Homotopy Type Theory A3-space > history (Rev #1)

Definition

An A 3A_3-space or H-monoid consists of

  • A type AA,
  • A basepoint e:Ae:A
  • A binary operation μ:AAA\mu : A \to A \to A
  • for every a:Aa:A, equalities μ(e,a)=a\mu(e,a)=a and μ(a,e)=a\mu(a,e)=a
  • for every a:Aa:A, b:Ab:A, c:Ac:A, an equality μ(μ(a,b),c)=μ(a,μ(b,c))\mu(\mu(a, b),c)=\mu(a,\mu(b,c))

Examples

  • The integers are an A 3A_3-space.

  • Every loop space is naturally an A 3A_3-space with path concatenation as the operation. In fact every loop space is a group.

  • The type of endofunctions AAA \to A has the structure of an A 3A_3-space, with basepoint id Aid_A, operation function composition.

  • A monoid is a 0-truncated A 3A_3-space.

See also

On the nlab

Classically, an A3-space is a homotopy type equipped with the structure of a monoid in the homotopy category (only).

Revision on February 3, 2022 at 20:45:39 by Anonymous?. See the history of this page for a list of all contributions to it.