Homotopy Type Theory Sandbox (Rev #1)

testing stuff here

Definition I found on the HoTT zulip chat. TODO: see if it is worthwhile to rephrase it using open intervals.

Let (L,U)(L, U) be a pair of functions from the type of rational numbers \mathbb{Q} to Sierpinski space 1 1_\bot, i.e. (L,U):(1 )×(1 )(L, U): (\mathbb{Q} \to 1_\bot) \times (\mathbb{Q} \to 1_\bot). (L,U)(L, U) is said to be a Dedekind cut if it comes equipped with the type family isDedekindCut:(1 )×(1 )𝒰isDedekindCut: (\mathbb{Q} \to 1_\bot) \times (\mathbb{Q} \to 1_\bot) \to \mathcal{U}, defined by:

isDedekindCut(L,U) := q:L(q)= × r:U(r)= × q: q :((q<q )×(L(q )=)(L(q)=)) × r: r :((U(r )=)×(r <r)(U(r)=)) × q:((L(q)=) q :(q<q )×(L(q )=)) × r:((U(r)=) r :(U(r )=)×(r <r)) × q: r:((L(q)=)×(U(r)=)(q<r)) × q:, r:((q<r)(L(q)=)+(U(r)=)) \begin{aligned} isDedekindCut(L, U) & := \Vert \sum_{q: \mathbb{Q}} L(q) = \top \Vert \\ & \times \Vert \sum_{r: \mathbb{Q}} U(r) = \top \Vert \\ & \times \prod_{q:\mathbb{Q}} \prod_{q^\prime: \mathbb{Q}} ((q \lt q^\prime) \times (L(q^\prime) = \top) \to (L(q) = \top)) \\ & \times \prod_{r: \mathbb{Q}} \prod_{r^\prime: \mathbb{Q}} ((U(r^\prime) = \top) \times (r^\prime \lt r) \to (U(r) = \top)) \\ & \times \prod_{q: \mathbb{Q}} \left((L(q) = \top) \to \Vert \sum_{q^\prime: \mathbb{Q}} (q \lt q^\prime) \times (L(q^\prime) = \top) \Vert \right) \\ & \times \prod_{r: \mathbb{Q}} \left((U(r) = \top) \to \Vert \sum_{r^\prime: \mathbb{Q}} (U(r^\prime) = \top) \times (r^\prime \lt r) \Vert \right) \\ & \times \prod_{q: \mathbb{Q}} \prod_{r: \mathbb{Q}} ((L(q) = \top) \times (U(r) = \top) \to (q \lt r)) \\ & \times \prod_{q: \mathbb{Q}}, \prod_{r: \mathbb{Q}} \left((q \lt r) \to \Vert (L(q) = \top) + (U(r) = \top) \Vert \right) \\ \end{aligned}

The type of Dedekind real numbers is defined as follows:

D:=Σ((L,U):(1 )×(1 )).isDedekindCut(L,U)\mathbb{R}_D := \Sigma((L, U):(\mathbb{Q} \to 1_\bot) \times (\mathbb{Q} \to 1_\bot)).isDedekindCut(L, U)

definition in terms of open intervals

isDedekindCut(C) := q: r:I(q,r)= \begin{aligned} isDedekindCut(C) & := \Vert \sum_{q: \mathbb{Q}} \sum_{r: \mathbb{Q}} I(q, r) = \top \Vert \\ \end{aligned}

see also: locale of real numbers

predicative definition: an open in the real number is a function I:×1 I: \mathbb{Q} \times \mathbb{Q} \to 1_\bot that satisfies the four properties listed below:

a:,b:p 1(a,b):(ab)(I(a,b)=)a:\mathbb{Q}, b:\mathbb{Q} \vdash p_1(a, b): (a \geq b) \to (I(a, b) = \top)
a:,b:,c:,d:p 2(a,b,c,d):(ab)×(I(b,c)=)×(cd)(I(a,d)=)a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q}, d:\mathbb{Q} \vdash p_2(a, b, c, d): (a \geq b) \times (I(b, c) = \top) \times (c \geq d) \to (I(a, d) = \top)
a:,b:,c:,d:p 3(a,b,c,d):(I(a,b)=)×(b>c)×(I(c,d)=)(I(a,d)=)a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q}, d:\mathbb{Q} \vdash p_3(a, b, c, d): (I(a, b) = \top) \times (b \gt c) \times (I(c, d) = \top) \to (I(a, d) = \top)
a:,b:,c:,d:p 4(a,b,c,d):((a<b)×(c<d)(I(b,c)=))(I(a,d)=)a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q}, d:\mathbb{Q} \vdash p_4(a, b, c, d): ((a \lt b) \times (c \lt d) \to (I(b, c) = \top)) \to (I(a, d) = \top)

The opens form a sub-poset of the function poset ×1 \mathbb{Q} \times \mathbb{Q} \to 1_\bot. This poset is in fact a $\sigma$-frame, as we will now show. (It is not a sub-σ\sigma-frame of the function poset, since the joins are different. It is a sub-$\sigma$-complete distributive lattice of the function poset, although this seems to be a red herring at least for countably infinitary meets, since those are not part of the frame structure that we need.)

Revision on March 11, 2022 at 23:52:01 by Anonymous?. See the history of this page for a list of all contributions to it.