Homotopy Type Theory UMyn8W7b (Rev #63)

Euclidean semirings

Given a additively cancellative commutative semiring RR, a term e:Re:R is left cancellative if for all a:Ra:R and b:Rb:R, ea=ebe \cdot a = e \cdot b implies a=ba = b.

isLeftCancellative(e) a:R b:R(ea=eb)(a=b)\mathrm{isLeftCancellative}(e) \coloneqq \prod_{a:R} \prod_{b :R}(e \cdot a = e \cdot b) \to (a = b)

A term e:Re:R is right cancellative if for all a:Ra:R and b:Rb:R, ae=bea \cdot e = b \cdot e implies a=ba = b.

isRightCancellative(e) a:R b:R(ae=be)(a=b)\mathrm{isRightCancellative}(e) \coloneqq \prod_{a:R} \prod_{b :R}(a \cdot e = b \cdot e) \to (a = b)

An term e:Re:R is cancellative if it is both left cancellative and right cancellative.

isCancellative(e)isLeftCancellative(e)×isRightCancellative(e)\mathrm{isCancellative}(e) \coloneqq \mathrm{isLeftCancellative}(e) \times \mathrm{isRightCancellative}(e)

The multiplicative submonoid of cancellative elements in RR is the subset of all cancellative elements in RR

Can(R) e:RisCancellative(e)\mathrm{Can}(R) \coloneqq \sum_{e:R} \mathrm{isCancellative}(e)

A Euclidean semiring is a additively cancellative commutative semiring RR for which there exists a function d:Can(R)d \colon \mathrm{Can}(R) \to \mathbb{N} from the multiplicative submonoid of cancellative elements in RR to the natural numbers, often called a degree function, a function ()÷():R×Can(R)R(-)\div(-):R \times \mathrm{Can}(R) \to R called the division function, and a function ()%():R×Can(R)R(-)\;\%\;(-):R \times \mathrm{Can}(R) \to R called the remainder function, such that for all aRa \in R and bCan(R)b \in \mathrm{Can}(R), a=(a÷b)b+(a%b)a = (a \div b) \cdot b + (a\;\%\; b) and either a%b=0a\;\%\; b = 0 or d(a%b)<d(g)d(a\;\%\; b) \lt d(g).

Non-cancellative and non-invertible elements

Given a ring RR, an element xRx \in R is non-cancellative if: if there is an element yCan(R)y \in \mathrm{Can}(R) with injection i:Can(R)Ri:\mathrm{Can}(R) \to R such that i(y)=xi(y) = x, then 0=10 = 1. An element xRx \in R is non-invertible if: if there is an element yR ×y \in R^\times with injection j:R ×Rj:R^\times \to R such that j(y)=xj(y) = x, then 0=10 = 1.

 On real numbers and square roots

There is a significant difference between square roots and nn-th roots. Square roots are the inverse operation of the diagonal f(x,x)f(x, x) for any binary operation ff, while nn-th roots are inverse operations of the nn-dimensional diagonals g(x,x,,x)g(x, x, \ldots, x) for nn-ary operations, which we typically do not formally talk about in typical practice for rings, etc…

Commutative rings

Commutative \mathbb{Q}-algebras

A commutative ring RR is a commutative \mathbb{Q}-algebra if there is a commutative ring homomorphism h:Rh:\mathbb{Q} \to R.

Totally ordered commutative rings

A commutative ring RR is a totally ordered commutative ring if it comes with a function max:R×RR\max:R \times R \to R such that

  • for all elements a:Ra:R, max(a,a)=a\max(a, a) = a

  • for all elements a:Ra:R and b:Rb:R, max(a,b)=max(b,a)\max(a, b) = \max(b, a)

  • for all elements a:Ra:R, b:Rb:R, and c:Rc:R, max(a,max(b,c))=max(max(a,b),c)\max(a, \max(b, c)) = \max(\max(a, b), c)

  • for all elements a:Ra:R and b:Rb:R, max(a,b)=b\max(a, b) = b implies that for all elements c:Rc:R, max(a+c,b+c)=b+c\max(a + c, b + c) = b + c

  • for all elements a:Ra:R and b:Rb:R, max(a,0)=a\max(a, 0) = a and max(b,0)=b\max(b, 0) = b implies max(ab,0)=ab\max(a \cdot b, 0) = a \cdot b

  • for all elements a:Ra:R and b:Rb:R, max(a,b)=a\max(a, b) = a or max(a,b)=b\max(a, b) = b

Totally ordered commutative \mathbb{Q}-algebras

Given totally ordered commutative rings RR and SS, a commutative ring homomorphism h:RSh:R \to S is monotonic if for all a:Ra:R and b:Rb:R, max(h(a),h(b))=h(max(a,b))\max(h(a), h(b)) = h(\max(a, b)).

A totally ordered commutative ring RR is a totally ordered commutative \mathbb{Q}-algebra if there is a monotonic commutative ring homomorphism h:Rh:\mathbb{Q} \to R.

Strictly ordered integral \mathbb{Q}-algebras

A totally ordered commutative \mathbb{Q}-algebra RR is a strictly ordered integral \mathbb{Q}-algebra if it comes with a strict order <\lt such that

  • 0<10 \lt 1
  • for all elements a:Ra:R and b:Rb:R, if 0<a0 \lt a and 0<b0 \lt b, then 0<a+b0 \lt a + b
  • for all elements a:Ra:R and b:Rb:R, if 0<a0 \lt a and 0<b0 \lt b, then 0<ab0 \lt a \cdot b
  • for all elements a:Ra:R and b:Rb:R, if 0<max(a,a)0 \lt \max(a, -a) and 0<max(b,b)0 \lt \max(b, -b), then 0<max(ab,ab)0 \lt \max(a \cdot b, -a \cdot b)

Archimedean ordered integral \mathbb{Q}-algebras

Modules

Given a commutative ring RR, an RR-module is an abelian group MM with an abelian group homomorphism α:R(MM)\alpha:R \to (M \to M) which is also a curried action.

The free RR-module on a set SS is the initial RR-module MM with a function ι:SM\iota:S \to M.

Algebra

Given a commutative ring RR, there is a commutative ring AA where RR is a subring of AA, with a function ()():A×AA(-)\circ(-):A \times A \to A called composition, a term x:Ax:A called the composition identity, a function S ():R×AAS_{(-)}:R \times A \to A called the shift, and a function :AA\partial:A \to A called the derivative such that

rules for composition:

  • for all a:Ra:R, af=aa \circ f = a
  • for all f:Af:A, fx=ff \circ x = f
  • for all f:Af:A, xf=fx \circ f = f
  • for all f:Af:A, g:Ag:A, and h:Ah:A, f(gh)=(fg)hf \circ (g \circ h) = (f \circ g) \circ h
  • for all f:Af:A, g:Ag:A, and h:Ah:A, (f+g)h=(fh)+(gh)(f + g) \circ h = (f \circ h) + (g \circ h)
  • for all f:Af:A, g:Ag:A, and h:Ah:A, (fg)h=(fh)(gh)(f g) \circ h = (f \circ h) (g \circ h)

rules for shifts:

  • for all a:Ra:R and f:Af:A S af=f(xa)S_a f = f \circ (x - a)

rules for derivatives:

  • (x)=1\partial(x) = 1
  • for all a:Ra:R, (a)=0\partial(a) = 0
  • for all f:Af:A and g:Ag:A, (f+g)=(f)+(g)\partial(f + g) = \partial(f) + \partial(g)
  • for all f:Af:A and g:Ag:A, (fg)=(f)g+f(g)\partial(f g) = \partial(f) g + f \partial(g)

Symbolic representations of formal smooth functions on the entire domain.

Revision on June 12, 2022 at 20:29:19 by Anonymous?. See the history of this page for a list of all contributions to it.