Homotopy Type Theory commutative A3-space > history (Rev #4)

Idea

The commutative version of the A3-space up to homotopy, without any higher commutative coherences.

Definition

A commutative A 3A_3-space or commutative A 3A_3-algebra in homotopy types or commutative H-monoid consists of

  • A type AA,
  • A basepoint e:Ae:A
  • A binary operation μ:AAA\mu : A \to A \to A
  • A left unitor
    λ: (a:A)μ(e,a)=a\lambda:\prod_{(a:A)} \mu(e,a)=a
  • A right unitor
    ρ: (a:A)μ(a,e)=a\rho:\prod_{(a:A)} \mu(a,e)=a
  • An asssociator
    α: (a:A) (b:A) (c:A)μ(μ(a,b),c)=μ(a,μ(b,c))\alpha:\prod_{(a:A)} \prod_{(b:A)} \prod_{(c:A)} \mu(\mu(a, b),c)=\mu(a,\mu(b,c))
  • A commutator
    κ: (a:A) (b:A)μ(a,b)=μ(b,a)\kappa:\prod_{(a:A)} \prod_{(b:A)} \mu(a, b)=\mu(b, a)

Homomorphisms of commutative A 3A_3-spaces

A homomorphism of commutative A 3A_3-spaces between two commutative A 3A_3-spaces AA and BB is a function ϕ:AB\phi:A \to B such that

  • The basepoint is preserved
    ϕ(e A)= Be B\phi(e_A) =_B e_B
  • The binary operation is preserved
    (a:A) (b:A)ϕ(μ A(a,b))= Bμ B(ϕ(a),ϕ(b))\prod_{(a:A)} \prod_{(b:A)} \phi(\mu_A(a, b)) =_B \mu_B(\phi(a),\phi(b))

(…)

Tensor product of commutative A 3A_3-spaces

(…)

Examples

  • The integers are a commutative A 3A_3-space.

  • A commutative monoid is a 0-truncated commutative A 3A_3-space.

  • A H-rig? is a A 3A_3-algebra in commutative A 3A_3-spaces.

See also

Revision on February 4, 2022 at 02:28:21 by Anonymous?. See the history of this page for a list of all contributions to it.