Homotopy Type Theory Hausdorff space > history (Rev #5, changes)

Showing changes from revision #4 to #5: Added | Removed | Changed

Contents

Definition

In premetric Archimedean spaces ordered fields

Let R F R F be a an dense integral subdomain of the rational Archimedean numbers ordered field . Then F \mathbb{Q} F and is aR +R_{+}Hausdorff space be if the for positive all terms ofRRdirected type . sI:𝒰I:\mathcal{U} and nets x:IFx:I \to F, the type of all limits of xx is a proposition

Let SS be an R +R_{+}-premetric space. Then SS is a Hausdorff space if for all directed types I:𝒰I:\mathcal{U} and nets x:ISx:I \to S, the type of all limits of xx is a proposition

isHausdorff(F) I:𝒰isDirected(I)× x:IFisProp(limx)isHausdorff(F) \coloneqq \prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to F} isProp(\lim x)
isHausdorff(S) I:𝒰isDirected(I)× x:ISisProp(limx)isHausdorff(S) \coloneqq \prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to S} isProp(\lim x)

All Archimedean ordered fields are Hausdorff spaces.

Most general definition

Let SS be a type with a predicate \to between the type of all nets in SS

I:𝒰isDirected(I)×(IS)\sum_{I:\mathcal{U}} isDirected(I) \times (I \to S)

and SS itself. Then SS is a Hausdorff space if for all directed types I:𝒰I:\mathcal{U} and nets x:ISx:I \to S, the type of all limits of xx is a proposition

isHausdorff(S) I:𝒰isDirected(I)× x:ISisProp( l:Sxl)isHausdorff(S) \coloneqq \prod_{I:\mathcal{U}} isDirected(I) \times \prod_{x:I \to S} isProp\left(\sum_{l:S} x \to l\right)

One could directly define the limit lim\lim as a partial function

lim:( I:𝒰isDirected(I)×(IS)) 𝒰 +S\lim: \left(\sum_{I:\mathcal{U}} isDirected(I) \times (I \to S)\right) \to_{\mathcal{U}^+} S

See also

Revision on March 31, 2022 at 16:13:38 by Anonymous?. See the history of this page for a list of all contributions to it.