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Categorical models of type theory

A display map category is a category C with a class of morphisms F

F �
�

//

  

C2

c
��

C
such that

pullbacks of display maps exist and are in F
F contains all isomorphisms
F is closed under composition
C has a terminal object 1 and F contains all morphisms to 1.

dependent types ⇐⇒ display maps
a ∈ A ` B(a) Type A � B
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Categorical models of type theory

The 2-category Disp has:

as objects display map categories,

as morphisms (C,F)→ (D, E) the functors G : C → D such that

G preserves the terminal object
G preserves display maps
G preserves pullbacks of display maps,

and as 2-cells natural transformations.
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Grothendieck construction

For a pseudofunctor P : Cop → Cat, the Grothendieck construction gives a
corresponding fibration

∫
P
ψ
��

C.∫
P has objects: pairs (B ∈ C,D ∈ P(B)),

morphisms (B,D)→ (B′,D′): pairs (B g−→ B′ in C,D α−→ P(g)D′ in P(B)).

If (C,F) is a display map category and P is a pseudofunctor Cop → Disp,
then

∫
P has the structure of a display map category,

and ψ is a morphism in Disp.

Display maps in
∫

P: morphisms (g , α) where g is a display map in C
and α is a display map in P(B).
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Examples: gluing

If (C,F) is a display map category and B ∈ C,
F/B is the full subcategory of the slice C/B with objects display maps.

F/B has a class of display maps:

A ∈F
// //

�� ��

D

����

B

If B f // //C is a display map in F , the pullback functor

f ∗ : F/C → F/B

is a morphism in Disp.
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Examples: gluing

If (C,F) and (D, E) are display map categories, and G a functor C → D,
there is a pseudofunctor Cop → Disp: B 7→ F/GB

B f−→ B′ 7→ (Gf )∗

The corresponding fibration is the gluing (E ↓ G) along G .
Morphisms:

D // //

��

GB

Gf

��

P

D′ // // GB′

It follows that:

Proposition (Shulman 2013)
The gluing (E ↓ G) has the structure of a display map category.
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Examples: product projections

Any category with finite products has a class of display maps consisting of
the binary product projections:

A× B → A

Any finite-product preserving functor is a morphism of display map
categories.

Thus any pseudofunctor P : Cop → FinProdCat factors through Disp.
This corresponds to:

If (C,F) is a display map category and D ψ−→ C is a fibration such that D
has and ψ preserves finite products, then D inherits the structure of a
display map category.
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Product types

A display map category (C,F) has product types if for any display maps

E g
// //A f // //B

the dependent product ∏
f (g) //B

exists and is a display map.

(⇐⇒ for every display map f , f ∗ : F/B → F/A has a right adjoint
∏

f
satisfying the Beck-Chevalley condition,

⇐⇒ for every display map f , f ∗ has a right adjoint and the inclusion
F/B ↪→ C/B preserves exponentials.)
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Product types

ΠDisp is the 2-category of display map categories with product types and
morphisms G which preserve dependent products,

G(
∏

f g) ∼=
∏

Gf Gg .

If (C,F) is a display map category with product types and P is a
pseudofunctor Cop → ΠDisp such that for every f ∈ F ,

P(f ) has a right adjoint Πf ,
Πf preserves display maps,
the Beck-Chevalley condition for the Π-functors holds,

then
∫

P has the structure of a display map category with product types,
and ψ is a morphism in ΠDisp.
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Identity types

A morphism is anodyne if it has the left lifting property with respect to all
display maps.

A display map category (C,F) has identity types if
Every morphism in C factors as an anodyne map followed by a display
map
Anodyne maps are stable under pullback along display maps.

hDisp is the 2-category of display map categories with identity types and
morphisms which preserve anodyne maps.

If the fibration ψ :
∫

P → C is also an opfibration, then factorizations exist
in

∫
P (Stanculescu 2012, Harpaz & Prazma 2015).

This doesn’t hold in general in the previous examples.
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Identity types
To factorize (g , α) : (B,D)→ (A,C):

Kv

P(e)D P(ρ)C

D C

Kg

e
uu

ρ

(( ((B g
//

λ
55

A

∫
P

ψ

��

C

If (λ, 1) is anodyne in
∫

P. i.e.:
Condition (∗): If λ is anodyne in C, f ∈ F and P(λ)f has a section s,

then f has a section t such that P(λ)t = s.

If (C,F) is a display map category with identity types and P : Cop → hFib
satisfies (∗), then

∫
P has identity types.
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Function extensionality

A display map category with product and identity types satisfies function
extensionality if for every display map f , the product functor

∏
f preserves

anodyne maps.

If function extensionality holds in (C,F) and in P(B) for each B ∈ C ,
product and identity types are constructed as above, and the right adjoint
functors Πf preserve anodyne maps, then function extensionality holds in∫

P.

Gluing example (Shulman 2013):
If (C,F) and (D, E) are display map categories with function
extensionality, and G : C → D preserves display maps and anodyne maps,
then (E ↓ G) satisfies function extensionality.
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Example: finite product projections
If the display maps in the fibres are product projections, fibrewise
dependent products correspond to fibrewise exponentials.

If (C,F) is a display map category with product types and D ψ−→ C is a
fibration such that

D has and ψ preserves finite products
D has and ψ preserves preserves exponentials
each reindexing functor has a right adjoint satisfying BCC,

then D inherits the structure of a display map category with product types.

Any morphism f : A→ B has a factorization A (1,f )−−−→ A× B � B into an
anodyne followed by a display map.

If (C,F) is a display map category with identity types and D ψ−→ C is a
fibration satisfying condition (∗), then D has the structure of identity
types.

14 / 21



Example: finite product projections
If the display maps in the fibres are product projections, fibrewise
dependent products correspond to fibrewise exponentials.

If (C,F) is a display map category with product types and D ψ−→ C is a
fibration such that

D has and ψ preserves finite products
D has and ψ preserves preserves exponentials
each reindexing functor has a right adjoint satisfying BCC,

then D inherits the structure of a display map category with product types.

Any morphism f : A→ B has a factorization A (1,f )−−−→ A× B � B into an
anodyne followed by a display map.

If (C,F) is a display map category with identity types and D ψ−→ C is a
fibration satisfying condition (∗), then D has the structure of identity
types.

14 / 21



Modified realizability sets

mod0 is the category of non-empty modest sets
objects: {X = (|X | α−→ P+N), α(x) ∩ α(y) = ∅ for x 6= y , |X | 6= ∅}
morphisms X → Y : functions |X | → |Y | trackable by some e ∈ N

mod0 has a class of display maps with product and identity types,
consisting of surjective trackable functions.

mr0 is the category of modified realizability sets over mod0
objects: {P ⊆ |X |,X ∈ mod0}

actual ⊆ potential elements
morphisms (P,X )→ (Q,Y ): P

��

// // |X |

��

Q // // |Y |
morphisms X → Y preserving actual elements
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Modified realizability sets

The projection mr0 → mod0 is a fibration which preserves finite products,
exponentials and has compatible right adjoints to reindexing.
It follows that:

Proposition (Streicher 1993)
The category mr0 has the structure of a display map category with
product types.

The condition (∗) for identity types doesn’t hold, but mr0 can be given the
structure of identity types:

Id(P,X ) = P ↪→ (X + X × X )
Id(P,X)(x , y) = 0 ↪→ 1 if x 6= y

= 1 ↪→ 1 + 1 if x = y ∈ P

The category mr0 has identity types, for which function extensionality does
not hold.
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Polynomial models

If (C,F) is a display map category, F → C is a fibration. Reversing the
vertical arrows gives the opposite fibration Poly(F)→ C.
Poly(F) is the category of polynomials or containers.
Objects:

Df B // // A
∑

a∈A XB(a)

D C
∑

c∈C XD(c)

When C is extensive, Poly(F)→ C has fibred finite products, and satisfies
condition (∗). It follows that:

The category of polynomials Poly(F) has the structure of a display map
category with identity types.
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Polynomial models

Display maps in Poly(F): Df
� � ι //

��

Df + B // // A

f ∈F
����

D // // C

Identity type IdB�A: Bs + Bt // // IdA

Product types:

Proposition (Altenkirch, Levy, Staton 2010)
The category of polynomials Poly(F) is cartesian closed, but not locally
cartesian closed. Poly(F)→ C does not preserve exponentials.

However, Poly(F) has dependent products not preserved by the fibration.

The category of polynomials Poly(F) is a display map category with
product and identity types, for which function extensionality does not hold.
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Universes

A universe in a display map category (C,F) is a display map

Ũ u // // U

such that if S is the class of all pullbacks of u, then
S contains all isomorphisms

S is closed under composition

if E g
// //A f // //B are in S then so is

∏
f (g) � B

if A � C and B � C are in S
and f is any morphism A→ B over C ,
then f factors as an anodyne map followed by a morphism in S.
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Universes

Given a universe Ũ u // // U in (C,F),

(Ũ , 1)
(u,1)

// // (U , 1)

is a universe in
∫

P.

Given a universe Ũ u // // U in (C,F), and V ∈ C, Ṽ ∈ P(V)
such that reindexings of Ṽ are closed under finite products and Π-functors,

(
∑

A:U
∑

f :A→V A, P(ev)(Ṽ)) // // (
∑

A:U (A→ V), 1)

is a universe in
∫

P.
e.g. polynomials, modified realizability sets.
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Universes

More general universes?

Univalence

Other type constructors, e.g. W-types

New models ⇒
I consistency and independence results
I useful features of specific categories
I theory of models...
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