Homotopy Type Theory ZF > history (Rev #1)

work in progress…

Definition

Given a universe 𝒰\mathcal{U} with excluded middle, a model of Zermelo-Frankl set theory is a set VV with

  • a binary relation (βˆ’)∈(βˆ’):VΓ—Vβ†’Prop 𝒰(-)\in(-):V \times V \to Prop_\mathcal{U}

  • a dependent function

Ξ±:∏ a:V∏ b:V(∏ c:V∏ d:V𝒯 𝒰(c∈a)×𝒯 𝒰(d∈b)Γ—(c=d))β†’(a=b)\alpha:\prod_{a:V} \prod_{b:V} \left(\prod_{c:V} \prod_{d:V} \mathcal{T}_\mathcal{U}(c \in a) \times \mathcal{T}_\mathcal{U}(d \in b) \times (c = d)\right) \to (a = b)
  • a term βˆ…:V\emptyset:V with a dependent function
Ξ²:∏ a:V𝒯 𝒰(aβˆˆβˆ…)β†’πŸ˜\beta:\prod_{a:V} \mathcal{T}_\mathcal{U}(a \in \emptyset) \to \mathbb{0}
  • a function {(βˆ’),(βˆ’)}:VΓ—Vβ†’V\{(-),(-)\}:V \times V \to V with a dependent function
Ξ³:∏ a:V∏ b:V∏ c:V[(c=a)+(c=b)]→𝒯 𝒰(c∈{a,b})\gamma: \prod_{a:V} \prod_{b:V} \prod_{c:V} \left[(c = a) + (c = b)\right] \to \mathcal{T}_\mathcal{U}(c \in \{a, b\})
  • a function ⋃:Vβ†’V\bigcup:V \to V with a dependent function
Ξ΄:∏ a:V∏ b:V𝒯 𝒰(b∈a)→𝒯 𝒰(bβˆˆβ‹ƒa)\delta: \prod_{a:V} \prod_{b:V} \mathcal{T}_\mathcal{U}(b \in a) \to \mathcal{T}_\mathcal{U}\left(b \in \bigcup a\right)
  • a function {(βˆ’)|(βˆ’)}:VΓ—(Vβ†’Prop 𝒰)β†’V\{(-) \vert (-)\}:V \times (V \to Prop_\mathcal{U}) \to V with a dependent function
Ο΅:∏ a:V∏ P:Vβ†’Prop π’°βˆ b:V((b∈{a|P})β†’((b∈a)×𝒯 𝒰(P(b))))Γ—(((b∈a)×𝒯 𝒰(P(b)))β†’(b∈{a|P}))\epsilon: \prod_{a:V} \prod_{P:V \to Prop_\mathcal{U}} \prod_{b:V} ((b \in \{a \vert P\}) \to ((b \in a) \times \mathcal{T}_\mathcal{U}(P(b)))) \times (((b \in a) \times \mathcal{T}_\mathcal{U}(P(b))) \to (b \in \{a \vert P\}))
  • a function 𝒫:Vβ†’V\mathcal{P}:V \to V with a dependent function

See also

Revision on May 19, 2022 at 17:20:05 by Anonymous?. See the history of this page for a list of all contributions to it.