Homotopy Type Theory SEAR > history (Rev #1)

Idea

Mike Shulman’s dependently typed first-order theory SEAR.

Definition

A model of SEAR is a dagger 2-poset CC with a set El(A)El(A) of elements in AA for every object A:Ob(C)A:Ob(C) such that

  • Nontriviality: There exists an object A:Ob(C)A:Ob(C) with a term p:[El(A)]p:\left[El(A)\right], where [T]\left[T\right] is the propositional truncation of the type TT.

  • Relational comprehension: for every object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) there is a function P:Hom(A,B)(El(A)×El(B)Prop 𝒰)P:Hom(A,B) \to (El(A) \times El(B) \to Prop_\mathcal{U})

  • Function evaluation: For every map f:Hom(A,B)f:Hom(A,B), there is a function ()(()):Hom(A,B)×El(A)El(B)(-)((-)): Hom(A,B) \times El(A) \to El(B) such that P(f)(a,f(a))P(f)(a, f(a)) is contractible.

  • Tabulations: for every object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and morphism R:Hom(A,B)R:Hom(A,B), there is an object |R|:Ob(C)\vert R \vert:Ob(C) and maps f:Hom(|R|,A)f:Hom(\vert R \vert, A), g:Hom(|R|,A)g:Hom(\vert R \vert, A), such that R=f gR = f^\dagger \circ g and for two elements x:El(|R|)x:El(\vert R \vert) and y:El(|R|)y:El(\vert R \vert), f(x)=f(y)f(x) = f(y) and g(x)=g(y)g(x) = g(y) imply x=yx = y.

  • Power sets: for every object A:Ob(C)A:Ob(C), there is an object 𝒫(A)\mathcal{P}(A) and a morphism A:Hom(A,𝒫(A))\in_A:Hom(A, \mathcal{P}(A)) such that for each morphism R:Hom(A,B)R:Hom(A,B), there exists a map χ R:Hom(A,P(B))\chi_R:Hom(A,P(B)) such that R=( B )χ RR = (\in_B^\dagger) \circ \chi_R.

  • Natural numbers: there is an object :Ob(C)\mathbb{N}:Ob(C) with maps 0:El()0:El(\mathbb{N}) and s:Hom(,)s:Hom(\mathbb{N},\mathbb{N}), such that for every object AA with maps 0 A:El(A)0_A:El(A) and s A:Hom(A,A)s_A:Hom(A,A), there is a map f:Af:\mathbb{N} \to A such that f(0)=0 Af(0) = 0_A and fs=s Aff \circ s = s_A \circ f.

  • Collection: for every object A:Ob(C)A:Ob(C) and function P:El(A)×Ob(C)Prop 𝒰P:El(A) \times Ob(C) \to Prop_\mathcal{U}, there exists an object B:Ob(C)B:Ob(C) with a map p:Hom(A,B)p:Hom(A,B) and a BB-indexed family of objects M:Hom(𝟙,B)𝒰M:Hom(\mathbb{1},B) \to \mathcal{U} such that (1) for every element b:El(B)b:El(B), P(p(b),M(b))P(p(b),M(b)) is contractible and (2) for every element a:El(A)a:El(A), if there exists an object X:Ob(C)X:Ob(C) such that P(a,X)P(a,X) is contractible, then aa is in the image of pp.

See also

Revision on April 20, 2022 at 20:42:13 by Anonymous?. See the history of this page for a list of all contributions to it.