® : EP* — EX*"97"! such that
d, o d, = 0 (this is cohomologically indexed) ...

LTSI

Equ b
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Spectral Sequences

Definition ... and with isomorphisms o : HP9(E,) ~ EY,
where HP4(E,) = ker(d2'?) /im(db "7,

o R P P I \x

qu p E§7q p
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Spectral Sequences

Definition ... and with isomorphisms o : HP9(E,) ~ EY,
where HP4(E,) = ker(d2?) /im(dl™"9+"1).
The differentials of E,.;1 are not determined by F,.

TSI

qu p E§7q p
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Convergence of Spectral Sequences

q

[ J [ J [ [ ] [ ]
In many spectral sequences the o o o o o
pages converge to E5.

[ ] [ ] [ ] [ ] [ ]

[ ] [ [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

p
B2

Floris van Doorn (CMU) Spectral Sequences in HoTT June 4, 2018 7 /27



Convergence of Spectral Sequences

In many spectral sequences the
pages converge to E5.

And we can get information
about the diagonals on the
infinity page.

o
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Convergence of Spectral Sequences

For a bigraded abelian group C?% and graded abelian group D" we write

E1297q = OP1 = pDprta
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Convergence of Spectral Sequences

For a bigraded abelian group C?% and graded abelian group D" we write
E1297q = OP1 = pDprta

if there exists a spectral sequence EF*? such that
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Convergence of Spectral Sequences

For a bigraded abelian group C?% and graded abelian group D" we write
E1297q = OP1 = pDprta

if there exists a spectral sequence EF*? such that
e The second page is E5'? = CP4;
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Convergence of Spectral Sequences

For a bigraded abelian group C?% and graded abelian group D" we write

E1297q = OP1 = pDprta

if there exists a spectral sequence EF*? such that
e The second page is E5'? = CP4;

@ The spectral sequence converges to EZ;
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Convergence of Spectral Sequences

For a bigraded abelian group C?% and graded abelian group D" we write
E1297q = OP1 = pDprta
if there exists a spectral sequence EF*? such that
e The second page is E5'? = CP4;

@ The spectral sequence converges to EZ;
e D" is built up from E& for n = p + ¢ in the following way:
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Convergence of Spectral Sequences

For a bigraded abelian group C?% and graded abelian group D" we write

E1297q = OP1 = pDprta

if there exists a spectral sequence EF*? such that
e The second page is E5'? = CP4;
@ The spectral sequence converges to EZ;
e D" is built up from E& for n = p + ¢ in the following way:
We have short exact sequences:

0— EY" D" - D™ -0

0 — BRI D™ — D"PH
0 — Errha-t pretl o prrt2

0— B’ D™ 0
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Serre Spectral Sequence (Special Case)

Theorem. Suppose f: X — B and by : B and let F':= fiby(bo).
Suppose that B is simply connected and A is an abelian
group. Then

EPY = HP(B,HY(F, A)) = HPT1(X, A).

This is only true for unreduced cohomology.

Floris van Doorn (CMU) Spectral Sequences in HoTT June 4, 2018

9 /27



Example: Cohomology of K(Z,2)

We will compute the cohomology groups of B = K (Z,2) (which is CP*).

We define the map 1 EN K(Z,2) determined by the basepoint x : K(Z,2).
It has fiber

fibp(x) = QK (Z,2) = K(Z,1) = S".
The spectral sequence for A = Z gives

EY? = HP(B, HY(S")) = HPT(1).
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Example: Cohomology of K(Z,2)

EY? = HP(B, HY(SY)) = HPM(1).

H”(Sl)— Z ifn=0,1 H (1) = Z ifn=0
10 otherwise 10 otherwise
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Example: Cohomology of K(Z,2)

EY? = HP(B, HY(SY)) = HPM(1).
0 otherwise 0 otherwise

HYB) HYB) HXB) H¥B) HYB)
HYB) HYB) HXB) H¥B) HYB)

P,q
E2

Hn(Sl):{Z ifn=0,1 H”(l):{Z ifn=0

ol
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Example: Cohomology of K(Z,2)

EY? = HP(B, HY(SY)) = HPM(1).
0 otherwise 0 otherwise

ZQH%B) H¥B) HYB)
z  HYB) HXB) H¥B) HYB)

P,q
E2

Hn(Sl):{Z ifn=0,1 H”(l):{Z ifn=0

ol
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Example: Cohomology of K(Z,2)

EY? = HP(B, HY(SY)) = HPM(1).
0 otherwise 0 otherwise

\AH\Q(B)AHS'(B) HYB)
H*B) H¥B) H%B)

P,q
E2

Hn(Sl):{Z ifn=0,1 H”(l):{Z ifn=0

ol
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Example: Cohomology of K(Z,2)
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E2
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Example: Cohomology of K(Z,2)

EY? = HP(B, HY(SY)) = HPM(1).
0 otherwise 0 otherwise

e [ XN

P,q
E2

Hn(Sl):{Z ifn=0,1 H”(l):{Z ifn=0

ol
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Spectra

For the general Serre spectral sequence, we need generalized and
parametrized cohomology.

An (€2-)spectrum is a sequence of pointed types Y : Z — Type* such that
QY11 =Y,.

Example. If A is an abelian group, H A : Spectrum where
(HA), = K(A,n).
A spectrum Y is called n-truncated if Yy is (n + k)-truncated for all & : Z.

The homotopy groups are m,(Y') := m,1x(Y%) (which is independent of k
and also defined for negative n).
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Generalized Cohomology

If X is a type and Y is a spectrum, we have generalized cohomology:
H'"(X,)Y) =|X = Yalox2mn(X =Y).

We get generalized and parametrized cohomology by replacing functions
with dependent functions:

H" X, \x.Yz):=|(z: X), Yo(@)|o ~7—n(Il(z: X), Ya)

Here X is a type and Y : X — Spectrum.

Reduced cohomology is defined similar with basepoint-preserving sections.
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Serre Spectral Sequence

Theorem. (Serre Spectral Sequence) If f : X — B is any map and Y is
a truncated spectrum, then

EY? = HP(B,\b.HY(fibs(b),Y)) = HPTU(X,Y).

If Y = HA and B is pointed simply connected, then this reduces to the
previous case

EYY = HP(B, H(fibs(b), A)) = HP (X, A).
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Atiyah-Hirzebruch Spectral Sequence

Theorem. (Atiyah-Hirzebruch Spectral Sequence) If X is any type and
Y : X — Spectrum is a family of k-truncated spectra over
X, then

EP? = HP(X, Av._y(Yx)) = HPTI(X, \z.Y2).
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Atiyah-Hirzebruch Spectral Sequence

Theorem. (Atiyah-Hirzebruch Spectral Sequence) If X is any type and
Y : X — Spectrum is a family of k-truncated spectra over
X, then

EP? = HP(X, Av._y(Yx)) = HPTI(X, \z.Y2).

The Atiyah-Hirzebruch spectral sequence is also true if we replace all
cohomologies by reduced cohomologies:

ERT = HP(X, Az.m_o(Yz)) = HPTI(X, \e.Y ).
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Construction (1)

Based on the construction (sketch) by Shulman
[ncatlab.org/homotopytypetheory/show/spectral+sequences)]
For pointed types we have the fiber sequence

K(m(2),k) — 12l — 1 Z]lk-1-
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ncatlab.org/homotopytypetheory/show/spectral+sequences

Construction (1)

Based on the construction (sketch) by Shulman
[ncatlab.org/homotopytypetheory/show/spectral+sequences)]
For pointed types we have the fiber sequence

K(m(2),k) — 12l — 1 Z]lk-1-

Given X : Type* and Y : X — Spectrum which are syp-truncated. For
x: X and s : Z we have the following fiber sequence of spectra:

K(ms(Yx),s) — ||Yz|s — ||V s-1-
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Construction (1)

Based on the construction (sketch) by Shulman
[ncatlab.org/homotopytypetheory/show/spectral+sequences)]
For pointed types we have the fiber sequence

K(m(2),k) — 12l — 1 Z]lk-1-

Given X : Type* and Y : X — Spectrum which are syp-truncated. For
x: X and s : Z we have the following fiber sequence of spectra:

K(ms(Yx),s) — ||Yz|s — ||V s-1-
The functor Y +— II*(z : X), Yz preserves fiber sequences:
M(z: X), K(rg(Yz),s) — (z: X), [|Y|s — O (z: X), [|[Yz|s—1.
Let's call these types B, and Aq:

By — Ay — As_1.
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ncatlab.org/homotopytypetheory/show/spectral+sequences

Construction (2)

BS —> AS —> As—l-

The long exact sequence of this fiber sequence gives:

7Tn+1(Bs) T 7Tn+1(As) 42’ 7Tn+1(As—1)

/
T (B) T ma(4,) —

Wn(As—l)

anl(Bs) T anl(As) *Z’ 777171(14571)
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Construction (3)

Define
E=EPm(B;) and D=Pm(A,).

These long exact sequences give an exact couple between bigraded abelian
groups.
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Construction (4)

From an exact couple

we build a derived exact couple

'/
D—— D

N

where E’ is the (co)homology of E with differential d := jok: E — E.
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Construction (5)

We iterate this process, so that we get a sequence of exact couples
(Er‘a DT’7 iT?jT’a kT)

Now (E,,d,), forms the Atiyah-Hirzebruch spectral sequence:
EPY = HP(X, Azm_o(Ya)) = HPTI(X, \e.Yz).

(We have applied the reindexing (p,q) = (s — n,—s).)
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Construction (6)

EN = HP (X, \v._o(Y2)) = HPY(X, \z.Yz).

ER? = HP(B, \b.HI(fibs(b), Z)) = HPYI(X, Z).
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Construction (6)

EN = HP (X, \v._o(Y2)) = HPY(X, \z.Yz).

For the Serre spectral sequence, we're given amap f: X — B and a
truncated spectrum Z. We define

Y = X(b: B).fiby(b) = Z : B — Spectrum .

ER? = HP(B, \b.HI(fibs(b), Z)) = HPYI(X, Z).

Floris van Doorn (CMU) Spectral Sequences in HoTT June 4, 2018

21/ 27



Construction (6)

EN = HP (X, \v._o(Y2)) = HPY(X, \z.Yz).

For the Serre spectral sequence, we're given amap f: X — B and a
truncated spectrum Z. We define

Y = X(b: B).fiby(b) = Z : B — Spectrum .
Then
T_q(Yb) = m_y(fibs(b) — Z) = HI(fibs(b), Z)

HPY(B,Xb.YD) = T_ (1) (IL(b : B), fibs(b) — Z)
= (i) (2(b: B), fibs(b)) — 2)
=T (ptq)(X = Z)
— [_Ip-i-q()(7 Z)
This gives the Serre spectral sequence
EY? = HP(B,\b.Hi(fibs(b), Z)) = HPT(X, Z).
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Formalization

Construction formalized in the Lean proof assistant.
Available at github.com/cmu-phil/Spectral.
The formalization took almost 2 years: November 2015 — July 2017.

Formalized by vD, Jeremy Avigad, Steve Awodey, Ulrik Buchholtz,
Egbert Rijke and Mike Shulman.

Formalization is ~10k-20k LoC (the total size of Lean-HoTT is 53k
LoC).
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github.com/cmu-phil/Spectral

Applications

The remainder of the slides is mostly future work.

@ We can compute cohomology groups of certain spaces (such as
K(Z,n) and QS™).

@ We can compute cohomology groups of generalized cohomology
theories (K-theory).

@ We can construct the Gysin and Wang sequences.

To compute more homotopy groups of spheres, we need the Serre spectral
sequence for homology.
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Smash Product

For pointed types A and B, the smash product A A B is the following
homotopy pushout.

AV B

1

AxB—> AANB B

[ ]

ao
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Smash Product

For pointed types A and B, the smash product A A B is the following
homotopy pushout.

AV B 1

AxB—> AANB B

Py
4

A
ao

Homology with coefficients in a spectrum Y can be defined as

Ho(X,Y) = (X AY) = colimp(Tpin(X A YE)).
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Parametrized Homology

We will also need parametrized homology.

Hy( X, \x.Yz):=7m,((x: X)AYx)

(x : A) A B(x) is a parametrized version of the smash product, the
following homotopy pushout:

AV B(a0>

B(ao)

Y(x:A), Blx) — (z: A) A B(x)

[ ]
N

ao
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Spectral Sequences for Homology

Some challenges:

@ Smashing doesn’t preserve spectra: we need to apply spectrification.

@ We need to prove that smashing preserves fiber sequences.

We should get the corresponding spectral sequences for homology:

B2, = Hy(X, \v.my(Y)) = Hpio(X, \2.Yx).

Ez%,q = Hp(Ba )‘b'Hq(ﬁbf(b)aY)) = Hp+q(Xa Y)-
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Applications

Applications of the homology Serre spectral sequence:
@ Serre class theorem (constructively?)
@ Hurewicz theorem
e Computation of m,44(S™) for k < 3.
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