Homotopy Type Theory 2-poset > history (Rev #1)

Contents

Definition

A 2-poset AA is a category CC such that

  • For each object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and morphism R:Hom(A,B)R:Hom(A, B), S:Hom(A,B)S:Hom(A, B), a propositional binary relation R A,BSR \leq_{A, B} S
  • For each object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and morphism R:Hom(A,B)R:Hom(A, B), R A,BRR \leq_{A, B} R.
  • For each object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and morphism R:Hom(A,B)R:Hom(A, B), S:Hom(A,B)S:Hom(A, B), R A,BSR \leq_{A, B} S and S A,BRS \leq_{A, B} R implies R=SR = S.
  • For each object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and morphism R:Hom(A,B)R:Hom(A, B), S:Hom(A,B)S:Hom(A, B), T:Hom(A,B)T:Hom(A, B), R A,BSR \leq_{A, B} S and S A,BTS \leq_{A, B} T implies R A,BTR \leq_{A, B} T.

See also

Revision on April 20, 2022 at 01:26:22 by Anonymous?. See the history of this page for a list of all contributions to it.