The natural numbers are characterized by their induction principle (in second-order logic/in a higher universe/as an inductive type). If one only has a first order theory, then one cannot have an induction principle, and instead one has a entire category of models. Thus, the first order models of arithmetic typically found in classical logic and model theory do not define the natural numbers, and this is true even of first-order Peano arithmetic.
Euclidean rings
Given a additively cancellative commutative semiring , a term is left cancellative if for all and , implies .
A term is right cancellative if for all and , implies .
An term is cancellative if it is both left cancellative and right cancellative.
The multiplicative submonoid of cancellative elements in is the subset of all cancellative elements in
A Euclidean semiring is a additively cancellative commutative semiring for which there exists a function from the multiplicative submonoid of cancellative elements in to the natural numbers, often called a degree function, a function called the division function, and a function called the remainder function, such that for all and , and either or .
Revision on May 13, 2022 at 00:48:14 by
Anonymous?.
See the history of this page for a list of all contributions to it.