Homotopy Type Theory H-space > history (Rev #1)

Definition

A H-Space consists of

  • A type AA,
  • A basepoint e:Ae:A
  • A binary operation μ:AAA\mu : A \to A \to A
  • for every a:Aa:A, equalities μ(e,a)=a\mu(e,a)=a and μ(a,e)=a\mu(a,e)=a

Lemma

Let AA be a connected H-space. Then for every a:Aa:A, the maps μ(a,),μ(,a):AA\mu(a,-),\mu(-,a):A \to A are equivalences.

Revision on August 5, 2018 at 13:31:38 by Ali Caglayan. See the history of this page for a list of all contributions to it.